
Kiss Surface Kissing Number 

STEINER TRIPLE SYSTEMS of order 3 and 9 are Kirkman 
triple systems with 12 = 0 and 1. Solution to KIRKMAN'S 
SCHOOLGIRL PROBLEM requires construction of a Kirk- 
man triple system of order n = 2. 

Ray-Chaudhuri and Wilson (1971) showed that there ex- 
ists at least one Kirkman triple system for every NON- 
NEGATIVE order n. Earlier editions of Ball and Cox- 
eter (1987) gave constructions of Kirkman triple systems 
with 9 5 w  5 99. For n = 1, there is a single unique (up 
to an isomorphism) solution, while there are 7 different 
systems for n = 2 (Mulder 1917, Cole 1922, Ball and 
Coxeter 1987). 

see also STEINER TRIPLE SYSTEM 
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Kiss Surface 

The QUINTIC SURFACE given by the equation 
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Kissing Circles Problem 

see DESCARTES CIRCLE THEOREM, SODDY CIRCLES 

Kissing Number 
The number of equivalent HYPERSPHERES in n-D which 
can touch an equivalent HYPERSPHERE without any in- 
tersections, also sometimes called the NEWTON NUM- 
BER, CONTACT NUMBER, COORDINATION NUMBI~R,~~ 
LIGANCY. Newton correctly believed that the kissing 
number in 3-D was 12, but the first proofs were not pro- 
duced until the 19th century (Conway and Sloane 1993, 
p. 21) by Bender (1874), Hoppe (1874), and Giinther 
(1875). More concise proofs were published by Schiitte 
and van der Waerden (1953) and Leech (1956). Exact 
values for lattice pacbings are known for n = 1 to 9 and 
n = 24 (Conway and Sloane 1992, Sloane and Nebe). 
Odlyzko and Sloane (1979) found the exact value for 
24-D. 

The following table gives the largest known kissing num- 
bers in DIMENSION D for lattice (L) and nonlattice (NL) 
packings (if a nonlattice packing with higher number ex- 
ists) . In nonlattice packings, the kissing number may 
vary from sphere to sphere, so the largest value is given 
below (Conway and Sloane 1993, p. 15). An more exten- 
sive and up-to-date tabulation is maintained by Sloane 
and Nebe. 

D L NL 

1 2 
2 6 
3 12 
4 24 
5 40 
6 72 
7 126 
8 240 
9 272 > 306 

10 > 336 T 500 
11 7 438 5 582 - - 
12 > 756 > 840 - - 

D L NL 

13 > 918 > 
14 > 7,422 5 

1,130 
1,582 

15 > 2,340 - 
16 7 4,320 
17 7 5,346 
18 7 7,398 
19 >-lo, 668 
20 > 17,400 
21 5 27,720 
22 > 49,896 
23 7 93,150 

- 24 196,560 

The lattices having maximal packing numbers in 12- and 
24-D have special names: the COXETER-TODD LATTICE 
and LEECH LATTICE, respectively. The general form of 
the lower bound of n-D lattice densities given by 

where ((n) is the RIEMANN ZETA FUNCTION, is known 
as the MINKOWSKI-HLAWKA THEOREM. 

see also COXETER-TOD D LATTICE, HERMITE CON- 
STANTS, HYPERSPHERE PACKING, LEECH LATTICE, 
MINKOWSKI-HLAWKA THEOREM 
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Kite 

see DIAMOND, LOZENGE, PARALLELOGRAM, PENROSE 
TILES,QUADRILATERAL,RHOMBUS 

Klarner-Rado Sequence 
The thinnest sequence which contains 1, and whenever 
it contains 2, also contains 22, 33 + 2, and 6~ + 3: 1, 2, 
4, 5, 8, 9, 10, 14, 15, 16, 17, . . . (Sloane’s A005658). 
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Klarner’s Theorem 
An a x b RECTANGLE can be packed with 1 x n strips 
IFF nla or nib. 

see also Box-PACKING THEOREM, CONWAY PUZ- 
ZLE,DE BRUIJN'S THEOREM,~LOTHOUBER-GRAATSMA 
PUZZLE 
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Klein’s Absolute Invariant 

II. Washington, DC: 

4 [l - V4) + x”(d13 
J(4) = ?i? X2(q)[l - A(q)]” 

P44)13 
= [Ed( - [EGO] 

(Cohn 1994), where 4 = eirrt is the NOME, X(q) is the 
ELLIPTIC LAMBDA FUNCTION 

[ 1 
4 

X(q) E k2(q) = $f , 
3 

&(q) is a THETA FUNCTION, and the Ei(q) are 
RAMANUJAN-EISENSTEIN SERIES. J(t) is GAMMA- 
MODULAR. 

see UZSO ELLIPTIC LAMBDA FUNCTION, ~-FUNCTION, 
PI, RAMANUJAN-EISENSTEIN SERIES, THETA FUNC- 
TION 
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Klein-Beltrami Model 
The Klein-Beltrami model of HYPERBOLIC GEOMETRY 
consists of an OPEN DISK in the Euclidean plane whose 
open chords correspond to hyperbolic lines. Two lines I 
and m are then considered parallel if their chords fail to 
intersect and are PERPENDICULAR under the following 
conditions, 

1. If at least one of 2 and nz is a diameter of the DISK, 

they are hyperbolically perpendicular IFF they are 
perpendicular in the Euclidean sense. 

2. If neither is a diameter, 2 is perpendicular to vt IFF 

the Euclidean line extending I passes through the 
pole of m (defined as the point of intersection of the 
tangents to the disk at the “endpoints” of m). 

There is an isomorphism between the POINCAR~ HY- 
PERBOLIC DISK model and the Klein-Beltrami model. 
Consider a Klein disk in Euclidean 3-space with a 
SPHERE of the same radius seated atop it, tangent at the 
ORIGIN. If we now project chords on the disk orthog- 
onally upward onto the SPHERE'S lower HEMISPHERE, 
they become arcs of CIRCLES orthogonal to the equator. 
If we then stereographically project the SPHERE'S lower 
HEMISPHERE back onto the plane of the Klein disk from 
the north pole, the equator will map onto a disk some- 
what larger than the Klein disk, and the chords of the 
original Klein disk will now be arcs of CIRCLES orthog- 
onal to this larger disk. That is, they will be Poincare 
lines. Now we can say that two Klein lines or angles are 
congruent iff their corresponding Poincark lines and an- 
gles under this isomorphism are congruent in the sense 
of the Poincarh model. 

see ~SO HYPERBOLIC GEOMETRY, POINCAR~ HYPER- 
BOLIC DISK 
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Klein Bottle 

Aclosed NONORIENTABLE SURFACE of GENUS onehav- 
ing no inside or outside. It can be physically realized 
only in 4-D (since it must pass through itself without 
the presence of a HOLE). Its TOPOLOGY is equivalent 
to a pair of CROSS-CAPS with coinciding boundaries. It 
can be cut in half along its length to make two MOBIUS 
STRIPS. 

The above picture is an IMMERSION of the Klein bottle in 
Iw3 (3-space). There is also another possible IMMERSION 
called the “figure-8” IMMERSION (Geometry Center). 

The equation for the usual IMMERSION is given by the 
implicit equation 

(x” + y2 + z2 + 2y - l)[(z” + y2 + z2 - 2y - l>” - 8z2] 

+162z(z2 + y2 + x2 - 2y - 1) = 0 (1) 

(Stewart 1991), Nordstrand gives the parametric form 

x = cos u[cos( $u)(Jz + cos w) + sin( +) sinu cos v] 

(2) 
y = sinu[cos(+u)(fi + cos w) + sin( $u) sin w  cos w] 

(3) 
z = -sin(+)(JZ+ cosw) + cos(+) sinvcosv. (4) 

The “figure-8” form of the Klein bottle is obtained by 
rotating a figure eight about an axis while placing a twist 
in it, and is given by parametric equations 

x(u, w) = [a + cos( +) sin(w) - sin( +) sin(2w)] cos(u) 

(5) 

y(u, w) = [a + cos( $L) sin(w) - sin( $u) sin(2w)] sin(u) 

(6) 

4% 4 = sin( +) sin(w) + cos( +u) sin(2w) (7) 

for u E [O, 2~), w  E [0,2x), and a > 2 (Gray 1993). 

The image of the CROSS-CAP map of a TORUS centered 
at the ORIGIN is a Klein bottle (Gray 1993, p. 249). 

Any set of regions on the Klein bottle can be colored 
using ss colors only (Franklin 1934, Saaty 1986). 

see also CROSS-CAP, ETRUSCAN VENUS SURFACE, IDA 

SURFACE, MAP COLORING M&IUS STRIP 
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Klein’s Equation 
If a REAL curve has no singularities except nodes and 
CUSPS, &TANGENTS, and INFLECTION POINTS, then 

where n is the order, r’ is the number of conjugate tan- 
gents, L’ is the number of REAL inflections, TTC is the 
class, S’ is the number of REAL conjugate points, and 
IG’ is the number of REAL CUSPS. This is also called 
KLEIN'S THEOREM. 

see UZSO PL~~CKER'S EQUATION 
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Klein Four-Group 

see VIERGRUPPE 

Klein-Gordon Equation 

1 d2$ a2$ ---- 
c2 at2 - ax2 - P2*- 

see UZSO SINE-GORDON EQUATION, WAVE EQUATION 

Klein Quartic 
The 3-holed TORUS. 
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Klein’s Theorem 

see KLEIN’S EQUATION 

Kleinian Group 
A finitely generated discontinuous group of linear frac- 
tional transformation acting on a domain in the COM- 

PLEX PLANE. 
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Kloosterman’s Sum 

S(u, v, n) E 
c [ 

=P 
2&h + vi;.> 9 

n 
n 1 (1) 

where h runs through a complete set of residues RELA- 
TIVELY PRIME to n, and h is defined by 

hE E 1 (mod n) . (2) 

If (n,n’) = 1 (if n and n’ are RELATIVELY PRIME), then 

S(u,u,n)S(u,v’,n’) = S(~,vn’~ + vtn2,nnf). (3) 

Kloosterman’s sum essentially solves the problem intro- 
duced by Ramanujan of representing sufficiently large 
numbers by QUADRATIC FORMS atc12 + bx22 +cxs2 + 

dxd2. Weil improved on Kloosterman’s estimate for Ra- 
manujan’s problem with the best possible estimate 

(Duke 1997). 

see also GAUSSIAN 
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Knights Problem 

Knapsack Problem 
Given a SUM and a set of WEIGHTS, find the WEIGHTS 
which were used to generate the SUM. The values of 
the weights are then encrypted in the sum. The system 
relies on the existence of a class of knapsack problems 
which can be solved trivially (those in which the weights 
are separated such that they can be “peeled off” one at 
a time using a GREEDY-like algorithm), and transfor- 
mations which convert the trivial problem to a difficult 
one and vice versa. Modular multiplication is used as 
the TRAPDOOR FUNCTION. The simple knapsack sys- 
tem was broken by Shamir in 1982, the Graham-Shamir 
system by Adleman, and the iterated knapsack by Ernie 
Brickell in 1984. 
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Kneser-Sommerfeld Formula 
Let JV bea BESSEL FUNCTION OFTHEFIRST KIND& 
a NEUMANN FUNCTION, and &the zeros of z-V,(z) in 
order of ascending REAL PART. Then for 0 < x < X < 1 
and !@[z] > 0, 

~[J,(z)Nv(Xz) - N,(z)Jv(Xz)] 
YZ 

- 
>: 

Jv (jv& Jv (j,,,X) - 
n=l ( z2 - jvn2 , ) J&n2(jv,n) ’ 
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Knights Problem 

The problem of determining how many nonattacking 
knights K(n) can be placed on an n x n CHESSBOARD. 
For n = 8, the solution is 32 (illustrated above). In 
general, the solutions are 

K(n) = 
ln2 

i(n2 + 1) 
n > 2 even 
n > 1 odd, 
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giving the sequence 1, 4, 5, 8, 13, 18, 25, l  . . (Sloane’s 
A030978, Dudeney 1970, p. 96; Madachy 1979). 

The minimal number of knights needed to occupy or 
attack every square on an rz x n CHESSBOARD is given 
by 1, 4, 4, 4, 5, 8, 10, . . . (Sloane’s A006075). The 
number of such solutions are given by 1, 1, 2, 3, 8, 22, 
3, ..* (Sloane’s AOO6076). 

see UZSO BISHOPS PROBLEM, CHESS, KINGS PROBLEM, 
KNIGHT'S TOUR, QUEENS PROBLEM, ROOKS PROBLEM 
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Knights of the Round Table 

~~~NECKLACE 

Knight’s Tour 

A knight’s tour of a CHESSBOARD (or any other grid) 
is a sequence of moves by a knight CHESS piece (which 
may only make moves which simultaneously shift one 
square along one axis and two along the other) such 
that each square of the board is visited exactly once 
(i.e., a HAMILTONIAN CIRCUIT). If the final position is 
a knight’s move away from the first position, the tour is 
called re-entrant. The first figure above shows a knight’s 
tour on a 6 x 6 CHESSBOARD. The second set of figures 
shows six knight’s tours on an 8 x 8 CHESSBOARD, all 
but the first of which are re-entrant. The final tour has 
the additional property that it is a SEMIMAGIC SQUARE 
with row and column sums of 260 and main diagonal 
sums of 348 and 168, 

Lijbbing and Wegener (1996) computed the number 
of cycles covering the directed knight’s graph for an 
8 x 8 CHESSBOARD. They obtained a2, where a = 
2,849,759,680, i.e., 8,121,130,233,753,702,400. They 
also computed the number of undirected tours, obtain- 
ing an incorrect answer 33,439,123,484,294 (which is not 
divisible by 4 as it must be), and so are currently redoing 
the calculation. 

The following results are given by Kraitchik (1942). The 
number of possible tours on a 4k x 4k: board for k: = 3, 
4, . . . are 8, 0, 82, 744, 6378, 31088, 189688, 1213112, 
. . . (Kraitchik 1942, p. 263). There are 14 tours on the 
3 x 7 rectangle, two of which are symmetrical. There are 
376 tours on the 3 x 8 rectangle, none of which is closed, 
There are 16 symmetric tours on the 3 x 9 rectangle and 
8 closed tours on the 3 x 10 rectangle. There are 58 
symmetric tours on the 3 x 11 rectangle and 28 closed 
tours on the 3 x 12 rectangle. There are five doubly 
symmetric tours on the 6 x 6 square. There are 1728 
tours on the 5 x 5 square, 8 of which are symmetric. 
The longest “uncrossed” knight’s tours on an n x n board 
for n = 3, 4, , . . are 2, 5, 10, 17, 24, 35, . . . (Sloane’s 
A003192). 

see also CHESS, KINGS PROBLEM, KNIGHTS PROBLEM, 
MAGIC TOUR, QUEENS PROBLEM,TOUR 
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Knijdel Numbers 
For every k > 1, let CI, be the set of COMPOSITE num- 
bers n > ksuch that if 1 < a < rz, GCD(a,n) = 1 
(where GCDis the GREATEST COMMON DIVISOR), then 
a n-lc = 1 (mod n). Cl is the set of CARMICHAEL NUM- 
BERS. Makowski (1962/1963) proved that there are in- 
finitely many members of CI, for !G > 2. - 

see UZSO CARMICHAEL 
EST COMMON DIVISOR 

NUMBER, D-NUMBER, GREAT- 
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Knot 
A knot is defined as a closed, non-self-intersecting curve 
embedded in 3-D. A knot is a single component LINK. 
Klein proved that knots cannot exist in an EVEN- 
numbered dimensional space 2 4. It has since been 
shown that a knot cannot exist in any dimension 2 4. 
Two distinct knots cannot have the same KNOT COM- 
PLEMENT (Gordon and Luecke 1989), but two LINKS 
can! (Adams 1994, p. 261). The KNOT SUM of any 
number of knots cannot be the 
knot in the sum is the UNKNOT. 

UNKNOT unless each 

Knots can be cataloged based on the minimum num- 
ber of crossings present. Knots are usually further bro- 
ken down into PRIME KNOTS. Knot theory was given 

its first impetus when Lord Kelvin proposed a theory 
that atoms were vortex loops, with different chemical 

Knot 

elements consisting of different knotted configurations 
(Thompson 1867). P. G. Tait then cataloged possible 
knots by trial and error. 

Thistlethwaite has used DOWKER NOTATION to enumer- 
ate the number of PRIME KNOTS of up to 13 crossings, 
and ALTERNATING KNOTS up to 14 crossings. In this 
compilation, MIRROR IMAGES are counted as a single 
knot type. The number of distinct PRIME KNOTS N(n) 
for knots from n = 3 to 13 crossings are 1, 1, 2, 3, 7, 21, 
49, 165, 552, 2176, 9988 (Sloane’s A002863). Combining 
PRIME KNOTS gives one additional type of knot each for 
knots six and seven crossings. 

Let C(n) be the number of distinct PRIME KNOTS of 
rt crossings, counting CHIRAL versions of the same knot 
separately. Then 

1 
3 (2 n-2 - 1) < N(n) JS, en - 

(Ernst and Summers 1987). Welsh has shown that the . 
number of knots is bounded by an exponential in n. 

A pictorial enumeration of PRIME KNOTS of up to 10 
crossings appears in Rolfsen (1976, Appendix C). Note, 
however, that in this table, the PERKO PAIR 10161 and 
10162 are actually identical, and the uppermost crossing 
in 10144 should be changed (Jones 1987). The &h knot 
having 72 crossings in this (arbitrary) ordering of knots 
is given the symbol nk,. Another possible representation 
for knots uses the BRAID GROUP. A knot with n + 1 
crossings is a member of the BRAID GROUP n. There 
is no general method known for deciding whether two 
given knots are equivalent or interlocked. There is no 
general ALGORITHM to determine if a tangled curve is a 
knot. Haken (1961) has given an ALGORITHM, but it is 
too complex to apply to even simple cases. 

If a knot is AMPHICHIRAL, the “amphichirality” is A = 
1, otherwise A = 0 (Jones 1987). ARF INVARIANTS 
are designated a. BRAID WORDS are denoted b (Jones 
1987). CONWAY'S KNOT NOTATION Cforknots up to10 
crossings is given by Rolfsen (1976). Hyperbolic volumes 
are given (Adams, Hildebrand, and Weeks 1991; Adams 
1994). The BRAID INDEX i is given by Jones (1987)* AL- 
EXANDER POLYNOMIALS A are given in Rolfsen (1976), 
but with the POLYNOMIALS for 10083 and 10086 reversed 
(Jones 1987). The ALEXANDER POLYNOMIALS are nor- 
malized according to Conway, and given in abbreviated 
form [al, ~2, l  . . for al + a&? + 2) + . l  . . 

The JONES POLYNOMIALS w  for knots of up to 10 
crossings are given by Jones (1987), and the JONES 
POLYNOMIALS V can be either computed from these, or 
taken from Adams (1994) for knots of up to 9 crossings 
(although most POLYNOMIALS are associated with the 
wrong knot in the first printing). The JONES POLYNO- 
MIALS are listed in the abbreviated form {n} a0 al . . . for 
t-“(a0 + ult + . . .), an correspond either to the knot d 
depicted by Rolfsen or its MIRROR IMAGE, whichever 
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has the lower POWER of t-l. The HOMFLY POLY- 
NOMIAL P(!, m) and KAUFFMAN POLYNOMIAL F&z) 
are given in Lickorish and Millett (1988) for knots of up 
to 7 crossings. 

M, B. Thistlethwaite has tabulated the HOMFLY 
POLYNOMIAL and KAUFFMAN POLYNOMIAL F for 
KNOTS of up to 13 crossings. 

51 52 

61 62 63 

71 72 73 74 75 

76 77 

816 817 818 819 820 

821 

91 92 93 94 95 

96 97 98 99 910 

911 912 913 914 915 

916 917 918 919 920 

921 922 923 924 925 

81 82 83 84 85 

86 87 88 89 810 

926 927 928 929 930 

931 932 933 934 935 

936 937 938 939 940 

811 812 813 814 815 
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946 947 948 949 

1041 1042 1043 1044 1045 

1046 1047 ‘1048 1049 1050 

1051 1052 1053 1054 1055 

106 107 109 1010 
1056 1057 1058 1059 1060 

‘1061 1062 1063 1064 1065 

1016 1017 1018 1019 1020 
1066 1067 1068 1069 1070 

1021 1022 1023 1024 1025 
1071 1072 1073 1074 1075 

1026 1027 1028 1029 1030 
1076 1077 1078 1079 1080 

1031 1032 1033 1034 1035 
1081 1082 1083 1084 1085 

1086 1087 1088 1089 1090 
1036 1037 1038 1039 1040 
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1091 1092 1093 1094 1095 10141 10142 10143 10144 10145 

1096 1097 1098 1099 moo 10146 10147 10148 10149 10150 

10156 10157 10158 10159 lo160 10106 10107 10109 

10111 ml2 10113 10114 10115 10161 10162 10163 j-0164 10165 

.d* 

W66 10116 10117 ml8 10119 m20 

10121 lo122 10123 10124 10125 

10126 10127 10128 10129 10130 

10131 10132 10133 10134 10135 

10136 10137 10138 10139 10140 

see also ALEXANDER POLYNOMIAL, ALEXANDER’S 
HORNED SPHERE, AMBIENT ISOTOPY, AMPHICHIRAL, 
ANTOINE’S NECKLACE, BEND (KNOT), BENNEQUIN’S 
CONJECTURE, BORROMEAN RINGS, BRAID GROUP, 
BRUNNIAN LINK, BURAU REPRESENTATION, CHEFALO 
KNOT, CLOVE HITCH, COLORABLE, CONWAY’S KNOT, 
CROOKEDNESS, DEHN’S LEMMA, DOWKER NOTATION, 
FIGURE-OF-EIGHT KNOT, GRANNY KNOT, HITCH, IN- 
VERTIBLE KNOT, JONES POLYNOMIAL, KINOSHITA- 
TERASAKA KNOT, KNOT POLYNOMIAL, KNOT SUM, 
LINKING NUMBER, LOOP (KNOT), MARKOV’S THE- 
OREM, MENASCO’S THEOREM, MILNOR’S CONJEC- 
TURE, NASTY KNOT, PRETZEL KNOT, PRIME KNOT, 
REIDEMEISTER MOVES, RIBBON KNOT, RUNNING 
KNOT, SCH~NFLIES THEOREM, SHORTENING, SIGNA- 
TURE (KNOT), SKEIN RELATIONSHIP, SLICE KNOT, 
SLIP KNOT, SMITH CONJECTURE, SOLOMON’S SEAL 
KNOT, SPAN (LINK), SPLITTING, SQUARE KNOT, 
STEVEDORE’S KNOT, STICK NUMBER, STOPPER KNOT, 
TAIT’S KNOT CONJECTURES, TAME KNOT, TANGLE, 
TORSION NUMBER, TREFOIL KNOT, UNKNOT, UN- 
KNOTTING NUMBER, VASSILIEV POLYNOMIAL, WHITE- 
HEAD LINK 



Knot Diagram 
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Knot Complement 
Two distinct knots cannot have the same KNOT COM- 
PLEMENT (Gordon and Luecke 1989). 
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Knot Curve 

( x2 - 1)” = y2(3 + 2Y). 
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Knot Determinant 
The determinant of a knot is l&1)1, where n(z) is the 
ALEXANDER POLYNOMIAL. 

Knot Diagram 
A picture of a projection of a KNOT onto a PLANE. Usu- 
ally, only double points are allowed (no more than two 
points are allowed to be superposed), and the double or 
crossing points must be “genuine crossings” which trans- 
verse in the plane. This means that double points must 
look like the below diagram on the left, and not the one 
on the right. 

/ ’ 7-i 
Also, it is usually demanded that a knot diagram con- 
tain the information if the crossings are overcrossings or 
undercrossings so that the original knot can be recon- 
structed. Here is a knot diagram of the TREFOIL KNOT, 

KNOT POLYNOMIALS can be computed from knot dia- 
grams. Such POLYNOMIALS often (but not always) al- 
low the knots corresponding to given diagrams to be 
uniquely identified. 
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Knot Exterior Knot Sum 
The COMPLEMENT of an open solid T'ORUS knotted at 
the KNOT. The removed open solid TORUS is called a 
tubular NEIGHBORHOOD. 

Two oriented knots (or links) can be summed by placing 
them side by side and joining them by straight bars so 
that orientation is preserved in the sum. This operation 
is denoted #, so the knot sum of knots K1 and Kz is 
written Knot Linking 

In general, it is possible to link two n-D HYPERSPHERES 
in (n + 2)-D space in an infinite number of inequivalent 
ways. In dimensions greater than n + 2 in the piece- 
wise linear category, it is true that these spheres are 
themselves unknotted. However, they may still form 
nontrivial links. In this way, they are something like 
higher dimensional analogs of two l-spheres in 3-D. The 
following table gives the number of nontrivial ways that 
two n-D HYPERSPHERES can be linked in Jc-D. 

D of spheres D of space Distinct Linkings 
23 40 239 
31 48 959 

102 181 3 
102 182 10438319 
102 183 3 

Two 10-D HYPERSPHERES link up in 12, 13, 14, 15, and 
16-D, then unlink in 17-D, link up again in 18, 19, 20, 
and 21-D. The proof of these results consists of an “easy 
part” (Zeeman 1962) and a “hard part” (Ravenel 1986). 
The hard part is related to the calculation of the (stable 
and unstable) HOMOTOPY GROUPS of SPHERES. 
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Knot Polynomial 
A knot invariant in the form of a POLYNOMIAL such 
as the ALEXANDER POLYNOMIAL, BLM/Ho POLY- 

NOMIAL, BRACKET POLYNOMIAL, CONWAY POLYNOM- 
IAL,JONES POLYNOMIAL,KAUFFMAN POLYNOMIAL F, 
KAUFFMANPOLYNOMIAL X,and VASSILIEV POLYNOM- 
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Knot Problem 
The problem of deciding if two KNOTT in 3-space are 
equivalent such that one can be continuously deformed 
into another. 

Knot Shadow 
A LINK DIAGRAM which does not specify whether cross- 
ings are under- or overcrossings. 

see ~1~0 CONNECTED SUM 

Knot Theory 
The mathematical study of KNOTS. Knot theory con- 
siders questions such as the following: 

1. Given a tangled loop of string, is it really knotted or 
can it, with enough ingenuity and/or luck, be untan- 
gled without having to cut it? 

2. More generally, given two tangled loops of string, 
when are they deformable into each other? 

3. Is there an effective algorithm (or any algorithm to 
speak of) to make these determinations? 

Although there has been almost explosive growth in the 
number of important results proved since the discov- 
ery of the JONES POLYNOMIAL, there are still many 
“knotty” problems and conjectures whose answers re- 
main unknown. 

see UZSO KNOT, LINK 

Knot Vector 

see B-SPLINE 

Koch Antisnowflake 

A FRACTAL derived from the KOCH SNOWFLAKE. The 
base curve and motif for the fractal are illustrated below. 

The AREA after the nth iteration is 

A, 
1&n-1 A 

= A--I - 3--3”> 

where n is the area of the original EQUILATERAL TRIAN- 
GLE, so from the derivation for the KOCH SNOWFLAKE, 

see UZSO EXTERIOR SNOWFLAKE, FLOWSNAKE FRAC- 
TAL, KOCH SNOWFLAKE, PENTAFLAKE, SIERPI~KI 
CURVE 
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Koch Island 

seeKOcH SNOWFLAKE 

Koch Snowflake 

A FRACTAL, also known as the KOCH ISLAND, which was 
first described by Helge von Koch in 1904. It is built by 
startingwith ~~EQUILATERAL TRIANGLE, removingthe 
inner third of each side, building another EQUILATERAL 
TRIANGLE at the location where the side was removed, 
and then repeating the process indefinitely. The Koch 
snowflake can be simply encoded as a LINDENMAYER 
SYSTEM withinitialstring 'IF--F--F", STRING REWRIT- 
ING rule “F” -> "F+F--F+F", and angle 60”. The zeroth 
through third iterations of the construction are shown 
above. The fractal can also be constructed using a base 
curve and motif, illustrated below. 

Let iVn be the number of sides, L, be the length of a 
single side, tn. be the length of the PERIMETER, and A, 
the snowflake’s AREA after the nth iteration. Further, 
denote the AREA of the initial n = 0 TRIANGLE A, and 
the length of an initial n = 0 side 1. Then 

Nn=344” (1) 
L, = (i)” = 3-” (2) 
c n E NnL, = 3(g)” (3) 

An = An-1 + $NnLn2A = An-1 + A 

=A 
3 l  4”-1 4-l 

n-l + 9”A = An-1 + %A 
. n- 

= An-1 + f(4>“-‘A. (4) 

The CAPACITY DIMENSION is then 

d cap = - lim lnNn = _ lim 1n(3 ’ 4n) 
72-+00 lnL, n-300 ln(3-“) 

= lim 
ln3+nln4 

n3m 72ln3 

Koch Snowflake 

Now compute the AREA explicitly, 

A0 = A (6) 

(7) A1 = A0 + 1 4 3 (G)OA=A{l+;(;)o} 

A2 =A1+ 1 3 ($A=A{l+; 4 [(t)‘+(i)‘]} 

A,= [l+;j:(;)jAj 

k=O 

(8) 

(9) 

so as n + 00, 

A=&= [l+;@)k] = (,.;&)a 
= ;A. (10) 

Some beautiful TILINGS, a few examples of which are 
illustrated above, can be made with iterations toward 
Koch snowflakes. 

In addition, two sizes of Koch snowflakes in AREA ratio 
1:3 TILE the PLANE, as shown above (Gosper). 

In4 2 In 2 - --- - = 1.261859507,. . . 
In3 - In3 (5) 



Kochansky’s Approximation 

Another beautiful modification of the Koch snowflake 
involves inscribing the constituent triangles with filled-in 
triangles, possibly rotated at some angle. Some sample 
results are illustrated above for 3 and 4 iterations. 

see also CESAR~ FRACTAL, EXTERIOR SNOWFLAKE, 
G,OSPER ISLAND, KOCH ANTISNOWFLAKE, PEANO- 
GOSPER CURVE, PENTAFLAKE, SIERPI~~SKI SIEVE 
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Kochansky’s Approximation 
The approximation for PI, 

Koebe’s Constant 
A CONSTANT equal to one QUARTER, l/4. 

see also QUARTER 
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Koebe Function 

The function 

It has a MINIMUM at z = -1, where 

f’( > 
l+z 

x =-- 
(2 - 1)” = O, 

and an INFLECTIUN POINT at z = -2,where 

f”W 
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- v + 4 f= 0 -- 
(2-1)4 l  

to Infinity: A Guide to Today’s 
England: Oxford University Press, 

Kollros’ Theorem 
For every ring containing p SPHERES, there exists a ring 
of Q SPHERES, each touching each of the p SPHERES, 
where 

1 1 1 

-+-=3* P 4 

The HEXLET is a special case with p = 3. 

see also HEXLET, SPHERE 
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Kolmogorov-Arnold-Moser Theorem 
A theorem outlined in 1954 by Kolmogorov which was 
subsequently proved in the 1960s by Arnold and Moser 
(Tabor 1989, p. 105). It gives conditions under which 
CHAOS is restricted in extent. Moser’s 1962 proof was 
valid for TWIST MAPS 

0’ = e + 2rf (I) + d&I) (1) 
I’ = I+f(W). (2) 

In 1963, Arnold produced a proof for Hamiltonian sys- 
tems 

H = Ho(I) + E&(I). (3) 

The original theorem required perturbations E N 1W4*, 
although this has since been significantly increased. 
Arnold’s proof required C”, and Moser’s original proof 
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required C333. Subsequently, Moser’s version has been 
reduced to C6, then C’+‘, although counterexamples 
are known for C2. Conditions for applicability of the 
KAM theorem are: 

Kolmogorov Complexity 
The complexity of a pattern parameterized as the short- 
est ALGORITHM required to reproduce it. Also known 
as ALGORITHMIC COMPLEXITY. 

1. small perturbations, 

2. smooth perturbations, and 

3. sufficiently irrational WINDING NUMBER. 

References 
Goeta, P. “Phil’s Good Enough Complexity Dictionary.” 

http://uww.cs.buffalo+edu/-goetz/dict.htmL 

Moser considered an integrable Hamiltonian function I& 
with a TORUS TO and set of frequencies w  having an in- 
commensurate frequency vector W* (i.e., wok # 0 for all 
INTEGERS ki). Let HO be perturbed by some periodic 
function HI. The KAM theorem states that, if I& is 
small enough, then for almost every w* there exists an 
invariant TORUS T(w*) of the perturbed system such 
that T(w*) is “close to” To(w*). Moreover, the TORI 
T(w*) form a set of POSITIVE measures whose comple- 
ment has a measure which tends to zero as ]I&/ + 0. 
A useful paraphrase of the KAM theorem is, “For suf- 
ficiently small perturbation, almost all TORI (excluding 
those with rational frequency vectors) are preserved.” 
The theorem thus explicitly excludes TORI with ratio- 
nally related frequencies, that is, n - 1 conditions of the 
form 

Kolmogorov Constant 
The exponent 5/3 in the spectrum of homogeneous tur- 
bulence, JE-5/3 l  

w-k-0. (4) 
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Kolmogorov Entropy 
Also known as METRIC ENTROPY. Divide PHASE SPACE 

into D-dimensional HYPERCUBES of CONTENT E? Let 
P;O,*..,i, be the probability that a trajectory is in HY- 
PERCUBE in at t = 0, il at t = T, i2 at t = 2T, etc. 
Then define 

K-b =hK=- pi, ,...,i, In Pi0 ,..., i, 1 (1) 
zo t--e, 2, 

These TORI are destroyed by the perturbation. For a 
system with two DEGREES OF FREEDOM, the condition 
of closed orbits is 

where &V+I - KN is the information needed to predict 
which HYPERCUBE the trajectory will be in at (n + 1)T 
given trajectories up 
then defined by 

to nT. The Kolmogorov entropy is 

N-l 
1 

lim - 
N+m NT D 

Kn3-1 -I&). (2) 
n=O 

Wl r a=-=-. 
w2 s 

(5) 

For a QUASIPERIODIC ORBIT, u is IRRATIONAL. KAM 
shows that the preserved TORI satisfy the irrationality 
condition 

Wl r 

I I 
>L 

w > --- 

w2 s 
g2.5 (6) 

K- = lim lim 
T+O rE+o+ 

The Kolmogorov entropy is related 
ACTERISTIC EXP ONENTS bY for all T and s, although not much is known about K(E). 

The KAM theorem broke the deadlock of the small di- 
visor problem in classical perturbation theory, and pro- 
vides the starting point for an understanding of the ap- 
pearance of CHAOS. For a HAMILTONIAN SYSTEM, the 
ISOENERGETIC NONDEGENERACY condition 

hK = ui dp. (3) 

see ~~HYPERCU 
PONENT 

'BE,LYAPUNOVCHARACTERIS TIC Ex- 

#O (7) 
Heierences 
Ott, E. Chaos in Dynamical Systems. New York: Cambridge 

University Press, p. 138, 1993. 
Schuster, H. G. Deterministic Chaos: An Introduction, 3rd 

ed. New York: Wiley, p. 112, 1995. 

guarantees preservation of most invariant TORI under 
small perturbations e << 1. The Arnold version states 
that 

I n I / n \ -n-l 

l~mkwk~ > K(E) ( ~lrnkl ) (8) Kolmogorov-Sinai Entropy 

~~~KOLMOGOROV ENTROPY,METRIC ENTROPY 
Ik=l \ k=l 

for all mk E z. This condition is less restrictive than 
Moser’s, so fewer points are excluded. 

see also CHAOS, HAMILTONIAN SYSTEM, QUASIPERI- 
ODIC FUNCTION, TORUS 

References 
Tabor, M. Chaos and Integrability in Nonlinear Dynamics: 

An Introduction. New York: Wiley, 1989. 
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by Euler, and represented the beginning of GRAPH THE- 
ORY. 

Kolmogorov-Smirnov Test 
A goodness-of-fit test for any DISTRIBUTION. The test 
relies on the fact that the value of the sample cumulative 
density function is asymptotically normally distributed. 

see also EULERIAN CIRCUIT, GRAPH THEORY 

References 
Bogomolny, A. “Graphs l ” http://www.cut-the-knot.com/ To -apply the Kolmogorov-Smirnov test, calculate the 

cumulative frequency (normalized by the sample size) do-you&now/graphs l  html. 
Chartrand, G. ‘&The Kiinigsberg Bridge Problem: An Intro- of the observations as a function of class. Then cal- 

duction to Eulerian Graphs.” $3.1 in Introductory Graph 
Theory. New York: Dover, pp. 51-66, 1985. culate the cumulative frequency for a true distribu- 

tion (most commonly, the NORMAL DISTRIBUTION). 
Find the greatest discrepancy between the observed and 
expected cumulative frequencies, which is called the 
V-STATISTIC." Compare this against the critical D- 
STATISTIC for that sample size. If the calculated D- 
STATISTIC is greater than the critical one, then reject 
the NULL HYPOTHESIS that the distribution is of the 
expected form. The test is an R-ESTIMATE. 

Kraitchik, M. 58.4.1 in Mathematical Recreations. New York: 
W. W. Norton, pp. 209-211, 1942. 

Newman, J. “Leonhard Euler and the KSnigsberg Bridges.” 
Sci. Amer. 189, 66-70,5953. 

Pappas, T. “Kcnigsberg Bridge Problem & Topology.” The 
Joy of Mathematics. San Carlos, CA: Wide World Publ./ 
Tetra, pp. 124-125, 1989. 

see also ANDERSON-DARLING STATISTIC, D-STATISTIC, 
KUIPER STATISTIC, NORMAL DISTRIBUTION, R- 
ESTIMATE 

Korselt’s Criterion 
n DIVIDES an - a for all INTEGERS a IFF n is SQUARE- 

FREE and (p - 1)/n/p - 1 for all PRIME DIVISORS p of 
n. CARMICHAEL NUMBERS satisfy this CRITERION. 

References 
Boes, D. C.; Graybill, F. A.; and Mood, A. M. Introduction to 

the Theory of Statistics, 3rd ed. New York: McGraw-Hill, 

References 
Borwein, D.; Borwein, j* M.; Borwein, P. B.; and Girgen- 

sohn, R. “Giuga’s Conjecture on Primality.” Amer. Math. 
MonthEy 103, 40-50, 1996. 1974. 

Knuth, D. E. 53.3.1B in The Art of Computer Programming, 
Vol. 2: Seminumerical Algorithms, 2nd ed. Reading, MA: 
Addison-Wesley, pp. 45-52, 1981. Kovalevskaya Exponent 

see LEADING ORDER ANALYSIS Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vet- 
teriing, W. T. LLKolmogorov-Smirnov Test.” In Numerical 
Recipes in FORTRAN: The Art of Scientific Computing, 
2nd id. Cambridge, England: Cambridge University Press, 
pp. 617-620, 1992. 

Kozyrev-Grinberg Theory 
A theory of HAMILTONIAN CIRCUITS. 

see UZSO GRINBERG FORMULA, HAMILTONIAN CIRCUIT 
Ktinig-EgevAry Theorem 
A theorem on BIPARTITE GRAPHS. Kramers Rate 

The characteristic escape rate from a stable state of a 
potential in the absence of signal. 

see also STOCHASTIC RESONANCE 

see UZSO BIPARTITE GRAPH, FROBENIUS-KOENIG THEO- 

REM 

Kijnig’s Theorem 
If an ANALYTIC FUNCTION has a single simple POLE at 
the RADIUS OF CONVERGENCE of its POWER SERIES, 

then the ratio of the coefficients of its POWER SERIES 
converges to that POLE. 

References 
Bulsara, A. R. and Gammaitoni, L. “Tuning in to Noise.” 

Phys. Today 49, 39-45, March 1996. 

Krawt chouk Polynomial 
Let a(z) be a STEP FUNCTION with the JUMP 

see dso POLE 

References 
Kbnig, J* %ber eine Eigenschaft der Potenzreihen.” Math. 

Ann. 23, 447-449, 1884. j(x) = 
N 0 x PxqN-x (1) 

Kijnigsberg Bridge Problem 
at x =o, 1, . . . . N,wherep>O,q>O,andp+q=l. 
Then 

p(x) = N K >3 
-l/2 

(Pd 
-n/2 

n n 

The Kijnigsberg bridges cannot all be traversed in a sin- 
gle trip without doubling back. This problem was solved 
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Kronecker Decomposition Theorem 
Every FINITE ABELIAN GROUP can be written as 
a DIRECT PRODUCT of CYCLIC GROUPS of PRIME 

POWER ORDERS. In fact, the number of nonisomorphic 
ABELIAN FINITE GROUPS a(n) of any given ORDER n 
is given by writing n as 

for n = 0, 1, . . . , IV. It has WEIGHT FUNCTION 

W= 
N!P”~~-~ 

r(l+ x)r(N + 1 - x)’ (3) 

where I?(Z) is the GAMMA FUNCTION, RECURRENCE 

RELATION 

n= 
rI 

ai 
Pi ? (n + l)k(” (x) + pq(N - n + l)k(p),(x) n+l n 

c x-n- E (N - 2)]kcp)(x) n ? (4) 

where the pi are distinct PRIME FACTORS, then 
and squared norm 

u(n) = nP(ai), N! 
(pq) 

n 

n!(N-n)! l  

(5) 

where P is the PARTITION FUNCTION. This gives 1, 1, 

1, 2, 1, 1, 1, 3, 2, . . . (Sloane’s AOOO688). 

see UZSO ABELIAN GROUP, FINITE GROUP, ORDER 
(GROUP), PARTITION FUNCTION P 

It has the limit 

n!kpl(Np+ &&s) = H,(s), (6) 

References where H,(x) is a HERMITE POLYNOMIAL, and is related 
to the HYPERGEOMETRIC FUNCTION by Sloane, N. J. A. Sequence A000688/M0064 in “An On-Line 

Version of the Encyclopedia of Integer Sequences.” 

k(p)@ N) = kp’(x, N) 
n 1 

Kronecker Delta 
The simplest interpretation of the Kronecker delta is as 
the discrete version of the DELTA FUNCTION defined by 

( 1) 
n Iv - - - 

0 

n p” 2Fl(-n, --2; -4 l/P) 

(-1)“P” r(N - x + 1) 

n! r(N-x-n+l) 

xzFl(-n, -2; N - x - n + 1; -q/p)* (7) 

for i # j 
for i = j. (1) 

It has the COMPLEX GENERATING FUNCTION 
see UZSO ORTHOGONAL POLYNOMIALS 

6 mn = & 
s 

~~-~---l dz, References 
Nikiforov, A. F.; Uvarov, V. B.; and Suslov, S. S. Classical 

Orthogonal Polynomials of a Discrete Variable. New York: 
Springer-Verlag, 1992. 

SaegQ, G. Orthogonal PoEynomiaZs, 4th ed. Providence, RI: 
Amer. Math. Sot., pp. 35-37, 1975. 

Zelenkov, V. “Krawtchouk Polynomial Home Page.” http : // 
uuu.isir.minsk.by/-zelenkov/physmath/krqolyn/. 

(2) 

where nz and n are INTEGERS. In 3-space, the Kronecker 
delta satisfies the identities 

s** a2 =3 (3) 

Kreisel Conjecture 
A CONJECTURE in DECIDABILITY theory which postu- 
lates that, if there is a uniform bound to the lengths of 
shortest proofs of instances of S(n), then the universal 
generalization is necessarily provable in PEANO ARITH- 

METIC. The CONJECTURE was proven true by M. Baaa 
in 1988 (Baaz and Pudl&k 1993). 

see also DECIDABLE 

%djw - - 26ij (5) 

Eijkepqk = dipsjq - Jiq6jp, (6) 

where EINSTEIN SUMMATION is implicitly assumed, 

i,j = 1,2,3,and E is the PERMUTATION SYMBOL. 

Technically, the Kronecker delta is a TENSOR defined by 
the relationship References 

Baaz, M. and Pudldk P. “Kreisel’s Conjecture for L31. In 
Arithmetic, Proof Theory, and Computational Complex- 
ity, Papers from the Conference Held in Prague, July 2-5, 
1991 (Ed. P. Clote and J. KrajiEek). New York: Oxford 
University Press, pp. 30-60, 1993. 

Dawson, J. “The Gijdel Incompleteness Theorem from a 
Length of Proof Perspective.” Amer. Math. Monthly 86, 
740-747, 1979. 

Kreisel, G. “On the Interpretation of Nonfinitistic Proofs, II.” 
J. Symbolic Logic 17, 43-58, 1952. 

(7) 

Since, by definition, the coordinates xi and xj are inde- 
pendent for i # j, 

(8) 
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so 
ri ax; dxi k 

6j=-_r6,,~ dXk 8Xj (9) 

and Sj is really a mixed second RANK TENSOR. It sat- 
isfies 

6 ab 
jk - 

- fubic 
jki 

= g6,” - 6’“@ 
a b (10) 

6 abjk = gajgbk - gakgbj (11) 

EaijE 
bij - d bi = 2db 

- ai a' (12) 

see also DELTA FUNCTION, PERMUTATION SYMBOL 

QUADRATIC FIELDS, where m > 0 and d always satisfies 
d G 0,l (mod 4). 

The KRONECKER SYMBOL is a REAL CHARACTER mod- 
ulo n, and is, in fact, essentially the only type of REAL 
primitive character (Ayoub 1963). 

see ~~~~CHARACTER(N~MBER THEORY),~LASS NUM- 
BER, DIRICHLET L-SERIES, JACOBI SYMBOL, LEGEN- 
DRE SYMBOL 

References 

Kronecker’s Polynomial Theorem 
An algebraically soluble equation of ODD PRIME degree 
which is irreducible in the natural FIELD possesses either 

1. Only a single REAL ROOT, or 

2. All REAL ROOTS. 

Ayoub, R. G. An Introduction to the Analytic Theory of 
Numbers. Providence, RI: Amer. Math. Sot., 1963. 

Cohn, H. Advanced Number Theory. New York: Dover, p. 35, 
1980. 

Krull Dimension 

see also ABEL'S IRREDUCIBILITY THEOREM, ABEL'S 
LEMMA,SCHOENEMANN'S THEOREM 

References 
DSrrie, H. 100 Great Problems of Elementary Mathematics: 

Their History and Solutions. New York: Dover p. 127, 
1965. 

If R is a RING (commutative with l), the height of a 
PRIME IDEAL p is defined as the SUPREMUM ofall n so 
that there is a chain po c l  l  n  p,-1 c p, = p where all pi 

are distinct PRIME IDEALS. Then, the Krull dimension 
of R is defined as the SUPREMUM of all the heights of 
all its PRIME IDEALS. 

see also PRIME IDEAL 

References 

Kronecker Product 

see DIRECT PRODUCT (MATRIX) 

Eisenbud, D. Commutative Algebra with a View Toward Al- 
gebraic Geometry. New York: Springer-Verlag, 1995. 

Macdonald, I. G. and Atiyah, M. F. Introduction to Commu- 
tative AZgebra. Reading, MA: Addison-Wesley, 1969. 

Kronecker Symbol 
An extension of the JACOBI SYMBOL (n/m) to all IN- 
TEGERS. It can be computed using the normal rules for 
the JACOBI SYMBOL 

Kruskal’s Algorithm 
An ALGORITHM for finding a GRAPH'S spanning TREE 
of minimum length. 

see also KRUSKAL'S TREE THEOREM 

References 
Gardner, M. Mathematical Magic Show: More Puzzles, 

Games, Diversions, Illusions and Other Mathematical 
Sleight-of-Mind from Scientific American. New York: 
Vintage, pp. 248-249, 1978. 

plus additional rules for m = - 1, 

and m = 2. The definition for (n/2) 
as 

n<O 
n > 0, 

is variously written 

f0 for n even 
for n odd, n E H (mod 8) 
for n odd, n E *3 (mod 8) 

or 

1 

0 for 41n 

(n/2> = y1 
for n G 1 (mod 8) 
for n E 5 (mod 8) 

undefined otherwise 

(Cohn 1980). Cohn’s form “undefines” (n/2) for SINGLY 
EVEN NUMBERS n F 4 (mod 2) and n E -1,3 (mod S), 
probably because no other values are needed in applica- 
tions of the symbol involving the DISCRIMINANTS d of 

Kruskal’s Tree Theorem 
A theorem which plays a fundamental role in computer 
science because it is one of the main tools for show- 
ing that certain orderings on TREES are well-founded. 
These orderings play a crucial role in proving the ter- 
mination of rewriting rules and the correctness of the 
Knuth-Bendix equational completion procedures. 

see also KRUSKAL'S ALGORITHM, NATURAL INDEPEN- 
DENCE PHENOMENON,TREE 

References 
Gallier, J l  “What’s so Special about Kruskal’s Theorem and 

the Ordinal Gamma[O]? A S urvey of Some Results in Proof 
Theory.” Ann. Pure and Appl. Logic 53, 199-260, 1991. 

