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DEDICATION

Dr. Milton E. Rose began his mathematical career in numerical analysis at
the start of the computer era. He received the Ph.D. degree from New York
University where he studied under Richard Courant. There, using a Univac I, he

helped demonstrate the feasibility of studying floods in a large river system with
dams and power stations (Ohio, Tennessee, and Mississippi rivers). His research
has continued to emphasize the importance of developing emcient approximation
methods for the numerical treatment of partial differential equations while keep-

ing physical ideas at the forefront. His work has served as an inspiration for two
generations of colleagues. In particular, his treatment of "Stefan problems," using
enthalpy rather than temperature, has become the standard practice in the field.

Dr. Rose has continued his research while engaged in an active administra-
tive career. He has served as Head of the Applied Mathematics Division,
Brookhaven National Laboratory; Head of the Mathematical Sciences Section,
National Science Foundation; Head of the Omce of Computing Activities,
National Science Foundation; Chairman of the Mathematics Department,
Colorado State University; Chief of the Mathematics and Geosciences Branch,
Energy Research and Development Administration; and has served as Director of
the Institute for Computer Applications in Science and Engineering (ICASE)
since September 1977. His administrative efforts produced remarkable improve-
ments in the fields of computer applications that he managed for the U. S.
government.

At ICASE, Dr. Rose has nurtured and brought to maturity an activity that
has gained international recognition for its breadth and intellectual content.

On the occasion of his 60th birthday, a few of Dr. Rose's friends have pro-
duced this volume to show their appreciation for his wise and happy guidance and
to challenge him to keep it up for the next 60.

Eugene Isaacson
March 1986
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FOREWORD

This volume contains 21 research papers dedicated to Milton E. Rose on the
occasion of his 60th birthday. The contributors are mathematicians and fluid
dynamicists who have known and worked with Milt Rose during his tenure as
Director of ICASE.

These research papers cover some recent developments in numerical analysis
and computational fluid dynamics. Some of these studies are of a fundamental
nature. They address basic issues such as intermediate boundary conditions for
approximate factorization schemes, existence and uniqueness of steady states for
time-dependent problems, pitfalls of implicit time stepping, etc. The other stu-
dies deal with modern numerical methods such as total-variation-diminishing

schemes, higher order variants of vortex and particle methods, spectral multi-
domain techniques, and front-tracking techniques. There is also a paper on adap-
tive grids. The fluid dynamics papers treat the classical problems of incompressi-
ble flows in curved pipes, vortex breakdown, and transonic flows.

The editors would like to take this opportunity to thank the authors for their
excellent contributions and their promptness for meeting deadlines.

JCS and MYH
March 1986
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CONVERGENCETO STEADYSTATEOF SOLUTIONSOF BURGERS"EQUATION

Gunilla Kreiss

Royal Institute of Technology
Stockholm, Sweden

and

Helnz-Otto Krelss

California Institute of Technology

Pasadena, California

Abstract

Consider the initial-boundary value problem for Burgers" equation. It is

shown that its solutions converge, in time, to a unique steady state. The

speed of the convergence depends on the boundary conditions and can be

exponentially slow. Methods to speed up the rate of convergence are also
discussed.
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1. Introduction. In many gasdynamical problems one tries to calculate the steady state
solution by solving the corresponding time dependant problem. One hopes that for t ---*o0 the
solution converges to a unique steady state. Recently, M. D. Salas, S. Abarbanel and D. Gottlieb
[1]considered the initial-boundary value problem

ut+½(u2)x=f(z), t_>0,
(1.1)

=g(x).

They used

f(z)=sinzcosz, g(x)=bsinx, 0<b,

and showed that the solution u(x, t) of the above problem converges to a steady state v(x), as
t _ c% but that v(x) depends on the initial data.

In this paper we consider the viscous problem

ut+2(u2)z=euxx+f(x), t_>0, 0_<x_<l, e>0, (1.2a)

with initial and boundary Conditions

u(O,t)=a, u(1, t)=b, (1.2b)

and the corresponding steady state problem

l(YZ)x=eYxx+f(x), O<_x<l, e>O,
(1.3)

y(O)=a, y(1)=b.

For simplicity we restrict ourselves to two cases:

1) a>O>b, a>-b, f(x)--O,

2) a = b = 0, fis such that there exists an a with 0 < _ < 1 such that f(x) > 0 for 0 < x < a,

f(x) < 0 for c_ < x < 1, f(0) = f(1) = 0, f_(0) >_f0 > 0 and f_(1) > .to.

We will show that (1.3) has a unique solution and discuss the properties of y(x). We shall
also show that in all cases we consider, the limit of y(x) as e --*0 exists. Thus, if



exists, we obtain a unique steady state solution of the inviscid equation (1.1) if we first let
t --* oo and then e --* 0. This is in contrast to the procedure in [ 1], where the two limit

procedures are taken in the reverse order.
We shall prove that the eigenvalues of the eigenvalue problem

AV'= -(y_o)x + e_ozz, W(0) = g_(1)= 0, (1.4)

are all negative. Therefore, the solution of (1.2) converges to the solution of (1.3) provided
u(x, O) = g(x) is sufficiently close to y(x). In another paper we shall prove that u(x, t) converges
to y(x) as t ---*oo for arbitrary initial data. The speed of convergence is determined by the
eigenvalues, ),j, of (1.4). We shall show that the eigenvalue distribution depends on f(x) and
on a, b in the following way:

There is a constant e > 0 which does not depend on e such that

(1) if a>-b, f_0 then 0>-c]e>)q >)`2>...

(2) if a=-b, f---0 then -),l---O(e -lIt)>0, -e]e>),2>),3>...

(1.5)

/ol(3) if a=b=O, f(x)dx#O, then -c>),x>),2> ....

fo
(4) if a=b=0, f(x)dx=O, then -Xl=O(e -x/_)>0,-c>A2>)'3>''"

We expect a reasonable speed of convergence in the first and third case, while in the second
and fourth case the speed should be extremely slow due to the eigenvalue -),1 = O(e-l/t) • This
is confirmed by numerical experiments. We see that at first u(x, t) quite rapidly approches the
same limit as the inviscid equation (1.1), which consists of solutions of the stationary equation

connected by a shock. Once the viscous shock has been formed, the solution of (1.2) becomes
quasi-stationary and the shock creeps extremely slowly to the "right" position. We can ex-
plain the behavior, because by linearizing around the quasistationary solution we find that the
eigenvalues of the corresponding eigenvalue problem have a similar distribution as earlier.

If -),x = O(e -_/*) then the speed of convergence is so slow that the above method to
calculate the steady state is impractical, see figures (1) and (3). However, we can use the same
technique as Hafez, Parlette and Salas in [2]to speed up the convergence. See figures (2) and
(4).

Unfortunatly, not only the speed of convergence but also the condition number of the
stationary problem deteriorates. We have to calculate with O(e I/_) decimals to obtain correct



results. To avoidan excessivenumberof decimalswe have useda quitelargee in our numerical
calculations.

The situation becomesmuchbetter in a two dimensionMcase, which wediscuss in the last
section. Now there is a whole sequenceof eigenvalues

-#Ii = O(j2c), 3"= 1,2,...,

close to zero. However,they are only algebraically and not exponentiallyclose to zero. We
indicate how to modify the procedure to accellerate the speed of convergence.

Webelieve that the viscousmodel (1.2)better explains what happens in actual calculations
than the inviscidequation (1.1). Practically all numericalmethods have someviscosity built in.
Also, from a physical point of view, the solution we are interested in is the limit of solutions of
a viscous equation.

Finally we want to point out that the appearance of small eigenvalueshas also been
observed by D. Brown, W. Kath, H. O. Kreiss and W. Henshaw,M. Nanghton (private com-
munication).

2. Uniqueness,existence and properties of the steady state solution. We start
with uniqueness, which can be proven by standard techniques.

Lemma 2.1. If the steady equation (1.3) has a solution, then it is unique.
Proof. Let u, v be two solutions. Then w = u - v is the solution of

l(pw)x=ewx:_, V=U+V, w(O)=w(1)=O. (2.1)

If w _ 0 then the zeros of w are isolated. Let 5 with 0 < 5 < 1 be the first zero to the right
of x = 0. Without restriction we can assume that w > 0 for 0 < x < 5, i.e. wx(0) > 0 and
wx(Y) _<0. Integration of (2.1) gives us

+ Iw,(O)l)= = 7[pw]o=O.

Thus wx(0) = w_(_) = 0. We can consider (2.1) as an initial value problem with initial data
w(0) = wx(0) = 0 whose solution is w(x) -- O, and the lemma is proved.

We shall now discuss the properties of the solution. Let us start with the case f(x) = O,
a > 0 > b, a > -b. Integrating (1.3) gives us

1 2

eyz=_y --c, 0<x<l,
(2.2)

y(O) = a.



The constant c has to be determined so that y(1) = b. We necessarily have e = d2/2 > a2/2,
because with c <_a2/2, yz ->0 for all x, and y(1) = b cannot be satisfied. We can solve
equation (2.2) explicitly. This is done by writing (2.2) in the form

v(,) =

fj2- d2 = f d_,
a 0

i.e.

a+ d_tv(z) - d ed,lrI
a- d'_y(x) +d"

Therefore y(1) = b implies d = a + O(e-'/*), and

1 - re -aO-_)l" a - b

y{x)=al+re_a(l_=)/r,._ with r=_a+b. (2.3)

Away from the boundary layer at x=l we have y(x) = a + O(e-aCl-x)/'). Thus, for e _ 0, y(x)

converges to a for 0 _<x < 1.

If a = -b we consider (2.2) on the interval 0 < x < ½, with boundary conditions y(0) =

a, y(½) = 0 and obtain a solution yl(x) of the form (2.3). The solution on the whole interval
is given by

yi (x), if 0 < x _< ½,
y(x) = [--yl(1--x), if ½ < x< 1.

In figures(9) and (10) we have plotted y(x) for two different sets of boundary values.
Consider case 2, where f only vanishes at x = 0, (x,1 and a = b = 0. Without restrictions

we can assume that

1

/ f(x) > O. (2.4)
0

If this is not true, we transform the problem by introducing new variables,

_=l-x, ] = - f , _l= -y.

The new problem satisfies (2.4).

Lemma 2.2. Let y(x) be thesolution of (1.3), F(x) = f_ f(_)d_ and h(x) = x/_-_.
Then

yx(1) < yx(O) < K1, Kt = max {Ihx(x)l} + Ihx(O)].-- -- 0<=<_t



Proofi Integration of (1.3) gives

1 2
 (ux- ux(0))= - F,

(2.5)
v(0)=0,

where y,(0) is determined by y(1) = 0. If u = y - h, then u is the solution of

ux = y_(O) - hx + e-luh + 1 -1 2

=0.

Assume that yx(0) > K1. It follows that y_(0) -hx(x) is positive and thus u and ux are positive
for all x > 0. In particular u(1) > 0 and y(1) = u(1) + h(1) > 0, which contradicts y(1) = 0.
Thus y_(0) _<//'i. Also

_yx(1) = eyz(O) - F(1) <_eyx(O).

This proves the lemma.

Lemma 2.3. Let y(x) be the solution of (1.3) and let e be sufficiently small. If F(1) > 0
then y(x) > 0 for 0 < x < 1 and y(x) has exactly one maximum. If F(1) = 0 then there exists
an 5 with 0 < 5 < 1 such that y(x) > 0 for 0 < x < 5, and y(x) < 0 for 5 < x < 1. Also y(x)
has exactly one minimum and one _.naximum. In both cases IV(X)]< max IF(z)l.

Proof. At extrema y_ = 0 and

<0 for 0 < x < 1_,
Yzz=-6-1f= =0 forx--cr, (2.6)

>0 for _<x< 1.

Thus y cannot have a minimum to the left of a maximum. Since y(0) = y(1) = 0 there are only
three possibilities, namely

y > 0 for 0 < x < 1, y has exactly one maximum, (2.7a)

y<0 for 0<x<l, y has exactly one minimum, (2.7b)

y>0 for 0<x<5, 0<5<1,
(2.7c)

Y < 0 for 5 < x < 1, y has exactly one maximum and one minimum.



We shall prove that if F(1) > 0 then (b) and (c) are not possible, and that if F(1) = 0

then (a) and (b) are not possible.
Let F(1) > 0. Suppose (2.7b) holds. Then

y_(0) <_0, y_(1) _>0.

By(2.5)
0 _<e(yz(1) - yx(0)) = -F(1) < 0. (2.8)

This is a contradiction, so (2.7b) cannot hold. Now supposse (2.7c) is valid. Then yz(0) _>0

and by (2.8)
yx(0) _>e-iF(l).

If e is small enough this is impossible by lemma 2.2.

Let F(1) = 0. Assume that (2.7a) or (2.7b) are valid. By (2.8) yx(0) = yx(1), which is

only possible if yx(O) = yx(1) = 0. Differentiating (1.3) gives us

eyzxx = YYxx + (Yx)2 - fx. (2.9)

Thus

v(0)=v (0)= = 0, <0,
y(1)----yx(1)----yxx(1) =0, yxxx(1) <0.

This implies that y must change sign at least once, which contradicts the assumption, and

therefore (2.7c) must hold.

It remains to show that ly(x)l is bounded by maxlF(x)l. Since y(0) = y(1) = 0, the
maximum absolute value of y is found at a local extrema, where yx = 0. Thus, from (2.5) it

follows that

ly(x)l < max IF(x)- eyx(O)l < max IF(x)l.
--o<_<_I --o<_<_I

This finishes the proof.

We can use the usual singular perturbation methods to discuss the behavior of the solution

in detail, see for ex. [3].

Theorem 2.1. Let F(1) > 0, assume that (1.3) has a solution and that e is sufficiently

small. Then y(x) has a boundary layer at x = 1. For 1 - O(e Ilog(e)[) < x _< l, y(x) is close to

w(x) which is the solution of

ewx=lw2-F(1), -c_<x<l, w(1)=0. (2.9)2

In any interval 0 < xo < x < 1 -- o( 1log(e)l)

y(x) = h(x) + _ul (x, e), h(x) ----_ =: xg(x), (2.10)



where ul and its derivatives are bounded independantly of e. For 0 < x < xo < c+we have

y(x) --h(x) q-_u(_), _-- x/x/d, (2.11)

where u and the derivatives dVu/d_Y are bounded independantly of e. Thus, for _ _ 0, y(x)
converges to h(x) for 0 _<x < 1.

Proof. We indicate only the proof of (2.11). In the proof we shall use/1,/2 and I to
denote the intervals 0 _<_ _<1, 1 <: _ _<x0]x/d and 0 _<._ _<xo]v_, respectively. We shall also
use

Ilfllt := max If(_)l,

where I is an interval.

Weintroducea newvariablein (1.3),

y(x)=h(x)++=(_/V_.
Thisgivesus

u_-(_g(x)+v/_u)u_-hxu=-hzx, 0_<x_xo/v_, u(0)=0, u(xo/v_=uo, (2.12)

where uo = ul(xo, e) is bounded independantly of e. From xo < o_and the assumtion f_(0) _>
fo > 0 it follows that h_(x) _>ho > 0 for 0 _<x _<xo. Therefore we can use the maximum

principle. The maximum of u is found either on the boundary or at a local extrema, where
u_ = 0. At local extrema

I=1< Ih= 1- h_I-<_llhx_(_)ll_=:_.

Thus

II'++II,_<max(_,o,,:,+). (2.13)
Next we want to estimate I1_+11_.First we consider the interval/1 ---[0, 1]. By (2.12) and

(2.13) there are constants Cx and Cmsuch that

I1_++11,,-<C,lltt+llt,+c2.

It is well known, see Landau [41,that one can estimate I1_+11,,in terms of I1_11,,,_,d I1=++11,,,
i.e. for every constant 6 there is a constant C(6) such that

I1_++11,,-<611_++11,,+0(6)11_11,,.

Thus for6 = ½(C1)-1 we obtain a bound for I1_++11,,,which gives us a bound for I1,,+11,,.
Especially,I_(1)1is bounded.

In the remaining interval/2 = [1,x0/Vff], we have

F_> F(x/_) = efx(O)(1 + O(V_)).

Thus

ig+v¢-=v_/v_+v_____ +o(v_),

8



i.e. for sufficiently small v/_

At local extrema of u_, u_ = 0 and we have, by (2.12),

2 2

I_1-<x/_lh_- h_ul- x/_-_(llh_lb_. IIh_llz_llullz_)-:_.

Thus
xo

II,_++II,+-<m_x(I,++(i)l,I,++(_)I,]3),

and u_ is bounded independantly of e in the whole interval. By differentiating (2.12) bounds
for higher derivatives of u can be obtained.

It is also clear that as e --*0, y(x) converges to h(x). This finishes the proof.

If F(1) = 0 then the solution switches at • from _ + O(e) to -vf2F + O(e). In each
subinterval 0 < x < _ and _ < x < 1 the local behavior of the solution is of the same type as
in the first case. As _ --*0, y(x) converges to h(x) for 0 < z < _ and to -h(x) for • < x _ 1.
In general, the position of _ can only be obtained by detailed calculation. However, if f(x) is
antisymmetric around z = ½then _ = ½. This is the only case we consider.

We shall now discuss the existence of a solution. For this we need two lemmata.

Lemma 2.4. For sufficiently large e the steady state equation (1.2) has a solution.
Proof. By integrating (1.3) twice, we can write the equation in the form

X X

,,,:): I +,+++o,,,:1]°,
0 0

1 1

-_+/,,+(+),++- / F(_)_++_o=o,
o o

or after the change of variable y = _/_

.T X

+(:): f +++o,
o o

I 1
1 2

0 0



For r] = 0 the above equations have a unique solution. Therefore the same is true for all
sufficiently small r]. This proves the lemma.

Lenuna 2.5. Let p(x) be a smooth function. Consider the eigenvalue problem

A_ = -(P_)x + e_xx, <p(0)= _o(1)= 0. (2.14)

The eigenvalues are real and negative.

Proof. We introduce a new variable ¢(x) by

= e , ¢(z),

and obtain

),¢=eCxx-c¢=:L¢, c(x) = 1 1+ (v(x))L
(2.15)

¢(0) = ¢(1) = 0.

(2.15) is selfadjoint and therefore the eigenvalues are real. Let _ _ 0, )_be a solution of (2.14),
and let _ be the first zero of _ to the right of x = 0. We can assume that _ > 0 for 0 < x < :_.
Thus _x(0) _>0 and _x(_) _<0, and integration of (2.14) gives us

£

Af _(x)dx e= < 0.
o

It follows that _ _<0. If A = 0, the only possible solution of (2.14) would be _(x) -- 0. Thus
A < 0, which proves the lemma.

Now we can prove
Theorem 2.2. The equation (1.3) has a unique solution for all e > 0.
Proof. We have already shown that (1.3) has a solution for sufficiently large e. We will

now employ continuation in e to prove existance for all e > 0. Assume we have shown existance
for _ > _. We want to show that there is a solution for e = _. By lemma 2.3 the solutions of
(1.3) are uniformly bounded for _ < e < _ + 1. Therefore the same is true for the first three
derivatives. Thus we can select a sequence of solutions

y(X, ev), v = 1,2,..., lim ev =_,
/,/--*CO

such that

• di dJ
ulilnoo-_ziy(x,eu) = _ziy(x,_'), ]=0,1,2 ,

I0



and y(x, "g)is the desired solution.Linearizing the equation around y(x,'g) gives us

(y(x,'g)Sy)x =e(Sy)xx + (e -'g)y(x,'g), by(O)=6y(1)=0.

By the previous lemma A = 0 is not an eigenvalue of the above equation and therefore we can
solve (1.3) for all sufficiently small 6 -_. This proves the theorem.

3. Speed of convergence. In this section we want to discuss the speed of convergence
to steady state. We assume that the initial data g(x) of (1.3) are sufficiently close to the
solution of the steady problem, so that we only have to discuss the behavior of the solutions of
the linearizcd equation

wt + (yw)x = ewxx, O __x __ l, t _ O,

w(x, 0) = ._(x), (3.1)

,_(O, t) = w(1, t) = 0.

To determine the speed of convergence we study the distribution of eigenvalues of

)_o + (Yg_)x = e_oxx, ta(0) = 99(1) = 0. (3.2)

Theorem 3.1 . The eigenvalues of (3.2) are real and negative and their distribution is

given by (1.5).

Proof. Lemma 2.5 tells us that the eigenvalues are real and negative. First we consider

the case f - 0, a > -b. We write (3.2) in the selfadjoint form (2.15) with p = y. Let A = A1
be the largest eigenvalue. The corresponding eigenfunction _bl does not change sign, and we

can assume that qJl > 0 for 0 < x < 1 and that max kbl(x)l = 1. We assume that )q > -a2/8€.
Then there is a constant K such that c(x) + A1 > 0 for 0 _>x _> 1 - K_. Thus _bl is monotone
in the interval 0 < x < 1 -Ke, and therefore _1 must have its maximum in the remaining

interval, 1- Ke _<x < 1. By assumption max _bl(x) = 1 and therefore there must be a constant
5 > 0 such that _blz(1) < -8/e. Now consider the corresponding eigenfunction

99x(x)=e 1 _bx(x), y91x(1)=_blx(1), 0_<_ot(x)<q)l(x).

Integrating (3.2) gives us

f01
-di_>e(_oxx(1) - _01x(0)) = A1 _ldx __

fO _.I-1 z
>_A1 e2" ft yd_dx = )qed.
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Thus

• a_ 6
:_i<-m,n(_,T_),

and the theorem is proven for this case.
When f _ 0, a = b = 0, and f_ f(:r.)dx > 0 the corresponding estimate follows in the same

way, since by theorem 2.1 there are constants Co > 0 and K such that

,orox s,-K

We now consider the antisymmetric case when a = -b, f _ 0 or a = b = 0 and f(x) is
antisymmetric around x = ½. We want to show that

-),1 = O(6-%-1/').

We shall use the fact that for our selfadjoint eigenvalue problem (2.15) the eigenvalue with the
smallest absolute value, ),1, satisfies

for any smooth function € _ 0 satisfying the boundary conditions. We chose

_I_

' -' f y(_)dq -½,-' f y(_)d_
--" "q_(X)= e ,12 -- e

0

as trial function, y(x) is antisymmetric around x = ½, and €(0) = €(1) = 0. Also

y2 yx -½,-_f _(,,)d,,
L¢= (_+T)e o

Both ¢2 and 1_-1.2(Z_ y + ½yz)2 are symmetric around x = ½. Therefore

1/2 2

o

1/2

f _ rll2yd_ zc-I r" _I1€112= 2 e-" 'Jo (e_ .Io_d_ 1)2dx,
o

12



and by (2.5) and theorem 2.1

AT_<IIL¢ll2 _ o < C%_%_2D/,,
I1€11_ ,/2 ",-,o_,_f (e -- 1)2dx

o

whereC > 0, D > 0 areconstantswhichdo not dependon e.
We shall now estimate the size of the secondeigenvaluefor the case with an interior

boundarylayerat x = _.1By assumptiony(x) is antisymmetricaround x = 5"1Considerthe
eigenvalueproblem(3.2)on half the interval,0 _<x < ½,and denoteits solutionsby

;=1,2 ....

We know that 0i has i- 1 sign changes, and we have already shown how the _i's are bounded
away from zero. The function

1
_2i(x)= _5i(x) for0<x_<_ i 1,2.

-_Si(x-!)2 f°rl_<x<l' = ""

will satisfy (3.2) on the full interval, 0 < x < 1 with ), = ),2i = _i. Also _i changes sign
2(i - 1) + 1 times. Thus _2i is the 2__h eigenfunction and )`2i is the 2ith eigenvalue. Therefore
),2 is bounded away from zero. This finishes the proof.

4. Numerical results. We shall discuss difference approximations for the time depen-
dant problem (1.2) and the eigenvalue problem (3.2). We introduce gridpoints

1

(xi=ih, ti=jk ), i=0,1,.., j=O, 1,...,N, h=_,

where N is a natural number and k > 0 is the time step. We also introduce gridfunctions

t_ = utxi,tj).

We approximate (1.2) by the usual implicit method

(I-ekD+D-)u_+'+lkDo(u_+')2=u_+kfi, i----1,2,...,N- 1 (4.1)

13



with initial and boundary conditions

o
tti = gi, i = l, 2, . . . ) N -1,

t_£=a, _N=b, j=l,2,...

Here

h2 D+D-ui = ui+l - 2ui + ui-1 and 2hDo(ui) 2 = (ui+l) 2 - (ui_l) 2

denote the usual centered difference operators. At every time step one has to solve a nonlinear

system to determine 4 ;+1 . This is done by the iteration

(I- _kD+D_)u!t+,) =__kDo(ui )l(0 2 + t_ + kfi, l = 0, 1 ... , (4.2)

where u(°) is choosen by a predictor process.

In all our experiments the solution of (4.1) converges to a steady state solution. However,

the speed of convergence depends on the location of the shock. If the shock is located at the

boundary, corresponding to the first and third case of (1.5), then the convergence to steady

state is quite rapid. See figure (5). If on the other hand the shock is located in the interior,

corresponding to the other cases of (1.5), the convergence is, in general, very slow. When the

shock is formed at an early stage it is in general in the "wrong" place, depending on the initial

data. From then on, the the shock moves slowly to the correct position. See figures (1),(3). This

process can be considered quasi-stationary, which makes it possible to use the same convergence

acceleration as in [2].

Formally we can write our iteration (4.1) as

H(u n+' ) = un+' - u '_ := rn. (4.3)

We can linearize the realation and obtain

(I- L)rn+l = r". (4.4)

In our case

Lri = ekD+D_ri - kDo(u'_+Xri). (4.5)

This is a discretization of the right hand side of the eigenvalue problem (2.14), with p = un. If

the process is quasi-stationary we can consider L to be independant of n. Then we have

rn+j = (I- L)-Jr n

and

p--1

= +
i---o

If the eigenvalues )'i, of L are negative the eigenvalues gi, of (I - L) -1 satisfy < 1 and

lim u"+v = u" + (I- (I- L)-l)-lr" = un + (I- L-1)r" (4.6)
p --* O0

14



Instead of taking a large number of time steps we can take one largestep, which we call an
extrapolation step. We put

u = un +/3e, (4.7)

wheree isthesolutionoftheequation

Le= (L- l)rr', (4.8)

and/3 is a stabilizing paxameter.Wechoose/3in sucha waythat H(tt n + i3e) hasno component
in the directionof e, i.e.

(H(_"+!3e),e)=o,

where (.,.)denotesthe usuM innerproduct.There areotherpossiblechoices,forexample
choose/3suchthat

IIH(u"+_e)[I= m_nIIH(,]'+!3e)ll.

Ofcourse(4.7) is notthesteadysolutionweareseeking.Weusethe newu to restart the time
iteration,and makea newextrapolationstep oncea newquasi-stationarystate is reached.In
our experimentsweusean a priorifixednumberof timestepsbetweenthe extrapolationsteps.
Betterstrategiesare underdevelopment.

Wehavecalculatedthefirsteigenvaluesandeigenvectorsof thediscretelineaxizedoperator
(4.5), providedu_'+1 is the discrete steady state solution. The calculationsshow that the
eigenvaluesare negativeand their distributionis of the sametype as for the corresponding
continouscase. Seetable (1). In figures(6),(7)the firstfeweigenvectorsaxeplotted. Notethat
in the caseofan interiorshockthe firsteigenvectorisexponentiallysmallawayfromthe shock
region.Also,wehavenodoubt, and it isconfirmedby the calculations,that the positionof the
shockdoesnot changethe natureof the eigenvahedistribution.In fact, in the proofof theorem
3.1,y can be replacedby anyfunctionof the samestructure.

In our case,whenthe shockis locatedin the interior,(I - L)-1 has onlyone eigenvalue,
I¢1,closeto zero. All other eigenvaluesare small.Therefore,whenwehavereachedthe quasi-
stationarystate, rn is in the directionof the eigenvectorcorrespondingto _q. Seefigure(8).
Thereforewedo not needto solve(4.8),and insteadof (4.7)weuse

u = un+/grn. (4.9)

In figures(2),(4)we have plotted u at differenttime stagesto showhowthe convergenceis
accelerated.

15



5. A twocUmenslonal case. Consider the following problem

ut+(lu2)x=s(u=+u_y), 0_<z_l, 0_<y_<l, t_>0,

u(O,y,t) -- a, u(1,y,t) = -a, a>O, (5.1)

,.,(x,O,t) = ,.,(:_,1,t) = w(x),

,_(_,u,o)= g(_,_),

where W(z) is the solution of the one dimensional problem (1.3) with b = -a, and f(z) - O.
See (2.3). A steady solution of (5.1) is u(z,y) = w(z).

The speed of convergence can be studied by analyzing the corresponding eigenv'Mueprob-
lem

ptoq- (wto)x ----_(tOxxq-toyy), Io --0 on the boundary. (5.2)

We can solve (5.2) by separation of variables. Let to(x, y) = X(z)Y(y). Then

(wX)'-eX" = )`X, X(O)= X(1)----0, (5.3a)

Y" = -qY, Y(0) = Y(1) - 0, (5.3b)

with p = )` - eq. We recognize (5.3a) as (3.2). Therefore -),1 = O(e-l/e) and ->,3-> O(1/e),
j -- 2, 3, .... We can solve (5.3b). The solution is

Yj(v) = sin(jTry), qj - ffTr)2, 3"--1,2 ....

There is a whole sequence of eigenvalues,/_lj, of order O(_). The eigenfunctions corresponding

to this sequence, /oly, will be exponentially small away from the shock. All other eigenvalues
will be of order O(1/e).

We expect that the time iteration will again lead to a quasi-stationary state, and that
the residual will be composed of eigenfunctions corresponding to the eigenvalues of order O(_).
Therefore e in (4.8) will be of the same form, and we can replace all components of e away from
the shock by zero, thus obtaining a linear system of equations of order N instead of N 2. More
details will be given in another paper.

16



REFERENCES

[1] M. D. Salas, S. Abarbanel, D. Gottlieb, Multiple steady staten for characteristic initial value

problems, Icase report No84-57 , NASA ¢R-172486, November 1984.

[2] M. Hafez, E. Parlette, M. Salas, Convergence acceleration ofiterative solutions for transonic
flow computations, AIAA 85-1641.

[3] J. D. Cole, J. Kevorkian, Perturbation methods in Applied Mathematics, Springer 1981.

[4] E. Landau, Einige Ungleichungen J'_r zweimal differenzierbare Funktionen, Prec. London
Math. Soc. 13(1913) 43-49.

17



Table I.

Eigenvalues of the eigenvalueproblem (3.2), y is the solution of (1.3). Three different cases were treated.

The discretization is done according to (4.5), with N = 100 gridpoints. The eigenvalues were found using

inverse iteration. Eigenvectors corresponding to case (1) are plotted in figure (6a, b).

A1 A2 _3

s(_)=_i_(2_)/2
a = b = 0 -8.64.10 -s -4.34 -5.32

= 0.04

s(_)=_:_(2_)/2
a = b = 0 -4.62.10 -6 -5.617 -5.622

= 0.02

S(_)-o
a -- 1, b -- -1 -1.24.10 -9 -12.8 -13.5

= 0.02
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1.0
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0

-.50

1.o 1
0 .25 .50 .75 1.0

Figure 1. Convergence in time without convergence acceleration. Numerical solutions at

different time stages for the case _ = 0.05, f = 0, a = 1, b = -1, u(x, 0) = 1 + 2(e -2= - 1)/(1 - e-2).
Between each curve there are 200 time steps = 40 time units. The calculation is made with time step k
-- 0.2 and N=50 grid points.
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Figure 2. Convergence in time with convergence acceleration. Numerical solutions at different
time stages for the same case as in figure 1. Between each curve there are 15 time steps and one

extrapolation step. The same time step, k=0.2, and number of grid points, N=50, are used.

2O



1° 0 --
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I.O I I I I
0 .25 .50 .75 I.0

Figure 3. Convergence in time without convergence acceleration. Numerical solutions at

different time stages for the case _ ----0.04, f ----_ sin(Trx)cos(rrx), a ----b = 0, u(x,O) = ½sin(Trx).
Between each curve there are 100 time steps. The calculation is made with time step k -- 0.1 and N--S0
grid points.
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Figure 4. Convergence in time with convergence acceleration. Numerical solutions at different

time stages for the same case as in figure 3. Between each curve there are 20 time steps and one

extrapolation step. The same time step, k=0.1, and number of grid points, N=50, are used.
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.25

I [ [
0 .25 .50 .75 I. 0

Figure 5. Convergence when the shock is located at the boundary. Here 6 = 0.04, f(x) -

x sin(Trx), N = 50, k 0.1. Between each curve there are 5 time steps.sin(_x), u(z, 0) = _ =
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0 .25 .50 .75 1.0

Figure 6a. Eigenvectors. The first two eigenfunctions of problem (3.2), when y, the solution of (1.3),
has a shock in the interior. In this case $ = 0.04, f(z) = _ sin(Trx)cos(lrx), a = b = 0, Y = 100.
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_55_
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0 .25 .50 .75 1.0

Figure 6b. Eigenvectors. The third and fourth eigenfunctions of problem (3.2), when y, the solution

of (1.3), has u shock in the interior. In _hiscase _ -- 0.04, f(x) = _ sin(,x) cos(Trx), _a = b = 0, N =
100.
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-.125
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-.5 I I I I
0 .25 .50 .75 1.0

Figure 7. Eigenvectors. The first two eigenvectors, _o, and _o2,of problem (3.2),'when y, the solution

of (1.3), hasashockz=l. In this case _ = 0.08, f(z)=_sin(lrz), a=b=0, N=100.
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0

-.0125-
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-. 0375-

-.05 I I I I
0 .25 .50 .75 1.0

Figure 8. Differences between consecutive solutions at different time stages, when _ = 0.04,

f = _ sin(,z)cos(Trx), a - b = 0, u(x, 0) ----½ sin(_rx). Between each curve there are 100 time steps.
The calculation is made with time step k -- 0.1 and N=50 grid points.
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Figure 9. The solution of (1.2) when f _ 0, a = 1, b = 0 and $ = 0.05.
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Figure 10. The solution of (1.2) when f ---0, a -- 1, b = -1 and _ = 0.0S.
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Abstract

The paper discusses the role of the intermediate boundary condition in

the AF2 scheme used by Hoist for simulation of the transonic full potential

equation. We show that the treatment suggested by Hoist led to a restriction

on the time step and suggest ways to overcome this restriction. The

discussion is based on the theory developed by Gustafsson, Kreiss, and

Sundstrom and also on the yon Neumann method.
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INTRODUCTION

Approximate factorization schemes are widely used to obtain efficient

solutions to problems in Computational Fluid Dynamics. In many cases,

they have provided a significant increase in efficiency over prevlously-used

solution methods in particular problems. Some outstanding examples are the

classical Alternating-Direction-Implicit method of Peaceman and Rachford [1],

the Briley-McDonald Linearized Block Implicit scheme [2], and the Beam and

Warming [3] Approximate Factorization (AF) scheme for the compressible Navler-

Stokes equations. In the transonic potentlal-flow area, some AF schemes which

have significantly improved solution efficiency are the work of Ballhaus and

Steger [4], Ballhaus et al. [5], Hoist [6], [7], and Jameson [8].

All of these schemes have the common feature that the solution procedure

is broken down into a sequence of easily-implemented stages; i.e., easily-

inverted matrix factors. Each of the stages usually requires boundary

conditions for an "intermediate" variable (vector) which is not always a

consistent approximation to the solution function desired. This feature can

make satisfaction of implicit boundary conditions difficult, at best, and

impossible, at worst. Dwoyer and Thames [9] demonstrated serious boundary-

condition problems associated with the class of AF schemes called "Locally

One-Dimensional, even in explicit schemes.

The present paper further highlights the importance of intermediate

boundary conditions by focusing on a specific example--a boundary-lnduced

stability restriction in Holst_s AF2 scheme [6] for the transonic full-

potential equation. An analysis of the effect of the intermediate boundary

condition is given by use of the usual von Neumann method and also the methods

of Gustaffson, Kreiss, and Sundstrom [I0] and Osher [ii].
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ANALYSIS

Hoist's scheme is a variation of the AF2 schemes presented in References

4 and 5. It will be referred to herein as "AF2Y," since in its implementation

the y-operator is split, rather than splitting the x-operator as in References

4 and 5. For the purpose of analyzing the intermediate boundary-condition

problem, it is illuminating to study the application of AF2Y to the two-

dimensional (2-D) Laplace's equation in a rectangle. The present analysis is

valid only for the subsonic flow condition, which is simpler by far than the

transonic case. However, it is reasonable to assume that if boundary-induced

instability is present in the subsonic case, it will also occur in the

transonic case. In practice this was true.

The DiscreteProblem

The followingthln-alrfollproblem is thus considered: We wish to solve

the Laplacedifferenceequation for the disturbancevelocitypotential

L_jk = (a_xx + b_yy)$jk = 0 (I)

where a and b are constant coefficients and _ and _ are central
xx yy

difference operators; e.g.,

6xx_jk = _j+l,k - 2_jk + _j-l,k" (2)

The boundary conditions are set on a rectangular region with Dirichlet

conditions, _ = 0, set on three sides (left, top, and right), representing

vanishing disturbances, and a Neumann condition at the bottom boundary,
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representing a thin-airfoil flow-tangency condition:

= s(x) at y = 0. (3)
Y

A discrete analog of Eq. (3) at k = i can be written as:

(_y + _y)_j,l = 2Ays(x) (4)

where we use the following notation for one-sided, two-polnt differences:

_y_jk = _j,k+l - _jk (5)

_y_jk = _jk - lj,k-l" (6)

The difference operator (1) requires evaluation of _yy_j,l at the boundary

k = I. Since this operator can be written as:

6yy = _y - _y, (7)

Equation (4) is used to eliminate _y#j,l' which calls for a value of _jk

below the boundary k = I. Thus, the difference operator at k = I is:

= + 2b_y) - 2bAys(x) (8)LB_j,I (a_xx _j,l "
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The AF2Y Scheme

= V2
The AF2Y scheme models a hyperbolic equation, a_y t €, and is used as

an iteration scheme:

n

(a + bl_y)(- ab2_y - a6xx)h_jk = amLCj k (9)

where n is the iteration counter,

blb 2 = b (10)

and A¢ is the correction

, n+l n

Aijk = _jk - ¢jk" (II)

The scheme is implemented in two stages:

n

(a + b1_y)fjk = a_Lij k (12)

(- ab2_y - a_xx)hCjk = fjk" (13)

The intermediate variable f is defined by Eq. (13). The parameter a

corresponds to a reciprocal "time" step, At-I, and is usually cycled between

small and large values to obtain rapid convergence. The parameter

corresponds roughly to a relaxation factor which is usually close to 2.

The first stage (12) is bidlagonal, proceeding from the bottom boundary,

k = I, to the last interior row of mesh points, k = K - I, for every j. The
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second stage (13) is a tridiagonal solution which proceeds row-by-row, from

k = K - 1 to k = I, to obtain the correction A_jk. The second stage is

initiated with the condition A_j,K = 0, corresponding to the vanishing

disturbance, i = O, at k = K.

The Intermediate Boundary Condition

The main problem in implementing the scheme is how to initiate the

bidiagonal solution for f at k = I. It seems reasonable, at first sight,

to use a derivative condition on f at the boundary, as Holst [6] did; i.e.,

f --0 (14)
_y j,l "

Comparison of Eqs. (14) and (12) implies that

mLB_, (15)fj,l = I"

If this procedure is used with no further modification, it is unstable for

small values of a (or large "time" steps) and fixed _ as described next.

Stability Analysis

Avon Neumann (VN) analysis shows that the interior scheme (9) is stable

for all modes under the restrictions

0 < _ < 2 (16)

> O. (17)
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However, the boundary scheme, implied by Eqs. (15) and (13) taken together, is

another matter.

A boundary condition more general than Eq. (14) for f can be

considered. Let a "dummy-polnt" value for f be given as:

fj,0 = _fj,l" (18)

Then the equation for fj,l is, from Eq. (12),

n + (19)
(_ + bl)fj, 1 = a_LB_j, I Yblfj, 1

and Eq. (13) yields:

f" = (-ab2 y xx)A#j,l 3'Ij,l _ - a6 = _LB% (20)

whe re

e+bl(l_y ) • (21)

To carry out a VN analysis, we substitute into Eq. (20) trial solutions

n = Gn ei(jpAx+kqAy)
_j,k (22)

where i = _-_I, p and q are wave numbers, and G is the amplification

factor, to obtain:

(eB + 2Ab I - ieE)(G - I) = _ 2_bl(A + B - iE) (23)
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where

A = a (I - cos _) ) 0 _

I

B b (I cos n) ) 0

E b sin n (24)

pax

n qAy

The stability condition, IGI2 < 1, reduces to:

_I(A + B)[(2 - _)blA + (a - _bl)B ] + (= - _bl)E2 } > 0. (25)

To maintain the inequality (25) the following stability restrictions are

easily deduced:

0 < _ < 2 (26)

a > bI _. (27)

For the case T = 1 , corresponding to the backward-Neumann condition

on f (Eq. (14)), restrictions (26) and (27) reduce to Eq. (16) and

> bI m (T = I). (28)

The restriction (27) enforces a "time" step limitation on the scheme for fixed

_, which will slow convergence; or a reduction in _, according to:

_ < min (2, _I) (29)
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which in fact yields fast convergence and ensures stability•

It is noted that another useful type of boundary condition for f is

given by

f. _ _8 n

j,0 bI LB _j,l (30)

which gives the same form as Eq. (20) for fj,l with

+ bl (31)

Both classes of schemes are implemented by initiating the bidiagonal march for

f using Eq. (20), under restriction (29).

The restriction (29) was verified numerically in both a constant-

coefficient, Cartesian-coordinate computer code for Laplace's equation and in

the "TAIR" code [12] by using fixed values for a (i.e., no a-cycllng) and _,

and for various values of the coefficient bI. In all cases, convergence was

obtained when the restriction (29) was obeyed; and divergence occurred when it

was violated.

The experiments with the TAIR code were especially interesting, since the

coefficient bI varies along the airfoil surface. The test case chosen was

the default "0"-type mesh for an NACA 0012 airfoil. It was found that the

arithmetic mean of bI along the surface presented the crucial condition,

rather than the maximum value, as might be expected.

The question arises as to why the TAIR code, which implements the AF2Y

scheme with the boundary condition (14), operates so well since = is cycled

between small values, which violate the restriction (28) and large values.

The answer seems to be that a is increased within several rows adjacent to
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the boundary to a value which (in the default mesh) meets the restriction

(28), when smaller values of c are used in the remaining interior field.

This "fix" was developed empirically by the authors of Reference 12; without

this fix the code diverges. This procedure is not recommended in general,

since it requires a discontinuous change in c. The assumption in the

development of the factored scheme (9) is that c is constant throughout the

mesh.

A seemingly attractive scheme, involving a discontinuity in c at the

boundary, is as follows: Initiate the solution for f using Eq. (15) with

= I , and change the second stage (13) at the boundary to:

-- n

(-2b_y a6xx ) A_j,l = fj,l = LB _j,l" (32)

This procedure exactly annihilates the boundary residual (in the linear case)

and represents a fully implicit satisfaction of the surface boundary

condition. However, the factored operator at line k = 2 is no longer the

interlor-point operator, since the term -cb2_y in the inner factor is

changed to -2_ discontinuously. It is possible to analyze such a scheme
Y

by the methods presented herein, but the line k = 2 must be considered as

part of the boundary scheme. No details will be given here, but the analysis

shows that setting m < 4/3 at k = 2 guarantees linear stability of the

overall scheme. However, the amplification factor modulus IGI exceeds unity

only in a narrow frequency range of small n (Eq. (24)) when m > 4/3.

Numerical experiments showed no sensitivity to the value of m at k = 2.

This scheme was always stable in tests with a constant-coefficient Cartesian-

mesh code, even with m = 1.8 at k = 2. If the scheme was unstable for
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highly stretched grids, setting m < 4/3 at k = 2 did not stabilize

the scheme. In the variable-coefficient, nonlinear case, such a scheme is no

faster than, and not as robust as, the scheme (20) with restriction (29).

Review of the Stability Theory

It is well known that in general the yon Neumann analysis at a single

llne is neither sufficient nor necessary for checking stability. Trapp and

Ramshaw [13] pointed out the usefulness of the VN analysis to study boundary

schemes but recognized that no theoretical justification was known.

We wish to review briefly the stability theory for finite-difference

approximations to initial boundary-value problems. A necessary condition for

the stability of such a scheme is the Ryabenkii-Godunov condition. It states

that the numerical scheme is unstable if there exists a solution of the type

n = Gn
_j,k _j,k' IGI > 1 (33)

for the inner scheme and the boundary scheme. (It is also sufficient to check

one boundary at a time.) Substituting (33) into (12) and (13) one finds that

_j,k satisfies a constant coefficient second-order difference scheme whose

solution is

_j,k = k ei(jp_x). (34)

Actually there are two possible p's, but it is readily verified that only one

of them satisfies I_I < I for IGI > i; and, therefore, it is not a valid

solution for the quarter-plane problem.
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In Appendix A we show that there exists a solution of the form (34) to

(12), (13), and (20) such that IGI > 1 and I_I < 1 if (29) is not

satisfied. This proves that the scheme is unstable. By instability here we

mean that unbounded solution occurs after a fixed number of time steps for any

mesh--it precludes the possibility of reaching steady state.

It should be noted here that VN analysis of the boundary scheme does not

predict the existence of solutions of the form (33) with IGI > I. In fact,

Gottlleb and Turkel [15] gave an example of a boundary scheme (Scheme Vl, p.

184 of Reference 15) coupled with a variant of MacCormack's scheme in the

interior which is conditionally stable, yet the VN analysis of the boundary

scheme shows unconditional instability. However, Goldberg and Tadmor showed

that for a dissipative interior scheme (i.e., ampliflcation--factor modulus

bounded away from unity for all nonzero modes) VN stability of the boundary

scheme excludes the possibility of an eigenvalue or a generalized elgenvalue.

By an eigenvalue we mean a solution of the form (34) with IGI > 1 whereas a

generalized elgenvalue is G such that IGI = 1. Thus, if the condition

stated in (29) is satisfied no eigenvalue or generalized elgenvalue exists.

In Appendix A we show it directly. The theory of Gustafsson, Krelss, and

Sundstrom [I0] (see also, Osher [11]) states that for a system of flrst-order

hyperbolic equations stability is assured if there is no eigenvalue or

generalized eigenvalue. While their theory does not apply directly to the

equation

= V2
_0y t 0,

it can be modified to include this case.
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As a concluding remark we should note that stability here implies

convergence in the sense of Lax--the numerical solution converges to the

analytic one as the mesh size tends to zero for fixed time t. This is

clearly only a necessary requirement to reach steady state.

Two-Dimensional Numerical Results

A limited number of numerical tests for cases involving stretched grids

and nonlinear transonic flow have convinced us that the discontinuous-a

schemes (e.g., Eq. (32)) are not as reliable as the scheme using Eq. (20) with

restriction (29). Some numerical results are presented in Tables 1 and 2. In

the tables, the following identification is used for the various boundary

schemes:

Scheme I: Original TAIR scheme; Eqs. (13) and (15) at boundary, with

increased at 3 lines adjacent to boundary to satisfy restriction

(28) with 10% safety margin.

Scheme II: Exact annihilation of boundary residual; Eqs. (15) and (32),

with m = i at boundary only.

Scheme III: Eq. (20) and restriction (29) with 10% safety margin.

Table I shows a series of numerical tests for incompressible flow over a

circle, with varying degrees of mesh stretching near the boundary. The TAIR

code was used with _ = 1.8 at all points except as noted in schemes II and

III, and with the default settings for the _-cycle (_ min = 0.07, _ max =

1.5). The mesh contained I01 points uniformly spaced around the circle and 21

points in the radial direction with stretched spacing. The first column lists

the cell aspect ratio at the boundary, Ax/Ay (= bl) , for each case. The next
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three columns show the number of iterations required to decrease the starting

residual by 10-4 for three schemes previously discussed. Divergence is

indicated by an entry "D." It is seen that scheme III is significantly less

sensitive to grid stretching in the normal direction than are the

dlscontinuous-= schemes, I and II.

Table I. Number of Iterations to Reduce Residual by 10-4

Incompressible Circle Flow, I01 by 21 Mesh

Ax Scheme

Ay
I II III

0.5 44 43 34

1 72 36 51

I0 68 43 47

20 99 53 48

I00 212 D 34

I000 400 D 127

As previously mentioned, the emplrically-developed default settings in

the TAIR code provide for an increased value of _ near the surface; the

default value satisfies the restriction (28) only for the first case in Table

I, Ax/Ay = 0.5. For that case, convergence is obtained; the scheme diverges

for the other listed cases for which the default setting violates restriction

(28). In scheme I, the value of a near the surface met the restriction, and

convergence was obtained for all the listed cases.
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It should be noted again that the stability analysis presented herein is

valid only for subsonic flow, when the AF2Y scheme is guaranteed to be

hyperbolic in time. When the flow becomes locally supersonic, the linearlzed

Eq. (I) will have a < 0, and a term which simulates _xt must be added for

stability [16]. The effect of including such a term (e.g., in the second

factor of Eq. (9)) has not been studied at present. With that cautionary

remark, we present results for transonic cases in the next table.

Table 2 presents results for two transonic cases for an NACA 0012

airfoil: (I) Zero incidence with free-stream Mach number M = 0.85 and

(2) 2° incidence with M = 0.75. All cases were run with _ = 1.8, but with

different _- cycles. It can be seen that there is little difference in the

convergence rate among the schemes, except that scheme II is noticeably slower

than schemes I or III for case (2).

Table 2. Number of Iterations to Decrease Residual by 10 -4 for

Transonic Flow. NACA 0012, Default TAIR Mesh, 149 by 30

Flow Condition Scheme

I II III

M = 0.85

190 174 187
Zero incidence

M= 0.75
190 360 226

2° incidence
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Three-DimenslonalVersionof AF2Y

A three-dimenslonal(3-D) versionof the AF2Y scheme is presentedin Ref.

7. It is different from the 2-D version discussed up to now, in that the

factors are reversed in order. That is, the scheme can be written in the

present contextas:

c a n

(_ - b_2 6zz)(b2 - _ 6xx)(_ - bl_y)A*Jk_ smL*jk£ + =b2(e - bl_y)A*j'k-l'£ (35)

where

L_jk£ = (a6xx + b6yy + C6zz) _jk£" (36)

Because the factors are reversed, we will refer to this scheme as AF2YR.

Here the third coordinate direction is z, which can be thought of as the

spanwise coordinate for a wing. The x- and y-coordinates are still the

streamwise and normal coordinates as in the 2-D problem. The boundary

operator corresponding to Eq. (8) is:

LBCJ,I,£ : Ca6xx + 2b_y + Cazz) €j,I,£ - 2bAys(x). (37)

The scheme is implemented in three stages, as follows:

- C n (38)I. (= 726zz) == L+jk+=b2fj,k_1,

a (39)
2. (b2 - _ _xx ) fjk£ = gj£

3. (_ - bl_y) A#jk£ = fjk£" (40)
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The solution for f proceeds in planes, outward from the wing surface, using

the trldlagonal Eqs. (38) and (39). The third stage (40) proceeds inward,

solving for the correction in a bldlagonal march.

Again, the main problem is how to initiate the first stage. In Reference

7, the boundary condition used for f is

f. = 0. (41)3,0,£

We can again consider the more general boundary conditions studied previously,

f. = (42)
3,0,£ Yfj,l,£

or

_8

fj,0,£ b2 LB_j,I, £ (43)

corresponding to Eqs. (18) and (30), respectively. Actually, condition (42)

can only be approximately modeled in the 3-D problem, with some splitting

error in the first two factors. That is, we can approximate Eq. (42) by

solving, at k = I:

_ c = amLB_3, (44)I. (_ _22 _zz) gj£ i,£

2. [(I-y) b2 - a_a6xx]fj,l,£ = gJ£" (45)

Equation (43) is easily implemented by replacing _ in Eq. (38) by m + B

and setting fj,o,£ = 0.
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Stability Analysis of the 3-D AF2YR Scheme

A VN analysis of the 3-D interior scheme shows that VN stability is

achieved under restrictions (16) and (17). VN analysis of the boundary scheme

(42) shows that sufficient conditions for stability of the VN boundary scheme

are:

0 < m < 1 - y (46)

and

y < 1. (47)

The same criteria are obtained in the 2-D counterpart of the AF2YR scheme with

boundary condition (18). The corresponding criteria for boundary condition

(43) are:

0 < _ + B < I. (48)

At this time we have no numerical experiments to test the stability and

convergence of the 3-D boundary conditions (42) or (43) and the criteria (46)

or (48). However, some comments about the use of AF2YR versus AF2Y are in

order.

In the AF2YR scheme, the use of boundary condition (42) or (43) makes the

scheme parabolic at the surface; i.e., the time-like equation at the boundary

is:

c_t = V2_ (49)

where

c = b2 (l-y)/_ (50)
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for Eq. (42), and where

= b2/(_ + B) (51)

for Eq. (43). In the case of AF2Y, the boundary equation remains hyperbolic,

like the interior scheme, with

- _yt = v2_ (52)

where

a = b2/_. (53)

It is felt that for this reason AF2Y may lead to faster convergence. It would

appear that there is no difficulty in implementing such a scheme in 3-D, as:

I. I= + bl_y) fjk_ = amL_jk_ (54)

2. (_b2 - c_ zz) gj_ = fjk_ + ab2A_j,k+l,g (55)

3. (I - _ 6xx ) A_jk_ = gj_. (56)

The factors in the second and third stages could also be interchanged. The

first stage is initiated by using Eq. (20), and the same stability and

restrictions (26) and (27) hold.
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CONCLUDING REMARKS

We have studied the stability of the AF2Y scheme with several boundary

conditions for the intermediate variable. The von Neumann method provides a

useful tool for this study in view of the Goldberg-Tadmor theorem, and the

results were verified in the two-dimenslonal case by the more complete GKSO

theory.

In general, the boundary schemes place a limitation on _ and _ which

is more restrictive than the requirements for the interior scheme. Since

small _ is desirable to damp low-frequency errors, one strategy involves

increasing _ at or near the boundary to meet the boundary restriction while

using smaller _ in the interior mesh. Such "discontinuous-_" schemes

require further analysis of the stability at the llne next to the discon-

tinuity since the scheme there is no longer the interior scheme. They diverge

on certain stretched grids. A safer strategy is to decrease _ at the

boundary to conform to the restrictions. This results in a more robust

scheme; and it does not appear to suffer much, if any, loss in convergence

rate.

In regard to the 3-D AF2Y scheme, the current implementation in the TWING

code involves a reversal of the factors from the 2-D TAIR code. We refer to

this scheme as AF2YR. Although the reversal of the factors makes

no difference in the interior (for the linear constant-coefflcient case),

there is a significant difference at the boundary. The AF2YR boundary scheme

is parabolic in time as opposed to hyperbolic for AF2Y. For this reason,

there may be a preference for the AF2Y, as in the TAIR code.
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APPENDIXA

Application of the GKSO Theory to the AF2Y Scheme

In the GKSO theory [i0], [II], the interior and boundary schemes are

considered as a coupled problem. Instead of substituting the Fourier

solutions as in Eq. (22), the class of trial solutions is extended to

n = Gnei(jpAx) k (AI)
_jk

where _ is a complex number not restricted to lie on the unit circle in the

complex plane. Fourier modes are retained in the direction tangential to the

boundary under study. The trial solutions are substituted into the interior

and boundary schemes, Eqs. (9) and (20), to obtain, respectively:

[_ + bl(l _ I)] [_ ub2( _ _ i) + 2A](G - i) = um[-2A + b(_ - 2 + I)] (A2)

and

[- =b2(_ - I) + 2A](G - I) = _[-2A = 2b(_ - i)], (A3)

n

where Eq. (8) for LB_j, 1 is used for the rlght-hand side of Eq. (A3) and

where we have used the notation of Eq. (24).

Equations (A2) and (A3) are two simultaneous equations for the unknowns

G and _. In the theory, we are concerned only with values of _ inside

the unit circle, i.e., only those solutions which decay away from the
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boundary. If the solution of Eqs. (A2) and (A3) yield G > 1 for _ _ I,

the scheme is unstable.

If Eq. (A3) is divided into Eq. (A2), G is eliminated; and there results

an equation for _:

_[a_ + bl( _ - I)][-2A + 2b (_ - i)] = a_[-2BA + b(_ - I)2]. (A4)

First, it will be shown that for

A = a(l - cos $) = 0 ,

there is a value of _ inside the unit circle. When A = O, Eq. (A4) reduces

to two linear factors:

(_ - I){[2_ (a + bI) - am]_ - 2b I _ + am} = O. (A5)

The root _ = i is a solution of Eqs. (A2) and (A3) only when _ = m,

corresponding to y = i. (See Eq. (21).) Then

G = 1 - m (A6)

and the restriction (16) must be satisfied. The other root is:

2bl_ - am
(A7)

= 2_ (a + b1) - am

which is less than 1.0 and is arbitrarily close to 1.0 as a approaches zero.
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Using Eq. (A3), we can show that for any complex _ such that its real

part is less than I, G < 1 if and only if restrictions (26) and (27) are

satisfied. Thus, let

= _R + i_l (A8)

where _R and _I are the real and imaginary parts. Substitution of Eq.

(AS) into (A3) and multiplication by bI gives:

[cb (I - BR ) + 2Ab I - i_b_l ](G - I) = - 2_bl[A + b (I - _R) - ib_l ]. (A9)

2
The condition G < 1 then yields:

_{A2bl(2 - _) + Ab(l - _R)[C - _bI + (2 - _)b I]

+ b2(c - _bl)[(l - UR )2 + _]} > 0. (AI0)

For _R < I, the restrictions (26) and (27) are sufficient to ensure the

inequality (A10) for arbitrary positive values of A, bl, and b, regardless of

the magnitude of _I" When A = 0, a value _ < 1 always occurs, as shown

by Eq. (A7); and the scheme will be unstable unless restriction (27) is

satisfied. Thus, restriction (27) is necessary; and when it is satisfied (for

small c), restriction (26) will also be satisfied.
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Abstract

The time dependent, isentropic, quasi-one-dimensional equations of gas

dynamics and other model equations are considered under the constraint of

characteristic boundary conditions. Analysis of the time evolution shows how

different initial data may lead to different steady states and how seemingly

anomalous behavior of the solution may be resolved. Numerical experimentation

using time consistent explicit algorithms verifies the conclusions of the

analysis. The use of implicit schemes with very large time steps leads to

erroneous results.
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INTRODUCTION

Consider a steady, isentroplc flow in a dual-throat nozzle with equal

throat areas, and assume that the flow is choked; then it is well known [I]

that the flow between the throats can be either completely subsonic or

supersonic depending on the initial state of the flow and the path taken to

reach the steady state. If we experiment numerically with the above problem

using either the isentropic quasi-one-dlmenslonal gas dynamics equation or

some "simpler" model equation, then some of the results obtained are rather

peculiar.

(I) If the initial data correspond to sufficiently high supersonic flow (or

sufficiently low subsonic flow), then the steady state flow obtained

between the two throats is indeed completely supersonic (subsonic).

(2) If the initial data are completely supersonic (or subsonic), but below a

certain level (above a certain level), then the steady state flow

contains a shock wave connecting the supersonic branch of the solution

to the subsonic branch. For the model equations considered, the shock

corresponds to an isentroplc jump, and its location depends on the

initial data.

(3) Results (I) and (2) above are observed when time accurate schemes are

used. However, the implicit backwards Euler scheme with large time

steps yields steady states that are not reachable through a time

accurate path from any class of nontrlvlal initial conditions. These

steady states include not only discontinuous solutions (as observed in

[2]), but also unstable smooth solutions.
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(4) The numerical treatment of boundary conditions is very important in

obtaining the proper results. For example, with central space

differencing one may have a stable algorithm that does not converge in

time to a steady state if the sonic conditions are invoked in order to

supply numerical boundary conditions.

The purpose of this paper is to present our findings, and to provide, where

possible, a mathematical explanation of the observed behavior, thereby

removing the apparent peculiarities. We will show that the nonuniqueness

aspect of the steady state solution is a by-product of the fact that the

boundary conditions for the evolution equations are prescribed along

characteristic curves. This is true for the dual throat problems due to the

sonic conditions imposed at the throats. The model problems were therefore

chosen to show this behavior.

In Section 2 we study the model equation

2

2(2)+ = u(1- u).

The relevance of this model equation to the quasi-one-dimensional gas

dynamical equations is somewhat peripheral. However, it is rich in the number

of possible steady solutions that it admits, including unstable continuous and

discontinuous solutions. In this section we discuss the proper way to

formulate the characteristic boundary conditions for first order quasi-linear

hyperbolic equations.
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In Section 3 we consider the model equation

2

_--{ _-_ = sin x cos x.

This model equationhas solutionswhich qualitativelybehave llke those of the

isentroplcdual throat nozzle problem. The simplicityof the model, however,

affords a detailed study of the possibilitiesfor anomalousbehavior. This

model equation will also show us how to quantify such vague terms as

sufficientlyhigh (or low) supersonic(subsonic)initial conditionsthat were

mentioned in (I) and (2) above. These results are summarizedin Theorems 1

and 2.

In Section 4 a model scalar equation is developedwhich has all of the

interestingphysical aspects of the complete isentroplcquasl-one-dlmenslonal

gas dynamic equations governing the dual throat nozzle problem. To develop

this equation, our guideline was to retain the differential equation

exhibiting the characteristic boundary condition and to model the other

dependent variable by assuming constant total enthalpy during the time

evolution. By comparing the theoreticalresults of the model equation to

numerical calculations for the complete system of equations, this section

shows that the proposedsingle equationis indeed a good model of the complete

system. Here, by the "goodness" of the model we mean that all of the

importantfeaturesof the system are retained.

Recently Kreiss and Krelss [4] have investigated the above model

equations in the presence of a linear dissipativeterm of the form cu .xx

They show that in this case the solutionis unique and discuss the convergence

propertiesof their numericalscheme.
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2. FIRST EXAMPLE

Here we consider the scalar hyperbolic partial differential equation

2

C2)_-_+_-fx =u(1 -u), o<x<l, t >0,

(2.1)

u(x,O)= g(x).

For reasons mentioned in the introduction, and to be discussed in detail in

Section 4, we are interested in cases that model physical situations in which

the boundaries are characteristic. In practice, when (2.1) is solved

numerically as a characteristic boundary value problem, the boundary

conditions are imposed dynamically as follows:

O if U(go,t) > 0 (gO = Ax)

u(O,t) = (2.2a)

unspecified if U(€o,t) _ 0

I O if U(_l,t) < 0 (Sl = 1 - Ax)

u(l,t) = (2.2b)

unspecified if U(Sl,t) _ 0

There are two families of continuous steady states satisfying (2.1) and the

analytical versions of (2.2):

u = 0 (2.3)

u = 1 - eq-x (0 < q < I). (2.4)
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The stability theory of ordinary differential equations applied to the

characteristic equation du/dt = u(1 - u) easily shows that the steady state

solution u = 0 is unstable.

There are also weak solutions connecting various branches (different _'s)

of (2.4). These discontinuous solutions are unstable as will be demonstrated

now. Let

_1 -x

uL = I - e e (2.5)

be a steady state corresponding to n = n1,

n2 -x

uR = I - e e (2.6)

be another branch.

Since we want to rule out "expansion shocks," i.e., discontinuities that do

not obey the "entropy condition" uL > 0 > uR, we will consider only the case

of I _ q2 > nl _ 0, although the analysis is unchanged if n2 < _I" For a

steady state shock we require UL(X S) + UR(X S) = 0. This determines the shock

location, xS, to be

nI n2

e + e (2.7)
xS = _n 2 "

iS 1We now ask, what will be the shock speed, = _ (uL + UR) , if xs is

perturbed to xS + €? Upon substituting the perturbed shock positlon in

(2.5) and (2.6), we get for the new shock speed
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uL + uR -€
- 1 - e _ € + 01_2).'- (2.8)2

Thus, if _ > 0 (€ < 0) the shock will move to the right (left), showing that

the solution with a shock is not stable.

We have thus shown that in the steady state we need consider only the

smooth solutions in (2.4). We will now demonstrate that these solutions are

reachable from initial data. The demonstration is first done for the case

n = 0, g(x) > 0 for all x > 0, and g(0) = 0.

Consider the problem (2.1), and let

g(x) = b(1 - e-X), b > 0. (2.9)

The solution to this problem is readily verified to be

1 -- e -x

u(x,t) = b -t " (2.10)
e + b(1 - e-t)

Clearly, as t + _, u(x,t) . 1 - e-x, which is a proper steady state.

Suppose now g(x) is not a multiple of the steady state but is a general

initial condition still satisfying g(0) = 0, g(x) > 0. The characteristic

equations are

dx
= u (2.11)

d__u= u(l - u). (2.12)
dt

From (2.12) one gets

u = g(_) (2.13)

g(_) + (1 - g(_))e -t

62



where _ = _(x,t) is the origin of the characteristic passing through x

and t. By inserting (2.13) in (2.11) and integrating again along the

characteristic, we get the following implicit relation between _, x and t:

ex-_-t = [g(_) + (i - g($))e-t] (2.14)

or, upon rearranging

g(_) _ ex-_ - i (2.15)
t

e - 1

The argument is now as follows: x - _ is finite (0 _ x-_ < I), and thus as

t + =, g(_) . 0, but g(_) + 0 only for _ + 0. Hence, for any finite x,

as t increases, g($) takes the large time asymptotic form of

x

g(_) e - I (t >> i). (2.16)t
e - I

Substituting (2.16) in (2.13) we get

1 -- e -X
(t >> i). (2.17)u(x,t) -t

1 - e

Thus, as t . =, u(x,t) . 1 - e-x regardless of the detailed form of the

initial data.