KS Entropy 

see METRIC ENTROPY 
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Kuen Surface Kuhn-Tucker Theorem 

A special case of ENNEPER'S SURFACES which can be 
given parametrically by 

X- 
2(cos u + u sin u) sin 21 

1 + u2 sin2 21 (1) 

- 2Ji7-S cos(u - tan-l u) sinv 
- 

1 + u2 sin2 21 (2) 

2( sinu - 
Y= 

u cos u) sin v 

1 + u2 sin2 2t (3) 

- 2di-77 sin(u - tan-l u) sinv 
- 

1 + u2 sin2 21 (4) 

x = ln[tan( iv)] + 1 +2iyri2 w (5) 

for w  E [O+), u E [0,2~) (Reckziegel et al. 1986). The 
Kuen surface has constant NEGATIVE GAUSSIAN CUR- 
VATURE ofK = -1. The PRINCIPAL CURVATURES are 
given by 

ucos(~w)[-2 - u2 + u2cos(2w)J4sin($u) 
K1 = - 2[2 - u2 + u2 cos(2w)](l + u2 sin2 w)~ (6) 

fqJ = 
[-2 - u2 + u2 cos(2w)]4[2 - u2 + u2 cos(2w)] csc(w) 

64u(l+ u2 sin2 v)~ 
. 

(7) 

see also ENNEPER’S SURFACES, REMBS’ SURFACES, 
SIEVERT’S SURFACE 

References 
Fischer, G. (Ed.). Plate 86 in Mathematische Mod- 

elle/Mathematical Models, BiEdband/Photograph Volume. 
Braunschweig, Germany: Vieweg, p. 82, 1986. 

Gray, A. “Kuen’s Surface.” 519.4 in Modern Differential Ge- 
ometry of Curves and Surfaces. Boca Raton, FL: CRC 
Press, ppm 384-386, 1993. 

Kuen, T. YJeber Flgchen von constantem Kriimmungs- 
maass.” Sitzungsber. d. kGnig1. Bayer. Akad. Wiss. Math. - 
phys. Classe, Heft II, 193-206, 1884. 

Nordstrand, T. “Kuen’s Surface.” http://wuv.uib.no/ 
people/nf ytn/kuentxt . htm. 

Reckziegel, H. “Kuen’s Surface.” $3.4.4.2 in Mathematical 
Models from the Collections of Universities and Museums 
(Ed. G. Fischer). B raunschweig, Germany: Vieweg, p. 38, 
1986. 

A theorem in nonlinear programming which states that 
if a regularity condition holds and f and the functions 
hj are convex, then a solution z” which satisfies the con- 
ditions hj for a VECTOR of multipliers X is a GLOBAL 
MINIMUM. The Kuhn-Tucker theorem is a generaliza- 
tion of LAGRANGE MULTIPLIERS. FARKAS'S LEMMA is 
key in proving this theorem. 

see also FARKAS'S LEMMA, LAGRANGE MULTIPLIER 

Kuiper Statistic 
A statistic defined to improve the KOLMOGOROV- 
SMIRNOV TEST in the TAILS. 

see &O ANDERSON-DARLING STATISTIC 

References 
Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetter- 

ling, W. T. Numerical Recipes in FORTRAN: The Art of 
Scientific Computing, 2nd ed, Cambridge, England: Cam- 
bridge University Press, p+ 621, 1992. 

Kulikowski’s Theorem 
For every POSITIVE INTEGER n, there exists a SPHERE 
which has exactly YX LATTICE POINTS on its surface. 
The SPHERE is given by the equation 

( x - a)” + (y - q2 + (2 - J2)2 = c2 + 2, 

where a and b are the coordinates of the center of the 
so-called SCHINZEL CIRCLE 

(x-$)~+~~=$F fern-2keven 
(x - ;>” + y2 = i52” for n = 2k + 1 odd 

and c is its RADIUS. 

see also CIRCLE LATTICE POINTS, LATTICE POINT, 
SCHINZEL’S THEOREM 
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Schinzel, A. “Sur l’existence d’un cercle passant par un 
nombre donnk de points aux coordonnges enti&res.” 
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Sierpiliski, W. “Sur quelques problBmes concernant les points 
aux coordon&es entikres.” L’Enseignement Math. Ser. 2 
4, 25-31, 1958. 

Sierpiirski, W. “Sur un problhme de H. Steinhaus concernant 
les ensembles de points sur le plan.” Fund. Math. 46, 
191-194, 1959. 

Sierpifiski, W. A Selection of Problems in the Theory of 
Numbers. New York: Pergamon Press, 1964. 

Kummer’s Conjecture 
A conjecture concerning PRIMES. 
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Kummer’s Differential Equation 

see CONFLUENT HYPERGEUMETRIC DIFFERENTIAL 
EQUATION 

Kummer’s Formulas 
Kummer’s first formula is 

zFl(i + m - k, -n; 2m + 1; 1) 

r(2m + l)r(m + + + IC + n) - - 
lT(m + + + k)r(2m + 1 + n)’ 

(1) 

where zF& b; c; Z) is the HYPERGEOMETRIC FUNCTION 
with m # -l/2, -1, -3/2, . . . , and l?(z) is the GAMMA 
FUNCTION. The identity can be written in the more 
symmetrical form as 

2Fl(U, b; c; -1) = 
r($b + i)r(b - u + 1) 
ryb + l)Iy +b - a + 1) ’ 

(2) 

where a - b + c = 1 and b is a positive integer. If b is a 

negative integer, the identity takes the form 

zFl(a, b; c; -1) = 2 cos( @I) 
r( Ibl)r(b - a + 1) 

r($b - a + 1) 
(3) 

(PetkovSek et al. 1996). 

Kummer’s second formula is 

A($ +m;2m+ 1;~) = MO,,(Z) 

m+1/2 1+? 
z2P 

=z 

p=l 1 24pp!(m+l)(m+2)**+(m+p) ’ (4) 
where 1 Fl (a$;~) is the CONFLUENT HYPERGEOMETRIC 
FUNCTION and m # -l/2, -1, -3/2, . . . . 

References 
Petkovgek, M.; Wilf, IX. S.; and Zeilberger, D. A=B. Welles- 

ley, MA: A. K. Peters, pp. 42-43 and 126, 1996. 

Kummer’s Function 

see CONFLUENT HYPERGEOMETRIC FUNCTION 

Kummer Group 
A GROUP of LINEAR FRACTIONAL TRANSFORMATIONS 
which transform the arguments of Kummer solutions to 
the HYPERGEOMETRIC DIFFERENTIAL EQUATION into 
each other. Define 

A(z) = I - z 

B(z) = 1/z, 

then the elements of the group are {I, A, B, AB, BA, 
ABA = BAB}. 

Kummer’s Quadratic Transformation 
A transformation of a HYPERGEOMETRIC FUNCTION, 

2Fl 
42 

% Pi m (l+ 

zz (1. + z)~~~F&~QI + $ - P;P + $r2). 

Kummer’s Relation 
An identity which relates HYPERGEOMETRIC FUNC- 
TIONS, 

2Fl(2a,2b;a+b+ +; x) = 2F~(a,b;a+b+~,4x(l-x)). 

Kummer’s Series 

see HYPERGE~METRIC FUNCTION 

Kummer’s Series Transformation 
Let, cF=, al, = a and cTzo ck = c be convergent series 

such that 

lim ak =X#O. 
k-300 Ck 

Then 00 

a=Xc+ 
CC 

l-Xc” ak. 
ak > 

k=O 

References 
Abramowita, M. and Stegun, C. A. (Eds.). Handbook 

of Mathematical Functions with Formulas, Graphs, and 
Mathematical Tables, 9th printing. New York: Dover, 
p. 16, 1972. 

Kummer Surface 

The Kummer surfaces are a family of QUARTIC SUR- 
FACES given by the algebraic equation 

(x2 + y2 + z2 - p2w2)2 - xpqrs = 0, (1) 

where 

p, q, T, and s are the TETRAHEDRAL COORDINATES 

x = 3P2 - 1 
- 

3-p ’ (2) 

p=w-Z-AX 
q-w- X+&X 

r=w$z+hy 

S =w+j:-- y, h 

(3) 
(4) 

(5) 

(6) 
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and 20 is a parameter which, in the above plots, is set to 
w  = 1. The above plots correspond to p2 = l/3 

(3x2 + 3y2 -I- 3z2 + 1)” = 0, 

(double sphere), Z/3, 1 

x4 - 2z2y2 +y4 + 4s22 + 4y2z + 4z2z2 +4y2z2 = 0 (7) 

(ROMAN SURFACE),~~,~ 

Kx - 11" - 2z2][y2 - (z + Q2] = 0 (8) 

(four planes), 2, and 5. The case 0 5 p2 5 l/3 corre- 
sponds to four real points. 

The following table gives the number of ORDINARY 
DOUBLE POINTS for various ranges of p2, corresponding 
to the preceding illustrations. 

Range Real Nodes Complex Nodes 

O<p”‘$ 4 12 
p2 = + 

+p2<1 4 12 

p2 = 1 

1</L2<3 16 0 

P2 =3 

/A2 > 3 16 0 

The Kummer surfaces can be represented parametrically 
by hyperelliptic THETA FUNCTIONS. Most of the Kum- 
mer surfaces admit 16 ORDINARY DOUBLE POINTS, the 
maximum possible for a QUARTIC SURFACE. A special 
case of a Kummer surface is the TETRAHEDROID. 

Nordstrand gives the implicit equations as 

x4+y4+z4-x2 -y2-z2-~2y2-x2z2-y2z2+l = 0 (9) 

x4 + y4 + x4 + a(~” + y2 + z2) + b(x2y2 + z2z2 + y2z2) 

+czyx - 1 = 0. (10) 

see also QUARTIC SURFACE, ROMAN SURFACE, TETRA- 
HEDROID 
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Kuratowski’s Closure-Component Problem 
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Flgchen vierten Grades mit sechszehn singulgren Punkten 
sind.” Ges. Werke 2, 418-432. 

Nordstrand, T. “Kummer’s Surface.” http : //www . uib . no/ 
people/nfytn/kummtxt.htm. 

Kummer’s Test 
Given a SERIES of POSITIVE terms ui and a sequence of 
finite POSITIVE constants ai, let 

p= lim 
n-km ( Wz 

an- - 
Un+l 

an+1 . 

> 

1. If p > 0, the series 

2. If p < 0, the series 

3. Ifp = 0, the series 

The test is a general 
ROOT TEST, GAUSS’S 

converges. 

diverges. 

may converge or diverge. 

case of BERTRAND'S TEST, the 
TEST, and RAABE'S TEST. With 1 

art = n and a,+~ = n + 1, the test becomes RAABE'S 
TEST. 

see UZSO CONVERGENCE TESTS, RAABE'S TEST 
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Kummer’s Theorem 

&(z,-qx+n+ l;-I)= 
++a+ l)r( in+ 1) 

r(z + in + l)r(n + 1) 

zF&,p;l+a-P;-l)= 
r(1+ a - p>rp + $a) 
r(l+ +(I + + - p>’ 

where 2Fl is a HYPERGEOMETRIC FUNCTION and l?(z) 
is the GAMMA FUNCTION. 

Kuratowski’s Closure-Component Problem 
Let X be an arbitrary TOPOLOGICAL SPACE. Denote 
the CLOSURE of a SUBSET A of X by A- and the com- 
plement of A by A’. Then at most 14 different SETS can 
be derived from A by repeated application of closure and 
complementation (Berman and Jordan 1975, Fife 1991). 
The problem was first proved by Kuratowski (1922) and 
popularized by Kelley (1955). 

see also KURATOWSKI REDUCTION THEOREM 
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Kuratowski Reduction Theorem 
Every nonplanar graph is a SUPERGRAPH of an expan- 
sion of the UTILITY GRAPH UG = KS,3 or the COM- 
PLETE GRAPH Kg. This theorem was also proven ear- 
lier by Pontryagin (1927~1928), and later by fiink and 
Smith (1930). K ennedy et al. (1985) give a detailed his- 
tory of the theorem, and there exists a generalization 
knownasthe ROBERTSON-SEYMOUR THEOREM. 

see also COMPLETE GRAPH, PLANAR GRAPH, 
ROBERTSON-SEYMOUR THEOREMJJTTLITY GRAPH 
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Kuratowski’s Theorem 

see KURATOWSKI REDUCTION THEOREM 

KiirschSk% Tile 

An attractive tiling of the SQUARE composed of two 
types of triangular tiles. 
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Kurtosis 
The degree of peakedness of a distribution, also called 
the EXCESS or EXCESS COEFFICIENT. Kurtosis is de- 
noted 72 (or b2) or p2 and computed by taking the fourth 
MOMENT of a distribution. A distribution with a high 
peak (3”~ > 0) is called LEPTOKURTIC, a flat-topped 
curve (72 < 0) is called PLATYKURTIC, and the normal 
distribution (72 = 0) is called MESOKURTIC. Let pi de- 
note the ith MOMENT (xi)* The FISHER KURTOSIS is 
defined by 

P4 y2=bz=E-3cq-3, 
m2 

(1) 

and the PEARSON KURTOSIS is defined by 

(2) 

An ESTIMATOR for the 72 FISHER KURTOSIS is given by 

JG4 
g2=2, 

k2 
(3) 
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where the ks are /Z-STATISTICS. The STANDARD 
ATION of the estimator is 

DEVI- 

2 -24 
%I2 - N’ (4) 

SW ~ZSOFISHERKURTOSIS, MEAN, PEARSON KURTOSIS, 

SKEWNESS, STANDARD DEVIATION 
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L 
&Norm 
A VECTOR NORM defined for a VECTOR 

Xl 

x2 

x=  l  , iI l  

. 

Xn 

with COMPLEX entries by 

see also &-NORM,&-NORM,VECTOR NORM 
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Gradshteyn, I. S. and Ryzhik, I. M. Tables of Integrals, Se- 

ries, and Products, 5th ed. San Diego, CA: Academic 
Press, pp. 1114-1125, 1979* 

&Norm 
A VECTOR defined for a VECTOR 

Xl 

x2 

x- . , [I . 
l  

XT& 

with COMPLEX entries by 

n 

The &-norm is also called the EUCLIDEAN NORM. The 
&-norm is defined for a function 4(x) by 

see also &NoRM,L~-SPACE,&-NORM,~ARALLELO- 
GRAM LAW,VECTOR NORM 
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Press, pp. 1114-1125, 1979. 

La-Space 
A HILBERT SPACE in which a BRACKET PRODUCT~~ 
defined by 

(41*> = s **wx (1) 
and which satisfies the following conditions 

(~pl~l+~2*2) = h(4l$Jl> +~2(W2) Co 

(W1+~242I~) = x1* (a@ +x2* (62ld (4) 

ww) f R > 0 - (5) 

I WllJw I2 5 WIW MIw - (6) 
The last of these is SCHWARZ'S INEQUALITY. 

see UZSO BRACKET PRODUCT, HXLBERT SPACE, Lz- 
NORM, RIESZ-FISCHER THEOREM, SCHWARZ'S IN- 
EQUALITY 

L,-Norm 
A VECTORNORM definedfora VECTOR 

x= 

Xl 
x2 11 . 1 

. 

. 

X7-b 

with COMPLEX entries by 

II II X00 = max Ix& 
i 

see dso &NORM, L2-No~~,V~c~o~ NORM 
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Gradshteyn, I. S. and Ryzhik, I. M. Tables of Integrals, Se- 

ries, and Products, 5th ed. San Diego, CA: Academic 
Press, pp. 1114-1125, 1979. 

L,t -Balance Theorem 
If every component L of X/Opt(X) satisfies the 
“Schreler property,” then 

for every p-local SUBGROUP Y of X, where L,t is the 
p-LAYER. 

see &UP-LAYER, SUKROUP 

L-Estimate 
A ROBUST ESTIMATION based on linear combinations 
of ORDER STATISTICS. Examples include the MEDIAN 
and TUKEY'S TRIMEAN. 

see also A&ESTIMATE, R-ESTIMATE 

References 
Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vet- 

terling, W. T. “Robust Estimation.” $15.7 in Numerical 
Recipes in FORTRAN: The Art of Scientific Computing, 
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pp. 694-700, 1992. 
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L-Function 

see ARTIN L-FUNCTION, DIRICHLET L-SERIES, EULER 
L-FUNCTION, HECKE L-FUNCTION 

L-Polyomino 

L’Huilier’s Theorem 
Let a SPHERICAL TRIANGLE have sides of length a, b, 
and c, and SEMIPERIMETER S. Then the SPHERICAL 
EXCESS A is given by 

tan( aA> 

an(+) tan[+(s - a)] tan[$(s - b)] tan[+(s - c)]. 

see &O GIRARD'S SPHERICAL EXCESS FORMULA, 
SPHERICAL EXCESS$PHERICAL TRIANGLE 

References 
The order 72 > 2 L-polyomino consists of a vertical line - Beyer, W. H. CRC Standard Mathematical Tables, 28th ed. 

of n SQUARES with a single additional SQUARE attached 
at the bottom. 

Boca Raton, FL: CRC Press, p. 148, 1987. 

see also L-POLYOMINO, SKEW POLYOMINO, SQUARE, 
SQUARE POLYOMINO, STRAIGHT POLYOMINO 

L-Series 

see DIRICHLET L-SERIES 

L-System 

see LINDENMAYER SYSTEM 

L’Hospital’s Cubic 

see TSCHIRNHAUSEN CUBIC 

L’Hospital’s Rule 
Let lim stand for the LIMIT limz+, limz+-, lim,,,+, 
lim x-+ool or lim,-+-,, and suppose that lim f(z) and 
lim g(z) are both ZERO or are both &oo. If 

lim f'(x) 

g’(x) 

has a finite value or if the LIMIT is koo, then 

Labelled Graph 
A labelled graph G = (V, E) is a finite series of VER- 
TICES V with a set of EDGES E of ~-SUBSETS of V. 
Given a VERTEX set V, = (1, 2, l  . . , n}, the number 
of labelled graphs is given by 2n(“-1)/2. Two graphs G 
and H with VERTICES Vn = (1, 2, . . . , n} are said to 
be ISOMORPHIC ifthereis a PERMUTATIONS of Vn such 
that {U,ZI} isin the set of EDGES E(G) IFF {p(u)&)} 
isin the set of EDGES E(H). 

see also CONNECTED GRAPH, GRACEFUL GRAPH, 
GRAPH (GRAPH THEORY), HARMONIOUS GRAPH, 
MAGIC GRAPH, TAYLOR'S CONDITION, WEIGHTED 
TREE 

References 
Cahit, I. “Homepage for the Graph Labelling Problems 

and New Results.” http://l93.140.42.134/lcahit/ 
CORDIAL.html. 

Gallian, J. A. “Graph Labelling.” Elec. J. Combin. DS6, 
l-43, Mar. 5, 1998. http://aww.combinatorics.org/ 
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lim It: = lim - f( > f ‘(2) 
g(x) g’(x) ’ 

L’Hospital’s rule occasionally fails to yield useful results, 
as in the case of the function limU+oo u(u2 + 1)-l12. Re- 
peatedly applying the rule in this case gives expressions 
which oscillate and never converge, 

J& (U2 +yy2 = lim 

1 
u+m u(u2 +1)-l/2 

Lacunarity 
Quantifies deviation from translational invariance by de- 
scribing the distribution of gaps within a set at multiple 
scales. The more lacunar a set, the more heterogeneous 
the spatial arrangement of gaps. 

Ladder 

see ASTROID, CROSSED LADDERS PROBLEM, LADDER 
GRAPH 

= lim (u2 + 1)1’2 = lim u(u2 + 1)-1’2 
-IL+03 U u+oo 1 Ladder Graph 

(The actual LIMIT is 1.) 

References 
Abramowitz, M. and Stegun, C. A. (Eds.). Handbook 

of Mathematical Functions with Formulas, Graphs, and 
Mathematical Tables, 9th printing. New York: Dover, 
p. 13, 1972. 

A GRAPH consisting of two rows of paired nodes each 
connected by an EDGE. Its complement is the COCK- 
TAIL PARTY GRAPH. 

see also COCKTAIL PARTY GRAPH 

L’Hospital, G. de L’analyse des infiniment petits pour 
l’intelligence des Zignes courbes. 1696. 
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Lagrange Bracket 
Let F and G be infinitely differentiable functions of ZC, 
U, and p. Then the Lagrange bracket is defined by 

[KG] = 9 [g (g +Pvg) 
v=l 

dG OF OF -- 
s p y  dz,+p”du t )I l  

The Lagrange bracket satisfies 

[F, Gl = -[G, Fl 

(1) 

(2) 

[CC Gl, HI + [E WI, Fl + [W, Fl, Cl 
- - $G,H] + E[H,F] + g[F.G]. (3) 

If F and G are functions of z and p only, then the La- 
grange bracket [F, G] collapses the POISSON BRACKET 
(F, G)* 
see also LIE BRACKET, POISSON BRACKET * 

References 
Iyanaga, S. and Kawada, Y. (Eds.). Encyclopedic Dictionary 

of Mathematics. Cambridge, MA: MIT Press, p. 1004, 

1980. 

Lagrange-Biirmann Theorem 

~~~LAGRANGE INVEMION THEOREM 

Lagrangian Coefficient 
C~EFFICXENTS which appear in LAGRANGE INTERPO- 
LATING POLYNOMIALS where the points are equally 
spaced along the ABSCISSA. 

Lagrange’s Continued IFraction Theorem 
The REAL ROOTS of quadratic expressions with integral 
COEFFICIENTS have periodic CONTINUED FRACTIONS, 
as first proved by Lagrange. 

Lagrangian Derivative 

see CONVECTIVE DERIVATIVE 

Lagrange’s Equation 
The PARTIAL DIFFERENTIAL EQUATION 

(1-t fy2)fxx + 2fXfJXY + (1-t fx”)fl/, = 0, 

whose solutions are called MINIMAL SURFACES. 

see also MINIMAL SURFACE 

References 
do Carmo, M. P. “Minimal Surfaces.” 53.5 in Muthemati- 

cal Mudels from the Collections of Universities and Muse- 
ums (Ed. G. Fischer). Braunschweig, Germany: Vieweg, 
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Lagrange Expansion 
Let y = f(z) and yo = f (za) where f’(zo) # 0, then 

see aho MACLAURIN SERIES, TAYLOR SERIES 

References 
Abramowitz, M. and Stegun, C. A. (Eds.). Handbook 

of Mathematical Functions with Formulas, Graphs, and 
Mathematical Tables, 9th printing. New York: Dover, 
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Lagrange’s Four-Square Theorem 
A theorem also known as BACHET'S CONJECTURE which 
was stated but not proven by Diophantus. It states that 
every POSITIVE INTEGER can be written as the SUM 
of at most four SQVARES. Although the theorem was 
proved by Fermat using infinite descent, the proof was 
suppressed. Euler was unable to prove the theorem. The 
first published proof was given by Lagrange in 1770 and 
made use ofthe EULER FOUR-SQUARE IDENTITY, 

see ~SO EULER FOUR-SQUARE IDENTITY, FERMAT'S 
POLYGONAL NUMBER THEOREM, FIFTEEN THEOREM, 
VINOGRADOV'S THEOREM,~ARING'S PROBLEM 

Lagrange’s Group Theorem 
Also known as LAGRANGE'S LEMMA. If A is an ELE- 
MENT of a FINITE GROUP of order n, then A” = 1, This 
implies that eln where e is the smallest exponent such 
that Ae = 1. Stated another way, the ORDER of a SUB- 
GROUP divides the ORDER of the GROUP. The converse 
of Lagrange’s theorem is not, in general, true (Gallian 
1993, 1994). 

References 
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rem.” Math. Mag. 69, 375-376, 1996. 
Shanks, D. Solved and Unsolved Problems in Number Theory, 

4th ed. New York: Chelsea, p* 86, 1993. 

Lagrange’s Identity 
The vector identity 

(AxB)h(CxD) = (A*C)(BmD)-(AeD)( (1) 
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This identity can be generalized to n-D, Lagrange Interpolating Polynomial 

al-b1 l  
a l  l  b-1 

. 
. l  

- 
- . . . 

. > 
l  l  

(2) 

a,-1 .bl l  -- an-l . h-1 

where IAl is the DETERMINANT of A, or 

- Ukbj - Ujbk)2- 
(3) 

l<k<j<n 

see also VECTOR TRIPLE PRODUCT, VECTOR QUAD- 
RUPLE PRODUCT 

References 
Gradshteyn, I, S. and Ryzhik, I. M. Tables of Integrals, Se- 

ries, and Products, 5th ed. San Diego, CA: Academic 
Press, p. 1093, 1979. 

Lagrange’s Interpolating Fundamental Poly- 

nomial 
Let Z(x) be an nth degree POLYNOMIAL with zeros at 
Xl, . l  . , x:* Then the fundamental POLYNOMIALS are 

l( > 
zy(x) = l’(z,)(; - xv)’ 

They have the property 

L(x) = &+, 

where 6,, is the KRONECKER DELTA. 
fn be values. Then the expansion 

(1) 

Now let j-1, . . . . 

(3) 

gives the unique LAGRANGE INTERPOLATING POLY- 
NOMIAL assuming the values fv at xv. Let &(x) be 
an arbitrary distribution on the interval [a, b], {pn(x)} 
the associated ORTHOGONAL POLYNOMIALS, and II(x), 

.,Z,(x)th f d e un amental POLYNOMIALS corresponding 
to the set of zeros of pn (x), Then 

s b 

L(x)&&) da(x) = &Ju, (4) 

a 

for v, /.A = 1, 2, . . . ) n, where A, are CHRISTOFFEL NUM- 
BERS. 

References 
Saeg8, G. OrthogonaE Polynomials, 4th ed. Providence, RI: 

Amer. Math. SOL, pp* 329 and 332, 1975. 

The Lagrange interpolating polynomial is the POLY- 
NOMIAL of degree n - 1 which passes through the n 

points yl = f(Xl)y y2 = f(X2), l a*? yn = f(Xn)m It 

is given by 

p(x> = k pj(x>, (1) 
j=l 

where 

Pj(X) = fi -Yj. 
xj 

(2) 

k=l 
k#j 

Written explicitly, 

p(x) = (x-x2)(x-X3)~~‘(x-xn) y1 
(Xl- X2)(X1 - XQ)"'(Xl- Xn) 

+ x- 
( X1)(2 - X3) l  ’  ’  (X - 2,) 

(X2 -X1)(X2 -X3)"'(X2 -Xn) 
y2 + l  ‘* 

+ x- 
( Xl)(X-X2)**m(X-Xn-1) 

( 
Yn* 

Xn - XI)(Xn - X2) ’ ’ ’ (Xn - XT-L-1) 
(3) 

For n = 3 points, 

p(x) = (x - xdx - 23) x-x1)(x -X3) 

(Xl - X2)(X1 -X3) 
Yl + 

( 

(X2 - X1)(X2 -X3) 
Y2 

+ (X-X1)(X-X2) 

(X3 -X1)(X3 -X2) 
Y3 (4) 

P’(x) = 
2x - x:2 - x3 2x - Xl - x3 

(Xl -X2)(X1 -X3) 
Yl + 

(X2 - X1)(X2 - x3) 
Y2 

+ 
2x - x1 - x2 

(X3 - X1)(X3 - X2) 
Y3- (5) 

Note that the function P(x) passes through the points 
(xi, yi), as can be seen for the case n = 3, 

P(m) = 
(Xl -X2)(X1 -X3) (Xl - X1)(X1 -X3) 

(Xl - X2)(X1 -X3) 
Yl + 

(X2 - X1)(X2 -X3) 
Y2 

+ 
(Xl - x1)(x1 -X2) 

(X3 - X1)(X3 - X2) 
y3 = y1 (6) 

P(Xz)= 
(X2 - X2)(X2 - X3) 

Yl + 
(X2 - X1)(X2 -X3) 

(Xl - X2)(X1 -X3) (x2 - X1)(X2 -X3) 
Y2 
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(7) + 
(x2 - x1)(x2 - x2) 

(x3 -x1)(23 -x2) 
y3 = y2 

P(x3)= 
(x3 - x2)(23 -23) 

Yl + 
(x3 - x1)(x3 -x3) 

(Xl -22)(x1 -x3) (x2 - x1)(x2 -x3) 
Y2 

+ 
(x3 - x1)(x3 - x2) 

(x3 -x1)(23 -22) 
y3 = y3m 

Generalizing to arbitrary n, 

(8) 

k=l k=l 

(9) 

The Lagrange interpolating polynomials can also be 
written using 

T(X) = fi(x - xk), 

k=1 

(10) 

n 

r(xj) = n(xj - xk)r 

k=l 

(11) 

T’(Xj) = [$] 2==zj = fi (xj - xk)l (12) 

k=I 
k#j 

so 

Lagrange interpolating polynomials give no error esti- 
mate. A more conceptually straightforward method for 
calculating them is NEVILLE'S ALGORITHM. 

see ah AITKEN INTERPOLATION, LEBESGUE CON- 
STANTS (LAGRANGE INTERPOLATION), NEVILLE'S AL- 
GORITHM, NEWTON's DIVIDED DIFFERENCE INTERPO- 
LATION FORMULA 
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Scientific Computing, 2nd ed. Cambridge, England: Cam- 
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Lagrange Inversion Theorem 
Let x be defined as a function of w  in terms of a param- 
eter a by 

z = w  + qqz). 

Then any function of z can be expressed 8s a POWER 
SERIES in clr which converges for sufficiently small Q and 
has the form 

F(z) = F(w) + Fg5(w)F’(w) -I- & &w12m~ 
l  

n+l  

+...+Q “([qqv)l”+‘F’(w)} + . . l  l  

(n + l)! dwn 
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rev. ed. New York: Dover, p. 161, 1970. 
Williamson, B. “Remainder in Lagrange’s Series.” $119 in 

An Elementary Treatise on the Differential Calculus, 9th 
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Lagrange’s Lemma 

~~~LAGRANGE'S FOUR-SQUARE THEOREM 

Lagrange Multiplier 
Used to find the EXTREMUM of f(xl, x2,. . . , xn) sub- 
ject to the constraint g(x1, x2,. . l  , xn) = C, where 
f and g are functions with continuous first PARTIAL 
DERIVATIVES on the OPEN SET containing the curve 

g(Xl~X2y*.*jXn) = 0, and Vg # 0 at any point on the 
curve (where V is the GRADIENT). For an EXTREMUM 
to exist, 

df = ax1 
dfdxl+ af af 

G dx2 + -. - + T dxn = 0. (1) 
n 

But we also have 

dg=da: 1 dx + 3 dx + 69 
ax2 

2 . . . (2) 
1 + K dxn = O* 

Now multiply (2) by the as yet undetermined parameter 
X and add to (l), 

af 
dzl+b, 

F) dxl+ (g +A$) dxz 

+...+ Sf 
da:+%- n 

ag ) dx, = 0. (3) 
n 

Note that the differentials are all independent, so we can 
set any combination equal to 0, and the remainder must 
still give zero. This requires that 

(4) 

for all k = 1, . . . , 72. The constant X is called the 
Lagrange multiplier. For multiple constraints, g1 = 0, 
g2 =u, l *., 

Of = x1vg1 + x2v92 + mm** (5) 

see UZSOKUHN-TUCKER THEOREM 

References 
Arfken, G. “Lagrange Multipliers.” 3 17.6 in Mathematical 

Methods for Physicists, 3rd ed. Orlando, FL: Academic 
Press, pp. 945-950, 1985. 
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Lagrange Number (Diophantine Equation) 
Given a FERMAT DIFFERENCE EQUATION (a quadratic 
DIOPHANTINE EQUATION) 

x2 - r2y2 = 4 

with T a QUADRATIC 
the Lagrange number 

SURD, assign to each solution ZlY 

z- $(x+yr)* 

The product and quotient of two Lagrange numbers are 
also Lagrange numbers. Furthermore, every Lagrange 
number is a POWER of the smallest Lagrange number 
with an integral exponent. 

see also PELT, EQUATION 

References 
Diirrie, JiL 100 Great Problems of Elementary Mathematics: 

Their History and Solutions. New York: Dover, pp* 94-95, 
1965. 

Lagrange Number (Rat ional 
Approximation) 
HURWITZ'S IRRATIONAL NUMBER THEOREM gives the 
best rational approximation possible for an arbitrary ir- 
rational number cy as 

P I I 1 
a-- <- 

Q Llqzm 

The L, are called Lagrange numbers and get steadily 
larger for each “bad” set of irrational numbers which is 
excluded. 

n Exclude L, 

1 none 1/5 

2 4 fi 
3fi q 

Lagrange numbers are of the form 

4 

/- 
9----& 

where m isa MARKOVNUMBER. The Lagrange numbers 
form a SPECTRUM called the LA .GRANGE SPECTRUM. 

see also HURWITZ’S IRRATIONAL NUMBER THEO- 
REM, LIOUVILLE’S RATIONAL APPROXIMATTON THE- 
OREM, LIOUVILLE-ROTH CONSTANT, MARKOV NUM- 
BER,ROTH'STHEOREM,SPECTRUM SEQUENCE,THUE- 
SIEGEL-ROTH THEOREM 

References 
Conway, J. H. and Guy, R. K. The Book of Numbers. New 

York: Springer-Verlag, pp. 187-189, 1996. 

Lagrange Polynomial 

Lagrange Remainder 
Given a TAYLOR SERIES, the error after n terms is 
bounded by 

R 
n 

= f’%) (x a)n 
n! - 

for some 6 f (a, x). 

see UZSO CAUCHY REMAINDER FORM, TAYLOR SERIES 

Lagrange Resolvent 
A quantity involving primitive cube roots of unity which 
can be used to solve the CUBIC EQUATION. 

References 
Faucette, W. M. “A Geometric Interpretation ofthe Solution 

ofthe General Quartic Polynomial." Amer. M&h. Monthly 
103, 51-57,1996. 

A SPECTRUM formedbythe LAGRANGENUMBERS. The 
Lagrange Spectrum 

only ones less than three are the LAGRANGE NUMBERS, 
but the last gaps end at FREIMAN'S CONSTANT. REAL 
NUMBERS larger than FREIMAN'S CONSTANT are in the 
MARKOV SPECTRUM. 

see UZSO FREIMAN'S CONSTANT, LAGRANGE NUMBER 
(RATIONAL APPROXIMATION), MARKOV SPECTRUM, 
SPECTRUM SEQUENCE 

References 
Conway, J* H. and Guy, R. K. The Book of Numbers. New 

York: Springer-Verlag, pp. 187-189, 1996. 

Laguerre Differential Equation 

zyll + (1 - x)y’ + xy = 0. (1) 

The Laguerre differential equation is a special case of the 
more general “associated Laguerre differential equation” 

zyll +(v+1-x)y'+Xy = 0 (2) 

with v = 0. Note that if X = 0, then the solution to the 
associated Laguerre differential equation is of the form 

y”(x) + P(x)y’(x) = 0, (3) 

and the solution can be found using an INTEGRATING 
FACTOR 

p=exp (/P(x)dx) = exp (1 u+S-x dx) 

= exp[(v + 1) lnx - x] = x”lrlCx, (4) 

so 

Y=C1 7+cz=c1 
s 

dx 

s 
da:+&. (5) 

The associated Laguerre differential equation has a 
REG ULAR SING ULAR POINT at 0 and an IRREGuLA R ~~~LAGRANGE INTERPOLATING POLYNOMIAL 
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SINGULARITY at 00. It can be solved using a series ex- 
pansion, 

x Fn(n - l)unxn-2 + (v + 1) ~nu*P 

n=2 n=l 

00 

-X 
x 

nanx *-l + A?, u,x* = 0 (6) 
?-L=l n=O 

Laguerre-Gauss Quadrature 
Also called GAUSS-LAGUERRE QUADRATURE or LA- 
GUERRE QUADRATURE. A GAUSSIAN QUADRATURE 
over the interval [O,oo) with WEIGHTING FUNCTION 
W(x) = eBx. The ABSCISSAS for quadrature order n 
are given by the ROOTS of the LAGUERRE POLYNOMI- 
ALS An(x). The weights are 

00 

x 
n(n-l)a,Xn-'+(v+l)f+X~-' 

n.= 2 ?I= 1 

00 00 

- 
Ix 

nu,xn $-A 
Ix 

anxn = 0 (7) 
n=l n=O 

An+l~n A, “In-1 
wi z - 

AnLk(xi)Ln+l(xi) = An-l Ln-l(xi)Ltx(~i)’ 

(1) 
where A, is the COEFFICIENT of xn in Ln(x). For LA- 
GUERRE POLYNOMIALS, 

An = (-I)"n!, (2) 

where n! is a FACTORIAL, so 

~~n+~)na,+lz*+(~+l)~(n+l)~n+lX~ 
*= 1 n=O 

00 00 

- 
x 

72UnXn +A 
x 

U*Xn =O (8) 

n=l n=O 

[(n + l)a + Aa01 

+F{[(n+ l)n+(v+ l)(n+ l)]h+l -n&b + hx}~n 

n=l 

= 0 (9) 

A *+l - x -(n + 1). 
An 

Addit ionally, 

7* = 1, (4) 

so 

n+l 
wi = 

Ln+l(Xi)Lk(Xi) = -Ln-l(XT)L1(2i)* (5) 

(Note that the normalization used here is different than 
that in Hildebrand 1956.) Using the recurrence relation 

XL:(X)= ?ZLn(X)- nL,-l(x) 

= x-n- ( l)L&) + (n + l)Ln+l(x) (6) 

[(n + l)Ul + Xao] 

+ e[(n + l>(n + v + l)a,+l + (A - n)an]xn = 0. (10) 
n=l 

which implies 

bilk = -nLn-l(G) = (n-l- l)Ln+l(xi) (7) 

gives 

This requires 
1 Xi 

wi = 
xJLqxi)p = (n + 1)” [&+I (xi)12 l  

(8) 

x 
a1 = ---a0 

v+l 

n-4 

‘*+l = (n + l)(n + Y + 1) un 

for n > 1. Therefore, 

(11) 

(12) 

The error term is 

E= &‘2”‘([). 
l  

Beyer (1987) gives a table of ABSCISSAS and weights up 
to n = 6. 

n-X 
an+‘= (n+l)(n+v+l)a” (13) 

n Xi wi 

2 0.585786 0.853553 
3.41421 0.146447 

3 0.415775 0.711093 
2.29428 0.278518 
6.28995 0.0103893 

4 0.322548 0.603154 
1.74576 0.357419 
4.53662 0.0388879 
9.39507 0.000539295 

5 0.26356 0.521756 
1.4134 0.398667 
3.59643 0.0759424 
7.08581 0.00361176 
12.6408 0.00002337 

for n = 1, 2, . . . , so 

A 
Y =a0 l-- 

[ 

X(1 - A) 

v+l x - 2(u+ l)(v+ qx2 

A(1 - X)(2 - A) 

- 2 ’ 3(v + l)(u + a)@ + 3) 
+ ‘** 

I 
l  (14) 

If A is a POSITIVE INTEGER, then the series terminates 
and the solution is a POLYNOMIAL, known as an asso- 
ciated LAGWERRE POLYNOMIAL (or, if Y = 0, simply a 
LAGUERRE POLYNOMIAL). 

see also LAGUERRE POLYNOMIAL 

1017 

(9) 
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The ABSCISSAS and weights can be computed analyti- 
cally for small 72. 

Laguerre Polynomial 

Now let a E x - x1 andb-x-xl. Then 

n xi w  (6) 
2 2-d 32$-q 

2+Jz 32-4 (7) 
For the associated Laguerre polynomial L:(x) with so 

a= 
&I l)(nH - G2)] . 

(8) 
WEIGHTING FUNCTION 'W(X)= x%-~, 

A, = (-Qn 

and 

Yn = n! 
r 

xD+ne-X dx = n!l?(n + @ + I)* 
0 

The weights are 

Setting n = 2 gives HALLEY'S IRRATIONAL FORMULA. 

see also HALLEY'S IRRATIONAL FORMULA, HALLEY'S 
METHOD, NEWTON’S METHOD,ROOT 

References 
Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetter- 

ring, W. T. Numerical Recipes in FORTRAN: The Art of 
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Ralston, A. and Rabinowitz, P. 58.9-8.13 in A First Course 
in Numerical Analysis, 2nd ed. New York: McGraw-Hill, 
1978. 

wi = 
n!r(n + p + 1) 

Xi[Lg&‘(Xi)12 = 

n!r(n + p + l)xi 

[L~+1W12 ’ 
(12) 

where r(z) is the GAMMA FUNCTION, and the error term 

Laguerre Polynomial E 
12 

= n!r(n + p + 1) 

(2 > n! f(2n) K) . (1% 
* 

0.75 

0.5 

0.25 
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Laguerre’s Met hod -0.5 

A ROOT-finding algorithm which converges to a COM- 

PLEX ROOT from any starting position. Solutions to the LAGUERRE DIFFERENTIAL EQUATION 
with u = 0 are called Laguerre polynomials. The 
Laguerre polynomials L,(x) are illustrated above for 
x f [0, I] and n = 1, 2, . l  . , 5. 

P?X(x) = (x - x1)(2 - x2) ‘.’ (x - xn) (1) 

lnjPn(x)I = In lx-xJ+ln [x-x21+. 4 .+ln j2-xznI (2) 
The Rodrigues formula for the Laguerre polynomials is 

PA(x) = (x - x2) l  . ’ (x - XJ + (5 - Xl) ” ’ (x - x,) + l  l  

PC I( 

1 1 - - nX -+...+ ~ 
x - Xl X - Xn > 

(3) 
Ln(X) = f &(xneBx) 

l  

(1) 

and the GENERATING FUNCTION for Laguerre polyno- 
mials is 

dlnlP,(x)l 1 + 1 + + 1 
dx =x-xl x l  *’ -x2 

x  - xn  g( ) ““P(-i%) x,x = 
1-Z 

= 1+ (-x + l)z 

+($x2 - 2x + 1)z2 + (- ix” + $x2 - 3x + 1)x3 + . l  l  . 

(2) 

- PA (4 ~ - - 
Pm(x) = x G( > (4 

d2 ln 1P,(x)l - 
dx2 

1 1 1 - - 
( 

+ +-+ 
X- x1)2 (x -x2)2 (x - xn)2 

A CONTOUR INTEGRAL is given by 

L&(x) = & 
I 

e-xt/(l--z) 
(1 - +n+1 dz* (3) 

- PA(x) 2 PI(x) 
- [ 1 pn - p, = H(x)* (5) 
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The Laguerre polynomials satisfy the RECURRENCE RE- and 
L?)(x) = L, @+l)(x) - Lr-y’(x). (13) LATIONS 

The DERIVATIVE is given by 
(n + l)L,+1(x) = (2n + 1 - x)Ln(x) - nLn-1(x) (4) 

2 Lp (x) = -LE-l) (x) 

= x-l[nL(“)(x) - (7-b + a)Lqx) (14) n n- 
. 

(Petkovgek et al. 1996) and 

XL:(~) = nL,(x) - nL,-l(x). (5) 

In terms ofthe CONFLUENT HYPERGEOMETRIC FUNC- 
TION, 

The first few Laguerre polynomials are 

Lo(x) = 1 

Ll(X) = -x+1 

Lz(x) = 3(x2 - 4x + 2) 

Ls(x) = + (-x3 + 9x2 - 18x + 6). 

L”( ) (k + lb &(-b*k + 1*x) nx =- 
n! 

1 1 ’ (15) 

An interesting identity is 

00 
x L@) (2) r(n;a+qWn = ew(xw) -d2 J,(Zd=), (16) 

n=O 
Solutions to the associated LAGUERRE DIFFERENTIAL 
EQUATION with v # 0 are called associated Laguerre 
polynomials Lk (x) . 
polynomials, 

L,(x) = L;(x). (6) 

In terms of the normal Laguerre 
where r(z) is the GAMMA FUNCTION and J&) is the 
BESSEL FUNCTION OF THE FIRST KIND (Seeg6 1975, 
p* 102). An integral representation is 

The Rodrigues formula for the associated Laguerre poly- 

e /p-t42 J&(2&) dt (17) nomials is 

-k n 

L;(x) = +&-zx~+k) 

- - - ( 1) n-&[Ln+x(z)l 

for 7% = 0, 1, . . l  and a > -1. The DISCRIMINANT is 

(7) 
DC”) - 

n - 
rI 

y-2n+yv + &-l 
(18) 

= ?(-I)~ @+ ‘I! m (8) 
(n - m)!(k + m)!m!x 

(Szegij 1975,~. 143). The KERNEL POLYNOMIAI, is 

and the GENERATING FUNCTION is 

( > 

-1 
J$qx y) - n+l n+a 

n 1 - 
r(a+l) n exP (-f$) 

dxd = (1 +k+l 
(4 (4 (4 Ln (z)Ln+l(Y) - L,+l (z)Ln(a)(Y) 

Y (19) 
X-Y 

l+(k+l-x)z+ $(x2 -2(k+2)x+(k+l)(k+2)]z2+. . . . 

(9) 
where (L) is a BINOMIAL COEFFICIENT (SzegG 1975, 
p. 101). The associated Laguerre polynomials are orthogonal 

over [O,oo) with respect to the WEIGHTING FUNCTION 
xnemx. 

The first few associated Laguerre polynomials are 

L,k(x) = 1 

L;(x)= -x+k+l 

L;(x) = $[x2 - z(k + 2)x + (k + l)(k + 2)] 

L;(x) = g- x3 + 3(k + 3)x2 - 3(k + Z)(k + 3)x 

+ (k + l)(k + 2)(k + 3)]- 

(n + 
e-“zkL;(x)L:(x) dx = ,1 

k)$ 
mn7 

. (10) 

where 6,, is the KRONECKER DELTA. They also satisfy 

e -xxk+‘[L~(x)]” da: = v(2n + k + 1). (11) 
. 

see also SONINE POLYNOMIAL 
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Laguerre Quadrature 
A GAUSSIAN QUADRATURE-like FORMULA for numerical 
estimation of integrals. It fits exactly all POLYNOMIALS 
of degree 2m - 1. 

References 
Chandrasekhar, S. Radiative Transfer. New York: Dover, 

p. 61, 1960. 

Laguerre’s Repeated Fraction 
The CONTINUED FRACTION 

(x + 1)” - (x - 1)” n n2 - 1 n2 - 22 = --- 
(x + 1)” + (x - 1)” l  z+ 3x+ 5x + . . . 

References 

p. 13, 1959, 

Hardy, G. H. Ramanujan: Twelve Lectures on Subjects Sug- 
gested by His Life and Work, 3rd ed. New York: Chelsea, 

Laisant’s Recurrence Formula 
The RECURRENCE RELATION 

(n - I)An+I = (n2 - l)An + (n + l)An-1 + 4(-l)” 

with A(1) = A(2) = 1 which solves the MARRIED COU- 

PLES PROBLEM. 

see ~2s~ MARRIED COUPLES PROBLEM 

Lakshmi Star 

see STAR OF LAKSHMI 

Lal’s Constant 
Let P(N) denote the number of PRIMES of the form 
n2 + 1 for 1 2 n < N, then 

P(N) N 0.68641 ii(N), (1) 

where li( N) is the LOGARITHMIC INTEGRAL (Shanks 
1960, pp. 321-332). Let Q(N) denote the number of 
PRIMES of the form n4 + 1 for 1 < n < N, then - - 

Q(N) N $1 ii(N) = 0.66974 li( N) (2) 

(Shanks 1961, 1962). Let R(N) denote the number of 
pairs of PRIMES (n-1)2+1 and (n+1)2$1 for n 5 N-l, 
then 

R(N) N 0.487621&(N), (3) 

where 

liz(N) G 
s 

N dn 
2 (In (4) 

(Shanks 1960, pp. 201-203). Finally, let S(N) denote 
the number of pairs of PRIMES (n-1)4+1 and (n+1)4+1 
for n < N - 1, then - 

S(N) - Aliz (5) 

(La1 1967), where X is called Lal’s constant. Shanks 
(1967) showed that X z 0.79220. 

fteferences 
Lal, M. “Primes of the Form n4 + 1.” Math. Comput. 21, 

245-247, 1967. 
Shanks, D. “On the Conjecture of Hardy and Littlewood 

Concerning the Number of Primes of the Form n2 + a.” 
Math. Comput. 14, 321-332, 1960. 

Shanks, D. “On Numbers of the Form n4 + 1.” Math. Com- 
put. 15, 186-189, 1961. 

Shanks, D. Corrigendum to “On the Conjecture of Hardy and 
Littlewood Concerning the Number of Primes of the Form 
n2 + a.” Math. Comput. 16, 513, 1962. 

Shanks, D. “Lal’s Constant and Generalization.” Math. 
Comput. 21, 705-707, 1967. 

Lam’s Problem 
Given an 111 x 111 MATRIX, fill 11 spaces in each row 
in such a way that all columns also have 11 spaces filled. 
Furthermore, each pair of rows must have exactly one 
filled space in the same column. This problem is equiva- 
lent to finding a PROJECTIVE PLANE of order 10. Using 
a computer program, Lam showed that no such arrange- 
ment exists. 

see also PROJECTIVE PLANE 

Laman’s Theorem 
Let a GRAPH G have exactly 2n - 3 EDGES, where n is 
the number of VERTICES in G. Then G is “generically” 
RIGID in R2 IFF e' < 2n’ - 3 for every SUBGRAPH of G 
having n’ VERTICES-and r’ EDGES. 

see also RIGID 

References 
Laman, G. “ On Graphs and Rigidity of Plane Skelet 

tures.” J. Engineering Math. 4, 331-340, 1970. 
al Struc- 
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Lambda Calculus Lambda Group 
Developed by Alonzo Church and Stephen Kleene to 
address the COMPUTABLE NUMBER problem. In the 

lambda calculus, X is defined as the ABSTRACTION OP- 
ERATOR. Three theorems of lambda calculus are A- 
conversion, cu-conversion, and q-conversion. 

see also ABSTRACTION OPERATOR, COMPUTABLE 

NUMBER 

The set of linear fractional transformations w  which sat- 
isfy 

at + b 
w(t) = ct+ 

where a and d are ODD and b and c are EVEN. Also 
called the THETA SUBGROUP. It is a SUBGROUP of the 
GAMMA Grtoup. 

References 
’ Penrose, R. The Emperor’s New Mind: Concerning Comput- 

ers, Minds, and the Laws of Physics. Oxford, England: 
Oxford University Press, pp. 66-70, 1989. 

Lambda Function 

The lambda function defined by Jahnke and Emden 
(1945) is 

R,(z) E r(v + 1)8 
p y (1) 

A&) = y = 2jinc(z), (2) 

where Jo is a BESSEL FUNCTION OF THE FIRST KIND 
and jinc(z) is the JINC FUNCTION. 

A two-variable lambda function defined by Gradshteyn 
and Ryzhik (1979) is 

GY) = 
s 

y r(u+l)du 

0 x” ’ 
(3) 

where I?(z) is the GAMMA FUNCTION. 

see also AIRY FUNCTIONS, DIRICHLET LAMBDA FUNC- 
TION, ELLIPTIC LAMBDA FUNCTION, JINC FUNCTION, 
LAMBDA HYPERGEOMETRIC FUNCTION, MANGOLDT 
FUNCTION, Mu FUNCTION, Nu FUNCTION 

References 
Gradshteyn, I. S. and Ryzhik, 1, M. Tables of Integrals, Se- 

ries, and Products, 5th ed. San Diego, CA: Academic 
Press, p. 1079, 1979. 

Jahnke, E. and Emde, F. Tables of Functions with Formulae 
and Curves, 4th ed. New York: Dover, 1945. 

see also GAMMA GROUP 

Lambda Hypergeometric Function 

(1) 

where q is the NOME. The lambda hypergeometric func- 
tions satisfy the recurrence relationships 

x(t + 2) = X(t) (2) 

XL= ( > w 2t+1 ’ (3) 

Lambert Azimuthal Equal-Area Projection 

x = k’ cos 4 sin@ - A,) (1) 

y = k’[cos 41 sin4 - sin@1 cosgkos(X - A,)], (2) 

where 

k’ c 
2 

1 +sin+I sin~+cosq51cosq4cos(X - x,>’ (3) 

The inverse FORMULAS are 

4 = sin -’ ( coscsin& + 
y sin c cos 41 

P > 
(4) 

X = X0 + tar? 
( 

zsinc 

pcos& cost - ysin& sine > ’ (5) 

where 

p=&c-7 (6) 
C = 2siril(ip). (7) 

References 
Snyder, J. P. Map Projections-A Working Manual, U. S. 

Geological Survey Professional Paper 1395. Washington, 
DC: U. S. Government Printing Office, pp. 182-190, 1987. 
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Lambert Conformal Conic Projection Lambert Series 
A series of the form 

2 = psin[n(X - X0)] 

y = po - pcos[n(X - Ao)], 

where 

p = Fcot"($+ i$) 

po = Fcot"($ + &bo) 

F= 
co& tarP( $r + $41) 

n 

n= 
ln(cos 41 set $2) 

ln[tan( f7r + +&) cot( + + &$I)] 

The inverse FORMULAS are 

$=2tan 
F l/n 

-1 K) 1 7 
- +7T 

8 
x=x0+-, 

n 

where 

p = sgn(n)&2 + (PO - Y)” 

$ = tan-l 5 
( > PO-Y l  

References 

(1) 
(2) 

(3) 
(4) 

(5) 

(6) 

(7) 

Snyder, J. P. Mup Projections-A Working Manual. U. S. 
Geological Survey Professional Paper 1395. Washington, 
DC: U. S. Government Printing Office, pp. 104-110, 1987. 

Lambert’s Met hod 
A ROOT-finding method also called BAILEY'S METHOD 
and HUTTON'S METHOD. If g(x) = xd - r, then 

H ( ) 
gx = 

(d- l)xd+ (d+l)rx 
(d+ l)xd + (d - 1)’ * 

References 
Scavo, T+ R. and Thoo, J. B. “On the Geometry of Halley’s 

Method.” Amer. Math. Monthly 102, 417-426, 1995. 

for 1x1 < 1. Then 

F(x) = xa, x xmn = x bNxN, 

n=l m=l N=l 

where 

Some beautiful series of this type include 

n=l 

n=l 
1 - xn - (1 - x)2 

x 
O” i&-g = jeid(n)z” 

n-1 n=l 

n=l n- -1 

O” 4(-l)n+1xn IE 1 - xn 
= 2 T(n)3?, 

n=l n=l 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

where p(n) is the MOBIUS FUNCTION, 4(n) is the TO- 
TIENT FUNCTION, d(n) = 00(n) is the number of di- 
visors of n, arc(n) is the DIVISOR FUNCTION, and r(n) 
is the number of representations of n in the form n = 
A2 + B2 where A and B are rational integers (Hardy 
and Wright 1979). 

References 
Abramowita, M. and Stegun, C. A. (Eds.). “Number The- 

oretic Functions.” $24.3.1 in Handbook of Mathematical 
Functions with Formulas, Graphs, and Mathematical Tu- 
bles, 9th printing. New York: Dover, pp+ 826-827, 1972. 

Hardy, G. H. and Wright, E. M. An Introduction to the The- 
ory of Numbers, 5th ed. Oxford, England: Clarendon 
Press, pp. 257-258, 1979. 

Lambert’s Transcendental Equation 
An equation proposed by Lambert (1758) and studied 
by Euler in 1779 (Euler 1921). 

xa - x p = (a - p)vx”+Y 

When a -+ p, the equation becomes 

lnx = 2rxp, 
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which has the solution 

where W is LAMBERT'S W-FUNCTION. 

References 
Corless, R, M.; Gonnet, G. H.; Hare, D, E. G.; and Jeffrey, 

D. J. “On Lambert’s VV Function.” ftp://watdragon. 
uwaterloo.ca/cs-archive/CS-93-03/W.ps.Z. 

de Bruijn, N. G. Asymptotic Methods in Analysis. Amster- 
dam, Netherlands: North-Holland, pp. 27-28, 1961. 

Euler, L. “De Serie Lambertina Plurismique Eius Insignibus 
Proprietatibus.” Leonhardi Euleri Upera Umnia, Ser. 1. 

Opera Mathematics, Bd. 6, 1921. 
Lambert, J. H. “Observations variae in Mathesin Puram.” 

Acta Helvitica, physico-mathematico-anatomico-botanico- 
medica 3, 128-168, 1758. 

Lambed’s W-Function 

-0. 

I 1 

The inverse of the function 

f(W) = WeW, (1) 

also called the OMEGA FUNCTION. The function is 
implemented as the Muthematic (Wolfram Research, 
Champaign, IL) function ProductLog Cz] l  W(1) is 
called the OMEGA CONSTANT and can be considered 
a sort of “‘OOLE~J RATIO” of exponentials since 

exP[-W(Q] = W(l), (2) 

giving 
1 

In w(1) [ 1 = W(1). 

Lambert’s W-Function has the series expansion 

(3) 

w(x) = 7; yy;;-‘g = x - 22 + ix” - ;x” 

. 

n=l 

+125 5 
-5Tx - 5 

54x6 + +$yx7+..*. (4) 

The LAGRANGE INVERSION THEOREM gives the equiv- 
alent series expansion 

(5) 

where n! is a FACTORIAL. However, this series oscillates 
between ever larger POSITIVE and NEGATIVE values for 
REAL z X 0.4, and so cannot be used for practical nu- 
merical computation. An asymptotic FORMULA which 
yields reasonably accurate results for x 2 3 is 

W(z) = Lnz - 1nLnz 
00 00 

+>:c Ckm(lnLnx)“+l(Lnz)-“-“-l 

k=O m--O 

= L1 - L2 + 
LZ 

zy+ 

L2(-2 + L2) 

2L12 

+ L2(6 - 9Lg + 2Lz2 

6L1’ 

+ L+12+36L2 -22Lz2+3Lz3) 

12L14 

. L2(60-3OOL2 j-350Lz2 - IZSLZ~+I~L~~) 
1 

60L15 

(6) 

where 

Ll = Lnz (7) 

L2 = 1nLnz (8) 

(Corless et al.), correcting a typographical error in de 
Bruijn (1961). Another expansion due to Gosper is the 
DOUBLE SUM 

W(x) Sl h k> 

=“+‘{g [In(z) -a]k-1(71-k+l)! n=o 1 
X 

ln( > 
- 

x l-” 

[ I 

72 

1 
a (9) 

where S1 is a nonnegative STIRLING NUMBER OF THE 
FIRST KIND and a is a first approximation which can be 
used to select between branches. Lambert’s W-function 
is two-valued for -l/e < x < 0. For W(x) > -1, the 
function is denoted W&) or simply W(x), aid this is 
called the principal branch. For W(x) 5 - 1, the func- 
tion is denoted W-1 (2). The DERIVATIVE of W is 

1 
w’(x) = [l + W(x)]exp[W(x)] = 

W(x) 
x[1+ W(x)] (lo) 

for x # 0. For the principal branch when z > 0, 

In W(x) = lnz - W(z). (11) 

see U~SO ITERATED EXPONENTIAL CONSTANTS, OMEGA 
CONSTANT 

References 
Corless, R. M.; Gonnet, G. H.; Hare, D. E. G.; and Jeffrey, 

D. J. “On Lambert’s W Function.” ftp://watdragon. 
uwaterloo.ca/cs-archive/CS-93-03/W.ps,Z. 

de Bruijn, N. G. Asymptotic Methods in Analysis. Amster- 
dam, Netherlands: North-Holland, ppm 27-28, 1961. 



1024 Lame’ Curve 

Lam6 Curve 
A curve with Cartesian equation 

first discussed in 1818 by Lam& If rt is a rational, then 
the curve is algebraic. However, for irrational n, the 
curve is transcendental. For EVEN INTEGERS n, the 
curve becomes closer to a rectangle as n increases. For 
ODD INTEGER values of n, the curve looks like the EVEN 
case in the POSITIVE quadrant but goes to infinity in 
both the second and fourth quadrants (MacTutor Ar- 
chive). The EVOLUTE of an ELLIPSE, 

(a2)2/3 + (by)2/3 = (u2 - b2)2/3. 

n Curve 

2 
3 

astroid 
5 superellipse 
i witch of Agnesi 

see also ASTROID, SUPERELLIPSE, WITCH OF AGNESI 

References 
MacTutor History of Mathematics Archive. “Lame Curves.” 

http: //www-groups , dcs, St-and, ac . uk/-history/Curves 
/Lame. html. 

Lam& Differential Equation 

( 
2 d2z 

x2 - b2)(x2 - c )- dx2 + ‘cx2 
2 dz 

-b2+x2-c)z 

-[M(M + 1)x2 - (b2 + c2)p]r = 0. (1) 

(Byerly 1959, p* 255). The solution is denoted EL(x) 
and is known as a LAMP FUNCTION or an ELLIPSOIDAL 
HARMONIC. Whittaker and Watson (1990, pp. 554-555) 
give the alternative forms 

4nh$ [AA%] = [n(n + 1)X + CIA (2) 

[n(n+l)X+C]h 4Ax (3) - , 

$$ = [n(n+l)p(u)+C - $(n+l)(a2+b2+c2)]A (4) 

d2A 

dz12 
= [n(n + l)k2 sn2 QI + A]A, (5) 

where p is a WEIERSTRA~~ ELLIPTIC FUNCTION and 

A(8) E fi(O - 49,) 
q=f 

(6) 

Ax E &a2 + X)(b2 + X)(c2 +X) (7) 

A= 
c- ?p(n + l)(a2 + b2 + c”) + esn(n + 1) 

. 
el - e3 

(8) 

Lam& Theorem 

References 
Byerly, W. E. An Elementary Treatise on Fourier’s Series, 

and Spherical, Cylindrical, and Ellipsoidal Harmonics, 
with Applications to Problems in Mathematical Physics. 
New York: Dover, 1959. 

Whittaker, E. T. and Watson, G. N. A Course in Modern 
Analysis, 4th ed. Cambridge, England: Cambridge Uni- 
versity Press, 1990. 

Lam& Differential Equation (Types) 
Whittaker and Watson (1990, pp. 539-540) write Lam6’s 
differential equation for ELLIPSOIDAL HARMONICS of the 
four types as 

44Q) $ [F(l$y] = [2771(277x + l)O + C]A(O) 

(1) 

[F(“)$q = [(h + l)(Zm + 2)O + C]A(O) 

F(B) dA(0) 
d$ 

F(0) dA(e) 
dt? 

where 

(2) 

= [(2m + 2)(2m + 3)0 + CIA(O) 

(3) 

= [(2771+ 3)(2m + 4)0 + CIA(e), 

(4) 

A(e) = &z2 + S)(b2 + $)(c2 + 0) 

h(0) E fi(t9 - 0,). 

q=l 

(5) 

(6) 

References 
Whittaker, E. T. and Watson, G. N. A Course in Modern 

Analysis, 4th ed. Cambridge, England: Cambridge Uni- 
versity Press, 1990. 

Lam& Fbnction 

see ELLIPSOIDAL HARMONIC 

Lam& Theorem 
If a is the smallest INTEGER for which there is a smaller 
INTEGER b such that a and b generate a EUCLIDEAN AL- 
GORITHM remainder sequence with n steps, then a is the 
FIBONACCI NUMBER F,+z. Furthermore, the number 
of steps in the EUCLIDEAN ALGORITHM never exceeds 5 
times the number of digits in the smaller number. 

see also EUCLIDEAN ALGORITHM 

References 
Honsberger, R. “A Theorem of Gabriel Lam&” Ch. 7 in 

Mathematical Gems II. Washington, DC: Math. Assoc. 
Amer., pp. 54-57, 1976. 
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Lamina 

A 2-D planar closed surface L which has a mass M 
and a surface density 0(x, y) (in units of mass per areas 
squared) such that 

M= 
s 

4x, Y) dx dY- 
L 

The CENTER OF MASS of a lamina is called its CEN- 
TROD. 

see &O CENTROID (GEOMETRIC), CROSS-SECTION, 
SOLID 

Laminated Lattice 
A LATTICE which is built up of layers of n-D lattices in 
(n + 1)-D space. The VECTORS specifying how layers 
are stacked are called GLUE VECTORS. 

see also GLUE VECTOR, LATTICE 

References 
Conway, 3. H. and Sloane, N. J. A. “L-aminated Lattices.” 

Ch, 6 in Sphere Packings, Luttices, and Groups, 2nd ed. 
New York: Springer-Verlag, pp. 157-180, 1993. 

Lancret Equation 

dslv2 = dsT2 + dsB2, 

where nT is the NORMAL VECTOR, T is the TANGENT, 
and B is the BINORMAL VECTOR. 

Lancret’s Theorem 
A NECESSARY and SUFFICIENT condition for a curve to 
be a HELIX is that the ratio of CURVATURE to TORSION 
be constant. 

Lanczos Approximation 

see GAMMA FUNCTION 

Lanczos o Factor 
Writing a FOURIER S 1ERIES as 

m = +a~ + ip: sine (E) [a, cos(n0) + b, sin(n 

T&=1 

where m is the last term and the sincx terms are the 
Lanczos 0 factor, removes the GIBBS PHENOMENON 
(Acton 1990). 

see also FOURIER SERIES, GIBBS PHENOMENON, SINC 
FUNCTION 

References 
Acton, F. S. Numerical Methods That Work, 2nd printing. 

Washington, DC: Math. Assoc. Amer., p. 228, 1990+ 

Landau Constant 
N,B. A detailed on-line essay by S. Finch was the sturt- 
ing point for this entry. 

Let F be the set of COMPLEX analytic functions f de- 
fined on an open region containing the closure of the 
unit disk D = {z : 1~1 < 1) satisfying f(0) = 0 and 

4 Pm = 1. For each f in F, let I(f) be the SUPRE- 
MUM of all numbers T such that f(D) contains a disk of 
radius T. Then 

L E inf{Z(f) : f E F}. 

This constant is called the Landau constant, or the 
BLOCH-LANDAU CONSTANT. Robinson (1938, unpub- 
lished) and Rademacher (1943) derived the bounds 

i<LI 
r($)r(g) 

w 
= 0.5432588.. . , 

6 

where r(x) is the GAMMA 
that the second inequality 

FUNCTION, and conjectured 
is actually an equality, 

L r(+)r(:) - - 
w 

= 0.5432588.. l  . 

6 

see also BLOCH CONSTANT 

References 
Finch, S. “Favorite Mathematical Constant’s?’ http : //www . 

mathsoft.com/asolve/constant/bloch/bloch.html~ 
Rademacher, IX “On the Bloch-Landau Constant.” Amer. 

J. Math. 65, 387-390, 1943. 

Landau-Kolmogorov Constants 
N.B. A detailed on-line essay by S. Finch was the sturt- 
ing point for this entry. 

Let l/ffl be the SUPREMUM of If(c a real-valued func- 
tion f defined on (0, m). If f is twice differentiable and 
both f and f” are bounded, Landau (1913) showed that 

llf’ll L 2llf l11’211fr’111’2~ (1) 

where the constant 2 is the best possible. Schoenberg 
(1973) extended the result to the nth derivative of f 
defined on (0, &) if both f and fH are bounded, 

IIf < C(n k)l[f Ill--klnllf(q+* - 7 (2) 

An explicit FORMULA for C(n, k) is not 
titular cases are 

C(3,l) = (7) 1’3 

known, but par- 

(3) 
C(3,2) = 241i3 (4 

C(4,l) = 4.288.. . (5) 

C(4,2) = 5.750. l  . 
(6) 

C(4,3) = 3.708.. . . (7) 
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Let llfjj be the SUPREMUM of If(x a real-valued func- 
tion f defined on (- 00, 00). If f is twice differentiable 
and both f and f” are bounded, Hadamard (1914) 
showed that 

Ilf’ll 2 ~llfl11’211f”l11’2, (8) 

where the constant fi is the best possible. Kolmogorov 
(1962) determined the best constants C(n, k) for 

llf@)II < C(n lC)lll--k’~lIf~n~Illc/n - Y 

in terms ofthe FAVARD CONSTANTS 

bY 
C(n, k) = an-kan-“k? 

Special cases derived by Shilov (1937) are 

C(3,l) = ( y3 

C(3,2) = 31’3 

C(4,2) = ; 
J 

C(4,3) = (Fyi4 

C(5,l) = (ggy5 

(9) 

w 

(11) 

(12) 
(13) 
(14 

(15) 

(16) 
(17) 

(18) 

Landau-Kolmogorov Constants 

If f is twice differentiable and both f and f” are 
bounded, Hardy et al. (1934) showed that 

Ilf’ll 5 J2 Ilf l11’211f0111’27 (22) 

where the constant fi is the best possible. This inequal- 
ity was extended by Ljubic (1964) and Kupcov (1975) 
to 

Ilf@)ll < C(n k) lIflI1-k’nlIf(n~ll~‘n - 7 (23) 

where C(n, IF) are given in terms of zeros of P~LYNOMI- 
ALS. Special cases are 

C(3,l) = 
- - 

C(4,l) = 

- - 

C(4,2) = 

C(4,3) = 

C(5,l) = 

C(5,2) = 

C(3,2) = 31’2[2(21’2 - l)]-“” 

1.84420.. . (24) 

C(4,3) = 
J”+a”-” 

2.27432.. . (25) 

2 

J b 
= 2.97963.e. (26) 

24 ‘i4 

( > s (27) 

C(5,4) = 2.70247.. . (28) 

C(5,3) = 4.37800 l  . . , 
(29) 

where a is the least POSITIVE ROOT of 

X8 - 6x4 - 8x2 + 1 = 0 (30) 

and b is the least POSITIVE ROOT of 

x4 - 2x2 - 4x + 1 = 0 (31) 

(F’ranco et al. 1985, Neta 1980). The constants C(n, 1) 
are given by 

For a real-valued function f defined on (-00, 00)) define 
C(n, 1) = 

J 
@ 

- 1)1/n + (R. + 1)-1+1/n 
7 

C 
(32) 

Ilf II - - 
dr 

If WI2 dx. 
-m 

(19) 

If f is n differentiable and both f and f W are bounded, 
Hardy et al. (1934) showed that 

Ilf~“)ll < Ilfy’n Ilf(“)llkl” - ? (20) 

where the constant 1 is the best possible for all n and 
Q<k<n. 

For a real-valued function f defined on (0,~)) define References 

where c is the least POSITIVE ROOT of 

c 00 
ss 

dx dy n2 

( 
(33) 

0 0 x2n - yx2 + l)& = 2n’ 

An explicit FORMULA of this type is not known for k > 
1. 

The cases p = 1, 2, 00 are the only ones for which the 
best constants have exact expressions (Kwong and Zettl 
1992, Franc0 et al. 1983). 

Ilf II =Q%z* (21) 
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Landau-Ramanujan Constant 
N.B. A detailed on-line essay by S. Finch was the start- 
ing point for this entry. 

Let S(z) denote the number of POSITIVE INTEGERS nut 
exceeding 2 which can be expressed as a sum of two 
squares, then 

lim 
Jln x 
-S(x) = K, 

x-boo x (1) 

as proved by Landau (1908) and stated by Ramanujan. 
The value of K (also sometimes called A) is 

1 - 1-qr2 = 0.764223653.v. (2) 

(Hardy 1940, Berndt 1994). Ramanujan found the ap- 
proximate value K = 0.764. Flajolet and Vardi (1996) 
give a beautiful FORMULA with fast convergence 

K=$fi[(l-&) 
n=l 

WY 1 
1/(2”+1) 

PO t (3) 

where 

is the DIRICHLET BETA FUNCTION, and [(~,a) is the 
HURWITZ ZETA FUNCTION. Landau proved the even 
stronger fact 

where 

C+ [l-In($)] - rI 
p prime 

{ p-4k+3 

1 

P 
-2s 11 s=l 

- 0.581948659..  . l  
- 

(6) 

Here, 
L = 5.2441151086... (7) 

is the ARC LENGTH of a LEMNISCATE with a = 1 (the 
LEMNISCATE CONSTANT to within a factor of 2 or 4), 
and y is the EULER-MASCHERONI CONSTANT. 
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Landau Symbol 
Let f(z) be a function # 0 in an interval containing 
z = 0. Let g(z) be another function also defined in this 
interval such that g(z)/f(z) + 0 as z + 0. Then g(z) 
is said to be S(f (2)). 

Landen’s Formula 

fi3(& t)G4@, t) 83(0, t)94(0, t> &(x, t>h(q t) 

&(22,2t) = 64(0,2t) = &(2z, 2t) ’ 

where 6i are THETA FUNCTIONS. This transformation 
was used by Gauss to show that ELLIPTIC INTEGRALS 
could be computed using the ARITHMETIC-GEOMETRIC 
MEAN. 

(5) 
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Landen’s Transformation 
If z sin Q = sin(2P - a), then 

see also ELLIPTIC INTEGRAL OF THE FIRST KIND, 
GAUSS’S TRANSFORMATION 

References 
Abramowitz, M. and Stegun, C. A. (Eds.). “Ascending 

Landen Transformation” and “Landen’s Transformation.” 
s16.14 and 17.5 in Handbook of Mathematical Functions 
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printing. New York: Dover, pp. 573-574 and 597-598, 
1972. 

Lane-Emden Differential Equation 

t 2 4 6 8 10 12 14 

A second-order ORDINARY DIFFERENTIAL EQUATION 
arising in the study of stellar interiors. It is given by 

1 d -- p dt (1) 

It has the BOUNDARY CONDITIONS 

e(0) = 1 

d0 L-1 dS 
= 0. 

<=o 

(3) 

(4) 

Solutions 0(t) for n = 0, 1, 2, 3, and 4 are shown above. 
The cases n = 0, 1, and 5 can be solved analytically 
(Chandrasekhar 1967, p. 91); the others must be ob- 
t ained numerically. 

For n = 0 (y = OO), the LANE-EMDEN DIFFERENTIAL 
EQUATION is 

(5) 

(Chandrasekhar 1967, pp. 91-92). Directly solving gives 

d 

-( -> 
c 

2dO 
c 

2 

dJ de = - (6) 

c 2dQ -- 13 

dS 
- Cl - 3< 

d0 Cl - ;c3 
--- 
dt - t2 

w  
- 

s s 
dB = 

Cl - it” 
- - dC 

e 2 

(7) 

(8) 

(9) 

(10) 

O(<) = 80 - c1t-’ - g2. (11) 
The BOUNDARY CONDITION Q(0) = 1 then gives 00 = 1 
and cl = 0, so 

h(S) = 1 - g2, (12) 

and e,(c) is PARABOLIC. 

For n = 1 (y = 2)) the differential equation becomes 

+ et2 = 0, (14) 

whichisthe SPHERICAL BESSEL DIFFERENTIAL EQUA- 
TION 

d 2dR 

-( > dr 
r dr + [k2r2 - n(n + l)]R = 0 (15) 

with k = 1 and n = 0, so the solution is 

Applying the BOUNDARY CONDITION e(O)= lgives 

02(C) =jo(Q = y, w 

where jo(x) is a SPHERICAL BESSEL FUNCTION OF THE 
FIRST KIND (Chandrasekhar 1967, pp. 92). 

For n = 5, make Emden’s transformation 

8 = AxWz 

2 
wz- 

n-l’ 

which reduces the Lane-Emden equation to 

(18) 

(19) 

d2z 
z + (20 - l)$ --I w(w - 1)x + An-‘? = 0 (20) 

(Chandrasekhar 1967, p. 90). After further manipula- 
tion (not reproduced here), the equation becomes 

d2z - - 
dt2 - 

$(l - z4) (21) 

and then, finally, 

03(<)(1+ $E2)-‘/2m (22) 

References 
Chandrasekhar, S. An Introduction to the Study of Stellar 

Structure. New York: Dover, pp. 84-182, 1967. 
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Langford’s Problem 
Arrange copies of the n digits 1, . . . , n such that there 
is one digit between the Is, two digits between the 2s, 
etc. For example, the n = 3 solution is 312132 and 
the n = 4 solution is 41312432. Solutions exist only if 
n G 0,3 (mod 4). The number of solutions for n = 3, 
4, 5, . . . are 1, 1, 0, 0, 26, 150, 0, 0, 17792, 108144, . . . 
(Sloane’s A014552). 

References 
Gardner, M. Mathematical Magic Show: More Puzzles, 

Games, Diversions, Illusions and Other Mathematical 

SZeight-of-Mind from Scientific American. 
Vintage, pp. 70 and 77-78, 1978. 

New York: 

Sloane, N. J. A. Sequence A014551 in “An On-Line Version 
of the Encyclopedia of Integer Sequences.” 

Langlands Program 
A grand unified theory of mathematics which includes 
the search for a generalization of ARTIN RECIPROCITY 
(known as LANGLANDS RECIPROCITY) to non-Abelian 
Galois extensions of NUMBER FIELDS. Langlands pro- 
posed in 1970 that the mathematics of algebra and anal- 
ysis are intimately related. He was a co-recipient of the 
1996 Wolf Prize for this formulation. 

see also 
PROCITY 

RECIPROCITY, LANGLANDS RECI- 

References 
American Mathematical Society. “Langlands and Wiles 

Share Wolf Prize.” Not. Amer. Math. Sot. 43, 221-222, 
1996. 

Knapp, A. W. “Group Representations and Harmonic Anal- 
ysis from Euler to Langlands.” Not. Amer. Math. Sot. 43, 
410-415,1996. 

Langlands Reciprocity 
The conjecture that the ARTIN L-FUNCTION of any n-D 
GALOIS GROUP representation is an L-FUNCTION ob- 
tained from the GENERAL LINEAR GROUP GiGI( 

References 
Knapp, A. W. “Group Representations and Harmonic Anal- 

ysis, Part II.” Not. Amer. Math. Sot. 43, 537-549, 1996. 

Langton’s Ant 
A CELLULAR AUTOMATON. The COHEN-KUNG THEO- 
REM guarantees that the ant’s trajectory is unbounded. 

see also CELLULAR AUTOMATON, COHEN-KUNG THE- 
OREM 

References 
Stewart, I. “The Ukimate in Anty-Particles.” Sci. Amer. 

271,104~107, 1994. 

Laplace-Beltrami Operator 
A self-adjoint elliptic differential operator defined some- 
what technically as 

A = d6 + Sd, 

where d is the EXTERIOR DERIVATIVE and d and S are 
adjoint to each other with respect to the INNER PROD- 
UCT. 

References 
Iyanaga, S. and Kawada, Y. (Eds.). Encyclopedic Dictionary 

of Mathematics, Cambridge, MA: MIT Press, p. 628, 1980. 

Laplace Distribution 

Also called the DOUBLE EXPONENTIAL DISTRIBUTION. 
It is the distribution of differences between two inde- 
pendent variates with identical EXPONENTIAL DISTRI- 
BUTIONS (Abramowitz and Stegun 1972, p. 930). 

p(,) = A&-lx-@ (1) 

D(X) = i[l + sgn(x - p)(l - e-l”-p”b)]. (2) 

The MOMENTS about the MEAN p72 are related to the 
MOMENTS about 0 by 

n 
/Jh = co 

“: (-l)“-jp;p~-j, 
j=O 

3 

where 0 i is a BINOMIAL COEFFICIENT, so 

n b/W 

pn = x X(-l)“+ ; ;, 

j-0 k=O oc > 

n!b” for n even - - 
0 for n odd, 

(3) 

b2k/1”-2kr(2k + 1) 

(4) 

where 1x1 is the FLOOR FUNCTION and r(2K+ 1) is the 
GAMMA FUNCTION. 

The MOMENTS can also be computed using the CHAR- 
ACTERISTIC FUNCTION, 

et> - - - r 
eitxp(x) da: z & 

--oo r 
eitxe-b-d/b dx, 

-m (5) 
Usingthe FOURIERTRANSFORM OFTHEEXPONENTIAL 
FUNCTION 

3f e-2xkOl=l 1 
1 k0 - - 
n k2 + ko2 

(6) 

gives 
e ipt 2 

m 
ii e ipt 

- - 
2b t2+(;)2 = 1+b2t2’ 

(7) 



1030 Laplace’s Equation Laplace’s Equation-Bipolar Coordinates 

The MOMENTS are therefore and setting 

pLn = (-i)“(b(o) = (4)” [gq 
l  

(8) 

t=o 
(6) 

The MEAN, VARIANCE, SKEWNESS, and KURTOSIS are 
where hi are SCALE FACTORS, gives the Laplace’s equa- 
tion 

P=P (9) 
c2 = 2b2 (10) 

y1 = 0 (11) 

72 = 3. (12) 

References 
Abramowita, M. and Stegun, C. A. (Eds.). Handbook 

of Mathematical Functions with Formulas, Graphs, and 
Mathematical Tables, 9th printing. New York: Dover, 
1972. 

If the right side is equal to -k12/F(ul,u2,u3), where kl 
is a constant and F is any function, and if 

hhh3 = Sfifif3R2F, (8) Laplace’s Equation 
The scalar form of Laplace’s equation is the PARTIAL 
DIFFERENTIAL EQUATION where Sisthe ST;~CKEL DETERMINANT, thentheequa- 

tion can be solved using the methods of the HELMHOLTZ 
DIFFERENTIAL EQUATION. The two systems where this 
is the case are BISPHERICAL and TOROIDAL, bringing 
the total number of separable systems for Laplace’s 
equation to 13 (Morse and Feshbach 1953, pp. 665-666). 

o”* = 0. (1) 

It is a special case of the HELMHOLTZ DIFFERENTIAL 
EQUATION 

V2$+k2$=0 (2) In 2-D BIPOLAR COORDINATES, Laplace’s equation 
is separable, although the HELMHOLTZ DIFFERENTIAL 
EQUATION is not. 

with k = 0, or POISSON'S EQUATION 

v2* = -4rp (3) see also BOUNDARY CONDITIONS, HARMONIC EQUA- 
TION, HELMHOLTZ DIFFERENTIAL EQUATION, PARTIAL 
DIFFERENTIAL EQUATION, POISSON’S EQUATION, SEP- 

ARATION OF VARIABLES, ST;~CKEL DETERMINANT 

with p = 0. The vector Laplace’s equation is given by 

V2F = 0. (4) 
References 
Abramowitz, M. and Stegun, C. A. (Eds.). Handbook 

of Mathematical Functions with Formulas, Graphs, and 
Mathematical Tables, 9th printing. New York: Dover, 
p. 17, 1972. 

Morse, P. M. and Feshbach, H. Methods of Theoretical Phys- 
ics, Part 1. New York: McGraw-Hill, pp. 125426, 1953. 

A FUNCTION $ which satisfies Laplace’s equation is said 
to be HARMONIC. A solution to Laplace’s equation has 
the property that the average value over a spherical sur- 
face is equal to the value at the center of the SPHERE 
(GAUSS'S HARMONIC FUNCTION THEOREM). Solutions 
have no local maxima or minima. Because Laplace’s 
equation is linear, the superposition of any two solutions 
is also a solution 

Laplace’s Equation-Bipolar Coordinates 
In 2-D BIPOLAR COORDINATES, LAPLACE'S EQUATION 
1s 

A solution to Laplace’s equation is uniquely determined 
if ( 1) the value of the function is specified on all bound- 
aries (DIRICHLET BOUNDARY CONDITIONS) or (2) the 
normal derivative of the function is specified on all 
boundaries (NEUMANN BOUNDARY CONDITIONS). 

which simplifies to 

dF2 dF2 
du2+&-F=Oy (2) Laplace’s equation can be solved by SEPARATION OF 

VARIABLES in all 11 coordinate systems that the 
HELMHOLTZ DIFFERENTIAL EQUATION can. In addi- 
tion, separation can be achieved by introducing a mul- 
tiplicative factor in two additional coordinate systems. 
The separated form is 

SO LAPLACE’S EQUATION is separable, although 
HELMHOLTZ DIFFERENTIAL EQUATION is not. 

the 

$ &(%)x2(u2)x3(u3) - - 

R(ul,U2,u3) ' 
(5) 
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Laplace’s Equation-Bispherical 

Coordinates 

and the equation in q becomes 

-!-d (sinh$$-&H-(n2-$)H = 0. (6) 
sinh 7 dq 

- cos u cot2 u + 3 cash v cot2 u 
cash v - cosu LAPLACE'S EQUATION is partially separable, although 

3 cosh2 II cot u csc u + cosh3 II csc2 u 1 a - 
cash v - cosu 2- 84 

d 2 a2 
+(cosu - coshv) sinhuG + (cosh2 ZI - cosu) dv2 

the HELMHOLTZ DIFFERENTIAL EQUATION is not. 

References 
Arfken, G. “Toroidal Coordinates ([,v,$).” 52.13 in 1Math- 

ematical Methods for Physicists, 2nd ed. Orlando, FL: 
Academic Press, pp. 112-114, 1970. 

+(coshv - 
d J 

cos u) (cash zt cot u - sin u - cos u cot u) - -- 
BS;erly;?jV. E. An Elementary Treatise on Fourier’s Series, 

au, : and Spherical, Cylindrical, and Ellipsoidal Harmonics, 

2 a2 
with Applications to Problems in Mathematical Physics. 

+(cosh2 21 - cosu) 8212 = 0. (1) 
New York: Dover, p. 264, 1959. 

Morse, P. M. and Feshbach, H. Methods of Theoretical Phys- 
ics, Part I. New York: McGraw-Hill, p. 666, 1953. 

Let 

F(u, v, qb) = dcoshu - cos v U(u)V(v)Q(4), (2) 
Laplace’s Integral 

then LAPLACE’S EQUATION is partially separable, al- 
though the HELMHOLTZ DIFFERENTIAL EQUATION is 
not. 

References 
Morse, P. M. and Feshbach, H. Methods of Theoretical Phys- 

its, Part I. New York: McGraw-Hill, pp. 665-666, 1953. 

P,(x) = 1 
I 

l  

du 

7T *p’(x+~~cosu)n+l 

1 - -- 
l 

T(x + @%oSu)n du. 
7r 0 

Laplace’s Equation-Toroidal Coordinates Laplace Limit 
The value e = 0.6627434193.. . (Sloane’s AO33259) for 
which Laplace’s formula for solving KEPLER'S EQUA- 

o”f (coshv - cosu)3 d 1 af 
> 

TION begins diverging. The constant is defined as the 
- - 

a2 dU cash v - cos u du value e at which the function 

, (coshv - COSU)~ d f sinh II w\ 
I 

a2 sinh v dv \coshv - cosu av/ 

+ (cash v - cosU)2 a”f 
a2 sinh v w2 

[ 

-3 cos coth2 v + cash v coth2 v 
E 

cash v - cosu 

(1) 

f( > x = II: exp(dl + x2 ) 
l+dm~ 

equals f(X) = 1. The CONTINUED FRACTION of e is 
given by [0, 1, 1, 1, 27, 1, 1, 1, 8, 2, 154, . . .] (Sloane’s 

+ 
3cos2ucothvcschv - cos3ticsch2v d2 

coshv - cosu 1 w2 
+( 

d cosu - cash u) sin u- 
au +( 

2 a2 cash v - cos u) dU2 

A033260). The positions of the first occurrences of n in 
the CONTINUED FRACTION of e are 2, 10, 35, 13, 15, 

32, 101, 9, . l  . (Sloane’s A033261). The incrementally 
largest terms in the CONTINUED FRACTION are 1, 27, 
154, 1601, 2135, . . l  (Sloane’s A033262), which occur at 
positions 2, 5, 11, 19, 1801, l  . . (Sloane’s A033263). 

d 
+(cosh v - cos u) (cash v coth v - sinh II - cos u coth v) - 

dv 
2 a2 +(cosh2 v - cos u) - . 

&I2 (2) 

see also ECCENTRIC ANOMALY, KEPLER'S EQUATION 

References 
Finch, S. “Favorite Mathematical Constants.” http: //wuw . 

mathsoft.com/asolve/constant/lpc/lpc.html. 

Let 
Plouffe, S. “Laplace Limit Constant.” http://lacim.uqam. 

ca/piDATA/laplace. txt. 
Sloane, N. J. A. Sequences A033259, A033260, A033261, 

(3) 
A033262, and A033263 in “An On-Line Version of the En- 
cyclopedia of Integer Sequences.” 

then 
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Laplace-Mehler Integral 

P,(cod) = f. s 27r 

-IT 0 
(cos 0 + i sin 0 cos 4)” dq5 

J2 - - 
L 

e cosb + +Ml dd 

n- 0 cos@ - cos8 

Jz - - SJ 
7r sin[(n + +Ml @ 

’ 7r e cost9 - cos(b 

References 
Iyanaga, S. and Kawada, Y. (Eds.). Encyclopedic Dictionary 

of Mathematics. Cambridge, MA: MIT Press, p. 1463, 
1980. 

Laplace Series 
A function f(O,& p ex ressed as a double sum of SPHER- 
ICAL HARMONICS is called a Laplace series. Taking f as 
a COMPLEX FUNCTION, 

00 1 

f(O,4) = x x wJl”(~7 4). (1) 
l=O w&=-l 

Now multiply both sides by qY’* sin 8 and integrate over 
d$ and d$. 

27r 7r ss f ($, @)lf * sin 0 d0 dq5 
0 0 

NOW use the ORTHOGONALITY of the SPHERICAL HAR- 
MONICS 

27r 7r ss K”(8, qq+* sin 8 d0 d4 = Smmt Slit, (3) 
0 0 

so (2) becomes 

27T -?T 

ss 
f (0, d)xT’* sin0 d0 d4 

0 0 
00 1 

= x x ~EmSmm’~lE’ = aim, (4) 

l=O m=-1 

where 6m, is the KRONECKER DELTA. 

For a REAL series, consider 

f (6 4) 

=?$;I Can cos(m4) + S,” sin(m~)]Plm(cos8). (5) 

Laplace 

Proceed as before, using the orthogonality relationships 

i!Iansform 

27T T  

ss 
P~m(cos8)cos(m~)P~~~(cos8) 

0 0 

x cos(m’$) sin(O) d$ d$ = - 
274 + m)! 

(21+ l)(Z - m)!6mmt6111 

(6) 

27r m 

ss 
Plm (cos 6) sin( m+) PlYI (cos 6) 

0 0 

x sin(m’4) sin 8 de dq5 = - 
27t(l + m)! 

(21+ l)(Z - m)!‘mmt611r* 

(7) 

So CEm and Slm are given by 

Clrn = - 
(22 + l)(Z - m)! 

2741 + m)! 

f (0, t$)Plm cos 8 cos(m$) sin 9 d0 d4 (8) 

sm = _ C21 + l)Cz - m)! 
1 241 + m)! 

2x 7r 

X 
ss 

f(O,$)Plm cos8sin(m+)sin8d6d$. (9) 
0 0 

Laplace-Stieltjes Transform 
An integral transform which is often written as an ordi- 
nary LAPLACE TRANSFORM involvingthe DELTA FUNC- 
TION. 

see UZSO LAPLACE TRANSFORM 

References 
Abramowitz, M. and Stegun, C. A. (Eds.). Handbook 

of Mathematical Functions with Formulas, Graphs, and 
Mathematical Tables, 9th printing. New York: Dover, 
p. 1029, 1972. 

Morse, P. M. and Feshbach, H. Methods of Theoretical Phys- 
ics, Part I. New York: McGraw-Hill, 1953. 

Widder, D. V. The Laplace Transform. Princeton, NJ: 
Princeton University Press, 1941. 

Laplace Transform 
The Laplace transform is an INTEGRAL TRANSFORM 
perhaps second onlytothe FOURIER TRANSFORM inits 
utility in solving physical problems. Due to its useful 
properties, the Laplace transform is particularly useful 
in solving linear ORDINARY DIFFERENTIAL EQUATIONS 
such as those arising in the analysis of electronic circuits. 

The (one-sided) Laplace transform C (not to be confused 
with the LIE DERIVATIVE) is defined by 

L(s) = L( f (t)) s 
I 

O” f (t)eBst dt, (1) 
0 

l=O m=-1 
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where f(t) is defined for t _> 0. A two-sided Laplace 
transform is sometimes also defined by 

L(s) = L(f(t)) = f (t)e-5t dt. (2) 

The Laplace transform existence theorem states that, if 
f(t) is piecewise CONTINUUMS on every finite interval in 
[0, 00) satisfying 

If(t)1 5 l&feat (3) 

for all t f [O, oo), then L(f(t)) exists for all s > a. The 
Laplace transform is also UNIQUE, in the sense that, 
given two functions Fl(t) and Fz(t) with the same trans- 
form so that 

qqt)] = L[Fz(t)] = f(s), (4 

then LERCH’S THEOREM guarantees that the integral 

s 

a 

N(t) dt = 0 
0 

(5) 

vanishes for all a > 0 for a NULL FUNCTION defined by 

N(t) = Fl(t) - Fz(t). (6) 

The Laplace transform is LINEAR since 

@f(t) + W)l = 
sm 

[af(t) + bg(t)]e-“” dt 
0 

dt>e -st dt 

(7j 
The inverse Laplace transform is given by the 
BROMWICH INTEGRAL (see also DUHAMEL’S CONVOLU- 
TION PRINCIPLE). A table of several important Laplace 
transforms follows. 

f(t) Lif It>1 Range 

1 I 
S s>o 

t 3 s>o 

tn 
I 7-L. 

$n+l nEZ>O 

t” r(a+l) 
sa+l a>0 

e at 1 
s-a 

s>a 

cos(wt) 
3 

s2+w2 
s>o 

sin(wf) w  
s2+w2 s>o 

cosh(wt) 6 s > I4 

sinh(wt) W 
s2 -w2 s > I4 

eat sin(&) b 

(s-u)a+b2 
s>a 

3-a 
eat cos(bt) (s-a)2+b2 s>a 

d(t - c) e 
-cs 

H,(t) F s>o 

Jo(t) - 

In the above table, Jo(t) is the zeroth order BESSEL 

FUNCTION OF THE FIRST KIND, J(t) is the DELTA 
FUNCTION, and H,(t) is the HEAVISIDE STEP FUNC- 
TION. The Laplace transform has many important prop- 
erties. 