For other types of initial data (e.g., g(x) = 0 for some x = x0) , the

proof is the same with _ = x0 and the coordinate x transformed to

x = x- x0 •

If g(x) has several simple zeros, then the interval 0 _ x _ I is sub-

divided by the zeros. Their relative locations will determine the proper n.
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In particular, if g(x) is a periodic function, g(xj) = 0, with

X. -- jx
3 N ' J = 0,1...,N, then

n = xN = i

if

(i) sgn g'(0) = sgn g'(1) > 0

or (2.18a)

(ii) sgn g'(0) = - sgn g'(1) < 0

and

n = XN_1

if

(i) sgn g'(0) = sgn g'(1) < 0

or (2.18h)

(ii) sgn g'(0) = - sgn g'(1) > 0

(where primes denote differentiation with respect to the independent

variable). In summary, this example demonstrates the richness of possible

steady state solutions.

(I) There is an unstable smooth solution, u = 0.

(2) There are unstable discontinuous solutions.

(3) There is a one-parameter family of smooth steady states,

u = 1 - en-x

with the value of the parameter depending only on the initial data, a

direct consequence of the problem having characteristic boundary values.
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It is interesting to note that if the right-hand side of equation (2.1)

is taken to be u(u-1), instead of u(l-u), then there is 0nly one possible

stable steady state solution satisfying the boundary conditions (2.2), namely

U = 0.

Note that this was one of the unstable solutions of the previous case.

2.1 NIIMERIC_L RESULTS FOR THE FIRST EXAMPLE

2.1.1 Explicit Form

The conservative, upwind, first order scheme of Engquist-0sher (E-0),

[3] is used to approximate the hyperbolic system of conservation laws

represented by
2

_+____u _ (_) = h(x,u) (2.19)

where h is a source term. Let u_ represent the discrete value of u at

tn = nat and xi = iAx. The explicit E-0 scheme for equation (2.19) is,

[1 n 2 i n )2]
n+l n I At (I - _ )(Ui+l ) + _i(u )2 Iui = ui 2 Ax i+l - _ (I + 6i_l)(Ui_ 1

+ h(iAx,ui)A t (2.20)

where the switch function 6i is defined by
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n

0 ui = 0

6i = (2.21)n

u i n
ui #0.juj

As usual, At satisfies the Courant-Friedrichs-Lewy condition,

Ax
At < , (2.22)

-- maxlui I

and Ax = L/100, where L is the length of the interval of interest. For the

explicit E-O scheme convergence was established according to the criterion

ma_i n+l n
_lu i - uil < I. x 10-3 . (2.23)

i

The relation given by (2.23) is equivalent to requiring the steady state

operator of (2.20) to be less than 10-3 . Figure 1 compares the exact and

computed steady states for equation (2.1) with initial conditions*

g(x) = - sin 2_x. (2.24)

Note that the steady state satisfies the condition (2.18bi) and that the

initial conditions and steady state solution are such that no boundary

*Note that, because of the first order accuracy of the Engquist-Osher

scheme, Figure 1 shows a slight discrepancy between the analytic and numerical

solution. The same problem run with x = 1/1000 gives results that, on the

scale of Figure I, are indistinguishable from the analytic results. This
comment holds for all other numerical experiments, where, in order to save
computer time, we used I00 mesh points.
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conditions are imposed at either end of the interval. The same steady state

is also obtained with

1

g(x) = -x(x-1)(x - _ ). (2.25)

Figure 2 compares the exact and computed steady states for initial conditions

g(x) = sin 2zx. (2.26)

The steady result is in agreement with the condition (2.18ai).

2.1.2 Implicit Form

The slow convergence to steady state characteristic of explicit schemes

has stimulated research into various acceleration techniques. One of the most

promising avenues for acceleration consists of recasting the discrete equation

in implicit form. If we define the increment in time of u by

Aui = ul+I - ul, (2.27)

then the E-O scheme in implicit form is

-[(I - _i+l)Ui+lAui+I + _-{+ _i ui <_uji A Aui - _ 61_I

=_,[,n n]_- (I -_i+l)(Ui+l )2 + _i(ul) 2 -_ (I + _i_l)(Ui_l )2 + h(iAx,ul)Ax ,

(2.28)
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where 6i is defined as before by equation (2.21). To obtain equation

terms of order Au_ and higher are neglected. It is easy to see, by(2.28),

comparing equations (2.20) and (2.28), that the rlght-hand side of equation

(2.28) is the steady state operator. For the implicit E-O scheme convergence

was established by requiring that the steady state operator be less than 10-5

at all mesh points.

Figure 3 shows the steady state solution obtained using the implicit

E-O scheme with

g(x) = sin 2_x (2.29)

I = 0) The steady state obtained withand using infinite Courant number (_-_

the implicit form of the scheme corresponds to one of the unstable solutions

of equation (2.1). The stable solution, for g(x) corresponding to equation

(2.29), was shown in Figure 2. The peculiar behavior of the implicit

algorithm at large Courant numbers is further demonstrated in Figure 4 for

I
g(x)= - x(x- l)(x- :) (2.30)

and infinite Courant number, For this case, the steady state reached by

(2.28) consists of a combination of stable and unstable steady, piecewise

solutions of equation (2.1).
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Figure 1. Exact and computed steady states for equation (2.1) with

initial conditions (2.24) using a time accurate scheme.
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Figure 2. Exact and computed steady states for equation (2.1)

with initial conditions (2.26) using a time accurate scheme.
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Figure 3. Exact and computed unstable steady states for equation (2.1)

with initial conditions (2.29) using an implicit scheme with

large Courant number.
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Figure 4. Computed steady state for equation (2.1) with initial

conditions (2.30) using an implicit scheme with large

Courant number.
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3, SECOND EXAMPLE

We now shift our attention to another advection problem. The steady

states of this problem are of a completely different nature than of those

found in the previous example.

The partial differential equation under consideration is

2

_--_ _x = sin x cos x, 0 < x < _, t > 0 (3.1)

u(x,0)= g(x), g(0)= g(_)= 0

with boundary conditions as given by (2.2).

Here we have two smooth steady state solutions,

+
u = sin X

(3.2a)

u = - sin x.

There is also' an infinite number of possible discontinuous solutions of the

form

+

u=u x<x S

, (3.2b)
m

u=u x>x S

where Xs, the "shock"location,is an arbitrarypoint in the interval

(0,_). Note that, in the steady state, the "shock" speed uS = (u+ + u-)/2

is zero for any 0 < xS < _ and, therefore, (3.2b) is a legitimate steady

state solution. In the above solutions we have already eliminated weak

solutions that violate the "entropy condition," uL > 0 > uR.
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We now ask two questions:

(i) From what class of initial conditions, if any, can either of the two

smooth solutions, (3.2a), be reached and

(il) Under what circumstances is a steady shock established, and can its

location be predicted?

Consider first the two questions in the particularly simple case when

g(x) = 8 sin x, (3.3)

i.e., the initial data are proportional to a smooth steady state. For

> i, Theorem i shows that the steady state is the smooth solution u =

u+. For

8 < -I, a corollary of Theorem I leads to u = u-.

Theorem I: The solution of equation (3.1) with boundary conditions

(2.2), initialconditions(3.3) and 8 > 1 satisfies

lim u(x,t) = sin x.
t+_

Proof: The characteristic equations resulting from (3.1) are

dx

d---_= u (3.4)

du du _ dF 1
dt - u dx dx ' F = _ sin 2 x. (3.5)
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Again using _ = _(x,t) to designate the origin of a characteristic curve

passing through (x,t), we integrate (3.5)

i u2 _ 1
_ g2(_) = F(x) - F(_)

or

u = _[2F(x) - 2F(_) + g2(_)]I/2 . (3.6)

As t . O, _ . x and we have to choose the positive branch of (3.6) because

B > I. Thus, using F = (I/2) sin 2 x,

u = [sin2 x + (B2 - 1)sin 2 $]I/2. (3.7)

We claim now that for t large enough there is a unique correspondence

between a point (x,t) and _(x,t). In fact, if a shock wave were to appear

at a certain time t > O, it will, because of (3.7), separate two positive

states. The shock wave will have a positive speed and consequently will

propagate out of the domain. Therefore, for t large enough, we may

substitute (3.7) into (3.4),

x

t = f dy (3.8)

[2F(y) - 2F(_) + g2(_)]I/2
or

x dy

t = f [sin 2 + (B2 I/2 (3.9)Y - l)sin 2 _]

For every x < _, the integrand in (3.9) cannot become singular except at the

lower limit y = _, _ + 0. Thus, t + _ as _ + 0 and the only possible

solution for very large time is, from (3.7),
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u --_ [2F(x) - 2F(_) + g2(_)]i/2 g2(0 )t+_ [2F(x) 2F(0) + ]I/2= -- = sin x,
g+O

which completes the proof.

Corollary: Supposethat 8 in (3.3) satisfies 8 < -i, then

lim u(x,t) = - sin x.
t+m

Note that in view of (3.8) the results of Theorem 1 hold for any initial

conditions g(x) such that g(0) = 0, g(x) > sin x. The corollary is thus

also valid for any g(x) < - sin x.

Still continuing with the case of g(x) = B sin x, we now consider

0 < 8 < i. (3.10)

Here the steady state will be of the form (3.2b). We will show, however, in

Theorem 2 that the shock location depends on the initial condition.

Theorem 2: The solution of equation (3.1) with boundary conditions

(2.2), initial conditions (3.3),and 0 < 8 < 1 satisfies

+

lu = sin x, 0 < x < xs

lim u(x,t) = (3.11)
t+_

u = -sin x, xS < x <
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where

(3.12)
xS = _ - sin-I / I - 82 > _ .

Proof: From the characteristic equation (3.5), with 0 < 8 < I, we get

u(x,t) = ±[sin 2 x - (I - 82)sin2($(x,t))] I/2. (3.13)

In the interval (7 - Xs, Xs), xs as defined in (3.12), u(x,t) cannot change

sign because the radical in (3.13) cannot vanish in said interval. Since as

t + 0, u(x,t) is positive, we conclude that

u(x,t) = [sin 2 x - (I - 82)sin2(_(x,t))] I/2, n-x S < x < xS. (3.14)

In this interval the first characteristic equation (3.4) becomes

x

t = f dy (3.15)

[sin2 y - (1 - 82)sin2(_(x,t))] I/2

since t > 0 we must have _ < x when _-x S < x < xS. As t . % $(x,t)

must therefore vanish in the limit. It is thus established that

lim u(x,t) = sin x, (_-xs < x < Xs). (3.16)
t._

Next consider the interval [0,_-Xs). Formally as t . =, in this leftmost

interval, $(x,t) must converge either to zero or _. However, any

characteristic passing through (x,t) in the interval [0,_-xS) cannot

emanate from any $ > xS because this would mean a negative slope, and hence
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a negative u in the interval (_-Xs, Xs) ; this contradicts (3.16). Having

established that lim _(x,t) = 0, we notice that formally it is possible for
t._

a characteristic curve, originating in the interval [0,_-Xs) , to start with a

positive slope (required as t + 0) and change slope in the interval. This,

however, will result in a solution containing a "shock" that violates the

"entropy condition" uL > 0 > uR. We thus have our next intermediate result

lim u(x,t) = sin x, (0 _ x < Xs). (3.17)

It now remains for us to show that in the interval xS < x _ _ the solution

must be negative and hence equal to - sin x.

We first integrate (3.1) to get

_ 2

£ --- S0

Suppose that at the point 0 < xI < x2 ... < xn < _, u(x,t) is discontinuous,

since we admit only "shock" discontinuity u2(x_) > u2(xi). Thus,

from (3.13), u2(0,t) = 0 and therefore,

f u(x,t)dx _ f u(x,0)dx = 28. (3.19)
0 0

Let x be the point in which u(x,_) changes sign. From (3.16) we have
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x (x
s

and from (3.19) we have

x

f sin x - f sin x ( 28, (3.20)
0 x

thus,

-2 cos _ 28

or

x _ x _J.zl)c{ s

and therefore

X x .  J.zz)c_ s

This completes the proof.

It should be noted that, in general, xs gives a lower bound on the location

of the discontinuity whereas the area rule (3.19) yields an upper bound on it.

Corollary: Under the conditions of Theorem 2 with

-1 <8 <o

the solution still retains the form of (3.11) except that now

xS = sin-I / 1 - 82 < [.
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For arbitrary initial data the general behavior is that described in

Theorems I and 2 and their corollaries, i.e., one can get either solution

(3.2a) or (3.2b). If a "shock" is present in the steady state, the upper and

lower bounds for its location are given, for g(x) > 0, as follows:

_ I _ )2- sin-I / sin2 z - g2(z) _ xS _ _ - sin-I I _ (f g(q)dn , (3.23)
0

where z maximizes the expression sin 2 x - g2(x). For negative initial data

the bounds are

sin-I / sin2 z - gZ(z) < xS < sin-I ! _ (f g(n)dq)2 . (3.24)
0

The upper bound reflects the "area rule" (see (3.18)). The lower bound is the

first point where u(x,t) can change sign. For g(x) > 0, the upper bound

becomes sharp (i.e., equals Xs) , if u(_,t) = 0 for all t.

3.1 NUMERICAL RESULTS FOR THE SECOND EXAMPLE

3.1.1 Explicit Form

Equation (3.1) is discretized using the explicit E-O scheme given by

equation (2.20). Numerical calculations were performed for initial conditions

given by

g(x) = 8 sin x, (3.25)
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where B is a free parameter such that 0 _ B _ 1. The steady state shock

position as a function of B is plotted in Figure 5. The numerical results

are in excellent agreement with the theoretical prediction given by equation

(3.12). For any B > I, the steady state obtained was u+ given by equation

(3.2a).

If one uses an algorithm employing central space differencing (e.g.,

MacCormack_s scheme), it is then necessary to supply a numerical boundary

condition. If the steady state value is used for the boundary condition, then

the numerical algorithm, though stable, fails to converge to steady state.

The reason is clearly due to the fact that the numerical boundary condition

does not allow for a flux through that boundary. As a consequence we have

(see (3.19))

f u(x,t)dx = 2B
0

for all t, while the true steady state, u+, requires

lim f u(x,t) = 2.
t+_ 0

3.1.2 Implicit Form

Equation (3.1) is discretized using the implicit E-O scheme given by

equation (2.28). Once again, numerical calculations were performed for

initial conditions given by equation (3.25). Now an additional free parameter

is

I00 Ax
€ - (3.26)

At
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which is a measure of how big At is taken in the numerical calculations.

The results of these series of calculations are given in Figure 6. As

indicated in the figure, if "small" At's are taken (€ _I_ ), then the

steady state shock location calculated agrees with the theoretical prediction

of equation (3.12). However, as At increases, the steady state shock

position is found to the right of its theoretical location. For sufficiently

high values of At (small €'s), the smooth solution is obtained.
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Figure 5. Computed and predicted steady state shock position for

equation (3.1) with initial conditions (3.25) using a

time accurate scheme.
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Figure 6. Computed and predicted steady state shock position for

equation (3.1) with initial conditions (3.25) using an

implicit scheme.
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4. A MODEL FOR QUASI-ONE-DIMENSIONAL FLUID DYNAMICS

A characteristic boundary value problem, where boundary conditions are

of the form (2.2), occurs in a double-throat Laval nozzle

A(x)

r

X
x=O X=I

Figure 7. Sketch of double-throat nozzle

as shown in Figure 7. It is well known [I] that there are two possible smooth

steady solutions, with sonic conditions at the throats. Between the throats,

0 < x < I, the flow can be either completely subsonic or supersonic, the exact

Mach number distribution, in each case, being dependent on the nozzle area,

A(x), where 1 < A(x) _ A in (0,1), A(0) = A(1) = I.max

If one considers the isentropic case only, then the flow may be

described by the quasl-one-dimenslonal partial differential equations for the

Riemann variables,

2 2
=u+--c _=u- c

y- 1 ' y- 1" '

where u is the velocity, c = (yp/p)I/2 is the speed of sound, and y is
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the ratio of specific heats for ideal gases. The equations are

_-_t+ (u + c) _x + ucF'(x) = 0, (4.1)

_-_ + (u - c) _x- ucF'(x) = 0, (4.2)_t

where F'(x) = dF(x)/dx = d(£nA(x))/dx. This is a hyperbolic system whose

time evolution is difficult to describe analytically. We therefore seek a

model for this system so that with a single equation the most salient

features are retained. We will present numerical evidence that analytical

predictions resulting from this model equation agree very well with results

found by numerical integration of the original system (4.1), (4.2).

The model is derived using a single assumption, namely that the total

enthalpy is constant not only at steady state but also during the transient

phase. The mathematical expression of this assumption is that

4c_ 16 2
_2 + _2 + 2(I- a) _ _ _ Co (4.3)a 2a - I 2

¥ - 1

where

a = , (4.4)

cO is the stagnation sound speed, and c, is the sonic sound speed, i.e.,

c, is the sound speed at a sonic throat.

We now face the choice of solving (4.3) for either _ in terms of _,

or vice versa. This dilemma is resolved by recognizing that our "physical"

problem will impose characteristic boundary conditions on (4.2), and we would
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llke our model equation to retain this feature. Therefore, (4.2) is the

relevant equation. Solving for _ gives

4a c, 1/2
= 1 - a + (2a - I) (4.5)a 2a- I

where the positive branch was chosen in order to satisfy the steady state

boundary condition at x = 0, i.e., at the first throat, where

_ 2a 2(1 - a)
_* 2a-----_lc,; _, = 2a - 1 c,. (4.6)

Using (4.5) in (4.2), and defining

A

= _/_, (4.7)

the equation (4.2) takes the form

A+ A($) = H(_)F'(x) (4.8)_T

where

^

A_) = _ + 1 - a / I - $2 (4.9)
J2a-I

H(_) = _ 252 2(1 a) _ / 1 - @ (4.10)
J 2a- 1

T = tc,. (4.11)

Notice that the time scale, T, is determined by the sonic conditions.
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For the sake of clarity let us first examine the simple case of a = 1

(y = 3), which corresponds to the flow of products caused by detonating solid

explosives. Equation (4.8) then becomes

8_ = _ (I - 2€2)F'(x), F(x) = £nA(x). (4.12)

A smooth steady state solution of (4.12) with €(0) = 0 is

-F(x)
^ 1 (I - e ), (4.13)€2(x) =

since A(0) = 1, and so, as in (3.2a) we have two possible steady states. One

is positive (supersonic) and the other is negative (subsonic):

^+ cA(x) - 1 1/2
€ = _ 2A(x) ) (4.14)

$- = _ (A(x) - 1)I/22A(x) " (4.15)

Bearing in mind the results of the previous sections, we will show that in the

^+
time evolution problem, _ and €- are reachable from different initial

conditions. Clearly (4.14) and (4.15) can be connected by a steady shock -

and again, because of the symmetry of € and € , the steady shock location

xS could be anywhere in the interval (0,i). We will show that here too

bounds on xS can be found and compare them with results of numerical

integration of the original system (4.1), (4.2).

We will concentrate on the positive branch (4.14), showing that if the

initial condition is given by
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^ = [A(x) - I]I/2 (4.16);(x,0) = g(x) = _+ _t 2A(x)

with

A

1 < 62 <
max

(4 17_
A - I ' "'"
max

^+
where Ama x is the maximum area in the nozzle, then lim ;(x,t) = _ (x). A

t+_

solution of the second characteristic equation,

dd_x I ^dd_T= ; = _ (i - 2_2)F'(x) (4.18)

is given by

]I - 2;2] = ]i - 2g21_(x,T))]AI_(x,_))/A(x), (4.19)

where as before _(x,T) is the origin of a characteristic curve passing

through (x,T). Since we have chosen (see (4.17)) g2(x) to be smaller

than I/2, it follows from (4.19) that

;(x,_) = ± [A(x)A(_)[I - 2$2($(x,_))]] I/22A(x) , (4.20)

where _(x,T) is to be determined from the first characterlsitc equation

x

l" = f dy
;(y,_) (4.21)

From (4.16) we see that a positive (negative) B will initially select a

positive (negative) branch of (4.20). By an argument similar to that used in

A

Theorem 1, it remains for us to show that _ thus initiated will not change
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sign while evolving to steady state. This follows immediately from (4.20) if

we use for g(x) equation (4.16) with B > i.

Next we consider the discontinuous steady state solution. The initial

^+
data are now taken so that Ig(x)l < € , see equation (4.14). A lower bound

for xS is found by inquiring about the zeros of (4.20) - the argument is the

same as in the previous section. The radical in (4.2) is zero

A(x S) = A(z)(l - 2g2(z)) (4.22)

where, as before, z maximizes the expression A(x)(l - 2g2(x)). To find the

upper bound we have to devise an "area rule" for equation (4.12). Because of

1^

the structure of the right-hand side of (4.12), it is no longer f ¢(x,T)dx
0

which is conserved. To find the appropriate "area rule," we divide both sides

of (4.12) by 1 - 2€2 > 0. The resulting equation after integration by x

over the interval may be written as

8 1 1 + _'2 € I 18 ^2 __

_-_ f0£n 1 - /7 €̂ dx ---/_ _ _[£n(l - 2€ )]dx = _I F(x) 01= 0. (4.23)

Under the usual area rule assumptions, ¢(0,T) = ¢(I,T) = 0, we have

f £n 1 + /_ dx = const. (4.24)

0 1 -/_€

Therefore, an upper bound for xS is found from

Xs ^+ 1 -- ^- 1 --

f £n 1 + /7 !+ dx + f £n 1 + /2 € dx = f £n 1 + /2 g(x) dx. (4.25)

0 1 - /7 € x S 1 - /7 €- 0 1 - _ g(x)
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^+
When g(x) _ 84 , (8 < I) we expect, as in the previous example, the upper

and lower bounds on xs to coincide. This was indeed verified in numerical

experiments with a particular area distribution A(x).

Recalling that (4.12) is a scalar model equation representlng the

systems (4.1), (4.2), we find it interesting to note that this 2×2 system also

possesses an area rule, namely:

at f (_+#)dx = 2I- [(_2(I,t) + €2(I,t)) - (¢2(O,t) + 12(0,t))]. (4.26)

Under the assumption that #(O,t) = @(l,t) = O; _(O,t) = @(l,t), we have

a
a--_f (4 + ¢)dx = 0. (4.27)

We can now use this to test the "goodness" of our model by comparing the shock

location predicted from (4.25) with that of the system, whose solution is

found numerically. This comparison is carried out in the next section.

Having concluded the analysis of the a = 1 case, let us now return to

the more general formulation (4.8). In particular, let us consider the case

of y = 1.4 (a = .6), corresponding to air. We next show how (4.8) may be

cast in a form similar to the "decoupled" one in (4.12). Multiply both sides

of (4.8) by r'(_) (r" = dr/d_) to obtain

+ r ar _ H_v(r)Jl[_ F'(x) = K(r)(r+ - r)(r - r )F'(x) (4.28)
a__!r
ar ax - ,

where
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, ''el'' 'rlCr-/--jlCr+/7.'-I
K(r) = - -g r 1 - -g r - -3 (4.29)

(1 - r2)(r - _ 1 - _ _ r )

r+ = /_23--, r_ = - //-_ • (4.30)

The quantities r_ and r+ are the values of r which, in the steady state,

correspond to Mach numbers of zero and infinity, respectively. For general

values of y, K(r), r+, and r_ are replaced by K(r,a), r+(a),and r_(a).

K(r,a) will have the same structure as in (4.29).

It is easy to verify that K(r), given by (4.29), is a positive, slowly

monotonically decreasing function in the relevant range r_ _ r _ r+. In fact

K(r_) _ 2K(r+) = .309. In the case of y = 3, i.e., equation (4.12), r = $

and we have r+ = -r_ = I/J_ and K(r) = constant. It is thus clear that

the topological behavior of (4.28) is the same as that of (4.12), and the

arguments carry over. In particular the non-unlque smooth steady states

depend on the initial data in the same fashion with respect to 8.

4.1 NUMERICAL RESULTS FOR QUASI ONE-DIMENSIONAL EQUATIONS

Here we study numerically equations (4.1) and (4.2) for y = 3, namely:

8_ + 8 (2_) 1 _2 €22--{ 8--x = - _ ( - )F'(x) (4.31)

2 1
_-_St+ _Sx (2_--): _ (_2 _ 2)F.(x). (4.32)
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The area of the dual-throat nozzle is defined by

A(x) = (I - d)2 + (I - d(2x - 1)2)2 0 < x < i, (4.33)

2(I - d)(1 - d(2x - I)2)2 ' -- --

where d is a parameter related to the maximum area by

(I - d)2 + 1

Amax 2(1 - d) " (4.34)

For the numerical experiments, we have used d = 1/6 which results in

Ama x = I.I. The steady state Mach number distribution is

M(x) = A(x) ± /A2(x) - 1 , (4.35)

and the steady state solution to (4.31) and (4.32) as a function of the Mach

number is

= _ (I + M)/(I + M2) i_ (4.36)

$ = - /7 (1 - M)/(I + M2) I_ . (4.37)

With the stagnation pressure and density used as reference values, the value

of is
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4.1.1 Explicit Form

Equations (4.31) and (4.32) are discretlzed using the explicit E-O

scheme given by equation (2.20). Numerical calculations were performed with

initial conditions corresponding to

[A(x) - 1 l_
¢(x,0) = B /6 L 2A(x) ] ' (4.38)

which is equivalent to (4.16), and with

[A(x) + I] i_
¢(x,0) = J_ [ 2A(x) J ' (4.39)

or

_(x,0) =,/-6(I - 82/A(x)- I))I/2_ 2A(x) (4.40)

The initial conditions given by (4.39) correspond to the exact, steady

solution for _ while those given by (4.40) correspond to conditions for

consistent with (4.38) and constant total enthalpy, (4.5). The steady state

reached was the same in either case; therefore, the results reported here are

for calculations with (4.40) only.

Figure 8 summarizes the numerical results. The figure compares the

predicted steady state shock position as given by (4.25) for the model

equation (4.12) and the computed position for the system (4.31) and (4.32).

As is evident from the figure, the agreement is very good.
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4.1.2 Implicit Form

Equations (4.31) and (4.32) are discretlzed using the implicit E-O

scheme given by equation (2.28). Equations (4.38) and (4.40) are again used

as initial conditions. The numerical results are summarized in Figure 9. As

shown in the figure, the steady state shock position depends on the Courant

number as measured by the parameter

AK
= I00 _ . (4.41)

At

For values of _ > i0 the steady state shock position is the same as that

predicted by the explicit form. For values of _ < I0 (large At), the steady

state shock position bifurcates at certain values of B.
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Figure 8. Predicted steady state shock position given by (4.25) for

equation (4.12) and computed position for system (4.31) and

(4.32) with initial conditions (4.38) and (4.40) using a time

accurate scheme.
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Figure 9. Predicted steady state shock position given by (4.25) for

equation (4.12) and computed position for system (4.31) and

(4.32) with initial conditions (4.38) and (4.40) using an

implicit scheme.
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CONCLUSIONS

In this paper we analyzed several model equations for characteristic

initial boundary value problems and examined numerically these as well as the

quasl-one-dlmenslonal isentropic Euler equations of gas dynamics.

We showed that because of the characteristic nature of the boundary

conditions the resulting steady states, whether smooth or discontinuous,

depend on the initial data. Different initial conditions may yield different

steady states. We also gave an example (see Section 2) of solution to the

steady state equation which cannot evolve from the initial data. Thus from

the point of view of the time-dependent equation, we find there are no non-

unique steady states.

Another conclusion that one may draw is that in order to have complete

confidence in the results, numerical schemes for characteristic initial

boundary value problems should be time consistent and employ only suitable

boundary conditions. Thus we have shown that implicit methods, even for

finite Courant numbers, may yield solutions which are piecewise combinations

of non-unique solutions of the steady state equations. In fact, such

numerically implicit algorithms may converge to solutions which also include

parts of unstable steady states.
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A MINIMUMENTROPYPRINCIPLEIN THEGASDYNAMICSEQUATIONS

Eitan Tadmor*

School of Mathematical Sciences, Tel-Aviv University
and

Institute for Computer Applications in Science and Engineering

ABSTRACT

Let u(_,t) be a weak solution of the Euler equations, governing the

inviscid polytropic gas dynamics; in addition, u(_,t) is assumed to respect

the usual entropy conditions connected with the conservative Euler

equations. We show that such entropy solutions of the gas dynamics equations

satisfy a minimum entropy principle, namely, that the spatial minimum of their

specific entropy, Ess infSIu(_,t)) , is an increasing function of time. This
X

principle equally applies to discrete approximations of the Euler equations

such as the Godunov-type and Lax-Friedrichs schemes. Our derivation of this

minimum principle makes use of the fact that there is a family of generalized

entropy functions connected with the conservative Euler equations.
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1. INTRODUCTION

Many phenomena in continuum mechanics are modeled by hyperbolic systems of

conservation laws

d
_u _f(k)

_-_ + Y _x---_= 0, (_ = (Xl,...,Xd),t)_Kx[0,=:), (I.I)k=l

where f(k) _ f(k)(u ) (f_k) _k) T= ,...,f ) are smooth nonlinear flux mappings

-- T.
of the N-vector of conservative variables u _ u(x,t) = (Ul,...,u N)

Friedrichs and Lax [3] have observed that the hyperbolic nature of such models

is revealed by the property of most of those systems being endowed with a

generalized

Entropy Function: A smooth convex mapping U(u) augumented with entropy flux

(F(1)(u) • F(d)(u)), such that the followingmappings +F _ _(u) = ,.. ,

compatibility relations hold

UT f(k) = F(k)T, k = 1,2,...,d. (1.2)
u u

Multiplying (I.I) by UT and employing (1.2), one arrives at an equivalent
u

formulation of the compatibility relations (1.2), namely, that under the

smooth regime we have on top of (i.i) the additional conservation of entropy

_U d _F(k)

a--_+ k:IY _x---_: 0. (1.3)

Owing to the nonlinearity of the fluxes f(k)(u), solutions of (I.I) may

develop singularities at a finite time after which one must admit weak
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solutions, i.e., those derived directly from the underlying integral

conservative equations. Considering (I.I) as a strong limit of the

regularized problem,

_u _ _f(k) ! _2u
_-_ + = _ , B . 0, (1.4)

k=l _ _k 1 _x

then following Lax [9] and Krushkov [8], we postulate as an admissibility

criterion for such limit solutions an entropy stability condition which

manifests itself in terms of an

Entropy Inequality: We have, in the sense of distributions,

_U d _F(k)

+ I < 0. (1.5)
k=l k

Weak solutions of (I.i), which in addition satisfy the inequality (1.5)

for all entropy pairs (U,_) connected with that system, are called entropy

solutions. (I) Having a (weakly) nonpositive quantity on the L.H.S. of (1.5)

is thus a consequence of viewing these entropy solutions as limits of

vanishing dissipativity mechanisms. In particular, the inequality (1.5)

implies that the total entropy in the domain decreases in time (we assume

entropy outflux through the boundaries)

d
d-_f-- U(u(x,t))d_ _< 0. (1.6)

X

(1)Krushkov [8, p. 24i] has termed such solutions simply as generalized
solutions.
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In this paper, we consider entropy solutions,

u = (p,m,E) T (l.7a)

of the Euler equations. These equations govern the inviscid polytropic gas

dynamics, asserting the conservation of the density p, the momentum

m = (ml,m2,m3)T, and the energy E. Let q _ _ denote the velocity field ofP

such motion. Then, expressed in terms of the pressure, p,

p = (y-I).[E-I/2.plqj2], y = adiabatic exponent, (l.7b)

the corresponding fluxes in this case are given by (2)

f(k) = (mk,qk.m + p.e(k),qk( E + p))T, k = 1,2,3. (1.7c)

The main result of this paper asserts that entropy solutions of Euler

equations satisfy the following

Minimum Principle: Le_.__tu _ u(_,t) be an entropy solution of the gas

dynamics equations (1.7) and let

S(_,t)_ S(u(_,t))= In(pp_Y) (1.8)

(2)With e(k) denoting the unit Cartesian vectors e(k) = 6kj"
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denote the specific entropy of such solution. Then the following estimate

holds

Ess inf S(x,t) => Ess inf S(x,t = 0). (1.9)

Ixl<R Ixl<R+t'qmax

Here qmax stands for the maximal speed lql in the domain.

The proof of this assertionis providedin Section3 below. Prior to that

we elaborate in SectiOn 2 on the entropy inequality connectedwith the gas

dynamics equations. In particular,Harten [5] has shown that there exists a

whole family of entropypairs associatedwith these equations,a fact which is

essentialin our derivationof the minimum principle.

As an immediateconsequenceof the minimumprinciple,we concludethat

Ess in_S(_,t) is an increasingfunctionof t for every entropy solutionof
x

(1.7). The following argument sheds additional light on this conclusion in

the case of a plecewlse-smoothflow. To this end, an arbitrary particle

currently located at (_,t) is traced backwards in time into its initial

position at t = 0. Since the specific entropy of such particle remains

constant along the particle path--except for its decrease when crossing

backwardsshock waves, it followsthat its value S(_,t) is greateror equal

than that of the initial spatial minimum Ess inf S(_,t = 0), as asserted.
x

In contrast to the above "Lagranglan" argument, the derivation of the minimum

principle outlined below, is purely an "Eulerian" one. It enables us to relax

the regularity assumption on the flow, and--slnce we do not follow the

characteristics, it equally applies to discrete approximations of the Euler

equations.
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In Section 4 we consider approximate solutions of the Euler

equations, w(i,t) , which respect the entropy decrease estimate (1.6),

_ U(w(x ,t + At))Ax _< _vU(w(x ,t))Axv. (1.10)

We note that such approximate solutions are obtained by entropy stable

schemes satisfying the cell entropy inequality

k=l Ax [Fv+I/2- =_-I/2]' (I.Ii)

e.g., the Godunov-type and Lax-Friedrichs schemes [6]. We have

I_nimum Principle: Let w(i,t) be an approximate solution of the gas

dynamics equations (1.8) and let

S(x ,t) --_S(w(xv,t)) = In(pp -Y) (1.12)

denote the specific entropy of such solution. Assume that its total entropy

decreases in time, (I.I0). Then the following estimate holds

S(_,t + At) =>M_in[S(i,t) ]. (I.13)

In the case of entropy stable schemes, (1.11), a more precise estimate is

obtained which takes into account the support of the schemes" stencil.

The inequality (1.13) leads to an a'priori polntwlse estimate on the

approximate solution w(_,t). Such polntwlse estimates play an essential role
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with regard to question of the convergence of entropy stable schemes. In

particular, DiPerna [2, Section 7] has recently shown that in certain cases,

such (two-slded) estimates are sufficient in order to guarantee the

convergence of such schemes.

2. GENERALIZED ENTROPY FUNCTIONS OF THE EULER EQUATIONS

We consider the Euler equations for polytropic gas

qk°m+ P° klk_-_ + = 0. (2 i)
=i _ "

L qk(E + p) J

It is well-known, e.g., [I], that for all smooth solutions of (2.1) the

specific entropy (3)

S(_,t) = in(pp-Y),

remains constant along streamlines, i.e.,

3

DtDS= _St + _ qk _S = 0. (2.2a)
k=l k

Let h(S) be an arbitrary smooth function of S. Multiplying (2.2a) by

ph'(S) --prime denoting S-differentiation, we find

(3)After normalization, taking the specific heat constant to be cv = I.
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3
 h(S)_ 0.

P _h(S____)+_t k=l_ mk _Xk

Adding this to the continuity equation which is premultiplied by h(S),

3 Bmk
BP h(S) + Z h(S) = 0 (2.2b)
_-_ k=l _ '

we obtain after changing sign, a conservative entropy equation like (1.3)

which reads [5]

3

B_ [-ph(S)] + l B [-mkh(S) ] = 0 (2.3)Bt
k=l _

In order to comply with the further requirement of being a generalized entropy

function, U(u) = -ph(S) has to be a convex function of the conservative

variables u = (p,m,E) T. A straightforward computation carried out by Harten

[5, Section 2] in the two-dimenslonal case shows that the Hessian U is
uu

positive definite if and only if

p[h"(S) - x'h""(S)] > O.

Excluding negative densities we may summarize that there exists a family of

(generalized) entropy pairs (U,_) associated with Euler equations (2.1),

U(u) = -ph(S), F(k)(u) = -mkh(S) k = 1,2,3, (2.4a)

generated by the smooth increasing functions h(S) which satisfy
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h'(S) -_.h''(S) > 0. (2.4b)

3. A HINIMUMENTROPY PRINCIPLE

Let u = (0,m,E) T be an entropy solution of the gas dynamics equations

(2.1). Such a solution is characterized by the entropy inequality (1.7)

3 _F(k) (u)

_U(u)_t+ k:l_" axk <:0 (3.11

which holds for all entropy pairs (U,_) connected with the equations.

To derive a minimum principle, we shall make use of an argument due to Lax

[9, Section 3]. We begin with

Lemma 3.1: Let u be an entropy solution of the gas dynamics equations

(2.1). Then for all nonpositive smooth increasing functions h(S) satisfying

(3.2b), we have

f p(_,t)-h(S(_,t))d_ > f p(_,0).h(S(_,0))d_. (3.3)

Ixl_-<R [x[__<R+t'qmax

Here qmax denotes the maximal speed lql in the domain.

Proof: As in [I0, Theorem 4.1] we integrate the entropy inequality (3.2a)

over the truncated cone C = {IF[ _<R + (t -T)-qmax[0 < T < t}; if we let

(n0,F) denote the unit outward normal, then by Green's theorem
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[ 3 ]f ph(S), no + _ qknk 8_ >= 0. (3.4)
_C k=l

The integrals over the top and bottom surfaces give us the difference between

the left and right-hand sides in (3.3) and by (3.4) this difference is bounded

from below by

-f ph(S), no + _ qk n 27.
mant le k=I

The result follows upon showing that the last quantity is nonnegative.

Indeed, since by assumption -oh(S) _ 0, this is the same thing as

3

no + I qknk =>0;
k=l

on the mantle we have

(n0,_) _ 1 --I,
/I + 2

qmax

and hence

no + I + __> _
- qmax 2 max --_-- > 0

2 k=l ]_l/ /1 + qmax k=lk--I qknk /I + qmax

as asserted.

The discussion in Lemma 3.1 was restricted to smooth function h(S); by

passing to the limit, its conclusion (3.3) follows for any nonpositive

nondecreasing function h(S) satisfying (3.2b), whether smooth or not.
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To derive the minimum entropy principle,we now make a special choice of

such function,h(S), given by

h(S) = Min[S - S0,0], SO = Ess inf S(_,0). (3.5)

Ixl<R+t'qma x

The nonposltlve function h(S) is a nondecreaslng concave one, hence

admissible by (3.2b), and consequently (3.3) applies

f p(_,t).Min[S(_,t) - S0,0]d_ Z

I_ISR (3.6)

f p(_,0).Min[S(_,0)- So,O]H_.

l l<_R+t'qmax

Now, by the choice of SO, the integralon the right of (3.6) vanishes since

Min[S(_,O)-So,O] does. The inequality(3.6) then tells us that the integral

on the left is also nonnegatlve. But since the integrandon the left is by

definitionnonpositive,this can be the case provided this integrandvanishes

almost everywhere;that is, we have for almost all _, I_I_ R

S(x,t) > S0 = Ess inf S(_,t:0)

Ixl<R+t'qma x

and (1.9) follows.

The minimum entropy principle was deduced from the entropy inequality

(3.2), which in turn was postulated based on the formal regularization

introduced in (1.4). In general, other regularlzatlonsequally apply; in
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particular, Euler equations are usually sought as the vanishing viscosity

limit of the Navier-Stokes equations (here we take for simplicity the one-

dimensional case) (4)

I [°1+ 8 _ 8q
8--_ _ qm + p = _ _-_ _ , _ + 0. (3.7)

q(m + p) 8q

Do the (generalized) entropy inequalities (3.2) remain valid on the basis of

such limit? To answer this question we first note that if U(u) is any

entropy function, then thanks to its convexity the mapping u . v _ U is
u

one-to-one, and hence one can make the change of variables u = u(v). Harten

[5] has shown that such change of variables by each member of the family of

entropy functions (2.4) puts the viscosity terms on the right of (3.7) into a

negative semidefinite form. This makes apparent the dissipative effect of

these viscosity terms. Indeed, if T = cv. E -i/2.[q12 denotes the absolute

temperature, then direct manipulation of (3.7) yields, e.g., [I, Section 63],

[12, Section 6.10],

2

qx8__Bt[ph(S)] + [mh(S)] = _.h(S) _-- , (3.8)

from which we recover the entropy inequality (3.2a) for all smooth increasing

functions h(S). We note that the convexity condition was not assumed in this

(4)With _ combining the two viscosity coefficients in the general Navier-
Stokes equations.
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case. The merit of using the convexity condition, however, is that it enables

us to deal with more general artificial viscosity terms, other than those

appearing in the Navler-Stokes equations. Such artificial viscosity terms are

frequently encountered in finite-difference approximations to the Euler

equations;a specificexampleof this kind is studiedin the next section.

Finally we would llke to remark on the previouslymentionedNavler-Stokes

equations. Our discussion above took into account only the viscosity

contribution,neglectingheat conduction. Hughes, et al., [7] have shown that

when the heat flux is also added, compare(3.7),

ii[01[I_ + _ _ _q _ 2
_--_ _x qm + p = _ _x _ + K _ (3.9)

q(E + p) _q _T

with < denoting the heat conductivity constant, then only the "physical"

entropy, U(u) = -0S survives as the one which puts the additional heat flux

into a symmetric negative-definite form. We would like to note in this

connection the difference limit behavior of the Navier-Stokes flows depending

on the viscosity and heat conductivity; Gilbarg [4] has shown that as < + 0

keeping _ fixed, we are led to a continuous thermally nonconducting shock

layer, whereas for _ . 0 with K fixed the convergence is to a (generally)

discontinuous nonviscous shock layer. Consequently, the viscosity rather than

the heat flux should play the major rule in an appropriate regularization

model for the Euler equations.
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4, DISCRETEAPPROXIMATIONSOF THE EULER EQUATIONS

In this section we consider approximate solutions of the Euler

equations,w(xv,t),whose total entropydecreasesin time, compare (I.I0)

D

Lu(.(\,t+At))_<Lu(.(x (41)

Estimate (4.1) holds for all entropy functions U = -ph(s) in (2.4). By

passing to the limit, this applies to our previous choice of the function

h(s) in (3.5)

h(s) = MiniS - S0,0], (4.2a)

this time with a constant SO which is taken to be

SO = M_in S(w(_,t)). (4.2b)

By our choice of SO, we have U(w(_,t)) = 0. The inequality (4.1) tells us

that the left-hand side is therefore, nonnegative; consequently

m

S(x,t + At) - SO > h(S(x,t + At)) > 0

and (1.13) follows.

Approximate solutions which fulfill the required estimate (4.1) can be

obtained by entropy stable schemes satisfying the cell entropy inequality

(1.11)

d

U(w(_,t + At)) < U(w(_ t)) + [ 1 iF(k) _ F(k)__ , _ [ _+1/2 _-1/2]. (4.3)k=l Ax
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Examples of such entropy stable schemes include the Godunov-type and Lax-

Friedrlchs schemes, e.g., [6]. A more precise minimum principle follows in

these cases, taking into account the support of the schemes" stencil. In

particular, the (one-dimensional) Godunov scheme results from averaging of two

neighboring Riemann problems [6], each of which satisfies (1.9). Consequently

we have the

Minimum Principle (of the Godunov scheme): Le____tw(x,t) the Godunov

approximate solution to the Euler equations (2.1). Assume that the

appropriate CFL condition is met. Then the following estimate holds

SIw(x ,t + At)) _ Min S(w(xj,t)). (4.4)
_-1<_j<__+i

Since the Lax-Frledrichs scheme coincides with a staggered Godunov's solver,

the same conclusion, (4.4), holds. Another way to see this is outlined below;

it makes no reference to Riemann's solution and can be generalized to the

multidimensional problem.

To this end, we approximate the (for simplicity--one-dlmensional) Euler

equations with the Lax-Frledrichs scheme

i[ ]W(X ,t + At) = _ w(x +l,t) + w(x 1,t )

(4.5)

%[ w(X_l )] _At- _ fIw(xv+l,t) ) - f( ,t) , I = _-_ .

We remark that the Lax-Friedrichs scheme can be derived from center

differencing of the regularization model (1.4) Ax" Lax has shown [9, Theorem

114



At
1.2] that if _ - -- is sufficiently small, then solutions of this differenceAx

scheme satisfy the following cell entropy inequality

U(w(xv+l,t))+ U(.(x_l,t))
u(-(xv,t+ < 2

(4.6)

- _ [F(w(xv+l,t)) - F(,(x _l,t)) ]

for all entropy pairs (U,F) = (-ph(S),-mh(S)) in (2.4). by passing to the

limit, this applies to our prevlous cholce of the function h(S) in (3.5)

h(S) = Min[S - S0,0], (4.7a)

this time, with a contant SO which is taken to be

SO = Min[S(x +l,t), S(x _l,t)]. (4.7b)

The inequality(4.6) now reads

i + lq(x _l,t)p(x ,t + At).h(S(xv,t + At)) _ 2 0(Xg-l't)'h(S(Xv-l't))

(4.8)

1 - Xq(xv+l,t) ]

+ 2 P(Xg+l't)'h(S(Xg+l't)) ]

By our choice of the funtion h(S) in (4.7), we have h(S(Xvel,t)) = 0. The

inequality (4.8) tells us that the left-hand side is therefore nonnegative;

consequently
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0 <__h(S(x ,t + At)) --<S(x,t + At) - SO

and the following minimum principle follows

S(w(x ,t + At)) _> Min S(w(x ±l,t) ).
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ABSTRACT

A multidomain Chebyshev spectral collocation method for solving hyperbolic

partial differential equations has been developed. Though spectral methods

are global methods, an attractive idea is to break a computational domain into

several subdomalns, and a way to handle the interfaces is described. The

multldomaln approach offers advantages over the use of a single Chebyshev

grid. It allows complex geometries to be covered, and local refinement can be

used to resolve important features. For steady-state problems it reduces the

stiffness associated with the use of explicit time integration as a relaxation

scheme. Furthermore, the proposed method remains spectrally accurate.

Results showing performance of the method on one- dimensional linear models

and one- and two-dlmenslonal nonlinear gas-dynamlcs problems are presented.
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I. INTRODUCTION

In this paper we address the problem of efficiently computing Chebyshev

spectral collocation approximations to quasilinear hyperbolic systems of the

form

+ A(Q)Qx + B(Q)Qy = 0 x,y DCR 2, t _ 0 (I)Qt

with appropriate boundary and initial conditions. Here, Q is an m-vector

and A and B are mxm matrices. This system is hyperbolic if for any

constants kI and k2 the matrix T = kI A + k2 B has only real eigenvalues

and there exists a similarity transformation matrix, P, such that PTP -I = A

is a real diagonal matrix.

In particular, we are interested in the solution of the Euler equations of

gas dynamics which form a system of this type. The use of the nonconservation

form is justified for problems in which shocks are fitted and in this

situation spectral methods work well [I]. Problems of the type presented in

Ref. [I] provide the motivation for what follows.

The typical Chebyshev spectral collocation procedure for the solution of

the system (I) is described in several reviews such as those of Gottlieb,

Hussaini, and Orszag [2], and Hussaini, Salas, and Zang [3]. First, the

domain of interest is mapped onto the square D" = [-1,1]×[-i,I] and an

(N+M) x (M+I) point mesh is generated with the collocation points defined by

xi = - cos(i_/N) i = 0,1,-..,N

_ ooo

yj cos(j_/M) j = 0,I, ,M. (2)
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Mesh point values of Q, designated by Qij' are associated with each of the

collocation points (xi,Yj). A global Chebyshev interpolant of order N in

the x direction and order M in the y direction is then put through the

mesh point values

N,M

Qp(x,y) = _ a Tn(X)Tm(Y). (3)
n,m=0 nm

Approximations to the derivatives at the collocation points are computed

by differentiating the interpolant and evaluating the resulting polynomial at

the collocation points. The computation of the derivatives can be

accomplished in one of two ways (see Gottlieb, et al., [2]): The first is to

take advantage of the fact that the sums for both the interpolant and its

derivative reduce to cosine sums at the chosen collocation points. For

example

dQp N,M N,M
dx = _ anmT_(X)Tm(Y) = _ bnmrn(x)Tm(Y) (4)

n,m=0 n,m=0
where

bNm = 0,

bN_l, m = 2Nanm (5)

and

Cnb = + 2(n + I for 0 < n < N - 2.nm bn+2,m )an+l,m -- --

The constant cn is defined as cn = 2 for n = 0,N and cn = 1

otherwise. The advantage of this form is that a fast cosine transform can

compute the derivatives along each y line in O(N log N) operations.
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The other approach to computing the derivatives is to write the

differentiation operation as the product of a differentiation matrix and the a

vector of the Qij's. For example, along each y line the x derivative is

(dQp_ .

d---X--)l = O(Qp)j (6)

= . ]Twhere (%)j [Q0,j QI,j "" QN,j and the elements of the matrix D are

defined in Gottlieb et al., [2]. The amount of work with this procedure is

of O(N2). What one loses in efficiency one gains as flexibility in the

number of mesh points that can be used in each direction without adding

storage.

No matter which way the spatial derivatives are computed, it is important

to note that computing the Chebyshev derivative approximations requires only

mesh point values. Derivatives at the end points require only points interior

to the mesh so no extra procedure is required to compute derivatives at

boundaries.

Once the spatial derivatives are approximated, what results is a system of

ordinary differential equations in time for the variation of the solution at

each collocation point (Method of Lines). Because the differentiation matrix

is full, explicit methods are typically used to integrate the semi-discrete

equations. In this paper, all time integrations will be performed with a

fourth-order Runge-Kutta method.

The advantage of using this spectral method to solve (I) is that for

solutions which are C=(D), the accuracy is better than any polynomial order

(Canuto and Quarteroni, [4]). This is usually called "spectral accuracy" and

asymptotic behavior can be observed if there are enough grid points to
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adequately resolve the solution. It is thus possible to compute to a given

spatial accuracy with fewer grid points than required by typical low-order

finite difference approximations.

Balancing the high accuracy of the spectral method, however, are some

major disadvantages of the typical Chebyshev collocation approach:

(I) It may not be easy or even possible to map D . D" globally.

(2) The collocation point distribution is global and predetermined. Local

refinement of the mesh is not possible.

(3) The points are concentrated near the boundaries where they are

typically not needed for hyperbolic problems.

(4) If explicit time integration is used the time step restriction in one

dimension is proportional to I/N2.

(5) For complete flexibility in the number of mesh points which can be

used, the derivatives cost of O(N 2) in each direction.

These problems can be reduced significantly by breaking up the region D

into several subdomains Dk each of which has its own Chebyshev grid. With a

stable and efficient method for computing the interfaces, the advantages of

such an approach would be:

(I) Complicated geometries can be covered.

(2) Points can be distributed with some flexibility; local refinement is

possible.

(3) In one dimension, with N points and K subdomains, the time step

restriction increases to At = K/N 2.

(4) Derivative evaluation work with matrix multiplication decreases to

K(N/K) 2 or I/K that of a single grid.
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The idea of breaking up the computational domain into subdomains each with

a different grid is not new. For finite difference methods this is a

currently popular approach (e.g., [5]). For spectral methods, however,

previous applications have been limited to elliptic and parabolic problems.

Orszag [6] first applied such a technique to solve elliptic problems. He

enforced continuity of the function and its first derivative as the interface

condition. Metivet and Morchoisne [7] and later, Morchoisne [8] computed

multidomain solutions to the Navier-Stokes equations. Recently, Patera [9]

and Korczak and Patera [I0] have been using a spectral element method to solve

the incompressible Navier-Stokes equations. Their method is very similar to

the p finite-element methods developed by Babuska (see [i0]) but uses

Chebyshev interpolants. The treatment of the convective terms, however, does

not lend itself to purely convective problems. For these problems, we

describe the method below.

2. MULTIDOHAIN APPROACH

In this paper, we will break up the physical domain, D, into K

subdomains Dk which do not overlap except for the common boundary points.

Figure I shows a rectangular two-dimensional example of the situation with

four subdomains. Each of the Dk are mapped onto a square [-l,l]x[-l,1].

Spatial approximations at interior points of each subdomain are computed in

the usual way. Across an interface, however, there are two values of the

normal derivative. For example, at the y coordinate line interface between

DI and D2 in Figure I, derivative approximations are available from the

left and from the right. The problem is to choose properly information from
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the right and the left to give a stable and consistent approximation to the

differential equation at the interface.

Before discussing a multidomain method for the boundary value problem (i),

we will first examine the one-dimenslonal case. In one dimension, we seek

interface algorithms of the semidiscrete form

_QI + AL _QL AR _QR 0 (7)+

where QI denotes the value of Q at an interface and the derivatives

superscripted with L and R denote the two spectral approximations computed

in the left and right, respectively. For consistency, we require that

AL + AR = A (8)

and for efficiency we want AL and AR to be computed with little more work

than is required for the computation of A itself.

To generate the coefficient matrices, consider first the linear scalar

hyperbolic equation

ut + _ux = 0 _ > 0. (9)

Because the equation is hyperbolic, it is clear that the common interface

point should depend only on information propagated from the left. Thus, the

approximation should be

_ul + _ _uL - 0. (I0)
_t _x
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This is, of course, just upwind differencing at the interface and is

equivalent to the way Gottlleb and Orszag [ii] handled a tau approximation to

equation (9). To simplify the computational logic to include cases where the

coefficient, l, is of either sign, the approximation (I0) can be written as

-- @uL @uR O. (11)
_ul+i/2 (l + Ill)_-_-+1/2(I- Ill)8t

If we now consider that this equation is a single component of a

diagonallzed system, where the diagonal matrix

I01A = 12 = p-i AP,

In

we can write the system as

_QI @QL _QR 0 (12)
--+i/2(A_t + lAl)-_--x +I/2(A - IA[) B--x--=

where [Al = PIAIP-I. Formally, this is nothing more than the method of

characteristics in one dimension.

We now propose to avoid the computation of the matrix absolute value by

approximating it with a diagonal matrix

* -I *
IAI _ el Ip = I I (13)

where l is chosen to lle between the largest and smallest elements of IAI.

The boundary scheme is now of the form of Eq. (7) with
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* AR *AL --1/2(A + % I) =1/2 (A - % I). (14)

This choice of coefficient matrices always has proper upwind dominance on

all of the characteristic variables, but includes some downwind influence. To

see this, re-dlagonallze the system (7) and use u as the nth component of

the diagonalized system. Then the approximation to the method of

characteristics causes the characteristic variables at the interface to be

approximated by

I _uL _, ,) _uR+i/o(k n - k = 0. (15)_u +I/2(X n + I*) 8-_-8t

In fact, this can be viewed as the purely upwind scheme with an error term:

For the _ > 0 case,n

L

3uI + _ _u * _uR _uL
_-_- n _--x--=(X - _n)(_ x _x I" (16)

Thus, we have the spectrally accurate upwind approximation with an error

term proportional to the difference of the right and left spectral

derivatives. If the solution has the necessary smoothness, this difference

should also decay spectrally and spectral accuracy of the approximation should

be retained.

We will study the stability of the multldomaln method with the interface

approximation (14) numerically. An analytic study of stability is not

possible at this time. Stabillty theory for Chebyshev approximations to

hyperbolic inltlal-boundary value problems is not advanced enough to analyze

an approximation which introduces some downwind influence at the interface.
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We consider the two-domain approximation of the scalar equation (9) with

the interface approximation (12) with % = i. The llne segment [-2,2] is

divided equally into two domains of [-2,0] on the left and [0,2] on the right.

The semidlscrete approximation can be written as a system of ordinary

equations with the two-domaln coefficient matrix

iL 0 ] (17)
DR

where DL and DR are the single domain differentiation matrices for the

left and the right, modified to include the interface approximation. For this

system to be time stable, that is, the solution does not grow unboundedly as

t . _, the elgenvalues of the coefficient matrix must have negative real

parts.

Figure 2 shows how the eigenvalues change as _ varies when 6 points are

used. The case of % = 0 corresponds to simple averaging and is clearly not

time stable. Choosing _ > 0 large enough moves the eigenvalues into the

left half of the complex plane and the resulting approximation is time

stable. The case of _ = 1 is the purely upwind case and the eigenvalues

decouple into two single-domain patterns. If _ is chosen equal to, or

larger than, the wave speed, Xn' the approximation has the effect of adding a

purely dissipative term to the equation and two purely real elgenvalues are
,

created. If _ is very much larger than _n' however, the elgenvalues

migrate to the right of the imaginary axis. The range of XSs for which the

approximation is stable decreases as the disparity in the number of points
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becomes larger; for very stiff systems, it may be necessary to use IAI

instead of X at the interface.

It is interesting to note that the reverse situation, where there is more

resolution on the upstream side of the interface, does not show this behavior

and is stable for all X > 0. For systems, this means that X should be

chosen to be only slightly larger than the smallest eigenvalue representing a

characteristic moving from the coarse to the fine grid. For systems, this

means that X should be chosen to be only slightly larger than the smallest

elgenvalue representing a characteristic moving from the coarse to the fine

grid. We note, however, that the examples on which the scheme has been tested

show that the approximation is robust over a wide range of choices of X .

In two dimensions, the upwind weighted approximation is used in the

direction perpendicular to the interface. Returning to Figure I, along x

doordlnate lines, the y derivatives are continuous across the interfaces

except at corners. At points not on the corners, then, we propose using

_QI + AL _QL AR _QR _QI 0 (18)
8t _-x + _--x + B _y -

where AL and AR are defined as above. Along x coordinate interfaces,

___QI+ A _--x--+_QlBT ___QL BB _QR - 0 (19)_t _y + _Y

* BB * .where BT =I/2(B + _ I) and =I/2( B - _ I) and _ is an approxima-

tion to the eigenvalues of B. At corners, the weighted approximations are

used in both directions.
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3. NUMERICALEXAMPLES

Numerical experiments on four model problems in one and two dimensions

will be presented. The models include the scalar one-dlmenslonalhyperbolic

initial boundary value problem for a travelling Gausslan pulse, a linear

system in one dimension,quasl-one-dlmenslonalflow in a converglng-diverglng

nozzle,and the transonicRinglebproblem. The Ringleb flow models the smooth

nonlinear transonicflow in a curved duct and has an exact solution to which

to compare.

A. Solution of a Linear Scalar Problem

The solution to the linear scalar problem

_u _u
_-_+ 2 _x = 0 x E [-2,2], t > 0 (20)

u(x,O) = exp(-(x - x0)2/0.3) x E [-2,2]

u(-2,t) = exp(-(x - t - x0)2/0.3 ) t > 0

can be used to examine the effects of varying l in the spatial

approximation described in Eq. (15). The time integration for this and all

following examples was a fourth-order Runge-Kutta technique. For this and the

next model problem the time step was chosen so that the temporal errors were

on the order of 10-10. The main questions to be answered here are the effect
,

of the l # 2 on the accuracy of the solution and if reflections are a

problem at the interface. Figure 3 shows the computed (circles) and exact

(line) solutions for the pulse after it has propagated through the interface

at x = 0 for two distributions of the mesh points and _ = 6.
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The interface approximation Eq. (15) degrades the accuracy of the solution

when compared to the purely characteristic interface, % = 2, if equal

resolution is not provided in each subdomain. In no case, however, is the

global L2 error larger than the global error for the characteristic inter-

face. Furthermore, if _ remains fixed and the total number of points is

increased, the error decay remains spectral. Figure 4 shows the polntwlse

errors of the solution to Eq. (20) for the situations represented in Figure 3

as _ is increased beyond the characteristic value of 2. The situation is

worse when more resolution is used upstream of the interface because the

approximation includes more and more downwind influence as _ is

increased. In a practical computation, the effect of the boundary

approximation would not be important if the solution were equally resolved in

all subdomalns.

Reflections at the interface are not visible in Figure 3 even though there

is a factor of two difference in the number of collocation points. Gottlleb

and Orszag [II] also noticed this for a tau approximation to the scalar wave

equation. This is typical for the spectral approximations; examples with up

to a factor of three and four in the ratio of the number of mesh points have

not shown spurious reflections off of the interface.

B. A Linear System Example

The accuracy of the interface approximation will now be demonstrated with

the 2×2 linear system

[ul][ul+ x E[-2,21, t > 0. (21)

v t v X
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The coefficent matrix has eigenvalues +3 and -I so the system has

information which propagates in both directions and with different speeds

across the interface at x = 0. The initial and boundary conditions were

chosen so that the characteristic variables were the Gaussian pulses used in

the scalar problem, Eq. (20). The coefficient % for this case was chosen

to be the maximum eigenvalue, % = +3. Figure 5 shows the results for the two

components of this system at a time when the characteristic pulses have

crossed the interface. In Figure 5a there are twice as many points to the

left of the interface as to the right and this is reversed for Figure 5b. The

symbols represent the computed solutions and the solid lines represent the

exact solutions.

A study of discrete L2 errors for the system computations is shown in

Tables I through III. Clearly, the error is spectral for all three

situations. In fact, for an equal number of mesh points on either side of the

interface, the error decay is exponential. For the problem of propagating

pulses, where the features needing higher resolution are continually moving,

it is not surprising that the best errors are obtained when there are an equal

number of mesh points on both sides of the interface.

C. Quasi-One-dimensional Nozzle Flow

One potential point of concern in using the interface approximation given

by Eq. (14) regards the stability of cases where one of the eigenvalues of the

coefficient matrix is much larger than any other. Such a situation occurs at

sonic points in an ideal gas flow where one of the characteristic speeds

actually vanishes.
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To test this situation the nonlinear problem of steady gas flow in a

quasi-one-dimensional converglng-diverging nozzle was solved with the

multidomain method where an interface was placed at the sonic point. The

quasilinear form of the Euler gas dynamics equations for time-dependent flow

in a quasi-one-dimensional nozzle without shocks can be written as

:]u:ifIxx+ = (22)

t a2/y u 0x

where P is the logarithm of the pressure, u is the gas velocity, y is the

ratio of specific heats, and a is the sound speed. The coefficient matrix

has eigenvalues of u + a and u - a so that one of them is zero at a sonic

point. The steady flow is found as the large time limit of the unsteady flow

described by (22).

The nozzle area is given by A(x) = x/2 + I/x so the throat occurs at

x = J2. For the cases run, a subsonic inflow boundary was placed at x = 0.2

and characteristic boundary conditions were used. After the gas accelerates

through the sonic value at the throat, it leaves the nozzle supersonically so

no boundary conditions are applied at the outflow.

For the gas dynamics calculations in one dimension, X =I/21]u+a ] + ]u-a])

was chosen since this corresponds to the diagonal elements of the absolute

value of the coefficient matrix. Although the problem was solved for domain

interfaces in both the subsonic and supersonic portions of the nozzle, only

results for a single interface at the sonic point will be shown here. (The

two-dimensional example below will include a variety of interface placements.)
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Figure 6 shows the steady pressurein the nozzle computedwith two domains

and twice as many mesh points on the right as on the left. Our tests on a

variety of grids have not shown any stabilitydifficultiesin computingsteady

flows when placingthe interfaceat a sonic point.

D. Two-Dimenslonal Transonic Flow

A more complicated problem is the two-dimenslonal transonic Ringleb

flow. This problem allows us to study the computational efficiency of the

multldomaln solution algorithm as outlined in the Introduction. Koprlva, et

al., [12] used this problem for a comparison of the performance of the

spectral method with a second-order flnlte-dlfference method. In this section

we will compare the multidomaln spectral method with the single domain

spectral method.

The Ringleb flow is a simple example of a two-dlmenslonal transonic flow

for which there is an exact solution. (See, for example, Courant and

Frledrlchs [13].) The streamlines of the physical space solution appear at

large distances as parabolas which are determined from a special hodograph

solution of the potential equation for steady irrotational isentropic flow.

By choosing two streamlines to represent solid walls, this problem models a

steady transonic flow in a duct. Figure 7 shows the Mach contours of one such

duct flow.

Again we will look for the large time solution of the unsteady gas

dynamics equations, this time in two dimensions. The problem in the curved

duct shown in Figure 7 is mapped onto a rectangle in the stream function-

potential (_,_) coordinate system derived from the exact solution. In this
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coordinate system, the unsteady equations can be written as

Qt = -R (23)

where R is the steady state residual

R = AQI + BQ_. (24)

Since the solution is irrotational, the solution vector is chosen to be

Q = [P u v]T (25)

and the coefficient matrices are

D

U ix ly 0 V _x _y 0

a2
Ix/y U 0 0 a2 _x/y V

0 0

A = B =

a2 ly/Y 0 U 0 a2 _y/y 0 V 0

0 0 0 U 0 0 0 V
B

As before, P represents the logarithm of the pressure and (u,v) represent

the velocity components in the Cartesian x and y directions,

respectively. The matrix coefficients are computed from the mapping derived

from the exact solution and the contravariant velocity components are

U = Ulx + Vly and V = u_x + V_y.
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The physical boundary conditions for this problem represent subsonic

inflow at the entrance of the duct (at the lower left of Figure 7), supersonic

outflow at the exit, and the sides are treated as impermeable boundaries

(walls). So that the initial boundary value problem is well-posed the

boundary conditions must be chosen carefully. See Koprlva, et al., [12] for

details of the procedure which follows. For the subsonic inflow, we can

specify only two quantities and have chosen the total enthalpy and the angle

of the flow (so V = 0). The quantities P and U are computed from two

conditions: The first is a compatibility equation derived from the pressure

equation and the normal momentum equation. The second comes from

differentiating the enthalpy equation in time. From U and the condition

V = 0, the Cartesian velocities u, v can be computed. At the outflow, no

boundary conditions are needed. Finally, at the walls the normal velocity, U,

must vanish. The vector Q is computed by solving the tangential momentum

equation for V and a compatibility equation which combines the normal

momentum and pressure equations for P.