The Laplace transform of a CONVOLUTION is given by 

L(f(t) * SW = w W>Wt)) (8) 
L-‘(F(s)G(s)) = L-‘(F(s)) * L-‘@(s)). (9) 

NOW consider DIFFERENTIATION. Let f(t) be continu- 
ously differentiable n - 1 times in [O,oo). If If(t)1 5 
Meat, then 

L[f’“‘(t)] = s”L(f(t)) - s-f(o) 
-P2f’(0) - . l  l  - f’“-“(O). (10) 

This can be proved by INTEGRATION BY PARTS, 

s 

a 
L[f'(t)] = lim 

a+0 
e-““f’(t) dt 

0 

= lirn [e-“f(t)]: + s 
a+0 s 

a P’f(t) dt] 

0 

s 

a 

= lim [eBsa f (a) - f (0) + S 
a-+0 

e-““f(t) dt] 
0 

= 4fWl - f (0). (11) 

Continuing for higher order derivatives then gives 

qf”(t)] = s”qf(t)] - sf(O) - f’(o)* (12) 

This property can be used to transform differential equa- 
tions into algebraic equations, a procedure known as the 
HEAVISIDE CALCULUS, which can then be inverse trans- 
formed to obtain the solution. For example, applying 
the Laplace transform to the equation 

f”(t) +a1fl(t)+aof(t) = 0 (13) 

gives 

{s2L[f (t)] - sf(O> - f’(O)} + d4f WI - fW 
+aoqf(q] = 0 (14) 

L[f(t)](s2+u1s+a0)-sf(o)-f’(o)-~1f(o) =R (15) 

which can be rearranged to 

LIf WI = sf (0) + [f’(o) + a1f @)I 
s2+alS+ao l  

(16) 

If this equation can be inverse Laplace transformed, then 
the original differential equation is solved. 
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Consider EXPONENTIATION. If L(f(t)) = F(S) for s > 
QI, then L(@f(t)) = F(s - a) for s > a + QI. 

s 
at 

Jf(t) 1 e e- 3t dt 

(17) 

Consider INTEGRATION. If f(t) is piecewise continuous 
and If(t)/ 5 Meat, then 

t c [J 1 f(t) dt = b[f(t)]. 
0 

S 
(18) 

The inverse transform is known as the BROMWICH INTE- 
GRAL, or sometimes the FOURIER-MELLIN INTEGRAL. 

see also BROMWKH INTEGRAL, FOURIER-MELLIN IN- 

TEGRAL, FOURIER TRANSFORM, INTEGRAL TRANS- 
FORM, LAPLACE-STIELTJES TRANSFORM, OPERA- 
TIONAL MATHEMATICS 
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Laplacian 
The Laplacian operator for a SCALAR function 4 is de- 
fined by 

in VECTOR notation, where the hi are the SCALE FAC- 
TORS of the coordinate system. In TENSOR notation, 
the Laplacian is written 

1 i? - ij a+ -- - 
fiaxj ( m dzi ’ > 

(2) 

where giK is a COVARIANT DERIVATIVE and 

The finite difference form is 

v21% Y7 4 = ~[~(Z.+h,Y,~)+*(x-h,Y,Z) 

+I+, Y + h 4 + $46 Y - h, 4 + $4x, Y, 25 + h) 

+!& Y, 2 - h) - wx, Y1 XII* (4) 

For a pure radial function g(T), 

Using the VECTOR DERIVATIVE identity 

V2g(r) E v  ’  [Vg(r)] = z v  l  e  + v  ($) l  e  

2 dg d2g - -- - 
T dr + dr2 l  

(7) 

Therefore, for a radial POWER law, 

2 
V2rn = -7tP’ + n(n - l)rnB2 = [Zn + n(n - 1)]F2 

r 

= n(n + l)F2. (8) 

A VECTOR Laplacian can also be defined for a VECTOR 

A bY 
V2A= V(V A) - V x (V x A) (9) 

in vector notation. In tensor notation, A is written A,, 
and the identity becomes 

V2& = A,;x’X = (s~~A~;~);~ 

= gX~;nA~;x + gX”A~i~n. (10) 

Similarly, a TENSOR Laplacian can be given by 

An identity satisfied by the Laplacian is 

V21xAl = iAb2 - l(xA)AT12, 
I Al x 3 (12) 

where IAl2 is the HILBERT-SCHMIDT NORM, x is a row 
VECTOR, and AT is the MATRIX TRANSPOSE of A. 
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To compute the LAPLACIAN of the inverse distance func- 
tion l/r, where T = IF--r’l, and integrate the LAPLACIAN 
over a volume, 

This is equal to 

(13) 

’ ~Vz~d3.=~V.(V~)d3r=S5(V~).da 

=J?L(~)~mda=~-J-F.da 

R2 
= -4=T 

where the integration is over a small SPHERE of RADIUS 
R. Now, for T > 0 and R -+ 0, the integral becomes 0. 
Similarly, for T = R and R -+ 0, the integral becomes 
-4n. Therefore, 

v2 1 
( > I r- 4 

= -47d3(r - r’), (15) 

where 6 is the DELTA FUNCTION. 

see also ANTILAPLACIAN 

Laplacian Determinant Expansion by Minors 

see DETERMINANT EXPANSION BY MINORS 

Large Number 
There are a wide variety of large numbers which crop 
up in mathematics. Some are contrived, but some actu- 
ally arise in proofs. Often, it is possible to prove exis- 
tence theorems by deriving some potentially huge upper 
limit which is frequently greatly reduced in subsequent 
versions (e.g., GRAHAM’S NUMBER, KOLMOGOROV- 
ARNOLD-MOSER THEOREM, MERTENS CONJECTURE, 
SKEWES NUMBER,~ANG'S CONJECTURE). 

Large decimal numbers beginning with 10’ are named 
according to two mutually conflicting nomenclatures: 
the American system (in which the prefix stands for n 
in 103+3n ) and the British system (in which the pre- 
fix stands for n in 10”n). The following table gives the 
names assigned to various POWERS of 10 (Woolf 1982). 

American British Power of 10 

million 
billion 
trillion 
quadrillion 
quint illion 
sextillion 
septillion 
octillion 
nonillion 
decillion 
undecillion 
duodecillion 
tredecillion 
quat t uordecillion 
qtiindecillion 
sexdeciUion 
sep t endecillion 
octodecillion 
novemdecillion 
vigintillion 

cent illion 

million 
milliard 
billion 

trillion 

quadrillion 

quint illion 

sexillion 

septillion 

octillion 

nonillion 

decillion 

undecillion 
duo decillion 
t redecillion 
quattuordecillion 
quindecillion 
sexdecillion 
sept endecillion 
octodecillion 
novemdecillion 
vigint illion 

centillion 

lo6 
log 
1012 
1o15 
1ol8 
10Z1 
1O24 
lo27 
1030 
1o33 
1o36 
103g 
1O42 
1o45 
104* 
1051 
1o54 
1o57 
1060 
1o63 
lo66 
1o72 
1o78 
1os4 
logo 
log6 
10 102 

lOlO 
10 114 

10 120 

10 303 

IO 600 

see also 10, ACKERMANN NUMBER, ARROW NOTATION, 
BILLION, CIRCLE NOTATION,EDDINGTON NUMBER& 
FUNCTION, G~BEL'S SEQUENCE, GOOGOL, GOOGOL- 

PLEX, GRAHAM'S NUMBER, HUNDRED, HYPERFACTO- 
RIAL, JUMPING CHAMPION, LAW OF TRULY LARGE 
NUMBERS, MEGA, MEGISTRON, MILLION, MONSTER 
GROUP, MOSER, n-PLEX, POWER TOWER, SKEWES 
NUMBER, SMALL NUMBER, STEINHAUS-MOSER NOTA- 
TION, STRONG LAW OF LARGE NUMBERS, SUPERFAC- 
TORIAL,THOUSAND,WEAK LAW OFLARGENUMBERS, 
ZILLION 
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Woolf, H. B. (Ed. in Chief). webbster’s IVew Colkgiate Die- 
tionary. Springfield, MA: Merriam, p. 782, 1980. 

Large Prime 

~~~GIGANTIc PRIME,LARGE NUMBER,TITANIC PRIME 

Laspeyres’ Index 
The statistical INDEX 

C PdZO 
PL E - 

c PO40 ’ 

where p, is the price per unit in period n and qn is the 
quantity produced in period n. 

see also INDEX 

References 
Kenney, 3. F. and Keeping, E. S. Mathematics of Statistics, 

Pt. 1, 3rd ed. Princeton, NJ: Van Nostrand, pp. 65-67, 
1962. 

Latin Cross 

A 
l-r 

An irregular DODECAHEDRON CROSS in the shape of a 
dagger t. The six faces of a CUBE can be cut along seven 
EDGES and unfolded into a Latin cross (i.e., the Latin 
cross is the NET of the CUBE). Similarly, eight hyper- 
surfaces of a HYPERCUBE can be cut along 17 SQUARES 
and unfolded to form a 3-D Latin cross. 

Another cross also called the Latin cross is illustrated 
above. It is a GREEK CROSS with flared ends, and is 
also known as the crux immissa or cross patee. 

see UZSO CROSS, DISSECTION, DODECAHEDRON, GREEK 
CROSS 

Latin Rectangle 
A k x n Latin rectangle is a k x n MATRIX with ele- 
ments aij E (1, 2, l  , . , n} such that entries in each row 
and column are distinct. If k = n, the special case of 
a LATIN SQUARE results. A normalized Latin rectangle 
has first row {1,2,. . l  , n} and first column { 1,2,. . . , k}. 
Let L(k,n) be the number of normalized JG x n Latin 
rectangles, then the total number of k x n Latin rectan- 
eles is 
”  

N(k+) = 
n!(n - l)!L(k,n) 

(n _ k)I . 

(McKay and Rogoyski 1995), where n! is a FACTORIAL. 
Kerewala (1941) found a RECURRENCE RELATION for 

L(3,n), and Athreya, Pranesachar, and Singhi (1980) 
found a summation FORMULA for L(4, n). 

The asymptotic value of L(o(rY7),n) was found by 
Godsil and McKay (1990). The numbers of k x n Latin 
rectangles are given in the following table from McKay 
and Rogoyski (1995). The entries L&n) and L(n,n) 
are omitted, since 

L&n) = 1 

L(n, n) = L(n - l,n), 

but L(l, 1) and L(2,l) are included for clarity. The 
values of L( k, n) are given as a “wrap-around” series by 
Sloane’s A001009. 

n k Lk d \  r  I  

1 1 1 
2 1 1 
3 2 1 
4 2 3 
4 3 4 
5 2 11 
5 3 46 
5 ,4 56 
6 2 53 
6 3 1064 
6 4 6552 
6 5 9408 
7 2 309 
7 3 36792 
7 4 1293216 
7 5 11270400 
7 6 16942080 
8 2 2119 

8 3 1673792 
8 4 420906504 
8 5 27206658048 
8 6 335390189568 
8 7 535281401856 
9 2 16687 
9 3 103443808 
9 4 207624560256 
9 5 112681643983776 
9 6 12962605404381184 
9 7 224382967916691456 
9 8 377597570964258816 

10 2 148329 
10 3 8154999232 
10 4 147174521059584 
10 5 746988383076286464 
10 6 870735405591003709440 
10 7 177144296983054185922560 
10 8 4292039421591854273003520 
10 9 7580721482160132811489280 
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Latin Square 
An n x n Latin square is a LATIN RECTANGLE with 
k = n. Specifically, a Latin square consists of n sets 
of the numbers 1 to n arranged in such a way that no 
orthogonal (row or column) contains the same two num- 
bers. The numbers of Latin squares of order n = 1, 2, 
. . . are 1, 2, 12, 576, . . . (Sloane’s A002860) l  A pair 
of Latin squares is said to be orthogonal if the n2 pairs 
formed by juxtaposing the two arrays. are all distinct. 

Two of the Latin squares of order 3 are 

which are orthogonal. Two of the 576 Latin squares of 
order 4 are 

A normalized, or reduced, Latin square is a Latin square 
with the first row and column given by {1,2, l  l  . , n}. 

General FORMULAS for the number of normalized Latin 
squares L(n,n) are given by Nechvatal (1981), Gessel 
(1987), and Shao and Wei (1992). The total number of 
Latin squares of order n can then be computed from 

N(n,n) = n!(n - l)!L(n, n) = n!(n - l)!L(n - 1, n). 

The numbers of normalized Latin square of order n = 1, 
2, . . . . are 1, 1, 1, 4, 56, 9408, . . . (Sloane’s AOOO315). 
McKay and Rogoyski (1995) give the number of normal- 
ized LATIN RECTANGLES L(k, n) for n = 1, . , . , 10, as 
well as estimates for L(n, n) with n = 11, 12, . . . , 15. 

n Lhn) 

II 5.36 x 1O33 
12 1.62 x 1O44 

13 2.51 x 1O56 
14 2.33 x 107’ 
15 1.5 x 1o86 

Latitude 

see UZSO EULER SQUARE, KIRKMAN TRIPLE 
PARTIAL LATIN SQUARE, QUASIGROUP 
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Latin-Graeco Square 

~~~EULER SQUARE 

Latitude 
The latitude of a point on a SPHERE is the elevation 
of the point from the PLANE of the equator, The lat- 
itude S is related to the COLATITUDE (the polar angle 
in SPHERICAL COORDINATES) by S = 4 - 90”. More 
generally, the latitude of a point on an ELLIPSOID is the 
ANGLE between a LINE PERPENDICULAR to the surface 
of the ELLIPSOID at the given point and the PLANE of 
the equator (Snyder 1987). 

The equator therefore has latitude O”, and the north and 
south poles have latitude f90”, respectively. Latitude is 
also called GEOGRAPHIC LATITUDE or GEODETIC LAT- 
ITUDE in order to distinguish it from several subtly dif- 
ferent varieties of AUXILIARY LATITUDES. 

The shortest distance between any two points on a 
SPHERE is the so-called GREAT CIRCLE distance, which 
can be directly computed from the latitudes and LON- 

GITUDES of the two points. 

see also AUXILIARY LATITUDE, COLATITUDE, CONFOR- 
MAL LATITUDE, GREAT CIRCLEJSOMETRIC LATITUDE, 
LATITUDE, LONGITUDE, SPHERICAL COORDINATES 
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Lattice Lattice Groups 
A lattice is a system K such that VA E K, A c A, 
and if A c B and B c A, then A = B, where = here 
means “is included in.” Lattices offer a natural way 
to formalize and study the ordering of objects using a 
general concept known as the POSET (partially ordered 
set). The study of lattices is called LATTICE THEORY. 
Note that this type of lattice is an abstraction of the 
regular array of points known as LATTICE POINTS. 

In the plane, there are 17 lattice groups, eight of which 
are pure translation. In R3, there are 32 POINT GROUPS 
and 230 SPACE GROUPS. In ]w4, there are 4783 space 
lattice groups. 

see also POINT GROUPS, SPACE GROUPS, WALLPAPER 
GROUPS 

Lattice Path 
The following inequalities hold for any lattice: 

(x A y) v (x A 2) 5 x A (y v z) 

2 v (y A r) < (x v y) A (2 v z) 

(x A y) v (y A 2) v (z A 2) 5 (2 v y) A (y v z) A (z v 2) 

(x Ay) V (x AZ) < xA (yV (x AZ)) 

(GrStzer 1971, p. 35). The first three are the distributive 
inequalities, and the last is the modular identity. 

see also DISTRIBUTIVE LATTICE, INTEGRATION LAT- 
TICE, LATTICE THEORY, MODULAR LATTICE, TORE 
VARIETY 

References 
Griitzer, G. Lattice Theory: First Concepts and Distributive 

Lattices. San Fl”ancisco, CA: W. H. F’reeman, 1971. 

Lattice Algebraic System 
A generalization of the concept of set unions and inter- 
sections. 

Lattice Animal 
A distinct (including reflections and rotations) arrange- 
ment of adjacent squares on a grid, also called fixed 
POLYOMINOES. 

see also PERCOLATION THEORY, POLYOMINO 

Lattice Distribution 
A DISCRETE DISTRIBUTION of a random variable such 
that every possible value can be represented in the form 
a + bn, where a, b # 0 and n is an INTEGER. 

References 
Abramowitz, Me and Stegun, C. A. (Eds.). Handbook 

of Mathematical Functions with Formulas, Graphs, and 
Mathematical Tables, 9th printing. New York: Dover, 
p. 927, 1972. 

Lattice Graph 

n 
The lattice graph with n nodes on a side is denoted L(n). 

see also TRIANGULAR GRAPH 

A path composed of connected horizontal and vertical 
line segments, each passing between adjacent LATTICE 
POINTS. A lattice path is therefore a SEQUENCE of 
points PO, P-1, . . . . Pn with 72 > 0 such that each Pi - 
is a LATTICE POINT and Pi+1 is obtained by offsetting 
one unit east (or west) or one unit north (or south). 

The number of paths of length a + b from the ORI- 

GIN (0,O) to a point (a$) which are restricted to east 
and north steps is given by the BINOMIAL COEFFICIENT 

a+b 
( > a l  

see also BALLOT PROBLEM, GOLYGON, KINGS PROB- 
LEM, LATTICE POINT, ~-GOOD PATH,RANDOM WALK 

References 
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Lattice Point 
l *ebmmm 

A POINT at the intersection of two or more grid lines in a 
ruled array. (The array of grid lines could be oriented to 
form unit cells in the shape of a square, rectangle, hex- 
agon, etc.) However, unless otherwise specified, lattice 
points are generally taken to refer to points in a square 
array, i.e., points with coordinates (m, n,. . .), where m, 
n, . . . are INTEGERS. 

An n-D Z[w]-lattice L, lattice can be formally defined 
as a free ~&]-MODULE in complex n-D space V. 

The FRACTION of lattice points VISIBLE from the ORT- 
GIN, as derived in Castellanos (1988, pp* 155-156), is 

N’(4 $2 + O(rlnr) $+0(F) 6 - - 
N(r) - 4r2+0(?9 = 1+“(b) =x2. 

Therefore, this is also the probability that two randomly 
picked integers will be RELATIVELY PRIME to one an- 
other. 

For 2 < n < - - 
with x, y E 

32, it is possible to select 2n lattice points 

P 1 ,n such that no three are in a straight 
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LINE. The number of distinct solutions (not counting 
reflections and rotations) for n = 1, 2, . . l  are 1, , 1, 4, 
5, 11, 22, 57, 51, 156 . . . (Sloane’s AO00769). For large 
n, it is conjectured that it is only possible to select at 
most (c + c)n lattice points with no three COLLINEAR, 
where 

c = (2~~/3)l’~ =2: 1.85 

(Guy and Kelly 1968; Guy 1994, p. 242). The num- 
ber of the n2 lattice points 2, y E [l, n] which can be 
picked with no four CoNCYCLIC is O(nzi3 - E) (Guy 
1994, p. 241). 

A speci al set of POLYGONS defined on the regular lat- 
tice are the G .OLYGONS. A NECESSA RY and SUFFICIENT 
condition that a linear transformation transforms a lat- 
tice to itself is that it be UNIMODULAR. M. Ajtai has 
shown that there is no efficient ALGORITHM for find- 
ing any fraction of a set of spanning vectors in a lattice 
having the shortest lengths unless there is an efficient al- 
gorithm for all of them (of which none is known). This 
result has potential applications to cryptography and 
authentication (Cipra 1996). 

see &~BARNES-WALL LATTICE,BLICHFELDT'S THEO- 
REM,BROWKIN'S 
COXETER-TODD 

THEOREM, 
LATTICE, 

CIRCLE LATTICE POINTS, 
EHRHART POLYNOMIAL, 

GAUSS'S CIRCLE PROBLEM, GOLYGON, INTEGRA- 
TION LATTICE, JARNICK'S INEQUALITY, LATTICE 
PATH, LATTICE 
CONVEX BODY 

SUM, 
THEO 

LEECH 
IREM, M 

LATTICE, MINKOWSKI 
ODULAR LATTICE, N- 

CLUSTER, NOSARZEWSKA'S INEQUALITY, PICK'S THE- 
OREM,POSET,RANDOM WALK,SCHINZEL'S THEOREM, 
SCHR~DER NUMBER, VISIBLE POINT, VORONOI POLY- 
GON 
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Lattice Reduction 
The process finding a reduced set of basis vectors 
for a given LATTICE having certain special proper- 
ties. Lattice reduction is implemented in Mathematics@ 
(Wolfram Research, Champaign, IL) using the function 
LatticeReduce. Lattice reduction algorithms are used 

in a number of modern number theoretical applications, 
including in the discovery of a SPIGOT ALGORITHM for 
PI. 

see also INTEGER RELATION, PSLQ ALGORITHM 

Lattice Sum 
Cubic lattice sums include the following: 

b42s) E 

00 

IE 

I 

i,j=-00 

( 1) i+j 
(iz+ 3 ‘2 9 ) 00 ( 1) i+j+FE 

ijk-’ (i2+j2+k2)s c - 
b3(2s) G 

, , ---00 
00 

b,(2s) = 
>: 

I ( 1) - h+...+b 

kl ,...,kn=-m 
(k12 + . . . + kn2),’ 

(1) 

(2) 

(3) 

where the prime indicates that summation over (U,O, 0) 
is excluded. As shown in Borwein and Borwein (1987, 
pp. 288-301), these have closed forms for even 72 

b2(2s) = -W(sh(s) (4) 

b4(2s) = -8q(s)77(s - 1) (5) 

bs(2s) = -16[(s)q(s - 3), for !F?[s] > 1 (6) 

where P(Z) is the DIRICHLET BETA FUNCTION, q(x) is 
the DIRICHLET ETA FUNCTION, and c(z) is the RIE- 
MANN ZETA FUNCTION. The lattice sums evaluated 
at s = 1 are called the MADELUNG CONSTANTS. Bor- 
wein and Borwein (1986) prove that b8 (2) converges (the 
closed form for b8 (2s) above does not apply for s = 1), 
but its value has not been computed. 

For hexagonal sums, Borwein and Borwein (1987, 
p. 292) give 

m,n=-m 

sin[(n + 1)0] sin[(m + 1)0] - sin(&) sin[(m - l)O] 

[(n + +m)2 + 3(+m)2]8 
1 

(7) 

where 8 = 2n/3. This MADELUNG CONSTANT is expres- 
sible in closed form for s = 1 as 

h(2) = nln3&. (8) 

see UZSO BENSON'S FORMULA,MADELUNG CONSTANTS 
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Lattice Theory 
Lattice theory is the study of sets of objects known as 
LATTICES. It is an outgrowth of the study of BOOLEAN 
ALGEBRAS, and provides a framework for unifying the 
study of classes or ordered sets in mathematics. Its 
study was given a great boost by a series of papers and 
subsequent textbook written by Sirkhoff (1967). 

see also LATTICE 
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Latus Rectum 
Twice the SEMILATUS RECTUM. 
see also PARABOLA 

Laurent Polynomial 
A Laurent polynomial with COEFFTCIENTS in the FIELD 
!? is an algebraic object that is typically expressed in the 
form 

l  . . + u-,f- + a-(n-~)t-+l~ + l  l  . 

+a-& + a0 + alt + . . . + antn + . l  . , 

where the ai are elements of II?, and only finitely many 
of the ai are NONZERO. A Laurent polynomial is an al- 
gebraic object in the sense that it is treated as a POLY- 
NOMIAL except that the indeterminant “t” can also have 
NEGATIVE POWERS. 

Expressed more precisely, the collection of Laurent poly- 
nomials with COEFFICIENTS in a FIELD F form a RING, 
denoted IF[t, t-l], with RING operations given by com- 
ponentwise addition and multiplication according to the 
relation 

at” l  bt” = abPm 

for all n and 712 in the INTEGERS. Formally, this is equiv- 
alent to saying that F[t, t-‘] is the GROUP RING of the 
INTEGERS and the FIELD IF. This corresponds to F[t] 
(the POLYNOMIAL ring in one variable for IF) being the 
GROUP RING or MONOID ring for the MONOID ofnatu- 
ral numbers and the FIELD IF. 

see also POLYNOMIAL 
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Laurent Series 

Let there be two circular contours Cz and Cl, with the 
radius of Cl larger than that of Cz. Let zo be interior to 
Cl and Cz, and z be between Cl and Cz. Now create a 

cut line C, between Cl and Ca, and integrate around the 
path C G Cl + Cc - Cz - Cc, so that the plus and minus 
contributions of C, cancel one another, as illustrated 
above. From the CAUCHY INTEGRAL FORMULA, 

dz’ 

1 f (x’) 1 f k’> - - 
s 

- dz’ + 2ni 
2ni c1 2’ - z s 

r dz’ 
cc z -z 

Now, since contributions from the cut line in opposite 
directions cancel out, 

f( > 
1 

z =Gi s 

f (“1 
Cl (z’ - zo) - (z - 20) 

dx’ 

1 f v> -- 
2Xi s c2 (z’ - 20) - (x - to) 

dz’ 

1 f b’> - - 
s 2ni c’1 (.z’ - 20) (1 - e) 

dx’ 

1 

s 

f (z’> -- 
2ni c2 (z-.zo) (S -1) 

dz’ 

1 - - J f 64 
2ni Cl (x’ - zo) (1 - ‘i”) 

dx’ 
2 -ro 

1 

+2ni s 

f @‘I 
c2 (2 - 20) (1 - g$) 

dt’. (2) 

For the first integral, Iz’ - zo 1 > Iz - zo 1. For the second, 
Id - ZOI < Iz - ZOI. NOW use the TAYLOR EXPANSION 
(valid for ItI < 1) 

00 

1 - = 
x 

tn 

1-t (3) 
n=O 
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to obtain 

dz’ 

n 
ZO 

- dz’ 
20 

> I 

& 

+ & f?(z - ~o)-~--l/ (z’ - zO)n f (x’) dx’ 
n=O c2 

- - 

(4) 

where the second term has been re-indexed. Re-indexing 
again, 

f( 1 
1 O” 

x =y 
27n n 

z - zo)n 
I 

f (z’> 

n=O 
c1 (x’ - .,)ti+l 

dz’ 

-1 
1 

+G x (2 - zojn 

I 

f (x'> 

( z’ - zg)n+l 
dz’. (5) 

n=-m (72 

NOW, use the CAUCHY INTEGRAL THEOREM, which re- 
quires that any CONTOUR INTEGRAL of a function which 
encloses no POLES has value 0. But l/(z’ - ZO)~+~ is 
never singular inside Cz for n > 0, and l/(z’ - ~0)~~’ is 
never singular inside Cl for ?z 5 - 1. Similarly, there are 
no POLES in the closed cut Cc - Cc* We can therefore 
replace Cl and Cz in the above integrals by C without 
altering their values, so 

f( > 
1 O” 

z=Gi z- ID zo)n 
f b’> 

I- n+l dx’ 

n=O 
4 

-1 
1 

+ g x (2 - xoy 
f k’> 

( 9 - iqnfl 
n=--00 

1 O” - - 
27ri >:( 

z- Zoy da’ 

n=-03 

dx’ 

00 
- - - IE u,(z - Z$Y (6) 

n=--00 

The only requirement on C is that it encloses x, so we are 
free to choose any contour y that does so. The RESIDUES 
an are therefore defined by 

1 
an 

= 2ni I 
f b’> 

y (x’ - zo)n+l 
dr’. (7) 

see also MACLAURIN SERIES, RESIDUE (COMPLEX 
ANALYSIS), TAYLOR SERIES 
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Arfken, G. “Laurent Expansion.” $6.5 in Muthematicul 
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Press, pp. 376-384, 1985. 

Morse, P. M. and Feshbach, H. “Derivatives of Analytic Func- 
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398, 1953. 

ldaw 
A law is a mathematical statement which always holds 
true. Whereas “laws” in physics are generally exper- 
imental observations backed up by theoretical under- 
pinning, laws in mathematics are generally THEOREMS 
which can formally be proven true under the stated con- 
ditions. However, the term is also sometimes used in the 
sense of an empirical observation, e.g., BENFORD’S LAW. 

see &SO ABSORPTION LAW, BENFORD’S LAW, CON- 
TRADICTION LAW, DE MORGAN’S DUALITY LAW, DE 
MORGAN’S LAWS, ELLIPTIC CURVE GROUP LAW, Ex- 
CLUDED MIDDLE LAW, EXPONENT LAWS, GIRKO’S CIR- 
CULAR LAW, LAW OF COSINES, LAW OF SINES, LAW OF 
TANGENTS, LAW OF TRULY LARGE NUMBERS, MOR- 
RIE’S LAW, PARALLELOGRAM LAW, PLATEAU’S LAWS, 
QUADRATIC RECIPROCITY LAW, STRONG LAW OF 
LARGE NUMBERS, STRONG LAW OF SMALL NUMBERS, 
SYLVESTER’S INERTIA LAW, TRICHOTOMY LAW, VEC- 
TOR TRANSFORMATION LAW, WEAK LAW 
NUMBERS, ZIPF’S LAW 

Law of Anomalous Numbers 

see BENFORD’S LAW 

Law of Cancellation 

see CANCELLATION LAW 

Law of Cosines 

Let a, b, and c be the lengths of the legs of a TRIANGLE 

OF LARGE 

opposite ANGLES A, B, and C. Then the law of cosines 
states 

c2 = u2 + b2 - 2ab cos c. (1) 

This law can be derived in a number of ways. The def- 
inition of the DOT PRODUCT incorporates the law of 
cosines, so that the length of the VECTOR from X to Y 
is given by 

1X-Y12 = (X -Y) ’ (X-Y) (2) 
-x*x-2X*Y+YmY - (3) 

= /Xl2 + IY12 - 21x1 [Yl cod, (4) 
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where 0 is the ANGLE between X and Y. 

b-a cos c aces c 
-b- 

The formula can also be derived using a little geometry 
and simple algebra. From the above diagram, 

c2 = (a sin C)” + (b - a cos C)” 

= a2sin2c+b2 -2abcosC+a2cos2C 

= u2 + b2 - 2abcosC+ (5) 

The law of cosines for the sides of a SPHERICAL TRIAN- 
GLE states that 

cosa = cosbcosc+sinbsinccosA (6) 

cosb = coscmsa + sincsinacosB (7) 

cost = cosacosb+ sinasinbcosc (8) 

(Beyer 1987). The law of cosines for the angles of a 
SPHERICAL TRIANGLE states that 

cos A = - cos13cosC + sinBsinCcosa (9) 

COSB = - cosCcosA + sinCsinAcosb (10) 

cosC = -cosAcosB +sinAsinBcosc (11) 

(Beyer 1987). 

see UZSO LAW OF SINES, LAW OF TANGENTS 

References 
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Mathematical Tables, 9th printing. New York: Dover, 
p. 79, 1972. 
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Boca Raton, FL: CRC Press, pp# 148-149, 1987. 

Law of Large Numbers 

~~~LAW~FTRULYLARGENUMBERS,STR~NGLAW~F 
LARGE NUMBERS, WEAK LAW OF LARGE NUMBERS 

Law of Sines 

Let a, b, and c be the lengths of the LEGS of a TRIANGLE 
opposite ANGLES A, B, and C. Then the law of sines 
states that 

a b c -=-- 
sin A 

- = 2R, 
sin B - sin C (1) 

where R is the radius of the CIRCUMCIRCLE. Other 
related results include the identities 

a(sin B - sin c) + b(sin C - sin A) + c(sin A - sin B) = 0 

(2) 
a=bcosC+ccosB, (3) 

the LAW OF COSINES 

cosA = 
c2 + b2 - a2 

2bc ’ 

and the LAW OF TANGENTS 

(4) 

a+b tan[;(A+q 
a-b = tan[i(A - B)]’ (5) 

The law of sines for oblique SPHERICAL TRIANGLES 
states that 

sina sin b sin c -=-- 
sin A sinB - sinC’ (6) 

see also LAW OF COSINES, LAW OF TANGENTS 
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Abramowitz, M. and Stegun, C. A. (Eds.). Handbook 

of Mathematical Functions with Formulas, Graphs, and 
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Law of Small Numbers 

ARMSTRONG LAW OF SMALL NUMBERS 

Law of Tangents 
Let a TRIANGLE have sides of lengths a, b, and c and let 
the ANGLES opposite these sides by A, B, and C. The 
law of tangents states 

a - b tan[$(A - B)] 

--- = tan[$(A + B)] * a+b 

An analogous result for oblique SPHERICAL TRIANGLES 
states that 

tan[$(u - b)] tan[i(A - B)] 

tan[$(a + b)] = tan[$(A + B)] ’ 

see also LAW OF COSINES, LAW OF SINES 
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Law of Truly Large Numbers 
With a large enough sample, any outrageous thing is 
likely to happen (Diaconis and Mosteller 1989). Little- 
wood (1953) considered an event which occurs one in 
a million times to be “surprising.” Taking this defini- 
tion, close to 100,000 surprising events are “expected” 
each year in the United States alone and, in the world 
at large, “we can be absolutely sure that we will see 
incredibly remarkable events” (Diaconis and Mosteller 
1989). 

see also COINCIDENCE, STRONG LAW OF LARGE NUM- 
BERS,STRONG LAW OF SMALL NUMBERS,~EAK LAW 
OF LARGE NUMBERS 
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Diaconis, P. and Mosteller, F. “Methods of Studying Coinci- 

dences.” J. Amer. Statist. Assoc. 84, 853-861, 1989. 
Littlewood, J. E. Littlewood’s MisceZEany. Cambridge, Eng- 

land: Cambridge University Press, 1986. 

Lax-Milgram Theorem 
Let 4 be a bounded COERCIVE bilinear FUNCTIONAL 
on a HILBERT SPACE H. Then for every bounded linear 
FUNCTIONAL f on H, there exists a unique xf E H such 
that 

f (4 = 6(x, Xf > 

for all x E H. 

References 
Debnath, L. and Mikusinski, P. Introduction to Hilbert 

Spaces with Applications. San Diego, CA: Academic Press, 
1990. 

Zeidler, E. Applied Functional Analysis: Applications to 
Mathematical Physics. New York: Springer-Verlag, 19%. 

Lax Pair 
A pair of linear OPERATORS L and A associated with 
a given PARTIAL DIFFERENTIAL EQUATION which can 
be used to solve the equation. I-Iowever, it turns out 
to be very difficult to find the L and A corresponding 
to a given equation, so it is actually simpler to postu- 
late a given L and A and determine to which PARTIAL 
DIFFERENTIAL EQUATION they correspond (Infeld and 
Rowlands 1990). 

see also PARTIAL DIFFERENTIAL EQUATION 

References 
Infeld, E. and Rowlands, G. “Integrable Equations in Two 

Space Dimensions as Treated by the Zakharov Shabat 
Methods." 57.10 in Nonlinear Waves, Solitons, and 
Chaos. Cambridge, England: Cambridge University Press, 
pp. 216-223, 1990. 

Layer 

seep-LAYER 

Le Cam’s Identity 
Let S, be the sum of 72 random variates Xi with a BER- 
NOULLI DISTRIBUTION with P(Xi = l)=pa. Then 

8Xk 
P(Sn = k) - Icl 2 

i 7 
. 

i=l 

where 

see aim BERNOULLI DISTRIBUTION 

References 
Cox, D. A. “Introduction to Fermat’s Last Theorem.” Amer. 

Math. Monthly 101, 3-14, 1994. 

Leading Digit Phenomenon 

see BENFORD'S LAW 

Leading Order Analysis 
A procedure for determining the behavior of an nth or- 
der ORDINARY DIFFERENTIAL EQUATION at a REMOV- 
ABLE SINGULARITY without actually solving the equa- 
tion. Consider 

where F is ANALYTIC in z and rational in its other ar- 
guments. Proceed by making the substitution 

d”Y 
dz” (1) 

y(x) = a(z - zoy (2) 

with a < 1. For example, in the equation 

d2Y 
dz2 

= 6y2 + Ay, (3) 

making the substitution gives 

a+- 1)(Z-zO)a-2 = 6a2(z-zo)2”+Aa(az-zo)“. (4) 

The most singular terms (those with the most NEGATIVE 
exponents) are called the “dominant balance terms,” 
and must balance exponents and COEFFICIENTS at the 
SINGULARITY. Here, the first two terms are dominant, 
so 

a- 2=22ar*a=-2 (5) 

6a=6a2 *a=& (6) 

and the solution behaves as y(z) = (z - zo)-‘* The 
behavior in the NEIGHBORHOOD of the SINGULARITY is 
given by expansion in a LAURENT SERIES, in this case, 

y(Z) = 2 Uj(Z - ZO)j-'* (7) 

j=O 
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Plugging this series in yields 

&j(j - a)(j - 3)(x - roy4 
j=O 

00 00 00 

=KE ajak(z-~~)j+IcL4+A x aj(z-~~)jwzm (8) 
j-0 k=O j=O 

This gives RECURRENCE RELATIONS, in this case with 
a6 arbitrary, so the (z - 20)~ term is called the resonance 
or K~VALEVSKAYA EXPONENT. At the resonances, the 
COEFFICIENT will always be arbitrary. If no resonance 
term is present, the POLE present is not ordinary, and 
the solution must be investigated using a PSI FUNCTION. 

see also PSI FUNCTION 

References 
Tabor, M. Chaos and Integrability in Nonlinear Dynamics: 

An Introduction. New York: Wiley, p. 330, 1989. 

Leaf (Foliation) 
Let AIn be an V-J-MANIFOLD and let F = {&} denote 
a PARTITION of A4 into DISJOINT path-connected SUB- 
SETS. Then if F is a FOLIATION of AI, each & is called 
a leaf and is not necessarily closed or compact. 

see also FOLIATION 

References 
Rolfsen, D. Knots and Links. Wilmington, DE: Publish or 

Perish Press, pm 284, 1976. 

Leaf (Xkee) 
An unconnected end of a TREE. 

see also BRANCH, CHILD, FORK, ROOT (TREE), TREE 

Leakage 

see ALIASING 

Least Bound 

see SUPREMUM 

Least Common Multiple 
The least common multiple of two numbers n1 and 722 
is denoted LCM( nl, n2) or [nl, n2] and can be obtained 
by finding the PRIME factorization of each 

721 z plal . . . pnan (1) 

n2 =plbl . ..pnbn. (2) 

where the pis are all PRIME FACTORS of n1 and n2, and 
if pi does not occur in one factorization, then the corre- 
sponding exponent is O+ The least common multiple is 
then 

Least Common Mu1 tiple 

Let m be a common multiple of a and b so that 

m = ha = kb. (4) 

Write a = al(a, b) and b = b&, b), where al and 61 
are RELATIVELY PRIME by definition of the GREATEST 
COMMON DIVB~R (aI, bl) = 1. Then haI = kbl, and 
from the DIVISION LEMMA (given that ha1 is DIVISIBLE 
by b and (bl,al) = 0), we have h is DIVISIBLE by bl, SO 

h = nbl 

ab 
m = ha = nbla = n- 

(a, b) l  

The smallest m is given by n = 1, 

LCM(a, b) = ab 
GCD(u, b) ’ 

so 
GCD(a, b) LCM(a, b) = ab 

(a, b)[a, b] = ab. 

TheLCM is IDEMPOTENT 

[ 1 a, a = a, 

COMMUTATIVE 
[a, bl = [h al 7 

ASSOCIATIVE 

[a, b, cl = I[% bl, Cl = [a7 I& cl1 1 

DISTRIBUTIVE 

[ma, mb, mc] = m[a, b, c], 

and satisfies the ABSORPTION LAW 

(a, la, bl) = a. 

It is also true that 

[ma,mb] = (ma)(mb) = m ab 
(ma, mb) 

= m[a b] 
(a, b) ’ 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

see also GREATEST COMMON DIVISOR, MANGOLDT 
FUNCTION, RELATIVELY PRIME 

References 
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Less than x.” SE2 in Unsolved Problems in Number The- 
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LCM(nl, nz) = [nl, n2] = (3) 



Least Deficient Number 

Least Deficient Number 
A number for which 

a(n) = 272 - 1. 

All POWERS of 2 are least deficient numbers. 

see also DEFICIENT NUMBER, QUASIPERFECT NUMBER 

Least Period 
The smallest n for which a point ~0 is a PERIODIC POINT 
of a function f so that fn(xo) = ~0. For example, for 
the FUNCTION f(z) = -x, all points x have period 2 
(including x = 0). However, x = 0 has a least period 
of 1. The analogous concept exists for a PERIODIC SE- 
QUENCE, but not for a PERIODIC FUNCTION. The least 
period is also called the EXACT PERIOD. 

Least Prime Factor 

20 40 60 

e . 
100 

For an INTEGER n > 2, let lpf(z) denote the LEAST 
PRIME FACTOR of n, i.e., the number pl in the factor- 
ization 

n c pl al . . .plcQ, 

with pi < pj for i < j. For n = 2, 3, . + l  , the first 
few are 2, 3, 2, 5, 2, 7, 2, 3, 2, 11, 2, 13, 2, 3, . . . 
(Sloane’s A020639). The above plot of the least prime 
factor function can be seen to resemble a jagged terrain 
of mountains, which leads to the appellation of “TWIN 
PEAKS" to a PAIR of INTEGERS (a,y) such that 

1. 2 < Y, 

2. lPf(X) = lPf(Y), 

3. For all X, x < z < y IMPLIES lpf(z) < lpf(x). 

The least mult$e prime factors for SQUAREFUL integers 
are 2, 2, 3, 2, 2, 3, 2, 2, 5, 3, 2, 2, 2, . . . (Sloane’s 
A046027). 

see also ALLADI~RINSTEAD CONSTANT, DISTINCT 
PRIME FACTORS, ERD~S-SELFRIDGE FUNCTION, FAC- 
TOR, GREATEST PRIME FACTOR, LEAST COMMON 
MULTIPLE, MANGOLDT FUNCTION, PRIME FACTORS, 
TWIN PEAKS 

References 
Sloane, N. J. A. Sequence A020639 in LLAn On-Line Version 

of the Encyclopedia of Integer Sequences.” 

Least Squares Fitting 

Least Squares Fitting 
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I 
I \ 

A mathematical procedure for finding the best fitting 
curve to a given set of points by minimizing the sum of 
the squares of the offsets (“the residuals”) of the points 
from the curve. The sum of the squares of the offsets 
is used instead of the offset absolute values because this 
allows the residuals to be treated as a continuous dif- 
ferent iable quantity. However, because squares of the 
offsets are used, outlying points can have a dispropor- 
tionate effect on the fit, a property which may or may 
not be desirable depending on the problem at hand. 

1 #’ 0 t 0 0 0 
0 0 t 0 0 0 0 1 t 0 0 0 0 0 \ 

0 0 

0 0 ’ 1 0 4 0 

verticaI uffsets perpendicular offsets 

In practice, the vertical offsets from a line are almost 
always minimized instead of the perpendicular offsets. 
This allows uncertainties of the data points along the x- 
and y-axes to be incorporated simply, and also provides 
a much simpler analytic form for the fitting parameters 
than would be obtained using a fit based on perpendic- 
ular distances. In addition, the fitting technique can be 
easily generalized from a best-fit line to a best-fit pdg- 
nomiul when sums of vertical distances are used (which 
is not the case using perpendicular distances). For a 
reasonable number of noisy data points, the difference 
between vertical and perpendicular fits is quite small. 

The linear least squares fitting technique is the simplest 
and most commonly applied form of LINEAR REGRES- 
SION and provides a solution to the problem of finding 
the best fitting straight line through a set of points. In 
fact, if the functional relationship between the two quan- 
tities being graphed is known to within additive or mul- 
tiplicative constants, it is common practice to transform 
the data in such a way that the resulting line is a straight 
line, say by plotting T vs. fi instead of t vs. e. For this 
reason, standard forms for EXPONENTIAL, LOGARITH- 
MIC, and POWER laws are often explicitly computed. 
The formulas for linear least squares fitting were inde- 
pendently derived by Gauss and Legendre. 

For NONLINEAR LEAST SQUARES FITTING~~~ number 
of unknown parameters, linear least Fquares fitting may 
be applied iteratively to a linearized form of the func- 
tion until convergence is achieved. Depending on the 
type of fit and initial parameters chosen, the nonlinear 
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fit may have good or poor convergence properties. If un- 
certainties (in the most general case, error ellipses) are 
given for the points, points can be weighted differently 
in order to give the high-quality points more weight. 

The residuals of the best-fit line for a set of n points 
using unsquared perpendicular distances di of points 
(xi, yi) are given by 

(1) 

Since the perpendicular distance from a line y = a + bx 
to point i is given by 

d I /Vi - (a+b)l 
i- 

diTF ’ 
(2) 

the function to be minimized is 

(3) 

Unfortunately, because the absolute value function does 
not have continuous derivatives, minimizing RI is not 
amenable to analytic solution. However, if the square of 
the perpendicular distances 

R; E x 
[yi - (a + bXi)lZ 

1 + b2 
i=l 

so (8) becomes 

[(I + b2)(-b) + b(b2)] 7; x2 + [(I + b2) - 2b2] x xy 

+ba2 c 1 = 0 (11) 

- bx x2 + (1 - b2) xxy + b7; y2 + a(b2 - 1) xx 

-2ab 
x 

y + ba2n = 0. (12) 

Plugging (7) into (12) then gives 

- bxx2+(1-b2)~xy+b)y2 

+;(b2-1)(~y-b~x)~x 

-~(~Y-b~x)b~Y+~b(Cy-b~x)2 

=o (13) 

is minimized instead, the problem can be solved in closed 
form. RI is a minimum when (suppressing the indices) 

8R”, 
--&E[Y-( - da 

a+ bx)](-1) = 0 (5) 

and 

aR”, 2 - - ->[Y-( db - l+ b2 
a + bx)](-x) 

+>: 
b - b + bx)12(-1)(2b) = 0 

(l+b2)2 ’ 
(6) 

The former gives 

a= Cy-bxx =y-bz 
? 

n (7 

and the latter 

> 

(1+b2)~[y-(u+bx)]x+b~[y-(a+bx)]2 = 0. (8 > 

But 

[y - (a + bx)12 = y2 - Z(a + bx)y + (a + bx)' 

= y2 - 2ay - 2bxy + a2 + 2abx + b2x2, (9) 

(4) 
After a fair bit of algebra, the result is 

b2 + 
CY” - xx2 +; [(Ex)2 - (cY)2] 

:cxcY-cxY 
b-1-0. 

So define’ 

1 -- - 
2 

CCY 2 - nfj2) - (xx2 - nZ2) 

n~xCY-~xY ’ 

and the QUADRATIC FORMULA gives 

(15) 

b=-BfdB2+1, (16) 

with a found using (7). Note t;he rather unwieldy form of 
the best-fit parameters in the formulation. In addition, 
minimizing Rt for a second- or higher-order P~LYNOM- 
IAL leads to polynomial equations having higher order, 
so this formulation cannot be extended. 

Vertical least squares fitting proceeds by finding the sum 
of the squmes of the vertical deviations R2 of a set of n 
data points 

R2 = ~~[yi-f(xi,ul,az,..~,~,)]~ (17) 
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from a -function f* Note that this procedure does not 
minimize the actual deviations from the line (which 
would be measured perpendicular to the given function). 
In addition, although the unsquared sum of distances 
might seem a more appropriate quantity to minimize, 
use of the absolute value results in discontinuous deriva- 
tives which cannot be treated analytically. The square 
deviations from each point are therefore summed, and 
the resulting residual is then minimized to find the best 
fit line. This procedure results in outlying points being 
given disproportionately large weighting. 

The condition for R2 to be a minimum is that 

fori=l, ..,, n. For a linear fit, 

fh b) =a+bx, 

so 

R2(a, b) = k[yi - (a + bzi)12 

i=l 

W2) 

n 

-=- 

da 2 T;[Y i - (a + bxi)] = 0 

i=l 

NR2) 

n 

--- 
db - 

Q-)Y i - (a + bXi)]Xi = 0 

i=l 

These lead to the equations 

na+b):x=xy 

” 

(18) 

(19) 

w 

(21) 

(22) 

(23) 

(24) 

a= CYCX2-CXCXY 

nzx2 - (xx)” 
(28) 

- y~x2-z~xy 
- 

):X2 - nit2 (29) 

b= nExY-)xEY 

nxx2 - (cx)” 
(30) 

CXy--nZy _ _ 
c X2 - n$ (31) 

(Kenney and Keeping 1962). These can be rewritten in 
a simpler form by defining the sums of squares 

71 

S&a: = 
X( 

xi - 2)” = 
E 

x2 - nZ2 
1 

i=l 

(32) 

ssyy = A(yi - fj)” = (C y2 - ng2) (33) 
i=l 

n 

ss,, = x(xi - z)(yi - y) = (xxy - nQ) T (34) 
i=l 

which are also written as 

a; = ssxx (35) 
2 

OY 
= sspp (36) 

cov(x, y) = ssxy. (37) 

Here, COV(X, y) is the COVARIANCE and a; and c2 are 
Y variances. Note that the quantities c xy and c x can 

also be interpreted as the DOT PRODUCTS 

x 
X2 =x-x (38) 

IE x:y =x-y. (39) where the subscripts have been dropped for conciseness. 
In MATRIX form, 

In terms of the sums of squares, the REGRESSION CO- 
EFFICIENT b is given by 

[ 

n 

c X 

so 

The 2 x 2 MATRIX INVERSE is 

a [I 1 
b = 

~Y:22-~x~xY 

72Xx2 - (Cx)” nExY-CxEY y 1 

(27) 

b = cov(x, Y> ssxy ~ - (40) 

and a is given in terms of b using (24) as 

a = g - bz. (41) 

The overall quality of the fit is then parameterized in 
terms of a quantity known as the CORRELATION COEF- 
FICIENT, defined by 

r2 = 
ssxy2 

-1 
ssxxssyy 

(42) 

which gives the proportion of ssyy which is accounted 
for by the regression. 
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ao~xk+a~)xk+'+...+ar,)x2k = xxky (56) The STANDARD ERRORS for a and b are 

or, in MATRIX form 
SE(a) = s ; + = 

ssmz 
(43) 

n c X l  l  l  

c  

Xk 

c  
X 

c  
X2 

l  . . 

c  

x”+l 1 CY 
CXY 

. 1 . l  

. 

CXkY 

(57) 

Let & be the vertical coordinate of the best-fit line with 
x-coordinate xi, so 

ijiEa+bx. 27 (45) 
This is a VANDERMONDE MATRIX. We can also obtain 
the MATRIX for a least squares fit by writing then the error between the actual vertical point yi and 

the fitted point is given by 
1 x1 g-9 Xlk a0 

1 x2 l  ** xzk a1 
* . . . I[ l  

. . l  . . 

m  . 
. 

lx,***x,k a; 
I 

Yl 
Y2 - - . . . 

. (58) 

Now define s2 as an estimator for the variance in ei, LY n 

n r) 
Premultiplying both sides by the TRANSPOSE of the first 
MATRIX then gives 

L 
Ix 

ei s2= - 
n-2’ 

i=l 

(47) 

‘1 1 “* I Yl Xl x2 -* - xn Y2 
m l  l  

l  . 7  (59) 
. . . . . 

l  l  
l  l  

,x1 

k x2 k .-. xn II 1 k ’ 
Yn 

1 

Xl 
. * 
l  

Xl 

k 

1 

x2 

l  l  l  

l  . l  

1 

Xn 

m  
. 
l  

Xn 
k 

Then s can be given by 

I 02 . . 
x2 

k 
s- / “XY SSYY - i&y - zi SSYY - 5X= 

n-2 - n-2 (48) 
. . . 

(Acton 1966, pp. 32-35; Gonick and Smith 1993, 
pp. 202-204). 

Generalizing from a straight line (i.e., first degree poly- 
nomial) to a Fzth degree POLYNOMIAL 

- - 

so 

y = a0 + alx + - . . + akxk, (49) n c X . l  1  

c  

Xn 

c  

X 

c  

X2 

c  

2 

n+l  
l  . l  

c  c  

. 
l  

. 

. . l  . 

l  l  . . 

Xn X 
n+l  l  *. 

c  

X2n 
1 

CY CXY . 
l  

. 

. 

CXkY 1 
(60) 

the residual is given by 

R2 E x[yi - (a0 + alX:i +. . . + akxik)]‘. (50) 
i=l 

As before, given nz points (xi, yi) and fitting with POLY- 
NOMIAL COEFFICIENTS a~, . . . , an gives The PARTIAL DERIVATIVES (again dropping super- 

scripts) are 

W2) ~ - - 
aa0 

-2>[Y-(a() +alx+ m.m +akx")] = 0 (51) 

W2) - - - 
aa1 

-2)[y-(ao+alx+...+akx")]x = 0 (52) 

w2 > - = 
dak 

-2):[Y-(t2()+alx+...+akxk)]xk = 0. (53) 

These lead to the equations 

In MATRIX notation, the equation for a polynomial fit 
is given by 

y = Xa. (62) 

This can be solved by premultiplying by the MATRIX 
TRANSPOSE XT, aon + a1 x+... +ak)X” =xp (54) 

XTy = XTXa. (63) ~O~x+al~x2+...+~k~xk+1=~xy (55) 
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This MATRIX EQUATION can be solved numerically, or 
can be inverted directly if it is well formed, tb yield the 
solution vector 

a = (XTX)-lXTy. 

Setting m. = I in the above equations reproduces the 
linear solution. 

see also CORRELATION COEFFICIENT, INTERPOLATION, 
LEAST SQUARES FITTING-EXPONENTIAL, LEAST 
SQUARES FITTING-LOGARITHMIC, LEAST SQUARES 
FITTING-POWER LAW, MOORE-PENROSE GENERAL- 
IZED MATRIX INVERSE, NONLINEAR LEAST SQUARES 
FITTING, REGRESSION COEFFICIENT, SPLINE 
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Least Squares Fitting-Exponential 
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To fit a functional form 

p=AeBX, 

take the LOGARITHM of both sides 

lny = 1nA + Blnz 

(1) 

(2) 

1049 

The best-fit values are then 

a= 
ClnyEx2 - Cxxxlny 

72Xx2 - (xx)” 
(3) 

b- 
nCxlny-~x~lny 

nxx2 - (xx)” 
1 (4) 

where B =II b and A G exp(a). 

This fit gives greater weights to small y values so, in 
order to weight the points equally, it is often-better to 
minimize the function 

In y In y - a - bz)2. 

Applying LEAST SQUARES FITTING gives 

(5) 

a~Y+bpY=~YlnY (6) 

uxxy+ b):x2y = Xxylny (7) 

Solving for a and b, 

u = C(X2Y> C(YlnY) - C(zY) CbYlnY) 

CYIm2Y) - (c”Y)2 

(g) 

b- CYmYlnY) - C(xYmYlnY) - 

CY):(X2Y) - (c”Y)2 l  

(10) 

In the plot above, the short-dashed curve is the fit com- 
puted from (3) and (4) and the long-dashed curve is the 
fit computed from (9) and (10). 

see UZSO LEAST SQUARES FITTING, LEAST SQUARES 
FITTING-LOGARITHMIC, LEAST SQUARES FITTING- 

POWER LAW 

Least Squares Fitting-Logarithmic 
30 
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Given a function of the form 

Y = a + blnx, (1) 

the COEFFICIENTS can be found from LEAST SQUARES 
FITTING as 

a= 
CY -bC(W 

. 
n (3) 

see UZSO LEAST SQUARES FITTING, LEAST SQUARES 
FITTING-EXPONENTIAL, LEAST SQUARES FITTING- 
POWER LAW 
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Least Squares Fitting-Power Law 

Given a function of the form 

LEAST SQUARES FITTING gives the COEFFICIENTS as 

b nE(lnxlny) - ~(lnx> C@Y> - - 
nx[(ln2)2] - (Cln2)2 

(2) 

a= 
C@Y> - bC(ln4 

? (3) 
n 

where B E b and A E exp(a). 

see UZSO LEAST SQUARES FITTING, LEAST SQUARES 
FITTING-EXPONENTIAL, LEAST SQUARES FITTING- 
LOGARITHMIC 

Least Upper Bound 

see SUPREMUM 

Lebesgue Constants (Fourier Series) 
N B A detailed on-line essay by S. Finch was the start- . . 

ing point for this entry. 

Assume a function f is integrable over the interval 
[-T,~F] and S&,x) is th e nth partial sum of the FOUR- 
IER SERIES off, so that 

1 7r 
ak = - 

s 
f(t) cos(kt) dt 

7r -?T 

1 7r 
bl, = ; 

s 
f(t) sin(kt) dt 

-7r 

(1) 

(2) 

and L, is the smallest possible constant for which this 
holds for all continuous f. The first few values of L, are 

Lo =l (6) 

1 w3 
L1 = 3 + - = 1.435991124.. . (7) 

r 

L2 = 1.642188435. l  . (8) 

L3 = 1.778322862. (9) 

Some FORMULAS for L, include 

Cc=1 j=l 

(Zygmund 1959) and integral FORMULAS include 

L, = 4 
s 

OQ tanh[(2n + l)z] dir: 

0 
tanh x ++4x2 

4 

s 

O” sinh[(2n + 1)x] - -- 
x2 0 sinh x 

In{coth[i(2n + 1)x]} dx 

(11) 

(Hardy 1942). For large n, 

4 4 
-$nn < L, < 3+ --$nn. 02) 

This result can be generalized for an r-differentiable 
function satisfying 

d’f 
I I dz’ 9 

for all x. In this case, 

(13) 

where 
and 

If(x) - Sn(f,x)l < L-q- = $“‘” -+Q (‘> > - nr nr 
w 

Sn(f,x) = $UO + ?[a cos(kx) -I- bk sin(kx)] . (3) 
k=l 

If 

If(x>l 2 1 (4 

for all x, then 

k=l 

(Kolmogorov 1935, Zygmund 1959). 

Watson (1930) showed that 

lim 
[ 
L, - 

72300 
-$ln(2n + 1)] = c, (16) 

Sn(f,x) 5 L s T 1 sin[+(2n + l)@]] 
dB = L,, (5) 

7T 0 sin( $0) 
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where 

(17) 

8 O” X(2j + 2) - 1 - -- 
T2 x zj + 1 J + -+n2 +y) (18) 

j=O 

= 0.9894312738.. . , (19) 

where r(z) is the GAMMA FUNCTION, X(z) is the 
DIRICHLET LAMBDA FUNCTION, and y is the EULER- 

MASCHERONI CONSTANT. 
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Lebesgue Constants (Lagrange 
Interpolation) 
N.B. A detailed on-line essay by S. Finch was the start- 
ing point for this entry. 

Define the nth Lebesgue constant for the LAGRANGE 
INTERPOLATING POLYNOMIAL by 

It is true that 
4 

A, > -$nn.-1. (2) 

The efficiency of a Lagrange interpolation is related to 
the rate at which A, increases. Erdk (1961) proved 
that there exists a POSITIVE constant such that 

An > 
2 
-Inn-C 
7r 

for all n. Erdcs (1961) further showed that 

An < 
2 
-Inn+4, 
n- 

so (3) cannot be improved upon. 

(3) 

(4) 
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Lebesgue Covering Dimension 
An important DIMENSION and one of the first dimen- 
sions investigated. It is defined in terms of covering sets, 
and is therefore also called the COVERING DIMENSION. 
Another name for the Lebesgue covering dimension is 
the TOPOLOGICAL DIMENSION. 

A SPACE has Lebesgue covering dimension m if for every 
open COVER of that space, there is an open COVER that 
refines it such that the refinement has order at most 
m. + 1. Consider how many elements of the cover contain 
a given point in a base space. If this has a maximum 
over all the points in the base space, then this maximum 
is called the order of the cover. If a SPACE does not have 
Lebesgue covering dimension ~2 for any nz, it is said to 
be infinite dimensional. 

Results of this definition are: 

1. Two homeomorphic spaces have the same dimension, 

2. Iw” has dimension n, 

3. A TOPOLOGICAL SPACE can be embedded as a closed 
subspace of a EUCLIDEAN SPACE IFF it is locally 
compact, Hausdorff, second countable, and is finite 
dimensional (in the sense of the LEBESGUE DIMEN- 
SION), and 

4 Every compact metrizable m-dimensional TOP& 
LOGICAL SPACE can be embedded in Ik2”? 

see also LEBESGUE MINIMAL PROBLEM 
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Lebesgue Dimension 

see LEBESGUE COVERING DIMENSION 

Lebesgue Integrable 
A real-valued function f defined on the reals &k is called 
Lebesgue integrable if there exists a SEQUENCE of STEP 
FUNCTIONS {fn} such that the following two conditions 
are satisfied: 

2. f(x) = C,“=l for every it: E IR such that 

c,“=l J IfA < O”* 

Here, the above integral denotes the ordinary RIEMANN 
INTEGRAL. Note that this definition avoids explicit use 
of the LEBESGUE MEASURE. 

see also INTEGRAL, LEBESGUE INTEGRAL, RIEMANN IN- 
TEGRAL, STEP FUNCTION 

mathsoft.com/asolve/constant/lbsg/lbsg.html. 
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Lebesgue Integral 
The LEBEXUE INTEGRAL is defined in terms of upper 
and lower bounds using the LEBESGUE MEASURE of a 
SET. It uses a LEBESGUE SUM S, = q+(Ei) where q 
is the value of the function in subinterval i, and p(Ei) 
is the LEBESGUE MEASURE of the SET Ei of points for 
which values are approximately q. This type of integral 
covers a wider class of functions than does the RIEMANN 
INTEGRAL. 

see also 
GRAL 

A-INTEGRABLE, COMPLETE FUNCTIONS, INTE- 
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Lebesgue Measurability Problem 
A problem related to the CONTINUUM HYPOTHESIS 

which was solved by Solovay (1970) using the INACCES- 
SIBLE CARDINALS AXIOM. It has been proven by Shelah 
and Woodin (1990) that use of this AXIOM is essential 
to the proof. 

see also CONTIN UUM HYPOTHESIS,~NACCESSIBLE CAR- 
DINALS AXIOM, LEBESGUE MEASURE 
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Lebesgue Measure 
An extension of the classical notions of length and 
AREA to more complicated sets. Given an open set 
S E x,(uk, bk) containing DISJOINT intervals, 

/u(S) E x(bk - ak). 
k 

Given a CL~~IW SET S’ = [a, b] - xk(ak7 bk), 

/hi = (b - U) - x(bk - ak)e 
k 

A LINE SEGMENT has Lebesgue measure 1; the CAN- 
TOR SET has Lebesgue measure 0. The MINKOWSKI 

MEASURE of a bounded, CLOSED SET is the same as its 
Lebesgue measure (Ko 1995). 

see ah CANTOR SET, MEASURE, RIESZ-FISCHER THE- 
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Lebesgue Minimal Problem 
Find the plane LAMINA of least AREA A which is capable 
of covering any plane figure of unit GENERAL DIAME- 
TER. A UNIT CIRCLE is too small, but a HEXAGON 
circumscribed on the UNIT CIRCLE is too large. More 
specifically, the AREA is bounded by 

0.8257.. . = $n+ih<A< $(3-&)=0.8454... 

(Pal 1920). 

see AU AREA, BORSUK'S CONJECTURE, DIAMETER 
(GENERAL),KAKEYA NEEDLE PROBLEM 
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Lebesgue-Radon Integral 
see LEBESGUE-STIELTJES INTEGRAL 

Lebesgue Singular Integrals 

J 
b 

un(f) = f (+Gdx) dx, 
a 

where {Km(x)} is a SEQUENCE of CONTINUOUS FUNC- 
TIONS. 

Lebesgue-Stieltjes Integral 
Let a(x) be a monotone increasing function and define 
an INTERVAL I = (~1, ~2). Then define the NONNEGA- 
TIVE function 

U(I) = Q(X2 + 0) - a(x1 + 0). 

The LEBESGUE INTEGRAL with respect to a MEASURE 
constructed using U(I) is called the Lebesgue-Stieltjes 
integral, or sometimes the LEBESGUE-RADON INTE- 
GRAL. 
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Lebesgue Sum 

Sn = ww, 

where p( Ei) is the MEASURE of the 
the z-axis for which f(x) z qi. 

SET Ei of points on 
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Leech Lattice 
A 24-D Euclidean lattice. An AUTOMORPHISM of the 
Leech lattice modulo a center of two leads to the CON- 
WAY GROUP col. Stabilization of the l- and 2-D sub- 
lattices leads to the CONWAY GROUPS Co2 and COQ, 
the HIGMAN-SIMS GROUP HS and the MCLAWGHLIN 
GROUP McL. 

for integral v = 2, 3, . . . . It is related to the POLYLOG- 
ARITHM by 

xv(z) = $[Li,(z) - Li,(--E)] 

= Li,(z) - 2-“Li,(z2). 

see also POLYLOGARITHM 

The Leech lattice appears to be the densest HYPER- 

COXETER-TODD LATTICE, HEMAN-SIMS GROUP, HY- 

SPHERE PACKING in 24-D, and results in each HYPER- 
SPHERE touching 195,560 others. 

see also BARNES-WALL LATTICE, CONWAY GROUPS, 
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Lefshete Fixed Point Formula 

see LEFSHETZ TRACE FORMULA 

Lefshetz’s Theorem 
Each DOUBLE POINT assigned to an irreducible curve 
whose GENUS is NONNEGATIVE imposes exactly one con- 
dition. 

References 
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Lefsheta Trace Formula 
A formula which counts the number of FIXED POINTS 
for a topological transformation. 

Leg 
The leg of a TRIANGLE is one of its sides. 

see also HYPOTENUSE, TRIANGLE 

Legendre Differential Equation 
The second-order ORDINARY DIFFERENTIAL EQUATION 

(1 2 d2Y dY - 2 )p-22&+1(1+l)y=o, (1) 

which can be rewritten 

d 2 dY 
- [(l-x )& 
dx 1 +1(1+1)y=o. (2) 

The above form is a special case of the associated Leg- 
endre differential equation with TTZ = 0. The Legendre 
differential equation has REGULAR SINGULAR POINTS 
at -1, 1, and 00. It can be solved using a series expan- 
sion, 

y = IE a,xn 
n=O 

00 

y' = ~?lanXn-' 

n=O 

(3) 

(4) 

Legendre Addition Theorem 

see SPHERICAL HARMONIC ADDITION THEOREM 
yll= Fn(n- l)iZnZnB2. 

n=O 

(5) 

Legendre’s Chi-Function 
The function defined by 

Plugging in, 

00 00 

(1 - X2) x n(n - l)anZnV2 - 2X x 7tanXn--l 

n=O n=O 

+Z(Z + 1) F anxn = 0 (6) 
n=O 
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Cn(n - l)u,xn-2 - fya(n - qunxn 
n=O n=O 

00 

- 
2x): 

nun2 “‘+2(2+1)jl:U~Xn=0 (7) 
n=O n=O 

00 

E 
n=2 

n(n- l)anxnB2 - Fn(n- l)UnXn 

n=O 

- 27:nanXn + Z(Z + 1) x unxn = 0 (8) 
n=O n=O 

F(n + 2)(n + l)Un+2Xn - F n(n - l)u,xn 
n=O n=O 

- 2~nUnXn+1(l+1)~U,r"=0 (9) 

n=O n=O 

F{(n+ l)(n + 2)%x+2 

n-0 

+[-n(n - 1) - 2n + l(Z + l)]an} = 0, (10) 

so each term must vanish and 

(n + l)(n + 2)a,+z - n(n -I- 1) + l(l+ l)]& = 0 (11) 

an+2 = 
n(n + l)+ - E(Z + 1) 

(n+ l)(n+2) un 

-- 
[I + (n + l)](Z - n> 

- 
(n+l)(n+2) an* 

Therefore, 

(12) 

l(Z + 1) as=-- 
1.2 uo (13) 

a4 = - 
(1 - 2)(1+ 3) 

3.4 u2 

- - (-I)2 m - wm + w + 31 
l-2-3-4 

a0 (14) 

a6 = - 
(Z-4)(1+5) 

5.6 u4 

- - - ( 1)" m - w - 2MW + w + w + 511 
1.2-3.4.5.6 ao, 

(15) 

Similarly, the ODD solution is 

yz(x) = x + yyl)” 

n=l 

X 
[(E - 2n + 1) - - - (E - 3)(1 - 1)][(1+ 2)(1+ 4) *  *  ’ (1+ 2n) zrn+l 

(a-& + l)! 
2 . 

(17) 

If Z is an EVEN INTEGER, the series yl reduces to a POLY- 
NOMIAL of degree 2 with only EVEN POWERS of x and 
the series 92 diverges. If 2 is an ODD INTEGER, the series 
y2 reduces to a POLYNOMIAL of degree Z with only ODD 
POWERS of x and the series ~1 diverges. The general 
solution for an INTEGER Z is given by the LEGENDRE 
POLYNOMIALS 

pn(X) = Gz 

{ 

yl (x) for 2 even 
y2 (2) for Z odd, (18) 

where cn is chosen so that Pn (1) = 1. If the variable x 
is replaced by cos 0, then the Legendre differential equa- 
tion becomes 

d2Y 
w+ 

cos 0 dy 
- - + Z(2 + 1)y = 0, 
sin0 dx (19) 

as is derived for the associated Legendre differential 
equation with uz = 0. 

The assmiated Legendre differential equation is 

d 

[ 
2 dY 

ds 
(l-x )z 

1 [ 

+ Z(Z+l)-* 
1 - x2 1 y=o (20) 

(1 - 
x )G 2 d2Y - 2x2 + 

[ 
Z(l+ 1) - 6 

I 
y = 0. (21) 

The solutions to this equation are called the associated 
Legendre polynomials. Writing x E cos 0, first establish 
the identities 

so the EVEN solution is 

n=l 

[(Z - 2n + 2)a.a (1 - 2)1][(4! + l)(l + 3)'*'(l + 2n - l)] 2n 
(2n)! 

2 . 

(16) 

dY dY 1 dY --- -- 
dx - d(cos8) = -sin0 d0 

dY cos 8 dy -- 
x& = -sin8 d0’ 

and 
1 - x2 = 1 - cos2 0 = sin2 0. 

(22) 

(23) 

(24) 

(25) 
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Therefore, 

(1 
2 d2Y - 

"I== sin2 O- sii@(s)$+&&$fi 

d2Y cos 0 dy - ---- - 
de2 sin0 do’ (26) 

Plugging (2 2) into (26) and the result back into (21) 

gives 

d2Y cod dy ---- 
do2 sin0 d0 > 

cos 0 dy 
+2-- 

sin8 de 
+ 

L 
Z(Z + 1) - A- 

sin2 0 1 
y = 0 (27) 

d2Y 
d82+ 

sg+ z(2+1)-m2 
[ sin2 0 1 

y = 0. (28) 

References 
Abramowitz, M. and Stegun, C. A. (Eds.). Handbook 

of Mathematical Functions with Formulas, Graphs, and 
Mathematical Tables, 9th printing. New York: Dover, 
p. 332, 1972. 

Legendre Duplication Formula 
GAMMA FUNCTIONS of argument 22 can be expressed 
in terms of GAMMA FUNCTIONS of smaller arguments. 
From the definition of the BETA FUNCTION, 

Now, let m = n e x, then 

- = ’ u”-l(l -U )%--l du 
(2) 

and u E (1 + x)/2, so du = dx/2 and 

E ;~l(!+?)z-l(~)rl dx 

1 

s 

1 

- - 
21+2(%-f) (1 

- x2)%-’ dx 
0 

= 21-2r 
s 

1 
(1 - 22)t-’ dx:. 

0 

NOW, use the BETA FUNCTION identity 

s 1 B(m,n) = 2 x2'-l(1- x~)“-~~x 
0 

to write the above as 

(3) 

(4 

(5) 

Solving for r(22), 

r(22) = 
r(z)r(x+ 3)22z-1 qz)r(z+ 322"-1 - - 

W) 2 I/- 7T 

- - (2 > 7T 
-l/222"-l/2 

r(q(Z + $1, (6) 

since r(f) = 6. 

see also GAMMA FUNCTION, GAUSS MULTIPLICATION 
FORMULA 

References 
Abramowitz, M. and Stegun, C. A. (Eds.). Handbook 

of Mathematical Functions with Formulas, Graphs, and 
Mathematical Tables, 9th printing. New York: Dover, 
p. 256, 1972. 

Arfken, G. Mathematical Methods for Physicists, 3rd ed. Or- 
lando, FL: Academic Press, pp* 561-562, 1985. 

Morse, P. M. and I”eshbach, H. Methods of Theoretical Phys- 
ics, Part I. New York: McGraw-Hill, pp* 424-425, 1953. 

Legendre’s Factorization Method 
A PRIME FACTORIZATION ALGORITHM in which a se- 
quence of TRIAL DIVISORS is chosen using a QUADRA- 
TIC SIEVE. By using QUADRATIC RESIDUES of& the 
QUADRATIC RESIDUES of the factors can also be found. 

see also PRIME FACTORIZATION ALGORITHMS, QUAD- 
RATIC RESIDUE, QUADRATIC SIEVE FACTORIZATION 
METHOD, TRIAL DIVISOR 

Legendre’s Formula 
Counts the number of POSITIVE INTEGERS less than or 
equal to a number x which are not divisible by any of 
the first a PRIMES, 

(1) 

where 1x1 is the FLOOR FUNCTION. Taking a = x gives 

where OF is the PRIME COUNTING FUNCTION. Leg- 
endre’s formula holds since one more than the number 
of PRIMES in a range equals the number of INTEGERS 
minus the number of composites in the interval. 

Legendre’s formula satisfies the RECURRENCE RELA- 
TION 

q3(x,a)=gqx,a-q-4 ~,a-1 l  

( > 

(3) 
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Let rnk E plp2 . . . pk, then 

=“r(l-&) (I-;)+;) 

= f&Ii - 1) = $(mk), (4) 

where 4(n) is the TOTIENT FUNCTION, and 

#(smk + t, k) = q+k) + 4(t, k), 

where 0 < t < m - ka If t > mk/2, then 

(5) 

@(t, k) = @(mk) - 6(mk - t - 1, k). (6) 

Note that q%( 72,112) is not practical for computing n(n) 
for large arguments. A more efficient modification is 
MEISSEL'S FORMULA. 

see also LEHMER'S FORMULA, MAPES' METHOD, MEIS- 
SEL'S FORMULA,~RIME COUNTING FUNCTION 

Legendre Function of the First Kind 

~~~LEGENDRE POLYNOMIAL 

Legendre Function of the Second Kind 

2.5- 
I 

2: 

A solutiontothe LEGENDRE DIFFERENTIAL EQUATION 
which is singular at the origin. The Legendre functions 
of the second kind satisfy the same RECURRENCE RE- 
LATION as the LEGENDRE FUNCTIONS OF THE FIRST 
KIND. The first few are 

5x3 - Q3 = - 3z 
4 

ln ( - +x 1 
l-x 

> -2+3* 5x2 2 

The associated Legendre functions of the second kind 
have DERIVATIVE about 0 of 

dQE (4 [ 1 _ zpl/;; co++ + p)]r(+ + $A + 1) 
dx - x=0 r<+ - $+ $1 

(Abramowitz and Stegun 1972, p. 334). The logarithmic 
derivative is 

= 2 exp{ + sgn(Q[z])} 
[;(A + dl![$ - PW 

[$(A + p - l)]![$(X - p - l)]! 

(Binney and Tremaine 1987, p. 654). 
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Legendre-Gauss Quadrature 
Also called “the” GAUSSIAN QUADRATURE or LEGEN- 
DRE QUADRATURE. A GAUSSIAN QUADRATURE over 
theinterval[-l,I]with WEIGHTING FUNCTION W(x) = 
1. The ABSCISSAS for quadrature order n are given by 
therootsofthe LEGENDRE POLYNOMIALS P,(x),which 
occur symmetrically about 0. The weights are 

A n+l”ln A, ufi = - 77X-l 

A-~A(x~)P,+I (xi) = A,-1 p,-I(x~)P:,(x~) ’ 

(1) 
where A, is the COEFFICIENT of xn in Pn(x). For LEG- 
ENDRE POLYNOMIALS, 

(2 1 n! 
A, = - 

2n(n!)2 ’ (2) 

so 

A n+l - - [2(n + l)]! 2n(n!)2 

An - 2”+qn + 1)!]2 (2n)! 

- (2n+1)(271+2) 2n+1 
- 

2(n+1)2 = n+l l  

(3) 

Additionally, 
2 

Yn = 2n+l’ (4 
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SO Legendre Polynomial 

2 2 
wi = - 

(n -t 1)K+l(xi)PA(xi) = nP,-l(xi)P:,(xi) ’ 
(5) 

Using the RECURRENCE RELATION 

(I- 22>P&) = nxP,(x) + nP&x) (6) 

= (n+ 1)x%(x) - (n+ l)K+l(x) (7) 

gives 

2 
wi = 

2(1 - Xi”) 

(1 - xi2)[PA(xi)12 = (n + l)2[Pn+l(xi)]2 l  (‘) 

The error term is 

22n+l nr 4 ( l ) 
E = (2n + l)[(2n)!13 

fwd (5). (9) 

Beyer (1987) gives a table of ABSCISSAS and weights up 
to n = 16, and Chandrasekhar (1960) up to n = 8 for n 
EVEN. 

n Xi Wi 

2 AIo.57735 1.000000 
3 0 0.888889 

kO.774597 0.555556 
4 50.339981 0.652145 

ho.861136 0.347855 
5 0 0.568889 

drO.538469 0.478629 
ho.90618 0.236927 

1 

0.8 

0.6 

0.4 

0.2 

-0.2 

-0.4 

The LEGENDRE FUNCTIONS OF THE FIRST KIND are 
solutions to the LEGENDRE DIFFERENTIAL EQUATION. 
If I is an INTEGER, they are POLYNOMTALS. They are a 
special case of the ULTRASPHERICAL FUNCTIONS with 
Q: = l/2. The Legendre polynomials P,(x) are illus- 
trated above for x f [0, l] and n = 1, 2, . . . , 5. 

The Rodrigues FORMULA provides the GENERATING 
FUNCTION 

1 dl R(x) = fi-g(x2 - q”, (1) . 

which yields upon expansion 

1 
P!(X) = - 

ln12’ (-1)“(22 - 2k)! z-2k 

2z k!(Z - k)!(Z - 2k)! x t (2) 
k=O 

where 1~1 is the FLOOR FUNCTION. The GENERATING 

FUNCTION is 

The ABSCISSAS and weights can be computed analyti- 00 
tally for small n. g(t, 2) = (1 - 2Xt + t2)-lj2 = x Pn(x)tn. (3) 

n xi Wi n=O 

2 &+a 
3 0 

1 
8 
9 

References 
Beyer, W. I-l. CRC Standard MathematicaZ Tables, 28th ed. 

Boca Raton, FL: CRC Press, pp* 462-463, 1987. 
Chandrasekhar, S. Radiative Bansfer. New York: Dover, 

pp. 56-62, 1960. 
Hildebrand, F. B. I&roduction to Numerical Analysis. New 

York: McGraw-Hill, pp. 323-325, 1956. 

Legendre-Jacobi Elliptic Integral 
Any of the three standard forms in which an ELLIPTIC 
INTEGRAL can be expressed. 

see ah ELLIPTIC INTEGRAL OF THE FIRST KIND, EL- 
LIPTIC INTEGRAL OF THE SECOND KIND,ELLIPTIC IN- 
TEGRAL OF THE THIRD KIND 

Take dg/dt, 

-i(l-2xt+t2) -3’2(-2X + 2t) = 2 nPn(X)tnB1. (4) 

r&=0 

Multiply (4) by Zt, 

-t(l - 2Xt + t2)-3’2(-2X + 2t) = F2nPn(X)tn (5) 

n=o 

and add (3) and (5), 

(1 - 2xt + t2)-3/2 [(2xt - 2t2) + (1 - 2xt + t")] 

00 
- - 

>( 2n + I)P,(X)tn (6) 

n=O 

(1 - 2xt + t2)-3i2 (1 - t”) = F(Zn+ l)Pn(X)tn. (7) 
n=O 
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This expansion is useful in some physical problems, in- 
cluding expanding the Heyney- Greenstein phase func- 
tion and computing the charge distribution on a 
SPHERE. They satisfy the RECURRENCE RELATION 

(I + l)fi+dX) - (21 + 1)X8(x) + lP~&) = 0. (8) 

The Legendre polynomials are orthogonal over (-1,l) 
with WEIGHTING FUNCTION 1 and satisfy 

s 1 

Pn(x)Pm(x) dx = &b,,,, (9) 
-1 

where S,, is the KRONECKER DELTA. 

A COMPLEX GENERATING FT.JNCTION is 

1 
Pi(X) = - 

2ni s 
(1 - 22x + z’)-~‘~z-‘-~ dz, (10) 

and the SchGfli integral is 

(-1)” 1 
Pi(X) = -- 

s 

(I- z2)l dz 
2’ 27ri (z - xy+l ’ (11) 

Additional integrals (Byerly 1959, p. 172) include 

s 1 

Pm(x) da: 
0 

0 m even # 0 - - 
( 1) _ b-w2 m ! !  

m(m+1)(m-I)!! m odd (12) 

1 

Pm(x)Pn(x) dx = 

0 
m, n both even or odd m # n 

(-qb+n+W m!n! 
2m+n+1(m-n)(m+n+l)(~ m)!([+(n-1)]!)2 

m even, n odd 

2n+l 1 

m = n. 

(13) 
An additional identity is 

n 1-x2 
l- RW12 = x 1-- pt ( p;((x) 2 ) 

[ 1 
2 

nxw x- Y  
(14) 

u=l 

(Szeg6 1975, p. 348). 

The first few Legendre polynomials are 

PO(X) = 1 

PI(X) = x 

Pz(x) = +(3x2 - 1) 

P3(x) = +(5x3 - 3x) 

P4(x) = :(35x4 - 30x2 + 3) 

Pi = +(63x5 - 70x3 + 15x) 

P6(x) = $(231x” - 315x4 + 105x2 - 5). 

The first few POWERS in terms of Legendre polynomials 
are 

X = PI 

x2 = i(Po + 2P2) 

x3 = ;(3P1 + 2P3) 

x4 = &. (7Po + 20P2 4- 8P4) 

x5 = & (27P1 + 28P3 + 8P5) 

x6 =: &(33Po + IloP + 72P4 + 16P5). 

For Legendre polynomials and POWERS up to exponent 
12, see Abramowite and Stegun (1972, p. 798). 

The Legendre POLYNOMIALS can also be generated using 
GRAM-SCHMIDT ORTHONORMALIZATION in the OPEN 
INTERVAL (-1,l) with the WEIGHTING FUNCTION 1. 

(15) 

= [x-MkJx-%&x2-~ (17) 

s’ ( 12 

-1’ 
xx2+ dx 

s ( 

( x2 - f) 
-1 

x2 - ;)” dx 1 
s -1 1 ( X2 -3 l2 1 d 2 

- 

s --3 1 x2 dx 

=x x2-$- 

1 

( 
L-2 

5 
3 + i)x 

1 - 1 
L 3 J 

= x3 - ix - 3($ - $) 

Normalizing so that Pm(l) = 1 gives the expected Leg- 
endre polynomials. 

The “shifted” Legendre polynomials are a set of func- 
tions analogous to the Legendre polynomials, but de- 
fined on the interval (0, 1). They obey the ORTHOCO- 
NALITY relationship 

J 
1 

Fm(x)P,(x) dx = &tSmn. (19) 
0 

The first few are 

PO(X) = 1 
- 

P,(x)=Zx-I 

P2(x)=6x2-6x+1 
- 

P3(x) = 20x3 -30x2 + 12x - 1. 
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The associated Legendre polynomials ps”(x) are so- 
lutions to the associated LEGENDRE DIFFERENTIAL 
EQUATION, where 2 is a POSITIVE INTEGER and m = 0, 

2. They can be given in terms of the unassociated 
~&nomials by 

Additional identities are 

Plyx) = (-l)“(l - xZ)m$&x) 

m 

where Pi(x) are the unassociated LEGENDRE POLYNO- 
MIALS. Note that some authors (e.g., Arfien 1985, 
p. 668) omit the CONDON-SHORTLEY PHASE (-l)“, 
while others include it (e.g., Abramowitz and Stegun 
1972, Press et al. 1992, and the LegendreP[l,m,z] 
command of Mathematics@). Abramowitz and Stegun 
(1972, p. 332) use the notation 

Pi,(X) = (-l)mPL(X) (21) 

to distinguish these two cases. 

Associated polynomials are sometimes called F 
FUNCTIONS (Sansone 1991, p* 246). If m = 0, 

ERRERS' 
they re- 

duce to the unassociated POLYNOMIALS. The associated 
Legendre functions are part of the SPHERICAL HARMON- 
ICS, which are the solution of LAPLACE'S EQUATION 
in SPHERICAL COORDINATES. They are ORTHOGONAL 
over [-l,l] with the WEIGHTING FUNCTION 1 

s 1 

P”(x)P;;“(x) dx = -?- (lf&p, 
22+1 (Z-m)! (22) 

-1 

ORTHOGONAL over [-l,l] with respect to m with the 
WEIGHTING FUNCTION (l-~‘)-~ 

s 1 

p;“(x)p;“‘(x)* = 
1 - x2 

(I+ m)! d 
m(l - m)! mm” (23) 

-1 

They obey the RECURRENCE RELATIONS 

(I- m)Pim(x) = x(21 - l)P&(x) - (I + m - l)PiT2(x) 

(24) 

dPjm dP,” -c-d-- 
d0 dP 

= $(E -m+l)(E+m+P;“-l-P,“+l) (25) 

(21-t l)jAPirn = (I+ m)P& + (1 - m + l)P& (26) 

(21+ l)&=p PE” = Pg’ - p,y. (27) 

An identity relating associated POLYNOMIALS with 
NEGATIVE m to the corresponding functions with POS- 
ITIVE m is 

(1 m)! pl-m = (-l)m= 
(1 + m)!p;“’ 

P;(x) = (-1)“(22 - l)!!(l - X2)2/2 (29) 

pl”,l(X) = x(21 + l)P/(x). (30). 

Written in terms of x and using the convention without 
a leading factor of (-1)” (A&en 1985, p. 669), the first 
few associated Legendre polynomials are 

Pi(x) = 1 

P;(x) = x 

P;(x) = -(l - x2p2 

P”(x) = :(3x2 - 1) 

Pi(x) = -3x(1 - x2)li2 

P;(x) = 3(1- x2) 

PO(x) = +x(5x2 - 3) 

P;(x) = ;(l - 5x2)(1 - x2)1’2 

Pi(x) = 15x(1 - x2) 

Pi(x) = -15(1 - x2)3’2 

Pi(x) = +(35x4 - 30x2 + 3) 

P;(x) = :x(3 - 7x2)(1 - x2p2 

P?(x) = 9(7x2 - l)(l - x2) 

P:(x) = -105x( 1 - x2)3’2 

P;(x) = 105(1 - x2)2 

P;(x) = :x(63x4 - 70x2 + 15). 

Written in terms x E co&, the first few become 

P~(cos8) = 1 

PC1 (cos 0) = f sin 8 

P;(cosq = case = p 

P,1(cos 0) = sin 8 

P,-“(cos 6) = + sin2 8 

P2-l (cos 0) = f sin 8 cos 0 

Pf(cos9) = i(3cos2B - 1) 

P,l(cos 0) = 3sinBcos0 

= 4 sin2 0 

Pz (cos 0) = 3 sin2 8 

= g(1-cos2e) 

Pt(cos e> = + cos 8(5 cos2 8 - 3) 

- f cos 8( 2 5 - - sin2 8) 

P,l(cos 0) = $(5 cos2 8 - 1) sin 8 

= i(sin0 + 5sin3 0). 

The derivative about the origin is 

2p+1 sin[+(v + p)]r(+ + $J + 1) 

n1/2r(;v - $4 + +) 

(31) 
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(Abramowitz and Stegun 1972, p* 334), and the loga- Legendre Quadrature 
rithmic derivative is see LEGENDRE-GAUSS QUADRATURE 

[ dln#Yq z=. 
= 2 tan[+(X + cl)] 

[$(A + P>l![$P - PII! 
[$(A + p - l)]![$(X - p - l)]!’ 

(32) 

(Binney and Tremaine 1987, p. 654). 

see also CONDON-SHORTLEY PHASE, CONICAL FUNG 
TION, GEGENBAUER POLYNOMIAL, KINGS PROBLEM, 
LAPLACE'S INTEGRAL, LAPLACE-MEHLER INTEGRAL, 
SUPER CATALAN NUMBER, TOROIDAL FUNCTION, 
TURAN'S INEQUALITIES 
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DC: Hemisphere, pp. 183-192 and 581-597, 1987. 

Szeg6, G. Orthogonal Polynomials, 4th ed. Providence, RI: 
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Legendre Polynomial of the Second Kind 

~~~LEGENDRE FUNCTION OF THE SECOND KIND 

Legendre Relation 
Let E(k) and K(k) b e complete ELLIPTIC INTEGRALS 
OF THE FIRST and SECOND KINDS, with E’(k) and 
K’(k) the complementary integrals. Then 

E(k)K’(k) + E’(k)K(k) - K(k)K’(k) = + 

References 
Abramowitz, M. and Stegun, C. A. (Eds.). Handbook 

of Mathematical Functions with Formulas, Graphs, and 
Mathematical Tables, 9th printing, New York: Dover, 
p* 591, 1972. 

Legendre Series 
Because the LEGENDRE FUNCTIONS OF THE FIRST 
KIND form a COMPLETE ORTHOGONAL BASIS, any 
FUNCTION may be expanded in terms of them 

f  (2) = F unPn(x). 

n=O 

(1) 

Now, multiply both sides by Pm(x) and integrate 

Pn (x)Pm (2) dx* (2) 

But 

I 
1 

Pn(x)Pm(x) dx = &&nn, (3) 
- 

d-1 

where S,, is the KRONECKER DELTA,S~ 

I 
1 

Rn(x)f (2) dx = 

-1 

and 

00 
x 2 -6 

(%-n+l mn= 

2 

2mfP 

(4) 

2m+l ’ 
a, = ~ q I %(x)f (2) dx. (5) 

& J-1 

see also FOURIER SERIES, JACKSON'S THEOREM, LEG- 
ENDRE POLYNOMIAL, MACLAURIN SERIES, PICONE'S 
THEOREM,TAYLOR SERIES 

Legendre Sum 

~~~LEGENDRE'S FORMULA 

Legendre’s Quadratic Reciprocity Law 

see QUADRATIC RECIPROCITY LAW 
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Legendre Symbol where the bks are NONNEGATIVE and 

bk 2 (bk-l)2 +bk-l+ 1. 

m (-1 n = (ml4 

0 if mln 
- - - 1 if n is a quadratic residue modulo m 

-1 if n is a quadratic nonresidue modulo r~z. 

If m, is an ODD PRIME, then the JACOBI SYMBOL re- 
duces to the Legendre symbol. The Legendre symbol 

obeys WIP) = (alPMP)* 

0 3 1 1 = if p E kl (mod 12) 

6 -1 if p E *5 (mod 12). 

see also JACOBI SYMBOL, KRONECKER SYMBOL, QUAD- 
RATIC RECIPROCITY THEOREM 

References 
Guy, R. K. “Quadratic Residues. Schur’s Conjecture.” SF5 

in Unsolved Problems in Number Theory, 2nd ed. New 
York: Springer-Verlag, pp. 244-245, 1994. 

Shanks, D. Solved and Unsolved Problems in Number Theory, 
4th ed. New York: Chelsea, pp. 33-34 and 40-42, 1993. 

Legendre Transformation 
Given a function of two variables 

df = g dx + af dydy=udx+vdy, (1) 

change the differentials from dz and dy to du and dy 
with the transformation 

dg = df - udx-xdu=udx+vdy-udx-xdu 

=vdy-xdu. (3) 

Then 

39 x--- 
dU 

39 
II--. 

dY 

(4) 

(5) 

Lehmer’s Constant 
N.B. A detailed on-line essay by S. Finch was the start- 
ing point for this entry. 

Lehmer (1938) showed that every POSITIVE IRRATIONAL 
NUMBER z has a unique infinite continued cotangent 
representation of the form 

x = cot 

The case for which the convergence is slowest occurs 
when the inequality is replaced by equality, giving co = 0 
and 

ck = (ck-1)2 + ck-l. + 1 

for k > 1. The first few values are ck are 0, 1, 3, 13, 183, 
33673,. . . (Sloane’s A024556), resulting in the constant 

t = cot(cot-lo - cot-l 1+ cot-l 3 - cot-l 13 

+-cot-l 183 - cot-‘33673 + cot-’ 1133904603 

- cot-l 1285739649838492213 + . . . + (-l)‘ck + . . .) 

= cot( +r + cot-l 3 - cot-l 13 

+ cot-l 183 - cot-‘33673 + cot-’ 1133904603 

- cot-l 1285739649838492213 + l  l  . + (-l)kck + . l  .) 

= 0.59263271.. . 

(Sloane’s A030125). < isnotan ALGEBRAIC NUMBER of 
degree less than 4, but Lehmer’s approach cannot show 
whether or not t is TRANSCENDENTAL. 

seealso ALGEBRAIC NUMBER,TRANSCENDENTALNUM- 
BER 
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Finch, S. “Favorite Mathematical Constants.” http: //ww l  
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Le Lionnais, F. Les nombres remarquables. Paris: Hermann, 
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Plouffe, S. “The Lehmer Constant.” http: //lacim.uqam. ca/ 
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Lehmer’s Formula 
A FORMULA related to MEISSEL'S FORMULA. 

++(b+a-2)(b-a+l)- 
2ib ( ) 

TT 2 
Pi 

where 

a E m(x1’4) 

b E r(xli2) 

and r(n) is the PRIME COUNTING FUNCTION. 

References 
Riesel, H. “Lehmer’s Formula.” Prime Numbers and Com- 

puter Methods for Factorization, 2nd ed. Boston, MA: 
Birkhguser, pp+ 13-14, 1994. 
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Lehmer Method Lehmer’s Problem 
see LEHMER-SCHUR METHOD 

Lehmer Number 
A number generated by a generalization of a LUCAS SE- 
QUENCE. Let a and 0 be COMPLEX NUMBERS with 

Cl+p=JR (1) 

a0 = Q, (2) 

whereQand R are RELATIVELY PRIMENONZEROINTE- 
GERS and a/P is a ROOT OF UNITY. Then the Lehmer 
numbers are 

&(a,&) = 3, 
Q-P 

(3) 

and the companion numbers 

References 
Lehmer, D. H. “An Extended Theory of Lucas’ Functions.” 

Ann. Math. 31, 419-448, 1930. 
Ribenboim, P. The Book of Prime Number Records, 2nd ed. 

New York: Springer-Verlag, pp. 61 and 70, 1989. 
Williams, H. C. “The Primality of N = 2A3” - 1.” Canad. 

Math. Bull. 15, 585-589, 1972. 

Lehmer’s Phenomenon 

Do there exist any COMPOSITE NUMBERS vz such that 

4b>l(n - 1) ? No such numbers are known. In 1932, 
Lehmer showed that such an n must be ODD and 
SQUAREFREE, and that the number of distinct PRIME 
factors d(7) > 7. This was subsequently extended to 
d(n) > 11. The best current results are n > 1020 
and d(n) > 14 (Cohen and Hagis 1980), if 3@n, then 
d(n) > 26 (Wall 1980), 
5.5 x 10570 

and if 3ln then d(n) > 213 and 
(Lieuwens 1970). 
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Cohen, G. L. and Hagis, P. Jr. “On the Number of Prime 

Factors of 7~ is 4(n)@ - l).” I&emu Arch. Wisk. 28, 
177-185, 1980. 
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Sequence (Ed. V. E. Hoggatt and M. V. E. Bicknell- 
Johnson). San Jose, CA: Fibonacci ASSOC., pp. 205-208, 

Lehmer-Schur Method 
An ALGORITHM which isolates ROOTS in the COMPLEX 
PLANE by generalizing 1-D bracketing. 

References 
Acton, F. S. Numerical Methods That Work, 2nd printing. 

Washington, DC: Math. Assoc. Amer., pp. 196-198, 1990. 

Lehmer’s Theorem 

see FERMAT'S LITTLE THEOREM CONVERSE 

Lehmus’ Theorem 

The appearance of nontrivial zeros (i.e., those along the 
CRITICAL STRIP with ~I[z] = l/2) ofthe RIEMANN ZETA 
FUNCTION C(Z) very close together. An example is the 
pair of zeros c( i + (7005 + t)i) given by tl z 0.0606918 
and t2 ==: 0.100055, illustrated above in the plot of I<( i + 
(7005 + t)i)l”. 

see also CRITICAL STRIP, RIEMANN ZETA FUNCTION 
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Zeros, the de Bruijn-Newman Constant and the Riemann 
Hypothesis.” Constr. Approx. 10, 107-129, 1994. 
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of Zeros and the Riemann [-Function.” In Mathematics 
of Computation 1943-1993: A Half- Century of Computa- 
tional Mathematics (Vancouver, BC, 1993). Proc. Sympos. 
Appl. Math. 48, 553-556, 1994. 

Wagon, S. Mathematics in Action. New York: W. H. Free- 
man, pp* 357-358, 1991. 

see STEINER-LEHMUS THEOREM 

Leibnix Criterion 
Also known as the ALTERNATING SERIES TEST. Given 
a SERIES 

n=l 

with a= > 0, if a, is monotonic decreasing as 72 + 00 
and 

lim a, = 0, 
?I+00 

then the series CONVERGES. 

Leibniz Harmonic Triangle 
I 
1 

1 1. 

In the Leibniz harmonic triangle, 

2 2 
1 1. 1 
3 6 

11 l3 
4 12 12 

1. 1 1 1 
5 20 30 20 

sum of numbers below it, with the initial and final en- 
try on each row one over the corresponding entry in 

1 
4 

1 
5 

each FRACTION is the 
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PASCAL'S TRIANGLE. The DENOMINATORS in the sec- 
ond diagonals are 6, 12, 20, 30, 42, 56, . . . (Sloane’s 
A007622). 

see also CATALAN'S TRIANGLE, CLARK'S TRIANGLE, 
EULER'S TRIANGLE, NUMBER TRIANGLE, PASCAL'S 
TRIANGLE, SEIDEL-ENTRINGER-ARNOLD TRIANGLE 

References 
Sloane, N. J. A. Sequence A007622/M4096 in “An On-Line 

Version of the Encyclopedia of Integer Sequences.” 

Leibniz Identity 

n d”-‘u d’w 
+-+ 

0 
-- +ud”v+dx”. (1) 

r dxn+ dx’ 

Therefore, 

dx I 

dy=g (2) 

- - -- (3) 

$= ~(g)2-gg] (g)-5. (4) 

References 
Abramowitz, M. and Stegun, C. A. (Eds.). Handbook 

of Mathematical Functions with Formulas, Graphs, and 
Mathematical Tables, 9th printing. New York: Dover, 
p. 12, 1972. 

Leibniz Integral Rule 

I 

w 
- - 

44 
g dx + f (b(z), x) g 

References 
Abramowitz, M. and Stegun, C. A. (Eds.). Hand book 

of Mathematical Functions with Formulas, Graphs, and 
Mathematical Tables, 9th printing. New York: Dover, 
p. 11, 1972. 

Leibniz Series 
The SERIES for the INVERSE TANGENT, 

tan-l 2 =x- $x3 -/- ix” -/- . . . . 