The system of equations (22) were dlscretized as described above, and

fourth-order Runge-Kutta was used for the time integration. For a single

domain, the Chebyshev spectral grid for the Ringleb problem with 16 streamwlse

and 8 normal mesh intervals is shown in Figure 8. It is clear that the

spectral method strongly concentrates the grid points near the walls. The

largest gradients, however, occur in the streamwlse direction near the sonic

llne (as can be seen in Figs. 7 and 9) where the streamwlse mesh distribution

is coarsest. These two factors contribute to the fact that the time

integration step is very small and that accuracy is degraded by the lack of

resolution where it is needed.
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A multidomaln grid distributionfor which performance will be compared to

the single domain method is shown in Figure i0. Six domains now cover the

duct and the same number of mesh intervalsas for the single domain case are

used. The divisions were chosen to demonstrate the kinds of situationswhich

the multldomaln method should be able to handle. Three divisions with

6 + 5 + 5 mesh intervalsare in the streamwlsedirectionand two are in the

normal direction. With this choice, two points occur where the corners of

four domains come together. The first domain boundary in the streamwlse

directionwas chosen to appear in a subsonic region of the duct. The second

domain boundary in the streamwlsedirectionwas chosen to intersectthe sonic

line. By dividing the normal directioninto two domains, the effectivemesh

spacing near the walls is doubled. Finally, note that by comparingFigure I0

to Figure 7 the sonic line also intersectsthe domain interfacein the normal

direction.

To allow comparison,Figure II shows the Mach number contoursfor both the

single domain and the multidomainsolutions. Note particularlythat the sonic

llne remains smooth through the domain interfaces. Table IV summarizesthe

performanceof the single domain spectralmethod comparedwith this particular

choice of grid. First, note that even with this distributionof domains, the

maximum error in the pressure for the multidomaln computationhas not been

degraded from the single grid one. In fact, the error is five percentbetter.

The real advantage that the splittinghas had for this case, however, is

that the multldomalnsolutionrelaxesmore quickly to steady state for a given

number of intervals and accuracy. Figure 12 compares the rate at which the

discrete L2 norm of the residualof the pressure decays for the single and

multidomaln cases. The results are also summarized in Table IV. From the
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trend of the graph, it should take over 2 1/2 times as many iterations for the

single grid residual to decay to that of the single grid residual. This is a

direct result of the fact that larger time steps can be used for the multi-

,
domain case. The choice of 1 also affects the convergence rate: larger

values up to the stability limit give faster convergence to steady state.

The advantage of a k-domain derivative computation requiring i/k the

amount of work as a single domain computation does not show up in this

example. In fact, as Table IV indicates, the average time per iteration (time

step) requires the same amount of time at 0.5 sec. on the Langley Cyber 855.

This is due to the fact that there is overhead in computing the interface

approximation. Doubling the number of points in each direction with the same

domain distribution decreases the time per iteration for the multldomain

computation to 70% of the single domain cost. Though no attempt was made to

compute the interface conditions efficiently, the number of points inside each

domain will have to be large compared to the number of domains for the

efficiency gained by being able to use fewer points in computing derivatives

to become important.

The final advantage of a multidomain method which was listed in the

Introduction is that flexibility in the choice of grid point distribution is

now possible. A series of calculations were made with the duct being divided

into two domain intervals in each direction. As with Figure I0, the direction

across the duct was divided in half and the same number of mesh points was

used. In the streamwise direction, however, only one domain boundary was

inserted. This boundary was inserted in several places along the duct with

different numbers of points on either side.
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Results of some of the computations are summarized in Table V. The

division is reported in terms of the fraction of the total variation of the

velocity potential along the length of the duct. The first entry in the list

places the division approximately near the bend of the duct where the

gradients of the solution are the highest. It is clear that with a proper

choice of grid it is possible to obtain better accuracy with the multidomain

distrlbution of a given number of grid points than with a single grid. For

the best case computed here, the error is about 2 I/2 times better for the

multidomain calculation.

The problem of how to properly distribute points and subdomains in general

is a major one and is beyond the scope of this paper. If they are poorly

placed the error can be worse than the single domain error (see Table V). For

now, it is not known how to obtain the optimal point and subdomain

distrlbution. Rather, some knowledge of the behavior of the solution must be

used as a guide.

CONCLUSIONS

We have described a simple approximation which allows a multidomain

spectral solution of quasilinear hyperbolic equations. Numerical examples of

linear equation models and ideal gas flow show that the method gives

advantages in both accuracy and efficiency over using a single domain.

Dividing up a computational domain into several subdomains gives the

possibility of local refinement and allows some flexibility in the

distribution of mesh points. It is possible to obtain better accuracy by

doing so. Also, with multiple domains it is possible to take larger time
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steps than with a single domain. This increases the efficiency for using time

relaxation to achelve steady state solutions.

The use of a multidomain technique is also appropriate if discontinuities

are fitted as boundaries. When shocks occur within a flow, subdomains would

be arranged so that each shock lies on a subdomain boundary. In smooth parts

of the solution, the technique described here would be used. Along shock

interfaces, a shock fitting algorithm like that described in reference [i] can

be used (Kopriva and Hussainl, to be published).

The theoretical issues which remain are many. Some theory for the range

of values which _ can take for the method to be stable must be found.

However, choosing % to be the average of the largest and smallest

eigenvalues of the coefficient matrix has always worked. Finally, like the

problems associated with the p- version of the finite-element method, the

choice of domain and point distribution for a given number of points is an

open issue.
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YABLE I. L2 errors for the solutions to Eq. (20) with equal

number of points on each side of the interface.

N Error in u Error in v

8 1.57 x 10-2 1.49 x 10-2

16 4.15 x 10-6 4.86 x 10-6

32 1.91 x 10-9 1.91 x 10-9

TABLE II. L2 errors for the solutions to Eq. (20) with more

points to the right of the interface.

NL,N R Error in u Error in v

8, 16 1.22 x 10-2 1.05 × 10-2

12, 24 2.45 x 10-4 2.33 x 10-4

16, 32 3.93 × 10-6 3.93 x 10-6

TABLE Ill. L2 errors for the solutions to Eq. (20) with

more points to the left of the interface.

NL,N R Error in u Error in v

16, 8 9.80 × 10-3 1.04 × 10-2

24, 12 3.48 x 10-4 2.88 x 10-4

32, 16 1.49 × 10-6 2.30 × 10-6
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TABLE IV. Performance comparison for single and multidomain spectral

computations.

Grids: Single Domain (SD) 17 × 9 points

Multidomain (MD) (7 + 6 + 6) × (5 + 5) points

(separated by domain)

Maximum Error

SD 1.85 x 10-3

MD 1.74 × 10-3

Number of Steps to Reduce Residual Three Orders of Magnitude

SD > 1500

MD 780

Average Spectral Radius

SD 0.9964

MD 0.9942

Average Time per Iteration

SD 0.50 see.

MD 0.50 sec.

TABLE V. Effect of streamwlsemesh distribution

on Ringleb calculation.

Grid Division MaximumError

8 + 8 0.45 + 0.55 7,8 x 10-4

8 + 8 0.50 + 0.50 9.3 × 10-4
-3

16(SD) --- 1.9 x I0
-2

I0 + 6 0.34 + 0.66 1.2 x 10
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FIG. I. Diagram of the two-dlmensional subdomain structure used to divide a

computational domain.

145



60 I I

3O-- o -

0

0
0
0

0
0 0 ()

,--, 0 0
0

0

0

0
-30--

-60 I I r_
-90 -60 -30 0 30

RE

FIG. 2a. Effect on the eigenvalues of the two domain spatial approximation of

the first derivative by varying X in the boundary approximation:

X ; O.

146



8O I I
O

30-- o --

0

0
0

0
0

_-- 0 0 ()
0

0

0
0

0

-30 -- 0 --

0
-eo I I
-50 -60 -30 0 30

RE
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FIG. 3a. Solution of the scalar pulse problem Eq. (19) computed on two

domains shown after the pulse has travelled from the left through

the interface at x = 0. Computations are for 22 points left and ii

points right, of the interface. The exact solution is the solid

llne; computed solutions are the circles.
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FIG. 3b. Solution of the scalar pulse problem Eq. (19) computed on two

domains shown after the pulse has travelled from the left through

the interface at x = 0. Computations are for ii points left and 22

points right. The exact solution is the solid llne; computed

solutions are the circles.
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FIG. 5a. Graph of the two solutions u (circles) and v (squares) of the

linear system Eq. (20) with 22 points on the left and II points on

the right. The exact solutions are represented by the solid line.
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FIG. 5b. Graph of the two solutions u (circles) and v (squares) of the

linear system Eq. (20) with II and 22 points on the left and the

right. The exact solutions are represented by the solid line.
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FIG. 6. Plot of the computed pressure in a converging-diverglng nozzle where

the interface is placed at the sonic point at x = J2. Twice as

many points are used on the right as on the left of the interface.
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FIG. 7. Mach contours of the exact solution to the Ringleb problem which

models transonic flow in a two-dimensional duct.
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FIG. 9. Mach number variation along the lower wall, center streamline and

upper wall for the Ringleb problem.
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FIG. I0. Multldomain grid with six subdomalns for the Ringleb problem.
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FIG. fla. Mach number contours for single domain solution.
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FIG. lib. Mach number contours for six domain solution.
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ON SUBSTRUCTURINGALCORITHMSAND SOLUTIONTECHNIQUES

FOR THE NUMERICALAPPROXIMATIONOF PARTIALDIFFERENTIALEQUATIONS
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ABSTRACT

Substructurlng methods are in common use in structural mechanics problems

where typically the associated linear systems of algebraic equations are

positive definite. Here these methods are extended to problems which lead to

nonpositive definite, nonsymmetric matrices. The extension is based on an

algorithm which carries out the block Gauss elimination procedure without the

need for interchanges even when a pivot matrix is singular. Examples are

provided wherein the method is used in connection with finite element

solutions of the stationary Stokes equations and the Helmholtz equation, and

dual methods for second-order elliptic equations.
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I° THE SUBSTRUCTURING ALGORITHM IN THE POSITIVE DEFINITE CASE

The use of substructurlng techniques in the numerical solution of problems

governed by positive definite partial differential equations is in widespread

use. The most notable case is found in structural mechanics, especially in

connection with the equations of linear elasticity. For the sake of

simplicity, here we describe the technique for the Dirichlet problem for the

Polsson equation. Specifically, suppose we want to solve

-Au = f in

(I)
u = 0 on _fl

where fl is, say, an open bounded region in _ with boundary _fl. We

subdivide the region _ into open subregions _i' i = 1,... ,m, such that
m

- _i aifhaj rij
= U and = 0 for i # j. We denote by , 1 < i < j < m

i=I -- --

the interfaces between regions fli and aj, i.e., rij = _i('_j. Of course,

for particular choices of i and j in a given subdivision, I'ij may be

empty. A sketch of a particular example with m = 5 is given in Figure I.

Flg_re I. A subdivision of a region into five subregions.
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We also subdivide _ into a finite difference or finite element grid

which in practice is much finer than the above subdivisionof _ into m

subreglons. We choose the two subdivisionsso that the interfaces rlj

coincide with edges of the finite difference or finite element cells. The

dlscretlzatlonof (I) proceeds in the usual manner. The essence of the

substructurlngalgorithmis found in the particularchoice for the orderingof

the unknowns and equations, i.e., columns and rows, in the linear system

resulting from the discretlzatlonof (I). Specifically,all unknowns and

equations associated with the interior of a substructure _i are numbered

sequentially, one substructure at a time, and unknowns and equations

associatedwith the interfaces Fij are grouped together and numbered last.

For example, in a typical finite difference dlscretlzatlonof (I), one

associates equations and unknowns with nodes in the grid. In this case, we

would group together all the unknowns in subregion _i together and number

them first, then proceed to _2' etc., and finally to am. Then we would

number all the unknowns along the interfaces rlj' 1 _ i, j _ m. The

equations would be numbered in the same way. I Likewise, in a finite element

discretlzatlon of (i), some unknowns (trial functions) and equations (test

functlons)are associatedwith nodes or edges and these are

IThe subdivision and numbering method described here applies to difference
methods with stencils involving only nearest neighbors. The method may be
extended in an obvious manner, e.g., by defining the interfaces to be more
than one grid point in thickness,to methods having stencils with a greater
degree of connectivity.
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numbered in the same manner as in the finite difference case above. 2 In

addition there may be test and trial functions more naturally associated with

the finite elements themselves, and the equations and unknowns associated with

these functions are grouped together with the other ones associated with the

interior of the corresponding subregion _i"

The net result of the above numbering schemes is that the linear system

resulting from the dlscretization of (I) has the form

A B 1 U 1 F1

A !! !• . (2)

A °° /\Im Um Fm

CI C2 • • • C A0 U0 F0m

In (2), the matrices Ai, i = l,...,m, in the finite element case, result in

the case of both the test and trial functions being associated with the

interior of the subregion _i' i = l,-..,m, respectively, while the matrix

A0 results from test and trial functions associated with the interfaces rij ,

I _ i < j J m. The matrices Ci, and Bi, represent trial, respectively test,

2Again, the method described here applies to the case where the test and trial
functions vanish outside the elements which contain the associated node or

edge. However, by defining the interfaces to be one or more elements thick,

the method may be easily extended to other cases, e.g., cubic B-spline test
and trial functions•
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functions associated with the interior of _i and test, respectively trial,

functions associated with the interfaces. The vectors Ui, i = 1,...,m,

respectively denote the unknowns associated with the interior of _i'

i = 1,..-,m, while U0 denotes the unknowns associated with the interfaces.

All of these associations can also be made in the finite difference case.

It is well-known that the coefficient matrix of the linear system (2),

resulting from a discretization of (I), is symmetric and positive definite.

Indeed, Ai = A_, Bi = ciT for i = l,...,m and A0 = A_ . It is also easy to

see that the matrices Ai, i = l,-.-,m, are themselves positive definite. In

fact, these matrices are exactly the ones which would result from the

analogous discretization of the problems

&u = f in _i

(3)

u = 0 on _i

for i = 1,...,m, where _i denotes the boundary of _i" Note that this

boundary may consist of both interfaces and a portion of the boundary _ of

_, as is the case for _I' _2' f14' and _5 in Figure i, or may consist wholly

of interfaces as is the case for _3 in that figure. Discretization of (3)

results in a linear system with a coefficient matrix Ai, and thus Ai is

clearly symmetric and positive definite. We note that even in the case of the

Neumann problem, i.e., the boundary condition in (I) is replaced by @u/@n = 0

on _, the matrices Ai in (2) would still be, at least in the finite

element case, symmetric and positive definite. 3 This is so because the

problem (3) associated with the matrix Ai is now given by
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Au = f in _i

____u= 0 on _nlf-_n (4)8n

u = 0 on 8_i_Fij, j = l,...,m,

where we have set Fij = Fjl. Since _i_rij is never empty, the matrix

Ai associatedwith (4) is symmetricand positivedeflnlte.4

With the matrices Ai, i = l,...,m,being positive definite, one may

proceed to solve (2) by a block eliminationprocedure. Symbolically,we may

express the first m stages of this procedureby the relations

Ui = AII(Fi - Bi Uo), i = l,...,m, (5)

which uniquely express Ui in terms of data and the interfaceunknowns U0.

The last stage of the process requiresthe solutionof the linear system

DUO = G (6)

where

m mD = A0 - [ Ci Bi and G = F0 - _ Ci Fi. (7)i=l i=l

31f on _i('_ something other than Dirichlet data is specified, then the

matrix Ai also contains rows and columns associated with test and trial
functions associated with nodes or edges on that portion of the boundary.

40f course, the fact that Ai, i = 0,...,m, are positive definite may be
deduced directly from the fact the coefficient matrix of (2) is positive

definite, i.e., the former is a necessary condition for the latter.
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Of course, in (5) and (7) the inverses are not explicitly computed, but rather

appropriate linear systems are solved. The solvability of the system (6)

follows whenever the system (2) is solvable. In fact, if the system (2) is

positive definite, so is the matrix D [I]. Once (6) is solved for U0, (5)

yields Ui, i = l,...,m.

Although we have described the substructuring algorithm in the context of

the Polsson equation, the method can be applied in a similar manner to any

positive definite problem. As noted above, the method has encountered great

success in structural mechanics problems. However, in other fields where the

governing equations are not positive definite or symmetric one may still order

the equations and unknowns to produce linear systems such as (2), but these

may not always be solved by a standard block elimination procedure. In the

next two sections we describe a procedure to solve (2) even in the case of the

matrices Ai being singular and show how the method may be implemented

through an elimination procedure. In Section 4 we describe examples which

lead to singular matrices Ai. Finally, in Section 5 we give some concluding

remarks.

Incidentally, in almost all situations the use of a properly implemented

substructurlng algorithm will result in savings in computational costs when

compared to a banded elimination procedure. For example, consider a

discretlzation of Polsson's equation on a unit square. Suppose we have M

subreglons in each direction so that m = M2 and suppose that each subregion

is further subdivided'by introducing an n x n grid. Thus, there are a total

of Mm points in each direction. Banded elimination requires 0(M 4 n4)

operations, while the above substructuring algorithm can be implemented in, at

most, 0(Mn 4 + M4 n3) operations. We note that this particular problem is not
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particularly well-suited for substructuring methods. Also, the relative

advantage of substructuring is greater when one considers three-dimensional

problems or systems of partial differential equations.

We also note that substructuring ideas in connection with preconditioning

techniques have been discussed in [2].

2. THE SOLUTION ALGORITHM IN THE GENERAL CASE

We begin by describing a method for solving (2) in the case where the

matrices Ai are singular. The algorithm described here is a special case of

a more general algorithm which applies to arbitrary matrices with arbitrary

subdivisions into blocks, e.g., the matrix has no special structure and the

matrices Ai may not only be singular, but may even be rectangular. The more

general algorithm is described in [3]. We will describe the algorithm as

applied to (2) and we will make use of pseudo-inverses in order to simplify

the initial presentation. However, we emphasize that the algorithm may be

implemented without the need for the explicit calculation of any pseudo-

inverses; such an implementation is discussed in the next section. This is

similar to the observation that the algorithm contained in (5)-(7) may be

implemented without explicitly computing any inverses, e.g., by solving linear

systems.

The system (2) is equivalent to

Ai Ui + Bi U0 = Fi. i = l,...,m, (8)

m

[ Ci Ui + A0 U0 = F0. (9)
i=l
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Now, Ui may be orthogonally decomposed in the form

Ui = Yi + Zi' i = l,..-,m, (I0)

where

Ai Zi = 0, i = l,...,m, (II)

and Yi is orthogonal to all vectors satisfying (ii). In particular,

T Zi = 0, i = l,...,m. (12)Yi

Substitution of (i0)-(II) into (8) yields that

Ai Yi = Fi - Bi U0' i = l,...,m. (13)

Since Yi is orthogonal to the null space of Ai, (13) yields that

Yi = A_(FI - Bi UO)' i = l,...,m, (14)

+

where Ai denotes the pseudo-inverse of Ai. This relation states that Yi

is uniquely determined from the data and U0. Note that (8) yields no

information concerning Zi as is to be expected since Ai Zi = 0.

Substituting (10) and (14) into (9) yields that

m

DUO = G - _ Ci Zi (15)
i=l

where
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m m

- + - + Fi. (16)D = A0 X Ci Ai Bi and G = F0 X Ci Ai
i=l i=l

We may also decompose U0 in the form

U0 = YO + Z0 (17)

where

DZ0 = 0 (18)

and YO is orthogonal to all vectors satisfying (18). In particular,

T Z0 = O. (19)Y0

Substitution of (17)-(18) into (15) yields that

m

DY0 = G - y Ci Zi (20)
i=l

and, since Y0 is orthogonal to the null space of D, (20) yields that

m

Y0 = D+(G - _ Ci Zi). (21)
i=l

Again, it is not surprising that (15) yields no information concerning ZO.

Substitution of (17) and (21) into (14) then yields that

m

Yi = Ai[Fi- Bi D+(G - _ C. Z )] +
j=l 3 J -A i Bi Z0 (22)

for i = l,...,m.
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At this point we have shown that Yi' i = 0,...,m,may be uniquely

expressedin terms of Zi, i = 0,...,m,by (21) and (22). It remains to show

how to find the latter. The first step is to multiply (13) by <I - Ai AI).
+

Since Ai Ai Ai = Ai, we have that

CI-AiAI)(q -BiUo)--O, i--1,-..,m,

or substituting (17) and (21),

m

[I - Ai AI)[F i - Bi Z0 - Bi D+IG - _ Cj Zj)] = 0, i = l,-..,m. (23)
j=l

Now suppose we are able to determine bases for the null spaces of Ai,

i = l,...,m, and D. We collect each of these basis sets into matrices Ni,

i = O,...,m, i.e., Ni, i = 0,...,m, have linearly independent columns,

DN0 = 0 and Ai Ni = 0, i = l,...,m, (24)

and the columns of NO, respectively Ni, span the null space of D,

respectively Ai, i = l,.-.,m. The number of columns in Ni is, of course,

the dimension of the corresponding null spaces. Now, we may write that

Zi = Ni Ai, i = 0,...,m, (25)

for some vectors Ai. Substituting (25) into (23) then yields that

m

_ Rij A. = Hi, i = 1,..-,m, (26)j=l 3
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where

+

RiO = (I - Ai Ai)B i NO, Hi = (I - Ai A_)[F i - Bi D+ G]

and (27)

+ D+
Rij = (I - Ai Ai)B i Cj Nj, j = l,-..,m.

Now letting

R20 R21 • • • R2m H

R .... H = • and A = , (28)

J
kRm0 Rml Rmm_ kHm

(26) may be expressed in the form

RA = H. (29)

In general, R is a rectangular matrix. The number of rows in R is equal to

the sum of the number of rows of the matrices Ai, i = 1,---,m, and the number

of columns of R is equal to the sum of the dimensions of the null spaces

of Ai, i = l,...,m; and D. It can be shown [3] that the system (29) is a

consistent system, and we may find its solution, for example, by forming

(RTR)A = RTH. (30)

Suppose we can solve (30) for A. Then (28) yields Ai, i = 0,...,m, (25)

then yields Zi, i = 0,...,m, (21) and (22) yields Yi, i = 0,...,m, and

finally (I0) and (17) yield the solution Ui, i = O,...,m, of (2).
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The algorithm described here is related in the following manner to the

block elimination algorithm in Section i. Suppose that the matrix of (2) and

all the Ai_s and D are nonsingular. Then, the algorithm of this section

reduces to the standard block Gauss elimination procedure. Indeed, in this

+ A_ I D+ D-Ioase, Ai = , = and Zi = 0 so that Ui = Yi and the latter are

determined uniquely by (14) and (21). Note the correspondence, in this case,

between (14)-(15) and (5)-(6).

In the more general case, i.e., some or all of the Ai_s and D being

singular, it can be shown [3] that the rank deficiency of (30) is exactly that

of the original coefficient matrix in (2). Therefore, if the latter is

nonsingular, then so is RTR and then A in (30) is uniquely determined.

Since the ZiPs and Yi_s are uniquely determined from A, the algorithm

produces the unique solution of (2). If the matrix of (2) is singular, so

is RTR and (30) does not have a unique solution. However, (30) may be

solved anyway, either in terms of arbitrary parameters or by adding

constraints. The number of parameters or constraints is equal to the

dimension of the null space of RTR which in turn is the same as the

dimension of the null space of the coefficient matrix in (2). In any case,

once a particular A is determined, then ZI and Yi are also determined.

In particular applications to the solution of partial differential

equations, the dimension of the system (30) is small compared to that of the

system (2). Indeed, typically dim(RTR) = 0(m), the number of subreglons.

For example, the dimension of the null spaces of the matrices Ai and D may

be one or zero, in which case dlm(RTR) < m + I.
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3. AN ELIMINATIONIMPLEMENTATION

We begin by restating the algorithm of the previous section. Given the

matrices A0,..-,% , BI,-..,Bm,CI,...,Cm and the vectors F0,...,Fm,we find

vectors U0,...,Um satisfying(2) by the followingprocedure.

I. Compute A_ Fi and A_ Bi for i = l,...,m.

2. Compute Ni, i = l,-..,m,whose columnsconstitutea basis for the null

space of Ai, i = l,...,m,respectively.

3. Compute Ci_A_ Bi) , Ci(A_ Fi) and Ci Ni for i = l,...,m.

m m

4. Compute D = A0 - [ Ci(A_ Bi) and G = F0 - [ Ci[A_ Fi).
i=l i=l

5. Compute D+ G.

6. Compute NO whose columnsconstitutea basis for the null space of D.

7. Compute D+ Ci Ni for i = l,...,m.

8. Computethe matrices

RiO = Bi NO - Ai (A_ BI)N 0 for i = l,---,m_

Rij = Bi(D+ Cj Nj) - Ai(A i Bi)(D + Cj Nj) for i,j = l,...,m

and the vectors

Hi = Fi - Bi(D+ G) - AiCA _ F) + AiIA _ Bi)(D + G) for i = l,...,m.

9. Assemble the results of step 6 into the matrix R and vector H

according to (28) and then compute RTR and RTH.

i0. Solve the linear system RTRA = RTH for A and then compute Ai,

i = O,-..,m, according to the partition of (28).

ii. Compute Zi = Ni Ai for i = O,---,m.
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m m

12. Compute Y0 = (D+ G) - [ Ci Ni Ai = (D+ G) - [ Ci Zi.
i=l i=l

13. Compute U0 = Y0 + Z0"

14. Compute Yi = (A_ Fi)- (A_ Bi)U0 for i = l,...,m.

15. Compute Ui = Yi + Zi for i = l,...,m.

Other than steps I, 2, 5, 6, and I0, the above algorithmrequrlesonly matrix

and matrlx-vectormultiplications. In this sectionwe show how to carry out

the other operations required by the algorithm through an elimination

procedure. In particular, we will not need to explicitly calculate any

pseudo-lnversesof matrices.

We first describe how to carry out steps I and 2. Consider the linear

system.

Ai Q = S= (Bi,Fi,0) (31)

where the rlght-handside matrix S consists of the matrix Bi, the vector

Fi, and some additional columns of zeroes. The number of these additional

columns should be greater or equal to the dimension of the null space of

Ai. This dimension will actually be determined during the elimination

procedure.5 We now proceed to solve (31) by Gauss eliminationwith partial

pivoting. If the matrix Ai is singular,then one or more times during the

eliminationprocedurewe will not be able to locate a nonzero pivot element.

In fact, the number of times this occurs is exactly the dimensionof the null

space of Ai. However, at such an occurrence, the correspondingcolumn is

5See Section 5 concerning the effects that roundoff errors may have on the
determination of this dimension.
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already in the eliminated form so that we may skip over to the next column and

continue the elimination process. At the end of the process, (31) has been

reduced to the form

A'I Q = J = (Bi'_i '0) (32)

where _i is upper triangular and in row echelon form. When Ai is

singular, _i will have zeros at the pivot location for exactly those columns

for which no nonvanishing pivot element was found.

We now proceed to backsolve (32). No difficulty is encountered until a

row is reached for which the pivot entry of _i is zero.
For the columns

of Q corresponding to Bi and Fi, we may arbitrarily set (to something

other than zero) the entry in the row corresponding to the zero pivot of _i"

Then the backsolve procedure may continue until we reach another zero pivot

entry, at which time we again arbitrarily specify an entry in the columns of

Q corresponding to the columns Bi and Fi of S. While all this is going

on we are also solving (32) for the columns corresponding to the zero columns

of S. For these columns, whenever a zero pivot entry is encountered in _i'

one of the elements in the corresponding row is set to one while the rest are

set to zero. Each time a zero pivot entry is encountered, a different column

is chosen for which one sets the arbitrary element to one. At the end of this

backsolve procedure, (32) yields that

^ ^

Q = (L,K,Ni).

^

Here the columns of Ni form a basis for the null space of Ai and L and
A

K are particular solutions of the systems.
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AI L = Bi and Ai K = Fi. (33)

A ^

The final step is to orthogonallze the columns of L and K with respect

to the columns of Ni to yield

=

Since AiN i = 0, _ and K are still solutions of (33). Moreover, the

columns of _ and K are orthogonal to the null space of Ai and,

therefore, are minimum norm solutions. By the uniqueness of the minimum norm

solution, we have that

+ +

= Ai Bi and K = Ai Fi.

_hus the above elimination procedure has accomplished the tasks of steps 1 and

2 of the algorithm.

The tasks of steps 5, 6, and 7 can be accomplished in an analogous

manner. Also, if the matrix RTR is nonslngular, then it may be easily

solved by an ordinary Gauss elimination procedure. If it is singular then a

solution in terms of arbitrary parameters may be determined in a manner

similar to the above procedure for the system (31). We note that any sparsity

or structure inherent in the matrices Ai may be exploited in the above

procedure. However, in general, the matrix D will be dense. We will return

to this point in the concluding section.
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4. EXAMPLES

The Stationary Stokes Equation

Consider the stationary Stokes equations for the slow flow of a viscous

fluid in a bounded region in _. These are given by

Au - grad p = f in

div u = 0 in _ (34)

u -- 0 on _fl.

Here u denotes the velocity, p the pressure, f the given body force and

the viscosity coefficient has been absorbed into p and f. Clearly, the

pressure cannot be determined uniquely since we may add an arbitrary constant

to the pressure and still satisfy (34).

A finite element approximation of the solution (_,p) of (34) may be

defined as follows. Given finite-dimensional spaces Vh and Sh for the

discrete velocity and pressure fields, we seek uhEv h and phEsh such that

h h h _vh)d_ -f _.v# d_ for all vhEvhf(grad _ : grad _ - p div =

(35)

f qh div u_h d_ = 0 for all qhEsh.

Here we assume that the elements of Vh satisfy the boundary condition in

(34). By choosing bases for the spaces Vh and Sh, (35) can be expressed as

a linear algebraic system for the coefficients in the basis function

h
expansions of u and ph.
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Now it is well-known that arbitrary choices of spaces Vh and Sh may

not yield stable or accurate solutions. However, there are now known many

element pairs for which (35) yields optimally accurate solutions [4], [5],

[6]. One such pair is described as follows. Suppose Sh denotes a

triangulation of the region _. We denote by Vh a finer triangulation

derived from Sh by subdividing each triangle in Sh into four congruent

triangles by joining the mldsides. See Figure 2. We define Sh to consist

of piecewise constant functions over the triangulation Sh

Figure 2. A trianglein Sh and the correspondingtrianglesin Vh.

and Vh to consist of piecewlse linear functions over the triangulation Vh

which are continuous over _ and vanish on 8_. This combination is known to

be stable and be optimally accurate [6].6 The basis functions for Vh are

easily associated with the vertices of the triangulation Vh while the basis

functions for Sh are associated with the triangles in the triangulation Sh"

6See below for the necessary restriction on the pressure which yields this
result.
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Now let us consider a substructurlng technique for the solution of (35).

We assume that the interfaces rij between subregions are made up of edges of

the triangulation Sh so that these interfaces do not cut across pressure

triangles. One may easily arrange a numbering scheme for the unknowns and

equations which yields a linear system of the form (2). For example, Ui

consists of all velocity unknowns associated with vertices of Vh located in

the interior of the subregion _i and all pressure unknowns associated with

the triangles of Sh which are also in _i" Note that U0 contains only

velocity unknowns, namely those associated with vertices Vh which lie on the

interfaces F but not on _.
ij

We have not constrained the pressure space and therefore the system (2)

corresponding to this discretizatlon of (34) is singular. In fact, its rank

defflclency is one, and the null vector corresponds to the pressure function

which is constant over _. On the other hand, the velocity approximation is

uniquely determined by (2) [6]. Furthermore, it is easy to see that the

submatrices AI,--.,A m are singular. In fact, these matrices are exactly

those which arise from the analogous discretlzatlon of the problem.

Am- grad p = _ in _i

div _ = f in _i

u = 0 on _i"

Thus each of the matrices Ai has a single local pressure null vector, i.e.,

the dimension of Ni is one and Ni corresponds to the pressure function

which is constant over _i" On the other hand, since the velocity field can
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be uniquely determined from (2) and since U0 consists of only velocity

unknowns, the matrix D in the linear system (15) is nonsingular, i.e.,

NO = 0. Thus, in this case, the system (30) has dimension m and has a one-

dimensional null space, the latter following from the fact that the system (2)

itself has a one-dlmensional null space.

If we choose the pressure space Sh to consist of plecewise linear

functions over the triangulation Sh which are continuous over _, while

retaining the same velocity space, the situation changes drastically. For

example, now the basis functions for Sh are more easily associated with the

vertices of Sh. Now Ui contains pressure unknowns corresponding to

vertices in Sh which are in the interior of _i or lle on _i_'_. More

important, U0 now contains pressure unknowns associated with vertices of Sh

which lie on rij but not on _. In this case the matrices Ai are

nonslngular and the matrix D is singular with a one-dimensional null space.

The HelmholtzEquation

Now considerthe problem

Au + %u = f in

(36)

u = 0 on _

where % is not near an eigenvalue of the operator -A. Standard finite

element or finite difference discretizations of (36) yield linear algebraic

systems with coefficient matrices which are symmetric and indefinite, but

which certainly may, by using a partial pivoting strategy, be stably

inverted. Now consider the following specific situation. Let _ be the
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square (0,z) x (0,_) and let % = 13/4. Since the eigenvalues of -A for

this region are given by (nZ + m2), m,n = 1,2,..., we see that % = 13/4 is

not an elgenvalue and therefore the problem (36) leads to nonslngular

coefficient matrices. Now, suppose we consider solving (36) by using the

substructurlng algorithm with the two subreglons _i = (0,2_/3) x (0,_) and

_2 = (2_/3,_) _ (0,_). Then the matrices Ai in (2) correspond to the

coefficient matrix for the analogous discretlzatlon of the problem

Au + %u = f in _i
(37)

u = 0 on _i"

But the eigenvalues of -A for the region _l are given by (n2 + 9m2/4),

m,n = 1,2,3,..., so that % = (13/4) is an elgenvalue of -A for the region

fll and therefore the matrix AI is singular even though the system (2) is

not.

Admittedly, this example is somewhat pathological in the sense that for

random choices of regions, subreglons, and parameters %, the probability is

zero that the matrices Ai in (2) will be singular. However, for particular

choices of %, fl and ill' one or more of the matrices Ai may be singular;

after _Ii, the above example is not really all that far-fetched. Of course,

if any of the Ai's are singluar, the situation may be remedied by choosing a

different subdivision of the region fl; this in turn implies a complete

reassembly of the coefficient matrix in (2). On the other hand, the algorithm

of Sections 2 and 3 may be used whether or not any of the matrices Ai are

slngluar.
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There is a small but nonvanishing probability that for some of the

problems (37) %, although not an eigenvalue of -A for the region _i' is

close to such an elgenvalue. If % is close enough to such an elgenvalue,

the matrix Ai, in finite precision arithmetic, may be mistakenly determined

to be singular by the algorlthm of Section 3. However, this will be the case

only when the difference between I and an elgenvalue is much smaller than

the discretlzatlon error, i.e., of the order of the unit roundoff error of the

machine, and no serious effect on the accuracy of the solution should result.

Dual Methods for Second-Order Elliptic Equations

For a third example, we consider dual methods for second-order elliptic

partial differential equations. An example of these are methods based on the

complementary energy principle in linear elasticity. For simplicity, we here

consider the problem

u = V_ in

div u = f in

(38)

u.n = 0 on rI
and

= g on r2

where again rlf-_r2 = @_ denotes the boundary of the bounded region _C_

and n denotes the unit outer normal to B_. A finite element approximation

of (38) may be obtained by choosing finite-dimensional spaces Vh and Sh
f

and then seeking uhcv h and _h€sh such that
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f(uh.v h + ch div vh)dfi = f gvh-ndfi yvhEv h

P2

@h div uh dfi = _ f@h _h€sh"

We assume that the elements of Vh satisfy the boundary condition on rI in

(38). The boundary condition on _ is natural in this formulation, which is

one of its advantages.

In [7], the following choice of Vh and Sh was shown to yield stable

and optimally accurate approximations, at least for polygonal domains. First,

we subdivide _ into quadrilaterals, and then subdivide each quadrilateral

into four triangles by drawing the diagonals. For Vh we take all continuous

plecewlse linear vector fields with respect to the resulting triangulation and

then define Sh = div Vh. The resulting space Sh can be shown to be a

subspace of all plecewlse constants over the triangulation. See [7] for

details.

In the implementation of the substructurlng algorithm, we assume that the

interfaces Plj coincide with some of the edges of the quadrilaterals which

initially defined our finite element triangulation of _, i.e., the interfaces

do not cut through any of these quadrilaterals. The test and trial functions

from Vh are associated with nodes while those from Sh are associated with

the interior of the quadrilaterals. The matrices Ai in (2) now correspond

to the dlscretlzatlon of the problem

= V_ and div _ = f in _i

(39)

u-n = 0 on rl_fil, # = g on P2_-_ i
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and

u = 0 on rij(-_@_i.

Because of the last boundary condition, the problem (39) is over constrained

insofar as the variable _ us concerned. Nevertheless, if r2f-_@fli = 0,

i.e., a given subregion does not have part of its boundary coincide with that

part of _fl on which data for _ are given, then the problem (39) can only

determine _ to an additive constant. This, for example, would be the case

for subregion _3 in Figure I, i.e., an interior subregion. For such

situations, i.e., £2_fl i = 0, the matrix Ai in (2) will again be singular,

with a one-dimenslonal null space. Since (38) always uniquely determines _,

the matrix D of (16) will be nonslngular. The rank deficiency of the system

(30) will be one or zero, depending on whether or not F2 has vanishing

measure, i.e., whether or not the problem (38) uniquely determines 4.

5. CONCLUDING REMARKS

Determination fo Zero Pivot Elements

A crucial step in the elimination algorithm presented in Section 3 is the

determination of when all the elements in a column to be eliminated are

already zero. This is necessary for the determination of the null spaces of

the matrices Ai and D. In practice one would declare an element to vanish

whenever its magnitude is less than some prescribed tolerance which should be

proportional to the unit roundoff error of the machine. This naturally leaves

open the possiblity of a very small but nonzero element being mistaken for a

vanishing element. This situation can be avoided, at least when one is
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solving partial differential equations, by first using high enough precision

arithmetic, e.g., 60 or 64 bit floating point arithmetic, and by making sure

that the algorithms used are stable. The former is easily arranged, while the

latter points out the importance of rigorous mathematics. Indeed, if an

algorithm is stable, as are the ones discussed in Section 4, and the machine

precision is high enough, one should not encounter nonzero elements which are

comparable in magnitude to the unit roundoff error unless the matrix in hand

is singular or very nearly singular.

An alternative to the use of elimination type procedures is, of course, to

employ methods based on orthogonal transformations. At the price of greater

computational expense, such methods are less susceptible to ill effects due to

roundoff error.

Parallelism

One of the attractions of substructurlng algorithms is the obvious

inherent parallelism both in the assembly and solution stages. The sets of

matrices and vectors (AI,BI,Ci,Fi) , i = l,...,m, can each be assembled

independently. Furthermore, at least in the finite element case, we may write

the matrix A0 and the vector F0 in the form

m m

A0 = I A01, F0 = I FOI (40)
t=1 t=1

where the matrix A01 and the vector F01 represent the contribution to the

matrix A0 and vector F0 coming from region _i" Each of the sets (Aoi ,

Foi) , i = l,.--,m, may be assembled in parallel. Thus, in the assembly stage,

the sets (Ai,Bi,Ci,Fi,A01,F01) , i = l,...,m, may be assembled in parallel.
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For example, each of the above sets may be assembled on separate processors,

with no need for interprocessor communications. At the end of the assembly

process, the concatenations of (40) must be performed. This step is not

parallellzable, but represents a minor portion of the assembly process.

There is also a large degree of parallelism in the solution algorithm

described at the beginning of Section 3. Steps i, 2, and 3 are completely

parallellzable, again with no interprocessor communications necessary.

Furthermore, if the appropriate information can be transferred to the

processors, steps 7, 8, ii, 14, and 15 and a portion of step 12 can also be

computed in parallel. The only relatively major steps which are not

parallellzable are steps 5 and 6.

The issue of parallelism in connection with substructurlng algorithms has

been studied in [8] in the context of a specific three-dimenslonal positive

definite problem. That paper contains a discussion of operation counts which,

for the most part, is also relevant in the present context.

Three-Dimenslonal Problems

As pointed out above, the major nonparallel steps in the computation are

embodied in steps 5 and 6 in the algorithm of Section 3. Even on a serial

machine these steps may be costly since, in general, they involve dense

matrices. In two-dlmenslonal problems, by keeping the number of subregions

relatively small compared to the total number of elements in the

triangulation, the size of these dense calculations can be kept small, i.e.,

the size of D can be of the order of the square root of the size of the

Ai's. The latter usually are sparse, e.g., banded. A similar arrangement in

three-dlmenslonal problems would, in general, lead to a matrix D whose size
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is of the order of the two-thlrdspower of the size of the Ai's, which may be

unacceptably large. Furthermore, in steps 1 and 2 of the algorithm, the

number of rlght-hand sides would be approximatelyequal to the number of

columns of D and the size of the Ai's may be too large, when relatively

few subreglonsare used. Therefore, for three-dlmenslonalproblems one must

be especially careful to implement the algorithm in an efficient manner as

possible.

These potentialdifficultiescan be mitigated in a variety of ways. For

example, many of the rlght-hand sides in the computationsof step 1 of the

algorithm are zero because any column of Bi which corresponds to an

interface unknown which is not associated with _i would vanish. The

correspondingrow of Ci is also zero. Thus, one can avoid computations

involving linear systems with zero rlght-hand sides and multiplicationsby

zero vectors. The savings possible, in storage and computing time, by

accounting for these features are relatively higher for three-dlmensional

problems.

Although, in general, the number of interfacevariablesmay be large for

three-dimensionalproblems, in practice it is often the case that specific

features of the domain _ lead to a small number of such unknowns. For

instance,in a wlng-fuselageconfiguration,it is natural to considerthe wing

and fuselage to be different subregions and the interfacebetween these two

substructuresis relativelysmall in extent. Indeed, it was exactly in this

type of applicationthat the terminology"substructuring"arose.

Finally we consider the most serious problem, namely that of the size of

the matrix D. However, even here a judiciousimplementationcan effect great

savings. As a simple illustrationconsider the subregionstructureof Figure

3 where we have now labeledthe interfaceboundariesby Fi, i = l,-..,m- i.
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Figure 3. An example subdivision of the region R.

It is natural to order the interface unknowns U0 one interface at a time,

e.g., first those on rl, then those on r2, etc. It is not hard to see that

the matrix D for this example is block tridiagonal, i.e., the unknowns

corresponding to the interface ri are connected only to the unknowns on the

interfaces ri_l, ri, and ri+I. By taking advantage of features such as

this, the cost of step 5 and 6 of the algorithm can be greatly reduced,

especially in three-dlmensional settings. We note that these ideas are

similar to those connected with one-way direction algorithms for positive

definite problems [9].
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Abstract

The Dean problem of steady viscous flow through a coiled circular pipe is
studied numerically for a large range of Dean number and for several coiling ratios.
We find that the solution family, as parameterized by Dean number, has numerous
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I. Introduction

Following the early work of Dean (1927, 1928) there have been several numerical

studies of the steady, laminar, viscous flow of an incompressible fluid through a

slightly curved pipe of circular cross section. In particular, Dennis (1980) with

Collins (1975) and with Ng (1982) have computed such flows when the coiling ratio

a/L is small. Here a is the pipe radius and L is the radius of curvature of the

axis of the pipe. Also Van Dyke has applied the Stokes series and Dombes-Sykes

technique (1978) to this problem. In all of this work the crucial parameter is the

Dean number, /9 , defined as

= G<P( )i21,v C1.1)D

where G is the constant pressure gradient driving the flow, _ is the viscosity and

is the coefficient of kinematic viscosity. For small D and a/L << 1 all of the

results agree.

In particular for a straight pipe, a/.L = O, the flow is the classical Poiseuille

flow. However a slight curvature of the pipe axis biduces a centrifugal force on the

fluid which then forms a secondary flow, sending fluid outward along the symmetry

axis and returning along the upper and lower curved surfaces. Thus a pair of

symmetric vortices is superposed on the Poiseuille flow. These qualitative features

are observed in all of the previously cited references for D small and a/L << 1.

What happens as D and a/L increase? Few of the previous studies consider

a/L = O(1). Further, Van Dyke's expansions disagree with the finite difference

calculations for larger values of D. And in Dennis _z Ng (1982) dual solutions are

found for the range 957.5 < D < 5000 ; that is a four vortex solution is computed

in addition to the standard two vortex flow described above.

In this paper we attempt to clarify the situation by determining the structure

of the families of solutions that exist as D varies. In addition we show how this
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structure changes as a/L increases (to 0.3). For this purpose we must retain the full

Navier-Stokes equations and do not make the a/L << 1 simplifications. However

no dramatic effects are found as a/L increases. Regarding the structure with

respect to D we are not completely successful. Our results suggest, in analogy with

the yon K£rm£n swirling flows (Lentini & Keller 1980), that there may be infinitely

many steady flows for some value (or interval) of D. However, we have found only

five branches of such flows and believe that more numerical accuracy is required to

completely settle the question. Indeed our first, cruder calculations revealed only

three branches of solutions. Unfortunately the variation in flow patterns from one

branch to the next are not as regular as those in the yon K£rm£n swirling flows,

so that we cannot have the same confidence in our current conjecture. Also, we do

not see analytical regularities in the five flows we have detected.

After our study was completed we learned of related calculations in curved

tubes by Winters and Brindley (1984) and by Winters (1984). However that work

is mainly concerned with tubes of rectangular cross section, with a brief mention of

the circular case in Winters and Brindley (1984). B.ifurcations are obtained for the

rectangular case but they do not examine the results we study here.

In section 2 we formulate the problem retaining the exact equations (valid to all

orders in E= a/L ). Expansions in Fourier series are introduced in section 3 to get a

system of nonlinear two-point boundary value problems for the Fourier coefficients.

Numerical methods are introduced insection 4. These employ centered differences

and Newton's method with continuation or path following techniques introduced

by H.B. Keller (1977). The results are presented and discussed in section 5.

2. General Formulation

We employ the notation used in Collins & Dennis (1975) and Dennis & Ng

(1982) as indicated in Figure 1. The circular cross section of the tube in the (x, y)-

plane has radius a with center at L on the x-axis. The tube is coiled about a
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circle of radius L in the (x, z)-plane. With no pitch in the coil the tube thus forms

a torus. Our equations are exact for this case. Dimensionless velocity components

of the fluid are (u,v,w) at a point P with dimensionless polar coordinates (r,a).

Here u is the radial and v is the angular component of velocity in the pipe cross

section, w is the axial velocity normal to the cross section and r = r'/a where r' is

the dimensional radius.

We seek flows independent of 8 , the angular deviation from the (x,y)-plane.

A stream function ¢(r, a) is introduced in terms of which the transverse velocity

components are given by:

1 a¢

.(r,.) = r(1 +_ r cos s) O_ '
-1 a¢

,,(,-,s)= (i +_r cos,_)0-7 (2.J.)

Here _ _ a/L is the "coiling ratio" ,_nd the continuity equation is thus satisfied.

Using these velocity components in the Navier-Stokes equations we introduce the

modified Laplacian

( ....,,,nove_=l+_r coss a r a +-- (2.2)r l+cr cos s l+cr cos s

and the vorticity

n= -_€, (2.3)

togetforthe w-momentum equation

1 8€ Ow a¢ aw

_=w+r(1+ cr cos s) (_ as as Or )=-D' (2.4)

and on elimination of the pressure from the other momentum equations:
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1 _a¢ an a¢ an#2n+ ).r(1+ __cos.) "_ a. a.
a¢ cos,-,a¢

2_fl (sina + )+ C_+_, cos_)_ _ _
aw cosa aw

_ w (sins + _). (2.5)- (1+ €r cos_)_ aTr r

The equations used in Dennis (1980) are obtained by setting € = 0 in (2.1)-(2.5)

(i.e. they use the small coiling ratio approximation but we do not).

Boundary conditions on the wall of the tube, r = 1 , yield:

w(1, a)=¢(1, a)=--8¢ (1, o_)=0, O<o:<m'. (2.6)

We study here only flows symmetric about the x-axis for which:

,,,(r,oO=,.,,(r,--,_),€(,',,-,)= --¢(r,--,_),n(r,o_)= -_(,-,--_). (2.7)

Thus on the symmetry axis we have:

aw (r,o)= a=a_ a-&(''_)=o,
¢(r,O)= ¢(r,_-)= O,

n(r,o)= n(r,_)= o. (2.8)

3. Fourier Series Expansions

To solve the boundary value problem posed in (2.2)-(2.8) we seek Fourier ex-

pansions of the stream function, axial velocity and vorticity in the forms:
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Oo

k_l.

k=O

_1 aCr,_)=_ 9,:(,')sink,_. (3.11
k=l

With these forms the symmetry conditions (2.7) and the implied boundary condi-

tions (2.8) are satisfied.

Using the expansions (3.1) in the differential equations (2.3)- (2.5) and applying

the orthogonality properties and other identities for the trigonometric functions

yields an infinite system of coupled nonlinear, second order ordinary differential

equations for the coefficient functions {fk(r), wk(r), gk(r)} • Specifically we get

from (2.3), with the notation fo(r) - go(r) - 0:

Er k _

_r[d: (k+1)Ok+2)]j_._(_)+-f _ r2

=-7 _- 9k+1(_),k > 1. (3.2)

From (2.4) we get, with w-l(r) - 0:

[ ] ldk ]_ d_ (k- 1)(k-2) ___(r) + + _(_)2 _ _2 _ _a_ 7_

+ -f dr: _ _k+_(r)
=R_Cr)- 4,_ _z)- _k,oD, k >0. (3.3)
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From (2.5) we get, with g-l(r) -=O:

).(_)_ 62 _r 1 d (k-1)(2k-3)r _ "_ r dr r _

+7[2_ _d (k+_)(2k+3) (_)_d_Er [d--_ - (k + 2)(k . 3)
Er E

= _Z2s__l(_)+s_(_)+ 7 S_+l(r)+ P,(_)+5 Q_(r), k_>1. (3.4)

We have used the Kronecker symbol _i,y and introduced the quantities Rk, Sk,

Pk and Qk as:

r_O

b) S_(_)- _.__=1

n=0 r

d) Q_(_)_-- [#(r)- _-_f.(_) (_)- sign(_+1- k)g_..l__t(_)]

(3.5)
At the origin, r = 0, of the .polar coordinates (r,_) continuity requires that

¢(0, a) , w(0,_) and a(0,_) be independent of _. From (3.1) we thus get that:

f.(o) = _.(o)= g.(o)= o, k= 1,_,.... (3.6)
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Note that a condition on wo(0) is not obtained but wo(0) = w(0, c_) . The

conditions (2.6) at r = 1 applied to (3.1a,b) yield:

a) f_(1)=0, k=1,2,...

b) f_(1)=0, k=1,2,...

c) w_(1)=0, k =0,1,2,... (z.7)

The formal consistency of "order" of the system and number of boundary

conditions seems to be off by one since all of the equations are second order and we

do not have two boundary conditions on wo(r) . This is easily remedied by noting

that the equation in (3.3) for k = 0 can be reduced to a first order equation. To

do this we multiply by r and integrate over [0, r] . In evaluating at r = 0 we use

(3.6) and the assumptions that:

'(r)] = lira [r_w_(r)] =0.lira [r w or'--*0 r"* 0

The result is the first order equation:

d Er d 2 1 _ r

-dr_oCr)+7 [=-_r_lCr)- -__lCr)]= _ _ n_.(_)_.(r)- _ D. C3.s)
rt-----1

The analytical problem is thus reduced to solving (3.2) for k > 1, (3.3) for k > 1,

(3.4) for k > 1 and (3.8) subject to the boundary conditions (3.6) and (3.7).

4. Numerical Procedures

To solve or rather to approximate the solution of the problem formulated in

Section 3 we first truncate the Fourier expansions, we then use difference approxima-

tions on the resulting system of O.D.E.s and finally we solve the nonlinear difference

equations by means of Newton's method and continuation procedures. We describe

these techniques below.
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A. Truncation of the Fourier Expansions

Under the assumption that the series in (3.1) converge sufficiently rapidly we

replace them by the finite trigonometric expansions obtained by setting

fk(r)---wk(r)---g_(_)- 0, k> K. (4.1a)

When we use (4.1) in the equations (3.2)-(3.8) we obtain a system of 3K second

order and one first order ordinary differential equations for the 3K + 1 quantities:

]k(_), _k(_), 1< k <__/_; w_(_), 0< k< _;. (4.1b)

there are 6/{ + 1 boundary conditions in (3.6) and (3.7) when we terminate those

relations at k - K . We seek to solve this two-point boundary value problem

numerically.

B. Difference Approximations.

We place a uniform grid of points rj = jh, 0._ j _ M+I with rM+l = 1 on

the interval 0 < r < 1 . At each point of this grid we introduce approximations to

the coefficients in (4.1b) with the notation

We employ the difference operators, for any mesh function, say u5 :

D+u5 _ u_'+lh- us" , D_uj- u5 -hUJ-1 ' D°u5 - uF+12h-u'i-1

Then the discrete or difference approximations to (3.2), (3.3) and (3.4) are taken

to be:
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(k-l> k-2>l+ .-1- _ . wk-l,y wk,y
2 ry ry ; (4.3)

+'_;[_+v_(k+_/(k+21- _. ] wk+l,j = Rk,y - _k,lcryD2k
3

(_)[ 1 [ (k-l>(2k-3)](k- 2)(k-3) _,. Z Do- 9k-_;s
D+D_- _ gk-_,y + T 2D+D_ + ryr.i ry

__ € ry [D+D_ k:1 Do- + -_ gk,y+ [_+_-. _ _ -3- 4

+-_ 2D+D_ + r_ _ry gk'+l,j + D+D_ - -_j gk+_,i

_r_- Sk+l,y + Pa,y + E= _._A,_.s___,;+ sk._,: + _- _ Qk,;; (4.4)

:Each of these difference equations is imposed for

j = 1,2,...,M ,

k = 1,2,...,K .

The quantities Rk,y , S_,y , Pk,y , and Qk,y are the obvious finite difference

approximations to the quantities in (3.5) centered at ry . Since only first

derivatives occur in these expressions we employ Dowr,,y to approximate
!

w,_(ry) , etc. The remaining first order equation (3.8) is centered at the points

r;__ = 0"- _)h _ fonows:
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for

o

j'- I,2,...,M + I .

Theboundarrconditions(3.6)and (3.7a,c)gooverintothe corresponding
conditions:

a) f_,o=wk,0=gk,0=0, k=l,2,...,K;

b) fk,M+l=wk,M+l=0, k=l,2,...,K; wo,_+_=0. (4.6)

The remaining conditions, in (3.7b), are imposed in order to retain second order

accuracy as:

Do f_,M+_ -- f_'_+= ' f_,M = 0 k = 1,2, K2h ' "'" "

Of course the meshpoint r_z+2 is not in [0,1] and so the values fk,_z+= seem

extraneous. However they are eliminated by imposing the difference equations in

(4.2) at 3"= M + 1 . The result, after using (4.6b) and the above, is for € = 0 :

2

gk,_+l = -h----_ fk,w , k = 1,2,...,K. (4.7)

For E> 0 we must add the terms:

_€ [gk-l,]_+l + gk+l,M+l + D+D_ (f_:-l,M + fk+l,M)]2

The numerical problem is to solve the nonlinear system of difference equations

in (4.2), (4.3), (4.4), (4.5) and (4.7). These form 3KM +/{ + .h/!+ 1 equations.

There are precisely that many unknowns {fk,] , Wk,.i , gk,] } when the quantities

in (4.6) are eliminated. We go further and use (4.7) to eliminate the K quantities

{gk,m+l) • Then we have only (3K + 1)M + 1 equations and unknowns.
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C. Newton's Method and Continuation.

To solve the difference equations we use Newton's method combined with con-

tinuation procedures to insure good initial.estimates of the solution as the param-

eters are varied. To do this efficiently the unknowns must be ordered in a manner

that simplifies the structure of the Jacobian matrix. To describe our ordering we

first introduce the vectors fj , g. and wy of dimensions K,K and K + 1 ,

respectively, by:

fr _ (flj, /_,;',.. f_,5) 1 < j < M ;

gT = (gl,j, g2,j,.., gK,y) I < j < M + 1 ;

_T- (_0,59_,s9.. ,_K,j) 1< j < M (4.8)

Recall that (4.7) gives: g-_z+l = -h-_" -if_ (for the case € = 0) and so gM+l can

be eliminated. The remaining (3K . 1)M . 1 unknowns are represented in the

vector X defined by:

Now we order the equations in a corresponding manner. That is for a fixed j-

value (i.e. meshpoint) we take (4.5) and all of (4.2)9 (4.3) and (4.4) for 1 < k _<K.

The equations ordered in this manner for j = 192,...,M and finally (4.5) for

j = M . 1 can be written as a vector equation in the form

G(X;Dgc) = O. (4.10)

Here G has (3K+ 1) components, each being one of the difference equations. We

have indicated the dependence of these equations on the parameters D and € as they

play a special role in the continuation procedures. For a fixed value of D and E we
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denote a solution of (4.10) by X = X(D,E) . When D -- 0 and E = 0 an

exact solution of the continuous problem is given by Poiseuille flow. Thus we easily

get a solution of the discrete problem in this case. As D or € deviates from

zero we can use the Poiseuille flow as an initial estimate of the discrete solution in

Newton's method applied to the system (4.10). This gives a sequence of iterates

{xCv)CD,_)}dennedby:

a) X(°)(D, _) =-- initial estimate,

b) ax(XC-I;D,_)~ [XC_+I/_XCvl]=_crzCvI.D,_),~,~, _,=o,1,2,....(4.111

Here GX is the Jacobian matrix which as a result of the above indicated ordering

has the block-band structure indicated below. Each square block is a matrix of

order (3K+l) x(3K+l_ .There are M

D

B 2?
"_X - \ " \

%

such rows of blocks. This array of blocks is bordered by one row and column as

shown. All other elements in GX are zero. Most of the computing effort goes into
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solving the linear algebraic systems in (4.11b). Thus to reduce the number of times

this must be done we seek accurate initial estimates.

One way to obtain good initial estimates is to use two terms in a Taylor ex-

pansion of the solution with respect to changes in the parameter D, say. Thus we

use:

_'(°)(D -k/_D, €) = X(D, €) -k _DXD(D,€ ) (4.12a)

To obtain X D we note, from (4.10), that it satisfies:

qX(X(D, D, )XD=-qD(X(D, D, (4.12b)

This system is similar to those in (4.11b). In fact when Newton's method has con-

verged, the last time we solve (4.11b) we can also solve (4.12b) and thus XD (D, E) is

determined with little extra work (i.e. only the backsolves and evaluation of

GD need be done). Continuation with respect t6 E can be done in an exactly

similar manner.

The method described in (4.11), (4.12) is known as Euler-Newton continuation.

It is extremely effective and usually converges quadratically. There are many refine-

ments regarding step length procedures, efficient solution of the block-banded linear

systems, approximation of Jacobians, etc., which we do not discuss here. Failure of

the method to converge does occur, however, and it usually signals the presence of

a bifurcation or fold point on the solution path (or family) being generated. Such

points or solutions are called singular because the Jacobian matrix evaluated at

these solutions is singular. Almost all such singular points are what we call simple

folds or limit points. In particular a simple fold with respect to D is a singular

solution, say IX0 , Do, _0], which has the properties that:
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a) dimN(G_) - 1 ; (i.e., all solutions of

_o¢~=£ are€~--_ €0~_ _ € m, some_€o# O)
(4.13)

b) C ° € :R(G°) (i.e.(G°,¢) _ 0 forallsolutionsof

0 T

(_x) _=o).

Here_ - _(X_o;Do,,o)andGo___(Xo;Do,_o).Allo_thesingular
solutions we have found in this work have been such simple fold points. We have

sought bifurcation points but have found none.

It is not difficult to circumvent the convergence problems near fold points• We

do this by using pseudo-arclength continuation as introduced in Keller (1977). That

is, we do not parametrize the solution path or family by D (as we assume has been

done above) but rather introduce a new parameter s and a new scalar constraint

and seek to solve the inflated or augmented system:

_) _(_X(4,D(_),¢)=o

b) _¢(X(_),D(_),_)=(_CCso),[_xC4-_z(_0)])

+b(_o)[D(s)- D(_o)]+ (s- s0)=0 (4.14)

Here [_X(So), D(so)] is a previously computed solution for E fixed in the present
dX

discussion and for _ = so By J_ = T_ and 29 dD• ~ = a"T we denote the components of

a tangent vector to the solution path {X(s),D(s)}. The constraint (4.14b) simply

requires that the point [X(s),D(s)] lie on the plane normal to this tangent at a

distance (s - so) from the point of tangency.

We use the scheme (4.14) when the previous Euler-Newton scheme begins to

show signs of failure (i.e. too many iterations till convergence). We solve (4.14) by

Newton's method. The Jacobian of this system is

210



a(g,_) (qN_q'_)o--_x,_ - _,_ (4.15)
This Jacobian is nonsingular at regular solution points and at simple fold points.

That is why our method has no difficulties in computing solution paths through

folds. To solve for the Newton iterates we use the Bordering Algorithm described

in Keller (1977) which is designed for systems with coefficients as in (4.15).

By differentiating in (4.14a) with respect to s we find that [_(s),D(s)] , the

tangent to the solution path, satisfies:

G_xX(_)+ _O_DC_)= 0 (4.16a)

To solve this we first solve

G_x_(_)= --_GD (4.16b)

and then set

x(_)= D(_)!(,_) (4.16c)

However since the scale of s has not been determined we choose it to represent

(local) arclength along the solution path. Thus we require that

(x(_),z(_))+ D_(_)=1

and using (4.16c) in the above we get

.D(s) ,....

The sign here is chosenso that <_(s), J_(So)> > 0 which determines the orientation

along the solution path.
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We determinea new tangentonlyafterhavingsolved(4.14).Then we replace

[_(s0),!)(s0)] by the new tangent [%(s) ,])(s)] and proceed as before.

5. Results of Calculations

In addition to the stream function and axial flow velocity we have computed

Re , the Reynolds number based on the mean axial velocity:

Re= w0(r)rdr;
O

and the friction ratio (ratio of curved, "7c, to straight, "7, , wall friction):

"2 = Re
"7, D

We have computed solution paths with 29 varying for the following sets of

values of Fourier truncation, K , mesh spacing, h , and coiling ratio, €:

1

1. K=10, h=40; €=0;
1

• °

II. K=10, h=6o, €=0,'E=0.1,
1

Ill. K=20, h= 60 ; _=0, E=0.1, €=0.2

Starting from the trivial state with u=v=w=0for €=0andD=0 we used

continuation with D increasing as described in Section 4. In each of the three

cases a simple fold was found and arclength continuation was used to accurately

locate the fold and to traverse it. The solution branches were then continued with

decreasing D and, in each case, another fold was found. Again these folds were

located accurately and traversed to obtain a third branch in each of the three cases,

now with D increasing. For cases I and II, extensions of these third branches

continued well beyond where we could trust the numerical results. However for

case IIIa third and fourth fold were found, leading to five branches of solutions•

In Table i we list the critical value of the Dean number, Dm , at the rn-th fold.
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For cases IIand IIIthefoldsolutionsfoundfor E= 0 were continuedin _ up to

0.I and forcaseIIIthecontinuationwent up to E = 0.2. These resultsarealso

giveninTableI.

We call the family of solutions varying continuously with D in D,n-1 < D <

Dm the "rn-th branch" (Do -- 0). Our calculations seem to suggest that the

analytic problcm has infinitely many branches although we have computed only

five of them. Graphs of qc/'7_ vs D are given for cases I and III in Figures 2 and

3, respectively. On the first branch, that emanating from D = 0 , the solutions

are of the classic form described by Dean -- we call these "two-vortex" flows (see

Figure 4). These two-vortex flows persist on the entire first branch and over most

of the second branch down (in D values) to about D _ 5000 where four-vortex

solutions gradually appear. These four-vortex flows are formed in the calculations

by the development, as 19 decreases on the second branch, of a small weak pair of

vortices about the axis of symmetry near the outer edge of the tube. This vortex

pair grows as 29 decreases and persists onto the third branch as D then increases

(see Figure 5). The four-vortex flows remain on the entire third branch and onto the

fourth branch down to D _ 14,000 where six-vortex flows appear. We believe that,

as this process continues, 2n-vortex flows can form for all n = 1, 2, .... Indeed on

the fifth branch we have computed 8-vortex solutions at 19 _ 25,000 (see Figure

9).

In Table 2 we compare our computed values of qc/q, on the first branch with

various values reported in the literature (for two-vortex flows). The agreement is

quite good. Dennis and Ng (1982) have also obtained four-vortex solutions over

957.5 < D < 5000 . We claim that these solutions are on the third branch. They

were obtained accidentally in Dennis and Ng (1982) as a result of convergence

difficulties with increasing 19 values near 5000 . Then as D was decreased the

solution "jumped" back onto the first branch. This is typical of the behavior to be
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expected near folds if no special technique for traversing them is used. Thus the

intermediate second branch was not obtained in Dennis and Ng (1982). In Table

3 we compare the values of the four-vortex solutions obtained in Dennis and Ng

(1982) with our values on the third branch. The agreement leaves no doubt as to

the identity of the two results. The somewhat larger discrepancies at D -- 5000 is

due, we believe, to inaccuracies in Dennis and Ng where convergence difficulties

occurred. Graphs of the stream function and axial velocity contour lines on the

third branch also agree well with those in Dennis and Ng.