Lemarik’s Wavelet 
A wavelet used in multiresolution representation to an- 
alyze the information content of images. The WAVELET 
is defined by 

H(w) = 
2 -4U3 w 

2(1- u)~ ;;; - y2; ;;;$ _ 4v3 1 - 1 
where 

u G sin2($w) 

21 G sin'w 

(Mallat 1989). 

see also WAVELET 

References 
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tern AnaZysis Machine Intel. 11, 674-693, 1989. 
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Lemma 
A short THEOREM used in proving a larger THEOREM. 
Related concepts are the AXIOM, PORISM, POSTULATE, 
PRINCIPLE, and THEOREM. 

see also ABEL'S LEMMA, ARCHIMEDES' LEMMA, 
BARNES'LEMMA,BLICHFELDT'S LEMMA, BOREL-CAN- 
TELLI LEMMA, BURNSIDE'S LEMMA, DANIELSON-LAN- 
czos LEMMA, DEHN'S LEMMA, DILWORTH'S LEMMA, 
DIRICHLET'S LEMMA, DIVISION LEMMA, FARKAS'S 
LEMMA, FATOU'S LEMMA, FUNDAMENTAL LEMMA 
OF CALCULUS OF VARIATIONS, GAUSS'S LEMMA, 
HENSEL'S LEMMA, 1~6% LEMMA, JORDAN'S LEMMA, 
LAGRANGE'S LEMMA, NEYMAN-PEARSON LEMMA, 
POINCARI?S HOLOMORPHXC LEMMA, POINCAR~'S 
LEMMA, P~LYA-BURNSIDE LEMMA, RIEMANN-LE- 
BESGUE LEMMA, SCHUR'S LEMMA, SCHUR'S REPRE- 
SENTATION LEMMA,%HWARZ-PICKLEMMA,SPIJKER'S 
LEMMA,~ORN'S LEMMA 

Lemniscate 

A polar curve also called LEMNISCATE OF BERNOULLI 
which is the LOCUS of points the product of whose dis- 
tances from two points (called the FOCI) is a constant. 
Letting the FOCI be located at (*a, O), the Cartesian 
equation is 

I( x - a)” -5 ~‘][(a: + a)’ + y2] = a4, (1) 

which can be rewritten 

x4 +y4 + 22'~' = 2a2(x2 - y"). (2) 
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Letting a' = aa, the POLAR COORDINATES are given 

bY 
r2 = a2 cos(28). 

An alternate form is 

r2 = a2 sin(28). (4) 

The parametric equations for the lemniscate are 

ucost 
X= 

1 + sin2 t 
(5) 

asintcost 
Y= 

1 + sin2 t . (6) 

The bipolar equation of the lemniscate is 

andin PEDAL COORDINATES withthe PEDAL PRINT at 
the center, the equation is 

The two-center BIPOLAR COORDINATES equation with 
origin at a FOCUS is 

T-17-2 = c2. (9) 

Jakob Bernoulli published an article in Acta Eruditorum 
in 1694 in which he called this curve the lemniscus (“a 
pendant ribbon”). Jakob Bernoulli was not aware that 
the curve he was describing was a special case of CASSINI 
OVALS which had been described by Cassini in 1680. 
The general properties of the lemniscate were discovered 
by G. Fagnano in 1750 (MadNor Archive). Gauss’s 
and Euler’s investigations of the ARC LENGTH of the 
curve led to later work on ELLIPTIC FUNTTIONS. 

The CURVATURE of the lemniscate is 

3&os t 

K= JcGqrt)’ 
(10) 

The ARC LENGTH is more problematic. Using the polar 
form, 

ds2 = dr2 + r2 d02 (11) 

so 

ds= /I+ (rg)2dr. (12) 

But we have 
2~ dr = 2a2 sin(20) de (13) 

dr r2 

‘23 = a2 sin(M) 

T4 4 
r4 

a4 sin2(28) = a4[1 - Tcos2(28), = a4 - 734' 

(15) 

and 

L=~ads=2~a$d,=2~a /+ (17) 
- - 

a 

Let t = T/U, so dt = dr/u, and 

s 1 

L = 2u (1 - t4)-1’2 dt, 
0 

(18) 

which, as shown in LEMNISCATE FUNCTION, is given 
analytically by 

(19) 

Ifa- 1, then 

L = 5.2441151086.. . , (20) 

which is related to GAUSS’S CONSTANT A4 by 

(21) 

The quantity L/2 or L/4 is called the LEMNISCATE CON- 

STANT and plays a role for the lemniscate analogous to 
that of TT for the CIRCLE. 

The AREA of one loop of the lemniscate is 

A’; 
s 

r2de= +u2 
s 

r/4 
cos(20) d0 = $z2[sin(20)]~~,, 

-w/4 

= +a2[sin(20)]i’4 = &“[sin(t) - sin01 = $u2. (22) 

see also LEMNISCATE FUNCTION 
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Lemniscate of Bernoulli 

see LEMNISCATE 

Lemniscate Case 
The case ofthe WEIERSTRAJ~ ELLIPTIC FUNCTION with 
invariants g2 = 1 and g3 = 0. 

see UZSO EQUIANHARMONIC CASE, WEIERSTRA~S ELLIP- 
TIC FUNCTION, PSEUDOLEMNISCATE CASE 
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Lemniscate Constant 
Let 

L- +r(t)12 = 5.2441151086,. . 
7r 

be the ARC LENGTH of a LEMNISCATE with a = 
1. Then the lemniscate constant is the quan- 
tity L/2 (Abramowitz and Stegun 1972), or L/4 = 
1.311028777 l  . l  (Todd 1975, Le Lionnais 1983). Todd 
(1975) cites T. Schneider (1937) as proving L to be a 
TRANSCENDENTAL NUMBER. 

see also LEMNISCATE 
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Lemniscate Function 
The lemniscate functions arise in rectifying the ARC 
LENGTH of the LEMNISCATE. The lemniscate functions 
were first studied by Jakob Bernoulli and G. Fagnano. 
A historical account is given by Ayoub (1984), and an 
extensive discussion by Siegel (1969). The lemniscate 
functions were the first functions defined by inversion of 
an integral, which was first done by Gauss. 

L = 2a 
J 

l(l- t4)-1/2d~* 
0 

Define the functions 

4(x) E arcsinlemnx = 
J 

x(l - t4)-lj2 dt 
0 

J 
1 

47 > X = arccoslemnx = (1 - t4)-1’2 dt, 
5 

(1) 

(2) 

(3) 

Lem nisca t e Function 

where 
L 

WE -, 
a 

and write 

x = sinlemn 4 

x = coslemn 4’. 

There is an identity connecting 4 and 4’ since 

qqx) + (b’(x) = & = fa, 

These be functions can 
FUNCTIONS, LIPTIC 

sinlemn 4 = coslemn( +a - 4). 

written 

1065 

EL- 

J 

I I I 
u= [(l - P2Y2)(l + Ic2y2)]-1’2 dy. (9) 

0 

NOW, if k = k’ = l/A, then 

I 
sd(u,l/fi) 

u= EC1 - +y2)(1 + ;y2)]-1’2dy 
JO 

- J 
sd(u,l/&) - (1 - qY 

1 4 -li2 dye > 
0 

Let t E y/Jz so dy = fidt, 

J 
s+,l/&)/fi IL= 1/z (1 - t4)-li2 dt 

0 

U 

s 

sd(u,l/fi)/ti 

-= 

1/z 

(1 - t4)-1’2 dt 
0 

J 
sd(ul/Z,I/fi)/fi 

U= (1 - t4)-li2 dt, 
0 

$52). 

Similarly, 

J 
1 

u= (1 - t2)-1/2(k’2 + k2t2)-li2 & 

cn(u,k) 

J 
1 - - (1 - t2)-li2 (+ + ;t2)-1'2 & cn(u,l/d2) 
J 

1 

- - J2 (1 - t4)-li2 dt 
cn(IL,l/fi) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

s 1 
U 

-z 

a 

(1 - t4)-li2 dt (16) 
cn(u,l/A) 
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s 1 U= (1 - t4)-1’2 dt, 
cn(ud2,1/~) 

and 
1 

coslemn# = cn q5J2, - , ( > fi 

We know 

coslemn( i w) = cn($wdT,-$) =O. 

But it is true that 

cn(K, k) = 0, 

r”(i) 1 
4J;;=Jzw 

r2(:) r2(il L=aw=a&--- 
41/?; - 23/2+ am 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

By expanding (I 7 t4)-li2 in a BINOMIAL SERIES and 
integrating term by term, the arcsinlemn function can 
be written 

where (& is the RISING FACTORIAL (Berndt 1994). Ra- 
manujan gave the following inversion FORMULA for q5(z). 
If 

G O” 1 

-=: 

1/z 
>: 

( > 2 nX 
4n+l 

n=O 
n!(4n + 1) ’ (25) 

where 

(26) 

is the constant obtained by letting x = 1 and 0 = r/2, 
and 

V = 2-=i2 sd(@), (27) 

then 

P2 1 
,I csc2 0 - - - O” n cos(Znf9) 

2x2 ?I- 8x e2m-L - 1 (28) 

(Berndt 1994). R amanujan also showed that if 0 < 8 < 
n/2, then 

p O” ($),v4n-1 
-- 

l/5 x O” sin( 2nB) 
n!(4n - 1) 

= cot e+8+4 x -7 
7r 

(29) 
1 

n=O ' 
I 

n= 1 

Lemniscate Inverse Curve 

lnv+&- 

O2 O” cos(2nO) 
= ln(sin 0) + 2n - 2 x 

n(earn - 1) ’ (30) 
n=l 

00 

f tan-l 21= x 
sin[(2n + I)01 

n-0 
(2n + 1) cosh[$(2n + l)n]’ (31) 

and 

Jz” 

G 
x 

22n(n!)2 

n=O 
(293 + 1)!(4n + 3)’ 

4n+3 

ne 
00 

- (-1)” sin[(2n + 1)0] 
- -- 

8 IE 
n=. Pn + 1) 2 cosh[ i (2n + l)n] (33) 

(Berndt 1994). 

A generalized version of the lemniscate function can be 
defined by letting 0 < B < n/2 and 0 < v < 1. Write - - - - 

(34) 

where p is the constant obtained by setting 0 = n/2 and 
V = 1. Then 

(35) 

and Ramanujan showed 

4P2 
9v2 

= csc2 8 - ,; + 82 (---r;n;s;n”’ 
(36) - - n 

n=l 

(Berndt 1994). 

see also HYPERBOLIC LEMNISCATE FIJNCTION 
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Lemniscate of Gerono 

see EIGHT CURVE 

Lemniscate Inverse Curve 
The INVERSE CURVE ofa LEMNISCATE ina CIRCLE cen- 
tered at the origin and touching the LEMNISCATE where 
it crosses the X-AXIS produces a RECTANGULAR HY- 
PERBOLA. 
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Lemniscate (Mandelbrot Set) 

A curve on which points of a MAP Z~ (such as the MAN- 
DELBROT SET) diverge to a given value ~~~~ at the same 
rate. A common method of obtaining lemniscates is to 
define an INTEGER called the CWNT which is the largest 
n such that 1 zn 1 < r where T is usually taken as T = 2. 
Successive COUNTS then define a series of lemniscates, 
which are called EQUIPOTENTIAL CURVES by Peitgen 
and Saupe (1988). 

see also COUNT, MANDELBROT SET 

References 
Peitgen, H.-O. and Saupe, D. (Eds.). The Science of Fractal 

Images. New York: Springer-Verlag, pp. 178479, 1988. 

Lemoine Axis 

see LEMOINE LINE 

Lemoine Circle 

Also called the TRIPLICATE-RATIO CIRCLE. Draw lines 
through the LEMOINE POINT K and parallel to the sides 
of the triangle. The points where the parallel lines inter- 
sect the sides then lie on a CIRCLE known as the Lemoine 
circle. This circle has center at the MIDPOINT of OK, 
where 0 is the C~RCUMCENTER. The circle has radius 

where R is the CIRCUMRADIUS, T is the INRADIUS, and 
w is the BROCARD ANGLE. The Lemoine circle divides 

any side into segments proportional to the squares of the 

- - - 
AzP2 : PsQ3 : QsA3 = aa : al2 : az2. 

Furthermore, the chords cut from the sides by the 
Lemoine circle are proportional to the squares of the 
sides. 

The COSINE CIRCLE 

Lemoine circle. 
is sometimes called 

see also COSINE CIRCLE, LEMOINE LINE, LEMOINE 
POINT, TUCKER CIRCLES 

References 
Johnson, R. A. Modern Geometry: An Elementary Treatise 

on the Geometry of the Triangle and the Circle. Boston, 
MA: Houghton Mifflin, pp. 273-275, 1929. 

Lemoine Line 
The Lemoine line, also called the LEMOINE AXIS, is the 

perspectivity axis of a TRIANGLE and its TANGENTIAL 
TRIANGLE, and also the TRILINEAR POLAR ofthe CEN- 
TROID of the triangle vertices. It is also the POLAR of K 
with regard to its CIRCUMCIRCLE, and is PERPENDICU- 
LAR~O the BROCARD AXE. 

The centers of the APOLLONIUS CIRCLES 1;1, L2, and 
1;~ are COLLINEAR on the LEMOINE LINE. This line is 
PERPENDICULAR to the BROCARD AXIS OK andisthe 
RADICAL Ax~softhe CIRCUMCIRCLE andthe BROCARD 
CIRCLE. It has equation 

E+P+T 
a b c 

in terms of TRILINEAR COORDINATES (Oldknow 1996). 

see also APOLLONIUS CIRCLES, BROCARD AXIS, 
CENTROID (TRIANGLE), CIRCUMCIRCLE, COLLINEAR, 
LEMOINE CIRCLE, LEMOINE POINT, POLAR, RADICAL 
AXIS, TANGENTIAL TRIANGLE, TRILINEAR POLAR 

References 
Johnson, R. A. Modern Geometry: An Elementary Treatise 

on the Geometry of the Triangle and the Circle. Boston, 
MA: Houghton Mifflin, p. 295, 1929. 

Oldknow, A. “The Euler-Gergonne-Soddy Triangle of a Tri- 
angle .” Amer. Math. Monthly 103, 319-329, 1996. 

Lemoine Point 
The point of concurrence Kc of the SYMMEDIAN LINES, 
sometimes also called the SYMMEDIAN POINT and 
GRE~E POINT. 

Let G be the CENTROID of a TRIANGLE AABC, LA, 
LB, and LC the ANGLE BISECTORS of ANGLES A, B, 
c, and GA, Gg, and GC the reflections of AG, BG, 
and CG about LA, LB, and Lc. Then K is the point 
of concurrence of the lines GA, Gg, and Gc. It is the 
perspectivity center of a TRIANGLE and its TANGENTIAL 
TRIANGLE. 
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In AREAL COORDINATES (actual TRILINEAR COOR- 
DINATES), the Lemoine point is the point for which 
~1~ +p” +y2 is a minimum. A center X is the CENTROID 
of its own PEDAL TRIANGLE IFF it is the Lemoine point. 

The Lemoine point lies on the BROCARD AXIS, and its 
distances from the Lemoine point K to the sides of the 
TRIANGLE are 

KKi = ia;tanw, 

where w is the BROCARD ANGLE. A BROCARD LINE, 

MEDIAN, and Lemoine point are concurrent, with AlS11, 
AZK, and A&f meeting at a point. Similarly, Ali?‘, 
A&Z, and A& meet at a point which is the IS~G~NAL 
CONJUGATE of the first (Johnson 1929, pp. 268-269). 
The line joining the MIDPOINT of any side to the mid- 
point of the ALTITUDE on that side passes through the 
Lemoine point K. The Lemoine point K is the STEINER 
POINT of the first BROCARD TRIANGLE. 

see also ANGLE BISECTOR, BROCARD ANGL 

CARD AXIS, BRO CARD DIAMETER$EN TROID 
E, BRO- 
(TRIAN- 

COSYMMEDIAN TRIANGLES, GREBE POINT 
.L CONJUGATE, LEMOINE CIRCLE, LEMOINE 

, Iso- 
LINE, 

INFINITY, MITTENPUNKT, PEDAL TRIANGLE, 
POINTS,~YMMEDIAN LINE,TANGENTIAL TRI- 

GLE) 1 
GONA 
LINE AT 
STEINER 
ANGLE 

References 
Gallatly, W. The Modern Geometry of the Triangle, 2nd ed. 

London: Hodgson, p. 86, 1913. 
Honsberger, R. Episodes in Nineteenth and Twentieth Gen- 

tury Euclidean Geometry. Washington, DC: Math. Assoc, 
Amer., 1995. 

Johnson, R. A. Modern Geometry: An Elementary Treatise 
on the Geometry of the Triangle and the Circle. Boston, 
MA: Houghton Mifflin, pp. 217, 268-269, and 271-272, 
1929. 

Kimberling, C. “Central Points and Central Lines in the 
Plane of a Triangle.” Math. Mug. 67, 163-187, 1994. 

Kimberling, C. “Symmedian Point.” http://uww. 
evansville.edu/-ck6/tcenters/class/sympt.html. 

Mackay, J. S. “Early History of the Symmedian Point.” Proc. 
Edinburgh IMath. Sot. 11, 92-103, 1892-1893. 

Lemoine’s Problem 
Given the vertices of the three EQUILATERAL TRIAN- 
GLES placed on the sides of a TRIANGLE T, construct 
57. The solution can be given using KIEPERT’S HYPER- 
BOLA. 

see also KIEPERT’S HYPERBOLA 

Lemon 

A SURFACE OF REVOLUTION defined by Kepler. It con- 
sists of less than half of a circular ARC rotated about 
an axis passing through the endpoints of the ARC. The 
equations of the upper and lower boundaries in the zz 
plane are 

for R > T and II: E [-(R--T), R---T]. The CROSS-SECTION 
of a lemon is a LENS. The lemon is the inside surface of 
a SPINDLE TORUS. 

see also APPLE, LENS, SPINDLE TORUS 

Length (Curve) 
Let y(t) be a smooth curve in a MANIFOLD A4 from ~1: 
to y with y(O) = x and y(l) = y. Then y’(t) E T,(+ 
where T, is the TANGENT SPACE of A4 at x. The length 
of y with respect to the Riemannian structure is given 

bY 

s 

1 

I h'(t) I h(t) &* 
0 

see also ARC LENGTH, DISTANCE 

Length Distribution Function 
A function giving the distribution of the interpoint dis- 
tances of a curve. It is defined by 

p(T) = ~ ~6Tij=P* 

ij 

see also RADIUS OF GYRATION 

References 
Pickover, C. A. Keys to Infinity. New York: W. H. Freeman, 

pp, 204-206, 1995. 

Length (Number) 
The length of a number n in base b is the number of 
DIGITS in the base-b numeral for n, given by the formula 

qn, b) = pog&41 --I- 1, 

where 1x1 is the FLOOR FUNCTION. 

The MULTIPLICATIVE PERSISTENCE of an n-DIGIT is 
sometimes also called its length. 

see also CONCATENATION, DIGIT, FIGURES, MULTI- 
PLICATIVE PERSISTENCE 
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Length (Partial Order) 
For a PARTIAL ORDER, the size ofthelongest CHAIN is 
called the length. 

Lens 

see also WIDTH (PARTIAL ORDER) 

Length (Size) 
The longest dimension of a 3-D object. 

see also HEIGHT, WIDTH (SIZE) 

Lengyel’s Constant 
N.B. A detailed on-line essay by S. Finch was the start- 
ing point for this entry. 

A figure composed of two equal and symmetrically 
placed circular ARCS. It is also known as the FISH 
BLADDER (Pedoe 1995, p. xii) or VESICA PISCIS. The 
latter term is often used for the particular lens formed 
by the intersection of two unit CIRCLES whose centers 
are offset by a unit distance (Rawles 1997). In this case, 
the height of the lens is given by letting d = T = R = 1 

Let L denote the partition lattice of the SET 

11 2 t > ’ ’ ’ 1 n}. The MAXIMUM element of L is 

M  = {{1,2, l  l  l  , n}} 

and the MINIMUM element is 

(1) 
in the equation for a CIRCLE-CIRCLE INTERSECTION 

1 
a=- 

dJ 
4d2R2 - Cd 2 - r2 + R2j2, (1) 

TrJ = {{l), {2)7. l  - ?  in})* (2) 
giving a = & The AREA of the VESICA PISCIS is given 
by plugging d = R into the CIRCLE-CIRCLE INTERSEC- 

Let Z, denote that number of chains of any length in TION area equation with T = R, 

L containing both M and m. 
RECURRENCE RELATION 

n-l 

Then 2, satisfies the 

Zn. = xs(n,k)Zh, 
k=l 

A = 2R2 cos-1 ($) - id@?, (2) 

where s(n, k) is a STIRLING NUMBER OF THE SECOND 
KIND. Lengyel (1984) proved that the QUOTIENT 

(3) giving 
A = ;(4r - 3h) a 1.22837. 

r(n) = 
z, 

(n!)2(2 In 2)-nn1-(1n2)/3 (4) 

is bounded between two constants as n + 00, and Fla- 
jolet, and Salvy (1990) improved the result of Babai and 
Lengyel (1992) to show that 

A= lim r(n) = 1.0986858055.. . . (5) n+oo 

References 
Babai, L. and Lengyel, T. “A Convergence Criterion for Re- 

current Sequences with Application to the Partition Lat- 
tice.” Analysis 12, 109419, 1992. 

Finch, S. “Favorite Mathematical Constants.” http: //www, 
mathsoft.com/asolve/constant/lngy/lngy.html~ 

Flajolet , P. and Salvy, B. “Hierarchal Set Partitions and An- 
alytic Iterates of the Exponential Function.” Unpublished 
manuscript, 1990. 

Lengyel, T. “On a Recurrence Involving Stirling Numbers.” 
Europ. J. Comb. 5, 313-321, 1984. 

Plouffe, S. “The Lengyel Constant.” http: //lacim.uqam. ca/ 
piDATA/lengyel.txt. 

(3) 
Renaissance artists frequently surrounded images of Je- 
sus with thevesica piscis (Rawles 1997). An asymmetri- 
cal lens is produced by a CIRCLE-CIRCLE INTERSECTION 
for unequal CIRCLES. 

see also CIRCLE, CIRCLE-CIRCLE 
FLOWER OF LIFE,LEMON, 
TRIANGLE, SECTOR, SEED 

LUNE 
OF LI 

P L 

FE, 

INTERSECTION, 
ANE),REULEAUX 
SEGMENT, VENN 

DIAGRAM 

References 
Pedoe, D. Circles: A Mathematical View, rev. ed. Washing- 

ton, DC: Math. Assoc. Amer., 1995. 
Rawles, B. Sacred Geometry Design Sourcebook: Universal 

Dimensional Patterns. Nevada City, CA: Elysian Pub., 
p* 11, 1997. 

Lens Space 
A lens space L(p, q) is the S-MANIFOLD obtained by glu- 
ing the boundaries of two solid TORI together such that 
the meridian of the first goes to a (p, &curve on the 
second, where a (p, q)-curve has p meridians and Q lon- 

References 
Rolfsen, D. Knots and Links. Wilmington, DE: Publish or 

Perish Press, 1976. 
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Lenstra Elliptic Curve Method 
A method of factoring INTEGERS using ELLIPTIC 
CURVES. 

References 
Montgomery, P. L. “Speeding up the Pollard and Elliptic 

Curve Methods of Factorization,” Math. Comput. 48, 
243-264, 1987. 

Leon Anne’s Theorem 

Pick a point 0 in the interior of a QUADRILATERAL 

which is not a PARALLELOGRAM. Join this point to 
each of the four VERTICES, then the LOCUS of points 0 
for which the sum of opposite TRIANGLE areas is half 
the QUADRILATERAL AREA is the line joining the MID- 
POINTS A& and i& of the DIAGONALS. 

see also DIAGONAL (POLYGON), MIDPOINT, QUADRI- 
LATERAL 

References 
Honsberger, R. More Muthematical Morsels. Washington, 

DC: Math. Assoc. Amer., pp. 174-175, 1991. 

Leonardo% Paradox 
In the depiction of a row of identical columns parallel to 
the plane of a PERSPECTIVE drawing, the outer columns 
should appear wider even though they are farther away. 

see &O PERSPECTIVE, VANISHING POINT, ZEEMAN’S 
PARADOX 

References 
Dixon, R. Mathographics. New York: Dover, p. 82, 1991. 

Leptokurtic 
A distribution with a high peak so that the KURTOSIS 
satisfies 72 > 0. 

see also KURTOSIS 

Lerch’s Theorem 
If there are two functions F$) and F&t) with the same 
integral transform 

ir[Fl(t)] = ‘;T[Fz(t)] = f(s), (1) 

then a NULL FUNCTION can be defined by 

Jo(t) = Fl(t) - Fz(t) (2) 

so that the integral 

s a’ 
6,(t)& = 0 

0 

vanishes for all a > 0. 

see UZSO NULL FUNCTION 

(3) 

Lerch Transcendent 
A generalization of the HURWITZ ZETA FUNCTION and 
POLYLOGARITHM function. Many sums of reciprocal 
POWERS can be expressed in terms of it. It is defined 

bY 
Zk qz,S,a) z 2 - 

Fczo (a + w ’ (1) 

where any term with a + /C = 0 is excluded. 

The Lerch transcendent can be used to express the 
DIRICHLET BETA FUNCTION 

P(s) E 7+)“(2lc + 1)-32-9+(-1, s, i), (2) 

k=O 

the integral of the FERMI-DIRAC DISTRIBUTION 

s 

O” ks 
- dk = eT(s + l)@(-e’, s + 1, l), 
ek+ + 1 

(3) 
0 

where r(z) is the GAMMA FUNCTION, and to evaluate 
the DIRICHLET L-SERIES. 

see also DIRICHLET BETA FUNCTION, DIRICHLET L- 
SERIES, FERMI-DIRAC DISTRIBUTION, HURWITZ ZETA 
FUNCTION, POLYLOGARITHM 

Less 
A quantity a is said to be less than b if a is smaller than 
b, written a < b. If a is less than or EQUAL to b, the 
relationship is written a 5 b. If a is MUCH LESS than 
6, this is written a << b. Statements involving GREATER 
than and less than symbols are called INEQUALITIES. 

see dsu EQUAL, GREATER, INEQUALITY, MUCH 

GREATER, MUCH LESS 

Letter-Value Display 
A method of displaying simple statistical parameters in- 
cluding HINGES, MEDIAN, and upper and lower values. 

References 
Tukey, J, IV. Explunatory Data Analysis. Reading, MA: 

Addison-Wesley, p. 33, 1977. 
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Leudesdorf Theorem 
Let t(m) denote the set of the 4(m) numbers less than 
and RELATIVELY PRIME to m, where 4(n) is the To- 
TIENT FUNCTION. Then if 

then 

/ 

S,IO (modm2) if Zl;m, 3+77x 

S, E 0 (mod $x2) if 2i(m, 31m 

S = 0 (mod im2) 

S; i 0 (mod ;m2) 

21m, {m, nx not a power of 2 

if 21m, 31m 

S, c 0 (mod im2) if m = 2? 

see also BAUER’S IDENTICAL CONGRUENCE, TOTIENT 
FUNCTION 

References 
Hardy, G. H. and Wright, E. M. “A Theorem of Leudesdorf.” 

$6.7 in An Introduction to the Theory of Numbers, 5th ed. 
Oxford, England: Clarendon Press, pp. 100402, 1979. 

Level Curve 
A LEVEL SET in 2-D. 

Level Set 
The level set of c is the SET of points ’ 

{(a, ’  l  l  ,5n) E u: f(m,*..,z,) = c} f Et”, 

and is in the DOMAIN of the function. If n = 2, the level 
set is a plane curve (a level curve). If n = 3, the level 

set is a surface (a level surface). 

References 
Gray, A. “Level Surfaces in R3? 510.7 in Modern Diflerential 

Geometry af Curves and Surfaces. Boca Raton, FL: CRC 
Press, pp. 204-207, 1993. 

Level Surface 
A LEVEL SET in 3-D. 

Levi-Civita Density 

see PERMUTATION SYMBOL 

Levi-Civita Symbol 

see PERMUTATION'SYMBOL 

Levi-Civita Tensor 

see PERMUTATION TENSOR 

Leviathan Number 
The number (lo”““)!, where 666isthe BEAST NUMBER 
and n! denotes a FACTORIAL. The number of trailing ze- 
ros in the Leviathan number is 25 x 106”4 - 143 (Pickover 
1995). 

see UZSO 666, APOCALYPSE NUMBER, APOCALYPTIC 
NUMBER, BEAST NUMBER 

References 
Pickover, C. A. Keys to Infinity. New York: Wiley, pp. 97- 

102, 1995. 

Levine-O’Sullivan Greedy Algorithm 
For a sequence {xi}, the Levine-O’Sullivan greedy algo- 
rithm is given by 

Xl = 1 

xi= .. lcycy lb + W - XJ 
-- 

for i > 1. 

see also GREEDY ALGORITHM,LEVINE-O'SULLIVAN SE- 
QUENCE 

References 
Levine, E. and O’Sullivan, J. “An Upper Estimate for the 

Reciprocal Sum of a Sum-Free Sequence.” Acta Arith. 34, 
9-24, 1977. 

Levine-O’Sullivan Sequence 
The sequence generated by the LEVINE-O'SULLIVAN 
GREEDY ALGORITHM: 1, 2, 4, 6, 9, 12, 15, 18, 21, 24, 
28, 32, 36, 40, 45, 50, 55, 60, 65, . . . (Sloane’s AOl4Oll). 
The reciprocal sum of this sequence is conjectured to 
bound the reciprocal sum of all A-SEQUENCES. 

References 
Finch, S. “Favorite Mathematical Constants.” http: //www, 

mathsoft.com/asolve/constant/erdos/erdos.html* 
Levine, E. and O’Sullivan, J. “An Upper Estimate for the 

Reciprocal Sum of a Sum-Free Sequence.” Acta Arith. 34, 
9-24, 1977. 

Sloane, N, J. A. Sequence A014011 in “An On-Line Version 
of the Encyclopedia of Integer Sequences.” 

L&y Constant 
Letp,/q, bethenth CONVERGENT ofa REAL NUMBER 
x. Then almost all REAL NUMBERS satisfy 

L G lim (q,$ln = eT2/(121n2) = 3.27582291872,. , . 
?I+00 

see UZSO KHINTCHINE'S CONSTANT, KHINTCHINE-LEVY 
CONSTANT 

References 
Le Lionnais, F. Les nombres remarquables. Paris: Hermann, 

p. 51, 1983. 
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L&y Distribution 

F[h(k)] = exp(-N/k(P), 

where F is the FOURIER TRANSFORM of the probability 
P&k) for N-step addition of random variables. L&y 
showed that 0 E (OJ) for P(X) to be NONNEGATIVE. 
The L&y distribution has infinite variance and some- 
times infinite mean. The case p = 1 gives a CAUCHY 
DISTRIBUTION, while 0 = 2 gives a GAUSSIAN DIsTw- 

BUTION. 

see also CAUCHY DISTRIBUTION, GAUSSIAN DISTRIBU- 
TION 

L&y Flight 
RANDOM WALK trajectories which are composed of self- 
similar jumps. They are described by the LEVY DISTRI- 
BUTION. 

see also Ltivu DISTRIBUTION 

References 
S hlesinger , M.; Zaslavsky, G. M.; and Frisch, U. (Eds.). 

L&y Flights and Related Topics in Physics. New York: 
Springer-Verlag, 1995. 

L&y Fkactal 

A FRACTAL curve, also called the C-CURVE (Beeler et 
al. 1972, Item 135). The base curve and motif are illus- 
trated below. 

v 
see also LI?VY TAPESTRY 

References 
Reeler, M.; Gosper, R. W.; and Schroeppel, R. HAKIMEM, 

Cambridge, MA: MIT Artificial Intelligence Laboratory, 
Memo AIM-239, Feb. 1972, 

Dixon, R. Mathographics. New York: Dover, ppm 182-183, 
1991. 

Lauwerier, H. Fractals: Endlessly Repeated Geometric Fig- 
ures. Princeton, NJ: Princeton University Press, pp. 45- 
48, 1991. 

Weisstein, E. W. “F’ractals.” http://www.astro.virginia. 
edu/-eww6n/math/notebooks/Fractal.m. 

Lexis Ratio 

L&y Function 

see BROWN FUNCTION 

L&y Tapestry 

The FRACTAL curve illustrated above, with base curve 
and motif illustrated below. 

* 

t 

1 J 

see also L&Y FRACTAL 

References 
Lauwerier, H. Fractals: Endlessly Repeated Geometric Fig- 

ures. Princeton, NJ: Princeton University Press, pp. 45- 
48, 1991. 

$@ Weisstein, E. W. “Fractals.” http: //www. astro .virginia. 
edu/-eww6n/math/notebooks/Fractal. m. 

Lew k-gram 
Diagrams invented by Lewis Carroll which can be used 
to determine the number of minimal MINIMAL COVERS 
of n numbers with k members. 

References 
Macula, A. J. “Lewis Carroll and the Enumeration of Mini- 

mal Covers.” Math. Mug. 68, 269-274, 1995. 

Lexicographic Order 
An ordering of PERMUTATIONS in which they are listed 
in increasing numerical order. For example, the PER- 
MUTATIONS of {1,2,3} in lexicographic order are 123, 
132, 213, 231, 312, and 321. 

see also TRANSPOSITION ORDER 

References 
Ruskey, F. “Information on Combinations of a Set,” 

http://sue. csc .uvic, ca/-cos/inf /comb/Combinations 
Info . html. 

Lexis Ratio 

where 0 is the VARIANCE in a set of s LEXIS TRIALS 
and 0~ is the VARIANCE assuming BERNOULLI TRIALS. 
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If L < 1, the trials are said to be SUBNORMAL, and if 
L > 1, the trials are said to be SUPERNORMAL. 

see &o BERNOULLI TRIAL, LEXIS TRIALS, SUBNOR- 
MAL, SUPERNORMAL 

Lexis Trials 
n sets of s trials each, with the probability of success p 
constant in each set. 

X 
var - ( > n = spq + s(s - l)Q2, 

where gP2 is the VARIANCE of pi. 

see UZSO BERNOULLI TRIAL, LEXIS RATIO 

Lg 
The LOGARITHM to BASE 2 is denoted lg, i.e., 

lg x G log, 5. 

see also BASE (LOGARITHM), E, LN, LOGARITHM, 
NAPIERIAN LOGARITHM, NATURAL LOGARITHM 

Liar’s Paradox 

see EPIMENIDES PARADOX 

Lichnerowicz Conditions 
Second and higher derivatives of the METRIC TENSOR 
gab need not b e continuous across a surface of disconti- 

nuity, but gab and gab,c must be continuous across it. 

Lichnerowicz Formula 

where D is the Dirac operator D : l?(W) -+ r(W-), 
V is the C~VARIANT DERIVATIVE on SPINORS, R is the 
CURVATURE SCALAR, and FL+ is the self-dual part of the 
curvature of L. 

see also JACOBI IDENTITIES, LIE ALGEBROID, LIE 

BRACKET, IWASAWA’S THEOREM, POISSON BRACKET 

References 
Jacobson, N. Lie Algebras. New York: Dover, 1979. 

see also LICHNEROWICZ-WEITZENBOCK FORMULA Lie Algebroid 

References 
Donaldson, S. K, “The Seiberg-Witten Equations and 4- 

Manifold Topology.” Bull. Amer. Math. Sot. 33, 45-70, 
1996. 

Lichnerowicz-Weitzenbock Formula 

D*D$ = V*V$J + $R$, 

where D is the Dirac operator D : l?(P) + l?(S-), V 
is the COVARIANT DERIVATIVE on SPINORS, and R is 
the CURVATURE SCALAR. 

see also LICHNEROWICZ FORMULA 

References 

Licht enfels Surface 
A MINIMAL SURFACE given by the parametric equation 

X = !I? pcos(~~)Jiq 

Y- - R -hcos(g) Jz 
[ 1 

I=B[-w~td-&]* 
References 
do Carmo, M. P. “The Helicoid.” §3.5F in Akthematical 

Models from the Collections of Universities and Museums 
(Ed. G. Fischer). B raunschweig, Germany: Vieweg, p. 47, 
1986. 

Licht enfels, 0. von. “Notiz fiber eine transcendente Mini- 
malfl%che.” Sitzungsber. Kaiserl. Akad. Wiss. Wien 94, 
41-54, 1889. 

Lie Algebra 
A NONASSOCIATIVE ALGEBRA obeyed by objects such 
as the LIE BRACKET and POISSON BRACKET. Elements 
f, g, and h of a Lie algebra satisfy 

Lf 91 -- 7 - [9 fl 7 ? (1) 

Lf+4 = [f,h] + [g,h], (2) 
and 

VI Es7 WI + [97 Eb fll + Ch Lf, 911 = 0 (3) 
(the JACOBI IDENTITY), and are not ASSOCIATIVE. The 
binary operation of a Lie algebra is the bracket 

[fLh~l = f[sA +g[f,h]. (4) 

The infinitesimal algebraic object associated with a LIE 
GROUPOID. A Lie algebroid over a MANIFOLD B is a 
VECTOR BUNDLE A over B with a LIE ALGEBRA struc- 
ture [ , ] (LIE BRACKET) on its SPACE of smooth sections 
together with its ANCHOR p. 

see also LIE ALGEBRA 

References 
Weinstein, A. ‘CGroupoids: Unifying Internal and External 

Symmetry.” Not. Amer. Math. Sot. 43, 744-752, 1996. 

Lie Bracket 
The commutation operation 

1 bl a, = ab - ba 

Donaldson, S. K. “The Seiberg-Witten Equations and 4- 
Manifold Topology. ” Bull. Amer. Math. Sot. 33, 45-70, 
1996. 

corresponding to the LIE PRODUCT. 

see UZSO LAGRANGE BRACKET, POISSON BRACKET 
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Lie Commutator 

see LIE PRODUCT 

Lie Derivative 

C,Tub E lim 
Tab(d) - Tfab(x) 

&u-m su  l  

Lie Group 
A continuous GROUP with an infinite number of ele- 
ments such that the parameters of a pro due t element 
are ANALYTIC F UNCTIONS. Lie groups are also CO” 
MANIFOLDS with the restriction that the group oper- 
ation maps a C” map of the MANIFOLD into itself. Ex- 
amples include 0 3, W(n), and the LORENTZ GROUP. 

see also COMPACT GROUP, LIE ALGEBRA, LIE 
GROUPOID, LIE-TYPE GROUP, NIL GEOMETRY, SOL 
GEOMETRY 

References 
A&en, G. “Infinite Groups, Lie Groups.” Mathematical 

Methods for Physicists, 3rd ed. Orlando, FL: Academic 
Press, p. 251-252, 1985. 

Chevalley, C. Theory of Lie Groups. Princeton, NJ: Prince- 
ton University Press, 1946. 
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MA: Birkhguser, 1996. 
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dam, Netherlands: North-Holland, 1966. 

Lie Groupoid 
A GROUPOID G over B for which G and B are differen- 
tiable manifolds and ctl, p, and multiplication are differ- 
entiable maps. Furthermore, the derivatives of a and 0 
are required 
a and ,0 are 

to have maximal 
maps from G onto 

RANK everywhere. Here, 
R2 with clc: (x,~,P) t+ z 

see UZSO LIE ALGEBROID, NILPOTENT LIE GROUP, 
SEMISIMPLE LIE GROUP, SOLVABLE LIE GROUP 

Heierences 
Weinstein, A. “Groupoids: Unifying Internal and External 

Symmetry.” Not. Amer. Math. Sot. 43, 744-752, 1996. 

Lie Product 
The multiplication operation corresponding to the LIE 
BRACKET. 

Lie-Type Group 
A finite analog of LIE GROUPS. The Lie-type groups 
include the CHEVALLEY GROUPS [PSL(n, q), PSU(n, q), 
PSp(2n, q), PW(n, q)], TWISTED CHEVALLEY GROUPS, 
and the TITS GROUP. 

see also CHEVALLEY GROUPS, FINITE GROUP, LIE 
GROUP, LINEAR GROUP, ORTHOGONAL GROUP, SIM- 
PLE GROUP, SYMPLECTIC GROUP, TITS GROUP, 
TWISTED CHEVALLEY GROUPS,~NITARY GROUP 

References 
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Liebmann’s Theorem 
A SPHERE is RIGID. 

see also RIGID 

References 

Life 
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Life 
The most well-known CELLULAR AUTOMATON, invented 
by John Conway and popularized in Martin Gardner’s 
Scientific American column starting in October 1970. 
The game was originally played (i.e., successive genera- 
tions were produced) by hand with counters, but imple- 
mentation on a computer greatly increased the ease of 
exploring patterns. 

The Life AUTOMATON is run by placing a number of 
filled cells on a 2-D grid. Each generation then switches 
cells on or off depending on the state of the cells that 
surround it. The rules are defined as follows. All eight 
of the cells surrounding the current one are checked to 
see if they are on or not. Any cells that are on are 
counted, and this count is then 
will hanDen to the current cell. 

1. 

2. 

3. 

l-T 

Death: if the count is less than 2 or greater than 3, 
the current cell is switched off. 

Survival: if (a) the count is exactly 2, or (b) the 
count is exactly 3 and the current cell is on, the 
current cell is left unchanged. 

Birth: if the current cell is off and the count is ex- 
actly 3, the current cell is switched on. 

nensel gives a Java applet (http : //uww . mindspring. 
corn/-alar&/life/) implementing the Game of Life on 
his web page. 

used to determine what 

A pattern which does not change from one generation to 
the next is known as a Still Life, and is said to have pe- 
riod 1. Conway originally believed that no pattern could 
produce an infinite number of cells, and offered a $50 
prize to anyone who could find a counterexample before 
the end of 1970 (Gardner 1983, p. 216). Many coun- 
terexamples were subsequently found, including Guns 
and Puffer Trains. 

A Life pattern which has no Father Pattern is known 
as a Garden of Eden (for obvious biblical reasons). The 
first such pattern was not found until 1971, and at least 
3 are now known. It is not, however, known if a pattern 
exists which has a Father Pattern, but no Grandfather 
Pattern (Gardner 1983, p. 249). 

Rather surprisingly, Gosper and J. II. Conway inde- 
pendently showed that Life can be used to generate a 
UNIVERSAL TURING MACHINE (Berlekamp et al. 1982, 
Gardner 1983, pp. 250-253). 
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Similar CELLULAR AUTOMATON games with different 
rules are HASHLIFE, HEXLIFE, and HIGHLIFE. 

see also CELLULAR AUTOMATON,HASHLIFE, HEXLIFE, 

HIGHLIFE 
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Life Expectancy 
An I, table is a tabulation of numbers which is used to 
calculate life expectancies. 

X nx dx L qx Lx TX ex 

0 1000 200 1.00 0.20 0.90 2.70 2.70 
1 800 100 0.80 0.12 0.75 1.80 2.25 
2 700 200 0.70 0.29 0.60 1.05 1.50 
3 500 300 0.50 0.60 0.35 0.45 0.90 
4 200 200 0.20 1.00 0.10 0.10 0.50 
5 0 0 0.00 - 0.00 0.00 - 

1000 2.70 

2 : Age category (x = 0, 1, l  . . , k) . These values 
can be in any convenient units, but must be chosen 
so that no observed lifespan extends past category 
k- 1. 

nx : Census size, defined as the number of individuals 
in the study population who survive to the begin- 
ning of age category x:. Therefore, no = IV (the 
total population size) and r&Y, = 0. 

dx : = nx - nx+1; cf=, 4 = no. Crude death rate, 
which measures the number of individuals who die 
within age category x. 

LX 
l  - 

- n&o. Survivorship, which measures the pro- 
portion of individuals who survive to the beginning 
of age category x. 
. 
l  = dx/nx; qk-1 = 1. Proportional death rate, or 
“risk,” which measures the proportion of individ- 
uals surviving to the beginning of age category x 
who die within that category. 

LX 
. . = (I, + Z2+1)/2. Midpoint survivorship, which 
measures the proportion of individuals surviving to 
the midpoint of age category x. Note that the sim- 
ple averaging formula must be replaced by a more 
complicated expression if survivorship is nonlinear 
within age categories. The sum Et, L, gives the 
total number of age categories lived by the entire 
study population. 

TX 
l  = Tz-l - Lx-,; TO = ctk_o Lx. Measures the 
total number of age categories left to be lived by 
all individuals who survive to the beginning of age 
category 2. 

ex 
l  

. = TX/lX; ek-1 = l/2. Life expectancy, which is 
the mean number of age categories remaining until 
death for individuals surviving to the beginning of 
age category x. 

For all x, e,+l + 1 > e,. This means that the total 
expected lifespan increases monotonically. For instance, 
in the table above, the one-year-olds have an average 
age at death of 2.25 + 1 = 3.25, compared to 2.70 for 
newborns. In effect, the age of death of older individuals 
is a distribution conditioned on the fact that they have 
survived to their present age. 
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It is common to study survivorship as a semilog plot of 
I, VS. x, known as a SURVIVORSHIP CURVE. A so-called 
Zzmz table can be used to calculate the mean generation 
time of a population. Two Zzmx tables are illustrated 
below. 

Population 1 

2 1, mx lxmx xl, mx 

0 1.00 0.00 0.00 0.00 
1 0.70 0.50 0.35 0.35 
2 0.50 1.50 0.75 1.50 
3 0.20 0.00 0.00 0.00 
4 0.00 0.00 0.00 0.00 

Rn = 1.10 )' = 1.85 

Cl 1.85 T= xxmx === 
Cl 

1.68 
xmx 

In Ro In 1.1; r=--- 
T - 1.68 

= 0.057. 
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Population 2 

X 

lx 

mx 

lxmx 

xZxmx 

X lx mx lxmx xl, mx 

0 1.00 0.00 0.00 0.00 
1 0.70 0.00 0.00 0.00 
2 0.50 2.00 1.00 2.00 
3 0.20 0.50 0.10 0.30 
4 0.00 0.00 0.00 0.00 

R. = 1.10 ): = 2.30 

C xlxmx T = \ 1 2.30 
= 7 = 2.09 

L1 xmx l.lU 

In Ro In 1.10 
T= -=- 

T 2.09 
= 0.046. 

: Age category (x = 0, 1, . . . , Jc). These values 
can be in any convenient units, but must be 
chosen so that no observed lifespan extends past 
category /C - 1 (as in an I, table). 
l  = n&0. Survivorship, which measures the 
proportion of individuals who survive to the be- 
ginning of age category x (as in an I, table). 

: The average number of offspring produced by 
an individual in age category x while in that 
age category. CFs, m, therefore represents the 
average lifetime number of offspring produced 
by an individual of maximum lifespan. 

: The average number of offspring produced by 
an individual within age category x weighted 
by the probability of surviving to the beginning 
of that age category. ‘&, lsmz therefore rep- 
resents the average lifetime number of offspring 
produced by a member of the study population. 
It is called the net reproductive rate per gener- 
ation and is often denoted Ro. 

: A column weighting the offspring counted 
in the previous column by their parents’ age 
when they were born. Therefore, the ratio 
T = ~(xZxmx)/)(Z,m,) is the mean gener- 
ation time of the population. 

The MALTHUSIAN PARAMETER T measures the repro- 
ductive rate per unit time and can be calculated as 
r = (lnRo)/T. F or an exponentially increasing popu- 
lation, the population size N(t) at time t is then given 

bY 
N(t) = Noe rt . 

In the above two tables, the populations have identical 
reproductive rates of Ro = 1.10. However, the shift to- 
ward later reproduction in population 2 increases the 
generation time, thus slowing the rate of POPULATION 
GROWTH. Often, a slight delay of reproduction de- 
creases POPULATION GROWTH more strongly than does 
even a fairly large reduction in reproductive rate. 

see ~2~0 GOMPERTZ CURVE, LOGISTIC GROWTH 
CURVE,MAKEHAM CURVE,MALT~IUSIAN PARAMETER, 
POPULATION GROWTH, SURVIVORSHIP CURVE 

Lift 

Likelihood Ratio 

Given a MAP f from a SPACE X to a SPACE Y and 
another MAP g from a SPACE 2 to a SPACE Y, a lift is a 
MAP h from X to 2 such that gh = f. In other words, 
a lift of f is a MAP h such that the diagram (shown 
below) commutes. 

z 
4 / / 

11 ,,‘I 8 

If f is the identity from Y to Y, a MANIFOLD, and if 
g is the bundle projection from the TANGENT BVNDLE 
to Y, the lifts are precisely VECTOR FIELDS. If g is a 
bundle projection from any FIBER BUNDLE to Y, then 
lifts are precisely sections. If f is the identity from Y to 
Y, a MANIFOLD, and g a projection from the orientation 
double cover of Y, then lifts exist IFF Y is an orientable 
MANIFOLD. 

If f is a MAP from a CIRCLE to Y, an ~-MANIFOLD, 
and g the bundle projection from the FIBER BVNDLE 
of alternating ~-FORMS on Y, then lifts always exist 
IFF Y is orientable. If f is a MAP from a region in 
the COMPLEX PLANE tothe COMPLEX PLANE (complex 
analytic), and if g is the exponential MAP, lifts of f are 
precisely LOGARITHMS off. 

see also LIFTING PROBLEM 

Lifting Problem 
Given a MAP f from a SPACE X to a SPACE Y and 
another MAP g from a SPACE 2 to a SPACE Y, does 
there exist a MAP h from X to 2 such that gh = f? If 
such a map h exists, then h is called a LIFT of f. 

see also EXTENSION PROBLEM, LIFT 

Ligancy 

see KISSING NUMBER 

Likelihood 
The hypothetical PROBABILITY that an event which has 
already occurred would yield a specific outcome. The 
concept differs from that of a probability in that a prob- 
ability refers to the occurrence of future events, while a 
likelihood refers to past events with known outcomes. 

see &O LIKELIHOOD RATIO, MAXIMUM LIKELIHOOD, 
NEGATIVE LIKELIHOOD RATIO, PROBABILITY 

Likelihood Ratio 
A quantity used to test NESTED HYPOTHESES. Let H’ 
be a NESTED HYPOTHESIS with ~/DEGREES OF FREE- 
DOM within H (which has n DEGREES OF FREEDOM), 
then calculate the MAXIMUM LIKELIHOOD of a given 
outcome, first given H’, then given H. Then 

I- [likelihood H’] 

LK. = ‘[likelihood Hi ’ 
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Comparison of this ratio to the critical value of the 
CHI-SQUARED DISTRIBUTION with n - n’ DEGREES OF 
FREEDOM then gives the SIGNIFICANCE of the increase 
in LIKELIHOOD. 

The term likelihood ratio is also used (especially in med- 
icine) to test nonnested complementary hypotheses as 
follows, 

LR _ [true positive rate] [sensitivity] - 
[false positive rate] = 1 - [specificity] l  

see also NEGATIVE LIKELIHOOD RATIO, SENSITIVITY, 
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SpecialPlaneCurves-dir/LimaconOf Pascal-dir/limacon 
Of Pascal. html. 
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/-xah/SpecialPlaneCurves~dir/LimaconGGallery-dir/ 
limaconGGallery.html. 

Lockwood, E. H. “The Limason.” Ch. 5 in A Book of Cuys. 
Cambridge, England: Cambridge University Press, pp. 44- 
51, 1967. 

MacTutor History of Mathematics Archive. “Limacon of Pas- 
cal.” http: //wuu-groups . dcs . St-and. ac . uk/-history/ 
Curves/Limacon.html. 

Yates, R. C. “Limacon of Pascal.” A Handbook on Cu, uves 

and Their Properties. Ann Arbor, MI: J* W. Edwards, 
pp+ 148-151, 1952. 

SPECIFICITY 
Limaqon Evolute 

Limason 

The CATACAUSTIC of a CIRCLE for a RADIANT POINT 

The 1imaFon is a polar curve of the form is the 1imaGon evolute. It has parametric equations 

r=b+acosO X= 
a[4a2 + 4b2 + 9ab cost - ab cos(3t)] 

4( 2a2 + b2 + 3ab cos t) 

also called the LIMA~ON OF PASCAL. It was first in- 
vestigated by Diirer, who gave a method for drawing 
it in Underweysung der Messung (1525). It was redis- 
covered by &ienne Pascal, father of Blaise Pascal, and 
named by Gilles-Personne Roberval in 1650 (MacTutor 
Archive). The word “limaqon” comes from the Latin 
Zimax, meaning “snail.” 

a2 b sin3 t 

y = 2a2 +b2 +3abcost’ 

Limason of Pascal 

see LIMA~ON 

If b > 2a, we have a convex limaCon. If 2a > b > - 
a, we have a dimpled limaCon. If b = a, the limaqon 
degenerates to a CARDIOID. If b < a, we have limason 
with an inner loop. If b = u/2, it is a TRISECTRIX 

Limit 
A function f(x) is said to have a limit limz+a f(x) = c if, 
for all c > 0, there exists a S > 0 such that If(z) -cl < E 
whenever 0 < Iz - al < 6. 

(but not the MACLAURIN TRISECTRIX) with inner loop 
of AREA 

A- inner loop = 

A LOWER LIMIT 

lower lim S, = lim S, = h 
n+oo n-km 

is said to exist if, for every E > 0, IS, - hi < E for 
infinitely many values of n and if no number less than h 

and AREA between the loops of has this property. 

A between loops = 4 ‘a2(7r + 3J3) 

(MacTutor Archive). The 1imaGon is an ANALLAGMATIC 

An UPPER LIMIT 

upper lim S, = lim Sn = Fc 
n300 n+m 

CURVE, andis also the CATACAUSTIC ofa CIRCLE when is said to exist if, for every E > 0, IS, - Jc[ < E for 
the RADIANT POINT isafinite (NONZERO) distancefrom infinitely many values of n and if no number larger than 
the CIRCUMFERENCE, as shown by Thomas de St. Lau- /C has this property. 
rent in 1826 (MacTutor Archive). 

see also CARDIOID 
Indeterminate limit forms of types oo/oc, and O/O can be 
computed with L'HOSPITAL'S RULE. Types 0 l  00 can 

References 
Lawrence, J. Il. A 

York: Dover, pp, 
Catalog of Special Plane 

113-117, 1972. 
Curves. New 

be converted to the form Oi/O by writing 

f(x>dx> = $g)- 
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Types O”, oo”, and loo are treated by introducing a de- 
pendent variable y = f (z)g( 2) , then calculating l&n In y. 
The original limit then equals elirn In ? 

see also CENTRAL LIMIT THEOREM, CONTINUOUS, Dxs- 
CONTINUITY, E'H~SPITAL'S RULE, LOWER LIMIT, UP- 
PER LIMIT 

References 
Courant, R. and Robbins, H. “Limits. Infinite Geometrical 

Series.” 52.2.3 in What is Mathematics?: An Elementam 

Approach to Ideas and Methods, 2nd ed. Oxford, England: 
Oxford University Press, pp. 63-66, 1996. 

Limit Comparison Test 
Let c Uk and c bl, be two SERIES with POSITIVE terms 
and suppose 

ak 
lim - = p. 

k+oo bk 

If p is finite and p > 0, then the two SERIES both CON- 
VERGE or DIVERGE. 

see also CONVERGENCE TESTS 

Limit Cycle 
An attracting set to which orbits or trajectories converge 
and upon which trajectories are periodic. 

see also HOPF BIFURCATION 

Limit Point 
A number cc such that for all E > 0, there exists a mem- 
ber of the SET y different from z such that Iy - ~1 < E. 
The topological definition of limit point P of A is that P 
is a point such that every OPEN SET around it intersects 
A. 

see also CLOSED SET, OPEN SET 
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Lin’s Method 
An ALGORITHM for finding Ro 
TIONS with COMPLEX ROOTS. 

OTS for QUARTIC EQUA- 

References 
Acton, F. S. Numerical Methods That Work, 2nd printing. 

Washington, DC: Math. Assoc. Amer ‘3 PP* 1 98-1 99, 1990. 

Lindeberg Condition 
A SUFFICIENT condition on the LINDEBERG-FELLER 
CENTRAL LIMIT THEOREM. GivenrandomvariatesX1, 

x2, “‘7 let (Xi) = 0, the VARIANCE ci2 of Xi be finite, 
and VARIANCE of the distribution consisting of a sum of 
x$3 

sn E x1 + x2 + l  l  . + x ,  
(1) 

(3) 

lim A, (E) = 0 (4) 
n-+00 

! ‘for, All E > 0. 

see also F~L~ER-LI?VY CONDITION 

References 
Zabell, S. L. “Alan Turing and the Central Limit Theorem.” 
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Lindeberg-Feller Central Limit Theorem 
If the random variates X1, X2, . . . satisfy the LINDE- 
BERG CONDITION, then for all a < b, 

lim P 
ST-& 

a < - < b = Q(b) - @(a), 
n-boo Sn > 

where @ is the NORMAL DISTRIBUTION FUNCTION. 

see also CENTRAL LIMIT THEOREM, FELLER-L&Y 
CONDITION, NORMAL DISTRIBUTION FUNCTION 
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Lindelof’s Theorem 
The SURFACE OF REVOLUTION generated by the exter- 
nal CATENARY between a fixed point a and its conjugate 
on the ENVELOPE of the CATENARY through the fixed 
point is equal in AREA to the surface of revolution gen- 
erated by its two Lindelof TANGENTS, which cross the 
axis of rotation at the point a and are calculable from 
the position of the points and CATENARY. 

see ah CATENARY,ENVELOPE,SURFACE OF REVOLU- 
TION 

Lindemann- WeierstraB Theorem 
Ifal, “‘1 a, are linearly independent over Q, then eal, 

l **> e cyn are algebraically independent over Q. 

see also HERMITE-LINDEMANN THEOREM 

Lindenmayer System 
A STRING REWRITING system which can be used to gen- 
erate FRACTALS with DIMENSION between 1 and 2. The 
term L-SYSTEM is often used as an abbreviation. 

see also ARROWHEAD CURVE,DRAGON CURVE EXTE- 
RIOR SNOWFLAKE, FRACTAL, HILBERT CURVE, KUCH 
SNOWFLAKE, PEANO CURVE, PEANO-GOSPER CURVE, 
SIERPI~~SKI CURVE, STRING REWRITING 
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Prusinkiewicz, P. and Lindenmayer, A. The Algorithmic 
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Stevens, R. T. Fractal Programming in C. New York: Holt, 
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Line 
Euclid defined a line as a “breadthless length,” and a 
straight line as a line which “lies evenly with the points 
on itself” (Kline 1956, Dunham 1990). Lines are in- 
trinsically l-dimensional objects, but may be embedded 
in higher dimensional SPACES. An infinite line pass- 
ing through points A and B is denoted r~ l  A LINE 

SEGMENT terminating at these points is denoted AK 
A line is sometimes called a STRAIGHT LINE or, more 
archaically, a RIGHT LINE (Casey 1893), to emphasize 
that it has no curves anywhere along its length. 

Consider first lines in a 2-D PLANE. The line with x- 
INTERCEPT a and ~-INTERCEPT b is given by the inter- 

(1) 

The line through (~1, ~1) with SLOPE m is given by the 
point-slope form 

Y - Yl = m(x - 21)~ (2) 

The line with y-intercept 
slope-intercept form 

b and slope m is given by the 

y=mx+b. (3) 

The line through 
point form 

(x1, ~1) and (x2, ~2) is given by the two 

Y2 - Yl 
y - y1 = 22-x -x1>* (4) 

Other forms are or if the COEFFICIENTS of the lines 

a(x - Xl) + b(y - y1) = 0 (5) 

ax+by+c=O (6) 

A line in 2-D can also be represented 
VECTOR along the line 

=L: Y l 

I I Xl y1 1 = 0. (7) 
x2 y2 1 

as a VECTOR. The 

ax + by = 0 (8) 

is given by -4 
,t a 1 [ 1 (9) 

where t E If%. Similarly, VECTORS of the form 

(10) 

are PERPENDICULAR to the line. Three points lie on a 
line if 

(11) 

The ANGLE between lines 

AIX + Bly + cl = o (12) 
~42s + B2y + c2 = o (13) 

is 

tan0 = 
ABz-A2& 

AI& + B1B2 ’ 
(14) 

The line joining points with TRILINEAR COORDINATES 
QI~ : PI : y1 and a2 : p2 : 72 is the set of point a : ,8 : y 
satisfying 

Q P 7 

I I 

QIl Pl 71 = 0 (15) 

QI2 P2 72 

(PlY2 -YlPz)a+(wz - wy2)P+(QL1P2 -Pmz)r= 0. 

(16) 

Three lines CONCUR if their TRILINEAR COORDINATES 
satisfy 

ha + ml@ + my = 0 (17) 
12~ + m2P + n2Y = 0 (18) 

13a+m3P+ n37 =O, (19) 

in which case the point is 

m2n3 - n2m3 : 92213 - 12733 : 12m3 - m213, (20) 

AIX + Bly + CI = 0 (21) 

&x+Bzy+Cz =0 (22) 

A3x+B3y+ C3 =o (23) 

satisfy 

(24) 

TWO lines CONCUR if their TRILINEAR COORDINATES 
satisfy 

(25) 
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The line through PI is the direction (al, bl, cl) and the 
line through Pz in direction (~2, bz, cz) intersect IFF 

372 - Xl yz - y1 z2 - Zl 

al h Cl = 0. (26) 

a2 b2 c2 

The line through a point a’ : /3’ : 7’ PARALLEL to 

is 

The lines 

Za+mp+ny=o 

QI P Y 
aI P 

I 
7’ 

bn - cm cl - an am - bl 

la+mfl+nr=O 

Z’a + m’P + 7&y = 0 

(27) 

= 0. (28) 

129) 
(30) 

are PARALLEL if 

a(mn’ - nm’) + b(nE’ - In’) + c(lm’ - ml’) = 0 (31) 6” u2 

for all (a, b, c), and PERPENDICULAR if 

2abc(ll’ + mm’ + nn’) - (mn’ + m’m) cos A 

- (nl’ + n’l> cos B - (lm’ + I’m) cos C = 0 (32) 

for all (a, b, c) (S ommerville 1924). The line through a 
point QI' :@I : 7' PERPENDICULAR to (32)is given by 

a P Y 
Q’ P 

I 
7) 

I-mcosC m- ncosA n- 1cosB 
= 0. (33) 

-n cos B -1 cos c -mcos A 

In 3-D SPACE, the line passing through the point; 
(x~,~o,x~) and PARALLEL to the NONZERO VECTOR 

has parametric equations 

Line Element 
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Line Bisector 
/ine segment bisector 

The line bisecting a given LINE SEGMENT PIP2 can be 
constructed geometrically, as illustrated above. 

References 
Courant, R. and Robbins, H. “How to Bisect a Segment and 

Find the Center of a Circle with the Compass Alone.” 
$3.4.4 in What is Mathematics?: An Elementary Approach 
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Line of Curvature 
A curve on a surface whose tangents are always in the 
direction of PRINCIPAL CURVATURE. The equation of 

a 
b 

I c 

the lines of curvature can be written 

911 912 Q22 
hl hz b22 = 0, 

du2 -dudv dv2 

where g and b are the COEFFICIENTS of the first and 
second FUNDAMENTAL FORMS. 

see also DUPIN'S THEOREM, FUNDAMENTAL FORMS, 
PRINCIPAL CURVATURES 

X = X0 + at 

y = yo + bt 
2 = 250 + ct. 

(35) 

see also ASYMPTOTE, BROCARD LINE, COLLINEAR, 
CONCUR, CRITICAL LINE, DESARGUES' THEOREM, 
ERD~S-ANNING THEOREM,LINE SEGMENT,~RDINARY 
LINE, PENCIL, POINT, POINT-LINE DISTANCE-Z-D, 
POINT-LINE DISTANCE-~-D, PLANE, RANGE (LINE 
SEGMENT), RAY, SOLOMON's SEAL LINES, STEINER 
SET, STEINER'S THEOREM, SYLVESTER'S LINE PROB- 
LEM 

Line Element 
Also known as the first FUNDAMENTAL FORM 

ds2 = t&b dx” dxb. 

In the principal axis frame for 3-D, 
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At ORDINARY POINTS on a surface, the line element is 
positive definite. 

see also AREA ELEMENT, FUNDAMENTAL FORMS, VOL- 
UME ELEMENT 

Line Graph 
1 

A LINE GRAPH L(G) (also called an INTERCHANGE 
GRAPH) of a graph G is obtained by associating a vertex 
with each edge of the graph and connecting two vertices 
with an edge IFF the corresponding edges of G meet 
at one or both endpoints. In the three examples above, 
the original graphs are the COMPLETE GRAPHS I&, K4, 
and KS shown in gray, and their line graphs are shown 
in black. 

References 
Saaty, T. L. and Kainen, I? C. “Line Graphs.” $4-3 in The 

F&r- Color Problem: Assaults 
Dover, pp. 108-112, 1986. 

and Conquest. New York: 

Line at Infinity 
The straight line on which all POINTS AT INFINITY lie. 
The line at infinity is given in terms of TRILINEAR CO- 
ORDINATES by 

aa+bp+cy=O, 

which follows from the fact that a REAL TRIANGLE will 
have POSITIVE AREA, and therefore that 

2A = aa + bp + cy > 0. 

Instead of the three reflected segments concurring for 
the ISOGONAL CONJUGATE of a point X on the CIR- 
CUMCIRCLE of a TRIANGLE, they become parallel (and 
can be considered to meet at infinity). As X varies 
around the CIRCUMCIRCLE, X-l varies through a line 
called the line at infinity. Every line is PERPENDICULAR 
to the line at infinity. 

see aho POINT AT INFINITY 

Line Integral 
The line integral on a curve c is defined by 

(1) 

- - 
s 

Fl dx + F2 dy + F3 dz, (2) 
c 

where FI 
FE F2 . [ 1 (3) 

F3 

If V* F = 0 (i.e., it is a DIVERGENCELESS FIELD); then 
the line integral is path independent and 

s 

(X,Y,4 
E;; dx + Fz dy + F3 dz 

(%b,C) 

s 

(a: A4 

s 

bY~4 

s 

(XlYA 
- - Fl dx + F2 dy + F3 dz. (4) 

hb4 (x AC) (a: ,Y,C) 

For z COMPLEX, y : z = z(t), and t E [u,b], 

see also CONTOUR INTEGRAL, PATH INTEGRAL 

(5) 

Curiously, the number of points in a line segment 
(ALEPH-1; HI) is equal to that in an entire 1-D SPACE 

(a LINE), and also to the number of points in an n-D 
SPACE, as first recognized by Georg Cantor. 

see UZSO ALEPH-1 (N1), COLLINEAR, CONTINUUM, LINE, 

RAY 

Line Space 

see LIOUVILLE SPACE 

Linear Algebra 
The study of linear sets of equations and their trans- 
formation properties. Linear algebra allows the analysis 
of ROTATIONS in space, LEAST SQUARES FITTING, so- 
lution of coupled differential equations, determination 
of a circle passing through three given points, as well 
as many other other problems in mathematics, physics, 
and engineering. 

The MATRIX and DETERMINANT are extremely useful 
tools of linear algebra. One central problem of linear 
algebra is the solution of the matrix equation 

Ax = b 

for x. While this can, in theory, be solved using a MA- 
TRIX INVERSE 

x = A-lb, 
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other techniques such as GAUSSIAN ELIMINATION are Linear Congruence 
numerically more robust. A linear congruence 

see also CONTROL THEORY, CRAMER’S RULE, DETER- 
MINANT, GAUSSIAN ELIMINATION, LINEAR TRANSFOR- 
MATION, MATRIX, VECTOR 
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Linear Approximation 
A linear approximation to a function f(z) at a point 20 
can be computed 
SERIES 

bY taking the first term in the TAYLOR 

f(xo + Ax) = f(xo) + f’(xo)Ax + . . . . 

see also MACLAURIN SERIES, TAYLOR SERIES 

Linear Code 
A linear code over a FINITE FIELD with 4 elements F, 
is a linear SUBSPACE C c Fgn. The vectors forming 
the SUBSPACE are called code words. When code words 
are chosen such that the distance between them is max- 
imized, the code is called error-correcting since slightly 
garbled vectors can be recovered by choosing the nearest 
code word. 

see also CODE, CODING THEORY, ERROR-CORRECTING 
CODE, GRAY CODE, HUFFMAN CODING, ISBN 

ax E b (mod m) 

is solvable IFF the CONGRUENCE 

b E 0 (mod (a+)) 

is solvable, where d z (a, m) is the GREATEST COMMON 
DIVISOR, in which case the solutions are ~0, ~0 + m/d, 
x0 + 2m/d, . . . , xo + (d - l)m/d, where x0 < m/d. If 
d = 1, then there is only one solution. 

see also CONGRUENCE,QUADRATIC CONGRUENCE 

Linear Congruence Method 
A METHOD for generating RANDOM (PSEUDORANDOM) 

numbers using the linear RECURRENCE RELATION 

X,+1 = ax, + c (mod m), 

where a and c must assume certain fixed 
is an initial number known as the SEED. 

values and X0 

see UZSOPSEUDORANDOM NUMBER, RANDOM NUMBER, 

SEED 

References 
Pickover, C. A. “Computers, Randomness, Mind, and In- 
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Freeman, pp. 233-247, 1995. 

Linear Equation 
An algebraic equation of the form 

y=ax+b 

involving only a constant and a first-order (linear) term. 

see also LINE, POLYNOMIAL, QUADRATIC EQUATION 

Linear Equation System 
When solving a system of rz linear equations with k > 72 
unknowns, use MATRIX operations to solve the system 
as far as possible. Then solve for the first (!c - n) com- 
ponents in terms of the last n components to find the 
solution space. 

Linear Extension 
A linear extension of a PARTIALLY ORDERED SET P is 
a PERMUTATION of the elements pl, 132, . . . of P such 
that i < j IMPLIES pi < pj. For example, the linear ex- 
tensions of the PARTIALLY ORDERED SET ((1,2), (3,4)) 
are 1234, 1324, 1342, 3124, 3142, and 3412, all of which 
have 1 before 2 and 3 before 4. 

References 
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Linear fiact ional Transformat ion 

see MOBIUS TRANSFORMATION 

Da&zig, G. B. “Programming of Interdependent Activities. 
II. Mathematical Model.” Econometrica 17, 200-211, 
1949. 

Dantzig, G. B. Linear Programming and Extensions. Prince- 

Linear Group ton, NJ: Princeton University Press, 1963. 

see GENERAL LINEAR GROUP, LIE-TYPE GROUP, PRO- 
Greenberg, H. J. “Mathematical Programming Glossary.” 

http://www-math. cudenver . edu/-hgreenbe/glossary/ 
JECTIVE GENERAL LINEAR GROUP, PROJECTIVE SPE- glossary. html. 
CIAL LINEAR GROUP, SPECIAL LINEAR GROUP Karloff, H. Linear Programming. Boston, MA: Birkhauser, 

1991. 
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Linear Group Theorem 
Any linear system of point-groups on a curve with only 
ordinary singularities may be cut by ADJOINT CURVES. 

Karmarkar, N. “A New Polynomial-Time Algorithm for Lin- 
ear Programming.” Combinatorics 4, 373-395, 1984. 

Pappas, T, “Projective Geometry & Linear Programming.” 
The Joy of Mathematics. San Carlos, CA: Wide World 
Publ./Tetra, pp. 216-217, 1989. 

Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vet- 

References 
Coolidge, J. L. A Treatise on Algebraic Plane Curves. New 

York: Dover, pp. 122 and 251, 1959. 

Linear Operator 
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An operator L is said to be linear if, for every pair of 
functions f and g and SCALAR t, 
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Linear Recurrence Sequence 

NONRECURRENCE SEQUENCE 

see also LINEAR TRANSFORMATION, OPERATOR 
Linear Regression 

Linear Ordinary Differential Equation 
The fitting of a straight LINE through a given set of 

see ORDINARY DIFFERENTIAL EQUATION-FIRST- 
points according to some specified goodness-of-fit cri- 

ORDER, ORDINARY DIFFERENTIAL EQUATION-SEC- 
terion. The most common form of linear regression is 
LEAST SQUARES FITTING. 

OND-ORDER 
see ah LEAST SQUARES FITTING, MULTIPLE REGRES- 

Linear Programming 
The problem of maximizing a linear function over a 
convex polyhedron, also known as OPERATIONS RE- 
SEARCH, OPTIMIZATION THEORY, or CONVEX OPTI- 
MIZATION THEORY. It can be solved using the SIMPLEX 

SION, NONLINEAR LEAST SQUARES FITTING 

References 
Edwards, A. L. An Introduction to Linear Regression and 

Correlation. San FTancisco, CA: W. H. Freeman, 1976. 
Edwards, A. L. Multiple Regression and the Analysis of Vari- 

ante and Cowariance. San FTancisco, CA: W. H. Freeman, 
METHOD (Wood and Dantzig 1949, Dantzig 1949) which 1979. 

runs along EDGES of the visualization solid to find the 
best answer. Linear Space 

In 1979, 1;. G. Khachian found a 0(x5) POLYNOMIAL- ~~~VECTOR SPACE 
time ALGORITHM. A much more efficient POLYNOMIAL- 
time ALGORITHM was found by Karmarkar (1984)* This Linear Stability 
method goes through the middle of the -solid and then Consider the general system of two first-order ORDI- 
transforms and warps, and offers many advantages over NARY DIFFERENTIAL EQUATIONS 
the simplex method. 

see U~SO CRISS-CROSS METHOD, ELLIPSOIDAL CAL- 
CULUS, KUHN-TUCKER THEOREM, LAGRANGE MULTI- 
PLIER,~ERTEX ENUMERATION 

2 = f (x, Y) (1) 
ti = dGY>- (2) 

References 
Bellman, R. and Kalaba, R, Dynamic Programming and 

Modern Control Theory. New York: Academic Press, 

Let ~0 and y. denote FIXED POINTS with 3E: = j, = 0, so 

f(“co,Yo) = 0 (3) 

g(xo,yo) = 0. (4 

I 
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Then expand about (20, yo) so 

sj: = &(x0, yo)Sx + f&or Yo>JY + f3CY(%YO)~~~Y + - - - 

(5) 

6~=ga:(xo,yo)Sx+gy(~0,Yo)~Y+9zy(~0rYo)~~~Y+4*” 

(6) 

To first-order, this gives 

d Sx 4 1 f&o, yo) f&o, Yo) h 
dt dy 9&o,Yo) SY(XO,YO) I[ 1 6Y ’ (7) 

where the 2 x 2 MATRIX is called the STABILITY MATRIX. 

In general, given an n-D MAP x’ = T(x), let x0 be a 
FIXED POINT, so that 

T(x0) = x0. (8) 

Expand about the fixed point, 

qxo + 6x) = T(x0) + - :6x + o(dx)2 

G T(xo) + c5T, 

so 

by--6 -AS - 
ax x = x* 

The map can be transformed into the principal axis 
framebyfindingthe EIGENVECTORS and EIGENVALUES 
of the MATRIX A 

(A - xl) 6x = o, (11) 

SO the DETERMINANT 

IA - XII = 0. (12) 

The mapping is 

t-x 1 . . . 01 

When iterated a large number of times, 

(13) 

onlyifjR(Xi)l <lfori=l,...,nbut+ooifanyIXi/ > 
1. Analysis of the EIGENVALUES (and EIGENVECTORS) 
of A therefore characterizes the type of FIXED POINT. 
The condition for stability is ]!R(Xi)l < 1 for i = 1, . . . , 
7-3. 

see also FIXED POINT, STABILITY MATRIX 

References 
Tabor, M. “Linear Stability Analysis.” $1.4 in Chaos and In- 

tegrability in Nonlinear Dynamics: An Introduction. New 
York: Wiley, pp. 20-31, 1989. 

Linear Transformat ion 
An n x n MATRIX A is a linear transformation (linear 
MAP) IFF, for every pair of n-VECTORS X and Y and 
every SCALAR t, 

A(X + Y) = A(x) + A(Y) (1) 

and 
A(m) = tA(x). (2) 

Consider the 2-D transformation 

px’l = allxl + al222 (3) 

px; = a2122 + a2222* (4) 

Rescale by defining A = xl/x2 and A’ G xi/xi, then the 
above equations become 

(5) 

where ~6 - Pr # 0 and a, p, y and S are defined in 
terms of the old constants. Solving for X gives 

x = a -0 
-TX’+& (6) 

so the transformation is ONE-TO-ONE. To find the 
FIXED POINTS of the transformation, set X = A’ to ob- 
tain 

-yX2 + (d - a)A -p = 0. (7) 

This gives two fixed points which may be distinct or 
coincident. The fixed points are classified as follows. 

variables tme 

(6 - a)2 + 4py > 0 hyperbolic fixed point 
(6 - Q)~ + 4@y < 0 elliptic fixed point 
(6 - a)2 + 4Br = 0 Darabolic fixed point 

see UZSO ELLIPTIC FIXED POINT (MAP), HYPERBOLIC 
FIXED POINT (MAP), INVOLUNTARY, LINEAR OPERA- 
TOR, PARABOLIC FIXED POINT 

References 
Woods, F. S. Higher Geometry: An Introductioti to Advanced 

Methods in Analytic Geometry. New York: Dover, pp. 13- 
15, 1961. 

Linearly Dependent Curves 
Two curves 4 and G satisfying 

are said to be linearly dependent. Similarly, n curves 

4 i, i = 1, l ... n are said to be linearly dependent if 72 
x (I& = 0. i=l 

see also BERTINI’S THEOREM, STUDY'S THEOREM 

References 
Coolidge, J. L. A Beatise on Algebraic Plane Curves. New 

York: Dover, pp. 32-34, 1959. 
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linearly independent. In 
for linear dependence, 

to satisfy the CRITERION Linearly Dependent Functions 
The n functions fi (2)) f2 (x), . . . , fn (2) are linearly de- 
pendent if, for some cl, ~2, l  . l  , cm E Iw not all zero, 

Cifi(X) = 0 (1) 

(where EINSTEIN SUMMATION is used) for all x in some 
interval 1. If the functions are not linearly dependent, 
they are said to be linearly independent. Now, if the 
functions f W--l, we can differentiate (1) up to n - 1 
times. Therefore, linear dependence also requires I 

x11 

x21 

l  

. 

. 

Xnl 

x12 

522 

(3) 

Xn2 
Cifi = 0 (2) 

this MATRIX equation to have a nontrivial 
DETERMINANT mustbeO,sothe VECTORS 

In order 
solution, 

for 
the ci fi’ = 0 (3) 

are linearly dependent if 
(n-1) Cifi = 0, (4) 

x12 

x22 

l  l  l  

. . . 

Xln 

X2n 

x11 

x21 

. 

. 

. 

G&l 

where the sums are over i = 1, . . . , n. These equations 
have a nontrivial solution IFF the DETERMINANT = 0, (4 

xrl2 Xnn 
. . . 

f ; ..* f 
I 

n 
and linearly independent otherwise. (5) 

f"-1' f(R-l) . .: f&l) 
1 2 n 

Let p and q be n-D VECTORS. Then the following three 
conditions are equivalent (Gray 1993). 

1. p and q are linearly dependent. where the DETERMINANT is conventionally called the 
WRONSKIAN and is denoted W( fi, f2,. . . , fn). If the 

WRONSKIAN # 0 for any value c in the interval I, then 
the only solution possible for (2) is ci = 0 (i = 1, . . , , 
n), and the functions are linearly independent. If, on 
the other hand, W = 0 for a range, the functions are 
linearly dependent in the range. This is equivalent to 
stating that if the vectors V[fl(c)], . . l  , V[fn(c)] defined 

3. The 2 x n MATRIX has rank less than two. 

References 
Gray, A. Modern Difierential Geometry of Curves and Sur- 

faces. Boca Raton, FL: CRC Press, pp. 186487, 1993. bY 

VEfi (4 

- fib) 
fXx> 
fXn> 

Linearly Independent 
Two or more functions, equations, or vectors which are 
not linearly dependent are said to be linearly indepen- 