Over the interval D4 < D < D3 we have obtained five solution branches. To

give some idea of how the solutions change we show in Figures 4-8 plots of contour

lines of the stream function and axial velocity for the solution with D - 8000 on

each of the five branches. In addition we display in Figure 9 the results for D =

25,000 on the fifth branch. The con%our lines in each figure are at levels that differ

by one tenth the value between maximum and minimum values of the quantity

plotted. The values of these maxima and minima are given with each figure. The

small closed contours (or almost points) near the maxima or minima are at the

levels of 0.995 or 1.005 , respectively, of the critical values.

Least squares fits of the qc/q_ vs D curves with E - 0 have been made in

the form

ft._.!- am + b,n D 1/3
q,

On branches rn = 1,2 and 5 we get the coefficient values:

al =0.3, as=0.25, a5=0.15 and bl =b_=bs=l/8.

Other exponents have been used but the 1/3 power seems to fit the data best.

It is not clear, in light of the multiplicity of solutions and the unsettled nature

of the solutions for large D , what the significance of "asymptotic solutions" for
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D --_ c_ can be. Thus we do not address this problem here but merely present the

above fits for whatever use they may be.

During the course of this work we have benefitted from conversations with

Prof. A. Acrivos. We also wish to thank Prof. S.C.R. Dennis who first brought the

matter of multiple solutions to our attention and suggested that we work on it.
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Table and Figure Captions

Table 1. Critical Dean number, Dr, , at'the m-th fold in the solution branches.

Table 2. Comparison of 'Tc/"ls on the two-vortex solutions of various works with the

present solutions on the first branch.

Table 3. Comparison of the four-vortex solutions of Dennis and Ng (1982) with the

present solutions on the third branch.

Figure 1. The tube cross-sections showing coordinates, velocity components, axial flow

distribution sketch and cross-flow streamlines sketch.

Figure 2. Friction ratio, "It/% , vs. Dean number, D , for case I: K = 10,

h=l/40, E=0.

Figure 3. Friction ratio, %/% , vs. Dean number, D , for case III: K = 20,

h=1/60, €=0.

Figure 4. Axial velocity, w , and stream function, € , contour lines: D = 8000,

K = 20, h = 1/60, _ = 0 . First branch: Max w = 0, Min w = 0 ,

Max € = 23.986, Min¢ = 0.

Figure 5. Same as in Fig. 4. Second Branch: Max w = 625.956, Min w "- 0 ,

Max € = 23.497, Min € = 0.

Figure 6. Same as in Figl 4. Third Branch: Max w = 594.777, Min w = 0 ,

Max € = 22.962, Min € = -12.897.
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Figure 7. Same as in Fig. 4. Fourth Branch: Max w = 613.697, Min w = 0 ,

Max € = 21.783, Min € = -8.716

Figure 8. Same as in Fig. 4. Fifth Branch: Max w = 622.831, Min w = 0 ,

Max ¢ = 20.679, Min € = -4.676.

Figure 9. Axial velocity, w , and stream function, € , contour lines: D = 25,000,

K =20, h = 1/60, € = 0. Fifth branch: Max w = 1412.730, Min w = 0,

Max € = 31.494, Min¢ = -14.335.
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Table 1

K h e D 1 D2 D 3 D4

1
I. i0 4--O 0 12,120 951 ......

1
II. i0 6-_ 0 12,752 950 ......

1
iii. 20 6--o 0 25,146 955 15,642 7,725

1
II. i0 6--0 0.i 19,963 1,130 -.....

III. 20 6_ 0.i 27,508 1,138 18,179 10,576

III. 20 6_ 0.2 30,071 1,358 20,440 14,007

Table 2

Collins& Dennis&
D Dennis'75 Ng '82 Dennis'80 ThisWork

1000 i.550 i.548 i.546 i.548

2000 i.852 i.847 i.848

3000 2.064 2.063 2.065

4000 2.237 2.237 2.238

5000 2.392 2.377 2.383 2.383

Table 3

_c/Ys wo (0) Re

D Dennis ThisWork Dennis Dennis
& Ng'82 & Ng'82 ThisWork & Ng'82 ThisWork

2000 1.8329 1.8338 1.0803 1.0795 192.9 192.8

3000 2.0463 2.0472 1.0514 1.0522 259.2 259.1

4000 2.2177 2.2172 1.0390 1.0389 318.8 318.9

5000 2.3662 2.3527 1.0332 1.0368 373.5 375.7
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Figure 4.
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Figure 5.
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AXIAL VELOCITY CONTOURS
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Figure 6.
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Figure 7.
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Figure 8.
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Figure 9.
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Calculations of the Stability of Some Axisymmetric Flows
Proposed as a Model of Vortex Breakdown.

Ncssan Mac Giolla Mhulris

Institute for Computer Applications in Science and Engineering,
Mail Stop 132C, NASA Langley Research Center,

Hampton, Virginia 23665, USA.

AB3TRA CT

The term nvortex breakdown" refers to the abrupt and drastic changes of
structure that can sometimes occur in swirling flows. It has been conjectured that
the _Ibubble" type of breakdown can be viewed as an axisymmetric wave travel-
ling upstream in a primarily columnar vortex flow. In this scenario the wave's

upstream progress is impeded only when it reaches a critical amplitude and it
loses stability to some non-axisymmetric disturbance. We will investigate the sta-
bility of some axisymmetric wavy flows, which model vortex breakdown, to three
dimensional disturbances viewing the amplitude of the wave as a bifurcation
parameter. We will also look at the stability of a set of related, columnar vortex

flows which are constructed by taking the two dimensional flow at a single axial
location and extending it throughout the domain without' variation. The method

of our investigation will be to expand the perturbation velocity in a series of diver-
gence free vectors which ensures that the continuity equation for the incompressi-
ble fluid is satisfied exactly by the computed velocity field. Projections of the sta-
bility equation onto the space of inviscid vector fields eliminates the pressure term
from the equation and reduces the differential eigen problem to a generalized
matrix eigen problem. Results are presented both for the one dimensional, colum-
nar vortexflowsand alsoforthewavy "bubble"flows.
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1. Introductlon: Vortex Breakdown.

The term "vortex breakdown" refers to the abrupt and drastic changes of structure that can

sometimes occur in vortex flows. Observations by Peckham & Atkinson [1957] of breakdowns

occurring in the leading edge vortex formed above a swept back lifting surface and a number of

studies demonstrating the serious aerodynamic consequences of such events (the slopes of the lift,

drag and moment curves are all altered by breakdown) stimulated early interest in the subject.

Since that time the literature on vortex breakdown has burgeoned. The interested reader is

referred to review articles by Hall [1972] and Leibovich [1978, 1984] for summaries both of the

experimental observations that have been made and also of the theories that have been proposed

to explain them.

Experimental observations are most easily made on vortex flows confined to tubes and the

bulk of the available data is for such cases. In one apparatus, used by a number of researchers,

water is passed radially inward through a set of guidevanes imparting swirl to the fluid which

then enters axially into a test section (a frustrum of a cone of very small cone angle), by means of

an annular channel formed between a bellmouth opening on the section and a centerbody whose

tip is aligned with the cone axis. The boundary layer shed from the tip of the centerbody forms a

well defined vortex core along the axis of the test section and dye injected through the tip allows

for flow visualization.

With this type af apparatus two parameters are within the easy control of the experimen-

talist_ namely the amount of swirl imparted to the inlet flow and the volume flow rate through

the tube (effectively the Reynolds number of the flow). As the Reynolds number is increased for

a sufficently large, fixed value of swirl the breakdown assumes one of two characteristic forms.
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Both of these are characterized by a rapid deceleration of the axial velocity component_ occurring

in the axial distance on the order of one vortex core diameter, followed by the formation of a

stagnation point and (in some frame of reference) a region of reversed flow along the axis. The

two forms are easily distinguished in flow visualization studies as in one form, the spiral or S type

breakdown, the tracer dye assumes a spiral shape rotating in the same sense as the inlet fluid,

while in the other form, the bubble or B type breakdown, the dye assumes a form that looks

much like a body of revolution placed in the fluid. Our interest will be in this latter form of

breakdown which is sketched in Figure 1. Here we show "ideal" or averaged stream surfaces on

which the fluid particles travel in helical paths. (Leibovich [1978]).

Faler & Leibovich [19771,Garg & Leibovich [1979]and the author [unpublished studies]

have used the non-invasive techniques of laser doppler anemometry to measure the velocity fields

both upstream and downstream of breakdown events. Outside a thin boundary layer along the

tube wall the experimental data is well fitted by the analytic profiles,

V(r) - 1 0(1 - e-_'') (1.1)r

w(,) = w, + -o'' (1.2)

W and V being respectively the axial and azimuthal velocity components while W1, W2, Q and a

are all constants (representative values are given by Garg & Leibovich [1979]). The profiles apply

to the downstream flow only in the mean, as the flow there fluctuates with time.

Upstream of the recirculation zone the flow is axisymmetric and steady. After breakdown

the vortex core expands to two or three times its upstream size and the constant W2 in the mean

axial velocity profile which had been positive upstream (jetlike flow) becomes negative (wakelike

flow). Downstream, within a few vortex core diameters of the breakdown, a turbulent wake is
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invariably established . This transition to turbulence "switched on" by the coherent breakdown

structure provides a further incentive for its study.

Possibly motivated by the fact that the flows upstream of breakdown can be made to have a

high degree of axial symmetry, most of the research to date assumes that axially symmetric

processes are the important ones in vortex breakdown. As only axisymmetric disturbances can

cause a change in the axial velocity component as measured on the axis and as a deceleration of

this component is so pronounced in breakdown, it is clear that such disturbances play an impor-

tant role. Nevertheless, all transitions occurring in vortex flows as documented by Faler [1976]

are nonaxisymmetric and the flow within the bubble itself is unsteady with regular low frequency

oscillations. Furthermore, the stagnation point that defines the start of the recirculation zone is

not entirely fixed but wanders over a short range of the axis in a seemingly random fashion.

Leibovich [1984] proposed the following plausible scenario for the bubble type breakdown.

A finite axisymmetric disturbance, triggered off downstream, moves upstream in _ columnar flow

that is nearly critical in the sense of Benjamin [1962]. (A supercritical flow, in this classification,

allows for the upstream propagation of infinitesimal axisymmetric waves while a subcritical flow

does not). Flows of the form (1.1,2) can indeed support axisymmetric dispersive waves and these

can propagate upstream in some situations (Leibovich [1970], Randall & Leibovich [1973]). Moy-

ing in this direction, the cross sectional area of the tube decreases causing the wave to amplify

and speed up. The conjecture is that, upon reaching some critical amplitude, these waves lose

stability to a non-axisymmetric disturbance. The growth of the asymmetric mode at the expense

of the axisymmetric wave, drains energy from it and this causes the wave to equilibrate at some

axial location in the diverging tube, much as is seen in experiments.
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Our aim is to study the stability of some inviscid, wavy axisymmetric flows to three dimen-

sional disturbances with the amplitude of the waves viewed as a bifurcation parameter. We start

with a columnar flow in cylinderical coordinates of the form (0, V0(r), W0(r)), (e.g. (1.1,2)). (For

arbitrary C1 functions, V0 and W0, all such flows satisfy Euler's equations). We then seek

axisymmetric wavy perturbations to this flow which satisfy the equations of motion, at least

approximately, for small amplitude. In terms of a stream function, ¢ and a circulation, ,c

(Lamb [1932]) Leibovich [1972] found solutions to Eulers equations of the form,

COt,z) = ¢0(r) + cOOt)ACe ) + 0C_2), (1.3)

,cCr,z ) = ,Co(r) + _'lCr)ACx), + OCe2), (1.4)

where z is a moving coordinate,

z = z- dt (1.5)

and d isa constantthatmust foundinthecalculation.The velocitycomponentsaregivenby

1 8
u - ¢, (1.6)r az

1 (1.7)---= --K;,
r

1 8 ¢ (1.8)

The columnar base flow is represented by ¢0(r) and t%(r).

The amplitude function, A (z,t) is governed by a Korteweg de Vries equation which has both

infinite and finite period solutions. The multiple scales analysis that was used to obtain these

solutions is strictly valid only for long period waves which are also the most interesting solutions

from a physical point of view. When doing the stability analysis we will confine our attention,

for numerical reasons, to solutions of the finite period, 2H and these are given exactly in terms of
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cnoidal functions (Whitham [19741). The structure functions, ¢(r), "y(r) and the wave speed d

are determined (numerically) from a second order, ordinary differential eigenvalue problem.

For certain base columnar profiles d is negative and consequently the axisymetric wave pro-

pagates upstream. Figure 2 is a plot of the streamlines (1.3) in a frame moving with the wave for

such a case. The base columnar profile used here and throughout this paper is a purely swirling

flow; W0(r ) _ 0 and a = 14 in the notation of (1.1). The structure function € has been normal-

ized so that Max € = 1 and for this flow a recirculation zone (bubble) first appears in the stream-

line plot when the amplitude parameter, _ reaches a value of 0.0155. For the value of € used here

the plot is clearly reminiscent of the bubble type breakdown.

Our aim is to study the stability of the flows (1.3,4) to three dimensional disturbances view-

ing _ as a bifurcation parameter. The analysis will be carried out in a frame moving with the

wave, i.e. using the coordinates (r, x, 0). As the base flow is dependent on both the radial and

axial variables, r and z, the stability equations separate only in the azimuthal variable, 0. It will

be in our interest also to study the stability of a related columnar flow that is constructed by tak-

ing the two dimensional flow (1.3,4) at a single axial station, x = 0, and extending it throughout

the cylindrical domain without variation. For obvious reasons we will refer to this flow as the

"mid-bubble" columnar flow and it is given explicitly as follows,

vbcr) = VoCr) + -'Eg'Cr), (1.9)r

WbCr)= W0Cr)+ ±¢'(r). (1.10)r

Plots of these profiles for various values of € are given in Figures 3 and 4. Provided the wavy

flow (1.3,4) varies only slowly along the axis (as it will do if the period, 2H of A(x) is very large),

we can look on the midbubble profiles as models for the full two dimensional flow. We conjecture
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that the stability of these columnar flows (the equations for which separate in both x and 0)

should also be indicative of the stability properties of the full two dimensional flow.

In the rest of this paper we describe the numerical scheme used to solve the stability equa-

tions, we discuss its implementation and verification on the computer and finally we give results

obtained for the stability of the midbubble columnar and the axisymmetric wavy flows presented

above.

2. Numerical Methods.

For incompressible fluids the physical law of mass conservation reduces to the constraint that the

velocity vector of the fluid be divergence free. The pressure is not then a thermodynamic variable

determined by an equation of state but rather can be thought of as a Lagrange multiplier adjust-

ing itself instantaneously to ensure that this kinematical constraint on the velocity vector is met.

There is no evolution equation for the pressure nor does it satisfy any predetermined boundary or

initial conditions.

Numericists, seeking to solve the governing equations approximately, have found that their

greatest difficulty lies in the treatment of the pressure variable. While many ingenious methods

have been devised to overcome the difficulties, the treatment advocated in this work is in a

mathematical sense the most natural and offers many computational advantages. Here, the pres-

sure term is eliminated from the equations entirely and the divergence free condition is satisfied

exactly by the numerically obtained approximation to the velocity vector. Moreover, as the com-

ponents of the velocity are expanded in terms of series of polynomials that arise as the solution to

a singular Sturm Liouville problem, whose excellent approximation properties are well
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documented (e.g. Gottleib & Orszag [1977], Quarteroni [1983]) convergence of our approximation

will be bound only by the smoothness of the solution and by the number of terms used in the

component expansions. For infinitely differentiable velocity fields we should expect to achieve

"exponential convergence" (Canuto et al.)

The essence of the method (originally due to Leonard & Wray [1982]) involves expanding

the velocity in a series of divergence free vector fields each of which satisfy the same boundary

conditions as the velocity. The infinite sums are truncated and substituted into the governing

equations, which are the Navier-Stokes or Euler equations linearized about the appropriate base

flow. Inner products are taken with vectors fields which satisfy inviscid boundary conditions.

This eliminates the pressure term from the equations and reduces the differential eigenvalue prob-

lem to a matrix eigenvalue problem. The eigenvalues determine the stability of the base flow and

the eigenfunctions are the set of coefficents in the expansions of the corresponding perturbation

velocity fields.

To examine how this method works we recall that it is well known (Ladyshenskaya [1966])

that L2(D), the space of square integrable vector functions defined on a bounded domain

D (D c R n' n = 2,3) can be decomposed into those that are divergence free and whose normal

components vanish on the boundary and those that can be expressed as the gradient of a

differentiable function defined on D. For this paper we will consider vector fields_ defined on the

section of a cylinder T, which are periodic in both the axial and azimuthal variables, having as

their axial period the tube length, 2H.

We will decompose L2(T) as follows.

L2(T) = J(T) + Jr(T), (2.1)

where,
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(a) V'u = 0 in T,

J(T) = uEL2(T) (b) u'n=OonOT, (2.2)

(_)__1s,=__1+.

S1 and S2 represent the ends of the cylinder. Given in this form J(T) is clearly the space of

(a) incompressible, (b) inviscid, (c) periodic velocity fields.

The set of "viscous" velocity fields on T is a subset of J(T) denoted J°(T).

J°(T) ={uEJ(T)I u=OonOT}. (2.3)

An alternative representation of J(T) (Richtmyer [1978]) is given by,

(a) <u, Vp> = 0 for all p _ C°°(T)

J(T) = uEL2(T) (2.4)

(b)_"1s,=u2s,

where _ is the closure of T and <','> represents the usual inner product in L2(T),

<u,v> = fr u'v rdrdOdx . (2.5)

The space J(T) endowed with this inner product is a Hilbert space and a closed subspace of

L2(T). The projection of L2(T) onto J(T) will be denoted by n. It is clear that vectors of the

form V_Pare perpendicular to all u in J(T) and in fact (Ladyshenskaya [1966]),

Jr(T) ={ EcL2(T)I .=vpforsomep_nCl('T)}. (2.6)

II then has the following properties,

II: L:(T) -+ J(T), (2.7)
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II u_= u_ for all u_e J(T), (2.8)

n vp =0 forallp C1(7). (2.9)

To determine the linear stability of a flow U to say, viscous disturbances which are periodic

in x and 0 we consider whether infinitesimal perturbations to U grow in time. Therefore we

linearize the Navier-Stokes equations about U and seek solutions in j0(T) of the form,

u( r,x,O)e -iat. (2.10)

The character of _rthen determines the linear temporal stability of U. If o"= a + ifl where a, fl

are real then,

fl>0 => U is unstable,

fl = 0 => U is neutrally stable,. (2.11)

fl<0 => U is stable

The equations that must be solved have the form,

iau = Eu + Re-lSu. (2.12)

E and S are operators defined on J(T) as follows,

Su = -]-[[Vxw.w_.) (2.13)
and

Eu = II(wxU + flxu), (2.14)

where fl and to are respectively the base and perturbation vorticities, (_l = _TXU, w = _7× u).

Some suitable nondimensionalization has introduced the Reynolds number,

Re= U°R°, (2.15)v

R0 and U0 being characteristic length and velocity scales associated with the base flow and v is
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the kinematic viscosity of the fluid. We can take R 0 to be the radius of the tube and U0 to be the

maximum value of the columnar base flow azimuthal velocity, V0(r ).

The _p term in the Navier-Stokes equation has been eliminated by projection onto J(T).

Projection of the stability equation onto a finite dimensional subspace, J_v(T) of J(T) is achieved

in practice by taking the inner product of the equation with basis vectors for Jtc(T). This pro-

cess eliminates the operator H from the equation, for given any vector f__in L2(T) and any vector

A___in J(T) we have that,

<hA t,> = <f, t,>, (2.16)

as projections are self adjoint and as the projection of any vector in J(T) is itself.

It is worth emphasising that even when we are solving the viscous stability equations, we

still project the governing equations onto the space of inviscid vector fields. The reason for this is

that having found a velocity u_such that the vector f_defined as,

f__ = iau_ - w×U- flxu + vVxw (2.17)

isorthogonattoall __inJ(T)thent _2(T) andsothereexistsascalarfunctionp (apressure)

with f_ = Vp. If, however, f_ were in J°t(T), which contains jr(T) then the existence of a pres-

sure is not guaranteed and consequently u may not correspond to a physical solution.

Leonard and Wray [1982] demonstrated a divergence free vector function expansion for

viscous velocity fields, defined on a cylindrical domain that are Fourier decomposable in both the

axial and azimuthal variables. We will construct a somewhat different set of basis vectors here.
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The velocity field, u, satisfies the continuity equation and is Fourier decomposable in x and

0, which means in effect that only two of its three components, u, v, w are independent. This

motivates the introduction of two vector families, _ in an expansion of the form,

The components of the vectors _ are found as follows. Expand two of the velocity components,

say the first and the third, independently as,

i(kzP--=/ X + fn0)

' (2.19)nkm

w = _a2nkmfn+(r) e i(_ + toO)' (2.20)
nkm

where f_(r) are complete sets of polynomialschosen to satisfy the boundary conditions that are

imposed on u, w. The r and x components of _ have now been picked and it remains for us to

chose the 0 components in a manner that ensures the vectors _ e i(/_ + m0) are divergence free.

Consider for example, x_(r).

(rf;(r))" + imxn, o = 0, (2.22)

where the prime denotes a derivative with respect to r. This equation gives us the 0 component of

x_(r). Rescaling, it is found that an expansion of the form (2.14) is possible for non-zero azimu-

thal wavenumbers where,

_L_(r) = ( imf:Cr),- (rf:(r))', 0), (2.23)
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o(o  224)
and such an expansionwill guarantee that u is divergence free. This expansion is clearly incom-

plete for azimuthal wave number zero, (rn = 0), i.e. for axisymmetric flows. For that case the

following expansion vectors can be used.

X_(r) = (ikf_(r)'o'- l (rf_(r))"}'r (2.25)

(o,::(.),o) (.,oi
The polynomialsf_(r)must be chosenso thatthevectoru givenby (2.14)satisfies

appropriate(viscousorinviscid)boundaryconditionsonthewailsofthedomain,T and issingle

valuedattheorigin,r = 0. We willdenotethepolynomialsusedintheinviscidcaseby a_(r)

reservingf_(r)forviscousexpansions.We havethenupontruncating(2.14)anapproximation

tou oftheform,

N K M

_VKM = _ _ _ ankrnD___skm(r,z,O) (2.27)n=l k=-Km=-M

where,

D___nkrn(r,x,O) -- X__(r;k, rn) e ;(1=+ me). (2.28)

The projection vectors will have the same form as the expansion vectors, i.e. we will project

with vectors,A_#pq(r,z,O), where

A_,¢Cr,x,O) = __j±(r;k, ra)e ,(,z+ ,0) (2.29)

for

1 = 1,...,N; p = -K,...,K; q = -M,...,M

with the vectors _± being given by equations (2.23 - 26) using the inviscid polynomials, a_:(r) for
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the components.

It is possible to choose the polynomials a_:(r) and f_(r) in many different ways. Leonard &

Wray [1982] in their consideration of certain turbulence simulations employed an unusual set of

Jacobi polynomials to reduce the bandwidth of the final matrix system. These polynomials were

also used by Spalart [1983] in his simulation of boundary-layer transition. Moser & Moin [1984]

in their work on the infinite Taylor Couette system, used Tchebychev polynomials and incor-

porated the weight function, against which these polynomials are orthogonal, into the projection

vectors. Here, we will construct the basis vectors from Legendre polynomials. All of the above

sets are solutions to singular Sturm Liouville problems and consequently we can expect expan-

sions in terms of any of these polynomials to exhibit excellent convergence properties.

The single valuedness criterion, which must be applied along the centre line of the tube for

the vector u, causes the polynomials f_(r) and a_(r) to depend on m, the azimuthal

wavenumber (Joseph [1970]). One appropriate choice for a_(r) is,

a_-Cr) = rPtC2r - 1) for all rn,

a[-Cr) = (1 - r)PtC2r - 1) ifl ml= 1, (2.30)

at--(r) = r(1 - r)Pt(2r - 1) ill rnl # 1,

where the radial variable has been scaled by the tube radius and Pt(r) is the Legendre polynomial

of order I (Abramowitz & Stegun [1970]). The corresponding choice for f_(r) is,

f2(r) = r(1 - r)Pn(2r - 1) for all m,

f_(r) = (1 - r)2Pn(2r - 1) if I mI = 1, (2.31)

fZ(r) = r(1-r)2Pn(2r - 1) iflml # 1.
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As all ofour stability problems separate in the azimuthal direction, this dependence on m

presents no difficulty. We solve separate problems for each azimuthal wavenumber; so having

chosen an m the expansion and projection sets are fixed throughout the calculation . Indeed, in

theory there is no difficulty even if the problem at hand is truly three dimensional; however some

care is required in implementing the method to ensure that the correct radial polynomial set is

being used for each azimuthal component of the velocity.

3. Implementation and Verification of the Method.

Equation (2.12) is solved approximately by using the expansion u_jvKM for u and taking inner pro-

ducts of the equation with the projection vectors, A__pqto get a generalized matrix eigen problem

for the eigenvalues ¢r and the eigenvectors a (the coefficents in the expansion ujVKM). This matrix

problem can be written as,

crA'a = g -F -_e a. (3.1)

The matrix A is purely real and arises from the fact that the expansion and projection vectors

are not orthonormal.

at.,k,.,= : (3.2)

The Kronecker delta symbol, 6_i arises because the Fourier bases employed in the axial and

azimuthal directions are orthogonal. The matrix B arising from the convection terms is also

purely real.

Bt.mkqm = <_j,,, (VxD__km)x__U-F f]xDmkm>. (3.3)

Finally,thematrixU arisingfrom theviscousterms is purelyimaginary.
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m

Ct,pkqm = <A_bq, _TXVXD_km>. (3.4)

Using the orthogonality of the Fourier bases it can be written as,

Cl.,kqm= ClnSpk6qm" (3.5)

The form of the matrix B depends on the base flow U. For columnar flows which are independent

of z and 0 it is possible to find a matrix B such that,

Bl.pk,rn = Bln Spk6,m" (3.6)

The stability of these flows can be determined by solving the O(N) generalized matrix eigen

problem,

( '}trAa = B + .-_e C a. (3.7)

On theotherhand,fortheaxisymmetricwavy baseflow(1.3,4)we have

A

Blapkqrn = Bl.pk@k (3.8)

O( +and the

{ 0}_i. = t} +_ ., (3.9)

aretheO((2K+1)xN)blockdiagonalmatricesA,o_pkandC,o_pkrespectivelywhere and 0

The matrices depend parameterically on the wavenumbers of the projection and expansion vec-

tors so we separate them into submatrices that can be evaluated independently of these and the

other parameters (in particular E) occurring in the base flow. The submatrices are evaluated once

and then stored in the computer. The required integrations can be done at very little cost by util-

izing the orthogonality properties of the expansion and projection polynomials. The full matrices

are then be reassembled without the need for doing any further integrations.
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One can alwaysband theA and C matricesby appropriatechoiceofthepolynomialsf_(r)

and a_(r). However the matrixB willgenerallybe full,thoughforcertainrathersimplebase

flowssuchas theHagen Pouiseilleflowconsideredbe Leonard& Wray [1982]itisalsopossibleto

band B. The matrix A was invertedto producea regulareigenvalueproblem inplaceof (3.1)

and the QR algorithmwas usedtoextracttheeigenvalues.We alsonotethatthematrixproblem

we getwhen consideringtheinviscidstabilityofbaseflowsisa purelyrealone and consequently

theeigenvaluesoccur,as theyshoulddo,inconjugatepairs.

A computer code has been written which implements the method we have been describing to

solve the stability problems, both viscous and inviscid, for all columnar flows and for axisym-

metric flows of the form (1.3,4). Both the direct and adjoint versions of the stability problems

can be solved. The adjoint viscous stability problem is to find a u in j0(T) such that

= +

The operator E* is the adjoint operator to E and is given by,

The direct and adjoint spectra obtained by solving (2.12) and (3.10) should, of course, be conju-

gate to each other and how well a numerical scheme reproduces this theoretical result is a test of

its accuracy.

We verified the code by calculating the stability of rotating Poiseuille flow,

U = (O, Vlr , Wl(1-r 2)) (3.12)

Cotton et al. [1980] found that this flow with V1 = 0.2147 and W1 = 1.0 was neutrally stable to

disturbances having azimuthal wavenumber, m = 1 and axial wavenumber, k =-1 for a
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Reynolds number of 156. The following table lists the most unstable eigenvalue we found for this

flow with the same wavenumber pair for the disturbance. The first column of the table gives N,

the number of radial basis vectors that were used to obtain the eigenvalue given in the next two

columns, N is also the order of the matrix problem that needs to be solved at each step.

Most unstable eigenvalue found for the rotating Poiseuille flow (3.12)
with m = 1, k =-1, V1 =0.2147, Re= 156.0.

N _equency growth rate

4 -0.00029 .00334
6 -0.00279 .00101

10 -0.00284 .000001
14 -0.002847 .0000001

18 -0.002847898 .0000001379
22 -0.002847898 .0000001378

The convergence is exponential in N or some power of N and there is no evidence of significant

roundoff error. The following table lists the corresponding eigenvalue found by solving the

adjoint viscous stability problem for the same wavenumber pair and baseflow.

Eigenvalue found by doing the adjoint viscous stability problem for the flow (3.12),
with m = 1, k =-1, V1=0.2147 , Re= 156.0.

N _equency growth rate
4 -0.00270 -.000094
6 -0.00280 -.000013

10 -0.00284 -.000004
14 -0.002847 -.0000002

18 -0.002847898 -.0000001379
22 -0.002847898 -.0000001379

Clearly the agreement between the a_oint and direct results is excellent. Inviscid stability

results for flows of the form (3.12), obtained using our code also compare well with results in the
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literature. These results instill confidence in the accuracy of the numerical method and in the

code that implements it, at least for the case of columnar flows.

4. Stability Results for the Vortex Breakdown Model Flows.

In this section we will present the results obtained to date for the stability of the midbubble

columnar, (1.9,10) and the wavy vortex (1.3,4) flows. Although these flows are inviscid we will

consider their stability to both viscous and inviscid disturbances (i.e. we will solve the linearized

Euler and the linearized Navier-Stokes equations for these flows). The justification for doing a

viscous analysis is that the "real" flow is of course, viscous. Moreover, the inclusion of the higher

order dissipative terms eliminates certain technical difficulties that arise due to the existence of

critical layers in the neutrally stable eigenfunctions for columnar flows (Drazin & Reid [1981]).

We will begin by presenting the viscous results for the midbubble columnar flows. We found

that thirty radial vector modes (N = 30) were adequate to resolve the most unstable eigenmode

(i.e. the mode whose eigenvalue had the largest imaginary part) to three decimal places for these

flows at low Reynolds numbers and that this number increased as the Reynolds number grew.

Frequent checks were carried out on the accuracy of the computed eigenvalues both by increasing

the order of the expansion and also by computing the adjoint spectrum for the same set of flow

parameters. The difference between the most unstable eigenvalue as computed by the direct and

adjoint versions of the code was always less than 1%.

Having fixed the number of radial expansion vectors in our system the viscous eigenvalues

for the midbubble flows depend on four parameters,

o" = a(m,k,,,Re). (4.1)
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The base columnar flow (_ = 0) was found to be stable to all disturbances. It seems that even for

very small values of _ (values for which there is no recirculation zone in the full two dimensional

flow) the midbubble flows are unstable. This is documented in the following table which gives

bracketing values for the critical Reynolds number for various values of €.

Bracketing values for the critical Reynolds number.
Various values of € and rn = -1.

€ Stable for Re Unstable for Re

0.000 Stabler or all Re
0.O05 550 60O

0.010 180 200
0.015 160 180
0.020 110 120
0.025 60 80
0.030 42 45

For large enough values of _ disturbances having both positive and negative azimuthal

wavenumbers can destabilize the midbubble flows with the negative azimuthal modes giving rise

in general to the largest values for the growth rates. In particular disturbances with azimuthal

wavernumber, m = -1 were found to be the most dangerous. This is shown in the following

table.
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Bracketing values for the critical Reynolds number.
Various values of m with _ = .03.

m Stable for Re Unstable for Re

-1 42 45
-2 90 100
-3 700 800

-4 1200 1400
-5 1400 1600

For fixed values of m and _, a two parameter (k, Re) study was carried out. With _ = .03

and m = -1 we obtain the stability diagram shown in Figure 5. The stability boundary appears

to be a parabolic curve which is markedly asymmetric with respect to the k = 0 line. Within this

curve the base flow is unstable to a range of axial wavenumbers; however, there is a "tongue" of

stable wavenumbers that gradually thins out as the Reynolds number is increased. The k = 1

mode is the final one to be excited, this does not happen until Re -- 4500 (approximately).

We now consider the stability of the midbubble flows to inviscid disturbances. The invis-

cisid stability of columnar flows is governed by an ordinary differential equation, the Howard-

Gupta [1962] equation. A number of analytic results obtained from this equation exist in the

literature. Leibovich & Stewartson [1982] showed that a sufficent condition for the instability of a

columnar flow is that the function,

r(r) - + w,(,)2) (4.2)
I

be negative somewhere in the domain of interest. (A is the angular velocity, _1 V and r is the cir-
r

culation rV.)
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Th function F(r) is easily evaluated for the midbubble profiles and this has been done for a

range of values of _. It was found that F first becomes negative only when a critical value of _ is

reached, e = 0.132. Consequently the midbubble flows are guaranteed to be unstable by the

Leibovich-Stewartson criterion for values of the parameter _ slightly below those needed to pro-

duce a recirculation region in the full two dimensional flow (recall this happens for e = 0.155).

A normal mode stability analysis was carried using the divergence free expansion method

and the numerically obtained results confirm and somewhat extend the predictions of the

Leibovich-Stewartson criterion. Once again we found that the disturbances giving rise to the

largest growth rates had azimuthal wavenumbers, I ml = 1. Figure 6 shows how the maximum

growth rate varies (almost linearly) with the amplitude parameter, E. In the figure we can see

that the normal mode analysis extends the previously obtained results in that midbubble flows

with € < 0.0132 are also found to be unstable, even though F(r) > 0 for these flows. The max-

imum growth rates also increase with the size of the axial wavenumber, I kl, as shown in Figure

7.

We conclude that the midbubble flows are definitely unstable on both viscous and inviscid

grounds for values of the parameter, _ below those needed to produce a reversed flow region in the

full two dimensional wavy flow. Moreover the most destabilizing disturbances have azimuthal

wavenumbers, I ml = 1 and short axial period, (I kl > 1). The unstable inviscid eigenfunctions

tended to have regions of steep gradient near the origin and this made their resolution difficult.

While these midbubble stability results we have just reported tend to support the conjec-

tures made about vortex breakdown, they are not encouraging for the numericist seeking to inves-

tigate the stability of the cnoidal wave flows (1.3,4). As we noted earlier, the stability equation
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for these flows do not separate in x and consequentlywe have to solve O(N(2K+I)) matrix

eigenvalue problems for each flow. It would seem to be necessary to include modes having a short

axial period in our expansion, __VKMwhich means that K will be large. The inclusion of these

modes is also dictated by physical considerations. We should like the disturbance to include

modes that scale with the dimensions of the bubble and in fact visualization studies indicate that

the asymmetric unstable modes do have short axial periods. However, our experience with the

midbubble flows show that these unstable modes are difficult to resolve radially, consequently the

number of radial vector functions, N in our expansion must also be large.

With these constraints the normal mode analysis of the cnoidal wave flows becomes prohibi-

tively expensive, (reacall that the number of operations needed to extract all the eigenvalues of a

matrix is proportional to the cube of its order). To alleviate the cost problems most of the runs

for these flows were done with the axial period of the cnoidal wave fixed at 1 (H = 0.5, units are

tube radii). While such short period flows violate the assumptions needed to produce the solu-

tions (1.3,4) it was hoped that these flows would be unstable to disturbances with smaller values

for K. Indeed convergence studies indicate that adequate resolution in the axial direction was

obtained with K _ 10. Up to 40 radial modes were used in the study, leading to an 0(840)

matrix eigenvalue problem when K = 10. (The calculations were performed on an Floating Point

Systems 164 series vector processor at Cornell University, using a vectorized version of the QR

algorithm, optimized for this machine and using some 16 megabytes of memory.) The adjoint

problem was also solved on each run and only those eigenvalues which agreed well between the

adjoint and direct calculations were considered.

Unfortunately the short period flows behave less like the midbubble flows and more like the

underlying, stable columnar flows. This is indicated in Figure 8 which plots the least stable
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growth rates found for the various values of E as the Reynolds number is increased (m = -1 in

this plot). All these short period cnoidal wave flows are stable, though marginally so. The dis-

turbances with I m] = 1 are again the most unstable. Figure 9 shows the least stable growth rates

found for some other azimuthal wavenumbers. The inviseid stability runs that were performed

also failed to turn up any definite evidence of instability for these flows.

We have considered the viscous and inviscid stability of some axisymmetric flows which are

said to model the bubble type of vortex breakdown. The investigation was carried out by

expanding the perturbation velocity in terms of the new set of divergence free vectors presented

in section 2. The stability results for the midbubble flows support the conjectured mechanism for

breakdown and it was found that the most dangerous disturbances have a short axial period and

azimuthal wavenumbers, I m[ = 1. The two dimensional flows we considered all had rather short

axial periods and these do not model the physical phenomena well. No conclusions as to the sta-

bility of these flows can be drawn because the normal mode analysis used here can only prove ins-

tability (by finding a growing disturbance). No evidence of instability was found but this may

well be because we failed to include enough axial modes in our expansion for the disturbance.

The study clearly points out that linear stability investigations for complex base flows are far

from trivial from a computational point of view.
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Figure 1. Axisymmetric bubble type vortex breakdown (after Leibovich [1978]).
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Abstract

The incompressible axlsymmetrlc steady Navler-Stokes equations and the

Euler equations are solved numerically to model the breakdown of a vortex.

The solutions obtained for the Euler equations show a "vortex breakdown-llke"

structure, their behavior is very different from that of the Navler-Stokes

solution which are obtained at low Reynolds number. The details of the

numerical algorithms used are presented, and the results obtained are compared

to those in the literature at the same Reynolds number.
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I. INTRODUCTION

Under certain conditions, it has been observed that the vortex shed from

the highly swept leading edges of a delta wing can change its structure

abruptly. The change is characterized by either a spiral deformation of the

vortex axis or the formation of a stagnation point along the vortex axis

followed by a bubble of reclrculatlng flow. Downstream of this structural

change, the flow appears to be highly sensitive to perturbations and is

usually turbulent. This sudden change in structure is known as vortex break-

down. The effect of vortex breakdown on the aerodynamics of a wing is very

important, since it degrades the performance of the wing and can set a limit

on the maximum attitude achievable by the wing. The phenomenon has been

studied, both experimentally and theoretically, for the last 30 years, but no

really satisfactory theory exists to explain it. The reader is referred to

the two reviews of the subject given by Lelbovlch [1,2].

Our interest in vortex breakdown was aroused by the claim of Hitzel and

Schmldt [3] that vortex breakdown could be predicted on the basis of the Euler

equations. We consider that the numerical studies of flow over a delta wing

by Hitzel and Schmidt are too superficial to warrant such a conclusion. The

flow over a delta wing at high angles of attack is too complex and requires

too many computational resources to allow an indepth study. How could the

problem be formulated such that it would lend itself to an investigation of

the relevance of the Euler equations vis-a-vis the Navier-Stokes equations? A

drastic simplification of the problem is required. Fortunately, experi-

mentalists have already achieved this by studying vortex breakdown within the

confines of cylindrical tubes. In addition, two numerical investigations of

the Navler-Stokes equations have been presented [4,5] for this problem; in one
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case [4] steady solutions were obtained, while in the other [5] the solutions

appeared unsteady. Perhaps an additional investigation could shed some light

onto this problem. The purpose of this work is, therefore, to investigate the

possibility of simulating vortex breakdown with the Euler equations, studying

the relation of these solutions to those of the Navier-Stokes equations and

comparing the latter to those in Refs. 4 and 5.

2. MATHEMATICAL FLOW MODELS

An incompressible steady axlsymmetric flow with swirl can be described in

terms of a streamfunctlon, _; azimuthal vortlcity component, _; and a

circulation, <. In cylindrical coordinates (x,r,8) the Navier-Stokes

equations are:

r (_) +_xx=r_r

(U_)r+ (W_)x+ ( )x

_ I <r + _xx) (2.1)+ C rr

where K = rv, _ = wr - Ux, and Re is the Reynolds number defined in terms

of the free-stream axial velocity, the vortex core radius, and the kinematic

viscosity of the flow. The velocity components in the x,r,8 directions are

denoted by w, u, and v, respectively. In terms of the streamfunction, w

and u are given by:
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_r
W _

r

(2.2)

_Jx
r

• _ _o
The inviscld equations are obtained from Eqs (2.1) by letting Re

In the invlscid limit, it is clear that the circulation becomes constant along

a streamline. It can also be shown that the total enthalpy, h, becomes

constant along streamlines. Moreover, the vorticity component _ can be

related to the gradients of the circulation and the total enthalpy by:

2 dh 1 d(<2)--
r_ = r (2.3)

d_ 2 d_

where the total enthalpy is given by:

h = p + ½ (u2 + v2 + w2) (2.4)

and p is the pressure• Notice that in the absence of swirl (v = 0), m/r

becomes constant along a streamline. We also notice that the contribution to

the vorticity (given by eqn. (2.3)) due to circulation term does not depend

on the sign of < but only on its magnitude. The functions K(_(x,r)) and

h(_(x,r)) are determined in terms of the specified inflow profile K(_(o,r))

and h(_(o,r)) at the upstream boundary, provided that _(x,r) is positive

(i.e., outside a recirculation bubble). Inside the bubble, the K and h

distributions are not known. In fact, within the inviscld model a

discontinuity is admissible across the streamline forming the bubble (the

separating streamline). One way to avoid this problem is to invoke analytic
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continuation of the functions _(4) and h(4) for negative 4. In the

present work, the dependence of < and h is known analytically for positive

4 from the assumed initial profiles. The same functional dependence is

assumed for negative 4. As a side point, it should be mentioned that since

vanishes along a separating streamline (K = 0 on the axis) and < is

analytically continued inside the bubble, it is reasonable to assume that

changes sign inside the bubble; and, as a consequence, the swirl velocity in

the bubble has the opposite sense to the swirl in the main flow. This is not

the behavior observed with the viscous problem at Re = i00 and 200.

In solving the Navler-Stokes equations, the viscous terms play an

important role in the neighborhood of the separating streamline by preventing

the formation of discontinuous solutions. A similar role is played by the

artificial viscosity terms in Euler calculations based on primitive variables

(i.e., velocity components). However, it may be argued that although the

artificial dissipation is critical in singling out a solution, the solution

may be independent of its form and magnitude. In the least square formulation

used in this work, there is noexpllclt or implicit artificial dissipation.

In fact, the truncation errors for the central differences to be used are of a

dispersive nature. It is, however, the assumption of analytic continuation

of < and h, for the inviscld problem, that rules out any discontinuities.

If we let the vortex core radius at the upstream boundary be r = I and

the radius at the farfleld boundary be r = R, the inflow profiles at x = 0

are given by:
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u(r) = 0 0 < r < R

v(r) = Vr(2 - r2) r _ 1

(2.5)
v(r) = V/r r > 1

w(r) = 1 0 < r € R

where V is the maximum circumferential swirl velocity at the edge of the

vortex core. These profiles are the same as those used in Ref. 4. From these

profiles, it follows that the circulation at the upstream boundary is given

by:

<2 = 16V242 (i - 4) 2 4 _ 1/2

(2.6)

<2 = V2 4 > 1/2

and that the vorticlty component is given by:

_2
r_ = 16V2 (I + 242 - 3_)(_-- 4) 4 < I/2

(2.7)

r_ = 0 4 > i/2

2

r the equation governingIn terms of a perturbation streamfunction _ = _--- 4,

the invlscid flow is:

_xx + r (_r/r)r = -4V2_2_ (2.8)

where
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a2 = 4 (I + 2_2 - 3_) _ _ 1/2

(2.9)

2
= 0 _ > 1/2

We notice that since _ vanishes at the axis and if we require _ to

vanish in the farfield, then the trivial solution _ = 0, corresponding to

cylindrical stream surfaces, is a solution of the above equation. We are,

however, interested in nontrivial solutions.

Using standard central difference approximation, equation (2.8) leads to

a nonpositive definite matrix which is difficult to solve by standard

relaxation schemes. To avoid this problem, a least-square variational

formulation is obtained for the function

II0(cwl )= - r + ( + u" r + (wr -u x + 4V2 _--_)2 d_

(2.10)

where _ extends over the domain of interest and u and w are the

perturbation velocities in terms of _. The first term in parenthesis in the

kernel of Eq. (2.10) corresponds to the definition of w', the second term

corresponds to the definition of u', and the last term corresponds to Eq.

(2.8). Each of these terms should vanish in the steady state. To form the

kernel of Eq. (2.8), each of the above terms is multiplied by an arbitrary,

but positive, weight function. The choice of r as the weight function for

the first two terms and the cube of unit length for the last term was made to

simplify the form of the resulting equations. From the function (2.10), the

following Euler equations are easily obtained [6]:
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T+ r :(w:ux)_+

p p

Uxx - ru = _x + Wrx + gx (2.11)

- grWrr rw = - _ + u -r xr

where

4V2_ 2
g - r

3. NUMERICAL FORMULATION

3.1 Inviscid Problem

p

Equations (2.11) are solved using a staggered grid for _, u , and w .

With _ defined at i,J nodes, u" between nodes of horizontal lines, and

w" between nodes of vertical lines, the resulting discrete equations are:

(_i+l,J - 2_i,j + _i-l,j ) [.r!,j _i,j+l - _ij _i,j - _i,j-i 4V2a 2

Ax2 + [ Ar2 ri,j+i/2 ri,j_i/2 ri, j gi,j

ri,  '-ui-'I2'J)
Cu:+_,,_,]- _u,.+,/_,j +u:_,,,_,j) . _'i+,,j- _'_.,]

- ri,jui+i/2,j AxAX 2 =

(w +l,j+I/2 - Wi+l,j-i/2 - wi,j+I/2 + w ,j_I/2 ) (gi+l,j - gi,j )+ +
AxAr Ax
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(w ,j+3/2 - 2wi,j+i/2 + wi,j-i/2) " _i,j+l - _i,j

- ri,j+I/2Wi,j+I/2 ArAr2

s p _,

+ (ui+I/2,j+l - ui-I/2,j+l - ui+I/2,j + ui-i/2,j) (gi,j+l - gi,j )
• "_xAr ' - Ar (3.1 )

where

xi,j = (i-l) Ax i = 1,2...Imax
(3.2)

ri,j = (j-l) Ar j = 1,2...Jmax

The first equation of (3.1) is solved for _ by the Zebra vertical line over-

relaxation algorithm; the second equation is solved for u by direct

inversion of horizontal lines; the last equation is solved for w by direct

inversion of vertical lines. For the first equation of (3.1), the boundary

condition consists of _ = 0 all around the domain. For the second equation,

boundary conditions are required at i = I+I/2 and i = Imax - (I+I/2).

Boundary conditions for u at i = 1+I/2 are obtained by solving

X _[u - (wr + g)] - [_x + ru ] = 0 (3.3)

at i = 2; while at i = Imax - (I+I/2), boundary conditions are obtained by

solving

[ux (w$+g)]+ +ru']=0 (34)
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at i = Ima x - i. Each term in square brackets appearing in Eqs. (3.3) and

(3.4) vanishes in the steady state. The change in sign between Eqs. (3.3) and

(3.4) is introduced to add to the diagonal dominance of the discrete

equations. Similarly, for w the equation

[w_- <ux- _)].[_r- _w'] 0 (3.5)

is solved at j = 2 to obtain w at j = i+I/2; while at J = Jmax - I, the

equation

[w_.- (ux- g)]- [_r- _] : 0 (3.6)

is solved to obtain w at j = Jmax - (1+I/2).

3.2 Viscous Problem

The first equation of (2.1) is dlscretized using second-order-accurate

central-dlfference formulas. To the second and third equations of (2.1) the

time terms m and
t <t are added to the left-hand side of each equation,

respectively. The convection terms of these two equations are dlscretized

using upwind flrst-order accurate formulas, while the diffusion terms are

dlscretlzed using second-order-accurate formulas. The time terms are

discretized using first-order backward derivatives. Unlike the invlscid

problem, a nonstaggered grid is used for the viscous problem. The discrete

equations are
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_i+l,j- 2_i,j + _i-l,j + ri,j (_--i,j+l-__ij _i,j- _i,j-l)= ri
Ax2 Ar---T ri,j+i/2 - ri,j_i/2 ,jmi,j

- ui + lui I -- -- ui,j - lui,jl _i,J+l -mi,j_i,j mi,j + ,j ,j _i,j _i,j-I +
At 2 Ar 2 Ar

+ wi,j+ lwi,jl_i,j- _i-l,j+ wi,j- lwi,jl_i+l,j- _i,j.
2 Ax 2 Ax

-- 2 _ 2 [ - 2_i + _i,j-I- ui,jmi,j + _i+l,j _i-l,j _ I _i,j+l ,j

ri,j 2Axr3i,j Re [ Ar2

+ mi,j+l - _i,j-i _ mi,j + mi+l,j - 2mi,j + mi-l,j

2 Ax2
2At ri,j ri,j

ui + lui - ui -lui 1 - i,j_i,j <lj+ ,j ,j ,j _i,j-1+ ,j ,j <i,j+l
At 2 Ar 2 Ar

wl,j+ lwl,jl_i,j-_i-l,j+ wi,j- lwi,jl_i+1,j-_i,j
2 Ax 2 Ax

i ..... I

_ 1 _i,j+l - 2_-i,j + _i,j-I _ _i,j+l - _i,j-I + Ki+l,j - 2_i,j + Ki-l,j

Re Ar 2 2Ar ri,j Ax 2
(3.7)

Quantities with a bar are taken at the new time or iteration level. The time

step is chosen equal to Ax. (Note that the identity u + w _ -u was used
r x r

to simplify the convective terms of the second equation above.) The Eqs.

(3.7) are solved by vertical line over-relaxation with the following boundary

conditions:
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At x = 0,
2

r

< --4V_(I - _) 0 < r < i

K=V 1 < r(R

60= _xx/r ;

at r = 0,

60=0;

at r = R,

_r
r

60=0;

at the outflow, x = L,

_x= 0

KX= 0

60 = 0
x

To improve the convergence rate of the viscous problem, the acceleration

method described in Ref. 7 was used.
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4. DISCUSSIONOF RESULTS

In order to measure the deviation of a solution from the trivial
2
r

solution _ = _--, we define the norm of the perturbationstreamfunctionas

i=l j=l Tij) /(ImaxJmax) (4.1)

Tests were performed to determine the required number of mesh points and the

required locations of the farfield boundaries to achieve a certain level of

accuracy. Two of these tests are illustrated in Figures 1 and 2 for the

Inviscid problem. Figure i shows the asymptotic behavior of the

streamfunction norm as the number of mesh points in the axial direction is

increased, holding all other parameters fixed. Figure 2 shows the effect of

the location of the outflow boundary on the norm. From this study, it was

concluded that for the inviscid problem a minimum spacing Ar = Ax = 1/16

was required and that R ) 2, L > 4 was also required. The same

requirements were found for the viscous problem for I00 < Re < 200, except

that the location of the outflow boundary had to be increased to L ) I0.

Figures 3 and 4 show that the same solution is obtained for the inviscid

problem with L = 5 and L = 10. For all cases presented, residuals were

driven to machine zero, O(10-12).

A summary of the results is given in Figure 5. This figure shows the

norm defined by Eq. (4.1) as a function of the square of the swirl parameter

V. Two nontrivial branches were found for the inviscid problem. The first

branch, indicated in the figure by the closed circles, corresponds to

axisymmetric vortex breakdown-llke solutions. Figs. (3), (4), and (6)

illustrate the streamline topologies found in this branch. The same branch
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was found by Ta'asan [8] using a multlgrld algorithm to solve Eqs. (2.8). As

shown in Figure 5, our results and those of Ta'asan are in good agreement. The

problem with this branch is that as the swirl parameter is increased, the size

of the bubble decreases. This behavior contradicts the experimental

observations. The second invlscid branch, indicated by the open circles,

intersects the first at approximately V2 = 0.575. For values of V near the

intersection of the two branches, the numerical algorithm developed a limit

cycle where a single bubble splits in two. The two bubbles later coalesce and

the cycle is repeated. The limit cycle prevented convergence to a steady

state. Ta'asan only encountered the first branch and was able to continue

this branch down to the axis, as shown in Figure 5. The streamlines

corresponding to the second branch are illustrated in Figure 7. Obviously,

this _ranch is not of the vortex breakdown type. It is believed that the

second branch, although a solution to the least square problem, is not a

solution of the original inviscld problem (Eqs. 2.1 with Re + _). The

evidence for this comes from inserting the least-square solutions into the

original equations and evaluating the residuals. When this is done for the

first branch, residuals of the order of Ax2 are found. For the second

branch, the residuals are of order Ax, and remain at the same level when the

mesh is refined.

For the viscous problem, results are presented in Figure 5 for Reynolds

numbers I00 and 200. The axial velocities obtained here and those obtained by

Grabowskl and Berger [4] are compared in Figure 8. The agreement is good when

we consider that Grabowski and Berger used a much coarser but highly stretched

mesh, slightly different outflow boundary conditions, and did not converge

their solutions to the same level as in this work. It also appears that the
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results obtained by Krause et al. [5] are anomalous, since they were unable to

obtain steady-state solutions for the same cases studied here. Their failure

to reach a steady state could be a result of the outflow boundary being at

L = 5, too close to the inflow boundary. In our work, we found this location

for the outflow boundary to lead to a large open bubble (see Figure 9), but

the solution was steady nonetheless.

Figure I0 illustrates the changes in the bubble structure as the swirl

parameter is increased with Re = I00 held fixed. The same is illustrated in

Figure II for Re = 200. It is interesting to see the very rapid change in

the norm that occurs at Re = 200 and V2 _ 1.27. (See Figure 5.) This

behavior opens some questions about possible hysteresis and bifurcation at

higher Reynolds number. However, our present approach is not capable of

handling much higher Reynolds numbers well; and, therefore, these questions

will be considered at a later time. Figure 12 shows the minimum value of the

axial velocity component on the axis as a function of V for Reynolds numbers

of I00 and 200. The point at which the recirculatlon bubble first appears

corresponds to the first intersection of these curves with w = 0. The second

intersection corresponds to the point at which the reclrculatlon bubble lifts

off the axis.

5. CONCLUDING REMARKS

Numerical solutions of the Euler equations were obtained and a vortex

breakdown-like topology was observed. Those solutions were in good agreement

with those obtained by Ta_asan [8]. For the Navier-Stokes equations,

solutions were also obtained with vortex breakdown-like topology. These
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latter solutions were in good agreement with the results reported in Ref. 4.

The behavior of the inviscld solutions with increasing swirl was not

consistent with the behavior of the Navier-Stokes solutions at low Reynolds

number nor with experimental observations. (Experimental results showing

bubble-type vortex breakdown are usually obtained at higher Reynolds numbers.)

A future study will investigate the high Reynolds number limit of the Navler-

Stokes equations and compare it to the Euler solutions obtained here.
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Figure I. Convergence of the norm of the inviscid streamfunction _ with

increasing resolution in the axial direction, holding L = 5,

R = 2, V2 = 0.4, and Ar = 1/16 fixed.
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Figure 2. Effect of increasing the length of the domain on the norm of the

inviscid streamfunction _, holding R = 2, Ar = Ax = 1/16.
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Figure 3. Computed streamline pattern for V2 = 0.2, L = 5, R = 2, and Ax = Ar = 1/16.

oo

Figure 4. Computed streamline pattern for V2 = 0.2, L = I0, R = 2, and Ax = Ar -- 1/16.
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Figure 5. Norm of the streamfunction _ as a functionof V2.
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Figure 6. Computed streamline pattern for V2 = 0.5, L = 5, R = 2,

and Ax = Ar = 1/16.

Figure 7. Computed streamline pattern for V2 = 0.9, L = 5,

R = 2, and Ax = Ar = 1/16.
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Figure 8. Comparison f velocity on vortex axis between present results

(solid line) and those of Ref. 4 (dashed line).
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Figure 9. Computed streamline pattern for Re = 200, V = 0.8944, L = 5,

R = 2, and Ax = Ar = 1/16. The shortness of the domain results

in a large open bubble. This case corresponds to the same

conditions of Figure 4.14, Ref. 9.
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(a) V = 0.9

(b) V = 1.0

m

(c) V = 1.2

(d) V = 1.3

(e) v = 1.5

Figure i0. Computed streamline patterns for Re = I00, L = I0, R = 2,
Ax = Ar = 1/16, and increasing values of V. Details of the
bubble structure are shown on the insets.
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(a) v-- 1.0

(b) V = I.I

(c) V = 1.12

(d) V = 1.15

Figure 11. Computed streamline patterns for Re = 200, L = I0, R = 2,

Ax = A r = 1/16, and increasing values of V. Details of the
bubble structure are shown on the insets.
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HULTIGRIDMETHOD FOR A VORTEX BREAKDOWNSIMULATION

Shlomo Ta'asan
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ABSTRACT

In this paper we study an invlscid model for a steady axlsymmetrlc flow

with swirl. The governing equation is a nonllnear elliptic equation which has

more than one solution for a certain range of the swirl parameter. The

physically interesting solutions have closed streamlines that look llke vortex

breakdown ("bubble"-llke solutions). A multlgrld method is used to find these

solutions. Using an FMG algorithm (nested iteration), the problem is solved

in just a few multlgrld cycles.
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I. INTRODUCTION

In this paper we study an inviscidmodel for steady axlsymmetricflow with

swirl, which has solutionswith closed streamlines. These solutionshave a

structure similar to that observed experimentallyas "bubble"-likesolutions

when vortex breakdownoccurs [4].

Using a streamfunction-vorticity formulation to the axisymmetric

incompressibleNavier-Stokesequations,it was found [3] that one can reduce

the problem to a single nonlinearellipticequationfor the streamfunction,in

case of a specialinflow flow and some regularityassumptionon the vorticlty.

This nonlinear elliptic equation for the streamfunctionhas more than one

solution. The trivial, represents a uniform flow and is of no physical

interest. The other shows a "bubble"-likestructure, the target of our

numericalstudy.

In solving the problem numerically,the problem is reformulatedin terms

of a perturbed streamfunction,i.e., the deviationfrom the trivialsolution.

In terms of this perturbedstreamfunction,the trivialsolutionis represented

as an identicallyzero solution. Our goal then is to find non-zero solutions

which have "bubble"-likeform.

The approachwe have taken in finding these solutionsis to seek first for

a bifurcationpoint from the trivial branch of solutions. By introducinga

continuationparameter,we can then start marching on a branch of non-trivial

solutions that bifurcate from that point. One choice of a continuation

parameteris arc length [I]. Another choice,which is simplerbut may not be

good in general, is the norm of the perturbed streamfunction. The natural

parameterin the problem,a swirl velocityparameter,is not good enough since

it cannot "choose" the non-zero branch as can the former parameter. We
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therefore choose the norm as a continuation parameter, making the swirl

velocity parameter an unknown to be determined by the solution.

The multlgrid approach used for solving the problem is similar to the one

used in [5] for solving the Bratu problem. The relaxation in this method

consists of three steps: (i) a local relaxation to smooth the error; (li) a

step to update the norm of the solution; and (lii) a step to update the swirl

velocity parameter. An FMG algorithm (nested iteration) is used. That is, a

solution for the prescribed norm is found first on the coarsest level, and

then interpolated to finer levels, where on each level a few basic multigrid

V-cycles are performed before proceeding to yet finer level.

The coarsest level, when solved to get an initial approximation for finer

levels, uses a continuation method. Here the problem was solved first for a

small norm, and then the norm is gradually increased until the prescribed norm

is reached. Each time the norm is increased, the solution of the previous

step was used as initial approximation. By solving for a bifurcation point

from the trivial solution, a first approximation for the smallest norm problem

was obtained.

Once a solution on the coarsest level is obtained for a prescribed norm,

it is possible to solve finer grid problems without continuation.

The same problem we are discussing here was treated by a completely

different method and is reported in [3]. There, a single grid method was used

with a least squares formulation of the problem. The amount of work needed

for that approach is considerably larger than the one reported here. Computed

solutions by the two different formulations are in good agreement.
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2. ON DERIVATION OF THE GOVERNING EQUATION

We summarize here the derivation of the equations used in the numerical

process as given in [3]. In cylindrical coordinates (x,r,O) the

incompressible Navier-Stokes equations can be written in terms of a stream-

function _, vorticlty _, and circulation k as

_r
r-- + _ = rm (2.1a)r r xx

)r (W_)x k2 1 [ I m ]
-- = -- _ + -- _ - -- + _ (2.1b)(u_ + + 3 Re rr r r 2 xx
r x r

+ wk - 1 [krr i k + k J (2.1c)Ukr x Re - _ r xx

where k = rv, _ = wr - u and Re is the Reynolds number The velocityX

components in the x,r,0 directions are w, u, v, respectively, of which w

and u are given in terms of the streamfunction by

_r
w - (2.2a)r

_x
u = -_ ,--_,rg.gh_r

It is shown in [3] that in the inviscid case (Re = _), one finds that the

circulation k and the vorticity g are functions of the streamfunction

only. Therefore, k and _ can be determined outside the "bubble" from the

inflow boundary condition. In the model discussed it is assumed that the same

functional dependence of k, _ on _ is true also inside the bubble
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(negative 4)- This imposes some regularity on the solution.

For the inflow conditions

V r(2 - r2) r < iv(O,r) = (2.3a)

|V0/r r > i,

w(0,r) = I, (2.3b)

it is possible to write k and m in terms of the streamfunction as

I 2 42(1 _ 4)2

16 V0 4 < 1/2
k2(O,r) = (2.4a)

V_ 4> I/2

160 V2( 1 + 242 - 3¢)(r2/2 - 4) _ < 1/2

m(0,r) = (2.4b)

 >i/2

and therefore, the equation obtained for _ is

r(_r/r) r + 4x x = - 4V_ _2(_)(_ _ r2/2) (2.5a)

where

4(I + 242 - 34) _ _ I/2

_2(_) = (25b)

0 i/2

The reduction of the governing equations to a single nonlinear elliptic

equation is possible if the relation 4 = f(r) in the inflow boundary can be

inverted to get r = g(_). When g(_) is introduced in the expression for
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v at the inflow boundary, one has v as a function of _ in that boundary

and therefore k(_), m(_). Note that, in general, one cannot expect to

analytically invert the relation _ = f(r), and so the reduction of the

governing equations is possible only for very special inflows.
2

r

Numerical experiments were done in terms of € = _ - _-- , which is a
2

r

perturbation from the trivial solution _ = _-- that represents a uniform flow.

3. NUME_CAL AI;_;O_THM

3.1. Discretization

The equation for € = _ - r2/2 is given by

r(_ Cr)r + Cxx + 4 V02 a2(€)€ = O, fi = (O,a) x (O,b) (3.1a)

€ = 0, on _ (3.1b)

where

2 2
r r

4 € - 1 +_-- (2€ - 1 + r 2) € +_- < 112

2(¢) = (3.1c)
0 otherwise

Equations (3.1) are discretized as

ch h h rj [

i+l,j - 2€ij + ¢i-l,j + 2 h h

h 2 7 rj+l + rj (¢i,j+l - ¢ij )
t

_ 2 h _ ch ]] + 2 a2( h h _h

rj + rj_l(¢i j i,j-l-j VO ¢ij)¢ij = O, in (3.2a)

h

¢ij = O, on 9flh (3.2b)
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where _h = {nh,mh), 0 < nh _ a, 0 < mh < b}.

3.2. General Strategy for Solving the Discretlzed Equations

Equation (3.2) has the trivial solution _h = 0 for any V0. This

solution corresponds to a uniform flow and is not interesting physically. We

seek solutions which represent vortex breakdown so that fl_hll2_ 0, where

2
tI_hiL2 = h2 E _ij" (3.3)

Iterating on equation (3.2) by any iterative method may lead us to the trivial

solution. In order to rule out this possibility, we specify the norm of the

discrete solution we want to find, while making free the swirl velocity

parameter V0.

To summarize, we solve equation (3.2) for (_h, V0 ) under the

constraint

II_h112= go' (3.4)

where go is given.

A relaxation scheme for (_h,v 0) in equation (3.2) together
with the

constraint (3.4) is described next.

3.3. Relaxation

Equations (3.2), (3.4) form a nonlinear system of equations for ((h,V0).

The relaxation used for this system has three steps: (i) a local process for
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smoothing _h in equation (3.2); (ii) a global change to satisfy (3.4); and

(iii) updating the swirl parameter V0. That is, one relaxation consists of

doing (i), (ii), and (iii) successively.

(i) local relaxation

Scan the point (i,j) E _h in lexicographic ordering; at each point

h

(i,j) solve (3.2) approximately for _ij by applying one Newton

iteration.

(ii) global step

Compute B = /g0/11_h112 •

Then make the change

h h

$ij + B $ij ' (i,j) E _h.

(iii) updating V0

Change V0 such that the following equation holds

<Lh _h + 4V_ 2(@h)@h, lh> = <fh,@h> (3.5)

where Lh _h is the discretization of L_ = r(_ Ir)r + _xx' <'''>

denotes the inner product, <u,v> = h2 [ uij vii , and fh is theij
right-hand side of equation (3.2). (In a multigrid process fh is

nonzero on coarse grids.)

We now come to the description of the multigrid algorithm used to solve (3.2),

(3.4) for (_h, VO).
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3.4.1. Basic Cycle:

Given a sequence of discretlzations with mesh sizes

hr > h2 >-..> hm, where hk = 2hk+ I. The hk-grid equation is generally

written as

Lk _k = fk (3.6)

where Lk approximates Lk+l (k < m) (e.g., they all are finite-difference

approximations to the same differential operator). The algorithm for

improving a given approximate solution _k to (3.6) is denoted by

_k + MG(k, _k, fk) (3.7)

and is defined recursively as follows:

If k = i, solve (3.6) by several relaxation sweeps; Qtherwise do steps

(A) - (D):

(A) Perform _I relaxation sweeps on (3.6), resulting in a new

approximation _.

(B) Starting with _k-i = Ikk-1 _, perform one cycle

_k-I + MGIk_I ' _k-l, Lk-I _k-I + l_-l(fk _ Lk_)).

(C) Calculate

k -_k-I k-i _).Sk=Tk+ ik_lt _ik

(D) Perform v2 additional relaxation sweeps on (3.6) starting with

sk and yielding the final _k of (3.7).
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k-i I_-iIn this algorithm Ik , are flne-to-coarse grid transfer operators;

k is an interpolation operator. We refer to the above cycle as MG(_I,92).Ik- I

In the notation of this section (3.6) includes both equations (3.2) and (3.4).

The basic cycle described above is for improving a given approximation on

level k. The full multlgrld (FMG) process involves solving the problem on

the coarsest grid, interpolating it to finer grids, and making the cycle

MG(_I,9 2) a few times after each refinement.

3.4.2. Full Multlgrld Algorithm (FMG)

I. Solve (3.6) for k = i, using a continuation method (see remark

below).

2. Set k = k + I and

_k = _k-lk _k-l, where _k-lk is a blcublc interpolation.

3. Perform T(k) times the cycle

_k + MG(k, _k, fk).

4. If k < m, go to step 2; otherwise stop.

A Remark on Step 1 of the FMG Algorithm (Continuation Method)

Since the problem involved is a nonlinear one, and we are using a Newton

iteration, a good initial approximation may be needed to get fast convergence

for k = I (the coarsest grid). This has been achieved by using a continuation

process where we solve first for a small norm li_hil2, then gradually

increasing it until the prescribed norm is obtained. Each time the norm is

increased, the solution of the previous step is used as an initial
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approximation. In order to get a good initial approximation for the smallest-

norm problem, we have solved for the bifurcation point from the trivial branch

of solutions.

3.5 Solving for the Bifurcation Point

At a bifurcation point (i*, V_), the linearized problem of (3.1) must

have a zero eigenvalue, and the corresponding eigenfunctlon gives rise to a

second branch of solutions. Since i = 0 is a solution for any V0, we may

try to find a bifurcating branch from the trivial one (0,V0). The

linearized equations around (0,V0) are given by

Wxx + r(l Wr)r + 4v2 _2(0)W = 0, in _ (3.8a)

W = 0, on _. (3.8b)

If there exists a bifurcating branch from the trivial one (0,V0) , equation

(3.8) has a solution (W ,V O) with lIW 112 = 1 where II IL2 denotes the L2

norm.

We discretize (3.8) in a way similar to the discretization of (3.1). The

constraint

tlwhll2 = I,

is added to ensure a non-zero solution to the problem. The process of solving

the eigenvalue problem is identical to the process of solving (3.2), (3.4).
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Once this linear eigenvalue problem is solved, we can use _0 = _W as

an initial approximation for our original problem with a prescribed norm of

€. The sign is chosen such that _0 has negative values, to ensure that the
2

r

total streamfunctlon _ =_--+ _ will have closed streamlines with negative

values (the bubble).

4. NUMERICAL RESOLTS

Experiments were performed with equations (3.2), (3.3) using FMG

algorithm of Section 3.4.2. In these experiments the domain was

n h = {(nh, £h), 0 < nh < 5, 0 < £h < 2}.

Three levels were used in the multigrid algorithm where the finest grid

problem has mesh size 1/16. On the coarsest level 20 relaxations were

performed while on finer grids Vl = _2 = 3, 7(k)= 4. In all numerical

k-I I-4_-1 k-1experiments Ik = is injection, Ik is bilinear interpolation, and

_-I is bicubic interpolation.

2
Tables 1-IX contain the L2-norm of the residuals and the values of V0

at the end of each cycle on the finest grid. Cycle #0 refers to the

approximation obtained from the previous level as an initial guess. Figures

1-9 show the streamlines (contours of q) for the different cases. The value

of V0, the swirl parameter value for which bifurcation occurs is V0 = 1.0069

(computed on coarsest level).

The experiments clearly show that the multigrid method suggested is very

efficient. In fact, as seen by the convergence history for V2, it is enoughu
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to take y(k) = 2, instead of _(k) = 4, i.e., by 2 FMG cycles the problem is

already solved.

The results show that bigger bubbles are obtained for smaller swirl

parameters, contradicting to what one would expect. This may be the result of

the assumption made in the model, that the same functional dependence of

k, _ on _ holds inside as well as outside the bubble. A future study will

investigate this point by solving the full systems (2.1), making no extra

assumptions.
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Table I. [l_htl2 = .005 Table II. ll_hlf2 = .05

2 2
cycle # lIResidualsll2 V0 cycle # llResldualsll2 V0

0 .362 (-I) .95088 0 .948 (-i) .68322

1 .986 (-3) .96069 1 .232 (-2) .68962

2 .843 (-4) .96039 2 .251 (-3) .68939

3 .148 (-4) .96041 3 .113 (-3) .68941

4 .745 (-5) .96042 4 .918 (-4) .68941

Table III. ll_hfl2 = .ii Table IV. II_h[l2 = .15

2 2

cycle # [tResidualsfl2 V0 cycle # JIResldualsIJ2 V0

0 .122 .59214 0 .135 .48347

1 .233 (-2) .54739 I .243 (-2) .48803

2 .215 (-3) .54732 2 .168 (-3) .48798

3 .615 (-4) .54733 3 .474 (-4) .48798

4 .542 (-4) .54733 4 .425 (-4) .48798

Table V. il_hll2 = .2 Table VI. ll_hll2 = .4

2 2

cycle # ffResiduals_f2 V0 cycle # llResiduals[l2 V0

0 .150 .42902 0 .192 .30435

1 .242 (-2) .43301 1 .271 (-2) .30725

2 .193 (-3) .43294 2 .239 (-3) .30719

3 .366 (-4) .43294 3 .177 (-3) .30719

4 .266 (-4) .43294 4 .176 (-3) .30719
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Table VII. i_0h_L2 = .6 Table VIII. ll0hll2 = 1.0

2

2 cycle # llResldualsll2 V0cycle # liResldualslt2 V0

0 .230 .24006 0 .295 .17139

1 .303 (-2) .24335 1 .385 (-2) .17303

2 .218 (-3) .24231 2 .363 (-3) .17302

3 .188 (-3) .24231 3 .294 (-3) .17302

4 .175 (-3) .24231 4 .278 (-3) .17302

Table IX. llohil2 = 2.0

2
cycle # IIResldualsJl2 V0

0 .428 .10176

1 .701 (-2) .10276

2 .777 (-3) .10275

3 .584 (-3) .10275

4 .574 (-3) .10275
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CONSTRUCTIONOF

HIGHER ORDER ACCURATEVORTEXAND PARTICLE METHODS

R. A. Nicolaides

Carnegle-Mellon University

ABSTRACT

The standard point vortex method has recently been shown to be of high

order of accuracy for problems on the whole plane, when using a uniform

initial subdivision for assigning the vortlclty to the points. If obstacles

are present in the flow, this high order deteriorates to first or second-

order. This paper introduces new vortex methods which are of arbitrary

accuracy (under regularity assumptions) regardless of the presence of bodies

and the uniformity of the initial subdivision.

This work was supported by the Air Force Office of Scientific Research under
Grant AFOSR-84-0137.
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I. INTRODUCTION

There has been a growing interestrecently in the theory and application

of point vortex methods to the numericalsolution of the incompressibleEuler

and Navier-Stokesequations. The impetus for the Euler case stems from the

basic work of Dushane [6], Hald and Del Prete [7], and Hald [8], the Fourier

analysis of Beale and Majda [I], [2], [3], and the Sobolevspace approach of

Raviart [12] and Cottet [4]. A recent paper by Cotter and Gallic [5] extends

the latter approach to linear Burger's type equations with "viscosity"

accounted for by splitting the convection and viscous parts and using a

Green's function for the viscous computation. A method for introducing

viscosity into particle methods for compressibleflows is given by Monaghan

and Gingold [9]. See also [i0] and [ii]. Apart from the first three of these

references, the authors all obtain high order of accuracy error estimates,

limited mainly by the regularity of the exact solution of the continuous

equations. Unfortunately, the possibility of obtaining this accuracy is

dependent on the existence of expansions similar in nature to the Euler-

MacLaurin sum formula. If, for any reason, it is not possible to assert the

existence of such expansions, the accuracy drops to first- or second-order,

depending on the exact details of the algorithm and which errors are being

estimated. If general boundaries(bodies) are present in the flow field, or

if the initial subdivision of the flow field is not uniform, the necessary

expansionswill most likely cease to exist. Then questionsarise as to how

hlgher-order schemes may be constructed,and more important whether it is

worthwhile to use them in view of the extra expense which is involved. The

purpose of the paper is to give some possibleanswersto these questions.
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In Section 2, the basic equations are given, and the simplest particle

method is defined for comparison with some higher-order schemes. These

schemes are introduced in Section 3. There, three methods for generating

schemes of arbitrary accuracy are provided. An appendix contains some

technical results about solving scalar hyperbolic equations with

distributional data.

This paper is of an algorithmic nature and does not contain numerical

results or precise error estimates. These will appear elsewhere.

2. MODEL PROBLEM

The incompressible Euler Equations in vorticity-velocity form are

mt + (Um)x + (Vm)y = 0 (2.1)

in

div(u,v) = 0 : curl(u,v) = _ (2.2)

with initial condition

m(x,y,0) = m0(x,y). (2.3)

The basic ideas for constructing higher-order schemes will be shown for (2.1)

and (2.3), with (u,v) assumed given. For these linear problems it is not

necessary to assume that (u,v) is solenoidal.

In this setting, we will now define the basic particle (or point vortex)

method. Subdivide the plane into squares of side h, number the squares

1, 2, 3,... in some convenient way and define a distributional approximation
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to _0(x,y) by

m0h(x,Y) = [ h2 m(xi,Yi) _(x-xi, y-yi) (2.4)i

where (xi,Yi) denotes the center of the ith mesh square, and 6(x-xi,y-yi)

denotes the Dirac delta function with pole at (xi,Yi). Now solve (2.1) and

(2.2) with m0(x,y) + m0h(x,y). The well known solution to the latter

problem is the distribution

mh(x,y,t) m [ h2 m(xi,Yi) _(x- X(xi,Yi;t), y - Y(xi,Yi;t)) (2.5)i

where X(xi,Yi,t ) denotes the solution of the characteristic equation

dX/dt = u(X,Y,t) X(0) = xi

and correspondingly for Y.

No use is made of the uniformity of the mesh in deriving (2.5). For a

nonuniform mesh, h2 in (2.5) is the area of the appropriate mesh square. In

the error formulas below, h denotes the largest mesh length.

It is immediately clear from this definition that the particle

approximation is non-dissipative, in the sense that no artificial viscosity is

introduced because after the discretization of the initial condition is made

(2.1) is solved exactly. In practice some ODE solver must be used to compute

the trajectories, but in theory its error can be made arbitrarily small. This

principle, of solving the exact equation with approximte data, seems to be

common to particle methods generally and distinguishes them from finite
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difference and finite element methods. The latter, at least, solves an

approximate equation with exact data.

A rigorous error analysis of the method Just defined can be found in

[12]. This analysis is too complicated to reproduce here. Nevertheless, we"

need some simple guide to compare the accuracy of various schemes. It seems

reasonable to look at the difference m0 - _0h against a test function as a

measure of "truncation error" since it is the only error made. Thus we

define, for a given method of approximation and a given function _0 with

compact support _ (where area (_) = 1 say)

Th(_) = ff - _0h)_dxdy" (2.6)

Here, the integration is performed over _. The restriction that _0 has

compact support is a matter of convenience rather than necessity and could be

replaced by sufficiently rapid decay at large distances from the origin.

As an example, consider (2.4). Then we find

Th(_) = ff _0 _dxdy - [ h2(o0 O)(xi,Yl). (2.7)
i

This shows that a midpoint rule numerical integration is being used to

approximate the integral, and under smoothness conditions it follows that as

h+0

Th(_) = 0(h2).

Clearly, hlgher-order integration formulas can be compared with each other on

this basis. For a 2 x 2 product Gauss rule in each element, for example, we

have Th = 0(h4).
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Next, recall the important fact that in the nonlinear case it is

necessary to compute the velocity field at each timestep by solving (2.2).

Assume that this is to be done using the Green's function. Let W denote the

number of arithmetical operations required to compute the velocity field at

each particle position. If there are N particles, then W = CN2/2, for

some constant C. Below, we will use W as a standard unit of work to

compare various new algorithms. For the Gauss case therefore we have a work

count of 16W. From this we see that use of a higher-order rule does not

necessarily assure a greater computational efficiency for typical values of

h. In the next section, methods for obtaining high-order accuracy without

such a large increase in the cost of the computation are defined.

3. HIGHER ORDER METHODS

The preceding remarks suggest that increasing the order of accuracy by

adding more integration nodes may not be a good idea. It is natural to try to

do the same thing by increasing the amount of information associated with each

node. Specifically, in this section we shall associate with (xl,yl) , mth

order distributions of the form

De 6(x-x i y- yi ) (3.1)Mi(x,y) _ _ wia , •

I l!m

In (3.1),which generalizesthe simple 6 functionsin (2.4),_ denotes a

multl-lndex,and (xi,Yi) E _. Choice of the weights wla and the nodes

(xl,Yl) can be made in many ways. We shall give three methods in this

section.
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Method 1 (Direct Integration):

In this method, (xi,Yi) are the corners of the elements, each of which

has associated with it an expansion of the form (3.1). The weights in the

expansion are chosen so that when _0h is substituted into (2.6), the second

term gives a rule for integration of the function (m0 _)' involving its

values along with those of its derivatives through order m at the nodes. We

shall consider the cases m = 0 and m = 1 in more detail.

Let m = 0. A rule for a square of side h with corners at P, Q, R, S

which is exact for bilinear functions is

ff f dxdy = (h2/4) (f(P) + f(Q) + f(R) + fCS)). (3.2)

Using this as a composite rule implies the choice wi0 0 = h2 m(xi,Y i) so

that we define

Mi(x,Y) _ h2m(xi,Y i) _(x-x i, y-Yi ). (3.3)

Since this gives a rule which is locally exact for linear functions but not

for all quadratics its accuracy is 0(h 2) in the sense of (2.6) while the

work is IW. This is essentially no different from the mid-point rule. In

fact this rule is clearly analogous to the trapezoidal rule.

For a quadrilateral mesh, a bilinear mapping can be used to map the

quadrilaterals onto a standard square in which (3.1) can be used. In some

circumstances it may be desirable to use a triangular mesh instead of the

quadrilateral one. An 0(h 2) rule for triangles analogous to (3.1) can then

he used, avoiding the need to map the domains.
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Now let m = I. Analogous to (3.2) we have the formula

ff f dxdy = A(f(P) + f(Q) + f(R) + f(S))

+ B(-fx(P) + fx(Q) + fx(R) - fx(S)) (3.4)

+ C(-fy(P) - fy(Q) + fy(R) + fy(S))

where A = h2/4, B = C = h3/24, and P, Q, R, S denote the corners of the

square -h/2 J x, y J h/2 labelled counterclockwise starting from the top

right. Analogous to (3.3) there is the expression

Mi(x,Y) _ _ wi= Da _(x-x i, y-yi ). (3.5)

I I!I

In (3.5), the coefficients are computed from the composite rule based on

(3.4). For the uniform square mesh we are using for illustration, the weights

are

wi00 = A'_0(xi,Yi) + B'_0x(Xi,Y i) + C'_0y(Xi,Y i)

Wil 0 = -B'mo(Xi,Yi)

Wio I = -C'_o(Xi,Yi).

(3.4) is exact for cubic polynomials. It follows that this method is accurate

in the sense of (2.6) to 0(h4). To compute work units for this scheme, we

observe that although there are only = N particles there is some extra work

associated with computation of derivatives of the velocity kernel. It turns
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1

out that for this scheme the work units are < 2 _ W, a satisfactory figure.

There is also some additional work required for computing the coefficients of

the derivatives in (3.1). This amounts to having to integrate two more

systems each of two odes, in addition to the characteristic odes (see

appendix).

As in the previous case, rather than use a quadrilateral mesh it might

sometimes be better to use a triangular one.

For a square mesh, the m = 1 scheme just discussed has an interesting

property in the uniform case. This is the following: due to cancellations,

the composite rule has weights of zero attached to the derivative unknowns at

interior vertices. Hence the higher accuracy is achieved by corrections at

the boundary. But this implies the use of a Euler-Maclaurln type expansion.

Thus, if uS has s continuous derivatives in _ and compact support, by

using nodal derivatives up to this order we can get accuracy 0(h s+l) merely

by using the m = 0 scheme, since this is what the composite scheme reduces

to on a uniform mesh in that case. This is another way to look at the results

of [I] - [3].

Method 2 (Finite Element Approach):

The approach here uses a nodal finite element basis in the following

way: let {_i_} I_I < m, i = 1,2,-.., be the standard nodal basis functions

associated with the ith node (xl,Yi) of a triangulation of the plane with

maximum edge length h. These functions satisfy conditions of the form

D8 a8
_i_(xj,Yj) = Aij,
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_8 as
where Aij is a Kronecker delta. Then we define wi_

wi= = (-l)l_Iff _i_(x,y) _0(x,y)dxdy (3.6)

where the integration is over the whole plane. We now have

ff _0h(x,y) p(x,y)dxdy = ff [ [ wi=D_(x-xi, y-yi )

i

x _(x,y)dxdy, _ _ E Cm (_)

(3.7)

= I l (_l)l_l D_Wi= _(xi'Yi)

= ff _0(x,Y) sh(x,y)dxdy

where _h is the finite element interpolant of _ on the given

triangulation. Equation (2.6) then becomes

•h($) = ff _0(_ - _h)dxdy. (3.8)

Since the error I$ - _hl is formally 0(h r+l) where r is the degree of

the highest order full polynomial space used, we can say here that Th is of

this order.

This type of scheme differs from direct integration schemes in that no

approximation of _0 is made. The test function only (often a convolution

kernel in practice) is approximated and the result is integrated exactly.

Because of this property, the rigorous error estimates for these methods
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require minimal regularity on _0 unlike the direct integration methods where

to achieve high accuracy requires _0 to have several smooth derivatives

throughout _. The 0(h r+l) estimate is in fact valid even if we know

only _0ELI(_)" If _0 has extra regularity it can be exploited to get

higher accuracy by going to negative norm estimates of the finite element

error. Smoothness of _, however, is certainly required.

Two examples analogous to those considered above are the case of

continuous linear elements on triangles, for which we can expect 0(h 2)

accuracy with IW work units, and full cubics - defined in terms of

derivative unknowns at vertices, and function values at vertices and centroid

for which the work will be somewhat larger than the values used so far (about

1
I0 _ W units).

In general, the full range of finite element spaces is available for use.

Method 3 (Taylor/Moment Expansions):

Here we begin by subdividing the plane into arbitrary elements with mid-

side nodes and arbitrary element shapes allowed in principle. Next, we define

_I a2
_I ! a2! wi_ = (-I)I_I ff(x-xi) (y- yl) _0(x,y)dxdy (3.9)

in which (xi,Yi) is an arbitrary point within the ith element, and the

integration is over the ith element. The wi_ are proportional to the

moments of m0 restricted to the ith element, about (xi,Yi). It follows as

above, that

f_ m0h(x,y) _(x,y)dxdy = f_ m0(x,y) _[m](x,y)dxdy (3.10)
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where _[m](x,y) is the plecewlse polynomial function, in general

discontinuous, equal in the ith element to the Taylor expansion of _(x,y)

through mth order terms, about the point (xi,Yi). In this sense the local

moment expansion defined by (3.1) and (3.9) "duallzes" into the local Taylor

expansion about (xi,Yl).

To get the accuracy of this scheme, we substitute into (2.6) to find that

_h(¢) = ff m0(¢ - ¢[m])dxdy

so that denoting by h the largest linear dimension of the elements, we

obtain accuracy 0(hm+l).

The moments method also needs only minimal regularity on m0 for full

accuracy to be obtained. In practice, if m = i the point (xi,Y i) should

be chosen to be the center mass of m0 because then wi_ = 0 for I=I = i,

so we get second-order accuracy for the same work as with the lowest-order

scheme. Using quadrilaterals for elements, with N vertices there are

approximately N elements and so N particles. For 0(h 3) accuracy the

interaction work count is 5W, and for 0(h 4) is 8W.

4. FURTHER REMARKS

There should be no difficulty in extending the ideas of Section 3 to

three-dimensional particle methods of the kind suggested in [I] - [3] and

[12].

Rigorous analysis using the Sobolev space setting has been carried out

for both the finite element and moment expansion methods.
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So far an insufficient amount of computation has been done to verify the

error estimates and decide about the efficiency of the various methods.
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APPENDIX

A framework for finding distributional solutions of (2.1) with initial

= D_ 6(x-x0, y-y0 ) I_I < m can be obtained starting from thecondition m0h

following considerations. Let X(x0,Y0;t) and Y(x0,Y0;t) denote the

characteristic curves of the equation (2.1); here, t parameterizes the curve

and the generic point (x0,Y 0) denotes its origin at time t = 0. X and Y

are computed by solving the ordinary differential equations

dX/dt = u(X,Y,t) dY/dt = v(X,Y,t)

X(O) = x0 Y(O) = YO"

At time t, let J(x0' Y0; t) denote the Jacobian of the flow map

: (x0,Y0) + (X,Y). The (nonlinear) case of most interest from the fluids

viewpoint has ux + Vy = 0, in which case J(x0,Y0;t) = i. We can obtain a

formal analytical solution to (2.1) and (2.3) by writing the equation in terms

of the material derivative as dm/dt = 0, integrating this equation over an

arbitrary domain moving with the velocity field (u,v), say fl(t), and then

using the transport theorem to write

d/dr _ m(X,Y,t)dXdY = O,
_(t)

from which it follows immediately that

ff m(X,Y,t)dXdY-- I_ m0(x'y)dxdy"fl(t) fl )
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Changing the variables on the rlght-hand side to X and Y respectively and

recalling the arbitrariness of _(t) now gives

m(X,Y;t) = m0(x(X,Y,t), y(X,Y,t))j -I (X,Y;t) (A.I)

where (x(X,Y,t), y(X,Y,t)) is by inverting the equations X = X(x,y:t), Y =

Y(x,y;t). The existence of a unique solution to these equations follows from

ode theory provided u and v are smooth. Reversing the steps, it follows

that (A.I) satisfies (2.1) given the required regularity of u, v, and m0"

Let _ E cm(_); multiplying (A.I) by _, integrating and changing the

variables on the right to x and y we have

ff _(X,Y,t) _(X,Y)dXdY = f_ m0(x,y) _(X(x,y;t), Y(x,y,t))dxdy, (A.2)

or alternatively

<_, _> = <mO, _o(X,Y)> (A.3)

where o denotes composition. If X(-,., t) and Y(.,., t),

Y(.,., t) Ewm+I'=(_) (or E _(m)(_)), V 0 d t d T, then the right-side of

= De _(x-x 0, y-y0)lel < m. Thus a(A.3) makes sense even if _0 + m0h

distribution m is defined on ¢(m)(_) by (A.3). Therefore, we can pose

the problem of finding mh satisfying

<mh' _> = <_0h' @o(X,Y)> V _) € ¢(m) (_). (A.4)
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A solution _h to (A.4) is given by

_h(X,Y) = D_ _(X - X(x,y;t), Y - Y(x,y;t))Ix=x0 ' Y=Y0 ' (A.5)

the purely formal differentiations being performed w.r.t, x and y. Proof

that (A.5) satisfies (A.4) is by direct computation.

If I_I = 0 we recover the solution given in Section 2. Consider the

case with I_I = i. Equation (A.5) gives

mhl0 = _x(X-X0 ' Y-Y0 ) Xx(XO'Yo't) + _Y(X-X0' Y-Y0 ) Yx(Xo'Y0 't)

(A.6)

mh01 = 6x(X-X0' Y-Y0 ) Xy(X0'Y0't) + _Y(X-X0' Y-Y0 ) Yy(X0'Y0't)

using the abbreviation X0 for X(x0,Y0;t) and similarly Y0" If the

initial condition is

_h0 = al0 6x(X-X0' Y-Y0 ) + a01 6y(X-X0' Y-Y0 )'

then the solution to (A.4) of the required form as given by (A.6) is

mh = al0 (t) _x(X-X0 ' Y-Y0 ) + a01(t) 6YIX-X0' Y- Y0 )

where

al0(t) = al0 Xx(X0,Y0,t) + a01 Xy(X0,Y0,t)

(A.7)

a01(t) = al0 Yx(X0,Y0 ,t) + a01 Yy(X0,Y0,t)"
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Letting M denote the matrix

Yx Y

differentiation of the characteristic equations shows that

dM/dt = V(u,v)M

and the initial condition for this system is M(0) = I, the identity matrix.

It will be necessary to solve this and analogous systems for the higher-order

cases in order to compute the numerical approximations. Having solved it,

al0(t ) and a01(t ) are given by (A.7).
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ABSTRACT

A pseudo-tlme method is introduced to integrate the compressible Navler-

Stokes equations to a steady state. This method is a generalization of a

method used by Crocco and also by Allen and Cheng. We show that for a simple

heat equation that this is just a renormallzation of the time. For a

convectlon-dlffuslon equation the renormalizatlon is dependent only on the

viscous terms. We implement the method for the Navler-Stokes equations using

a Runge-Kutta type algorithm. This enables the time step to be chosen based

on the invlscid model only. We also discuss the use of residual smoothing

when viscous terms are present.

Research was supported in part by the National Aeronautics and Space
Administration under NASA Contract Nos. NASI-17070 and NASI-18107 while the

second author was in residence at ICASE, NASA Langley Research Center,

Hampton, VA 23665-5225.

331



I. INTRODUCTION

The solution of the compressible Navier-Stokes equations for flow about

two- and three-dlmenslonal complex aerodynamic Configurations is still a time

consuming problem on today's supercomputers. The resolution of the boundary

layers requires the use of very fine meshes in the neighborhood of solid

bodies. For a typical viscous flow the mesh can be several orders of

magnitude finer (depending on the Reynolds number) than that required for an

inviscid calculation. As an example, using a C-type mesh about an NACA 0012

airfoil, a typical mesh spacing near the body in the normal direction for an

-2
inviscid calculation is 1 x I0 chords. For a laminar viscous calculation

with Re = 5 × 103, this minimum cell height would be about 6 x 10-4

chords. For a turbulent calculation using an algebraic turbulence model and

with Re = 3 x 106, the minimum cell height would be about 8 x 10-5

chords. In all cases a typical chordwise spacing at the midsection of the

-2
airfoil is about 5 x I0 chords.

Using an explicit method this fine mesh reduces the time step, due to

stability requirements, that can be used. The time step restriction is caused

by two factors. One contribution is due to the effect of the finer mesh on

the inviscid portion of the calculation. When using an explicit method this

reduction of the time step cannot be avoided without using a coarser mesh. It

follows strictly from the need to include the entire domain of dependency in

the numerical algorithm. Use of a local time step allows faster convergence

to a steady state, but it does not remove the requirement to satisfy the

convection stability condition in a local sense. A second difficulty is

caused by the viscous terms. For an explicit method the time step is now

dependent on the square of the mesh size rather than just the mesh size as
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occurs for invlscid flow. Thus, even for a high Reynolds number flow the

viscous time step will dominate when the mesh is sufficiently fine. In all

these cases the use of an implicit scheme will alleviate the difficulties. In

some ADI methods the Jacobian of the viscous terms is not used in the implicit

portion of the code in order to improve the speed of the calculation [7]. We

thus conclude that for both explicit and many implicit codes it is

advantageous to account for the dependence of the time step on the viscous

terms.

In this study we shall only discuss steady state problems which are solved

by a pseudo tlme-dependent method. Hence, we can change all time derivatives

as long as the steady state solution is not affected. One common device is to

use a different time step in each zone. It is easier to calculate this local

time step based on the inviscld equations. This provides an additional reason

to eliminate the dependence of the time step on the viscous terms.

In this study we shall analyze a method used by Crocco [4] and also by

Allen and Cheng [2]. They claim that the new scheme is unconditionally stable

for a simple diffusion equation. We will show that in effect the scheme is a

standard Euler forward-in-time central-in-space scheme. The time is

artificially slowed down so as to satisfy the stability criterion. We then

extend this scheme to the compressible Navier-Stokes equations using a Runge-

Kutta scheme [9]. This modification enables us to choose our time step based

on the inviscld equations. The modification automatically reduces the local

time step in regions where the viscous time step is of importance. This

enables us to use the inviscid time step in the far field while automatically

accounting for viscous effects in the boundary layer. We will also look at

residual smoothing for the heat equation.
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II. SCALAR EQUATION

In this section we analyze and extend a scheme for the Navier-Stokes

equations proposed by Crocco [4] and Allen-Cheng [2]. This scheme was also

analyzed by Peyret and Vlvland [6] and Roache [8], and we will extend their

analysis.

We first consider the heat equation

=

wt CWxx" (1)

The forward time centered space or Euler approximation to this scheme is given

by

n+l n sat n n n

w.3 = w.3 + --(Ax)2 (wj+I - 2w.3+ Wj_l].. (2)

This scheme is stable if

sat
v = <i/2 or At < (Ax)2

(Ax)2 -- ' -- 2-----_- (3)

Crocco, and Allen/Cheng introduce the inconsistent scheme

n+l n sat n 2-n+l n

w.3 = w.3 + --(Ax)2 (wj+l - w.3 + Wj_l). (4)

This scheme is unconditionally stable. If we are only interested in the

steady state, then (4) yields the correct steady-state solution. We now

rewrite (4) as

n+l n
W. -- W.

3 3 _ s (w_+ I n w3_1 ) 2s r n+l w3 )At [)'Ax'2 - 2w. +3 (Ax) 2 Lwj
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or

n

l_r n+l n _ n - 2wn + Wj_l) (5)
('_T1 + '_-_'JlWj - wj) - (Ax)2 (Wj+ 1 .1

with

A'r - (Ax)2
2_ " (6)

Thus, for this model problem the Crocco scheme is identical with the Euler

scheme (2) with an artificial time step At given bye

I 1 2_
- +_ . (7)At At

e (Ax) 2

Thus, the unconditional stability is achieved by slowing down the time

process. Note that as At + _, At + (Ax)2/2_, i.e., the stability limit for
e

the Euler method. So choosing a large time step for (4) is equivalent to

choosing Ate at the stability limit for (2), and we have merely scaled the

time. This can also be derived from the modified equation given in [6]. If

€ or Ax is not constant, this also introduces a local time step.

We next consider the convection-diffusion equation

wt aw + _w . (8)x xx

The Crocco scheme now becomes

n+l wn a( n n

w3 3 + { - kw. + w. ) (9)
• - . wj+ 1 - Wj_l ) _ n _ n+l n

- _ w3+I 3 3-i
At 2Ax (Ax)2

or

n n

r n+l n alwj+l - Wj-l) _ n n n

C_ + _)Lwj - wj) = max + (Ax)2- (wj+ I - 2w.3+ w3-I) (I0)
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with AT given by (6). Thus, again this is equivalent to the Euler scheme

with a time scaling that depends only on the viscous terms. Allen and Cheng

utilized this scheme within a time-marching scheme proposed by Brailovskaya

[3]. We generalize this by considering a general N-stage Runge-Kutta scheme.

Consider the two-dimensional equation

wt = Hw + gl w + s2 w (II)xx yy

where Hw describes the hyperbolic or first-order terms. In [9] we describe

a Runge-Kutta scheme where the viscous terms are frozen for all the stages.

This is similar in philosophy to the Brailovskaya scheme. Using the Crocco

formulation the (K + l)-st stage becomes

(K+I) _ n
n

Wj,k Wj,k w(K) gl _ ^ (K+I) + Wj-l'k )=K+I At = _ j,k +-- (W_+l,k zWj,k(Ax)2
(12)

€2 n _ (K+I) n

+ (--_y)2(Wj,k+l - zWj,k + Wj,k_l) , K=0,1,...,N-I.

This reduces to a Runge-Kutta scheme

(K+I) n w(K) n
wj, k = w. + Ate + PD (13)3,k aK+l [HD j,k Wj,k]

where HD' PD are the approximations to the hyperbolic and parabolic parts

respectively and

1 1 2€I 292
At - At + + " (14)

e (Ax)2 (Ay)2
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We slightly generalize (14) by redefining At by
e

E1 _2

1 = IAt + 2K(_ + )_) (151Ate (Ax)2 (_y

where _ is a constant that we can choose. The form of (15) no longer

follows directly from the Crocco formulation. Instead K will be chosen

based on a stability analysis.

We choose At in (12) or (15) based on the hyperbolic (inviscid)

stability condition. We then find At from (15) and advance to stagee

(K + 1) using the Runge-Kutta scheme (131.

The constant _ in (15) can be chosen so that we recover the parabolic

stability limitation when HD = 0. The exact value of K depends on the

coefficients =K in the Runge-Kutta formula. In order to see this more

clearly we revert to the one.dimensional convection-diffusion equation (8).

We replace all space derivatives by second-order central differences while the

time derivative is kept continuous. We therefore have

a( n n
Wj+l - Wj-l) _ n n n

wt 2Ax + ( - 2w. + ) (161= __ wj+ I wj-i.
(Ax) 2 3

We Fourier transform (161 to get

= _w (171
t

with

2s ia
X($) (I

cos 5) +_-_ sin _ 0 < _ < 2_. (18)
(Ax)2 -- _

A Runge-Kutta scheme for (16) or (17) is stable whenever z(_) = X(_)At lies
e

within the stability domain that depends on _l,-..,aN for all 0 _ _ _ 2_.
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We consider the stability domain for the four-step scheme with _I = 1/4,

_2 = 1/3, a 3 = 1/2, _4 = 1. This scheme has a stability condition along the

imaginaryaxis of maxlzI ! 2/2, i.e., for a hyperbolicproblem (E = O)

aAt

__._e < 2_. Along the negative real axis the stability condition isAx --

2_At
e

Izl _ 2.8 and for a parabolic problem (a = 0) -----_-_ 2.8. Hence for this

ease we would choose K in (15) as _ = 1.4. We define the cell Reynolds

number as

aAx
Rh =--. (19)

The previous analysis shows that the Runge-Kutta scheme is stable for Rh = 0

and Rh = _. We do not have any proof that the scheme is stable for all Rh.

III. NAVIER-STOKKS EQUATIONS

We now discuss the implementation of these ideas to the two-dimenslonal,

compressible, Navler-Stokes equations. The extension to three dimensions is

straightforward. We first consider the conservation form in Cartesian

coordinates. We express the equations in the following form

Pt = HI

82v _2u
(pu)t = H2 + (l + 2_) _2u + (l + _) _-_+ _

8x2 _y2

_2v _2u ___(pv)t = H3 + _--+ (_ + _) _+ (_ + 2U)
8x2 _y

(20)
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(pE)t = H4 Y_ f_2e _2e]
+ _-_ _-_ + _y2 j

+ (_ + 2_)u _2u + _v _2v
_x2 _x2

+ (_ + _)[v _2u _2v ].u - yyj

+ _u _2u + (_ + 2_)v _2v

_y2 _y2

where

e = E - (pu)2 + (pv)2
2p

and Hj denote first derivative terms (including the artificial viscosity and

also the viscous dissipation function). The coefficients of viscosity (_

and _), y the specific heat ratio, and the Prandtl number Pr are all

assumed (for the analysis) to be locally constant.

In deriving our results we shall ignore all cross derivatives (see, e.g.,

[I], [2]). Based on our previous analysis we add the following terms to the

standard Runge-Kutta scheme.

Ap = KI

_ 21% + 2_ _ A(pu)

A(pu) = K2 L--_ + _] sat(Ay) P

A(pV) = K3 - 2[U----_+ _ + 2_] A(Ov) sat
(Ax) 2 (Ay) P

(21)

2u y_ 1 1 (_ + 2_) (A--_y)
A(oE) = K4 --_ [ ( + ) + + ]A(pu)_At

- 2--_ _ (Ay)2 (Ax)2
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-__2v [_ 2___r(.Y_ 1 + 1 ) + B + (% + 2p)IA(pv).=Atj
P (Ax) 2 (Ay) 2 (Ax) 2 (Ay)2

2y_ ( 1 + 1 )A(pE)._At
pPr (Ax)2 (Ay)2

n+l n

where Aw = w - w and Kj denote the usual space derivative terms.

For simplicity we have chosen K = i, and _ denotes the constant in the

Runge-Kutta scheme (28). Thus the density equation is unchanged. The second

and third equations can be solved directly for A(pu), A(pv). Once A(pu),

A(pv) are known the last equation can be solved for A(pE). As before these

corrections imply an effective time step which automatically accounts for the

viscous time step. In this case the effective time step differs for each

equation.

We finally consider the Navier-Stokes equation in body fitted

coordinates. This can be done either in a finite volume scheme or by using

transformations. The result is the same in either case [9], and so we shall

use a transformation for ease of presentation. Let _ = _(x,y), N = n(x,y)

be the body fitted coordinates. We choose the coordinate scaling so that

At = An = I. The Navier-Stokes equations (20) now become

Pt = H1

_$2 _n2

_2v _2v

+ (_ + _)$x _y--+_$2 (_ + _)nx ny--+_n2 crossterms

_2 _n2
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_2u _2u

+ (X + _)_x _y _+ (X + _)_x ny _+ crossterms (22)
_2 Bn2

(oE)t = H4 +PT [YB (_2 + _2) __+B2e ( 2 + rl_) _2ela_ 2 an2J

2 a2u

+ [(X + 2B)u_ + (X + _)V_x _y + _U_y] _2

+ [(X + 2_)Un2x + (X + _)vn x ny + _un_] a2u
an2

+ [_v_ + (x + u)u_x _y + (l + 2u)v_] 82v
_2

+ [_v_ + (X + _)u_ x _y + (_ + 2_)v_]--B2v + crosstermsan 2

where Hj are first derivative terms and we have ignored all second cross

derivative terms. As before this generates an appropriate correction term to

the Runge-Kutta scheme. Equation (21) is now replaced by

Ap = K1

- 2(X + V)($x Sy + nx ny) A(0v)p eat

A(pv) = K3 - 2(X + B)(_x Sy + Ox _y) &(PU'-----_)eat0

- 2[1J$ + (X + 21J)$ + 1Jnx + (X + 21J)n ] A(I_v) natO

(23)

341



2y_ 2 2 + n2 + 2)A(pE)._AtA(pE) : _4 - p--_ (_x + _y x ny

2x $) 2 2- 2[- V Y_($_p--_ + _y2+ n2x+ n + _V(_x + nx)

m

where K. represents the standard finite difference terms.
3

As before the density equation is unchanged by the viscous correction.

Now, however, the two momentum equations are coupled together, unless the

coordinate system is orthogonal. As we have two equations for A(pu) and

A(pv), and we can easily solve these. To simplify the notation we define

-- 2+nyzI = 1 + 2aAtp [(X + 2_)(_x2 + _2x) + _(_y 2)]

2_At (k + _)(_x _y + nx ny) (24)z2 = p

z4 = 1 + 2clAtp [i.i.($2x + rl2x) + (X. + 211)(_2y + rl2y)]

and

D = (I + Zl)(1 + z4) - z2.

Then
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K2 z4 -K3 z2

A(pu) = D (25)

K3 Zl -K2 z2
n(pv)= D

As before given A(pu) and A(pv) we can solve for A(pE) directly from the

energy equation in (23). We also note that if one uses the thin layer

approximation (dropping all second _ derivatives and cross derivatives in

(22)) then these terms simplify slightly. In this case Ap, Apu, Apv are

still given by (25) with

P

2eAt

z2 - (_ + _)nx nyP

2 + (k + 2_)q_] (26)z4 = I + 2eAt [_qxP

y_ x_
q = -__ q = +_
x J y J

J = xE yq - xq y$

and

[I + 2yu=At 2 2pe-------_(qx + q )]A(pE) = K4

u yB 2 2 2x- 2[- _ (_r)(q X + q ) + (X + 2_)uq + (X + _)vq x qy + BUq2y] A(pu) .eAtP

x- 2[- _ (_-{)(q + _ ) + _vq + (X + B)uqx qy + (X + 2_)uq ] A(pv) .eAt.P
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IV. RESIDUAL SMOOTHING

As an alternative method of reducing the effect of the parabolic terms on

the stability of the scheme we consider residual smoothing• With this

technique one post-processes an explicit method with an implicit method. In

practice one post-processes each equation separately and each direction

separately so that only scalar trldiagonal matrices need be inverted• When

using a multistage Runge-Kutta method, one can apply the residual smoothing

after each stage, or at the end of the entire process, or any intermediate

permutation.

In [I0] it is shown that one can construct such a scheme for a hyperbolic

equation so that the total method is unconditionally stable• It is further

shown in [I0] that it is not efficient to use a very large At even ignoring

splitting errors. An optimal At is about two to three times larger than the

explicit time step. We now consider the process for a parabolic problem in

order to see the effect of viscous terms.

We, therefore, consider the heat equation

ut bUxx. (27)

We solve this equation by a k-stage Runge-Kutta scheme

n

u (I) = u + aI AtQu

u(£+l) = un + _£+I AtQu(£) (28)

n+l u(k)U =
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where al,...,ck are given coefficientswith ck = I. Q is a difference

approximationto Uxx. The amplificationfactor correspondingto (28) is

^ 8k(At)kG = I + 81 AtQ + 82(At) 2 Q2 + ... + 6k (29)

A

where 81 = 1 and 8£ = 8£_I ek_£+I, £ = 2,...,k. Q is the Fourier

transformof Q. Hence, for second-ordercentraldifferencing

A 4b t / \

Q = - sln2_e/2j (30)2
(_x)

Residual smoothing consists of updating a stage (£) by

(I - oD2)Au(£) = u(£) - un (31)

where D2 is again a second-order central difference approximation to Uxx ,

i.e., D2 + (I,-2,1). We now consider two possibilities. In the first we

apply (31) only after the final stage. Then the new amplification factor is

^

81AtQ + 82(At) 2 _2 + ... + 8k(At)k Qk

Gl(e)= 1 + . (32)
1 + 40 sln2(e/2)

The second case we consider is applying (31) after every stage. The resultant

amplification factor is

G2(e) = I + 81AtR + 82(At) 2 _2 + ... + 8k(At)k _k (33)

with
A

^

R = Q (34)

1 + 4o sin2(8/2) "
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We now investigate the possibility that either of these schemes is

unconditionally stable. To investigate this we need only consider At

sufficientlylarge. We thus consider At + _ with o + _. Then (32) becomes

[4bAt sin2(_)]k
(-I)k 8kL_2

GI(8)--+ 1 + . (35)
1 + 4o sln2(e/2)

We thus see that for k even, GI(8 ) > 1 and so (28) - (31) cannot be stable

for At large. For k = 1 the scheme is identical with backward Euler for a

scalar one-dlmenslonal equation and, hence, unconditionally stable. For the

second case we see that (33) has the same form as a standard Runge-Kutta
^

method with Q replaced by R, (34). Hence, it follows that the scheme is
A

stable whenever AtR is within the stability region of the scheme. As

At . _, so does o and so there is a cancellation between the numerator and

denominator; thus, AtR remains bounded as At increases. We thus conclude

that applying the residual smoothing after each stage can make the scheme

unconditionally stable even for a Runge-Kutta method with an even number of

stages.

We also see from the above argument that as At increases so must 0. In

[9], [I0] we show that for a hyperbolic equation

ut + aux = 0

that 0 is proportional to (aAt/Ax) 2. For the parabolic problem (27) it

follows from (35) that o should be proportional to bAt/(Ax) 2. For the

combined convection-diffusion equation o will be related to the sum of two

such contributions.
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It follows from (33), (34) that if we apply residual smoothing after every

stage then the stability polynomial has the same form as the original
A A

polynomial (29). The only difference is that Q is now replaced by R. From

(34) it follows that the ratio of to R is real. Hence, if is any

A

complex number then R lles along the same ray in the complex plane but with

a different amplitude. We therefore have shown that if the original scheme

was unstable for a given direction then residual smoothing cannot stabilize

the scheme. Furthermore, if the original scheme was conditionally stable then

by choosing o = o(At) sufficiently large we can make the scheme

unconditionally stable. We have thus shown

A

Theorem: Let Q be the amplification factor for any approximation to the

convectlon-dlffusion equation and let (29) be the stability polynomial for a

k stage Runge-Kutta scheme. We now apply residual smoothing, (31), after

every stage of the scheme. If the original scheme was unconditionally

unstable then the new scheme is still unconditionally unstable. If the

original scheme was condltlonall_ stable then the scheme with residual

smoothing can be made unconditionally stable by choosing o(At) sufflclentl_

large.

Hence, if the smoothing is applied at the end when solving a parabolic

equation, then the scheme can be unconditionally stable only when using a

multistage scheme with an odd number of stages. When the smoothing is done

after each stage, the scheme can be stabilized for o large. For a system

with a hyperbolic portion and a small parabolic contribution, e.g., high

Reynolds number Navier-Stokes, the residual smoothing is most effective with a
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time step about twice that of the explicit convective portion. Hence, the

question of unconditionalstabilityis somewhatacademic. In practice [8] the

Runge-Kutta scheme for the Navier-Stokesequations is used with four stages

and with the residualsmoothingappliedafter each stage.

V. RESULTS

In this section we present some results for viscous flow obtained using

the analysis of Sections II and III. We used a Runge-Kuttacode to solve the

Navier-Stokesequationsfor two flows about an airfoil section. The details

of this code are discussed in [5], [9], [i0], [Ii]. In these cases we

consideredonly the thln-layerform of the Navier-Stokesequations.

For the first case we computedlaminarflow over an NACA 0012 airfoilwith

a free-streamMach number M of 0.5 and a Reynoldsnumber Re of

5 x 103. The angle of attack (c) of the airfoil was zero degrees. Half-

plane calculationswere performedusing a C-type grid consistingof 64 cells

in the streamwise direction and 64 cells in the normal-llkedirection. The

grid spacing at the airfoil surfacewas about 6 x 10-4 chords. The mesh

spacingin the streamwisedirectionover the centralpart of the airfoilwas

AX = 0.05 chords. Results for this case are shown in Figures la - Ic. As

indicatedin Figure Ib, the flow separatesat X = 0.817 chords. The size of

the reclrculatlon zone is displayed in Figure ic. The results are all

independentof the time step procedureused to reach the steady state.

In Figure Id convergencehistoriesfor this case for two calculationsare

shown. The residual displayed in this graph is the root mean square of the

residual of the continuity equation. The calculations were started
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impulsively by inserting the airfoil into a uniform flow and immediately

enforcing the appropriate boundary conditions. Local time stepping and

enthalpy damping (see [9]) were employed in each computation;no residual

smoothingwas used. For history A the Runge-Kuttaschemewith the time step

(At) limitationdeterminedby convectionwas used; this required choosing a

CFL = 1.0. For curve B a larger Courant-Frledrlchs-Lewy(CFL) number was

used by accounting for the diffusion limit on At with the pseudo-tlme

algorithm. This allowed choosing CFL = 2.5 based on an inviscid

criterion. There is additional work with the pseudo-time scheme.

Nevertheless,the computationaltime requiredto reach a satisfactorylevel of

convergencewas reduced by a factor of 1.7.

In the second case we solved for turbulent flow over an NACA 0012 airfoil

with M = 0.5, Re = 2.89 x 106, and _ = 0 degrees. A 60 x 50 half-plane

grid was used in the computations. The grid spacingat the surfacewas about

8.5 x 10-5 chords. The chordwise spacing at the midsection of the airfoil

was about AX = 0.036 chords. Numerical results for this case are presented

in Figures 2a and 2b.

Figure 2c shows two convergencehistories for this turbulent flow case.

As in the laminar flow problem, the histories were obtained by computing

without and with the effects on At due to diffusion. The pseudo-time

algorithmwas about 1.4 times faster in reaching steady state. This is close

to the factor expected, since we were able to increase the CFL from 1.5 to

2.7, a factor of 1.8. We do not achieve this speedup of 1.8 since there is

some reductionof the effectivetime step due to the diffusionterms.
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VI. CONCLUSIONS

The use of the Crocco scheme for a scalar convection-diffusion equation

introduces a scaling of the time step. This reduces the effective time step

so that the viscous stability limit is automatically satisfied. As such the

scheme cannot introduce any fundamental acceleration in reaching the steady

state. The advantage of the scheme is that we do not need to explicitly

account for the viscous time step restriction; it is done automatically. This

can be done efficiently using Runge-Kutta type schemes. In addition, for

variable coefficients or nonuniform meshes this introduces an effective local

time step.

Using this scheme for a system of equations, e.g., Navler-Stokes, has the

additional benefit that a different scaling is chosen for each equation. Thus

each equation has its own appropriate (viscous) time step. This is equivalent

to using a diagonal preconditioning [I0] to accelerate the equations to a

steady state. Computations demonstrate that we can gain a factor of between

1.5 and 2 with little programming effort.

We further show that if one uses residual smoothing to increase the time

step then one must also account for the viscous terms. When the smoothing is

applied after the completion of a Runge-Kutta cycle then unconditional

stability is possible only if an odd number of stages is used. Applying the

smoothing after each stage allows for unconditional stability for all

multistage schemes provided o is chosen sufficiently large.
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Introduction

It is natural that the rapid evolution of increasingly powerful computers

should inspire attempts to solve previously intractable problems by numerical

calculation. One might imagine that within a fairly short time, advances in pro-

cessing speed and memory capacity ought to reduce the simulation of physical

systems governed by partial differential equations to a matter of routine. The

numerical computation of solutions of nonlinear conservation laws has proved, in

fact, to be perhaps unexpectedly difficult. Discontinuities are likely to

appear in the solution, and schemes which are accurate in smooth regions tend to

produce spurious oscillations in the neighborhood of the discontinuities. These

oscillations can be eliminated by the use of strongly dissipative first order

accurate schemes, but these schemes severely degrade the accuracy and usually

produce excessively smeared discontinuities.

The scalar nonlinear conservation law in one space dimension

Bu + B
_--T _-_ f(u) = 0 (I)

provides a model which already contains the phenomena of shockwave formation and

expansion fans. Thus it can be used to provide insight into the likely beha-

vior of numerical approximations to more complex physical systems, while it is

still simple enough to be fairly easily amenable to analysis. A rather complete

mathematical theory of solutions to (1) is by now available 11-31.

Equation (I) describes wave propagation at a speed

af
a(u) =-- .

au
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The solution is constant along the characteristic lines

@x
--= a(u)Bt

provided that they do not intersect to form a shock wave. Tracing the solution

backward along the characteristics, it can be seen that the total variation

TV(u= I dx

is constant prior to the formation of a shockwave, while it may decrease when

the shockwave is formed. Corresponding to this property it may be observed that

no new local extrema may be created and that the value of a local minimum is

non-decreasing while the value of a local maximum is non-increasing. It follows

that an initially monotone profile continues to be monotone.

It seems desirable that these properties should be preserved by a numerical

approximation to (1). This will guarantee the exclusion of spurious oscilla-

tions in the numerical solution. Harten [41 has recently introduced the concept

of total variation diminishing (TVD) difference schemes, which have the property

that the discrete total variation

TV(v) = Z Ivk - Vk_11

of the solution vector v cannot increase. Harten also devised procedures for

constructing both explicit and implicit TVD schemes 14,5].

The purpose of this paper is to state and prove conditions for the construc-

tion of multi-point TVD schemes. Conditions are derived for explicit, implicit,

and also semi-discrete operators to be TVD. The conditions are both necessary
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and sufficient in the case of the explicit and semi-discrete schemes. The

reasoning is a modification and extension of the reasoning used by Lax in an

appendix to reference 5. The results were firs? presented in a lecture at ICASE

in March 1984. The present paper is an amplification and revision of a

Princeton University report issued under the same title in April 1984 [6].

In the intervening period Osher and Chakravarthy have given another proof that

conditions (3.12) are sufficient for an explicit scheme 1o be TVD [7].
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2. Conditions for Reduction of the 4 1 Norm

One dimensional difference operators act on doubly infinite sequences

u = {Uk}, -_ < k < _ . (2.1)

The £1 norm of such a vector u is defined as

lul,=__lukl • (2.2)

The space of all vectors U with finite £1 norm is denoted by £1.

A difference operator maps £I into £I and is of the form

A(u)k = _ aj Uk_j . (2.3)
J

The coefficientsaj dependon k, either explicitlyor throughdependenceon u.

In either case we write

a = a.(k,).
J J

Theorem A: The operator A defined by (2.3) satisfies

IA(u)l1 < luli (2.4)

for all u in £1 if and only if

laj(h+j)l < I (2.s)J
for al I h.

An operator A satisfying (2.4) is a contraction.

Proof. The signum function is defined for every real u by
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I _ for u > 0

signum u = 0 I for u = 0 . (2.6)-I for u < 0

Now set

sk = signum A(U)k; (2.6*)

then, by definition (2.2) of the £I norm and definition (2.6) of signum we have

IA¢u)lI = >.IACu)kl= >isk A(u) k --
k k

= )i Sk _ aj (k) i = _ aj (h+j) iUh (2.7)k j Uk-_ h ,j Sh+_

= _h whuh_ ilwhlluhll'

where

wh = _ aj(h+j)sh+j . (2.7*)
J

Since sk takes on the values ±I or O, it follows from (2.7) that

IwhI _ > laj (h+j) I •J
It follows therefore from assumption (2.5) that

lwhl< i

for all h. Setting this into (2.7) we deduce that (2.4) holds for all u in %1.

To show the necessity of (2.5) suppose on the contrary that it fails for

some h = hO. Set u(0) equal to

I 1 for % = h0
u(O) : . (2.8)

% 0 for % _ h0

For this u(O) it follows from (2.3) that
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A(u(0)
)k = ak-ho(k)

and so

IAc_CO)_I1--_ IA(uCO))kl--_lak_ho¢k)l (2.9_

= _LlajCho+J)l> 1J
since ho was so chosen that (2.5) is violated. On the other hand it is obvious

from (2.8) that

lu(0)11= I .

This combinedwith (2.9) shows that (2.4) fails for u(O).

For use in implicit schemes the following result is needed.

Theorem B: Define the operator B by

= >' b (k)Uk_ j (2.10)B(U)k j J

B satisfies

lacu)11• lull (2.11)

for all u in _1 if

bo¢h)- _ Ibj¢h+j) I • 1. (2.12)j_0

An operator B satisfying (2.11) is called an expansion,

Proof: We define

sk = signum uk (2.13)

Since ISkl _ 1 ,

IBCu)ll= >lB¢u)kl_ >LskBCu)k • (2.14)k k

Analogously to (2.7), (2.7)* we have
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Sk B(u)k = _ Wh Uh (2.15)k

where

wh = J_ bj(h+j) Sh+j • 12.15)*

It follows readily from 12.12) that if uh # O,

lwhl_,

Using 12.13) we get

signum wh = signum uh .

These two imply that

wh uh_ lull• 12.16)
h

Comb{n}ng (2.14), (2.15), and (2.16) we get (2.11).

We remark that (2.12) is far from being necessary for B to be expansive.

For example, take the right shift operator T, with

I 1 for j = 1J 0 for j € I

Clearly, T is an isometry:

(Tu)1= lul,,

but condition (2.12) is utterly violated.

Theorem A has a continuous analogue:

Theorem C: Let u(t) be a differentiable function of t real whose values lie

In £1, and which satifies a differential equation of the form

du = C(u), (2.17)dt

where C is a difference operator, i.e., an operator of the form

C(u)k = _ cj uk . 12.18)
• j -J
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The coefficients cj may depend on k and t either directly or through a depen-

dence on u. Then lu(t)ll is a nonincreasing function of t if and only if for

all h and all t

Co(h) + _ Icj(h+j)l _ O, (2.19)j_0

Proo______f:Define sk(t) by

sk(t) = signum uk(t) . (2.20)
Then

lu(t)lI = _ sk(t) uk(t) • (2.21)

Since each sk is piecewise constant,

duk
d_ lu(t) {1 = _ sk(t) E • (2.22)

k

According to equation (2.17),

duk

dt = _ cj(k) Uk_j . (2.23)
J

Setting this into the right in (2.22) we get, after relabeling the index of

summation,

d

lu(t) ll = sk cj(k) Uk_j = _ wh uh (2.24)J

where

wh = _ cj(h+j) Sh+J . (2.25)
J

Suppose uh # O; then by (2.20), sh # O. Multiply (2.25) by Sh; using assump-

tion (2.19) we get

sh wh = Co(h) + _ c(h+j _ 0
j_0J )ShSh+j "

Since by definition, sh and Uh have the same sign, it follows that for all h

uh wh _ O;
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this relation clearly holds also when uh = O. Setting this into (2.24) we

obta in

 lu(t)ll o;

this proves that lu(t)I1 decreases as t increases.

Next we indicate why condition (2.19) is necessary. Suppose it is violated

at tO, ho. Let u(t) be that solution of (2.17) whose value at to equals

I I for k = h0
Uk(tO) = 6k,ho =

0 for k # h0

Using (2.23) we get

+ O(€2) .

uk(t0 + _) = 6k,ho+ _ J_cj(k)6k_,hoJ

Summing with respect to k gives

i uk(t 0 + _) = 1 + _ _i cj (h 0 + j) + 0(€2).
k j

Since condition (2.19) is violated at to, h0 we conclude that for € small enough

positive,

_ uk(to + _) > I
k

Since

lu(to+ €)Ii _ _ uk(t 0 + _)
while

lu(to)ll = 1,

this shows that lu(t)11 is not a decreasing function of t, completing the proof

of Theorem C.
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3. Construction of Total Variation Diminishin9 Schemes

Theorems A, B, and C may be used to find conditions on the coefficients of a

difference operator which guarantee that the total variation of a solution does

not increase for

E) explicit schemes

I) implicit schemes

S) semi-discrete schemes.

The total variation of a vector u is

TV(u) = _luk - Uk_ll .
k

Using the right shift operator T:

T(u)
k = Uk-I

we can express TV(u) as

TV(u)= I(l-T)uJI.• (3.1)

We turn now to explicit (2J+I) point schemes

n+1 unu = D( ) (3.2)

where
J

_ d (k)u k . . (3.3)D(u)k =_ j -J

We assume that the difference operator D preserves constants. In view of (3.3),
this Is the case if

_ d (k) = I (3.4)
j J

for all k. Schemes (3.3) satisfying this condition can be written in the form

D(u)k = uk + _ e (k)( ) (3.5)
-j_j<j J Uk-j-Uk-j-1

or in operator notation
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D = I + E(I-T), (3.6)

where

E = ) e. Tj . (3.6)*
J

We want to find conditionswhich guaranteethat D is TVD, i.e., satisfiesfor

all u

TV(Du) (TV(u). (3.7)

Using formula (3.1) this is the same as

IcI-T)nul,_ ICI-T)ul,. (3.7)*
Using formula (3.6) we can write

(I-T)D = (I+(I-T)E)(I-T) = A(I-T), (3.8)

where

A = I + (I-T)E. (3.8)*

We now set (3.8) into (3.7)*; denoting

(l-T)u = u*

we obtaln the equivalent inequality

IAu*lI_ lu*l,• (3.9)

This is certainly the case if A is an £I contraction, for which we have derived

in Section 2 the criterion (2.5):

laj (h+j) I _ 1
J (3.10)

where

(Au)k = _ aj(k)Uk-j •
J

It follows from (3.8)* that the coefficients aj of A can be expressed in terms

of the coefficients ej of E as
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ao(k) : I + eo(k) - e_1(k-1) (3.11)

and

a.(k) = e.(k) - e. (k-l) j 0. (3 11)*
J J j-1 '

It follows from these relations that

. aj(h+j) = I;
J

but then (3.10) can hold if and only if for all j and k

a.(k) ) O.
J

Using (3.11), (3.11)* we can express this condition as follows:

e_1(k-1) ) e_2(k-2) ) ... )e_j(k-J) _ O,

-eo(k) ) - el(k+1) )...) - ej_1(k+J-1) ) O, (3.12)

I + eo(k) - e_1(k-1) • O.

Thus we have proved

Theorem E: The explicit scheme (3.3) is TVD if conditions (3.12) are

satisfied for all k, where ej are the coefficients appearing in formula (3.5)

for D.

We turn next to implicit schemes:

F(un+]) = un • (3.13)

We take F to be a 2J+l term difference operator that preserves constants. Such

an F can be written in the form

F = I + G(I-T) (3.14)

where
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G(u)k = _ gj(k)uk_j (3.14)*
-J_j<J

We want to find conditions under which scheme (3.13) is TVD, i.e., for all u

TV(Fu) ) TV(u) . (3.15)

Using formula (3.1) this is the same as

l(i-T)FulI l(l-T)Ull. (3.15)*

Using formula (3.14) we can write

(I-T)F = (I+(I-T)G)(I-T) = B(I-T) (3.16)

where

B = I + (I-T)G. (3.16)*

We set (3.16) into (3.15)*; denoting

(l-T)u = u*

we obtain the equivalent inequality

l U,ll lu,ll. (3.17)
This is the case if B is an expansion. In theorem B we have derived criterion

(2.12) that guarantees that an operator B is an expansion:

bo(h) ) _ Ibj(h+j)l+ I. (3.18)j_0

It follows from (3.16)* that the coefficients bj of B can be expressed in

terms of the coefficients gj of G as

bo(k) = I + go(k) - g_1(k-1)
and (3.19)

b.(k) = gj(k) - gj_1(k-1), j#OJ

Adding up these relations we deduce that

bo(k) = I - _ b.(k+j);
j#0 J
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but then (3.18) can hold if and only if for all k and for j _ 0

bj(k) _ O.

Using (3.19) these conditions can be restated as

go(k) _ g1(k+l) 7... _gj_1(k+J-1) _ 0 (3.20)

and

-g_l(k-l) _ -g_2(k-2) _..._-g_j(k-J) _ O. (3.20)*

Thus we have proved

Theorem I: The implicit scheme (3.13) is TVD if conditions (3.20), (3.20)*

are satisfied, where gj are the coefficients of the operator G related by formula

(3.14), (3.14)* to the operator F appearing in (3.13).

We remark that we can combine, as Harten does, theorems I and E to study

implicit-explicit schemes of the form

F(un+1) = D(un). (3.21)

Such a scheme is TVD if F satisfies the conditions of Theorem I and D the con-

ditions of Theorem E.

Finally we turn to semi-discrete schemes:

du
d-_ = Hu, (3.22)

with H some 2J+I point difference operator. We assume that u _ const is a solu-

tion of (3.22); this is the case if H annihilates all constant vectors. In this

case H can be written in the form

H(u)k = _ mj(k)(Uk_J- uk_j_I) , (3.23)
-j_j<j

or in operator form

H = M(I-T) . (3.23)*

We want to find conditions on H which guarantee that TV(u) is a decreasing func-

tion of t for all solutions u of (3.22). By formula (3.1), this is the same as
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l(l-T)u(t)ll

being a decreasing function of t. So we multiply (3.22) by (l-T); using (3.23)*

we get

d
_-T(I-T)u = (l-T) M(I-T)u = C(l-T)u (3.24)

where

C=(I-T)M. (3.25)

Denoting

(l-T)u=u*

(3.24) becomes

d
--U* = Cu _
dt

According to Theorem C, lU*ll is a decreasing function of t If condition (2.19)

of Section 2 is satisfied:

Co(k)+ _ Icj(k+j)l• 0 • (3.26)j#o

Using (3.25) we can express the coefficients cj in terms of those of M as

follows:

cj(k) = mj(k) - mj_l(k-1) . (3.27)

Thus

cj(k+j)= 0;
J

It follows from this that (3.26) can hold if and only if

c.(k+j) _ O, j # 0 .
J

Using (3.27) we can restate this as
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m_1(k-1) 7 m_2(k-2) 7...Tm_j(k-J) 70 (3.28)
and

-mo(k) 7 - ml(k+l) 7... 7 mj_l(k+J-1) 7 0 . (3.28)*

Thus we have proved

Theorem S: The semi-discrete scheme (3.22) is TVD if conditions (3.28) and

(3.28)* are satisfied, where the mj are the coefficients of the operator M

related by formula (3.23)* to the operator H.
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4. Conclusion

The conservation law (I) describes a right running wave when a(u) is posi-

tive. Conditions (3.12) and (3.28) of Theorems (E] and (S) state that the

explicit and semi-discrete schemes (E) and (S) are TVD if and only If the coef-

ficients of the differences Uk_j - uk_j_I have the same sign as a(u) for j ) O,

(points on the upwind side), and the opposite sign for j < O, (points on the

downwind side). If the differences are moved over to the right of equation

(3.13), then condition (3.20) of Theorem ('I)states that the implicit scheme (I)

wlll be TVD if it satisfies a similar condition on the sign of its coefficients.

In all three cases only the differences on the upwind side have the correct sign

for consistency with (I), and can contribute to wave propagation in the correct

direction. In this sense upwind biasing is a necessary feature of explicit TVD

schemes, and it is also useful in the construction of implicit TVD schemes.

It Is thus not surprising to find that most of the attempts to design schemes

with the capability of capturing shockwaves and contact discontinuities, dating

back to the early work of Courant, Isaacson and Rees [8], and Godunov [91, have

introduced upwinding elther directly or indirectly. Second order accurate

upwind schemes have been devised by Van Leer 110], Harten 141, [5], Roe [II],

Osher and Chakravarthy 1121, and Sweby 113). These all use flux limiters to

attain the TVD property.

Another approach to the constructlon of TVD schemes stems from the obser-

vatlon that central difference formulas for odd and even derivatives have odd

and even distributions of signs, and they can be superposed and combined with

flux llmlters to satisfy conditions (3.12) or (3.28). Upwind biasing is then

produced indirectly by cancellation of terms of opposite sign. One possible
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starting point for such a construction is a central difference scheme in which

the numerical flux 1/2(fj+ 1 + fj) is augmented by a thlrd order dissipative

flux. This scheme Is the basis of a method which has been widely used to solve

the Euler equations of compressible flow [14]. It can be converted into an

attractively simple TMD scheme by the introduction of flux Iimlters in the

dissipative terms [15]. The modified numerical flux retains a symmetric distri-

bution of terms about the cell boundary j + 1/2. The resulting symmetric scheme

is one of the variants of a class of symmetric TMD schemes recently proposed by

Yee [16]. Her derivation follows an entirely different line of reasoning,

building on the work of Davis [17], and Roe [18]. In comparison with upwind TMD

schemes, symmetric TVD schemes offer a significant reduction of computational

complexity, while exhibiting comparable shock capturing capabilities.
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ABSTRACT

We continue the construction and the analysis of essentially nonoscillatoryshock capturing

methods for the approximation of hyperbolic conservation laws. These schemes share many desirable

properties with total variation diminishing schemes, but TVD schemes have at most first order accu-

racy in the sense of truncation error, at extrema of the solution. In this paper we construct an hierar-

chy of uniformly high order accurate approximations of any desired order of accuracywhich are

tailored to be essentially nonoscillatory. This means that, for piecewise smooth solutions, the variation

of the numerical approximation is bounded by that of the true solution up to O(hR"), for 0 < R

and h sufficientlysmall. The design involves an essentially non-oscillatorypiecewise polynomial

reconstruction of the solution from its cell averages, time evolution through an approximate solution

of the resulting initial value problem, and averaging of this approximate solution over each cell. To

solve tiffsreconstruction problem we use a new interpolation technique that when applied to piecewise

smooth data gives high-order accuracywhenever the function is smooth but avoids a Gibbs

phenomenon at discontinuities.

_l)Research supported by NSF Grant No. DMS85-03294,ARO Grant No. DAAG29-85-
K-0190, NASA Consortuim Agreement No. NCA2-IlL390-403,and NASA Langley Grant
No. NAG1-270.
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I. INTRODUCTION

In this paper we consiclernumerical approximationsto weak solutions of the hyperbolic initial

value problem 0_P)

u, + f(u)_ = 0 = u, + a(u)u_ (1.1a)

u(x,O) = Uo(X) . (1.1b)

Here u and f are m vectors, and a(u) = af/au is the lacobian matrix, which is assumed to

have only real eigenvalues and a complete set of linearly independent eigenvectors.

The initial data Uo(X) are assumed to be piecewise-smoothfunctions that are either periodic or

of compact support.

Let v'] = vh(xy,t,), xy = jh, t, = ha, denote a numerical approximation in conservation form.

v_+l=v]- x_+_ - ]j_,_)=(Eh•v")j• (1.2a)

Here Eh is the numerical solution operator, k = 'r/h, and ]/+1,'2, the numerical flux, is a

function of 2k vector variables:

]j+_ =?(_]-_+1-%0 (1.2b)

which is consistent with (1.1a) in the sense that

](u,u,...,u)=y(u). (1.2c)

We shall also consider a semi-discretemethod of lines approximation to (1.1a) obtained by divid-

ing (1.2a) by a- and letting a *0

22_ 1 - ((Eh- I).= --;_+_ - ij-_,9= v)j (1.3)Ot At

with fj.!,'2 again satisfying (1.2.b, c).

The numericalapproximation in (1.2) is considered to be an approximation to the cell average of

u'-
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1 fS._ u(x,t,)dx. (1.4)v]=-; ,,-_

Accordinglywe define its total variation in x to be:

TV(v")= rV(vh(.,t.)) = Ziq*l --vii (1.5)
1

where ] ] denotes any norm on R".

If the total variation of the numerical solution is uniformly bounded in h, for 0 < t < T,

TV(vh(',t) _ CTV(uo) , (1.6)

then any refinement sequence h -, 0, r = O(h) has a subsequence hi -. 0 such that

L1

%-. (1.7)

where u is a weak solution of (1.1).

If all limit solutions (1.7) of the numerical solution (1.2) satisfy an entropy condition that implies

uniqueness of the I.V.P. (1.1), then the mimerical scheme is convergent (see, e.g. [5], [14]).

For the semi-discrete approximation, (1.3), we comider:

1 f_'*_u(x,0dx (1.8)v/(t) -- _- _l-za

The analogous statements concerning TV and convergenceare valid as well in this ease, see,

e.g. [12].

We shallnow concentrate on the scalar case, m = 1. Extensions to systems will be discussed in

sections I_ and V.

Recently total variation diminishing (TVD) schemeshave been designed and analyzed [5], [6].

There the approximate solution is required to diminish the total variation (1.5) of the numerical solu-

tion in time:

TV(vh(-,t0)< a'V(v,(.,t9if t_> t2. (1.9)
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Theseschemestriviallysatisfy(1.6)withC = 1.

We wereabletoconstruct"I_ schemesthatinthesenseoflocaltruncationerrorareofhigh-

order accuracy everywhere except at local extrema where they necessarily degenerate to first order

accuracy (see [5], [6], [12], [14], [15], [17]). The perpetual damping of local extrema determines the

cumulative global error of the "high-order TVD schemes" to be O(h 1.i'p) in the Lp norm. This

improves by one order in steady state calculations, see [1].

In a sequence of papers of which this is the second, we show how to construct essentially non-

oscillatory schemes (ENO) that are uniformly high-order accurate (in the sense of global error for

smooth solutions of (1.1)) to any finite order.

In the first paper [7]we constructed a uniformly second-order ac_arate scheme which is non-

oscillatory in the sense that the number of local extrema in the numerical solution is non-increasing.

Unlike TVI) schemes, which also have this property, members of this class are not required to damp

the values of each local extremum in time, but are allowed occasionallyto accentuate a local

extremum.

In this paper the schemes (1.2) are constructed to be essentially non-oscillatory. Our goal is

that, if the initial data Uo(X) are piecewise smooth, then for h sufficientlysmall

TV(vh(.,t + At)) "_"l"V(vn(.,t)) + O(Irq.l) (1.10)

where N is the order of accuracy of (1.2). This implies that, at each time step, the scheme is non-

oscillatory,modulo O(/rY+l).

The format of this paper is as follows. In section II we shall give the design principle and over-

view of the present method, including comparisons with TVD schemes. SectionTITconsists of certain

variants and extensions of the scheme including extensions to systems and to regions with boundaries.

Section IV gives the interpolation algorithm, which is the crux of the method, along with the key

result - Theorem (4.1). Several examples are also given. Section V gives further analysis of the inter-

polation method and an example showing that general non-oscillatory schemes need additional proper-
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ties (which we believe to be true for the present methods) to guarantee convergence. We also analyze

the truncation error of our methods in this section. Proofs of some technical results are given in an

Appendix. We refer the reader to references [24] and [25] for numerical results using these methods.

II. Design Principle, Overview, and Examples.

In this section we describe how to construct ENO schemes of any desired accuracy.

Integrating the partial differential equation (l.la) over the computational cell

(xj-al:,xj+_.,2)x (t., t.+l), weget

where

- ± _r_-:
f]+L'2(u) = "e "e f(u(xg+ln't))dt (2.1b)

and

1
£_'._.(x,t.)a_. (2.1c)

We shallalso be interestedin a semi-discreteapproximationto (1.1), so wedivide(2.1a)by -r

and let r _0:

O - -[f(u(x/+L'z't)) - f(u(x/-lmt))] (2.2a)-07uj= h '

where again

(2.2b)

We observe that although (2.1a) is a relation between cell-averages _ and _.I, the evalua-

tion of the fluxes _.v2(u) in (2.1b) requires knowledge of the solution itself, not its cell averages.

As in Godunov's scheme [4] and its second order extensions [20], [2], we derive our scheme as a
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direct approximation to (2.1). We denote by v] the numerical approximation to the cell averages

of the exact solution to (2.1) and set vf to be the cell averages of the initial data. Given vn = {v]},

we compute v'_': as follows:

F'trstwe reconstruct u(x,tn) out of its approximate ceU-averages {v_} to the appropriate accu-

racy and denote the result by L(x;v"). Next we solve the IVP:

v, + f(v)_ = O,v(x,O) = L(x;v n) (2.3)

and denote its solution by v(x,t). Finallywe obtain v7+1bytakingcell averages of v(x,-r):

=k _i'-'_v(x,_)a_q+i (2.4)h

The averaging procedure is TVD, as is the exact solution operator. We may conclude, there-

fore, that the design of ENO high order accurate schemes boils down to a problem on the level of

approximation of functions: that of constructing an essentially non-osdllatory high-order accurate

interpolant of a piecewise smooth function from its cell averages.

In section IV we shall construct an essentially non-oscillatory piecewise polynomial of order

N, QV(x;w) that interpolates a piecewise-smoothfunction w(x) at the cell interface points:

QV(xl+l:2;w) = w(xj+1:2) (2.5a)

and.satisfies,whereverw(x) is smooth

Qv(x± O;u)= w(x). o(_r_+_-r),r = 1...._. (2.5b)

The key result, contained in Theorem (4.1) in section IV below, is the following. For any piece-

wise smooth fun_on w(x), there exists an ho > 0 and a fun_on z(x), such that for 0 < h _ h0:

_q(_) = _(_)+ 0(_v._) (2.6a)

TV(z)< TV(w). (2.6b)
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We shalluse this polynomialtogetherwith twodifferentapproachesto designENO schemes.

Thesemethodsare:

RP: Reconstructionvia the primitivefunction.

RD: Reconstructionviadeconvolufion.

Webeginwith RP. Let W(x) be the primitivefunctionof u(x)

W(x) = fa' u(s)ds . (2.7)

The lowerlimitshallplayno role in whatfollows,sowe chooseit to be a = x_u2, for simplidty

of exposition. Thussincewewishto reconstruct u(x) out of its approximatecell averages v1 (drop-

pingthe t or n dependence)wehavean approximationto W(x:+L,_

1
W(x:+_,z)= E vkh. (2.81

k-,0

In eachcell Ii:{x/xj_u2_ x < xl+u2},QV(x;w)is a polynomialof degree N whichinterpolates

w(x:.uz); i.e., for all j

Q'_(xj+_;w)=w(_j_,z). (2.9)

Thus QV(x,w) is a continuuouspiecewisepolynomial,and both of d/dx QV(x-4-0;w) are globally

welldefined.

Our approximationto (1.1)can be obtainedby solving(2.3)with

v(x,w) = a/dx QV(x;w")= L(x;v") ,

obtaining v(x,t), 0 < t < r and then computingcell averages(2.4). This canbe rewritten,usingthe

divergencetheorem, as:

v_ =v_- x_._ - ___,_), (2.1o)
since

._'(_l._'_;w")- Q."(x/__,_;w.)
h =v:
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because of (2.5a) and (2.8).

Here ._/+u2 is computed by averaging the flux function f(u) applied to V(Xj+u2,t) as ill

(2.1b).

In the linear case:

u, + au_ = 0 ; (2.11)

this procedure is easy to carry out. The exact solution to IVP (2.3) is

d QV(x _ at;w") (2.12/v(x,O = L(x - at;vn) = -'_

thus the scheme becomes

v_+1 = (Eh • v")! = v; - ),(_/+v2 - ._'/-1,'2)= (2.13a)

1 _
= v;--_{t_ (xl+_;w ]- eV(xl+_'2- a'r;w")]

= _}[_v(_j+_- a_;wn)- _(_j__ - _;wn)]

given the CFL restriction(1)

I_xl<1. (2.13b)

The numerical flux funetiom if+an defined here involve values of QV(x;v_) for x between

xg_u2 and xg+L_ if a > 0, or xl+_.2 and xg+a,_ if a < 0. Thus, unsttrprisingly the resulting

scheme has an upwind bias.

For general f(u) the explicit solution to (2.3) can be difficult to obtain. However, for N = 1,

the initial data are pieeewise comtant:

tZ)Therestriction can be easily removed in this comtant coefficient ease.
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L(x,v")- v:,x:-v2< x< x:+_,_.

Thus the scheme becomes:

v]+I= v]- k[f(v(xj+_- f(v(xl_v_], (2.14a)

wherev(xl..v_="v(xl+v2,t),for0 < t_ % iftheCFL restriction

Ixf'(u)l < 1, (2.14b)

forallu such that: min(v_,v_+z)< u < max(vT,v/.1),is satisfied.

This is predsely Godunov's scheme [4], which is the canonicalthree point, upwind, first order

accurate method [9]. Thus our higher order methods are simply generalizatiom of Godunov's tech-

niques to higher order ENO schemes. The ftrst higher-order TVD (although the concept was not yet

defined) Godunov type method was introduced by van Leer [20]. See [8], [2], and [20] for theoretical

and practical results concerning such TVD methods. The difference here, of course, is that we allow

our interpolant to be arbitrarily high-order accurateeven at extrema, and we replace the restrictive

TVD condition [6], [10], by the ENO proi_erty.

A key step in this method comes in solving to the Riemann problem (1.1a, b), with initial data

consisting of two constant states

u(x,O)- ur,x < 0

u(x,O)- ue,x > O.

The unique entropy condition satisfyingsimilarity solution was obtained in [9]. The resulting scheme

(2.14a) can be written:

q.1=v:-x_+_-___) (2.15a)

where

(min f(u) , if <

_+_,_=f%,v:+O= / maxf(u),if > (2.15b)
l_'_''_ vjv:+,
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Thecorrespondingsemi-discreteapproximationisjust:

8 I
= - _O_t-,-v2 - -_- :,'2)• (2.16)0-7v! gI--

Although the high-order explidt method described above can have a complicatedflux function,

its semi-discrete limit is much simpler. We merely take limits as in (2.2a) and arrive at

{__ a e_(xj_t,2+0;w")})

i.e., Godunov's method with more accurate constant initial states.

Next we use RD. This time we begin with u(x) and denote by if(x) its mean over

(x - h/2, x + h/2), i.e.,

1 __+h,'2 _1'2
_(_)= g j__.,=u(y)ay=L_,2u(_+ ,h)a,. (2.18)

Denote by _ = ff(xl), the cell-averages of u(x).

Again, given cell averages v1 which approximate ffj we wish to recomtruet u(x) up to

O(k'€.I) in an essentially non-oscillatory way. Here we again begin by constructing a pieeewise poly-

nomial interpolant of order N, which we again call QV(x;v), that interpolates v at x, for each j:

(_(_l;v)= vj. (2.19)

Tiffs time QV(x;v) is a polynomial of degree N in the interval x! < x < xj+l, with possible

jump discontinuities in derivatives at the end points. Then we compute an essential non-oscillatory

piecewise polynomial of degree N - 1 as follows:

rml
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defined for

xj_v2< x < xj._,2.

Here m is the rainrood function:

{ 0 min([xl,[y]) otherwiseifsgr_ = sgny =s (2.21)
m(x_y)

This gives us our approximationto v, which may have discontinuitiesat each x:+_. We use

this to obtain an approximantto u(x) viaa "do:onvolution" procedure. We have approximate

derivatives to _'(x)_2):

_" _'(x)[,.x,= h"m Q(x]- O;v), (2.22)

}Q(xj+ o;_) + O(h'._),, = 0,1,..._ - 1.

At points of smoothness, we have

_(_)= --._ u(x+ _h)d., (2.23)

/hF_-o7":--d .(x)f-_ :dr + o(_'_)

'v_;-_( d_k+, 1 [1- (-1Wq
= ,.,o [h_J u(x) 2"(r + 1)I 2 + O(/rV)'

for k = O,I,...,N - I.

Thus we may write the To_plitz upper triangularmatrix equation:

_2)Thiswill be shown for piecewise smooth _'(x) in section W.
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_(xs)
d

h_- _(_s)
= (2.24)

I 0 1
4.31

o 1 o z _(_s)

z o u(xs)

o • 0 z u(xs)

This is easily inverted and gives us each of the terms (hd/dx)v u(xy), up to O(h'V).

We replace the left side of (2.24) b_,the approximatiom on the corresponding right side of

(2.22) for each v. We invert this system in (2.24) and call the computed approximate values

(hVdldx)Vv(xy):

For xl_u2 < x < X]+1/2, we write our approximation as

LN-I(_;V)= v(*s) (2.25)
v-O h"vl

We need the following:

T._MMA

The cellaverage is preserved under this operation, i.e.:

1 f/s._a L.V_t(x;u)dx = _ (2.26)"h xy_za
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Proof

A direct computation gives us:

l_.hf'j._a.,_vaL'V-l(x;u)dx = _-i --_ u(xj) 2_(v + 1)l 2 = ffJ

from the first row of (2.24).

Now we contine our scheme comtruction as we did using RP. In the RD approach we approxi-

mate (1.1) by solving (2.3) with v(x,0) = L'V-l(x;0) = L(x;v") and proceed as above. We again

arrive at (2.10). In the linear case (2.11) the resultingnumerical fluxes are def'medvia

._/+1,'2= a f01L'V-l(xl+v2- as'r;v")ds, (2.27)

given the CFL restriction (2.13b).

Also the semi-discretealgorithmfor general f obtained via RP in (2.17) is replaced by its

analogue with the numerical flux

_ (L'v-l(xj_.u2 - O), L"C-l(xj+u2 + 0)). (2.28)

HI. Variantsof the Scheme.

The exact solution to the special initialvalue problem (2.3) can be difficult to compute. This is,

of co,rse, particularly true when the initial data is a piecewisepolynomial of degree higher than zero,

but is also usually true for general systems of equations for piecewisecomtant initial data, i.e., for

Godunov's method. One can, however, obtain a convergent power series expansion for this solution

see [22], [2,3].

Godtmov's method is canortiealin the class of (scalar) E schemes, defined in [9]. A consistent

numerical flux yields a semi-discreteE scheme iff

[sgn(.m- "j) +v2-<[sgn(.j+- (3.1)

or equivalently, iff its viscosityis greater than or equal to that of Godunov's method [18]. E schemes
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are TVD and entropy condition satisfying; thus they always converge to the correct physical solution

[19], [18]. Examples include the Engquist - Osher scheme and entropy corrections of Roe's scheme -

see,e.8.[3],[16].

One property all E schemes share is the fact that they can be obtained by averaging a solution to

a Riemann problem over each cell, where f is replaced by an approximation ], in equation (1.1) -

see [18], [14]. Thus they retain the ENO property. We may let _f+l,_ = fl_(vj,vj+l) be any two

point E flux and generalize our semi-discretealgodthra (2.17) to:

at vI = QV(x]+v2 - 0; w"), _- QV(xj+u2 + 0; w") (3.2)

We may generalize (2.28) analogously.

Next we replace the exact numerical flux:

T

_"+1,"2-"I_.fo f(v(xl.1"2',))dr (3.3)

byanapprox_aationbasedonaTaylorseriesasfollows.

For x.i_i,,2< x < xi+1,,2,we cancomputethequantities

for v the solution of (2.3), by using a Lax-Wendroff type of pr_:exlure.

For example:

av(x,o)= -a7[ _ f(v(x,O))

a2u(x,u) , 2 ,
8xOt = -f (u(x,O))(u,(x,O)) -- f (u(x,O))u_,(x,O)
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:u(_,o)= -j"(.(_.o))_(.,o)_(_,o)-/'(.(_,o)) a:. c.o_
a_- dt Ox 3xat _ ' J"

Next we writean approximationto v(x,t):

av (x,v)+...+ r_ _v(x,O) (3.4)_(x,,)= v(x,0)+ t -_- R--? a,

Nowwe replacethe integralin (3.3) by a quadraturerule

f_ f(v(xl+l:2;os)ds= Ao f(v(xl+l:2,So)) +'"+ Atf(v(xj+U2,st)) (3.5)

for O< so< sl... < st _ l .

Finally,we defineeachvalueof f aboveas:

f(v(x:+_z,sr)) = .fG(v(xj+l,,2- O,sr),v(xl+_,:+ O,sr)) (3.6a)

if we base our approachon Godunov'smethod. Moregenerallywe canreplaceGodunov'sflux by its

generalization.

f(v(xl+_,z,s_)) = fZ(v(xl._,z - O,s_),v(xy+_ + O,s_)). (3.6b)

Thuswe approximate(3.3)by a sumof pieeewiseconstantGodunovmethods,or approximate

Godunovmethods, evaluatedat severaltime layers. Thequadraturerule, and the valueof R, deter-

minethe order of time accuracyof this method.

We note that this approximationneednot preservethe essentialnon-osdllatoryproperty.

Nevertheless,due to the (nonlinear)nature of our ENOinterpolant,the methodworkswellnumeri-

cally, as is seenfrom the resultsin [24]and[25].

Nextwe considerhyperbolicsystemsof conservationlaws(1.1). h the linear ease, f(u) = Au,

where A is a constantmatrixwith a completeset of fightand left eigenveetorsrCV),lCV),correspond-

ingto real eigenvaluesMY),for v = 1,...,m, Weproceedformallyas in (2.1), (2.2), (2.3), and it

just becomesa matterof computingthe vectorvaluedfunction L(x;v") = v(x,O) in (2.3).
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We decomposean arbitrary ra vector w as

t?_ m

w = E (ltv)" w)rt'') = _-J w_vi'
v-i v"!

usingthe usual 12 innerproduct. Theseare usedto comtruct L(x;v") againvia the RP or RE)

recomtructionapproaches.

The RP approachproceedsby computing

1
w':_<xj.._,9= 2 v_)h.

k..O

Then we proceed, as in the scalar case, to compute each of Qv(x,w(V)), and finally by letting

The RD approach begins by computing QV(x;v(_))which is a piecewise polynomial interpolant of

order N that interpolates v(_) at each x.t. The rest of the reconstruction procedure is done as in the

scalar case, and finally we replace (2.25) by

m

LN-I(x;v) = _.LN-l(x;v(V))r(V).

For nonlinear systems we denote by Al = af/au (vl), the Jacobian matrix evaluated at vj, and

def;.ex}v),tJ")._d rj_)intheus...,fashion._, t_ewed=mpose
m rn

v = __j (l}_)" v) r_ v(_)d°j0= X • (3.8)v'-i v-I

For each v and each Jo, we shallconstructan ENO scalarinterpolantsuchthat, in the cell

x1 < x < xj.,1. QvJ°+°(x,v(V))is the unique Nth degreepolynomialthat interpolates v(Vd°)(xj)for

J = Jo,Jo + 1 andN - 1 neighboringpointsas definedin sectionIV, and Q'Vd°-°(x,v(_))which

interpolates v(_d°)(xl)for j = J0,J0 - 1 and the appropriate N - 1 neighboringpoints.
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We then construct the m-vector valued ENO piec_wisepolynomial of degre_

N - I asfollows:

P-'_(_;v)= vj+ _ (_- ,,, - o;_(_1),
i v-I

_ txj+0; _,(_1)r_), (3.9)

for x]_L_ _ x < xj.u2.

We may then dex:onvolveprexisely as in the scalarcase and arrive at a vector-valued version of

(2.25). Moreover Lemma (2.1) is still valid.

TheRP approachisdoneanalogously.

ThususingeitherRP orRD wehaveenoughinformationtocomputethevectorvaluedanalogue

of(3.2)-thesemi-discretealgorithm.ThistimethecanonicalmethodisagainGodunov'swhichuses

theexactsolutiontotheRiemannproblem.Other,simplerapproximateRiemannsolversmay be

used-e.g.,Osher's[13],vanLeer'sfortheEulerequationsofcompressiblegasdynamics[21],or

Roe's[15]withanentropyfixassuggestedin[16],[17].

Theexplidtvector-valuedconstructionfollowstheprocedureof(3.5),(3.6),againusingperhaps

oneoftheapproximateRiemannsolverstoreplac_Godunov'smethod.

Varioussimplificationsoftheseproceduresarepossibleandwillbediscussedinfuturepapers.

Next we discuss the influence of boundaries on our procedure.

We illustrate the idea by considering the linear equation (2.11), with a € 0, to be solved for

t, x > 0, with initial data of compact support. If a > 0, then a physicalboundary condition

u(O,t) = g(t) must be given. If a < 0, then no physicalboundary conditions are needed.

The modifications needed are two-fold:

(1) At points suffidenfly near the boundary our F_NOinterpolant will lack a choiceof least

oscillatory direction. We will choose only among interpolation points which lic inside the region. This
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procedure has not led to stability problemsin our numerical experiments. This can be explained by

the adaptive nature of the stencil in the interior. However, in situations where discontinuitiesflow

into or out of boundaries, oscillationsmay develop. These oscillationsdo not seem to pollute the solu-

tion globally accordingto our (now rather extensive)numerical experimentation. We regard this as

essentiallythe same problem that we have when discontinuitiesintersectin the interior. We shall dis-

cuss these matters in futurepapers. Some relevantnumericalexperimentsare presented in [24].

(2) Insteadof an initial.valueproblem, at x = 0 we solve an initial-boundaryvalue problem.

This is easy in the scalar case - if a > O, we just use the given boundary condition,and if a < o, we

need no boundary condition since the wave propagates to the left.

For general systems of equatiom we followthe sameprocedure, i.e., interpolating in the interior

directionswhen forced to, and solving an initial.boundaryRieraannproblem - perhapsapproximately.

Se_ [10] for more details about the latter.

One variantof the scheme which we do not recommendinvolves interpolationof the fluxes to

obtain a high order method. This was done in [11] in a TVD context, and schemes of arbitrarilyhigh

order away from criticalpoints of the function f(u) in (1.1) were obtained. One might think that

our ENO interpolantmight be used on the fluxes usingthe decompositionof an E scheme into its

"upwind" and "downwind"parts

d_'j+_'2= ff. x_ - f(vj)

df)+j+_ = f(vj+ :)- 8+ L_

as in [21]. The difficultyhere occursbecauseof the lackof smoothness of ]_ which generallyoccurs

at sonic points. This degrades the accuracy to be at most third order in L: at sonic points, if, e.g.,

the Engquist - Osher flux is used, and second order for Godunov's or Roe's methods.

IV. EssentiallyNon-OscillatoryInterpolationand SomeExamples
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Consider a scalarmesh function {vl}_._:=.

We let Q(x;v) be an interpolant:

Q(xj;v)=vj=%),j = ...-1,o,1,..., (4.1)

xl = jh, h > O.

We shall study a spedal piecewisepolynomial interpolant of degree N, QV(x;v), defined recur-

sively as follows:

I_mtmm__(t_

Ql(x;v) = v1 + (x -xj) (v]+lh- vl) , xj < x < xy+I (4.2a)

= %] + Ix- xj]%, xj.l],

where v[x1_v.,...,xD._] denotes the usual-coeffidentin the Newton interpolant.

We also define:

K_ = j, K_lm_x) = j + 1. (4.2b)

Supposewe have defined Q'v-l(x,v) for xj < x < xj+l, and that we also have

K_U K_.V-l/ Then we compute

and proceedinductively.

I_1> I_1,then

QN(x;v) = QN-l(x;v) + /rv II (x -- x_) (4.2d)
K ,, K_mm-t)
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with

K_ =K_;_)-1. (4.2e)

Orif t_v[< It:I, then

K(_ i)

QV(x;v) = Qv-l(x;v) + erv II (x - xx) (4.20
K- K(n_- t)

with

Thus, in each cell xj < x < x:_l, we have constructed a polynomial of degree N which inter-

polates v(x) at N + 1 comecutive points whichinclude x1 and xp. 1. It is designed so that all its

derivatives are as small in absolute value as is possible, given the above constraints.

This interpolant can introduce small oscillationsof order hx+l even for monotone and smooth

data v(x).

We use the following:

Let

v(x) = x3 (4.3a)

N= 2 (4.3b)

x: = (j - 1J2)h. (4.3c)

The interpolant Q2(x;v) for x between x1 and x2 willinterpolate v(x) at x!, x2, x3.
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Werescale,letting

x' = x + 1 (4.4a)h 2

v(x) = 4v(x) + 1 , (4.4b)
ha 2

We get

Q2(x';v') = -5x' + 6(x') 2 (4.4c)

so a new extrema occurs at x' = 5/12 i.e. at x = -h/12. The magnitude is O(h 3) in the uuscaled

variables.

Our next result shows that this is the worst possible case for N = 2.

In fact for piecewise smooth data and h sufficientlysmall the largest possible spurious oscilla-

tions for Qv will be O(h'V+l).

THEOREM (.4.1)

For any piecewisesmooth v(x), possiblyhaving jump discontinuities, there exist an h0 > 0

and a function z(x), such that, for all h _ h0

e_(x;v)= z(x)+ o(t: .1) (4.5a)

where

TV(z)< "IV(v) (4.513)

and we repeat:

_:(x:;v)= v(xl),j = 0,±I,4-2..... (4.5e)

PROOF

Considertheintervalx:"_x < x:+I andstudytwocases;
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(i)v issmoothin[x/,xi.1]

(ii)v hasajumpdiscontinuityinIx/,xj._].

Case (i): If v is smooth over the full interval of interpolation [x#_., x#,_], standard interpolation

results imply Qv = v + O(/rV.1), so we then take z(x) = v(x). Otherwise, for h0 small enough,

there exists an interval containing N + 1 consecutiveparts such that all divided differences w[ , , ]

involving points in this interval are bounded independently of h. We call the point at the extreme

right xxy_. If [xx_, x_.l] contains a discontinuityin x, then

v(xx_+l) - v(xx_O
= + O(h-_._) (4.6a)

V[XA"'"'XK(_+1] mlh"

where

m = K("v)- K + 1. (4.6b)

l'hisfollowsfromtheexpHdtformof v[ ].

Hencethedefinitionof QV(x;v)guaranteesthat,forh smallenough,therewillbenodiscon-

tinuityof v(x) in the interval of interpolation [x#_), x_]. The result above is stillvalid:

(2v=v+ oqrv+1).

Case(ii):We may supposeh0 issmallenoughsothatv(x)hasonlyonediscontinuityin

[x#._,x#,v)],anditisin[x:,X/.l).Foragivenintervalofinterpolationwe may decompose:

v = w +H (4.7)

where w is Lipschitz continuous and H is piecewise constantwith a singlejump which occursin

Ix/,x:+0.

We have in Ix:, Xj+I):

QV(x;v)= QV(x;w)+ QV(x;H), (4.8a)
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where:

QV(x;w) = E v[x_.,...,x#_] Ft (x - x,) , (4.8b)
v.K(_m_ u .i.

and

Iv[,_,...:_][-<c K-_=*_ (4.8c)

(where C klwaysdenotes any universal positive comtant).

Thisimpliesthat

i_ ev(_;w)< c. (4.9)
By Rolle's Theorem the interpolant QV(x;/-/) of the piecewise eomtant function must have an

extremum in every interval (x_,x,,+l) for v :#:j, K_ < r < K_r_. This makes a total of N - 1

extrema. Since the interpolant is of degree N, it must be monotone in [xy,x./.,.1].

Thus, for h = 1, we have

Id Q'V(x;/'/)> C > 0. (4.10a)
x.:=.,'%.tlax

For general h, the scaling gives

max d _ _.C (4.10b)
.b<_-=b._dx h "

Thus (4.8)-(4.10) imply that QV(x;v) is monotone in [x], x]+l]. We take

z(x) = QV(x;v) . (4.11)

On the interval Ix:,xl_.._]

TV(eV(x;v)) = b':-_ - v:l < TV(v). (4.12)

The theorem is proven.

405



We also have

Krmark_fd2_

Let v(x) be piecewise polynomial of degree < N. Then in any interval [xl, x/+l] in which

v(x) is not discontinuousthe interpolant is exact

ev(x;0)- v(x).

We now compute "second" and "third" order accurate approximations to the linear tn'oblem.

u,= -U_ (4.13)

Using RP for N = 2, we have, for xl_vz _ x < xl+vz,

Q2(x;w) = w./_l__ + (x - xl_ln_v1 + (4.14a)

+21(_- *j-_O(xh- _+_ m(a__j,a._j)

where

m(x,y)= x if _rI =_[Yl (4.14b)

u(_,y)=y if _1> _1

and

t%v 1 = :F(vj_:I- vj). (4.14c)

The algorithm becomes

v]+l = v] - kA_[v] + I-_-]_(A_v],A+v_)] . (4.15)
k " )

This is a TVD scheme [6] for k < 1 which is second order accm'atewith a first order degen-

eracy at critical points.

For N = 2 with the RD approach, a simple calculation gives the algorithm for Ixl< 1:
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A+v_- 1

(In [7] we obtained a similar algorithm, with both of the t_ replm:ed by m. We proved that the

scheme in [7] was truly non-oscillatory.)

The scheme(4.6) is truly second order accurate, even at critical points and converges for

IX[< I, at least according to extensive numerical tests.

Using N = 3 in the RP approachgivesus for xj__,2_ x < xj+_:

la-_jIs la+_jl,then: (4.17a)

1 (x- x/__(_- _1_._)a_vjQ3(x;w) = wj_l/,z + (x - xj__,.z)v: + _ h

zf IA_v_l> IA._jl, then (4.18b)

1 (x- _:_L_)(x- x:._,9a+v:Q3(x;w) = wi_u2 + (x - xI+_E)VI + 2 h

+ _ (¢- xj__,z)(x- xl+:J(x- xj+_:)m(a_a..vj,a+A.vj)6h2

Then our numerical scheme becomes for ]kI < I:

v]_'l = v7 - XA_[v] + [-_l_(A_v],A.v_) (4.19)

I_ (x- 1)(×- 2)m(__A_vy,A_A.vD, _ IA-ql< IA.ql]+ (× 1)(×+ 1)m(a_A._],A+A._]),if IA_v]l> IA+_]I]
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This scheme is third order accurate exceptperhaps at points where u_ or u_, = O, at which it

may degenerate to second order accuracy.

For N = 3 using RE)we have for x! _ x < xl+l:

Q3(x;v)=vj (4.20)

+_ A+vj+ _(A_A+vl, A.A+vj)h 2h2

+1__ ,iflA_A+vj[< la+a+v:l

6h3 [( -xj)(x-xj.0(x-xj.z)m(a-a+a+ l,a+a+a+vj),Ula_a.vjl>la+a+vjl"

We can derive a globallythird order accurate scheme by using (2.20), (2.24), (2.25), and (2.27).

We omit the details here.

It should be stressed that our algorithms are to be obtained recursively using the computer. We

have written down a few numerical fluxes here just to give the reader some idea of what they look

like.

V. FURTHER TI-IEORETICALRESULTS ANDEXAMPLES

While Theorem (4.1) is encouraging in that it shows us that the interpolant QV is indeed essen-

tially nonoscillatory, more analysisneeds to be done. The schemes designed in section 11do not use

this function in a simple enough fashion for us to prove the desired estimate (1.10), even ff Vh(X,t ) iS

piecewise smooth.

As a step m this directionwe consider the method based on RP applied to a piecewise continuous

function. A canonical example involves the interpolant QV(x;g), where g(x) is the primitive of a

Heaviside function normalized to be:

g(x) = a - x, x < a (5.1a)
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s(_)= o,_ > _ (5.1b)

for 0_<I.

We let h = 1 and compute the least oscillatory piecewise polynomial Qv(x,g) which interpo-

lates g(x) at x = j for each integer j. By Remark (4.2) we have

QV(x;g) - g(x) for x :_ 0 and x > 1 . (5.2)

We need only compute QV(x;g) for 0 < x < 1. We wish the reconsmmed function

d/dr QV(x,g) to be a non-oscillatory approximation to g(x). This reduces to showing that on

0<x_l

d QV(x;g) < 0 (5.3a)

d:
-_ QV(x;g) >-O . (5.3b)

The least osdllatory polynomial on the interval 0 -<x -< 1 willbe one of the N + 1 polynomi-

als of degree N, _,(x;g), which interpolates g(x) at the N + 1 consecutivepoints

{K - N, g - N + 1,...,0, 1,...,g}

for I_K<N.

• In the proof of Theorem (4.1) we showed that any polynomial which interpolates the derivature

ofthis function g'(x) through these N + 1 points is monotone on the interval 0 < x < 1 In con-

trast we have

Q_ = (a - x) + (x + N - 1)(x + N - 2)...x [1 - a] (5.4a)NI

thus:

d 1
_- Q_(x,g)l,.1= -1 + (1- _)[1+ ...+ _1 > 0.
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for N(a) sufficiently large, when ,, is fixed: 1 > a > 0.

Thus, in order for the inequalities (5.3) to be valid, we need the special properties of the least

oscillatory interpolant of g(x). We have:

The least oscillatory polynomial of degree N is Qv iff

I -K/N < a < I - (K - 1)/N, K = 1,2,...,N.

Finally we have:

The polynomial obtainedin the statementof Lemma (5.1) satisfies the inequalities(5.3).

We shall presentthe proofs of these claims in the Appendix.

Next we considerthe method based on lip appliedto a smooth perturbation of a Heaviside func-

tion g'(x). We find here two new problems.

(1) The error between dldx QV(x;g) and g'(x) in the cell next to the interval containing the

discontinuity need not be O(/rv) - it can be as bad as O(h) for N > 1.

(2) The variation in this cell can increase - i.e., Var[d/dx QV(x;g)] in this cell can exceed that of

g'(x) in this cell by O(h2) for N > 2.

On the plus side we note that these are somewhat pathological examples, that the error and

growth in variation are indeed decayingwith h, and that two cells away from the discontinuity all

seems well in that the error and possible variation growth appear to be 0(h'V). Nevertheless we

expect to investigate other ENO interpolation procedures as well as alternative recomtruction tech-

niques, with an aim towards removing these (hopefully minor) problems.
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Let

g(x)= (x.4-Bh)2 .4-a(x+ Bh),x > -Bh (5.4a)2

g(x) = -x - Bh, x < -Bh for I>B >0. (5.4b)

Then the function we are approximating, g'(x), satisfies

g'(_)= -1,_ < -Bh (5.5a)

g'(x)= x + 8h + a x > -Bh. (5.5b)

WeshallobtainQV(x;g)whichinterpolatesg(x)at gridpointsxj = jh, j = 0,± 1. Weare

interested in Qv for 0 < x a h. We shall arrange a and B so that

QV(x;g)forN = 2 and 3dx

bothhaveO(h) pointwiseerrorcomparedtothatofg'(x)onthisinterval.

We do this as follows:

For O.< x < h:

x

Ql(x;g) = g(0) + ._(g(h) - g(0)).

Next we arrange a and B so that the three consecutivepoints (-h,g(-h)), (0,(g(0)), and

(h,s(h)) arecollinear:

g(h) - 2g(0) + g(-h) = 0 (5.6a)

or

g(-h) = h2 - (B - 1)2h2 _ ah(B - 1) = h(1 - B) (5.6b)2

or
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/.

_(B- I)2+ (a+ I)(B- I)-h=-0. (S.6c)

We solve this obtaining

S(h,a)= 1+ _ + O(h2) (5.6d)a+l

and since we want 0 _ B _ 1, we take a < -1.

Thus we have for 0 _ x < h

Q2(x;g)= Q1(x,g),

whichinterpolatesg(x)atx =-h,0,h and

Q2(x;g) = _(h)-_(o_dr h

which dearly differs from g'(x) by O(h) at some points in this interval.

We also claim that d/dx Q3(x,g) - g'(x) is O(h) in this interval as well. It is easy to see that

Q3 will be chosen to interpolate g(x) at.x = -h,O,h, and 2h. Thus in our interval of interest:

Q3(x;g) = Q1(x;g) + (x - h)x(x + h) [ (B "-21)h2 ]6h3 +ah(B- 1) +h(B- 1) .

Thus

d2 QS(x;g)= x 1)[ (B- 1)h +(l+a)]_- _-(s- 2

and then

o-_.,-_h_Q3(_;g)=(_-1) (B 1)h+o+h) = +O(h2)2 7

and the error is still O(h) since varo._._._h g'(x) = h.

Our next example wen allow for an increasein variation in this cell,although it will still decay

with h as h,0. Let:
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g(x)= (x+ _"_,..,,,3 + b(x+ Bh),x > -Bh (5.7a)6

for I>B>0.

Thenthe functionwe approximateis:

g'(x)= (x+Sh)_+b (5.8b)2

This time we want the points (-h,g(-h)), (0,g(0)), (h,g(h)), and (2h, g(2h)) to all lie on

the same parabola. This means that

O =h 3+h 3 (B- 1)3 + (1 +b)h(B- 1) (5.9a)6

OI"

8 2B=I
b + I (5.9b)

Thus we take b > -1.

On the usualinterval 0 < x < h we have

X

Ql(x;z)=s(o)+ _ (s(h)- g(0)) (5.10a)

Q2(x;g) = Ql(x;g) + x(x - h) [g(h) - 2g(O)+ g(-h)] (5.lOb)2.h2

andby(5.9):

O3(_;s)= Q2(x;z) (5.1Oc)

The function g'(x) is monotoneon the interval 0 < x < h as longas b is not O(h2) so:

°
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vat s'(x)= 1h2(1+2a)
0:a_:ah 2"

while

var a lg(2h) - 2g(h) + g(0)[ = h2(1 + B)o.:,-_h_ a3(x,g)= h

Thus an oscillationof order h2/2 is induced in what should be a third order method.

We note that the discontinuity in g'(x) is rigged so that it occurs at a distance 0 (h2) from a

grid point. This is a bit pathological, but is certainly possible.

This oscillationis maintained even when we increase the order. For example, in the same inter-

val it can be easily shown:

Q4(x;g) = a2(x;g ) + (x - 2h)(x - h)x(x + h) [g(-h) - _(-h)]2Ah_

where _(x) is the continuation of the cubicpolynomial g(x) to x negative.

Thus

h3
=h(1 +b)(1 -B)+ T(I-B) 3= h3+ O(h9)

A simplecalculation gives us

0_h _- Q4(x;g)= +B + O(h_),

and we againhave a variation increase O(h2) in this interval.

Next we show that a scheme, which is non-osdllatory for relevantdata in that new extrema do

not developon the initial data as h increases, can still be extremelyunstable.

F:.ramp2_
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We approximate

ut = -u¢ (5.11)

by:

vT_ = q - xa__C%_,q). (5.12)

We take as initial data

v_-- 0, j < - 1 (5.13@

v°= a (5.13b)

_,_= _- a (5.13c)

v_-o,j>2 (5.13d)

forO<_.<<a,O<k <l/2.

An explidt computationgives us:

v) "."v: if j < -l,j _ 2 (5.14a)

v_ = a(1 + k) - ke (5.14b)

v}= (_ - a)(1 + k). (5.14<:)

Thus the "shape" of the initial data is invariant in time and

y_ .,,00

Now we analyze the truncation error TE for our two methods. We begin with RP applied to the

linear equation (2.11) andarrive at (2.13). In this case a predse expression for TE is:

TE= _ A_[QV(XI+L,2;W)-W(xI+u.O- (5.15a)
n-
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We recall

w(x)= f' _(,)_ with (_.l_b)

W(_j+_9=_(xj+_,2;w) (5.150

and

in regions where W(x) is sufficientlysmooth.

It is clear that the "rE is O(k v) as long as the coeffident multiplying the /rv+l-_ term is dif-

ferentiable when for v = 1. This will be true in general if the stencil of points used for the interpo-

lant in two comecutive intervals is invariantunder tramlafiom. This is true in smooth regions if none

of the derivatives of u(x) up to order N..- 1 vanish in a neighborhood of this interval.

We thus have

xaxmma..(_

TE for the explicit and semi-discretemethods based on RP approximating a linear equation is of

order

TE = O(kV), if u(x) € 0, r = 1,2,...,N - 1 (5.16a)

TE = O(tr_-1) otherwise. (5.16b)

For the full nonlinear problems the algorithm (2.14) can easily be shown to satisfy estimate

(5.16b) above.

The computational evidence is that (5.16a) is valid under conditions stated there for the non-
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linear case. We believe this to be true, but do not prove it here.

Next we state:

TE for the explidt and semi-discretemethodsbasedon RP for generalnonlinearequationsis at

least

TZ= o(lr"-:). (5.17)

F'maUywe analyze TE based on RD. Recallwe are given via interpolation the values:

= h'(dz_)__(_i)+ °(_+_),_ = 0,1,...¢V- 1

Next we compute

b_=h_ u(xj)+ 0(_v)

usingthe matrix equality:

1oi........
00 .............

= ................ + (5.18a)

oo o I .c,._x--lj
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(x5

otN -

(_J J "
otI

where

ok,= 1 + (-1)" (5.18b)
2"(v+ 1)!

Call C the upper triangularToeplitzmatrixon thefight above. We approximatelyinvertthe

system,obtaining

= c-1 = (s.m)

1 1

_N

CtN-1

+ c-_h,_ .(xj) + oCW"*_).

cxI

Nextwe computethe function LN-I(x;u) as in (2.25), for xj_v: < x < xj+_,2

L'v-"(x; u) ,_1 (x - xl)_'= b_ (5.18)
r-o h"vl

]-d "(_J)
= .(x)- (x- _SNI Irq
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aN

][ o.i+ "(_I)I, _S-_c-_ •
h '.... h-V-_-

o{I

+ o(_'_+_)

To showthatTE = O(_rv) inthiscase,we needonlyprovethat

D_)[r-'v-1(x;u)- u(x)]= O(_v) (5.19)

foru smooth.Thisfollowsbythesmoothnessinbothx! andx upto O(/rv.1)oftheremaining

termsontherightsideof(5.18).

Thuswe have:

TE for the explidt and semi-discretemethods based on RD approximation for general systems of

equations is O(_¢v).

We also note:

ama_u!fJ2

We have been unable, so far, to prove that these methods areindeed essentially non-oscillatory

although our present results show that the interpolation upon which the whole framework is based

does indeed have this property.

amank_f_J_

If Uo(X) has two neighboring discontinuities and h is not suffidenfly small, our present
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methods, for N > 2, can result in nontrivial spurious overshoots. We shall remedy this difficulty in

subsequent papers.

Appendix

We shall provide the (lengthy) details of the proofs of Lemmas (5.1) and (5.2).

Proof of I_emma (5.1)

We shall use induction on N. The resultis trivially true for N = 1. Suppose it is true up to

N. We consider the interval

K <a<l- K-1

We divide thisintotwoparts

IR:i- <a<l- _ <i- (Ai.O

Iz: I N+I

after verifying

K-1

K-2<N

and

}1 N+I

K-1 K
N N+I
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N/K-N + K- I < N
K

K-I<N

Thusby the inductionhypothesis:for a E IR;Q'q(x;g)= Q_r_:(x;g), (ff K = 1, IR is empty),

and for a EIt., QV(x;g)= Q_r(x;s).

Wewishto showthat for a E I._O It. that Qv+:(x;g) = Q'_+:(x;g). Usingthe iterativedef'mi-

tionof Q_r+:(x;g), we must comparethe nvoNewtoncoefficients

K_:(N+ I'_

IK-IJ(°:-I) •

Wewishto show

lel":Isl

for thesevaluesof a.

To prove this weneed the following:

for O<K'<n-1
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for l"_K_n-1.

Proof of Fa_ ,_1

Again we do it by induction. It is true for K = 0. Suppose it is true for K. Add

(-1)_'1 + 1 to both sides of the equality. On the right we have

(-I:+_I. _' _ (_-I),)
t(_-r - I)I(K+I)I (_- • - 1)frl)

fin 1(n-K-2)I(K+I)I n-K-1 (n-K- I)

Proof of Fact

Using induction. We see that it is true for K = 1. Supposeit is true for K. Then

 >Iol-,I l+...+ Iol-

(byFact(AI)),

= (-I)K-[K- ij+ (--I)Kn

(bythe inductionhypothesis)
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-" (-1)'_ Kl(n- l-K)! (K- 1)[(n- 1-K)I

(n-2)I [ n11_. - K ]= (-I)_K!(_-2-K)f (_ -K) (_-K-K)

Using these facts, we have:

We Note

= (1- 1)= o

$0

Also
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(y + I)(K - 2) - 1 = (N+ 1)(K- 2) > 0

We check

N[ N!(l-a) "(K-2)!(N-K+2)I + (K-1)I(N-K+ 1)l

> (N- 1)I + iN- 1)Z
(K- 2)!(N- K + 1)I (K- 3)l(N- K + 2)1

(K - 1)[N(K - 1) + N(N - K _-2)]N+I

> (K- I)(N- K + 2)+ (K- I)(K- 2)

N_N

For It. the two Newton coeffidents are: the same R and

This time we have

and
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N_I "

F'mallywe check

IsI> _1

or

(;-1,) +(;)1
(N- 1)t [ X'-1

(K-1)!(N- K) [1+ N- K + I

r.N (N-1)t [ 1 __]> N+-----'T(K- 1)_(N- tot (1- K+ 1) +

N KN N+I

N-K+I N+I K(N-K+I)

Thus/.,emma(5.1)is proven.

Proof of Lemma(5.2)

We start with a general geometric result.

Given

_! a._(1)< o (aS.a)dr

d Q_(o)> -I (AS.b)
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Then

d2 _(x) > 0 for 0 _ x _ 1 (A6)d_

Proof of Fac_ _3

Rolle's Theorem tells us that d/dx QV(x,g) = 0 at least onc_in each interval

(1,2),...,(K - 1,K) and d/dx Q_(x,g) = -1 at least onc_ in each of

(K - N, K - N + 1),...,(-2,-1), (-1,0). If K = 1, this means that d2/d_ Q_(x,g) = 0 at least

N - 2 times for x < 0. Thus d/_ Q_(x,g) is monotone for 0 < x < 1. If g" = N, then a simi.

lar argument shows that d2/dr_ Q,,_(x;g)= 0 at least N - 2 times for x > 1 and the same monoti.

city result follows. Given (AS(c)), this takes care of these two cases.

For 1 < K < N we proceed as follows. If d/dx Qxv = 0 at least onc_ in addition to these

values mentioned above for 1 s x s K, then it equals 0 at least K times for x _ 1 and - 1 at

least N - K time for x _ 0. By our usual argument this means that it is monotone on (0,1), and

we arc finished. Similarlyif d/dx Q'_(x)= -1 at an additional point for K - N _ x _ 0, the same

conclusionfollows.

If both of these possibilities are false, then the graph of Q_(x;g) looks like for 1 < x:

(a) K odd

(b) Keven
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andfor K - N _ x < O, thegraphlookslike:

(a)N- K odd

I
l

I
I
l
I
l
l
l
l
I

K- N -2 -i 0

(b)N- K even

I
K - N -2 -i 0

Fig. A2: Q_ forx-_0

If the leading coefficient of Qv vanishes, then we have a polynomial of degree N - 1, and its

derivative is monotone on (0,1) as per our usual argument.

Otherwisewe considerthe followingcases.

K and N - K even. Thenif the leadingcoefficientis positiveit followsfromglancingat

Fig(A2.b) that d/dx Qv= -1 for some x < K - N andwe are f'mishecl.If thecoefficientis nega-

tive then Fig. (Al.b) showsus that d/dx Qv _ 0 for some x > K andwe areagainfinished.
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K and N - K odd. Then ff the coefficientis positive Fig (Al.a) shows d/dx Qv = 0 for

some x > K. If the coefficient is negative then'Fig (A2.a) shows didx Q_ = -1 for some

x<K-N.

K odd,N - Keven. If the coefficientispositivethenFig (Al.a) shows d/dx Q_: vanishes

for some x > K. If the coefficientis negativethenFig. (A2.b)givesus the desiredresult.

Case (4) K even,N - K odd. If the coefficientis positivethen Fig. (Al.a) givesus the desired

result. If the coefficientis negativethenFig(Alb) doesit.

To proveLemma(5.2) weneed onlyverifythe inequalities(A5). We f'mallywritedownthe

formulafor Q_r:

Lrazma_m_

,r (_,+N- K)-..(_- ./+1)Q_=_'-_ + X (A.7)j._ (N- K + j)t

[(-ly-_(1- ,,) N- K

. (-ly-' N-K

wherewedefine IAI =0 ifeitherB<O or B>A.

Proof'.

Clearly Q_r= ot - x for x = K - N, K - N + 1,...,0.

For x = 1,2,...,k, we need
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a-x+j=i_ -K+jj (1-a)(-1)/-i -K+j-lj_I (A.8)

+ (-Iy-2[N-K+j-2}I
j-2 =0

Thiswillfollowif,forallintegersM _ 0:

1= + (-I)/-I
I-I M , v > 1 (A.ga)

v = (-ly-i v e 1 (A.9b)
/=i +J + M '

ProofofFacts(A.4)and (A.5)

We shallagainuseinduction"For M =-0 we need

Thig follows from Fact (A.1) for v =. = K + 1.

We also need

v = + (-lY -1 (ill)
J=l

('+'I(v+,}:.__ + (-lY-_ 0 + 1 = v

by(A.10).

SupposebothFactsaretrueuptoM. For M + I we need
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I = + I + (-1)/-I (A.12)
].1 +

l=l + 1 + M + I + (-1)/-1 M

1l-i M _ 1 + 1 + (-1)]-i M

M+l'+v v
- N + 1 M + 1 = 1 (by the inductionhypothesis)

Now we show (A.gb) is true for M + 1 by induction on v. It is dearly true for v = 1. If it

istrue for v - 1, we consider

z= (-ly-_
/=z + M

1-1 + j + (-1)/-1 M + (-1)_-i Mv

+
+j+ 1 M (-lyl-1

=-(v-l)+ +j+ (-ly -_ + j-11=1 M

or

J=z +J+ M

Now we verify (A5.a)

K

d _(0)=-I+ E (-ly-_(1€-K)t
(N- K + j)I./=I
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or

(1- o_) _ "N - K + j (IV- K + j)(N- K + j 1) _01".1 :..1 -

or

N 1 N

l-.q-_+l ] :-,v-._+t J(J- 1) m 0 (.4.13)

We use the identity: for A < B

' 't !Z 1 j.Z 1 1 _ I i (_14):.A jO- I) = . j-1 ] A- I B

So (A.13) bea)mes

-_ E -- + (tV- K) ,N K-]-.q-K+i I

-_ 7 _.l-N-K.1

N

0> Z I(N-K+ I)-K.J-N-K+I

If we replace the fight side above by K + I, we get

N

E i(N-_)-K- I]-.V-K

N .V

= E i(N-_:+ i)-K- E iI-.q-_+z ./-.v-,,r+i J
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Thus the right side above is decreasing with K, and we need only verify the inequality for

K=I

0>M-l=0
M

Next we compute:

+ _, (N-K+I)I(j-2)(-ly -z -K+j-1
J-2 (N- K + j)l (I- o0(-ly-I j - 1

j-2 _0

Rearranging terms and simplifyinggives us:

+_, _I.
:.2(N-K + j- I)(N-K .j)

Now

K K N

./-2(j-1)(N- K + j) l 2 j- I N- K + j

The first term in (A.15) thisbecomes

N

(i-o0E ±
l-K I

Usingthe identity (A.14), the secondterm becomes:

1 1]=1_1+ K-1 K-1(N-K+I),N_K+I :: T=T

432



So we have to check:

'v 1 K-1
(l-a) _. --+__1

]..K ] N

K_ 1 K 1
],,g

Again, if we replace K by K + 1 on the left side above,it increasesby 1IN£7.._+I 1/j. Thus

we needonlyverify:

N 1 N-1__m+ __1
NN N

I<I.

The last step is to verify that:

or

,v 1 K N I K-I
-_ 3'._+ <(I-_)£-+

J-.v-_+i ] N" N

Or

N 1 .v
2_( i-_)E-.a £ i_N i=_ I ]-N-K+iJ

x-i 1 1 i i

£ -- £ 7j-_ I kJ=.v-K+i J I=K

N--I N--I

o<(i-_,)£ !+_ F. !
;-_ I j=.v-K+i J

ThusI.,emma(5..2)isproven.
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ON NUMERICAL DISPERSION BY UPWIND DIFFERENCING

Bram van Leer

Delft University of Technology

Delft, The Netherlands

ABSTRACT

Upwind-biased difference schemes for the linear one-dimenslonal convection

equation are defined. It is demonstrated that the numerical dispersion caused

by such schemes changes sign in the middle of the allowed CFL-number range.

This makes it possible to annihilate dispersive errors in two steps.
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I. INTRODUCTION

Upwind differencing is a way of differencing convection terms. For

the scalar convection equation

ut + au = 0, (I)x

discretized on a uniform grid {jAx,nAt}, the best-known upwind-differ-

ence approximation is the explicit first-order scheme of Courant,

Isaacson and Rees (CIR) [|],

n+l n n n
U. --U. U. --U.

J J + a 3 j-I
At Ax = 0, a _ 0, (2.1)

n+ 1 n n n
U. --U. U --U.

3 J + a j+l 3 = O, a < O. (2.2)
At Ax

Introducing the Courant-Friedrichs-Lewy (CFL) number

At

U= a_x , (3.1)

we may rewrite (2) as

n+l n n

u.3 = (1 - lo[)uj+ [o Uj_s, (3.2)

where

s = sgn _. (3.3)
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The scheme is stable, even in the maximum norm, under the CFL condition

[_[ < I. (4)

n+l
The value of u. given in (3.2) may be regarded as an approximation

3

by linear interpolation, to the value of the exact solution

n+l
u. = u(x. - flax,tn), (5)
3 J

which, for non-integer if, gets lost in the process of discretization.

The interpolation at tn involves only the two nodal points nearest to

n+l
x. - oAx. Thus, the numerical domain of dependence of u. is upwind-
J 3

biased.

The upwind bias becomes more obvious as larger values of the CFL

number are allowed. If m is an integer such that

m< _ _<m + I, (6.1)

a stable upwind scheme is [2]

n+l

u.j = (m + I - o)u_'j_m + (o - m)U__m_ij . (6.2)

Upwind differencing is often compared to central differencing,

n+l tnwhere the numerical domain of dependence of u. at is centered on
3
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x. the outcome usually being that upwind differencing is considered
3'

superior but more complicated (because of the search implied in (6.1))

and central differencing inferior but simpler (no search needed). Up-

wind differencing, it is said, stays closer to the physics contained in

the convection equation. If this indeed is desirable, one should be

able to measure the benefit. That, apparently, is not so easy: to

date, very few quantitative theorems have been proven supporting the up-

wind claim to a higher accuracy.

One piece of evidence can be found in [3] where Fromm's [4] "zero-

average phase-error" scheme (an upwind-biased scheme of second-order

accuracy) is shown to yield the lowest L2-error in convecting a step

function, in comparison to all other second-order schemes based on the

same data. This suggests the use of upwind schemes for shock-propaga-

tion problems, an area of application in which these schemes indeed are

unrivalled [5].

Another quantitative statement was presented by me without proof

in [6]; it concerns the lack of numerical dispersion by upwind schemes

at which Fromm already hinted. This will be the subject of the re-

mainder of the paper.
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2. AN OPERATIONALDEFINITIONOF UPWINDING

To avoid cluttering up the formulas,l shall restrict the value of

the CFL number to the interval [O,l].

Definition.A schemeforEq. (I)of the generalform

n+ l n

u. = [ Ck(Oluj+k (7.113 k

is called upwind-biased for the CFL-number range [0, I] if its coeffi-

cients satisfy the symmetry relation

Ck(! - O) = C_k_l(o). (7.2)

Eq. (7.2) does not imply consistency of scheme (7.1) with Eq. (1);

for this we need to impose two more conditions:

Ck(O) = ], (8.1)k

kCk(O) = -_. (8.2)
k

A detailed analysis is needed to find the condition on the coefficients

that will ensure stability of the scheme for all values of _ in the

range indicated.
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It is possible to make scheme (7.1) yield the correct translated

initial-value distribution for integer values of a; this clearly is

useful. The additional condition needed is

Ck(O) = 0, k # 0. (9)

3. NUMERICAL DISPERSION BY UPWIND SCHEMES

When updating the solution with a scheme of the form (7.1),we

generally introduce both dispersive and dissipative errors. That is,

the Fourier components of the initial-value distribution are convected

by the scheme at the wrong speed, while also being damped. Only for

integer values of _ these errors can be avoided simultaneously. For

non-integer values of o all consistent stable schemes of the form (7.1)

must be dissipative, since they are not invariant under time reversal.

With upwind-biased schemes at least the dispersion may be avoided, as

shown below.

Lerm_a. For any scheme that is upwind-biased for the CFL-number

range [0,1], the result of one step with CFL number o followed by a

step with CFL number ! - _ is free of dispersion.

Proof. Assume initial values according to

n n iej
u. = u0e ; (!0)J
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any upwind-biased scheme with CFL number _ E [0, I] may then be written

as

n+l . . n
(ll.l)u. = _--_o,_)u-3 3

with amplification factor

K-I

g(O,_) = _ Ck(O)ei_k K
1 (11.2)

k=-K

The same scheme applied with a CFL number 1 - _ has an amplification

factor

K-I

g(I-_,_) = _ Ck(l-o) ei_k; (12.1)
k=-K

by virtue of (7.2) we have

K-I i_k (12.2)
g(l-_,_) = _ C_k_l(o)e •

k=-K

Introducing £ = -k-I leads to

K-1 -i_(£+l)
g(1-o,_)= _ c£(_)e

£=-K

K-1
-i(_ -ic_£

= e X c_(o)e
£=-K

= e-i_g*(O,_). (12.3)
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The composite scheme, with a CFL number of I, has an amplification

factor

g(l-O,_)g(O,_) = e-1_g*(o,_)g(o,e)

-is 2
= e Ig(_,_)] , (13.1)

to be compared to the amplification factor for the exact solution at a

CFL number of I:

n+ 1 -is n
u. = e u.. (13.2)
J 3

The two factors are identical in phase. []

The above lemma has an interesting consequence.

Corollcar_. An upwind-biased scheme for the CFL-number range [0,1]

I

has no dispersion for a CFL number of _.

I

Proof. Apply the previous lemma to the case o = _. Since

1

= 1 - _ = _, the two steps with the upwind scheme have the same

amplification factor

g _,_ = e g _,_ , (14)

with the correct phase -_/2. []
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A geometric interpretation of this corollary for the CIR scheme is

given in Figure |.

g

-I +I

o cI

Figure I. An illustration of the upwind property that arg g(_,e) =

1

-o_ for I_I = _, for the CFL scheme; the drawing is for

1

o = - _. The locus of g(_,_) is the circle (I) with

radius lal and center CI in ! - I_I on the real axis;

arg g(o,_) is called _.

445



It further follows that for any value of _ the dispersive error

changes sign when _ passes through 0 (illustrated for the CIR scheme

by Figure 2), while the damping factor [g(_,_)[ goes through an ex-

tremum [6]. For all practical schemes this extremum is an absolute

minimum. Thus, in an upwind-biased scheme, minimum dispersion and

maximum dissipation go hand in hand. This, again, leads to the repre-

sentation of moving discontinuities with comparatively little ringing.

Besides upwind-biased schemes for a CFL-number range of the type

[m,m+1] there are upwind-biased schemes for the range [m-l,m+|]. These

are obtained by shifting the center of a central-difference scheme up-

wind over m meshes. An example is the fully one-sided, second-order

scheme for the CFL-number range [-2,0],

n+ 1 c_ n n I

u.3 = - --2(l - O)uj_ 2 + 0(2 - O)uj_ 1 + _ (l - 0)(2 - O)u_. (15)

The coefficients of this scheme satisfy the relation

Ck(2 - o) = C_k_2(o); (16)

Accordingly, a step with CFL number o should be followed by a step with

CFL number 2 - _ in order to achieve zero dispersion at a net CFL

number of 2.

For central-difference schemes the corresponding relation is

Ck(-O) = C_k(_); (17)

hence, annihilation of phase errors cannot be combined with a net ad-

vancement in time.



12 _ I I I I I I I

1.0 0.5, 1,0

0.3

0.8 / a=O.O

0.6 i --

0,2 _

o.o I I I I
2 3 4 5 7 10 15 20 50 ,_/Ax 100

Figure 2. Velocity dispersion versus wavelength for the CFL scheme.

The wavelength I is related to _ by _ = 2_Ax/l; the

ratio of computed to exact convection speed is evaluated

as _/(-_).
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ABSTRACT

AZTEC(AdaptiveZoom Tracking- ExperimentalCode) is a code to solve the

one-dimensionalgas dynamic equations in a variable area duct with specificimplemen-

tation for plane, cylindrical, andsphericalgeometries.The programusesa fixed, locally

and adaptively refinablegrid, together with a set of movinggrid points which migrate

through the fixedgrid. The moving points representshocks or contact discontinuities,

and they can be createdor destroyed,usually as the result of a collision. Mass. energy,

and momentum (the last 0nly in the constant area case)are exactly conserved,except

after a collision:in that case the conservationerror is reducedto invisiblelevels by spa-

tially localizedpartial time st;pping. The basicdifferenceschemefor both the fixedand

moving grid is Godunov's method,with the Riemannsolver used to compute both cell

boundary fluxesand the speedsof the movingpoints. Trackingof rarefactionwaves on

the moving grid is ditficult with this method since the waves must be represented as

piecewiseconstant. In one version of AZTECthe rarefactionwaves are recordedon the

fixedgrid with the Lax-Wendroffdifferenceschemewith a small additionalviscosity,

and most of the numerical experiments have been performed with this version. In

another version the polytropic gasequationof state has been replacedby one in which

the pressure is a continuous piecewise linear function of specificvolume at constant

entropy. With this assumptionthe solution of eachRiemannproblem is piecewisecon-

stant, andour method is exactuntil the wave structure becomestoo complicated.Some

preliminary numericalresults are exhibitedfor this version.

* Sponsored by the U. S. Department of Energy under contract W-7405-ENG.36. The publisher recog-
• nizes the U. S. Government retains • nonexclusive, royally-free license Io publish or reproduce the pub-
lished form of Ibis contribution, or to allow others Io do so, for U. S. Government purposes.
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I, AFTER SOD,

Sod's survey paper [1] was a milestone in the development of numerical methods

for one dimensional gas dynamics, for it clearly exposed the shortcomings of some

methods which were in vogue at the time. It seems appropriate to point out that two

techniques which were not included in the survey are adaptive grid refinement and the

method of characteristics. Proper application of the latter requires some form of front

tracking, so that the programming of both methods is considerably more complicated

than for shock capturing schemes.

While just a modest amount of localized grid refinement will improve a shock cap-

turing method, there are pitfalls. We refer the reader to [2]. The method of characteris-

tics has two interpretations. In the first, the characteristic curves become coordinate

lines. Since there are three characteristics for the gas dynamic equations, two of them

must be chosen. The natural choices are the u+c and u-c characteristics. In the case of

isentropic flow, this means that differencing along the characteristics requires no inter-

polation. In the non isentropic case values on the third characteristic must be obtained

by interpolation.

The second expression of the method of characteristics is a form of upstream

differencing. The idea is roughly the following. Write the gas dynamic equations, or

any hyperbolic system, in the form wt . Aw x _-0. Let Ij , j =1,-'-_, be the left

eigenvectors of A, with eigenvalues _.j. Then

IjCwt +Xjwx)= 0. (1.1)

This is differenced explicitly, using backward spatial differences for positive kj and for-

ward differences for negative kj. More precisely,

lj'(.¢ +1_ + - = 0 (1.2)

where /_j - kj hx/At, and k =i --1 if/_j >0, k -i +1 if/_j <0. If there are discon-

tinuities present, they must be tracked through the grid in both versions.

AZTEC combines grid refinement and tracking, using conservative differencing.

The tracking is most easily done with Godunov's method, using moving grid points to

locate the discontinuities. A condition for the stability of Godunov's method is that the

fluxes on the cell boundaries remain constant during a time step. We found that the

simplest way to do this in our context was to remove fixed grid points near the moving

ones by Iocally coarsening the spatial grid. This is inaccurate if the moving point is in a

region with spatial variation, but we counteract that with a local grid refinement which,
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as described later, refines in both space and time. The Riemann solver, which provides

the fluxes for the conservative difference equations also determines the speeds of the

moving points, as suggested in [3].

In section 2 we give details of the grid refinement procedure. In section 3 we dis-

cuss the moving grid. In section 4 we exhibit the result of some computations. In sec-

tion 5 we present some preliminary results for a piecewise linear equation of state.

2.GRID R_.

The one dimensional gas dynamic equations for a variable area duct are

(a(x)p), + (a(x)pv L = 0 (2.1)

Ca(x )pv ), + Ca(x )(pv 2 + p ))x = Pax

(a(x)pE), + (a(x)v (p_"+t'))x = o.

where p is the mass density, v is the velocity. E = e +(1/2)v 2. e is internal energy, and

p is the pressure with equation of state p - p (p.e). The quantity a (x) is the area

function.

Our program was originally written for slab geometry. It was pointed out to us by

J.M.Hyman that an easy way to extend a fixed grid slab code to handle variable area is

to introduce area-weighted variables. Thus, we let

w = (a (x)p,a (x)pv .a(x)pE. )7"

so that the equations become

wt +(af (w/a ))x - g, (2.2)

where f is the flux vector given by

[ = (pv,pv2+ p ,v(pE+ p))r

and

g = (o,Pa,.o)r

Suppose that we have a uniform grid of N cells indexed by i. The quantity w_

will be the average of w in the cell at time n. xi is the coordinate of the cell center;

xi +x12is the coordinate of the interface between cell i and i + I. The area at a cell edge

is
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ai+I/2 -- a (xi +I/2),

but the area of the cell center is defined by

ai = a (x__1/2 ,xi +1J2)

where

a (x ,y) = _ a (s)as (y -- x )-1I

and

a(x ;: ) = a(x ).

The basic conservative difference equation is

_c w[' +l = _c w[' -- At [(af )i +u2 -- (af )i-l/2]+g _: at. (2.3)

If the cell interface with index i +1/2 is internaZ, that is, if cells _ and i +1 are both

present on the grid, we allow two possible definitions of the numerical flux/i +l/2-

The Godunov flux is obtained by solving the Riemann problem centered at x = 0

with left mate given by wi/ai and right state given by wi+l/ai+l. The flux function

evaluated at x = 0, t > 0 is then used for f i+1/2-

The Lax -Friedrichs flux is defined as follows. Set

wi+l/2= .5[wi+l+ wi - At/Ax (fi+l -- fi )a (Xi+ll 2 )],

and then

f i+112= ¢ (wl.lz21ai.112).

In the uniform area case if the fluxes at both cell boundaries are Lax-Friedrichs fluxes

then w? +I becomes the two-step Lax-Wendroff scheme.

The choice of fluxes is part of the experimentation with AZTEC. However. an

invariable strategy that we have implemented is to always use Godunov fluxes on the

finer grids (if they exist), at the external boundaries, and at cells in a neighborhood of a

moving grid point. If the Lax-Friedrichs flux is used at all on the coarse grid. it is in an

expansion region.

The grids are defined in terms of cells rather than points. The symbol j will

always identify a grid level, j = 1.2. • • • J. The maximum number of grid levels, jr. is

an input parameter. Level 1 represents the coarsest grid, with N(1) = N cells each of

length Ax (I) = Ax. Level 2 is a refinement of level I obtained by dividing each cell of

452



level I in half. so that Ax(2)= .SAx(1).and N(2)= 2N(I). Thus.

Ax (j) = 2-0 -1)Ax, and N (j) = 2: -IN.

Since the refinement is local and adaptive, not all cells on every level will be

advanced at every time step. There are two kinds of ceils, live and dead. At the start

of a time step the level 1 cells are all live. For j > 1, a cell on level j will be live only

if its parent cell on level j--1 is live and if certain tests of the state variables on level

j--1 indicate that refinement (splitting) of the parentcell is required.

There will be two kinds of live cells, sterile and fertile. A sterile cell is one

which is not to be split and which therefore must be advanced by the differenceequa-

tion. A fertile cell is one which splits into two daughter ceils on the next level and

which is therefore not advanced by the differential equation. The advancement of a

sterile cell requires the computation of fluxes at the cell boundaries,but computationof

the flux at a fertile cell boundary will be needed only if that cell is not contiguous at

that boundary to a fertile cell on the same level. Since AZTEC is designed for serial

computation we have tried to avoid redundant calculation of fluxes. This arrangement.

which is not quite as complicated as it sounds, is shown schematically in Figure 2.1.

level

I I I
I I I

J I I I
I I I

I I I
I I I

j+l I I I
I !

j+2

Fig. 2.1. Boundary fluxes at grid interfaces.

The boxes represent cells on the indicated grid level. The vertical sides of the boxes

represent the cell boundaries. A dotted line means that the flux is not computed on that

grid level. The flux is computed at a solid line. A solid line with an arrow means that

the flux computed at that grid is used at the next grid level. Thus. at an interface

between grids j and j + 1 . the coarsegrid flux supplies the boundary condition for the

finer grid. This generalization of [4] enables us to maintain conservation.
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Since our difference scheme is explicit, the time step for level j must be half that

for level j--1. An example of the evolution of the space-time grid is shown in Figure
2.2.

Ax

Fig. 2.2. Space-time refinement.

Note that refinement has occurred between the coarse time steps. Here is the algorithm

for setting up and advancing the grids.

BEGIN ALGORITHM

j=l

1 it(j) - 0 *ic(j) is 0 for the j_rst pass through level j, 1 for the second pass*

2 call CREATE(j) *Determineand label the fertile and sterile ce/!son level j, label

and provide data for the live cells on level j+l. Set nc(j+ l ) = number of live cells on

level j+ l.*

call FLUX(j) *Compute and store fluxes on level j at those interfaces which are a

boundary of at least one sterile cell.*

call ADVANCE(j) * Compute w" +I on level } and overwrite on w" , for sterile cells

ordy*

if j < J and nc(j+l) ;e 0

then j - j+l and go to 1

3 else if it(j) - 0

then if j - 1

then step finished

else ic(j) - 1
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go to 2

else j = j-1

call CONST(j) * The total conserved quantity (mass, for examfle) in a

fertile parent cell i$ defined to be the sum of the conserved quantities of

the two daughter cells.*

go to 3

END ALGORITHM

The subroutine CREATE requires further discussion. First. it must determine

which cells on level j are to be split. This is done by performing two tests for each cell.

If l is the cell index, then one of the tests looks for moving grid points in the cells

l--2.1--1, l, l +1. l +2 (see section 3). If there are any. then cell l splits into two. Of

course, special provisions have to be made for cells close to the boundaries. The second

test splits cell l if there is a compression in the same neighborhood as above: other cri-

teria could be included. Now. suppose that in advancing from t to t + At CREATE

finds that a cell on level j must be split into two daughter cells on level j +1. There are

two possibilities: the daughter cells were present at the previous time step and were

advanced to time t by the algorithm, or they were not. In the former case no new data

need be created for the daughters. In the latter case data is obtained by interpolation. If

the parent cell on level j has index i. the interpolation is as follows. Let L and R be

the indices of the left and right daughter cells, respectively, and let

wL = 1.25wi - .25(ai/ai+l)wi+l.

w,_ = .75wi +.25(ai/ai +l)wi+1

If both wz/az and w_/a_ lie between wi-l/ai-i and wi+l/ai+l, accept wr and w_ as

the interpolated values. If not. let

wL = .75wi + .25(ai/ai_1)wi-t

w_ = 1.25wi -- .25(ai/ai-l)wi-1.

Use these as the interpolated values unless the above monotonicity test fails, in which

case set

wL = (at/ai _i.

wR= /ai .

The latter is also used if cell i is at the boundary of the physical domain.
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3.THE MovqrNG GRID.

The moving gridpointswillmove throughthefixedgridand exchangedatawith

thefixedcells.We have chosento do thisforthefinestgridonly:thisisarrangedby

havingone oftherefinementtestslookformovingpointsinthetwo cellson eachside

of thecurrentceil.Ifthepointsarenotallowedtomove more thanthelengthof one

cellinone timestep.theycannotleavethefinegrid.

The moving gridpointsdefineboundariesof skewed spacetimecellsinwhich the

conservationlawsareappliedjustastheywere forthefixedgrid.Forthetwo points

x < y shown inFigure3.1.thedifferenceequationis

Lv-x +(%--_x)at ],;xy= (y-x )w_ - at [a(y .y+%at )Fy- a(x .x+_xat )F_]

+fiat. (3.1)

/k

.-_--_Wxy

Speed _ _ /-Speed

x y

Fig. 3.1. Space-time cell defined by moving points.

The quantity wxy is both the right value for the discontinuity at x and the left value

for the one at y. The term fiat only appears in the momentum equation. To avoid

false accelerations it must have the following form. If. in the momentum equation,

F,=pv72+PT"

and similarlyforFx. then

ff = (l/2)(px +p,)[a(y.y +crTat)--a(x.x +o'_at)].

There are two things that must be provided in the basic difference equation above:

the speeds cr and the fluxes F. These are obtained from the solution of Riemann prob-

lems. In order to do this we must first recover the hydrodynamic variables from the

area weighted variables. Suppose. for the moment, that we have done this properly.

Then when the grid point at position x is to be moved there will be associated with it a

left state u_ and a right state u+. We find the complete solution of the Riemann
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problem for these two states. Then we decide which ray or rays are to be followed. For

example, if the point x is a contact discontinuity and if the solution of the Riemann

problem has a sufSciently strong contact discontinuity, then we take the new speed to

be the speed of the contact. The new flux F is f - cru evaluated on this ray (this takes

account of the fact that the ray is not necessarily vertical in the space-time plane). Note

that f -cru is continuous across every ray in the solution of the Riemann problem.

More generally, the point x might spawn several new moving points. If x is the result

of a collision with another point or with a reflecting boundary, then we could follow all

the shocks and contacts which emerge.

The complete logic of the procedure for deciding which rays to keep is too compli-

cated to give in complete detail here, but we can give an outline of it. First, the Riemann

solver produces a list of speeds and fluxes and identifiers for each sufficiently strong

wave which is present in the solution. Thus, a shock corresponding to the characteristic

v-l-c is identified as a 3-shock, and a speed and flux are given fo_" it. A rarefaction

corresponding to the characteristic v--c is identified as a 1-wave, and for it the speeds

and fluxes on the leading and trailing edges are provided. Next, tactical decisions are

made in a subroutine called TRACK, which has the job of creating and destroying mov-

ing points, advancing the moving points and checking for collisions, maintaining stabil-

ity on the moving grid, and communicating with the most refined portions of the fixed

grid.

Here is how TRACK works. First, the points are collected into blocks. Each block

is such that the rightmost point of one block is separated by five or more full fixed cells

from the leftmost point of the next block, as in Figure 3.2.

Fixed cell
boundories

] ) I I ) _ ]

_Movir N points "M_oving points
in one block in next block

Fig. 3.2. Blocks of moving points.

Each block is processed independently of the others, so what follows refers to the

points of one block. In order to improve resolution in the variable area case, if two
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adjacent points are two or more full cells apart some fixed grid points between the pair

are treated as moving. These are called separator waves. Next, each moving point is pro-

vided with a left and right average value of the area-weighted variable w so that if

w_(x ) and w +(x ) are respectively the left and right states of x. and if x and y are

adjacent points (x < y ) then w +(x ) = w_(y ). This is done using a combination of fixed

cell data and moving point data obtained from eq. (3.1) for the previous time step,

depending on the separation of the points. Of course, this is done conservatively. The

hydrodynamic variable corresponding to w +(x ) is u +(x ):= w +(x )/a (x ,y ). Now the

Riemann solver is called for each point in the block. For the typical grid point all the

rays returned by the solver are assumed to define new points which are inserted into

the list of moving points. There are exceptions to this; for example, at a left reflecting

boundary only rays with non-negative speeds are retained. The list is ordered by posi-

tion if the positions are unequal and by speed otherwise, as in Figure 3.3.

/ /I 2 5

/ /
Fig. 3.3. Ordering of moving points.

At this stage we have many more points than we want or need, but most of them will

be deleted at the end of the time step.

The reason for retaining so much information is that this gives us a procedure for

maintaining stability during a collision or close approach of moving points. If a collision

occurs at time t + 8t, 0 < 8f < At, the current block of points is advanced to t + 8t

using eq. (3.1) with At replaced by Bt. Then we attempt to finish the time step by

advancing from t . Bt to f . At, checking again for a collision, etc. The use of blocks

causes this partial time-stepping to be spatially localized, unless the moving grid is

evenly distributed in the fixed grid. The idea now is that any collision which occurs at

this time is "exact," which means the following. If the points x and y in Figure 3.1
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collide at time t + At. then x + cr_At =y + cryAt. so that the left side of eq.(3.1) is

zero. On the other hand. even if the source term were not present, the right side of that

equation cannot be expected to be zero. Indeed. consider the case shown in Figure 3.4.

Z

In this situation, a contact and a 1-shockhave arrived at x and y. respectively.The

Riemann solver has producedat x a contact with speeds and a 3-rarefactionwave.

while at y the solution is a 1-shockand some other waves that play no role.Two bad

things happen if we suppressthe rarefactionwave. First.because the solution is not

constant along the ray yz we can expect an instability to develop. Second.making the

appropriatesubstitutions into the rightside of eq.(3.1), we have

R l := (Y - x )a (x ,y)uo- 8t [a(x = )su1- a(y = )cryuo]

-'6t [a(y ,z )f (uo)-- a(x ,z )f (u 1)].

Evenif the area factors were constant,this would not be zerounless u_= uo. On the

other hand. if we include the leading edge of the rarefaction in the list of moving

points,then the first collisionoccursat c. Then the rightside of eq.(3.1) becomes

g 2:= gt/(u o)[a(y ,y +% gt ) - a (x ,x+cr_gt )].

In the constant area case, R2 = O, hence the nomenclatureexact. In other words, an

exactcollision is one in which the state betweenthe two intersectingrays is constant.

Forsuch a collisioneq.(3.1) is identically correct if the area is constant. When the area

is variable, the error in the massand energyconservationis secondorderin the mesh
size.
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In Figure 3.5 we can see how the collision between the contact and the shock will

actually occur.

f
f/ I

/_ _ Precursor
f

t "" ecursor

x x Y

Fig. 3.5. Collision and precursors.

After several partial time steps, caused by collision of the precursor rarefaction wave

with the shock, the rarefaction wave will become too weak to be seen by the Riemann

solver and the main collision will take place. There will be a small error in a conserved

variable such as the mass. The program controls this error by two devices. If the error

exceeds a pre-set value the time step is repeated with a smaller strength threshold in the

Riemann solver. This works well for constant area, but is not enough in other

geometries. For them, we must force additional partial time steps that will reduce R 2.

At the end of the time step (partial or complete) the precurscr waves are deleted.

At the end of a full time step the separator waves are also removed. Thus each step

starts fresh with the main moving points. However, if a major collision has occurred,

points may have been created or destroyed. If we wish to keep track of all shocks and

contacts, then we must include the resulting transmitted and reflected shocks and resi-

dual contact produced by a collision of two shocks or of a shock and a contact. The

entire process that we have described works remarkably well, particularly if collisions

arerare.

4.THE TEST PROBLEMS.

Threetestproblemsarepresented.The firstisSod'sproblemwithreflectingboun-

daries[1].The secondisa problemposedby PaulWoodward [5]involvingtheinterac-

tionof thesolutionof two Riemann problems.The thirdisan elegantsphericalshock
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problem with a simple exact solution due to Bill Noh [6].

In Figure 4.1 we give our solution (density only) of Sod's problem at t =.175. The

initial data define a Riemann problem centered at x E .5. The left state has density 1.0.

pressure 1.0, and velocity 0.0. The right state has density .125, pressure .1, and velocity

0.0. The equation of state is that for a _/- law gas with _t = 1.4. This initial-value prob-

lem resolves into a rarefaction wave, a contact discontinuity, and a shock wave (from

left to right).

1.0

0.8- D

0.6 -m

0.4 --

0.2

oo I I I I I
0.0 0.2 0.4 0.6 0.8 1.0

x

Fig.4.1Sod'sproblematt = .175.

The shock is correct, but the state between the contact and the rarefaction is in

error by 5%. This is caused by the presence of the strong rarefaction in close proximity

to the contact early in the calculation.

In Figure 4.2 we give the apparently converged computed solution at t - .81. By

this time the main shock has reflected off the right boundary and interacted with the

contact, producing reflected and transmitted shocks. The rarefaction has reflected off
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the left boundary, begun to emerge from the interaction with its image, and is just now

beginning to interact with the main pair of reflected/transmitted shocks.

0,8_ B

0o6 _m

0.4- D

02 , ' I ' I I
0.0 0.2 0.4 0.6 0.8 1.0

X

Fig. 4.2 Sod's problem at t = .81 .

The initial conditions for Woodward's problem are a gas at rest with unit density

in a unit interval with reflecting walls. The pressure in the left-most 1/10-th of the

interval is 1000 and the pressure in the right-most 1/10-th is 100; it is .01 otherwise.

The initial rarefaction waves moving toward the boundaries reflect and quickly catch

up to the contacts and the shocks. The collision of the shocks and their trailing waves

at about t = .028 initiates a complex sequence of intense interactions localized within

five to twenty percent of the interval. The computed density is shown in Figure 4.3 at

t = .038 . Woodward has computed this with a very fine grid, but he only gives a

graph of the solution. We differ from his solution only in the magnitude of the peak

density, which he finds to be 6.5 while ours is 7. Both calculations locate the
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discontinuities in the same places.
8 --

6 I

4

2 --

-?
o , I , I , , I ,

0.0 0.2 0.4 0.6 0.8 1.0
x

Fig.4.3.Woodward's problematt = .038.

For Noh's problem we have a sphere of unit radius filled with a T-law gas. T -

5/3. at zero pressure and internal energy, and with velocity - -1. At t ffi.6 the solution

consists of a shock located at x - .2 moving with speed 1/3. Behind the shock the pres-

sure is 64/3 and the density is 64. Ahead of the shock the density is I + t/r 2. The com-

puted density is given in Figure 4.4.

Density
i00

o '' ' ' I' ' ' 'i
0.0 0.5 1.0

x

Fig. 4.4. Noh's problem.
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5. THE PIECEWISE LINEAR EQUATION OF STATE.

The approximation of arbitrary functions by piecewise linear ones has a long and

distinguished history. The value of this approximation in the theory of conservation

laws seems to have been first recognized by Dafermos [7]. who combined a piecewise

linear flux function and piecewise constant initial data to obtain an elegant existence

theorem for scalar conservation laws. The crucial property of the piecewise linear scalar

flux is that the solution of the Riemann problem has only cona :ant states. Hedstrom [8]

observed that if the pressure expressed as a function of specific volume and entropy is

piecewise linear in the volume, then again the solution of the Riemann problem has only

constant states. Hedstrom used this as a computational device to obtain numerical solu-

tions of the equations of isentropic flow. by tracking the shock-like boundaries of the

constant states. In principle. AZTEC can obtain the exact solution of the full gas

dynamic equations with such a piecewise linear pressure and piecewise constant initial

data simply by having no fixed grid points, only moving ones. If we also take a very

large time step. then the collisions determine the intermediate time steps. Each collision

will be exact in the sense defined in section 3.

In Figure 5.1 we show the solution of Sod's problem for a piecewise linear approx-

imation to the _, - law gas.

1.0

0.8 - --

0.6

0.4

0._ 2

oo I I I I I I t I
0.000 0.125 0.250 0.375 0.500 0.625 0.750 0.875 1.000

Fig. 5.1. Sod's problem for a piecewise linear equation of state, t = .175.
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There are 80 nodes per decade in density. The shock and contact are now exact (for the

given equation of state), and the rarefaction wave has become piecewise constant. Of

course, this is a trivial application of the method as there have been no collisions.

In Figure 5.2 we have a more interesting example, namely, Sod's problem with

reflecting boundaries at t=.81, computed with 80 nodes per decade in density. Now we

have a rarefaction wave reflected off the left boundary and interacting with the waves

reflected from the other boundary. This result should be compared with Fig. 4.2. The

solution in Fig..5.2 was obtained about 30 times faster than the one in Fig. 4.2.

1°0 _B

r °

0.8 _ D

0.6

0.4 _

O2 I I a I ! I I I
0.000 0.125 0.25o 0.375 0.500 0.625 0.750 0.875 1.000

Fig. 5.2. Sod's problem, t = .81. piecewise linear equation of state.

There are serious difficulties with the piecewise linear method which seem to

prevent it from being more than a curiosity. One problem is that. in general, a collision

of two waves will prod.uce at least three outgoing waves, leading to a rapid prolifera-

tion of waves and collisions. This can even happen with the interaction of rarefaction

waves, such as occurs in the reflecting Sod problem. In the case of the interaction of

rarefaction waves, this dif_culty is overcome by the following device. Suppose the pres-

sure p at fixed entropy is continuous, and that it is linear in the intervals 0"_.Irl+l),

i - 1,2 • • • _n, where _"-- 1/p. We constrain the nodal values Pi to satisfy the condi-

tion that (Pi -- Pi +l)(ri +I -- _'i) is a constant that depends only on the entropy, not i. It
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follows from this that the velocity jump across each internal ray in a rarefaction fan is

constant. Moreover, an examination (as in [8]) of the rarefaction curves in the

pressure-velocity space shows that the number of collisions in the complete interaction

of two rarefaction fans is now of order n2 if there are n nodal pressure values in the

fans. This constraint was used to generate Figures 5.1 and 5.2.

We anticipate reporting additional detail on our experie_.:es with piecewise linear

equations of state.
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ABSTRACT

Finite difference approximation of transonic flow problems is a well-

developed and largely successful approach. Nevertheless, there is still a

real need to develop finite element methods for applicationsarising from

fluld-structureinteractionsand problems with complicatedboundaries. In

this paper we introduce a least squares based finite element scheme. It is

shown that, if suitably formulated,such an approach can lead to physically

meaningful results. Bottlenecks that arise from such schemes are also

discussed.
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I. INTRODUCTION

In this paper we consider the approximationof transonicflows by finite

element methods based on a variationalmethod of the least squarestype. The

objective here is purely computational. In particular,we have sought to

fully exploit the ideas arising from mathematicalanalysis of such methods

(see, for example, [i] - [6]) and directly apply them to a nontrlvial

transonic flow problem. The major conclusiondrawn from this work is that

finite element methods--sultablyformulated--cangive physically meaningful

results.

There is a significantand largely successfularray of finite difference

techniques for transonic flows (e.g., [17]). Nevertheless, an assumption

implicit in this work is that there is still a need for stable and accurate

finite elementapproaches. First, there are applicationsfrom fluid-structure

interactionsthat would benefitfrom the availabilityof a finite element flow

model. Second, there is the issue of complicated boundaries in the flow

field. The importance of the finite element ideas in such a context--while

largelyuntested--isstill promising.

Variational principles of the least squares types have a number of

valuable computational properties. For example, the algebraic system

generated is always Hermitian semidefinite. In addition, such schemes, if

properly formulated, are insensitive to equation type, be it hyperbolic

(supersonicflows) or elliptic (subsonicflows). In fact, the majority of the

finite element ideas that have been used for hyperbolicproblems to date tend

to be either implicitlyor explicitlyof the least squares type.

Least squares based schemes do have, however, some major computational

defects. First, they tend to be sensitive to singularities and
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discontinuities in the flow variables. Moreover, mesh refinement alone does

not overcome these defects [7]. Based on the work in [7] we introduce

weighted least squares variational principles, which in combination with mesh

refinement is capable of dealing with shocks in the flow field.

In Section 2 we describe the basic numerical formulation, and outline the

essential computational properties associated with the approach. A key

feature is the proper choice of weighting functions to use in the least

squares functional. A closely allied issue is the density modifications

needed to rule out nonphysical expansion shocks.

In Section 3 we present sample numerical results. As a model problem we

select the planar potential flow over a cylinder.

Other authors have considered finite element approximation of transonic

flows. Selected references are [18] - [21].

2. THE LEAST SQUARES FORMULATION

A

We consider the potential flow over a body _. Let u denote the

velocity and 0 the density. Then a _ass balance yields

dlv[pu_J--0. (2.1)

In addition, we have

u = grad i (2.2)

for the velocity potential i. The density p is given as a function of u

by the Bernoulli equation. The system is closed by specifying the normal

velocity
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u.n --v (2.3)

A

at the boundaries of the flow region. On the body _ the no flow condition

u-n= 0

applies. We assume that the flow region is contained in a box B and that

(2.3) is specified on the boundary of B. Thus

^

= B/_ (2.4)

defines the flow region, and (2.1) - (2.2) hold in _ with (2.3) holding on

the boundary F and _.

Since the flow is assumed to be Irrotational, (2.1) - (2.2) can be

replaced with

div(ou__)= 0 in n (2.5)

curl(u) = 0 in _ (2.6)

u.n = v on r. (2.7)

A least squares scheme based on this system takes the form

f {Idiv(0_)l2 + Icurl(_)l2} = min, (2.8)

where the variation is taken u in some finite element space satisfying the
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boundary conditions (2.7). Such a div - curl system has proven to be very

effective for elliptic systems (subsonic flows) in cases where the density

p = p(_) and the velocity field _ are smooth [8].

Preliminary results indicate that with appropriate weighting functions on

the terms in (2.8), the nonsmooth cases can be treated as well. Nevertheless,

in this paper we shall focus attention on (2.1) - (2.2) and least squares

schemes of the form

I 12 1f F - grad _ + wldiv _I 2 = min, (2.9)

where _ = 0_ is the mass flow and w is a weighting function to be chosen.

In this setup the variables are the potential _ and the mass flow v.

The density in (2.9)

P =o([grad _[)

is obtained from Bernoulli's equation, i.e.,

Thus, (2.9) is a nonlinear least squares formulation, which is appropriate

since it reflects the nonlinear character of transonic flow. Once a grid is

selected (specific examples are given in the next section), the minimization

of (2.9) over the associated finite element space leads to a nonlinear system

K(_)_ = _. (2.10)
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In all of the numerical examples reported in the next section, (2.10) was

solved by a combination of Newton's method and elimination. Issues related to

this choice for the equation solver will be discussed in the next section.

There are three main cases that are considered in this paper:

Case I: smooth subsonic flows,

Case 2: smooth transonic flows,

Case 3: transonic flows with shocks.

In the first case (2.9) can be used without modification, and in

particular no weighting function is needed (i.e., w _ i can be used). One

does need special grids to obtain optimal accuracy (see [I]), and the criss-

cross grid pattern which satisfies the grid decomposition property of [I] is

used.

In the second case a hyperbolic region appears but the flow field remains

smooth. In this case there is a loss of accuracy in the hyperbolic region.

In particular, with linear elements the polntwlse accuracy in the mass flow

drops from 0(h2)--in a generic mesh spaclng--to O(h). This can be corrected

with a suitable choice of weighting function w, and details are given in [8].

This modification was not used in the results reported in this paper since the

hyperbolic regions in question were too small for the suboptimal accuracy to

have a major effect on the qualitative features of the flow.

The third case is, by a wide margin, the most important as well as the

most challenging. Here _e:use a weight w so that the term

wldiv 212 + - grad , (2.11)
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remains meaningful. In addition, modification to the density 0 = 0(Igrad.l)

must be introduced so that nonphysical expansion shocks are eliminated.

For the choice of the weight w, we follow the developments introduced in

[7]. For most flows, _ = p_ is continuous across the shock [i0]. Neverthe-

less, it does not follow that div _ is square integrable, and the primary

rule derived from [7] is that w be chosen so that

f wldiv _I2 < =. (2.12)

This requires that w vanishes appropriately on the shock, which in turn

means that (2.11) is a least squares principle in a degenerate L2 norm. A

point of significance, on the other hand, is the fact that if w vanishes to

minimal order on the shock (in that (2.12) still holds), then optimal 0(h 2)

can be achieved in unweighted L2 norms provided appropriate mesh refinement

is introduced. This has been proved rigorously only in special cases (see

[7]), yet the numerical results in the next section seem to indicate that the

principle is general.

These modifications alone do not yield an accurate simulation of the flow

problem. To do this one must deal with the presence of nonphysical expansion

shocks. In effect, (2.9) does not have a unique minimum, neither over

infinite-dimensional function spaces nor over the finite-dimensional finite-

element spaces. One can have expansion shocks, compression shocks, or both.

What is interesting is the results in the next section tend to indicate that

the case where both type of shocks appear tends to be the stable mode for

(2.10). That is, an arbitrary choice of starting vector for Newton's methods

applied to (2.10) tends to converge to this solution.
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To eliminate expansion shocks we consider density biasing which in effect

introduces streamwise diffusion into (2.1) - (2.2). Following [II] (see also

[12] - [14]) the modified density takes the form

P : P- _Ps As, (2.13)

where Ps is the derivative of the density p along the streamwise

direction. Since the density has the form

P = P(Igtad _l),

the derivative Ps formally involves second derivatives of _. Since _ is

expanded in terms of linear elements, it is necessary to replace Ps with a

streamwise difference quotient; i.e.,

p = p - p Ap As, (2.13")

in the least squares formulation.

3. NUMERICAL RESULTS

To illustrate the above ideas we selected the classic problem of a planar

flow past a cylinder. The flow region plus boundary conditions are given in

Figure 3.1. The configuration shown in this figure assumes that both the

outflow and inflow remain subsonic. Figure 3.2 contains a typical grid. For

economy only the top part of the flow region is shown, and the special

refinement needed for the shocks is not shown.
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The first set of results shows a typical subsonic flow pattern. The

results are given in Figure 3.3 for a free stream Mach number of

M =0.I.

Convergence studies at such Mach numbers are reported in [5] - [6]. These

results indicate, with the type of grid shown in Figure 3.2, one can readily

achieve L2 error of I% or less for the velocity field.

The next set of results deal with the smooth transonic case. Of special

interest here is the ability of the scheme to detect the onset of supersonic

flow. Analytical techniques (see [15] and [16]) have given accurate values

for the critical free stream Mach number M, as a function of d/D, where

d is the diameter of the cylinder and D is the width of the channel. These

results are reproduced in Figure 3.4. Numerical results from the least

squares scheme are given in Figures 3.5 - 3.7 for M = .42, .45, and .50,

respectively. The d/D ratio used for this case is 1/6. Extrapolation

based on these results indicates that the critical Mach number is

approximately .41, which is good agreement with Figure 3.4.

The next set of results show what least squares based schemes produce when

diffusion via density modification is not used. These are shown in Figure 3.8

which contains plots of the velocity q = I_I versus angle 8 along the

cylinder and at a radius slightly above the cylinder. The free stream Mach

number is M = .5. The shock at the front of the cylinder is an expansion

shock and is nonphysical. The one at the rear is a compression shock. A

remarkable feature of this approximation is that the physically relevant

compression shock is approximately in its correct position and is apparently

unaffected by the spurious shock. (Compare Figures 3.8 and 3.9.)
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The solution shown in Figure 3.8 is apparently a stable mode for the

nonlinear system (2.10). Indeed, Newton's method converged to this solution

rather rapidly for a wide variety of initial conditions.

In this regard, it is interesting to note that for the least squares

formulation the Jacobian is not singular near the solution shown in Figure

3.8. Density modifications are needed to remove the spurious shock shown at

the front of the cylinder. However, they are not needed to obtain nonslngular

Jacoblans.

The final results deal with the complete least squares system with the

density modification discussed in the previous section. Figures 3.9 - 3.11

show the velocity field over the cylinder, at a radius slightly larger that

that of the cylinder, and at a radius in the free stream. Note that the

spurious expansion shock has been totally eliminated. Moreover, the shock

location and strength as well as the velocity profile appear to be correct as

is the supersonic bubble shown in Figure 3.12.

While we regard these numerical experiments as successful, there are a

number of areas where the approach could be improved. The first issue

concerns the equation solver. Once the density modification were introduced,

the number of iterations increased by a factor of 2 to 3. Moreover, the

solution shown in Figure 3.9 tended to be less "attractive" to the Newton

iterations than that shown in Figure 3.8 (without density modifications). In

fact, it was not difficult to find starting vectors where nonconvergence was

seen, in the former case, although the starting state of a uniform flow always

leads to convergence. This suggests that an alternative equation solver

(e.g., preconditioned conjugate gradient) might be a more efficient choice for

the equation solver.
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A second issue concernspost-shockoscillations. These are seen in Figure

3.10, which is the radius where the oscillationswere found to be the most

significant. These oscillationswere not seen on the body of the cylinder

(Figure 3.9) and disappearedrather rapidly away from the cylinder (Figure
4

3.11). This is clearlya grid effect due to the slightmlsallgnmentof shock

and grid.

4. CONCLUSIONS

Finite difference approximationsto transonic flow problems are well-

developed and have been successfullyused for a wide range of problems.

Nevertheless,there is still a need to develop finite elementapproachesfor

such problems for a variety of applications. We feel that the results

presented here do show that such schemes can give physically meaningful

simulations.

On the other hand, our experience has tended to indicate that

straightforwardapplicationof the basic finite elementidea may not always be

successful. Key computationalissuesare as follows:

(1) There is a need to carefully develop the spaces in which the

approximationsare formulated. Classical L2 spaces are generally

inappropriate.

(ll) Some form of diffusion(via densitymodificationsor otherwise)appears

to be needed. Moreover, care is needed in the way this diffusion is

introduced.

(Ill) The geometricalpattern of the grid selected is of importance. Some
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patterns are definitely superior to others.

Finally, there are some important "bottlenecks" associated with the scheme

employed in this paper, which, if properly addressed, could lead to an even

more efficient approach. These include the following:

(i) There is a need for an equation solver that is more efficient than the

Newton method used in this paper.

(ll) There is a need for adaptive grid refinement techniques that would lead

to a better shock grid alignment than that achieved in this paper.
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Figure 3.1. The flow region _.
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Figure 3.2. 512 elements, 281 nodes, h = 0.30907 × I0-I.
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Figure 3.3. Flow pattern for the free stream Mach number M = 0.I.
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Figure 3.4. Critical Mach number versus d/D.
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Figure 3.5. Plots of the supersonic pocket for M = 0.42.
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Figure 3.6. Plots of the supersonic pocket for M = 0.45.
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Flgure 3.7. Plots of the supersonic pocket M = 0.50.
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Figure 3.8. Velocity as a function of angle: (a) on cylinder, (b)

slightly off cylinder -- MB = .51.
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Figure 3.9. Velocity as a function of angle on the cylinder -- full least

squares scheme with density modification -- M = .5.
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least squares scheme with density modification -- M = .5.
o_

491



2.O0 -

0 0
0 01.50-

0 ©

Speed1.00- 0 0

0 0
.50-0 0

I I I I I I
0 2.00 4.00 6.00 8.00 10.0012.00

Figure 3.11. Velocity as a function of angle half radius above cylinder --

full least squares scheme with density modification -- M = .5.
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ABSTRACT

Helmholtz type boundary value problems are important in a variety

of scattering and diffraction problems. Standard numerical schemes

based on finite difference, finite element, or integral equation

methods are generally not well suited for these problems in the

"intermediate frequency range" since the oscillatory solution is not

accurately approximated by piecewise polynomials. In this paper, a

version of the weak element method is employed to numerically solve

these problems in two dimensions. This method consists of parti-

tioning the domain into small "elements" and locally approximating the

solution in each element by a sum of exponentials. These piecewise

approximations are joined together at interelement boundaries by

continuity conditions for certain functionals of the approximate

solution. The method is analyzed using a complementary variational

formulation. It is shown that the weak element method is considerably

more accurate than standard discretization methods when the solution

is adequately approximated locally by the exponential basis

functions. These results are validated by numerical experiments.

The submitted manuscript has been authored under contract DE-

AC02-76CH00016 with the U. S. Department of Energy. Accordingly, the
U. S. Government retains a nonexclusive, royalty-free license to

publish or reproduce the published form of this contribution, or allow

others to do so, for U. S. Government purposes.
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I. INTRODUCTION

It is the purpose of this paper to analyze and numerically

investigate the weak element method applied to Helmholtz type boundary

value problems in multi-dimensional domains. Scalar and vector

Helmholtz type equations, (A + K2n)u = 0, with an appropriate

radiation condition and spatially dependent index of refraction, n,

are of importance in a variety of stationary wave propagation problems

occurring in acoustics, optics, seismology, and electromagnetic

theory. Since the solution is rarely known in closed form, it is

important to approximately solve these problems numerically in the

intermediate frequency range, where asymptotic methods can be

unreliable.

When applying typical discretization methods such as finite

difference and finite element methods as well as integral equation

methods, one is faced with the "resolution problem". This means that

in order to approximate the solution accurately when the wave number,

K, is not small, one must decrease the grid size, h, and hence solve a

prohibitively large number of linear equations. This problem arises

from the use, in the usual discretization methods, of piecewise

polynomial functions to approximate a highly oscillatory solution.

Methods for overcoming this difficulty have been developed in [I] and

[2] by combining the finite element method with functions satisfying

the desired oscillatory behavior. The method in [I] was developed for

one-dimensional problems. The method in [2] was designed to treat

multi-dimensional problems for which most of the propagation occurs in

a narrow angle band about a fixed direction.
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An alternative approach for discretizing boundary value problems

is given by the weak element method developed in [3]. This method is

based on partitioning the domain into small subdomains (elements) and

approximating the solution in each element by a solution of a

localized approximation of the differential equation. These piecewise

approximations are joined together at interelement boundaries by

continuity conditions for certain functionals of the approximate

solution. See [4] and [5] as well as references cited there for a

discussion of related methods. In this paper we consider a version of

the weak element method in which the approximate solution consists of

piecewise exponential basis functions joined together at interelement

boundaries by imposing continuity conditions on the average values of

the approximate solution and its normal derivative. This method is

described briefly in Section 2 and in detail in [3].

In Section 3 we analyze this weak element method for a model

problem in a rectangle. The analysis employs a complementary

variational principle developed in [4] in connection with the Laplace

equation. Here we extend the arguments in [4] to a non-selfadjoint

Helmholtz boundary value problem. We prove that when K2h is

sufficiently small, the resulting discrete problem is well-posed and

the mean-square discretization error is of order 0(K3h 2) as h.0. This

is analogous to the situation for standard second order finite element

or finite difference schemes. We also show that when the phase of the

solution is adequately approximated locally by the exponential basis

functions, the weak element method is much more accurate than standard

discretization schemes as K increases. This is the main advantage of
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the weak element method. Some techniques for approximating the phase

of the exact solution are described in [I] and [2]. In Section 4 we

demonstrate the results of some numerical experiments with the weak

element method. We summarize our conclusions in Section 5.
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2. THE WEAK ELI_4ENT HETHOD

In this section we outline briefly the weak element method

described in [3]. We employ the following notational convention.

Suppose that a=(al,a2,...,an) and b denote vectors with
n components,

_=(_ji) denotes an nxn matrix whose ith column is -_i and whose jth
and

row is _j. We denote the inner product of a and b by a'b and the
norm

of a by lal=(a'a#/_ No notational distinction is made between row

and column vectors. Hence a in a_ is a row vector, but a in _a is a

column vector.

We consider the following differential operator acting in a

bounded domain D in the x=(xl,x2) plane with a piecewise smooth

boundary, _D. Suppose that P and A are 2x2 matrices (P being positive

definite symmetric) and b and q are scalars. Let n denote the outward

directed unit normal to D and let V=(_/_Xl,_/_x2 ) denote the

gradient. The linear elliptic operator L is defined in D by

L=-V'PV+q, (2.1)

and the boundary operator B is defined on _D by

B=_'AT+b. (2.2)

Before proceeding further we require the following additional

notation. Let HN(D) denote a partition of D into N elements

(subdomains), {_i}. We use _.(_), j=l,2,...,_(_), to denote one of3

the %(_) smooth sides of the element _. The vector

g(_)=(gl(_),g2(_),...,o%(_)(_)) denotes the sides of _ oriented in a

counterclockwise manner about _. A side o.(_), which is incident to
3

another subdomain, _', is an interior side and is denoted by g(_,_').

Otherwise o.(_) lies on _D and is denoted by o'(_). (See Figure I for3

the case of rectangular elements.)
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=I) Let
The area of _ (length of a.)jis denoted by l l(l_j

o
0(_) denote the smallest angle between the centroid, x , and any two

distinct vertices of _. In order for the resulting system of linear

equations to be well conditioned, we assume that 0(_)_0 >0 for each
o

element _S_N(D), where 9o is independent of N.

We define localizations, L(_) and L(_), of the operator L given

by (2.1) with respect to the element _ as follows:

L(_)=-V'(PoV)-(VPo)'V+qo (2.3)

and

^

L(_)=-V'(PoV)+q o (2.4)

where P denotes P evaluated at x , etc. Finally, if u(x) is a smooth
o o

(possibly vector-valued) function and a.(_) is an arbitrary side3

of _, we define

a 1_ I _°3 u(x)dsu(j(_)-l_j(_)1 (_)
and

u(o(_))=(U(Ol(_)),u(a2(_)),...,u(a£(g)(=))).

02(_) a2(_')

/
/

/
/

o

o3(_) //// x Ol(_)ia3(_') oi(_" )

o4(_) o4(_')

Figure I
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We are now ready to describe the weak element method employed

here to solve the boundary value problem Lu=0 in D, Bu=g on aD. For

- 62(_ ,6%(_)each element _, let _l(X,_), ,_),... (x,_) denote a linearly

independent set of solutions of the localized equation
^

L(_)_i=0 (2.5)

and define

$(x,_l=(¢l(X,_l,¢2(x,_),...,¢£(_)(x,_)).

Our approximate solution on _ is now defined by the equation

w(x,_)=$(x,_)'a(_), (2.6)

where the coefficient vector a(_)=(al(_),a2(_),...,a%(_)(_)) is

unknown.

Now suppose that _.(_) is incident to _" at the side
3

o..(_') and let o'(_) be a side of _ on the boundary aD. We impose the
3

following continuity and boundary conditions on w(x,_):

w(oj(_))=w(o..(_')) (2.7a)3

(nj "PVw)(oj (_))=(nj "PVw)(oj.(_')) (2.7b)

on interior sides, where n. is the outward directed unit normal to
3

o.(_), and
3

(Bw)(o'(_))=g(o'(_)) (2.7c)

on boundary sides. Substituting (2.6) into (2.7), we obtain a system

of linear equations for the N vectors

a(_i)=(al(_i),a2(_i),...,a%(_)(_i)),i=l,...,N.
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It is shown in [3] that the weak element approximation given by (2.6)

may be obtained by solving an equivalent smaller system of equations

for the average values of w on all sides, oj(_), of the partition.

Remark 2.1: As described in [3], the weak element method can be

generalized as follows. In (2.7), we impose boundary (continuity)

conditions on the average value of the function (and an appropriate

derivative) for each boundary (interior) side, oj(_). To generalize

the method we can replace the average value on 0.(7) by a set of
3

linear functionals on o.(7)3, denoted by <Am(oj(_)),u>,m=1,...M. We

would then require M%(_) local basis functions in each element. (For

example, these linear functionals might consist of the average value

of higher order moments of u on each side.) This could lead to higher

order methods than the method discussed in this paper for which M=I

and <Al(oj(_)),u>=u(_j(_)).

For the sake of simplicity, in the remainder of the paper we

consider the special case in which each element _SHN(D) is a rectangle

with sides parallel to the Xl,X 2 coordinate axes. As will be seen in

the next two sections, a key to the success of the weak element method

lies in the choice of the local basis functions, _i(x,_),i=1,...,4.

o o o

We employ an exponential basis defined as follows. Let x =(xl,x2)

denote the center of _ and define the unit vectors

e1=(1,0) and e2=(0,I). We now set

o o

Pl(Xl-X I) P2(X2-X2 ) -Pl(Xl-X_)
_i(x,_)=e ,_2(x,_)=e ,_3(x,_)=e ,

o (2.8)

-P2(X2-X 2)

and _4(x,_)=e
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where Pl and P2 are chosen so that each _j(x,_) satisfies (2.5). A

simple calculation yields

=q_/2 (_ .p e.) i/_j=l,2. (2.9)Pj j o 3

Basis functions analogous to those given by (2.8) and (2.9) can be

obtained by solving the equation L(_)_i=0 instead of (2.5).

The basis functions in (2.8) can be generalized as follows.

m

Define the unit vectors el =(cosa,sin= ) and e2 =(sine, cosa)

with 0<_<¼. Now
set

pl_e (_-x°)
_l_(_,_)=e i_" ,_2_(_,_)=eP2_e2_ "(_-x°),

(2.10)

_3_(_,_)=emPl_el_ "(_-x°) - -P2_e2_.(x-x°), and _4_(x,_)=e

The constants Ple and P2= can be determined as before by substituting

(2.10) into (2.5). Note that e can have different values in different

elements. This can be useful when some knowledge is available

concerning the phase of the exact solution (see Remark 3.1 below).

The finite difference equations obtained using basis (2.8) were

derived in [3]. See [6] for a detailed investigation of the result-

ing finite difference formulas using both (2.8) and (2.10) and for

various aspects of the implementation of the method. The resulting

system of equations may then be solved for the unknowns,

aj(_i),J=l,...,4,i=l,...,N. The weak element approximation, w(x),

is obtained from (2.6). Hence we obtain w(x) at each point x in D

instead of only at nodal points. Observe that the resulting matrix is

highly sparse. Furthermore, the corresponding large system of
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equations is nonselfadjoint with indefinite symmetric part for

problems of the kind considered in this paper. The preconditioned

iterative method developed in [7] is well suited for solving this

system of equations. This iterative solver has not been implemented

in connection with the weak element method at the present time.
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3. ERROR ANALYSIS

In this section we consider, for the sake of simplicity, the

following model problem:

(a) (-A-(K2+i6K))u=0 in D,

(3,1)

(b) u=g on @D,

where D is the unit square, 6>0, and we assume that the solution

ucC2(D). The term i6K is chosen to simulate a radiation condition as

in [8]. Furthermore, it is easily seen that this term ensures the

well-posedness of (3.1). We set K'=_K and note that q=iK"

in (2.1) and b=1 in (2.2). Furthermore, P(A) is the 2x2 identity

(null) matrix in (2.1) ((2.2)).

We shall employ the weak element method described in Section 2

with local basis functions given by (2.8) and (2.9). Hence we have a

partition of D,RN=RN(D), into small rectangular elements,

7.,i i=l,... ,N, such that the local basis functions defined on 7. are
i

given by
i . i

_iK'(Xl-X I) _+iK (x2-x2)
e , e , (3.2)

i,x2i )where (xI denotes the centroid of 7.. Denote the lengths of thei

horizontal and vertical sides of 7 by h i ii 1 and h2 , respectively, and

define

i

h=max max(h_,h2). (3.3)
7ic_ N

We shall analyze the discretization error using a complementary

variational formulation developed in [4] for the Laplace equation.
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Before describing the variational formulation, we introduce some

additional notation. For a fixed element

igHN , let qj,i=qj(#i),J=1,...,4, denote the four sides of i (see

Figure 1 above) and set o(oj i)=l (-i) if o. is to the right or top, j,i

of (to the left or bottom of) _ . If o ,i=o . is a common sidei j j ,i"

of and
_i i' vgHl(#i ) _Hl(_i ), and vi(vi) is the restriction of v

to _i(_), we define

(a) 6v° _p(oj ,i)vi+P(Oj.,i.)vi for each interiorj,i
side o..=o . and

j,1 j ,i"

(3.4)

(b) 6vo. _p(o. i)vi-P(O )g for each boundary
3,i 3, j,i

side o. ..
3,1

We next define some Sobolev and piecewise Sobolev spaces that are

important in the variational formulation. Suppose B=D. By Hm(B), we

denote the space of functions v such that

IIvll2 _ _mlID_vll 2 <_,m(B ) I_l L2(B)

where m is a non-negative integer and D° denotes a derivative of

order [=I" Let H (D) denote the closure of C0(D) with respect to the

norm, II II . We define
HI(D)

h

Hm _{v_L2(D):l[vl[2 h-_= EE_ l[vi [12 <_}"

Hm i N Hm(_i )

We also define

N h

2 h_ Ivl2 for each vsH m ,

IvlHm i_l Hm(_i)
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where the seminorm, [ [ , is defined by

Hm(_i)

[Vl_m(_i - Z) [=[--ml[D_vll_2(_i)for each vcHm(_i).

Finally, set

h

:(-A-(K2+i_K))vi=0 for each _iEHN }.

We now define the subspace H_H_ h by

HE_ vg_h:v has continuous normal I
derivatives on _i for each _ig_N. }

Furthermore, we define the following bilinear form:

N

_(v ,w)---_=if_.(Vv.Vw*-(K2+i6K)vw*)dx Vv ,wgHE , (3.5)
i

where w denotes the complex conjugate of w. It is easily seen that

the solution, u, of (3.1) satisfies the following variational problem:

E
Find ugH such that

(VP)

(v) Z gsn--_--_sfor each vgHE ,u o_ o_
3,i J,i

where the summation is taken over all element sides, c$_,i, contained

in 8D, ds denotes arc length, and _n denotes the outward directed

normal derivative to 8D.
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We discretize (VP) by defining a finite dimensional subspace,

h E

S_ , as follows. Let Ah denote the functions, _h, defined on the

element sides o such that _h is some constant, c. on o. .. For
j,i h j,i j,z

h _i _vh
each _h in Ah, let v in _ satisfy _n? = P(°j,i)_h on each

J
side o. where denotes the outward directed normal derivative

J,l' _n.
J h .

to o. = oj(_i) from _ . Hence v zs the solution of a well-posedj,i i

h consist of all such
Neumann problem in each element. Let SK

h the of _ that _0I E. Wefunctions v . By construction SK, we see S now

formulate our discrete variational problem.

h h

Find u gSK such that

(DVP)

h h

At_(uh,vh)=ru(V h) _v gS K.

Note that the weak element and finite element methods are based on

complementary variational principles in the sense that essential

boundary or interface conditions for one are natural conditions for

the other.

We next show that (DVP) is equivalent to the weak element method

described in the previous section. Suppose that uh satisfies (2.7)

with local basis functions given by (3.2). In view of the definitions

of P and B corresponding to problem (3.1), it follows from (2.7) and

(3.4) that

_uh

(a) .go 6(_-_.) ds=0 for each interior side o
j,i j o. j,i

and j,i (3.6)

(b) ._o. _uh ds=0 for each side o. .
3'i O. 3,iJ,i
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The local basis coefficients, a(_i)=(al(_i),...,a4(_i)), are

determined in each _. so that (3.6) holds. It follows from (3.2) that
1

_uh

_n. is constant on each o.. Hence it follows from (3.2) and (3.6)(a)J
J h h

that u gSK. Furthermore, it is seen from (3.5), (3.6)(b), and

integration by parts that (DVP) holds. Conversely, it is easily seen

h
that if u satisfies (DVP), then (3.6) and consequently (2.7) (with w

replaced by uh) are also satisfied. The basis coefficients a(_i) may

be readily obtained as in [3].

It thus suffices to prove that (DVP) is well-posed and to

h h h
estimate the error, e =u-u , where u and u satisfy (VP) and (DVP),

respectively. To this end we first state the following result.

Lemma 3.1: Suppose that _ satisfies the following boundary value

problem:

(-A-(K2-i6K))_=z in D, _=0 on _D. (3.7)

Then

II_IIH2(D)_CKJlZlIL2(D), (3.8)

where C is independent of K and z.

Note that we shall often use the same letter C to denote

different constants when there is no danger of confusion. Lemma 3.1

was established in [8] and shows how the norm of the resolvent

operator for (3.7) depends on K. This Lemma was also established with

the Dirichlet condition replaced by a radiation boundary condition on

part of the boundary. In such cases K is replaced by

K2-_ with O<a<l, where _ depends on various factors. See [8] for a

more complete discussion of these issues.
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We are now ready to prove our error estimates. We first prove

the following Lemma using a duality argument as in [4].

h
Lemma 3.2: Suppose that u satisfies (VP), u satisfies (DVP),

h h
and e =u-u . Then there exists a constant, C, independent of K and h

such that

[[eh]lL2(D)_CKh[eh[H1 h"

Proof: First observe that

[fDehz*dx[

[[eh][L2(D) = sup. . (3.9)
zsC (D) [[ZllLm(D )

Let _H_(D)4"_C_(D) denote the solution of (3.7). For each vertical

(horizontal) element side, oj,i, let _n denote _-_i(_-_2). It follows

from (3.4), (3.5), (3.7), and integration by parts that

fDehz*dX=fDeh(-A-K'2)_*dx

(3.10)

_oj _ h eh
Sen . _-_s+A_( ,_)

=-_'J_ ",i O.3,i

Since ehcHECH_ h, it follows readily using (3.5) and integration by

parts that

h h i_=if_i *_(e ,_)= (-A-K'2)eh_*dx+_ j _o 6(_)o _ ds=0.
' j,i j,i

Combining this with (3.10), we deduce

h * -

_O3 6eh _*f_e z dX=-l_,j ",i °j,i _n ds. (3.11)
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To estimate (3.11), we first divide each rectangular element,

_i' into two right triangles as shown in Figure I

(with _ and 7" replaced by _'i and _). For simplicity, consider the

triangle containing sides oi,i and o4,i. Denote this triangle by ti

and set _i=_Iti Set

_---_x^ and _ _----ax,, (3.12)bl,i =- Ol,idx 1 z b4,i--" o4,iox 2 1

where [Cj ],j=l or 4, denotes the length of side oj,i,i . Define

_i_i+bl,iXl+b4,ix2

and note that

8_-_nis=0, j--i or 4. (3.13)
_Oj ,i

Since ugC(D), it follows from (3.6)(b) that

_c.3,i6ehjv,ids=0 for each side %,i. (3.14)

Using (3.14) and a scaling argument as in [4], it may be seen that

2

_cj ,i16ehcj,iI2ds<Ch(lehl=Hl(_i)2+lehiHl(_)) ' (3.15)

where C is independent of h and _i (and j=l in Figure i).

Note that _n 8n is constant on o.3,i. Combining this with

(3.14), we obtain
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S_i_ S_
a 6eh --4s=_a 6eh --_]s. (3.16)
j ,i a. ._n aj _n3,1 j,i ,i

It follows from Schwarz' inequality and (3.15) that

* _i"

leo 6eha 3_---i-_ds[=<[[6eh_n [[L2(oj [[--_-n [[L2(ojj ,i j ,i j ,i ,i) ,i)

(3.17)

_i"

+lehlH1 )1 II
<cl/2(IehIH1(=i) (=2) L2(Oj,i)

Using an argument in [4] (see Lemma 2.2.6) and (3.13), we deduce

Il--_nI_i" ]L2(oj,i)=<ChI/21_ilH2(tI)<Chi/2I _IIH2(_i). (3.18)

Combining (3.8) with (3.16)-(3.18) and the Schwarz inequality, we

conclude that

I_,j _a 6eh 8_
3",i g'3,i8n dsl<CKh[IzllL2(D ) [eh[HIh. (3.19)

Finally, we combine (3.9), (3.11) and (3.19) to complete the proof.

Q.E.D.

We now prove our main result.

Theorem 3.1: Suppose that u satisfies (3.1) and uEC2(D). Then for

K2h sufficiently small, (3.20)

h
there exists a unique solution u satisfying (DVP) and
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2 h < C vi_fgSKh 2HIh+K2 2 (3.21)lehlH 1 = (lu-vhl llu-vhllLm(D)).

Furthermore,

KhlehlHlh+llehllL2(D) =<CKh211ulIw2(D)" (3.22)

The constant, C, in (3.21) and (3.22) is independent of K, h, and u.

h
Proof: First, assume that u exists. Using (3.5), we immediately

obtain

lehl2 <l_(eh,eh)l+l(K2+i_K)lllehll 2 (3.23)
L2(D)"

Hlh =

Employing Lemma 3.2 and condition (3.20), we may "kickback" the last

term in (3.23) to obtain

lehl2 <cl.h. h h,h = AK_e ,e )I-

H I

In view of (VP) and (DVP), the last estimate yields

h vh Sh. (3.24 )lehl2 <Cl_(eh, u-v )I for each in

Hlh =

It follows readily using (3.5) that

I_ (eh'u-vh)l<lehlHlhlu-vhlHIh +(K2+i6K) lleh[IL2(D)llu-vhllL2(D )

<n(lehl2HIh+K211ehlI2L2(D))+C (lu_vhl2Hlh+K21[u-vh I[L2(D)2)
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for arbitrarily small _>0. Combining this estimate with (3.24) and

again applying Lemma 3.2, (3.20), and a "kickback" argument, we obtain

(3.21).

We next prove (3.22). In view of (3.24), we construct a

h h

function v in SK satisfying

12W +nlehl 2
l_(eh,u-vh)I__<C_h211ul 2(D ) HIh (3.25)

for _>0 arbitrarily small. Suppose _i in _N has sides

oj,i,J=1,...,4. We define four constants Cl,i,...,c4, i such that

_u

_o. cj,ids= _o p(Oj i)_-_-d,s,j=l,...,4, (3.26)
3,i j,i ' i

where ni is the outward directed unit normal to _i" It is easily

seen using the Mean Value Theorem for integrals that for each

j=l,...,4, we have

.Su (p
c',i=P(°J,i)_--n_.JJ,i)

l

for some point P. ._o. .. It follows readily using the Mean Value
j,l j,1

Theorem for derivatives that

8u 2 ds )1/28u _ P(°j,i)cj,i [ <Ch(_o lids 8n 11 (3.27)

IL2(oj,i )= j,i i L (oj,i)

,.--, _h _h =c. for each side o.

j=l 4. We now define in Ah by loj,i 3,i o,i"
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It follows immediately from (3.26) and (3.27) that for each o. i' we haveO,

_u )_hds and(a) 0(aj,i
j ,ioni oj ,i

(3.28)

2
_u ),hll <Ch2llull .

(b) Il_-_i -p(oj, i Lm(oj ,i)= W2(D)

h
To construct v satisfying (3.25), we solve the Neumann problem for

equation (3.1)(a) in each _i with Neumann data given by

p(oj,i)_ h on each side o.3,i, j=l,...,4. We denote the solution by
h h h

vi. Set v =vi in each _'i and note that v ESK. We now employ integration

by parts to deduce

h _ . h*

) ds. (3.29)1 1
h

It follows immediately from the construction of v and (3.28)(a) that

_ , h,*
_ _-_-_u-v 2 ds=0 for each _..

I i
h

In view of this, we may replace e on the right hand side of (3.29) by

h h i

ei=e -c in _i (3.30)(a)

with ci__iehds , so that

_iehds=0 for each _"i (3.30)(b)

h h

Applying (3.28)(b), (3.29) (with e replaced by e_ on the right
side), and

the Schwarz inequality, we obtain
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_u

e = II -P( _j ,i)_hlIL2(o
I_( h,u-vh)l_-<i_I j_l l[ehllLm(Oj,i) i j,i)

3 (3.31)

-- N h

<ChmlIuIIW2(D) _=llleillL2(_i )"

h
, we map _ onto the unit square _,

To estimate IleillL2(_i) i

and employ the following well-known estimate:

llwl I_i(_)=<C(lwl2Hl(_)+I_ wdsl 2) for each w in Hl(_).

As in [4], we combine this estimate with (3.30)(b) and map _ back onto

_. to obtain
i

<C1/2 lehl =Ch1/2lehl , (3.32)

IlehllL2(_i)= Hl(_i) Hl(_i)

using (3.30)(a) in the last step. We now combine (3.31) and (3.32) to

conclude that for arbitrarily small _>0:

h N IehlHl (
l_(eh'u-v )l-<-Ch2_=lllUl IW2 (D) _i )

(3.33)

N

(Cnh4 IW 2 ).2 +qlehlH I
<= i_1 l[ul 2=(D) (_i)

Estimate (3.25) now follows from (3.33) since N=0(h-2). Combining (3.24)

and (3.25) with _>0 sufficiently small, we deduce

lehl ih _ChlIUllw2 (D)" (3.34)
H
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Estimate (3.22) now follows from (3.34) and Lemma 3.2. Finally, to prove

that (DVP) is well-posed, it suffices to prove uniqueness since

S_ is finite dimensional. If g_0 in D, then u_0 in D since (3.1) is well-k

posed. Hence it follows from (3.22) that uh_0 in D and we have proved that

(DVP) has a unique solution. Q.E.D.

• =0(K2).

Remark 3 1: Typically, the solution of (3.i) satisfies IIUllw_(D )

Hence it follows from (3.22) that llehllLm(D)=0(KBh2). This is analogous
to results obtained for standard second order finite element or finite

difference schemes (see [8]). However, it follows from (3.21) that the

weak element method is clearly superior for moderate to large values of K

when the oscillatory behavior of the solution is well approximated in each

element by the local basis functions, assuming the "stability" constraint

(3.20) holds. This constraint also occurs in connection with standard

discretization schemes. Our numerical results indicate that this stability

constraint does not cause serious computational problems for the weak

element method when the oscillatory behavior of the solution is well-

approximated by functions in S_. We shall see in Section 4 that in such

cases the discretization error is quite small even when K2h is large.

Remark 3.2: It follows from the previous remark that the main

computational advantage of the weak element method occurs when the

oscillatory behavior of the solution is well-approximated by functions

S_. The determination of this oscillatory behavior can be difficult for
in

realistic physical models. This question was investigated in [I] and

[2]. In [I], asymptotic methods were employed in connection with a one-

dimensional scattering problem. In [2], multi-dimensional models were
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treated for which it is known that most of the propagation occurs in a

narrow angle band about a fixed direction. This condition is closely

related to the "paraxial approximation" and holds in a variety of

application areas.

Remark 3.3: The weak element method described in Section 2 can be extended

in various ways (see Remark 2.1). Alternatively, the variational

formulation described in this section can be generalized by employing

h See [4] for a detailed discussion
higher order approximating subspaces SK.

of this in connection with the Laplace equation. Furthermore, more general

boundary value problems can be treated than (3.1). This includes more

general domains, variable coefficients, and radiation boundary

conditions. We intend to investigate some of these questions in the

future.
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4. NUMERICAL ANALYSIS

In this section, we demonstrate the effectiveness of the weak

element method described in Section 1 for simple two-dimensional test

problems whose solutions are known in closed form. Our measure of

error is given by

Ilu-uhll_m(D)
E 2

llull%2(D )

where u(u h) is the exact (approximate) solution, II II denotes
%2(D)

the discrete mean-square norm, and D is a rectangle in either

Cartesian or polar coordinates. D is partitioned into rectangular

elements as described in Section 2 such that the grid points are

equally spaced in each direction. We denote the number of intervals

in the xI and x2 directions by N1 and N2, respectively. The

differential operator is given by (3.1)(a) with _=0.

Our boundary condition for the first two examples is the

Dirichlet condition, (3.1)(b), although we have obtained analogous

results for various combinations of Dirichlet, Neumann, and impedance

boundary conditions. In Example 3, we consider the Helmholtz equation

in polar coordinates in the exterior of the unit circle with a

radiation boundary condition imposed on an artificial outer

boundary. Our main purpose in all of these examples is to evaluate

the discretization error for different values of hi, N2, and K. The

calculations were performed on a CDC 7600 at Brookhaven National

Laboratory. The system of equations were solved using a standard

conjugate gradient iterative method applied to the normal equations as

well as a direct solver based on Gaussian elimination. Both methods
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resulted in essentially the same discretization errors. It is

expected that more recently developed preconditioned iterative

methods, such as that discussed in [7], would be considerably more

efficient.

Example i: For our first series of numerical experiments, we assume

that D is the unit square and choose Dirichlet boundary conditions

such that the solution is given by

U(Xl,X 2) = sin K(XlCOS _ + x2 sin _), 0 _ a _ _2 " (4.1)

We employ the weak element method with local basis functions given by

(3.2) (with K'=K). Our results are demonstrated in Tables IA - D with

N1 = N2 = N = h-I. We have also employed the five-point finite

difference scheme in this and the following example although it is not

necessary to demonstrate the results obtained using this scheme. It

suffices to observe that, as expected, this finite difference scheme

has convergence rate 0(h 2) as h.0 with K fixed. (Our numerical

results indicate that this is also the case for the weak element

method.) Furthermore, the five-point scheme is not accurate when

K

Kh =_> i.

It is readily seen from (3.2) and (4.1) that when a=0 or _=_, the

solution in each element may be expressed as a linear combination of

local basis functions. Hence we would expect the weak element

approximation to yield the exact solution, except for accumulated

roundoff errors. This is validated in Table IA for N=4 and various

values of K. On the other hand, it follows from (3.2), (3.21), and

(4.1) that the more a differs from 0 and _ , the less effective the

weak element method should be with this basis (see Remark 3.1). In

Tables IB - D, we consider various values of N and K with
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e=150' 25' and _, respectively. We see from Table IB that when

= 15--O' the weak element method is accurate even when Kh = 16. From

Table IC we see that for c = 2--5'the method yields accurate results

when Kh = 2 and hence is more effective than the five-point finite

difference scheme. On the other hand, when c = _ we see from Table ID

that the method does not yield accurate results when Kh _ I. We have

observed that in cases such as this for which the phase of the

solution is not sufficiently well approximated, there is no advantage

in using the weak element method instead of a standard discretization

scheme.
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Table IA Table IB

'IT

(N=4) (e=_-_)

'IT
(X=0 (_ =-

2

K E2 E2 K N E2

i 3.9 x 10-13 3.8 x 10-13 1 4 5.8 x 10-5

2 1.7 x 10-13 1.9 x 10-13 i 8 1.6 x 10-5

4 3.8 x 10-13 7.0 x 10-13 1 16 5.2 x 10-6

8 2.9 x 10-14 1.7 x 10-12 2 4 2.3 x 10-4

16 1.2 x 10-13 6.1 x 10-12 2 8 6.2 x 10-5

32 3.4 x 10-14 1.3 x I0-II 2 16 2.0 x 10-5

64 5.2 x 10-13 2.5 x 10-11 4 4 8.7 x 10-4

128 6.8 x 10-14 4.9 x I0-II 4 8 2.5 x 10-4

256 2.1 x 10-14 9.9 x i0-II 4 16 8.2 x 10-5

512 1.9 x 10-12 2.0 x I0-I0 8 4 3.5 x 10-3

1024 1.5 x 10-13 4.0 x i0-I0 8 8 9.9 x 10-4

2048 1.2 x 10-13 8.1 x i0-I0 8 16 3.3 x 10-4

16 4 1.2 x 10-2

16 8 4.3 x 10-3

16 16 3.6 x 10-3

32 4 2.6 x 10-2

32 8 1.3 x 10-2

32 16 5.4 x 10-3

64 4 4.9 x 10-2

64 8 2.7 x 10-2

64 16 i.5 x 10-2

128 4 9.7 x 10-2

128 8 6.9 x 10-2

128 16 5.1 x 10-2

256 4 1.9 x i0-I

256 8 1.0 x I0-I

256 16 5.6 x 10-2
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Table IC Table 1D

(a f)

K N E2 K N E 2

I 4 3.7 x 10-4 1 4 2.1 x 10-3

1 8 1.0 x 10-4 1 8 5.6 x 10-4

1 16 3.2 x 10-5 1 16 1.8 x 10-4

2 4 1.4 x 10-3 2 4 8.2 x 10-3

2 8 3.9 x 10-4 2 8 2.2 x 10-3

2 16 1.3 x 10-4 2 16 7.5 x 10-4

4 4 6.0 x 10-3 4 4 5.3 x 10-2

4 8 1.7 x 10-3 4 8 1.3 x 10-2

4 16 5.6 x 10-4 4 16 3.9 x 10-3

8 4 2.3 x 10-2 8 4 1.0

8 8 6.5 x lO-3 8 8 6.9 x 10-2

8 16 2.1 x 10-3 8 16 1.9 x 10-2

16 4 I.I x I0-I 16 4 1.3

16 8 8.6 x 10-2 16 8 1.2

16 16 1.2 x i0-I 16 16 1.5

32 4 1.8 x i0-I

32 8 I.2 x 10-1

32 16 5.9 x 10-2

64 4 3.1 x 10-I

64 8 1.8 x 10-I

-I64 16 1.4 x i0

Example 2: For our next class of problems, we consider solutions of

the form

U(Xl,X2)=sinLxlCOS K_-L2x2,L=I,2,..., (4.2)

with Dirichlet boundary conditions on the unit square. Our local

basis for the weak element method is again given by (3.2). For Kh<<l,

the convergence rate is again 0(h2). However, for Kh>>l, the weak

523



element method behaves differently for this problem than for the

previous example. The reason for this is that the x I dependence of u

is independent of K. Suppose that K>>L in (4.2), so that

U(Xl,X2)2sinLxlCOSKX2. _ Hence the x2-dependence of u may be reproduced

almost exactly by the basis functions for K large and the accuracy

will be almost independent of the number of x2 grid points. We are

thus left with approximating sinLx I by constants, yielding an

0(N_ I) order approximation to u that is independent of K for large

K. We illustrate typical results in Table 2 for L=I, K=128, and

various values of NI and N2. •

Table 2

(L=l, K=128)

N1 N2 E2

8 1 9.5 x 10-2

16 1 4.9 x 10-2

32 1 2.5 x 10-2

64 1 1.3 x 10-2

128 I 6.4 x 10-3

8 2 9.3 x 10-2

16 2 4.8 x 10-2

32 2 2.4 x 10-2

64 2 1.2 x 10-2

128 2 6.1 x 10-3

8 4 9.3 x 10-2

16 4 4.8 x 10-2

32 4 2.4 x 10-2

64 4 1.2 x 10-2

128 4 5.8 x 10-3
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Example 3: The final problem we consider is one treated in [9] using

an integral equation approach combined with a finite difference method

for K not too large. Introducing polar coordinates, (r,8), the

problem consists of solving the Helmholtz equation, (A+K2)u=0 in the

exterior of the unit circle, subject to the boundary conditions

u(x)=x 2 on r=l and the radiation condition

(_u/_r)-iKu=o(r -I/2) (4.3)

for r large. The solution of this problem is given by

x2 HI(1)(Kr) sinSHl(1)(Kr )
u(x) = - (4.4)

r HI(1)(K ) HI(1)(K ) '

(i)
where HI denotes the Hankel function of first kind and order i.

In order to determine the discretization error due to applying

the weak element method to this problem, we replace the right-hand

side of the radiation condition (4.3) by the exact value obtained by

applying (3/_r)-iK to (4.4) on a circle of radius R>I and denote this

function by g(R,8). Employing polar coordinates and appropriate

symmetry conditions on u(x), we obtain the following boundary value

problem for u(x):

_u i _2u +K2ru=0 in D,
_r (r-_r)+_r _e2

u=sin8 on r=l,

(_u/_r)-iKu=g(R,e) on r=R, (4.5)

(_u/_0)=O on 0=_/2 and

u=0 on 0=0,

where D denotes the domain l_r<R,0<8_/2.

Problem (4.5) may be placed in the general framework of (2.1) by

replacing the (xl,x2) coordinates by (r,8) coordinates, so that
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v=(a/ar,a/ae). Hence the domain D is a rectangle, the matrix P is

given by

e=(_ 01/r )'

q=-K2r in (2.1). Since (VP)o=(1,0)#O , we simplify the problem by
and

making the transformation

u(r,e)=r-I/2v(r,e).

We now obtain the followingboundaryvalue problem for v:

(-V'P'?+q')v=0in D,

v=sin8 on r=l,

av _R)v=Rl/2ga-_- (iK on r=R, (4.6)

av

_=0 on 8=_ and

v=0 on 8=0,

where

p.=(l 0 q.=_(K2+__l2_2 ) and ).
0 r 4r

Hence (VP') =6. Using (4.4), we see that the solution is given byO

rl/2sinSHl(1)(Kr)
v(r,8)=rl/2u(r,e)= • (4.7)

HI(1)(K )

We now apply (2.8) and (2.9) to obtain the following local basis

functions:

±i(K2+I/4ro2)I/2( o2)I/2(r-r ) ±ir (K2+i/4r e-e ). (4.8)e o ' e o o

(1)(Kr)
We also note the following asymptotic representation of HI

(see [i0]):
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2 i/2ei(Kr_3_/4) J-i (_I)JF(jT2),3
HI(1)(Kr)2(_-_) E

j=0 j !(2iKr)J r(-j_32) (4.9)

for Kr large and J_l, where F denotes the gamma function.

If we compare (4.7)-(4.9), we see that the r-dependence of

v(r,@) is accurately reproduced by the basis functions for Kr large.

This is analogous to the situation in Example 2. In Table 3A, we

examine the error, E2, for R=2 and different values of K and N=NI=N2,

where NI(N 2) is the number of subintervals in the r(O) direction. For

K

small, the weak element method again behaves analogously to the

five-point finite difference scheme. On the other'hand, E2 is nearly

K

constant for _ large and N fixed as K increases.

Furthermore, we have observed that for larger values of R the

K K

errors are about the same as for R=2 when _ is large. When _ is

small, accuracy is destroyed by the coarse grid in the r-directlon.

This can be remedied by using a graded mesh in which the r-grid sizes

are systematically increased as r increases (see [ii]). We illustrate

the high frequency behavior in Table 3B, where K=R=I28. In this case

the grid sizes in the r-direction are quite large. We observe that E2

is essentially constant when N2 (the number of intervals in

the 0-direction) is fixed and N1 varies. Furthermore, the error with

respect to O is of order 0(N2-1 ). The explanation of these numerical

results is the same as that given in example 2 (i.e., the 0-dependence

of v(r,e) is approximated locally by constants).
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Table 3A Table 3B

(R=2) (R=128, K=128)

K N E2 NI N2 E2

I 8 8.9 x 10-3 1 8 9.1 x 10-2

1 16 3.7 x 10-3 2 8 9.1 x 10-2

2 8 1.2 x 10-2 4 8 9.3 x 10-2

2 16 3.9 x 10-3 8 8 9.1 x 10-2

4 8 2.1 x 10-2 i 16 4.7 x 10-2

4 16 5.9 x 10-3 2 16 5.0 x 10-2

8 8 4.0 x 10-2 4 16 4.7 x 10-2

8 16 i.i x 10-2 8 16 4.7 x 10-2

16 8 2.6 1 32 3.1 x 10-2

16 16 2.1 x 10-2 2 32 2.4 x 10-2

32 8 1.7 x i0-I 4 32 2.4 x 10-2

32 16 4.6 8 32 2.4 x 10-2

64 8 8.0 x 10-2 1 64 1.3 x 10-2

64 16 9.2 x 10-2 2 64 1.3 x 10-2

128 8 9.3 x 10-2 4 64 1.3 x 10-2

128 16 4.2 x 10-2 8 64 1.3 x 10-2

256 8 8.9 x 10-2

256 16 4.7 x 10-2

512 8 1.0 x i0-I

512 16 4.6 x 10-2

1024 8 9.5 x 10-2

1024 16 4.7 x 10-2

2048 8 8.8 x 10-2

2048 16 5.2 x 10-2
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5. CONCLUSIONS AND OOMMENTS

We have analyzed and tested a version of the weak element method

developed in [3] in connection with the Helmholtz equation.

Mathematical models of this kind occur in various scattering and

diffraction problems. Standard discretization schemes based on finite

difference, finite element, or integral equation methods are not well

suited for these problems when the wave number, K, is not small, since

piecewise polynomials are not good approximations to the oscillatory

solution. On the other hand, the weak element method is based on

piecewise exponentials that satisfy a localized approximation to the

differential equation.

We have proved that the particular weak element method outlined

in Section 2 with mesh size h has a convergence rate of order 0(h 2) as

h.0 for fixed K. Our analytic results also indicate that the method

yields a good approximation to the solution, u, when the oscillatory

behavior of u is well approximated by the local basis functions. The

proof is based on a complementary variational principle developed in

[4] in connection with the Laplace equation. It is expected that this

proof can be extended to more general boundary value problems and

higher order weak element methods.

We have also validated our theoretical results with respect to

test problems for which the solution is known in closed form. We have

seen from these examples that the weak element method offers no

advantage in general compared to the five-point finite difference

scheme. However, our theoretical and numerical results demonstrate

that the weak element is considerably superior for moderate to large K
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when the oscillatory behavior of the solution is adequately

approximated locally. For general variable coefficient problems, this

oscillatory behavior will vary in different parts of the domain.

Consequently, an important practical area of investigation is the

development of methods for determining locally the approximate

oscillatory behavior of the solution for large K. This was done in

[I] in connection with a one-dimensional scattering problem using

asymptotic methods. This was also done in [2] for multi-dimenslonal

propagation models for which most of the propagation occurs in a

narrow angle band about a fixed direction. The use of error

estimators and adaptive discretization methods might also be useful in

determining appropriate local basis functions.
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ABSTRACT

A methodology is established to cluster points along curves in a

manner which does not change the existing pointwlse distribution out-

side of a specified region containing the cluster. In each instance,

points are pulled from the perimeters of the region towards the clus-

ter center. The result is a smooth expansion from each end followed by

a compression into the center. Altogether, this represents a local

redistribution of points which can be employed either interactlvely or

automatically.
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INTRODUCTION

When a pointwise distribution along a curve is acceptable every-

where except in certain local regions, the capability to redistribute

points only in those regions becomes important. Our objective, here,

is to create a framework from which methods for the desired local re-

distribution can be developed. This is done by forming elementary

operations which are then applied in succession. Each operation

smoothly forms a single cluster about a point by attracting only near-

by points: the pointwise locations beyond a specified distance on

either side remain unchanged. As such, the action occurs in an in-

terval where both the endpoints and the internal cluster point remain

fixed: the other points move in from each side while maintaining a

globally smooth variation in pointwise spacing.

Upon application, a new pointwise distribution is created from an

old one and differs from it only in the chosen interva!. The old or

"previous" distribution is always viewed as a mapping from a uniformly

distributed independent variable to the curve. This variable is often

referred to as just the existing parameterization for the curve. With

a finite number of points, a uniformly spaced grid along the paramet-

ric interva! is mapped onto a grid along the curve. The new distribu-

tion is simply constructed by composition whereby we first map a new

uniformly distributed parametric interval onto the old one and then

apply the old map to the result. In terms of grids, a uniformly

spaced grid on the new parametric interval is mapped onto the old par-

ametric interval to produce a distribution there which is non-uniform

in some local subinterval. On that subinterva!, the application of
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the old mapping is accomplished with the aid of local interpolation.

Off of that subinterval, the points coincide with the old parametric

locations and no interpolation is required.

At each stage, there is a progression from old to new correspond-

ing to the application of an elementary operation. As noted above,

each such operation can be generated from a local reparameterization

which is just a mapping between old and new parameters. The actual

construction can be done in either forward or backward directions by

the use of weight functions. The forward direction is from new to old

while the backward is from old to new.

WEIGHTS AND TRANSFORMATIONS

With the view of larger masses pulling more strongly to a center

of gravity, weights are most commonly thought of as being more strong-

ly attractive when they are large. For the application to distribu-

tion functions, this view means that points are more strongly at-

tracted to locations of large weight. In correspondence, the point-

wise spacing must then shrink to adjust to a large weight. The most

simple way to have this happen is to make the spacing vary in an in-

verse proportion to the weight. In terms of changing the spacing in

the old parametric interval, we must then force the product of the

weight and the desired spacings to be equal to a constant. When the

same interval is taken for the old and new parameters, that constant

is just the increment from a uniform spacing. In our development, we

will always let s denote the old parameter and t denote the new param-

eter. In this notation and with our assumption of the same interval,

535



the forced condition is given by

dt = w ds (1)

and is called an equidistribution of the weight w since equal amounts

of weight must appear in each interval ds. For grids, the total

weight between every pair of points is then the same.

To construct the elementary operations of local clustering, we

recall the basic requirements that the cluster center and the interval

endpoints must remain unchanged. For the weights, these requirements

become integral statements; namely, that the integrals of wds and ds

are the same over both of the intervals from the cluster center to the

endpoints of the cluster region. Noting that uniform spacing would

occur if w = I, deviations therefrom are responsible for non-uniform

spacing and can be represented as a function f which is added to the

unity of uniformity in the weight to get w = 1+f. In terms of f, the

preservation of cluster center and endpoints results when the integral

of f vanishes over each of the two intervals above. To define these

intervals in a clear way, a zero subscript will be employed for the

center while a minus and a plus will be used as subscripts to indicate

the endpoints in negative and positive directions, respectively, from

the center. In this notation, the preservation condition means that

new t and old s must satisfy t = s_, tO = sD, and t+ = s+ or that the

function f which gives variations from uniformity must integrate to

zero both from s_ to so and from so to s..

To obtain a maximal amount of control over shape, such a function

is best created from a piecewise polynomial construction. The sim-
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plest of these constructions is accomplished with two adjoining line

segments for each of the two intervals. This is depicted in Fig. I

where it is clearly evident that the first segment from either end

S

0 s_ sO s+

Figure I: The function which must be

added to unity to form a weight for Eq. I

must lie below the axis to create negative areas which are enough to

balance the positive area caused the linear rise to the positive value

at the center. The center value determines the intensity of the clus-

tering: the sum with unity gives the weight Wo, and hence, the min-

imum spacing dt/w O. In compensation for the smallest spacing at the

center, the spacing must first increase and then start to decrease.

This starts from each endpoint spacing and linearly increases to a

maximum at the end of each segment below the axis. Upon forming the

weight w with an addition to unity, the maximum spacing on each side

is given by dt/w with w evaluated at each corresponding end. Aside

from the obvious limitation on the maximum spacing imposed by the
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total interval length, there is the basic limitation that the weight w

must be positive: negative weights flip the incrementa! intervals;

thereby, causing a singularity in the mapping and a folded grid. As a

consequence, there is then a limitation also on the intensity of clus-

tering at the center. This is caused by the required balancing of

positive and negative areas in Fig. I.

Obeying the intensity limitation, the elementary clustering oper-

ation is obtained by a direct integration of Eq. I with our weight.

The consequent mapping is then expressed with the new parameter t

given as a monotone function of the old parameter s. In correspond-

ence with the linear segments of the integrand, t is expressed as a

piecewise quadratic function of s. To apply the mapping, a uniformly

distributed t must produce the desired non-uniformities in s which in

turn are sent to the curve by using the old curve mapping. This is

just the composition of going from t to s and then to the curve. By

construction, however, we go from s to t which is backward. This

means that t(s) must be inverted to obtain s(t) which is forward rath-

er than backward and thus can be used directly. Fortunately, in this

piecewise quadratic case, the analytical inversion is possible and is

somewhat simple. Since it contains radicals, it is not as simple as

the original backward construction.

With the motivation towards more simplicity and higher levels of

clustering intensity, we shall consider forward rather than backward

constructions. To accomplish this, we must invert our thinking about

weights, and thereby, have points attracted to locations where the

weight is smaller rather than larger as would have been expected when
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compared to the center of gravity shifts for masses. In terms of the

piecewlse-llnear construction depicted in Fig. I, the inversion re-

suits in a rigid reflection about the horizontal axis and a relabeling

of that axis to be for the new parameter t in place of the old s.

This is displayed in Fig. 2 and as earlier is added to unity to form

the weight w = 1+f which is now used in

ds = w dt (2)

For notational consistency, the new parameters t_ = s_, tO = So, and

__ t

0 t t+

Figure 2: The function which must be added to unity
to form a weight for the forward mapping with Eq. 2

t+ = s+ are used. The equalities also result from the rigidity of the

reflection.

539



Rather than derive the algebraic formulation directly from t_ to

tO and then from tO to t+, we first re-examine the basic constraint

which led to the equalities above; namely, that the integral of f

over each interval vanishes. This constraint must be satisfied not

only by the function displayed in Fig. 2 but also by any function

which is to be emp!oyed for the same purpose. To begin our re-exam-

ination, we first note that the two integrals still vanish, if we

rigidly translate the function along the t-axis. The translation is

Just the transformation from t to t+c from some c. Moreover, we also

note that the vanishing is preserved under a constant dilation or

contraction of either vertical or horizontal axes. These are just

transformations which scale an axis by scalar multiplication. In the

horizontal case, it is the transformation from t to at for some a.

The effect of either transformation is to multiply the vanishing

integral by a finite constant, and thereby, preserve the vanishing.

In more formal terms, the constraint is invariant under the groups of

transformations for translation and scaling. As a practical conse-

quence, we can derive our algebraic formulation with standard condi-

tions for height and interval and then apply the transformations to

get the formulation for any other conditions that we wish. This also

means that the same derivation can be used for the intervals on each

side of to; and consequently, reduce the complexity of derivation by

half. A further reduction comes from selecting the unit interval and

a unit height since the arithmetic will be simplified.

With the unit lengths for our standard conditions, we are led to

consider the function shown in Fig. 3 where the juncture point loca-
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tlon x = _ is arbitrary. From a given downward unit f (I) = - I and

the requirement for equal areas above and below the x-axls, we find

that f must cross the x-axls at I/(2-e) and have a value of I-_ ata

a. This function is then uniquely determined by the value at e which

is also indicated in the figure. From the figure, the algebraic form-

ulation is directly seen to be

f

)

0 1-_ I1 T x

:1,-i)

Figure 3: A standard function for the
construction of piecewise linear weights
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I (I-_)(_) for 0 _ x _ a 1

X--_

fa(x) = (l-a) - (2-e)(i_-_-_) for a < x _ I (3)

0 otherwise

As a matter of interpretation, e represents the !ocation of maxi-

mal spacing while the intersection point I/(2-e) represents the loca-

tion where the spacing starts to decrease beyond the original uniform

spacing. This means that the desired impact of clustering becomes

significant only after the intersection point since we must first re-

cover from the large spacing at a. Thus, I/(2-a) is the break-even

point. As a varies through its possible range from 0 to I, the break-

even point varies from1_to I. In order to provide a reasonably

gentle transition into the smallest spacing, it is preferable to have

a large region for the progression in spacing to occur. The largest

possible region would have a length of 1_and would occur when _ van-

ishes. This, however, would leave no room for a smooth transition

from endpolnt spacing to the maximum spacing at a: a reasonably sized

region is needed here for the same reasons as in the situation with

the smallest spacing. Thus, a compromise is needed. As an example,

I

we consider the case with e = _. The transition into large spacing

then occurs over a third of the length while the final compression

after the break-even point occurs over the last 40% of the length.

The corresponding function is then

2x for 0 _ x <

I I_ <
f(x) = _(S-5x) for _ x = I (_)

0 otherwise
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where for notational convenience, we have dropped the subscript of

I
which would have been required from the specialization of Eq. 3.

I
With the function for a = _ , a weight for the forward mapping is

given by

t-t t -t

W I + B{f(to_-__)+ f(t__to
: - __)}

for t _ to and by w = I - B for t = to. The special treatment of to

is required to remove a discontinuity caused by a contribution of -I

from f on each side when otherwise only one nonzero value would ap-

pear. The coefficient B is a control on the intensity of clustering.

In a direct sense, the spacing at the center is scaled by I-B to pro-

duce a smallest spacing in s. This spacing comes from Eq. 2 which

gives (1-B)dt at tO. For an n-point grid, it becomes

(1-B)(tmax-tmin)/(n-1). As B varies from 0 to I, the minimum spacing

varies from the original spacing down to O. To avoid singularities,

we do not go down to 0 but rather are interested in coming arbitrarily

close to O. Unlike the earlier backward mapping, there is no price

for this arbitrary level of clustering intensity. This occurs because

the compensating areas for grid expansion are now in the positive di-

rection where there is no limit on size as there previously was when

the axis itself was being approached.

By use of the weight of Eq. 5 in Eq. 2, we obtain the forward

mapping

t-t t-t

s = t + B{(to-t_)g _ + (to-t+)g I (6a)
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where

xa for 0 _ x <
I

g(x) = _ ¼(1-x)(5x-1) for _ S x _ I (6b)

0 otherwise

is the integral of f for increasing x. The interval lengths multiply-

ing each application of g result from a change of variable in each

corresponding integral. Geometrically, g appears as a simple bump

which leaves the axis (g(O) = O) with zero slope (g'(O) = 0), monoton-

ically increases in the positive direction to reach a maximum, and

then monotonically descends back to the axis (g(1) = O) to enter with

a negative slope (g'(1) = - I). When assembled in the transformation,

B scales a combination of positive and negative bumps which are joined

together with matching nonzero slopes. The addition to the line s = t

then represents a local distortion of it which causes clustering but

which preserves the uniform spacing elsewhere. An illustration of the

transformation is given in Fig. 4.

From a geometric viewpoint, we have simply taken the uniform

transformation s = t and have given it a local clockwise twist about

to. The severity of the twist is controlled by the slope at tO and to

some extent by the location of the maximum displacement from s = t.

This location corresponds to the break-even point where the spacing

from the transformation matches the uniform spacing from s = t; or in

other words, where the two slopes match. In the case of Eq. 6, the

I

choice of _ = _ led to a maximum displacement at x = 0.6. With the

more general piecewlse construction, it occurs at x = I/(2-c) and
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s_ I

/
/ I

I
s O I

/ I
/ I

I
I

s_ I
t I
t II
I I
I I
I I

0 t_ to t+

Figure 4: An elementary parameter transformation
in the forward direction of new t going into old s

thus can be controlled with the choice of e. The analytical formula-

tion is obtained by repeating the development with the f from Eq. 3

in place of f. Moreover, the locations can be controlled separately

on each side of tO by using corresponding distinct _I and e2" The

analytical formulation is only altered by replacing the two applica-

tions of g in Eq. 6a with the corresponding generalizations g_1 and

ga2 of Eq. 6b.

545



ALTERNATIVE FORMULATIONS

While further shape control over the forward transformation de-

picted in Fig. 4 can be exercised with more exotic piecewise construc-

tions, we shall instead examine some alternatives which offer less

shape control but which present attractive options because of their

simplicity in statement. In this regard, we first note that the prev-

ious piecewise constructions achieved a high degree of algebraic sim-

plicity at the expense of doing it in a number of successive defining

intervals.

As a first step, we shall consider formulations which reduce the

number of defining intervals. Returning to the unit interval on which

we established f and then g, we shall consider a replacement. Noting

that second- and first-order zeros for g are desired respectively at 0

and I, we are brought to consider the simplest positive bump function

g (x) = x_(1-x) (7)

which satisfies the conditions when a > I and which is defined by one

segment. The derivative

f (a) = x_-1[_ - (_+1)x] (8)

assumes the value of -I at x=1 and is also seen to vanish at x =

_/(1+a), which by our previous observations is the break-even point

with uniform spacing. As earlier, the location can be adjusted with a

choice of e. In distinction, this e alters the complexity of the

equation by creating larger powers when we wish to push the break-even

point towards I. By contrast, the original piecewise development re-
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quired only a shift of juncture point for the same purpose. The ap-

plication of Eq. 7 to create a forward transformation is direct and is

accomplished by simply replacing the g in Eq. 6 with the ga of Eq. 7.

This can be done for either one or both of the intervals about to and

each can have a separate adjustable e. Because f (I) = - I, the con-a

trol over minimum spacing by B is exactly the same. Thus, while we

also retain a capability to separately control the locations of break-

even points, we have been able to reduce the number of defining inter-

vals: non-zero values now appear on two rather than four intervals.

In continuation, we seek a further reduction to a single interva!

with non-zero values. To do this, we shall construct a function which

will directly produce symmetric clusters. Rather than considering the

unit interval, we will develop the function on the larger interval

from -I to I. To start, we form a symmetric positive bump with the

function

h_(x) = (1-x)a(1+x)a (9)

which is attached to the axis with vanishing first derivatives when a

> I and which has a single maximum value of unity when x = O. At this

stage, a monotonically decreasing function through the origin is

needed as a factor to produce a negative slope at the origin and to

split the bump into a positive bump before origin and a negative bump

after the origin. If u(x) is such a function, then the derivative of

uha at x = 0 is just u'(0) since ha(0) = I and h_(O) = O. The sim-

plest such choice is to set u(x) = - x. The associated function is

then
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ga (X) = - x(1-x)a(1+x)a (lO)

and satisfies the properties g (±I) = g_(±1) = g (0) = 0 and g_(O) =

- I. For a cluster interval of length 2T about to, we take x =

(t-to)/T in Eq. 10 and obtain the transformation

t-t O

t + BTga(_) for to-T _ t _ to+T

s = < _ (11)

t otherwise

by vertically scaling the resultant bump pair by BT and then adding it

to the uniform mapping s = t. By direct differentiation, we have the

weight function of unity everywhere except on the interval about to

where it assumes the form

t-tO 2 t-tO 2]a_ Iw: + - I][i - (--f--)

The evaluation at to gives precisely the earlier clustering control B

which produces the shrinking factor of I-8. The motivation to get the

'(0) = - I and the chain rule contribution of
same control came from ga

I/T as a factor. The break-even points with uniform spacing are given

when w = I in the interva! about tO and are just to ± T/_e+1. As

increases, these points then symmetrically approach to. The largest

possible distance is bounded by T/_ in correspondence with _ = I

which is the lower bound for e. Thus, a can be used to control the

distance of break-even points from to over an interval from 0 to T/_.

To have at least one-third of the interval for clustering, this choice

must be for e between I and 4. Undoubtedly, variations on this theme

could be executed both to produce larger regions for the final clus-
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tering compression and to insert a desired amount of asymmetry.

Rather than pursue these variations, we shall inspect the further

possibility of asymptotic approximation with the desire to simply de-

fine an elementary clustering transformation in one global statement

without having to establish a particular clustering interval. From

this viewpoint, such intervals are implicitly defined when the asymp-

totic decay is essentially complete. The impreciseness here then

gives us only a fuzzy definition. By contrast, however, we shall see

that the earlier break-even points can be established precisely.

As in the last case, we multiply a positive bump function by the

monotonically decreasing function - x which passes through the origin.

To start, we consider the bump function (I+x2) -e and arrive at

g (x)= - x(1+x2)-_ (13)

which decays when e > I. The uniform transformation s = t is now al-

tered for local clustering about tO by setting

t-t 0

s = t + BTg_(--_) (14)

Once a decay rate _ is chosen, the length scale T is used to appropri-

ately shrink or expand the region of primary influence. By differen-

tiation, the associated weight is given by

t-t 0 2

(2e-I) (--_---) - I
w = I + (15)

t-t O 2]a+ I[1 + (.-t----)

This reduces to w = I-6 at the cluster center to and thereby retains

the meaning of the previous intensity controls B. The decay rate
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controls the location of break-even points which from Eq. 15 appear at

a distance of T/_ on either side of to. An increase in _ simply

causes a shift towards tO relative to the scaling T. At the other ex-

treme, as e approaches I, the shift is away from to and is bounded by

T. Altogether, adjustments in decay rate allow break-even points to

be located anywhere between 0 and T units away from the center to. At

the extreme of T, the effective clustering region is enlarged beyond

T. To keep it, say within T units of to, a somewhat conservative

choice is needed.

In the same spirit, we may also repeat the asymptotic construc-

tion with notably different analytical formulas. For example, we may

decide that a better bump function would be given by the Gaussian form

-_x 2
e and would then get

-_X 2

g(x) = - xe (16)

in place of Eq. 13. This would correspondingly be used in Eq. 14 with

the same interpretations for T and would lead to the weight

t-t O 2 t-t O 2]w = I + B[2_(--_---) - 1]exp[- _(--_--] (17)

with the same clustering intensity control B. The positive damping

rate e is a control over the location of the break-even points rela-

tive to T. These are located at a distance of T/_ on either side of

to•

THE APPLICATIONS SETTING

To describe the setting in which applications are to be perform-
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ed, we take note both of the general topic of grid generation and of

the order of application. Grid generation arose as a topic of study

in response to the need for numerical simulations of realistic physi-

cal systems. It has now been the subject of three general reviews [I]

- [3], three major conferences [4] - [6] and one textbook [7]. A fun-

damental part of grid generation is the determination of pointwise

distributions on curves. This occurs because curves are basic con-

structive elements in virtually any approach to grid generation. At

the very least, they represent boundaries of two-dimensional regions

and are typically used to create bounding surfaces for three-dimen-

sional regions. The pointwise distribution on them directly influ-

ences the regional grid regardless of the method employed to generate

that grid. The further redistribution of families of curves or sur-

faces within a regional grid is also a typical consequence of the re-

distribution of points along curves.

To accomplish the redistribution of points along curves in a pre-

cise manner, we have developed herein the elementary operation of cre-

ating a single local cluster about a point. The application of the

operation to a succession of points can be ordered in either of two

natural ways: the points are taken one at a time or they are done

simultaneously. In correspondence, we may view the first as most

ideally suited to an interactive graphical environment while the sec-

ond appears more attractive for an automatic approach.

In the interactive setting, we assume that someone is sitting at

a graphics terminal or workstation with the capability to view the

pointwise distribution on the curve and to locate or insert pointwise
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data by means of a cursor. For simplicity, we will assume that the

cluster center and endpoints are taken from the existing grid points

on the curve rather than at intermediate locations which would then

necessitate an interpolation. With this assumption, the cursor is

used to identify those grid points according to their indices. Since

the grid on the curve is the result of mapping a uniform grid in a

parameter s and since the corresponding uniform spacing can be taken

as unity, the indices directly give the parametric distance that the

endpoints s_ and s+ are from the center so. If we take so = O, then

- s_ and s+ are respectively the number of grid points below and above

the cluster center. In terms of our new uniform parameter t, this be-

comes t = s_, to = O, and t. = s+. Next, the desired fractional de-

crease in spacing I-8 is chosen for the center. The forward mapping

from Eq. 6 (or any of the equivalent variants) is now applied within

the interval from t_ to t+ to produce a local cluster of points about

so = O. Unlike the center point and the points outside this interval,

the clustering has caused points to fall generally between the old

uniformly spaced points in s. If the curve is given analytically in

terms of s, then the old mapping is just an evaluation at those in be-

tween points. Otherwise, for each new position in s, we must find the

unit grid interval that contains it and then linearly interpolate the

old map from s to the curve to get the new grid point location on the

curve. In this process, there is no need to operate on the points

outside of the cluster interval since they remain fixed. Upon appli-

cation of such an elementary clustering operation, the new distribu-

tion is viewed and then a judgment to stop or continue is made. If
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the previous distribution is stored, then there is also the option to

easily restore it should we not like the result. Altogether, by ap-

plying the elementary clustering operations one at a time, we are able

to interactively manipulate the pointwise distributions on curves.

In the context where the judgments for clustering are determined

automatically for a collection of locations, it is more attractive to

perform a single mapping rather than a succession of mappings. Cer-

tainly, as the cluster regions overlap each other, the successive map-

ping approach becomes more repetitious and less efficient. To obtain

a single mapping, we may proceed from either of two viewpoints. The

first is to consider what would have occurred had we done successive

mappings. For any given order of mappings, the single mapping would

be a successive composition in the same order. By applying the chain

rule at each stage, the weight for the single mapping is just the pro-

duct of the weights from the elementary cluster maps. We note that

the elementary clustering weights are of the form wi = I + BICi for

cluster functions Ci and intensities Bi where i = I, 2, ...., n and n

is the number of clusters. The weight for the single mapping is then

w = (I + BICI)(I + B2C2) .... 11 + BnCn) (18)

which is independent of the order of application. Unfortunately, the

product is not particularly convenient to integrate. As a conse-

quence, the linear Bi-approximation

w = I + BICI + B2C2 + .... + BnCn (19)

is preferred and is also order-independent. Thus, the forward mapping
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results from Eq. 2 by adding to uniform t = s the scaled bump pairs

8i as i = I, ..... , n. This superposition can then befrom each Ci

viewed in the format of Fig. 4 where now the single twist about sO =

to is replaced by n of them. In this context of n simultaneous clus-

ters, we note that a choice of specific intervals for each results in

a detailed partition of s that can be avoided if we employ asymptotic

approximations of the nature discussed in the section on alternative

formulations.

CONCLUSIONS

The capability to locally manipulate pointwise distributions on

curves was established through the introduction of an elementary oper-

ation for locally clustering points about any single point. The oper-

ation was created as a reparametrization where the spacing between new

and old parameters is prescribed by means of a weight function. Vari-

ous constraints upon the weights were established and the correspond-

ing transformations were examined. It was found that the forward

transformations from new to old are better because the composition of

mappings is simpler and because the clustering intensity control is

not limited as it is in the backward case.

The basic elements of construction were done in the most flexible

manner by using piecewise linear weights. This gave piecewise quad-

ratic transformations that were nontrivially defined over four inter-

vals, and more importantly, gave the fundamental guidelines for more

arbitrary constructions. Rather than pursue the greater degree of

shape control that is available from general piecewise polynomial con-
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structions, alternatives were presented to reduce the number of inter-

vals of definition and thereby simplify the statement of the trans-

formations. This viewpoint was taken up to the stage where endpoints

of the local cluster region were only defined in a fuzzy sense by us-

ing asymptotic forms. These are attractive due to their simple global

expression in one statement rather than in the previous piecemeal

fashion. In summary, we first established a class of transformations

that are suitable for elemenatry clustering operations and then we ex-

plored a broad range of attractive candidates from that class.

The most obvious demand for the local redistribution of points

along curves occurs within the topic of grid generation and to some

extent provides a general applications setting. In a more particular

sense, the applications are considered to occur in sequence or simul-

taneously. Cases where only certain parts are simultaneous can be

subdivided into either of these two possibilities. The sequential

order of application is ideally suited to interactive graphics while

the simultaneous application is well suited to automation.
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ABSTRACT

This work deals with the problem of a boundary layer on a flat plate

which has a constant velocity opposite in direction to that of the uniform

mainstream. It has previously been shown that the solution of this boundary

value problem is crucially dependent on the parameter which is the ratio of

the velocity of the plate to the velocity of the free stream. In particular,

it was proved that a solution exists only if this parameter does not exceed a

certain critical value, and numerical evidence was adduced to show that this

solution is nonunique. Using Crocco formulation the present work proves this
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I° Introduction

The boundary layer on the upstream-moving flat plate at zero incidence

admits of the classical similarity transformation which reduces the relevant

partial differential equations to the Blasius equation.

f"" + ff" = 0

f(0)= 0

f'(0) -- -I, I > 0

f'(=) = i,

where f = _(x,y)/J_, _ being the dimensional stream function, and

the kinematic viscosity, and n = y/(2/_). This equation can be readily

integrated once to yield

n ]f"(n) = f f(z)dz ,
0

i.e.,

1 f (n - z)2 f"(z)dz
f"(T]) = f"(O)exp I_2 - 2- 0

using integration by parts twice. Obviously, the shear stress f"(_) has the

same sign as the skin-friction at the wall, f"(0). For I = O, Weyl proved

the existence and uniqueness using function-theoretical methods. For I < 0,

Callegari and Friedman and Callegari and Nachman found it expedient to work

with the Crocco formulation, that is, in terms of shear stress g(=f") as the

dependent variable and tangential velocity u(=f') as the independent

variable:
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g(u)g"(u) + u = O, -X < u < 1,

g'(-x) = o

g(1) -- o.

For % _ O, they proved existence, uniqueness, and analyticity of

solutions to Eq. (2) using an analytical function theory approach. For the

case % > 0, Hussaini and Lakin proved that a solution exists only for

less than a critical value %c" Their numerical results showed nonuniqueness

for % < % , and the numerical value of % was found to be 0.3541 .... In
-- C C

this work, the nonuniqueness is established rigorously. Also, proof of

analyticity, and absolute monotonicity etc., is given. Certain analytical

upper bounds on % are established.

For convenience, we use the transformation x = u + % to map the

interval -% < u < i, to 0 < x < 1 + %. So we consider the equations

g(x)g"(x) + (x - X) = O, 0 < x < 1 + X (1.1)

g'(O) = 0
(I.2)

g(1 + x) = O.

2. Analltleity of Solutions

In this section, the following basic result will be proved:

'I1_EORF_ l: There is a range of positive values of _ such that the

positive continuous solution g(x) of the boundary value problem (i.I) and

(1.2) is analytic on the closed intervel [0,1 + _].
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This theorem will be proved by considering a sequence of lemmas. The first

lemma required is:

LEMMA I: The derivative g'(x) vanishes at one and only one point on

the interval 0 < x < i + _. Further, g(x) has its maximum value at this

point.

Proof of Lemma i: Equation (i.I) can be integrated using the initial

condition g'(0) = 0 to give

x

- _ d_ (2.1)g'Cx) = f g-'(TY- 'o

Thus, as the initial value c = g(0) > 0, both g(x) and g'(x) are positive

for 0 < x < _. Also,

g"(x) = (_ - x)/g(x) (2.2)

is positive for 0 _ x < _ and g"(%) = 0. The continuous solution g(x)

remains positive for _ < x < 1 + _, and hence g"(x) is now negative. This

gives that g'(x) is a monotone decreasing function for x > _. As

g'(l + _) = -_, there must thus be at least one point on the interval

(_,i + _) at which g'(x) vanishes. In fact, assuming that g'(x) vanishes

at more than one point leads to a contradiction, for suppose that g" vanishes

at both xI and x2 with xI < x2. Then, g" would have to vanish at least

once between these two points which is impossible as g" < 0 for x > _. The

proof of Lemma i is concluded by noting that g"(x I) < 0 implies that

g(x I) must be the maximum value of g(x).
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LEMMA 2: The solution g(x) has a convergent power series expansion on

the closed interval [Xl,l + %].

Proof of Lemma 2: As g(x) is positiveand differentlablefor

xI _ x < 1 + _, equation (2.2) shows that g(x) has derivativesof all

orders on this interval. Further, expressionsfor these derivativesmay be

obtained directly from the differentialequation (i.i). Inductionshows that

for n > I, derivativesof g(x) satisfythe recurslonrelation

I _I n_l [(n+Ik=2 - kIn+Ik ] (n-k+3) 1
g(n+3) = _ ! (n+l)g" g(n+2) + [_n_k+3) + ) g(k) g (2.3)g

where g(k) is the k-th derivative of g with respect to x and (_) is

the usual combinatorial symbol.

Let g(x I) = 8, and consider the auxilliary function G(x) defined by

G(x) = B - g(x). (2.4)

Then, as B is the maximum value of g(x), G(x) is non-negative for

xI < x < I + k. Also, for all n _ I, Gn(x) = -g(n)(x). Consequently,

equation (2.1) shows that G'(x) is positive on the interval x < x < 1 + _.

i From (I.i),

x - _ 1 + G" G"

G"(x) = g-_-_- and G'''(x) = g(x)

are also both positive on this interval. The recursion relation (2.3) thus

shows that all derivatives of G(x) are non-negative on the closed interval

[Xl,l + _ - s] where 1 + _ - xI > _ > O. Hence, G(x) is absolutely
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monotonic on this closed interval. A theorem of Bernstein [4] now gives

that G(x) has a convergent Taylor series expansion about the point xI

whose radius of convergence is not less than 1 + % - xI. From the definition

of G(x), it immediately follows that for Ix - Xll < 1 + I - Xl, g(x) has

the convergent expansion

g(n)(xl) n

g(x) = _ n! (x - Xl) . (2.5)
n=0

Application of a Tauberian theorem [5] further shows that the power series

(2.5) converges at the singular point x = 1 + I to the value g(l + %) = 0

completing the proof of Lemma 2.

To establish Theorem 1, it must be shown that for a nontrlvlal range of

positive values of %, the power series (2.5) for the solution g(x) of the

boundary value problem (i.I) and (1.2) converges at the left boundary point

x = 0. This will be accomplished in Lemma 3. A consequence of this

convergence will be an expansion for the initial value of g(x) as the series

(-I)n x_ (n)
= 8 + _ n! g (Xl). (2.6)

n=2

LEMMA 3: There exists a positive value _ such that if 0 < _ <

then xI < (I + _)/2.

Lemma 3 gives that the left-hand boundary point x = 0 lies inside the radius

of convergence of the power series expansion (2.5). Consequently, the

corresponding solution of the boundary value problem will be analytic. It

should be noted that the upper bound on xI given in Lemma 3 is a sufficient,

but not a necessary, condition for convergence.
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Proof of Lemma 3: Equation (I.i) may be integrated from 0 to x using

the identity gg,, = (gg-)- _ (g-)2 and the initial condition g'(0) = 0. A

second integration from 0 to xI now gives the result

2 - 3X) 2 82 XlXl(Xl = -
6 = 2 + f (xI - _)g'2(_)d_. (2.7)

0

An upper bound on the right-hand side of (2.7) and a lower bound on the

maximum point xI are now required to establish the lemma.

A lower bound on xI may be obtained by using (2.1) and the fact that

g'(x I) = 0 to obtain

I Xl

f _ g---_y-d_. (2.8)0

As g(x) is monotone increasing on [0,Xl] , g(x) _ g(X) on [0,_], but

g(X) _ g(x) on [X,Xl]. Equation (2.8) now gives

xI _ 2X. (2.9)

As g(x) has its only maximum at xI by Lemma i, an immediate lower

bound on g(x I) = 8 is 8 > a. A sharper lower bound on 8 can be obtained

from the expression

xI x 1

8 = a + f (xI - _)(X - _) (X _ _)2
0 g(_) d_ = _ + f g(_) d_ (2.10)0

obtained by integrating (2.1) from 0 to xI. As g(x) _ 8, and by (2.9),

xI - X _ _, equation (2.10) now gives the quadratic inequality
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3
B2 - aB - 2_ > 0 (2.11)

3 --

which implies

8 > a + /2 + 8X3/3
-- 2 " (2.12)

A lower bound on 82 _ 2 which follows from (2.12) is thus

2_3

82 _ 2 _____ . (2.13)

Consider next bounds on the initial value _. Let X = 1 + _. Then,

integrating (2.1) from 0 to X and using g(X) = 0 gives

X

a = f (x - _)(_ - X) d_. (2 14)
0 g(_)

This relation may be rewritten in terms of strictly positive integrals as

(x - _)(X - _) d_ 5)X (x - _)(_ - _) d_ - f (2.1= f g(_) g'(_)o
which shows

X

< f (x - _)(_ - X) d_. (2 16)
-- % g(_)

The convexity of g(x) on [k,X] implies that on this interval

g(x) _ g (%).(X - x). Equation (2,16) now gives that _ J (2g(%)) -I. As

< g(k), this further implies

am Jl/2 . (2.17)
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Equation (2.15) does not lend itself to the derivation of a lower bound

on c2. However, in the present consideration of analytlclty, the required

bound can be obtained from a relation between c and B which follows from

the existence proof of Hussalni and Lakin [3]. This proof shows that if

is positive and does not exceed a critical v_lue, there is at least one

initial value c such that a positive continuous solution of the initial

value problem consisting of (I.I) and the conditions g(O) = c and g'(0) = 0

exists and has g(X) = 0, i.e., it is a solution of the boundary value

problem. Further, the solution of the initial value problem will be unique if

B < 2c. (2.18)

It must be noted that a unique solution of the initial value problem dn== not

imply a unique solution of the boundary value problem. This will be shown in

section 4.

A lower bound on c2 follows by using (2.18) in (2.12). The result is

2 _3
c >-_-- . (2.19)

The final bound needed for use in equation (2.7) is an upper bound for

g'(x) on the interval [0,Xl]. From (2.2), g"(x) is a monotone decreasing

function on this interval. Further, g"(l) = 0 while the third derivative

of g is negative when x = _. Thus, g'(x) has its maximum value at x = _.

This implies that on [O,x 1]

_-_
0 J g'(x) ! g'(l) = f _ as. (2.20)0
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As g(x) _ c on [0,%], equation (2.20) gives

_2
0 <__g'(x) < _ . (2.21)

An upper bound on the integral in equation (2.7) is thus

x I
3 2

f (xI - _)g'2(g)d_ !g %xI" (2.22)
0

Use of (2.13) and (2.22) in equation (2.7) implies

Xl2(Xl ___421_) + 2%3 _< 0. (2.23)

This relation gives that xI will be less than X/2 for _ in the range

0 < % < % = 0.1176. The sufficient condition for analyticity is thus

satisfied for a range of positive values of % establishing Lemma 3 and

Theorem I.

Equation (2.9) implies that xI cannot be less than X/2 if % > i/3.

Indeed, direct numerical solution of the boundary value problem shows that x1
A

< X/2 when % < % = 0.32 and c lies on the upper branch in Figure I. The

A

gap between the values of _ and % is associated with fundemental problems

in obtaining sharper bounds on the initial value c. For example, equation

(2.15) implies

Xl X Xc < _ (x - _)(_ - _) d_ + _ (_ - %) (_ _ %)2

_ _ g(_) Xl g_ d_ - Xl g(_) d_. (2.24)
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Individually, the last two integrals in (2.24) are formally infinite, yet they

must cancel so as to give an order one upper bound. Direct numerical

calculations show that the upper bound on 2 is 2 < 0.219961. The upper

bound in (2.17) is thus conservative by over a factor of two.

It must again be noted that xI < X/2 is only a sufficient condition for

analyticity. For values of a on the upper branch of Figure i, solutions of

the boundary value problem can thus be expected to remain analytic for k

greater than _. Further insight can be gained by examining parameter values

for which the condition (2.18), which is sufficient for a unique solution of

the associated initial value problem, is maintained. Numerical results show

that (2.18) holds for all values of = on the upper branch of Figure I. It

also holds for _ on the lower branch of Figure I in the relatively small

range 0.351 < I < I and is violated over the remainder of the lower
c

branch. The behavior of 8 as a function of = is given in Figure 2. For

values of k associated with initial values on much of the lower branch of

Figure i, there must thus be serious doubts as to whether solutions of the

boundary value problem (I.I) and (1.2) are analytic.

3. An Upper Bound on c

The existence proof of Hussalni and Lakin [3] established the existence

of solutions of (I.i) and (1.2) for positive values of I less than a

critical value kc" It was shown from (I.I) and (1.2) that kc < 1/2. The

value of %c was also determined numerically in that work to be

k = 0.3541079... (3.1)
C
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In this section, additional upper bounds for I will be obtained directly
c

from (I.I) and (1.2).

Using the identity that precedes equation (2.7), equation (2.1) can be

integrated from 0 to x and the result integrated again from 0 to X.

As g(X) = 0, this gives

X2(X - 31) 2 X
6 =_-+ f (x - _)g'2(_)d_. (3.2)

0

The right-hand side of (3.2) is intrinsically positive, and thus

X - 31 > O. (3.3)

This relation immediately implies

I 1112. (3.4)

To obtain sharper bounds now requires the use of positive lower bounds

2
for _ and the integral in (3.2). While no additional assumptions are

required to obtain (3.4), in what follows it will be necessary to assume that

8 < 2=. However, as noted previously, this condition is satisfied on the

entire upper branch in Figure I. In particular, it is satisfied in the

limiting case when I = i
C"

Let the integral l(x) be defined by

X

l(x) = f (X - $)g'2(_)d_. (3.5)
0

Then, as l(X) > 0, equation (3.2) implies
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X2(X - 31) > 3_2. (3.6)

Replacing X by 1 + I and using (2.19) now gives the inequality

313 + 312 - 1 < 0 (3.7)

which yields the improved bound

I < 0.47533. (3.8)

A slightly sharper bound can be obtained by noting that I(X) > 1(I).

Let 6 = g(1). Then, g(x) < 6 on [0,I], so on this interval

2

g.2(x ) > x____(21 - x) 2 (3.9)
-- 462

This leads to the relation

15
I(I) >-- (51 + 16). (3.10)

--12062

An upper bound on 6 now follows from the fact that g(x) > _ on [0,I] and

I

6 = e + f (_ - 1'2"d_ (3.11)
o "

In particular,

62 < 213 + I • (3.i2)
-- 2

Use of (3.12) in (3.10) then shows
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I(I) > 15(51 + 16) • (3.13)
--60(213 + i)

Equation (3.2) now gives

X2(X - 31) _ 3_2 + 6I(I) (3.14)

which leads to the inequality

6516 + 7615 + 1013 + 3012 - I0 _ 0. (3.15)

The solution of (3.15) is

I < 0.46824 (3.16)

which is only a marginal improvement over (3.8).

Even if the lower bound on I(X) is further sharpened by considering

this integral on the full interval [0,X], a significant decrease in the bound

on I is not obtained. Again, this is due to the difficulties associated

with obtaining sufficiently sharp bounds on the initial value a.

4. Non-unlqueness of Solutions for 0 < I < I
c

Using direct numerical results, Hussaini and Lakin [3] have shown that if

1 is positive and less than Ic then solutions of the boundary value

problem are not unique. For a fixed value of I in this range, as shown in

F_gure I there are two initial values = which lead to solutions of the

boundary value problem. The purpose of this section is to prove this non-
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uniqueness directly from (I.I) and (1.2). To this end, it is convenient to

consider the normalized initial value problem

hh" + t - L = 0, (4.1)

h(0) = I, h'(0) = 0 (4.2)

obtained from the initial value problem for g(x) by taking

213
g(x) = ah(t) with x = a t. (4.3)

The parameter L in (4.1) is related to = and I through the expression

-2/3L = a I. (4.4)

If h(T) = 0 and a(%) is given by

a = {(I + _)/T} 3/2, (4.5)

then g(X) = 0, so the solution of the initial value problem with initial

value (4.5) will also be a desired solution of the boundary value problem.

Equations (4.3) through (4.5) also imply that in terms of T and L

= L (4.6)
T - L

and

= = (r - L)-3/2. (4.7)
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4: Le____thl(t ) and h2(t ) be solutions of the initial value

problem (4.1) and (4.2) corresponding to L values L1 and L2,

respectively. Then, if L2 > LI, h2(t ) > hl(t).

Proof of Lemma 4: For t << L, h(t) must be of the form 1 + Lt2/2.

Thus, the lemma holds for small values of t. That it holds for 0 < t < T

can now be shown by contradiction. Let t be the first value of t at which

hl(t) = h2(t ). As hI was previously less than h2, this requires

h_(_) < hy(_). But,

L2 - _ L2 - _ L1 - 11

h_(t-) =-- - > -- - hl(t-). (4.8)
h2(_) hI(-t) hI(F)

This contradiction establishes Lemma 4. Lemma 4 also shows that if

hl(T I) ffi0 and h2(T 2) = 0, then h2(T I) > 0. This implies that:

COROLLARY: T2 > T1.

The derivative h'(t) is given by an expression analogous to equation

(2.1). As h(0) is positive, both h(t) and h'(t) will be positive for

0 < t _ L. This shows that T > L. Consequently, the denominators in (4.6)

are strictly positive. The following lemma gives a sharper result:

LEMMA 5: T > 3L.

Proof of Lemma 5: Equation (4.1) may be integrated twice from 0 to

t using (4.2) to give
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t3 Lt2 t

i/2h2(t) + 6 2 =1/2+ f (t - _)h'2(_)d_. (4.9)
0

This implies

I t2(t _ 3L) > 0. (4 I0)h2.t.(_ + _ --

Setting t = T and h(T) = 0 now establishes the lemma.

Consider next the behavior of T as a function of L. It has already

been shown in Lemma 4 that T is a monotone increasing function of L.

LEMMA 6: T(L) is superlinearin L.

Proof of Lemma 6: Let tI be the point at which h'(tI) = 0. As is the

case for the original initial value problem in the variable x, there is one

and only one such point, it lies in the interval L < t < T, and h(tI) is a

maximumvalue.

Equation (4.1)may be multipliedby h" and dividedby h to give

hh" + h'(t - L)
h = 0. (4.11)

Integration from 0 to t produces the result

t

I/2h'2 + (t - L)Inh(t) - f Inh(_)d_ = 0. (4.12)
0

Evaluating (4.12) at tI now shows
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t
1

f Inh(_)d_
0

tI = L + inh(tl ) . (4.13)

Next, the expression

t (t - _)(L - _) dEh(t) = 1 + f (4.14)h(_)0

may be evaluated at t = L to give an expression for h(L).

L

h(L) = 1 + I (L - _)2, d_. (4.15)
0 h(_)

As h'(t) is non-negatlve on the interval [0,L], h(t) is monotone

increasing, so h(t) _ h(L). Use of this fact in (4.15) gives the quadratic

inequality

L3

h2(L) - h(L) -_--_ 0 (4.16)

which implies h2(L) _ L3/3. The solution h(t) has its maximum value at

tI• Consequently,

h(t I) > /_ • (4.17)

One additional bound is needed before demonstrating the superllnear

behavior of T(L). The change of concavity of h(t) on the interval [O,tl]

due to the fact that h"(L) = 0 precludes obtaining as a lower bound for h

on this interval the straight llne which passes through the origin and the

point (tl,h(tl)) , i.e., it cannot be shown that h(t) > h(tl).t/t I. However,

for a given L, it is clear that h(t) can be bounded below on this interval

by a curve of the form
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h(tl)tk
H(t;k) - (4.18)

k

tI

for a value of k > i. As k increases, these curves become progressively

more convex. It should be noted that if H(t,_) provides a lower bound on

[0,tl] for the solution of (4.1) and (4.2) associated with L = L, then, by

Lemma 4, H(t,_) also provides a lower bound for solutions associated with

larger values of L.

This lower bound for h(t) on [0,tI] may be used to obtain an lower

bound for the integral in equation (4.13). In particular,

t

f Inh(_)d_ > tI Inh(tl) -kt I. (4.19)
0

Equation (4.13) now implies that

L
tI > _ Inh(tl). (4.20)

Use of (4.17) then gives

T > tI > _-_ In . (4.21)

The superllnear behavior of T(L) is thus established.

THEOREM 2: For positive values of % in the range 0 < % <
C'

solutions of the boundary value problem (I.i) and (1.2) are not unique.
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Proof of Therem 2: Consider the behavior of L as a function of %. By

(4.4), L(0) = 0. Equation (4.6) and the superlinear behavior of T with

repect to L shown in Lemma 6 now imply that the graph of % vs L must be

as in Figure 3. In particular, for a fixed positive % which is less than

%c' there will be two distinct values of L. By the corollary to Lemma 4,

each value of L must correspond to a different value of T. Equation (4.5)

now shows that for the fixed value of %, two distinct values _I and =2

exist such that the solutions of the initial value problems with these _'s

are solutions of the boundary value problem (i.i) and (1.2). Solutions of the

boundary value problem are thus not unique completing the proof of Theorem 2.
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[

Figure 3. The qualitative behavior of the parameter L in the initial

value problem (4.1) and (4.2) as a function of %.
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Two distinctly different approaches have been utilized in the literature

for the numerical solution of the equations of viscous flow in three-

dimensions. In the more common approach, the momentum equation, which

contains both the velocity and pressure, is solved numerically along with a

derived Poisson equation for the pressure (i.e., the pressure-velocity or

primitive variable formulation [I-3]). The alternative approach is based on

eliminating the pressure from the momentum equation by the application of the

curl. In this manner, a vortlclty transport equation is solved numerically in

lleu of the momentum equation (i.e., the vorticity-velocity formulation [4-

6]). The purpose of the present note is to explore in more detail the

properties of these disparate numerical approaches. It will be shown that the

vortlcity-velocity formulation has a striking advantage when applied to

problems in non-inertial frames of reference. More specifically, there exists

an intrinsic vortlcity-veloclty formulation wherein all non-inertial effects

(arising from both the rotation and translation of the frame of reference

relative to an inertial framing) only enter into the solution of the problem

through the implementation of initial and boundary conditions. This is in

stark contrast to the pressure - velocity formulation where non-lnertial

effects appear directly in the momentum equation in the form of Coriolls and

Eulerian accelerations--a state of affairs which can give rise to a variety of

numerical problems [2]. A detailed exposition of this interesting property of

the vorticity-velocity formulation will be presented along with a brief

discussion of other advantages of this approach.

For simplicity, we will restrict our attention to the analysis of viscous

incompressible flow governed by the Navler-Stokes equation and continuity

equation which, respectively, take the form
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_v

~ vV2_t +v • VZv= - Vp + v, (I)

V • v = 0, (2)~ ~

where v is the velocity vector, p is the pressure, and v is the kinematicN

viscosity of the fluid. Here, the validity of (i) requires that the external

body forces be conservative and that the frame of reference be inertial. In

an arbitrary non-inertial frame of reference (which can rotate with a time-

dependent angular velocity _(t) and translate with a time-dependent velocity

Z0(t) relative to its origin 0), the Navier-Stokes equation takes the more

complex form [7]

_v

~ r) X0 v3t + v • V v + x r + flx x + + 2a x v = p + vV2 v. (3)~ _ _ ~ ~ m _ _

Here, r is the position vector and the non-inertial terms on the left-hand

side of (3) are, respectively, referred to as the Eulerian, centrifugal,

translational, and Coriolis accelerations. The continuity equation still

assumes the same form (2) in any non-inertial fram_ of reference.

By the introduction of a modified pressure P which includes the

centrifugal and translational acceleration potentials, the non-inertial form

of the Navier-Stokes equation (3) can be simplified considerably. More

specifically, (3) can be written in the equivalent form

_v

~ 9V2
_t + v • V v + _ x r + 2flx v = - VP + v, (4)

where
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I (_ • r)2 1 _2 r2e = P +-2 ~ - 7 + _0 " r" (5)

In the pressure-veloclty formulation, equation (4) is solved in conjunction

with a Polsson equation for the pressure which is obtained by taking the

divergence of (4). Hence, the governing equations to be solved numerically in

this approach can be summarized as follows:

_v 9V2
_t + ~v • ~V~v+ ~_x ~r+ 2_N × v~ = - ~VP + v, (6)

V2 P = - tr(Vv • Vv) + 2_ • _, (7)

subject to the initial and boundary conditions

= _0 ' at t = to, (8)

v = VBl

on B. (9)

P PB

In (7) and (9), tr(.) denotes the trace, _ is the vorticity vector, and B

denotes the boundary surface of the region. Of course, equations (6) and (7)

must be solved subject to the continuity equation (2). Since we are

considering general three-dimensional flow, a stream function solution does

not exist. Hence, the solution for the velocity _ must be projected in some

suitable fashion onto the space of solenoidal vectors.

It is quite clear that the form of (6) and (7) (and, hence, their

mathematical character) change depending on whether or not the frame of
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reference is inertial. Consequently, a particular numerical algorithm which

may be optimal for a given class of flows in an inertial frame of reference

may not be so for the same class of flows in a non-inertlal framing. It will

now be demonstrated that the vorticity-velocity formulation does not suffer

from this deficiency.

The vorticlty-velocity formulation is based on the vortlcity transport

equation which is obtained by taking the curl of (4). This equation takes the

form

-- ~ _ ~ _ _V2 ....._t + v • Vm = m • Vv + m + 2_ • Vv - 2_ (I0)

in any non-lnertial frame of reference where

= V x v (ii)

is the vorticity vector. It is clear that the velocity and vorticity are also

connected through the Poisson equation

V2 v = - V x m (12)

which is a direct consequence of the vector identity

× (_ × Z) Z(Z • Z) v2= - Z" (13)

The intrinsic vorticity W, defined by

= _ + 2_, (14)
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can be introduced which represents the vorticlty relative to an inertial frame

of reference. Since _ is spatially homogeneous (i.e., V_ = 0), it is a

simple matter to show that the non-inertlal form of the vorticity-velocity

formulation can be written as follows:

_W
~ + v • VW = W • Vv + _V2 W (15)_t .....

V2 v = - V x W. (16)

Equations (15) - (16) must be solved (in some region R with a boundary

surface B) subject to the initial and boundary conditions

= (_ x _)0 + 2_0' at t = to (17)

Z = ZB 1 on B. (18)

= (_ x _)B + 2_ )

Of course, it is well known that the vorticity, as well as the intrinsic

vorticity, are solenoidal, i.e.,

V • W = 0, (19)

and, hence, the solutions for W and v must, in some suitable fashion, beN

projected onto the space of solenoidal vectors.

This vortlcity-velocity formulation of fluid dynamics represented by

equations (15) - (18) has the striking property that non-inertial effects only
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enter into the solution of the problem through the implementation of initial

and boundary conditions. Consequently, the basic structure of the numerical

algorithm (i.e., the numerical formulation of (15) - (16)) will be independent

of whether or not the frame of reference is inertial--a situation which

greatly enhances the general applicability of any Navier-Stokes computer code

which is developed based on this approach.

At this point, a few comments should be made concerning the alternate

ways in which the velocity field can be calculated in the vortlcity-velocity

formulation. Instead of solving the Polsson equation (16), it is possible to

solve the defining equation for vortlclty directly, i.e.,

v x v = m = w- 2n, (20)

(see Gatski, Grosch, and Rose [6,8]). Of course, for plane or axisymmetric

flows, there exists a stream function _ such that [7]

z = _ × Z¢ (21)

Z × (_× Z_)= E - 2_, (22)

where _ = _× and × is the coordinate that the flow is independent of (for

plane flows, (22) reduces to the Poisson equation V2 _ = W - 2_). While the

motion of the frame of reference does enter into the equations of motion in

these alternate vorticlty-velocity formulations, it does so in a much less

significant way than in the pressure-velocity formulation. To be specific,

the transport equation which is solved (i.e., equation (15)) does not contain
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any frame-dependent terms and, at each tlme step, the partial differential

equation for the determination of the velocity field is only altered by the

addition of a constant forcing function in the form of 2_ (the added term onN

the right-hand side of (20) and (22)).

Finally, it would be of value to mention some other advantages of the

vorticity-velocity formulation. More difficulties have been known to arise in

the implementation of pressure boundary conditions than vorticity boundary

conditions [1,2] (of course, both boundary conditions must usually be

derived). Difficulties in satisfying the continuity equation in the pressure-

velocity formulation have also been known to give rise to numerical

instabilities [I]. Furthermore, In the vortlcity-velocity approach, the

vorticity vector is calculated directly. This is of considerable value since

the vorticity field can play an important role in characterizing certain

features of turbulence [9]. While it is certainly not being suggested that

the pressure-velocity formulation be abandoned, this study does indicate that

the vorticity-velocity formulation can have distinct advantages when applied

to an important class of viscous flows.
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