(6) I - - 

f b-1) (x - z 
~~~UZSULINEARLYDE~ENDENT CURVES,LINEARLY DE- 

PENDENT FUNCTIONS, LINEARLY DEPENDENT VEC- 
TORS,MAXIMALLY LINEAR INDEPENDENT 

are linearly independent for at least one c E I, then the 
functions fi are linearly independent in 1. 

References 
Sansone, G. “Linearly Independent Functions.” 51.2 in Or- 

thogonal Functions, rev. English ed. New York: Dover, 
pp. 2-3, 1991. 

Link 
Formally, a link is one or more disjointly embedded CIR- 
CLES in 3-space. More informally, a link is an assem- 
bly of KNOTS with mutual entanglements. Kuperberg 
(1994) has shown that a nontrivial KNOT or link in R3 
has four COLLINEAR points (Eppstein). Doll and Hoste 
(1991) list POLYNOMIALS for oriented links of nine or 

A listing of the first few simple links 

Linearly Dependent Vectors 
nVECTORSX1,&,..., X, are linearly dependent IFF 
there exist SCALARS cl, ~2, . . . , cn such that 

fewer crossings. 
&Xi = 0, (1) follows, arranged by CROSSING NUMBER. 

where EINSTEIN SUMMATIUN is used and i = 1, . . . , 72. 
If no such SCALARS exist, then the vectors are said to be 



Link Link 

g2 6 

72 3 72 4 

82 4 82 5 

82 6 

g2 11 s22 G4 82 15 

936 g2 38 
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63 1 

83 1 a3 2 83 4 is3 5 

83 7 83 9 

g3 2 g3 4 g3 5 

84 2 84 3 

see &O ANDREWS-CURTIS LINK, BORROMEAN RINGS, 
BRUNNIAN LINK, HOPF LINK, KNOT, WHITEHEAD 
LINK 
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Link Diagram 

A planar diagram depicting a LINK (or KNOT) as a se- 
quence of segments with gaps representing undercross- 
ings and solid lines overcrossings. In such a diagram, 
only two segments should ever cross at a single point. 
Link diagrams for the TREFOIL KNOT and FIGURE-• F- 
EIGHT KNOT are illustrated above. 

Linkage 
Sylvester, Kempe and Cayley developed the geometry 
associated with the theory of linkages in the 1870s. 
Kempe proved that every finite segment of an algebraic 
curve can be generated by a linkage in the manner of 
WATT'S CURVE. 

g3 12 9:3 9:4 g3 15 
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SE ah HART'S INVERSOR, KEMPE LINKAGE, PAN- Linnik’s Theorem 
TOGRAPH,~EAUCELLIER INVERSOR,SARRUS LINKAGE, 
WATT'S PARALLELOGRAM 

References 
Cundy, H. and Rollett, A. Mathematical Models, 3rd ed. 

Stradbroke, England: Tarquin Pub,, 1989. 

Linking Number 
A LINK invariant. Given a two-component oriented 
LINK, take the sum of +1 crossings and -1 crossing 
over all crossings between 
For components or and p, 

the two links and divide by 2. 

where a II 0 is the set of crossings of cy with p and e(p) 
is the sign of the crossing. The linking number of a 
splittable two-component link is always 0. 

see ~2~0 JONES POLYNOMIAL, LINK 

References 
Rolfsen, II. Knots and Links. Wilmington, DE: Publish or 

Perish Press, pp. 132-133, 1976. 

Links Curve 

The curve given by the Cartesian equation 

(x2 + y2 - 3~)~ = 4x2(2 - x). 

The origin of the curve is a TACNODE. 

References 
Cundy, H. and Rollett, A. Mathematical Models, 3rd ed, 

Stradbroke, England: Tarquin Pub., p. 72, 1989. 

Linnik’s Constant 
The constant L in LINNIK'S THEOREM. Heath-Brown 
(1992) has shown that L < 5.5, and Schinzel, Sierpiri- 
ski, and Kanold (Ribenboim 1989) have conjectured that 
L = 2. 

References 
Finch, S. “Favorite Mathematical Constants.” http: //www l  

mathsoft,com/asolve/constant/linnik/linnik,htm1. 
Guy, R. K. Unsolved Problems in Number Theory, 2nd ed. 

New York: Springer-Verlag, p. 13, 1994. 
Heath-Brown, D. R. “Zero-Free Regions for Dirichlet L- 

Functions and the Least Prime in an Arithmetic Progres- 
sion.” Proc. London Math. Sot. 64, 265-338, 1992. 

Ribenboim, P. The Book of Prime Number Records, 2nd ed. 
New York: Springer-Verlag, 1989. 

Let p(d, a) be the smallest PRIME in the arithmetic pro- 
gression {a+ Icd} for k an INTEGER > 0. Let 

P(d) z maxp(d, a) 

such that 1 5 a < d and (a, d) = 1. Then there exists a 
do > 2 and an L > 1 such that p(d) < dL for all d > do. 
1; isknown as LINNIK’S CONSTANT. 

References 
Linnik, U. V. “On the Least Prime in an Arithmetic Progres- 

sion. I. The Basic Theorem.” Mat. Sbornik N. S. 15 (57), 
139-178, 1944. 

Linnik, U. V. “On the Least Prime in an Arithmetic Pro- 
gression. II. The Deuring-Heilbronn Phenomenon” Mut. 
Sbornik N. S. 15 (57), 347-368, 1944. 

Liouville’s Boundedness Theorem 
Abounded ENTIRE FUNCTION inthe COMPLEX PLANE 
cis constant. The FUNDAMENTAL THEOREM OF AL- 
GEBRA follows as a simple corollary. 

see also COMPLEX PLA .NE, ENTIRE 
MENTAL THEOREM OF ALGEBRA 

References 

FWNCTION,FUNDA- 

Morse, P. M. and Feshbach, H. Methods of Theoretical Phys- 
ics, Part I. New York: McGraw-Hill, pp. 381-382, 1953. 

Liouville’s Conformality Theorem 
In SPACE, the only CONFORMAL TRANSFORMATIONS 
are inversions, SIMILARITY TRANSFORMATIONS, and 
CONGRUENCE TRANSFORMATIONS. Or, restated, ev- 
ery ANGLE-preserving transformation is a SPHERE- 

preserving transformation. 

see UZSO CONFORMAL MAP 

Liouville’s Conic Theorem 
The lengths of the TANGENTS from a point P to a CONIC 
C are proportional to the CUBE ROOTS of the RADII OF 
CURVATURE of C at the corresponding points of contact. 

see also CONIC SECTION 

Liouville’s Constant 

L z F lo-“! = 0.11000100000000000000000l.. . 

n=l 

(Sloane’s A012245). Liouville’s constant is a decimal 
fraction with a 1 in each decimal place corresponding 
to a FACTORIAL n!, and ZEROS everywhere else. This 
number was among the first to be proven to be TRANS- 
CENDENTAL. It nearly satisfies 

10x6 - 75x3 - 190X + 21 = 0, 

but with 2 = L, this equation gives -0.0000000059. l  . . 

see also LIOUVILLE NUMBER 
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References The CONJECTURE that the SUMMATORY FUNCTION 
Conway, J. H. and Guy, R. K. “Liouville’s Number.” In The 

Book of Numbers. New York: Springer-Verlag, pp* 239- 
241, 1996. 

Courant, R. and Robbins, H. “Liouville’s Theorem and the 
Construction of Transcendental Numbers.” 52.6.2 in ‘What 
is Mathematics ?: An Elementary Approach to Ideas and 
Methods, 2nd ed. Oxford, England: Oxford University 
Press, pp* 104-107, 1996. 

L(n) G tA(7-a) 

k=l 

(3) 

Liouville, J. “Sur des classes trks ktendues de quantitks dont 
la valeur n’est ni algkbrique, ni mgme reductible & des irra- 
t ionelles algkbriques .” C. R. Acad. Sci. Paris 18, 883-885 
and 993-995, 1844, 

Liouville, J. “Sur des classes trk-ktendues de quantites dont 
la valeur n’est ni algebrique, ni m&me rkductible & des irra- 
t ionelles algkbriques .” J. Math. pures appl. 15, 133-142, 
1850. 

Sloane, N. J. A. Sequence A012245 in “An On-Line Version 
of the Encyclopedia of Integer Sequences.” 

satisfies L(n) 5 0 for n 2 2 is called the P~LYA CON- 
JECTURE and has been proved to be false. The first n 

for which L(n) = 0 are for n = 2, 4, 6, 10, 16, 26, 
40, 96, 586, 906150256, . . . (Sloane’s A028488), and 
n = 906150257 is, in fact, the first counterexample to 
the P~LYA CONJECTURE (Tanaka 1980). However, it is 
unknown if L(z) changes sign infinitely often (Tanaka 
1980). The first few values of L(n) are 1, 0, -1, 0, -1, 

0, -1, -2, -1, 0, -1, -2, -3, -2, -1, 0, -1, -2, -3, 
-4, . . l  (Sloane’s A002819). L(n) also satisfies 

Liouville’s Elliptic Function Theorem 
An ELLIPTIC FUNCTION with no POLES in a fundamen- 
tal cell is a constant. 

Liouville Function 

-1 

The function 

I 2 
- 1 4 

A(n) = (-l)‘(“), 

3 3 0 

(1) 

where r(n) is the number of not necessarily distinct 
PRIME FACTORS of n, with ~(1) = 0. The first few 
values of x(n) are 1, -1, -1, 1, -1, 1, -1, -1, 1, 1, -1, 
-1, ,... The Liouville function is connected with the 
RIEMANN ZETA FUNCTION by the equation 

Gw O” w-4 - = 
SC > s x ns 

n=l 

(Lehman 1960). 

(2) 

(4) 
n=l 

where 1x1 is the FLOOR FUNCTION (Lehman 1960). 
Lehman (1960) also gives the formulas 

m=l 

1=x/w-l d 
m=l 

and 

k=l 

where k, 1, and m are variables ranging over the POSI- 
TIVE integers, p(n) is the MOBIUS FUNCTION, M(z) is 
MERTENS FUNCTION, and 2r, w, and x are POSITIVE real 
numbers with w  < w  < z. 

see UZSO P~LYA CONJECTURE, PRIME FACTORS, RIE- 
MANN ZETA FUNCTION 

References 
Fawaz, A. Y. “The Explicit Formula for L&c).” Proc. Lon- 

don Math. Sot. 1, 86-103, 1951. 
Lehman, R. S. “On Liouville’s Function.” Math. Cornput. 

14, 311-320, 1960. 
Sloane, N. J. A. Sequences A028488 and A002819/M0042 in 

“An On-Line Version of the Encyclopedia of Integer Se- 
quences.” 

Tanaka, M. “A Numerical Investigation on Cumulative Sum 
of the Liouville Function.” Tokyo J. Math. 3, 187-189, 
1980. 
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Liouville Measure 

rI dpi dqi, 

where pi and pi aIre momenta and positions of particles. 

see also LIOU 
SPACE 

VILLE 's PHASE THEOREM, 

Liouville Number 
A Liouville number is a TRANSCENDENTAL NUMBER 
which is very close to a RATIONAL NUMBER. An IR- 
RATIONAL NUMBER fl is a Liouville number if, for any 
n, there exist an infinite number of pairs of INTEGERS p 
and 4 such that 

Mahler (1953) proved that n is not a Liouville number. 

see &O LIOUVILLE'S CONSTANT, LIOUVILLE'S RATIO- 
NAL APPROXIMATION THEOREM, ROTH'S THEOREM, 
TRANSCENDENTAL NUMBER 

References 
Mahler, K. 

Wetensch 
42, 1953. 

‘&On the Approximation of r.” Nederl. Akad. 
. Proc. Ser. A. 56lIndagationes Math, 15, 30- 

Liouville’s Phase Space Theorem 
States that for a nondissipative HAMILTONIAN SYSTEM, 
phase space density (the AREA between phase space con- 
tours) is constant. This requires that, given a small time 
increment dt, 

41 = q(to + dt) = qo + aHc;;r’ t)dt + O(dt2) (1) 

PI = p(to + dt) = p. - “H’;;opo’ t)dt + O(dt2), (2) 

the JACOBIAN be equal to one: 

qql,Pl> 2 2 - - 

I I qqo,Po> - 2 g 

- - 

= 1 + O(dt2). 

-edt + O(&) 

l- &$ 

(3) 

Expressed in anot her 
VILLE MEASURE, 

form, the integral of the LIOU- 

dpi dqi 9 (4) 

is a constant of motion. SYMPLECTIC MAPS of HAM- 
ILTONIAN SYSTEMS must therefore be AREA preserving 
(and have DETERMINANTS equal to 1). 

see also LIOUVILLE MEASURE, PHASE SPACE 

References 
Chavel, I. Riemannian Geometry: A Modern Introduction. 

New York: Cambridge University Press, 1994. 

Liouville-Roth Constant 

Liouville Polynomial Identity 

6(X12 + x22 + a2 + x42) = (Xl + x2)4 + (Xl + x3)4 

+(x2+x~)4+(~~+~~)4+(~2+~4)4+(x~+x4)4+(X~-~2)4 
+(x1 - x3)4 + (x2 - x3)4 + (Xl - x4)4 + (x2 - x4)4 

+(x3 - x4)4* 

This is proven in Rademacher and Toeplitz (1957). 

see also WARING’S PROBLEM 

References 
Rademacher, H. and Toeplitz, 0. The Enjoyment of Math- 

ematics: Selections from Mathematics for the Amateur. 
Princeton, NJ: Princeton University Press, pp. 55-56, 
1957. 

Liouville’s Rational Approximation Theorem 
For any ALGEBRAIC NUMBER x of degree n > 1, a RA- 
TIONAL approximation x = p/q must satisfy 

P I I 1 
x-- >- 

Q qn+l 

for sufficiently large 4. Writing r G n + 1 leads to the 
definition ofthe LIOUVILLE-ROTH CONSTANT ofagiven 
number. 

see also LAGRANGE NUMBER (RATIONAL APPROXI- 
MATION), LI~UVILLE'S CONSTANT, LIOUVILLE NUM- 
BER,LIOUVILLE-ROTH CONSTANT,MARKOV NUMBER, 
ROTH'S THEOREM,THUE-SIEGEL-ROTH THEOREM 

References 
Courant, R. and Robbins, H. %iouville’s Theorem and the 

Construction of Transcendental Numbers.” $2.6.2 in What 
is Mathematics ?: An Elementary Approach to Ideas and 
Methods, 2nd ed. Oxford, England: Oxford University 
Press, pp. 104-107, 1996. 

Liouville-Roth Constant 
N.B. A detailed on-line essay by S. Finch was the start- 
ing point for this entry. 

Let x be a REAL NUMBER, and let R be the SET of 
POSITIVE REAL NUMBERS for which 

(1) 

has (at most) finitely many solutions p/q for p and q 
INTEGERS. Then the Liouville-Roth constant (or IR- 
RATIONALITY MEASURE) is defined as the threshold at 
which LIOUVILLE'S RATIONAL APPROXIMATION THEO- 
REM kicks in and x is no longer approximable by RA- 
TIONAL NUMBERS, 



Liouville Space 

There are three regimes: 

Lissajous Curve 1091 

Lipschitz Function 
A function f such that 

m = 1 z is rational 

T(X) = 2 x is algebraic irrational 
r(x) 2 2 x is transcendental. 

(3) 

The best known upper bounds for common constants 
are 

r(L) = 00 

r(e) = 2 

r(r) < 8.0161 

r(ln2) < 4.13 

r(r2) < 6.3489 

r(c(3)) < 13.42, 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

where L is LIOUVILLE'S CONSTANT, c(3) is AP~RY’S 
CONSTANT, and the lower bounds are 2 for the inequal- 
ities. 

see also LIOUVILLE’S RATIONAL APPROXIMATION THE- 
OREM, ROTH’S THEOREM, THUE-SIEGEL-ROTH THEO- 
REM 

References 
Borwein, J. M. and Borwein, P. B. Pi & the AGM: A Study in 

Analytic Number Theory and Computational Complexity. 
New York: Wiley, 1987. 

Finch, S. “Favorite Mathematical Constants.” http: //www. 
mathsoft.com/asolve/constant/lvlrth/lvlrth.html. 

Hardy, G. H. and Wright, E. M. An Introduction to the The- 
ory of Numbers, 5th ed. Oxford: Clarendon Press, 1979. 

Hata, M. “Improvement in the Irrationality Measures of ;TT 
and n2.” Proc. Japan. Acad. Ser. A Math. Sci. 68, 28% 
286, 1992. 

Hata, M. “Rational Approximations to 7r and Some Other 
Numbers.” Acta Arith. 63 335-349, 1993. 

Hata, M. “A Nate on Beuker’s Integral.” J. Austral, Math, 
Sot. 58, 143-153, 1995. 

Stark, H. M. An Introduction to Number Theory. Cam- 
bridge, MA: MIT Press, 1978. 

Liouville Space 
Also known as LINE SPACE or “extended” HILBERT 

SPACE, it is the DIRECT PRODUCT of two HILBERT 
SPACES. 

see also DIRECT PRODUCT (SET), HILBERT SPACE y(t) = b sin t. (4) 

Liouville’s Sphere-Preserving Theorem 

see LIOUVILLE’S CONFORMALITY THEOREM 

Lipschitz Condition 
A function f(x) satisfies the Lipschitz condition of order 
a at x = 0 if 

for all [hj < E, where B and p are independent of h, 
p > 0, and QC is an UPPER BOUND for all p for which a 
finite B exists. 

see also HILLAM’S THEOREM, LIPSCHITZ FUNCTION 

If(x) - f (Y)l I Clx - YI 

is called a Lipschitz function. 

see also LIPSCHITZ CONDITION 

References 
Morgan, F. “What Is a Surface?” Amer. Math. MonthZy 103, 

369-376, 1996. 

Lipschitz’s Integral 

r e -J()(bx)dx = l 
0 JzqF 

where J&z) is the zeroth order BESSEL FUNCTION OF 

THE FIRST KIND. 

References 
Bowman, F. Introduction to Bessel Functions. New York: 

Dover, p. 58, 1958. 

Lissajous Curve 

Lissajous curves are the family of curves described by 
the parametric equations 

x(t) = Acos(w,t - S,) (1) 

y(t) = Bcos(w,t - S,), (2) 

sometimes also written in the form 

x(t) = a sin(nt + c) (3) 

They are sometimes known as BOWDITCH CURVES after 
Nathaniel Bowditch, who studied them in 1815. They 
were studied in more detail (independently) by Jules- 
Antoine Lissajous in 1857 (MacTutor Archive). Lis- 
sajous curves have applications in physics, astronomy, 
and other sciences. The curves close IFF wLc/wy is RA- 
TIONAL. 

References 
Gray, A. Modern Differential Geometry of Curves and Sur- 

faces. Boca Raton, FL: CRC Press, pp. 53-54, 1993. 
Lawrence, 3. D. A Catalog of Special Plane Curves. New 

York: Dover, pp* 178-179 and 181-183, 1972. 
MacTutor History of Mathematics Archive. “Lissaj ous 

Curves ,” http: //wuw-groups . dcs.st--and.ac.uk/ 
-history/Curves/Lissajous.html. 
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Lissajous Figure 

see LISSAJOUS CURVE 

Ln 
The LOGARITHM to BASE e, also called the NATURAL 
LOGARITHM, is denoted In, i.e., 

List 
A DATA STRUCTURE consisting of an order SET of el- 
ements, each of which may be a number, another list, 
etc. A list is usually denoted (al, a2, , . . , a,) or {al, 

~2, . . . 7 a,}. 

see also QUEUE, STACK 

In x E log, 2. 

see dso BASE (LOGARITHM), E, LG, LOGARITHM, 
NAPIERIAN LOGARITHM,NATURAL LOGARITHM 

Lo Shu 

Lituus 

An ARCHIMEDEAN SPIRAL with m = -2, having polar 
equation 

r28 = u2. 

Lituus means a “crook,” in the sense of a bishop’s 
crosier. The lituus curve originated with Cotes in 1722. 
Maclaurin used the term lituus in his book Hurmonia 
Mensururum in 1722 (MacTutor Archive). The lituus is 
the locus of the point P moving such that the AREA of 
a circular SECTOR remains constant. 

References 
Gray, A. Modern Differential Geometry of Curves and Sur- 

faces. Boca Raton, FL: CRC Press, pp. 69-70, 1993. 
Lawrence, J. D. A Catalog of Special Plane Curves. New 

York: Dover, pp. 186 and 188, 1972. 
Lockwood, E. H. A Book of Curves. Cambridge, England: 

Cambridge University Press, p. 175, 1967. 
MacTutor History of Mathematics Archive. “Lituus.” http : 

// wuu - groups . dcs . st -and. ac . uk/-history/Curves/ 
Lituus. html. 

Lituus Inverse Curve 
The INVERSE CURVE ofthe LITUUS is an ARCHIMEDEAN 
SPIRAL with m = 2, which is FERMAT'S SPIRAL. 

see also ARCHIMEDEAN SPIRAL, FERMAT'S SPIRAL, 
LITUUS 

LLL Algorithm 
An INTEGER RELATION algorithm. 

see ~2s~ FERGUSON-FORCADE ALGORITHM, HJLS AL- 
GORITHM, INTEGER RELATION, PSLQ ALGORITHM, 
PSOS ALGORITHM 

References 
Lenstra, A. K.; Len&a, H. W.; and Lovasz, 1;. “Factoring 

Polynomials with Rational Coefficients.” Math. Ann. 261, 
515-534, 1982. 

The unique MAG 
is an ASSOCIATI 
MAGIC SQUARE. 

IC 
VE 

SQ 
MAGIC SQUARE, but not 

Lo Shu 
a PAN- 

see UZSOASSOCIATIVE MAGIC SQUARE,MAGIC SQUARE, 
PANMAGIC SQUARE 

References 
Hunter, J. A. H, and Madachy, J. S. Mathematical Diver- 

sions. New York: Dover, pp. 23-24, 1975. 

Lobachevsky-Bolyai-Gauss Geometry 

see HYPERBOLIC GEOMETRY 

Lobachevsky’s Formula 

E 

A c D B 

Given a point P and a LINE AB, draw the PERPENDIC- 
ULAR through P and call it PC. Let PD be any other 
line from P which meets CB in D. In a HYPERBOLIC 
GEOMETRY, as D moves off to infinity along CB, then 
the line PD approaches the limiting line PE, which is 
said to be parallel to CB at P. The angle LCPE which 
PE makes with PC is then called the ANGLE OF PAR- 
ALLELISM for perpendicular distance 2, and is given by 

II(z) = 2 tan-l(e-“), 

which is called Lobachevsky’s formula. 

see also ANGLE OF PARALLELISM 
ETRY 

References 

OLIC GERM- 

Manning, H. P. Introductory Non-Euclidean Geometry. New 
York: Dover, p. 58, 1963. 
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Lobatto Quadrature 
Also called RADAU QUADRATURE (Chandrasekhar 
1960). A GAUSSIAN QUADRATURE with WEIGHTING 
FUNCTION W(X) = 1 in which the endpoints of the in- 
terval [-l,l] are included in a total of 72 ABSCISSAS, 
giving r = n - 2 free abscissas. ABSCISSAS are symmet- 
rical about the origin, and the general FORMULA is 

Pl n-1 

1. f(x)dx = w~f(-1) + wnf(l) + x wf (Xi)* (1) 
d-1 i=2 

The free ABSCISSAS xi for i = 2, . l  . , n - 1 are the roots 
of the POLYNOMIAL ph-&), where P(x) is a LEGEN- 
DRE POLYNOMIAL. The weights of the free abscissas are 

2n 
wi = - 

(1 - xi”)p~-,(xi)p~(xi) 

2 - - 
n(n - l)[Pn-1 (Xi)]’ ’ 

and of the endpoints are 

2 
Wl,n = - 

n(n - 1) ’ (4) 

The error term is given by 

E = -n(n - 1)322n-1[(n - 2)!14 
f 

(2n-2) 

(2n - 1)[(2n - 2)!13 (01 (5) 

for < E (-1, l)m Beyer (1987) gives a table of parame- 
ters up to n=ll and Chandrasekhar (1960) up to n=9 
(although Chandrasekhar’s ~3,4 for nz = 5 is incorrect). 

n xi 

3 0 
&l 

4 kO.447214 
H 

5 0 
ho.654654 
It1 

6 1t0.285232 
rtO.765055 
*1 

1.33333 
0.333333 
0.833333 
0.166667 
0.711111 
0.544444 
0.100000 
0.554858 
0.378475 
0.0666667 

The ABSCISSAS and weights can be computed analyti- 
cally for small 72. 

n Xi Wi 

see also CHEBYSHEV QUADRATURE, RADAU QUADRA- 
TURE 

References 
Abramowitz, M. and Stegun, C. A. (Eds.). Handbook 

of Mathematical Functions with Formulas, Graphs, and 
Mathematical Tables, 9th printing. New York: Dover, 
pp* 888-890, 1972. 

Beyer, W. H. CRC Standard Mathematical Tables, 28th ed. 
Boca Raton, FL: CRC Press, pa 465, 1987. 

Chandrasekhar, S. Radiative Transfer. New York: Dover, 
pp* 63-64, 1960. 

Hildebrand, F. B. Introduction to Numerical Analysis. New 
York: McGraw-Hill, pp. 343-345, 1956. 

Lobster 

A 6-PoLYIAMoND. 

References 
Golomb, S. W. Polyominoes: Puzzles, Patterns, Problems, 

and Packings, 2nd ed. Princeton, NJ: Princeton University 
Press, p. 92, 1994. 

Local Cell 
The POLYHEDRON resulting from letting each SPHERE 
in a SPHERE PACKING expand uniformly until it touches 
its neighbors on flat faces. 

see also LocAL DENSITY 

Local Degree 
The degree of a VERTEX of a GRAPH is the number of 
EDGES which touch the VERTEX, also called the LOCAL 
DEGREE. The VERTEX degree ofapoint A in a GRAPH, 
denoted p(A), satisfies 

= 2E, 
-- z- 1 

where E is the total number of EDGES. Directed graphs 
have two types of degrees, known as the INDEGREE and 
OUTDEGREE. 

see also INDEGREE, OUTDEGREE 

Local Density 
Let each SPHERE in it SPHERE PACKING expand uni- 
formly until it touches its neighbors on flat faces. Call 
the resulting POLYHEDRON the LOCAL CELL. Then the 
local density is given by 

V 

p=f@-=~ local cell 

When the LOCAL CELL is a regular DODECAHEDRON, 
then 

Pdodecahedron = rG-z =07547 
5m(&-2) ' "** 

see also LOCAL DENSITY CONJECTURE 
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Local Density Conjecture 
The CONJECTURE that the maximum LOCAL DENSITY 
is given by Pdodecahedron. 

see also LocAL DENSITY 

Local Extremum 
A LOCAL MINIMUM or LOCAL MAXIMUM. 

see UZS~EXTREMUM, GLOBAL EXTREMUM 

Local Field 
A FIELD which is complete with respect to a discrete 
VALUATION is called alocalfieldifits FIELD of RESIDUE 
CLASSES is FINITE. The HASSE PRINCIPLE is one ofthe 
chief applications of local field theory. 

see also HASSE PRINCIPLE, VALTJATION 

References 
Iyanaga, S. and Kawada, Y. (Eds.). “Local Fields.” 5257 

in Encyclopedic Dictionary of Mathematics. Cambridge, 
MA: MIT Press, pp* 811415, 1980. 

Local-Global Principle 

see HASSE PRINCIPLE 

Local Group Theory 
The study ofa FINITE GROUP Gusingthe LOCAL SUB- 
GROUPS of G. Local group theory plays a critical role in 
the CLASSIFICATION THEOREM. 

see also SYLOW THEOREMS 

Local Maximum 
The largest value of a set, function, etc., within some 
local neighborhood. 

see also GLOBAL MAXIMUM, LOCAL MINIMUM, MAXI- 
MUM,PEANO SURFACE 

Local Minimum 
The smallest value of a set, function, etc., within some 
local neighborhood. 

see also GLOBAL 
MUM 

MINIMUM, LOCAL MAXIMUM, MINI- 

Local Ring 
A NOETHERIAN RING R with a Jacobson radical which 
has only a single maximal ideal. 

References 
Iyanaga, S. and Kawada, Y. (Eds.). “Local Rings.” §281D 

in Encyclopedic Dictionary of Mathematics. Cambridge, 
MA: MIT Press, pp. 890-891, 1980. 

Local Subgroup 
A normalizer of a nontrivial SYLOW ~-SUBGROUP of a 
GROUP G. 

see also LOCAL GROUP THEORY 

Local Surface 

see PATCH 

Locally Convex Space 

see LOCALLY PATHWISE-CONNECTED SPACE 

Locally Finite Space 

finitely 

A locally finite SPACE is one for which every point of 
a given space has a NEIGHBORHOOD that meets only 

many elements ofthe COVER. 

Locally Pathwise-Connected Space 
A SPACE X is locally pathwise-connected if for every 
NEIGHBORHOOD around every point in X, there is a 
smaller, PATHWISE-CONNECTED NEIGHBORHOOD. 

Loculus of Archimedes 

see STOMACHION 

Locus 
The set of all points (usually forming a curve or surface) 
satisfying some condition. For example, the locus of 
points in the plane equidistant from a given point is 
a CIRCLE, and the set of points in 3-space equidistant 
from a given point is a SPHERE. 

Log 
The symbol logz is used by physicists, engineers, and 
calculator keypads to denote the BASE 10 LOGARITHM. 
However, mathematicians generally use the same symbol 
to mean the NATURAL LOGARITHM LN, lnz. In this 

work, log x = log,, x, and lnir: = log, x is used for the 
NATURAL LOGARITHM. 

see also LG, LN, LOGARITHM, NATURAL LOGARITHM 

Log Likelihood Procedure 
A method for testing NESTED HYPOTHESES. To ap- 
ply the procedure, given a specific model, calculate the 
LIKELIHOOD of observing the actual data. Then com- 
pare this likelihood to a nested model (i.e., one in which 
fewer parameters are allowed to vary independently). 

Log Normal Distribution 

A CONTINUOUS DISTRIBUTION in which the LOGA- 
RITHM ofa variable has a NORMAL DISTRIBUTION. It is 
a general case of GILBRAT'S DISTRIBUTION, to which 
the log normal distribution reduces with S = 1 and 
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lL!r= 0. The probability density and cumulative dis- 
tribution functions are log normal distribution 

P(x) = -A- 
SXfie 

-(ha:-Aq2/(2S2) 

D(x)=; [l+erf(y)], 

(1) 

(2) 

where erf(x) is the ERF function This distribution is 
normalized, since letting y E lnx gives dy = &c/x and 
X = ey, so 

-(Y-W2P2 dy = 1. (3) 

The MEAN, VARIANCE, SKEWNESS, and KURTOSIS are 
given by 

p=e 
iw+s2/2 

(4) 

02 = es2+2yes2 - 1) (5) 

y1 = Jes-I(2+ eS2) (6) 

72 = e2s2 (3 + 2eS2 + e2s2) - 3. (7) 

These can be found by direct integration 

e- (ln x - M12/2S2 dx 

1 O” - -- 
s sd%F -rn 

e(y-M)2/2S2 Y e dY 

1 
- -- 

sfi 
s 

cx) 
,-I-Y+(Y-W2/2S21 dY 

-- 

1 O” - -- 
s s& -rn 

e-(-2S2y+y2-2yM+M2)/2S2 dy 

1 
- -- 

sJ2n 
s 

O” 
,-{[y-(S2+~)12+S2(S2+2M))/2S2 dY 

-- 

1 - -- 
S&i 

eM+S2 /2 
dY 

and similarly for g2. Examples of variates which have 
approximately log normal distributions include the size 
of silver particles in a photographic emulsion, the sur- 
vival time of bacteria in disinfectants, the weight and 
blood pressure of humans, and the number of words 
written in sentences by George I3ernard Shaw+ 

see also GILBRAT’S DISTRIBUTION, WEIBULL DISTRI- 
BUTION 

References 
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Log-Series Distribution 
The terms in the series expansion of ln(1 - 8) about 
8 = 0 are proportional to this distribution. 

P(n) = 

D(n) z 

8” 
-nln(l- 0) 

i: Pi 0 P+“Q(O, 1, 1 + n) + In(1 - 0) = 

ln(1 - 0) I 
z- -- 1 

(2) 

where @ is the LERCH TRANSCENDENT. The MEAN, 
VARIANCE, SKEWNESS, and KURTOSIS 

i? 
’ = (0 - 1) ln(1 - 0) (3) 

o2 = - 
0[0 + ln(1 - e)] 

(8 - 1)2[ln(l - @I2 (4) 

202 + 38 y1 ln(1 -@+(1+Vn2P-~) = - 

ln(1 - 0)[0 + ln(1 - e)]J-0[0 + ln(l - 0)] 

ln(l 0) 

(5) 

“12 = 
6ti3 + 1202 In(1 - 0) + 8(7 + 40)1n2(1 - 0) 

0[0 + ln(1 - 0)]” 

+ 
(l+ 48+02) ln3(1 -0) 

0[0 + ln(1 - Q)]” l  

Log-Weibull Distribution 

see FISHER-TXPPETT DISTRIBUTION 

Logarithm 

(6) 

The logarithm is defined to be the INVERSE FUNCTION 
of taking a number to a given POWER. Therefore, for 
any II: and 6, 

rJ = pax, 
(1) 

or equivalently, 
x = log,(b”). (2) 

Here, the POWER b is known as the BASE of the log- 
arithm. For any BASE, the logarithm function has a 
SINGULARITY at x = 0. In the above plot, the solid 
curve is the logarithm to BASE e (the NATURAL LOGA- 

RITHM), and the dotted curve is the logarithm to BASE 
10 (LOG). 
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Logarithms are used in many areas of science and engi- 
neering in which quantities vary over a large range. For 
example, the decibel scale for the loudness of sound, the 
Richter scale of earthquake magnitudes, and the astro- 
nomical scale of stellar brightnesses are all logarithmic 
scales. 

ReILog 21 Im[Log zl ILW zl 

1. 
0. 

[zl [zl 

The logarithm can also be defined for COMPLEX argu- 
ments, as shown above. If the logarithm is taken as 
the forward function, the function taking the BASE to a 
given POWER is then called the ANTILOGARITHM. 

For x = log N, 1x1 is called the CHARACTERISTIC and 
z - [a;] is called the MANTISSA. Division and multipli- 
cation identities follow from these 

xy = b logb y%b Y _ bl%& x+logb Y - ? (3) 

from which it follows that 

1%&Y) = 1% x + log, Y (4) 

X 1% - 0 Y 
= log* x - logb y (5) 

log, xn = n log, x:. (6) 

There are a number of properties which can. be used to 
change from one BASE to another 

a - ulog, bl log, b = - ( 
(pa b l/l%, b = bll log, b 

> 

1 
log, a = - 

loga b 

log, z = log, (ylogy z > = log, 25 log, Y 

log, 2 log, z = - 
log, Y 

ax = b 4 log, b =b . x logb a 

(7) 

(8) 

(9) 

(10) 

(11) 

The logarithm BASE e is called the NATURAL LOGA- 
RITHM and is denoted Ins (LN). The logarithm BASE 
10 is denoted log x (LOG), (although mathematics texts 
often use log x to mean In x). The logarithm BASE 2 is 
denoted lgx (LG). 

An interesting property of logarithms follows from look- 
ing for a number y such that 

log& + Y) = - 10&(X - Y) (12) 
1 

x+y=- 
X-Y 

(13) 

X2 -y2=1 
(14) 

Y- d x2 - 1 ? (15) 

so 

log,(x + &T) = - log,(x - &T). (16) 

Numbers of the form log, b are IRRATIONAL if a and b 
are INTEGERS, one of which has a PRIME factor which 
the other lacks. A. Baker made a major step forward 
in TRANSCENDENTAL NUMBER theory by proving the 
transcendence of sums of numbers of the form a In p for 
a and p ALGEBRAIC NUMBERS. 

see also ANTILOGARITHM, COLOGARITHM, e, EXPO- 
NENTIAL FUNCTION, HARMONIC LOGARITHM, LG, LN, 
LOG,LOGARITHMIC NUMBER, NAPIERIAN LOGARITHM, 
NATURAL LOGARITHM, POWER 
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Logarithmic Binomial Formula 

see LOGARITHMIC BINOMIAL THEOREM 

Logarithmic Binomial Theorem 
For all integers n and 1x1 < a, 

where Xc) is the HARMONIC LOGARITHM and 
n 11 k 

is a 

ROMAN COEFFICIENT. For t = 0, the logarithmic bino- 
mial theorem reduces to the classical BINOMIAL THEO- 
REM for POSITIVE n, since A;?,(a) = an-’ for n > k, 

A:.&) = 0 for n < k, and = (z) when n 2 k 2 0. 

Similarly, taking t = 1 and n < 0 gives the NEGATIVE 
BINOMIAL SERIES. Roman (1992) gives expressions ob- 
tained for the case t = 1 and n 2 0 which are not 
obtainable from the BINOMIAL THEOREM. 

see UZSOHARMONIC LOGARITHM, ROMAN COEFFICIENT 

References 
Roman, S+ “The Logarithmic Binomial Formula.” Amer. 

Math. Monthly 99, 641-648, 1992. 



Logarithmic Distribution Logarithmic Spiral 1097 

Logarithmic Distribution 
A CONTINUOUS DISTRIBUTION for a variate with prob- 
ability function 

P(x) = 
log x 

b(log b - 1) - a(log a - 1) 

and distribution function 

D(x) = 
a(1 - loga) - x(1 - logx) 

. a(1 - log a) - b(1 - log b) l  

The MEAN is 

CL= 
a2(1 - 2loga) - b2(1 - 210gb) 

4[a(l - loga) - b(1 - logb)] ’ 

but higher order moments are rather messy. 

Logarithmic Integral 

The logarithmic integral is defined by 

ii(x) E -. 
s 

x du 

o lnu (1) 

The offset form appearing in the PRIME NUMBER THE- 
OREM is defined so that Li(2) = 0: 

(2) 

= ii(x) - li(2) z ii(x) - 1.04516 

- ei(ln x), - 
(3) 

(4) 

where ei(x)isthe EXPONENTIAL INTEGRAL. (Note that 
the NOTATION Li,(z) is also used for the POLYLOGA- 
RITHM.) Nielsen (1965, pp, 3 and 11) showed and Ra- 
manujan independently discovered (I3erndt 1994) that 

s x dt O” (lnx)” 
lnt =7+lnlnx+~;~, 

P k=l . 

(5) 

where y is the EULER-MASCHERONI CONSTANT and p 
is SOLDNER’S CONSTANT. Another FORMULA due to 
Ramanujan which converges more rapidly is 

s x dt 

In t 
=y+lnlnx 

CL 

O" (-l)"-l(lnx)n Kn-W21 1 

+6X 7$p-l >: 2k + 1 (6) m 

(Berndt 1994). 

see also POLYLOGARITHM, PRIME CONSTELLATION, 
PRIME NUMBER THEOREM,~KEWES NUMBER 
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Logarithmic Number 
A COEFFICIENT ofthe MACLAURIN SERIES of 

1 1 

ln(1 + 2) = x 
-+$+$x2- %x3 + &x4 + . . l  

(Sloane’s A002206 and A002207), the multiplicative in- 
verse of the MERCATOR SERIES function ln( 1 + x)* 

see also MERCATOR SERIES 
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Logarithmic Spiral 

A curve whose equation in POLAR COORDINATES is 
given by 

r = aebB, (1) 

where T is the distance from the ORIGIN, 0 is the angle 
from the x-axis, and a and b are arbitrary constants. 
The logarithmic spiral is also known as the GROWTH 
SPIRAL, EQUIANGULAR SPIRAL, and SPIRA MIRABILIS. 
It can be expressed parametrically using 

1 
cose= 4-= 

which gives 

X = rcoso = acosoebe 

y = xtan@ = rsin8 = asin@. 

(3) 

(4 

The logarithmic spiral was first studied by Descartes in 
1638 and Jakob Bernoulli. Bernoulli was so fascinated 

n=O k=O 
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Logarithmic Spiral Caustic Curve 
The CAUSTIC ofa LOGARITHMIC SPIRAL, wherethepole 
istakenasthe RADIANT POINT, is anequal LOGARITH- 
MIC SPIRAL. 

by the spiral that he had one engraved on his tomb- 
stone (although the engraver did not draw it true to 
form). Torricelli worked on it independently and found 
the length of the curve (MacTutor Archive). 

The rate of change of RADIUS is 
Logarithmic Spiral Evolute 

dr 

de 
= abebe = br, (5) (r2 -I- w ) 2 3/2 

R= 
and the ANGLE between the tangent and radial line at 
the point (T, 0) is Using 

$ = tan -l(g) =tan-l(i) =cot-lb. (6) 
b0 

T  = ae Tfl = abebe T$fg = ab2eb0 (2) 

gives 
So, as b + 0, $J + n/2 and the spiral approaches a 
CIRCLE. ( 

a2e2b9 + a2b2e2be)3/2 

R = (aeb0)2 + 2(abebe)2 - (abbe)(ab2eb0) 

(1 + b2)3/2a3e3be - - 
2a2b2e2be + a2e2b6 _ a2b2e2bO 

(1 + b2)3j2a3esbo (1 + b2)3/2a’e”@ 
- - - 

a262e2bO + a2e268 - a2(1 + b2)e2be 

If P is any point on the spiral, then the length of the spi- 
ral from P to the origin is finite. In fact, from the point 
P which is at distance T from the origin measured along 
a RADIUS vector, the distance from P to the POLE along 
the spiral is just the ARC LENGTH. In addition, any RA- 
DIUS from the origin meets the spiral at distances which 
are in GEOMETRIC PROGRESSION (MacTutor Archive), = a-\/l + b2 ebe (3) 

and 

The AR/LENGTH, CURVATURE, and TANGENTIAL AN- 
GLE of the logarithmic spiral are 

abebe cos 8 - aebe sin 0 
abebe sin 0 + aebB cos 8 1 

= ae 1 bsin0 +cos8 ’ (4) 

(7) so - - 
b 

K = @12 + yt2)3/2 
= (aJgebe)-l I I rt = ae (bcos0 - sint9)2 + (bsin8 + cosQ2 (8) 

= ae be& + b2, (5) 4 - - I K(S) ds = 0. 

The CES~RO EQUATION is 

(9) 
and the TANGENT VECTOR is given by 

1 aebe cos 8 
aeb@ dm [ 1 aebe Sin 8 1 

K=& (10) 

On the surface of a SPHERE, the analog is a LOXO- 
1 cos 8 - -- i 1 Jm sin 8 ’ (6) 

DROME. This SPIRAL is related to FIBONACCI NUMBERS 
and the GOLDEN MEAN. The coordinates of the EVOLUTE are therefore 

References 
Lawrence, J. D. A Catalog of Special Plane Curues. New 

York: Dover, pp. 184-186, 1972. 
Lee, X. “EquiangularSpiral." http://uww.best.com/-xah/ 

Special Plane Curves - dir / Equiangular Spiral - dir / 
equiangularspiral. html. 

Lockwood, E. H. “The Equiangular Spiral." Ch. 11 in A Book 
of Cwves. Cambridge, England: Cambridge University 
Press, pp, 98-109, 1967. 

MacTutor History of Mathematics Archive. “Equiangular 
Spiral .” http://www-groups.dcs,st-and.ac.uk/-history 
/Curves/Equiangular . html. 

c - -abebe sin 0 - 

q = abebe cos8. 
(7) 

(8) 

So the EVOLUTE is another logarithmic spiral with a’ G 
ab, as first shown by Johann Bernoulli. However, in 
some cases, the EVOWTE is identical to the original, as 
can be demonstrated by making the substitution to the 
new variable 

e+- (9) 



Logarithmic Spiral Inverse Curve 

Then the above equations become 

t 
- - 4p-?rl2f2”“~ sin@ - n/2 * 27-m) 

_ a~e~#e+7d2f~~~) - cos 4 (10) 
77 = abe b(+-742f2nrr) cos(qb - 7~12 * 2nr) 

= ubewe~(-+f2~~) sin 4, (11) 

which are equivalent to the form of the original equation 
if 

beb( 
- $7rfZ?m) =l (12) 

lnb+b(-$+2n7r)=O (13) 

In b -- 
b 

- ij7r F 27m = -(2n - +)T, (14) 

where only solutions with the minus sign in 7 exist. 
Solving gives the values summarized in the following ta- 
ble. 

n bn * = cot-lb, 

1 0.2744106319.. . 74’39’18.53” 
2 0.1642700512... 80'40'16.80" 

3 0.1218322508... 83'03'13.53" 

4 0.0984064967... 84'22'47.53" 

5 0.0832810611.. . 85’14’21.60” 
6 0.0725974881... 85’50’51.92” 
7 0.0645958183... 86'18'14.64" 

8 0.0583494073... 86’39’38.20” 
9 0.0533203211... 86'56'52.30" 

10 0.0491732529.. . 87’11’05.45” 
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Logarithmic Spiral Inverse Curve 
The INVERSE CURVE of the LOGARITHMIC SPIRAL 

a6 r=e 

with INVERSION CENTER at the origin and inversion ra- 
dius k is the LOGARITHMIC SPIRAL 

r = keBa6, 

Logarithmic Spiral Pedal Curve 
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The PEDAL CURVE of a LOGARITHMIC SPIRAL with 
parametric equation 

f =e at cos t (1) 
9 =e at sint (2) 

for a PEDAL POINT 
RITHMIC SPIRAL 

at the pole is an ident ical 

2= 
(u sint + cos t)eut 

1 + a2 (3) 

Y= 
(sint - a cos t)eat 

1 + a2 
) (4) 

(5) 

Logarithmic Spiral Radial Curve 

The RADIAL CURVE of the LOGARITHMIC SPIRAL is an- 
other LOGARITHMIC SPIRAL. 

Logarithmically Convex Function 
A function f(x) is logarithmically convex on the interval 
[a, b] if f > 0 and In f (2) is CONCAVE on [a, b]. If f (2) 
and g(z) are logarithmically convex on the interval [a, b], 
then the functions f(z) + g(x) and f(x)g(z) are also 
logarithmically convex on [a, b]. 

see also CONVEX FUNCTION 
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Logic 
The formal mathematical study of the methods, struc- 
ture, and validity of mathematical deduction and proof. 
Formal logic seeks to devise a complete, consistent for- 
mulation of mathematics such that propositions can be 
formally stated and proved using a small number of sym- 
bols with well-defined meanings. While this sounds like 
an admirable pursuit in principle, in practice the study 
of mathematical logic can rapidly become bogged down 
in pages of dense and unilluminating mathematical sym- 
bols, of which Whitehead and Russell’s Principia Muth- 
ematica (1925) is perhaps the best (or worst) example. 

A very simple form of logic is the study of “TRUTH TA- 
BLES" and digital logic circuits in which one or more 
outputs depend on a combination of circuit elements 
(AND, NAND, OR, XOR, etc.; “gates”) and the input 
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values. In such a circuit, values at each point can take 
on values of only TRUE (1) ~r FALSE (0). DE MORGAN’S 
DUALITY LAW is a useful principle for the analysis and 
simplification of such circuits. 

A generalization of this simple type of logic in which pos- 
sible values are TRUE, FALSE, and “undecided” is called 
THREE-VALUED LOGIC. A further generalization called 
FUZZY LOGIC treats “truth” as a continuous quantity 
ranging from 0 to 1. 

see &O ABSORPTION LAW, ALETHIC, BOOLEAN ALGE- 
BRA, BOOLEAN CONNECTIVE, BOUND, CALIBAN Puz- 
ZLE, CONTRADICTION LAW, DE MORGAN’S DUALITY 

LAW, DE MORGAN’S LAWS, DEDUCIBLE, EXCLUDED 
MIDDLE LAW, FREE, FUZZY LOGIC, G~DEL’S INCOM- 
PLETENESS THEOREM, KHOVANSKI’S THEOREM, LOG- 
ICAL PARADOX, LOGOS, L~WENHEIMER-SKOLEM THE- 
OREM, METAMATHEMATICS, MODEL THEORY, QUAN- 
TIFIER, SENTENCE, TARSKI’S THEOREM, TAUTOLOGY, 
THREE-VALUED LOGIC, TOPOS, TRUTH TABLE, TUR- 
ING MACHINE, UNIVERSAL STATEMENT, UNIVERSAL 
TURING MACHINE, VENN DIAGRAM, WILKIE’S THEU- 
REM 
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Logical Paradox 

see PARADOX 

Logistic Distribution 

P(x) = 
lb1 [I; &-my2 (1) 

D(x) = 
1 

1 + &-4/w ’ (2) 

Logistic Equation 

and the MEAN, VARIANCE, SKEWNESS, and KURTOSIS 
are 

c1 =m (3) 
g2 = +n2p2 (4 

71 =0 (5) 
72 = ;. (6) 

see also LOGISTIC EQUATION, LOGISTIC GROWTH 
CURVE 
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Logistic Equation 
The logistic equation (sometimes called the VERHULST 
MODEL since it was first published in 1845 by the Bel- 
gian P.-F. Verhulst) is defined by 

G-&+1 = ?-x,(1 - xn), (1) 

where T (sometimes also denoted p) is a POSITIVE con- 
stant (the “biotic potential”). We will start x0 in the 
interval [0, 11. In order to keep points in the interval, we 
must find appropriate conditions on T. The maximum 
value xn+l can take is found from 

dx n+l 
dxn 

= T(1 - 2x4 = 0, (2) 

so the largest value of xn+l occurs for xn = l/2. Plug- 
ging this in, max(x,+l) = r/4. Therefore, to keep the 
MAP in the desired region, we must have T E (0,4]. The . 
JACOBIAN is 

J = n+l 

I I 
- = Ir(l - 2x,)1, ‘ix (3) 

n 

and the MAP is stable at a point x0 if J(x0) < 1. Now 
we wish to find the FIXED POINTS of the MAP, which 
occur when xn+l = xn. Drop the n subscript on xn 

f( > 2 = rx(1 - x) = x (4) 

x[l-7ql-x)] = x(1-r+rx) = TX [x - (1- v’)] = 0, 

(5) 
(1) so the FIXED POINTS are x1 = 0 and xr) = 1 - T-? 

An interesting thing happens if a value of T greater than 
3 is chosen. The map becomes unstable and we get a 
PITCHFORK BIFURCATION with two stable orbits of pe- 
riod two corresponding to the two stable FIXED POINTS 

of f2(x). The fixed points of order two must satisfy 
X12+2 = x:n, so 

h&+2 =mL+1(1 -G&+1) 

=T[TX*(l-Xn)][l-TXn(l-X2n)] 

= r2x,(1-xn)(l- TXfl +Tx71")= xn. (6) 
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Now, drop the r~ subscripts and rewrite 

z{r2[1- 2(1+r)+ 2m2 - m3]- 1) = 0 (7) 

x[-r3z3 +2r3z2 -r2(1+r)LC+(r2 -l)] = 0 (8) 

--Tsx[x - (I-r-l)][z2 - (l+r-1)2+ r-l(l+r-l)] 

= 0. (9) 

Notice that we have found the first-order FIXED PRINTS 
as well, since two iterations of a first-order FIXED POINT 
produce a trivial second-order FIXED POINT. The true 
2-CYCLES are given by solutions to the quadratic part 

(21 x+ - - i[(l +?)f J(l+r-1)2 -4r-1(1++)] 

= i[(l+r -1) * -\/I + 2r-1 + r-2 - 4r-1 - 4r-21 

= $[(1+r -')* -\/1-2r-1 -3F2] 

= i[(l+r -‘> It 7+&T - 3)(r + l)]. (10) 

These solutions are only REAL for r > 3, so this is where 
the Z-CYCLE begins. Now look for <he onset of the 4- 
CYCLE. To eliminate the Z- and ~-CYCLES, consider 

f”(x) - x = 0 
f”(x)-- ’ 

This gives 

(11) 

1+r2 + (-r2 - T3 - T4 - r5)x 
+(2r3 +r4 +4r5 +r6 + 2r7)x2 

+(-T3 - 5r5 - 4r" - 5r7 - 4r8 -T9)X3 

+(2r5 +6r" + 4r7 +14r8 + 5~' +3r1')x4 

+ (-4r6 - T7 - 18r8 - 12rg - 12r10 - 3P)x5 

+(r6 +10r8 + 17~' +18r1' + 15? +r12)x6 

+(-2r8 - 14~' - 12~~' - 30~" - 6r12)x7 

+(6rg + 3r1' + 3orll +15r12)x8 

+(-rg - 15P - 2or12)x9 +(3P + 15r12)x10 
- 6r12211 + T12x12, (12) 

The ROOTS of this equation are all IMAGINARY for 
T < 1 + J6, but two of them convert to REAL roots 
at this value (although this is difficult to show ex- 
cept by plugging in). The d-CYCLE therefore starts at 
1 + fi = 3.449490 . l  l  . The BIFURCATIONS come faster 
and faster (8, 16, 32, l  . . ), then suddenly break off. 
Beyond a certain point known as the ACCUMULATION 
POINT, periodicity gives way to CHAOS. 

A table of the CYCLE type and value of rn at which the 
cycle 272 appears is given below. 

n cycle (2”) Tn 

1 2 3 
2 4 3.449490 
3 8 3.544090 
4 16 3.564407 
5 32 3.568750 
6 64 3.56969 
7 128 3.56989 
8 256 3.569934 
9 512 3.569943 

10 1024 3.5699451 
11 2048 3.569945557 
00 act. pt. 3.569945672 

For additional values, see Rasband (1990, p. 23). Note 
that the table in Tabor (1989, p. 222) is incorrect, as 
is the n = 2 entry in Lauweirer 1991. In the middle of 
the complexity, a window suddenly appears with a reg- 
ular period like 3 or 7 as a result of MODE LOCKING. 

The period 3 BIFURCATION occurs at T = 1 + 21/z = 
3.828427..., as is derived below. Following the 3- 
CYCLE, the PERIOD DOUBLINGS then begin again with 
CYCLES of 6, 12, . . . and 7, 14, 28, . . l  , and then once 
again break off to CHAOS. 

A set of n + 1 equations which can be solved to give the 
onset of an arbitrary n-cycle (Saha and Strogatz 1995) 
is 

I 

x2 =rxl(l-xl) 
x3 = 41 -x2) 

i 

. 
l  

. 

(13) 

Xn = ?-x,-1(1 - x+1) 

Xl =?zn(l-xZn) 
rnn;=l(l- 2xrc)= 1. 

The first n of these give f(z), f2(x), . . . , I”, and the 
last uses the fact that the onset of period n occurs by a 
TANGENT BIFURCATION, SO the nth DERIVATIVE is 1, 
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For n = 2, the solutions (~1, l  . . , zn, r) are (0, 0, dd) 

and (213, 213, q, so the desired BIFURCATION occurs 

at ~2 = 3. Taking n = 3 gives 

a3 (41 a3 (41 a2 (41W41 -I--- 
dx - a2 WI awl dx 

- w41 awl W(41 --- - 
dx dy dx 

= r3(1 - 22)(1- 2y)(l- 2x). (14 

Solving the resulting CUBIC EQUATION using computer 
algebra gives 

Xl = - 

-1 -- 

25 . 2gW _ 44. 21/671/3 
+ -2 9 C (15) 

44. 2W7W - 25. 28113 
+ -2 9 C 06) 

1 
x3 = 

10 + fi + 21i3(9 - 4J2 ) wl 
mc+c 3'7V3 

c (17) 

r=1+2&, (18) 

where 

c E (-25 + 221/2+ 3&-\/1100& - 1593)1’3. (19) 

Numerically, 

Xl = 0.514355 l  l  l  
(20) 

x2 = 0.956318.. . (21) 

X3 = 0.159929. . . (22) 

T = 3.828427.. . . (23) 

Saha and Strogatz (1995) give a simplified algebraic 
treatment which involves solving 

~~(1 - 2~ + 4p -- 87) = 1, (24) 

together with three other simultaneous equations, where 

a = Xl + x2 + x3 (25) 

P = X1X2 +X123 + X2X3 (26) 

7 5 X1X2X3. (27) 

Further simplifications still are provided in Bechhoeffer 
(1996) and Gordon (1996), but neither of these tech- 
niques generalizes easily to higher CYCLES. BechhoeEer 
(1996) expresses the three additional equations as 

2a = 3 + r-l (28) 
4p = ; + 5r-I + ;c2 (29) 
gy = -f + fr-’ + gr-2 + ;r-3, (30) 

giving 
r2 - 2r - 7 = 0. (31) 

Gordon (1996) derives not only the value for the onset of 
the S-CYCLE, but also an upper bound for the r-values 
supporting stable period 3 orbits. This value is obtained 
by solving the CUBIC EQUATION 

s3 - us2 + 37s - 108 = 0 (32) 

for s, then 

= 3.841499007543.. . . (34) 

The logistic equation has CORRELATION EXPONENT 
0.500~0.005 (G rassberger and Procaccia 1983), CAPAC- 
ITY DIMENSION 0.538 (Grassberger 1981), and INFOR- 
MATION DIMENSION 0.5170976 (Grassberger and Pro- 
caccia 1983). 

see also BIFURCATION, FEIGENBAUM CONSTANT, Lo- 
GISTIC DISTRIBUTION, LOGISTIC EQUATION-T = 4, 
LOGISTIC GROWTH CURVE,PERIOD THREE THEOREM, 
QUADRATIC MAP 
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Logistic Equation-r = 4 
With T = 4, the LOGISTIC EQUATION becomes 

xn+1 = 4x,(1 - xn). 

Now let 

x s sin’(+y) = +[l - cos(7ry)] 

fi = sin+y) 

2 
Y= -sin-l(&) 

T 

Manipulating (2) gives 

(1) 

(2) 

(3) 

(4) 

(5) 

= 431- cos(7Tyn)]{l- 3[1- +<1- cos(7Tyn)]} 

= 2[1 - cos(7ry = 1 - cos2(7ry,) sin2(ny,), (6) 

so 

gqn+1= l yn +sn (7) 

Yn+l ZZ It2T-J.n + +S. (8) 
But y E [0, I]. Taking yn E [0,1/2], then s = 0 and 

Yn+l = 2yn- (9) 

For y E [l/2,1], s = 1 and 

Yn+l = 2 - 2yn. (10) 

Combining 

Yn = 

{ 

2Yn for yn f [O, $1 

2 - 2yn for yn E [+J 11, 
(11) 

which can be written 

?Jn = 1 - 21X, - hl, (12) 

the TENT MAP with p = &so the NATURAL INVARIANT 
in y is 

P(Y) = 1. (13) 

Transforming back to Al: gives 

P(X) = 
I I 
2 p(y(x)) = ,*$x-1i2 

1 - - 
7+(iFj 

This can also be derived from 

(14) 

*- z- 1 

where J(X) is the DELTA FUNCTION. 

see also LoGIsxc EQUATION 

Logistic Growth Curve 
The POPULATION GROWTH law which arises frequently 
in biology and is given by the differential equation 

dN T(K - N) 
- - 

dt- K ’ (1) 

where T is the MALTHUSIAN PARAMETER and K is the 
so-called CARRYING CAPACITY (i.e., the maximum sus- 
tainable population). Rearranging and integrating both 
sides gives 

s 

Iv dN r tdt --- 
s NoK-N-K o (2) 

(3) 

N(t) = K + (No - K)e-rt’K. (4 

The curve 
a 

YE------- 
1 + bq” (5) 

is sometimes also known as the logical curve. 

see ah GOMPERTZ CURVE,LIFE EXPECTANCY, LOGIS- 
TIC EQUATION, MAKEHAM CURVE, MALTHUSIAN PA- 
RAMETER,~OPULATION GROWTH 

Logistic Map 

see LOGISTIC EQUATION 

Logit Transformat ion 

The function 

x = f(x) = In -E-- 
( > 1-X l  
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This function has an inflection point at II: = l/Z, where 

f”(x) = 2x - l 
x2(x - 1)2 

= 0. 

Applying the logit transformation to values obtained by 
iterating the LOGISTIC EQUATION generates a sequence 
of RANDOM NUMBERS having distribution 

Pz: = 
1 

J+“/2 + e-x/2) ’ 

which is very close to a GAUSSIAN DISTRIBUTION. 
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Logos 
A generalization of a HEYTING ALGEBRA which replaces 
BOOLEAN ALGEBRA in “intuitionistic” LOGIC. 

see also TOPOS 

Lommel Differential Equation 
A generalization of the BESSEL DIFFERENTIAL EQUA- 
TION (Watson 1966, p. 345), 

2d2Y dY x dz2 + zdx - (z2 + u2)y = kzp+l. 

A further generalization gives 

2d2Y z dX2 + zg - (z” + u2)y = fkz~+l. 

The solutions are LOMMEL FUNCTIONS. 

see also L~MMEL FUNCTION 

References 
Watson, G. N. A Treatise on the Theory of Bessel Functions, 
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1966. 

Lommel Function 
There are several functions called “Lommel functions.” 
One type of Lommel function is the solution to the LOM- 

MEL DIFFERENTIAL EQUATION with a PLUS SIGN, 

Y = JEsp&>, (1) 

where d 
xp Jv(z) dz 

Here, J&s) and Y&z) are BESSEL FUNCTIONS OF THE 
FIRST and SECOND KINDS (Watson 1966, p. 346). If a 
minus sign precedes k, then the solution is 

s Cl 

s 

z 

$2 = I&) zpK,(z) dz - J&z) z’“I,(z) dz, 
z c2 

(3) 

where K,(z) and I,(z) are MODIFIED BESSEL FUNC- 
TIONS OF THE FIRST and SECOND KINDS. 

Lommel functions of two variables are related to the 
BESSEL FUNCTION OF THE FIRST KIND andariseinthe 
theory of diffraction and, in particular, Mie scattering 
(Watson 1966, p. 537), 

(-1)” (;)““” Jn+zm(4 (4) 

(-l)m ( :)An-2m J-n-Qm(Z). (5) 

see also LOMMEL DIFFERENTIAL EQUATION, LOMMEL 
POLYNOMIAL 

References 
Chandrasekhar, S. Radiative Transfer. New York: Dover, 

p. 369, 1960. 
Watson, G* N. A Treatise on the Theory of Bessel Functions, 

2nd ed. Cambridge, England: Cambridge University Press, 
1966. 

Lommel’s Integrals 

(P 
2 - a2) xJn(ax)Ja(@x)dx 

s 

= x[aJA(ax)Jn(px) - PJL(Px)Jn(ax)] 

s xJn2(ax) dx = $x2[Jn2(ax) + Jn-l(ax) Jn+l(ax)], 

where Jn(x) is a BESSEL FUNCTION OF THE FIRST 
KIND. 

References 
Bowman, F. Introduction to Bessel Functions. New York: 

Dover, p. 101, 1958+ 

Lommel Polynomial 

R m,v 25 ( > 

r(u + m) - - 
w W2)” 

zF&(l-m),-im;v,-m,l-v-m;z2) 

x 2 sin(vn) 
L[Jv+~(z)J--v+~(z) 

+(-l)“J-v-&)Jv--1(z)], 

-J&) I2 x%(x) dz]  l  (2) 
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where I?(Z) is a GAMMA FUNCTION, Jn(x) is a BESSEL 
FUNCTION OF THE FIRST KIND, and &(a, b;c,d,e;z) 

' is a GENERALIZED HYPERGEOMETRIC FUNCTION. 

see ah LOMMEL FUNCTION 
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Long Division 

7 72 726 
17 1123456. 17 1 123456. 17 1 123456. 

-119 -119 -119 
44 44 44 

-34 -34 
lo5 105 

- 102 
36 

7242.1 7262.11.. . 
17 1 123456.0 17 1123456.00 

-119 -119 
44 44 
-34 -34 

105 IO5 
- 102 -102 

36 36 
-34 - 34 

20 20 
- 17 

30 

Long division is an algorithm for dividing two numbers, 
obtaining the QUOTIENT one DIGIT at a time. The 
above example shows how the division of 123456/17 is 
performed to obtain the result 7262.11.. . . 

see also DIVISION 

Long Exact Sequence of a Pair Axiom 
One of the EILENBERG~TEENROD AXIOMS. It states 
that, for every pair (X, A), there is a natural long exact 
sequence 

. . . + H,(A) + H,(X) + 
K&A) + Hn-l(A) + . .., 

where the MAP H,(A) + H,(X) is induced by the IN- 
CLUSION MAP A -+ X, Ha(X) -+ Hn(X, A) is induced 
by the INCLUSION MAP (X&)# + (X,A). The MAP 

&x(X, A) + K-l(A) is called the BOUNDARY MAP. 

see also EILENBERG-STEENROD AXIOMS 

Long Prime 

see DECIMAL EXPANSION 

Longitude 
The azimuthal coordinate on the surface of a SPHERE 
(0 in SPHERICAL COORDINATES) or on a SPHEROID 
(in PROLATE or OBLATE SPHEROIDAL COORDINATES). 
Longitude is defined such that 0” = 360”. Lines of con- 
stant longitude are generally called MERIDIANS. The 
other angular coordinate on the surface of a SPHERE is 
called the LATITUDE. 

The shortest distance between any two points on a 
SPHERE is the so-called GREAT CIRCLE distance, which 
can be directly computed from the LATITUDE and lon- 
gitudes of two points. 

see also GREAT CIRCLE, LATITUDE, MERIDIAN, 
UBLATE~PHEROIDAL COORDINATES,PROLATE SPHER- 
OIDAL COORDINATES 

Look and Say Sequence 
The INTEGER SEQUENCE beginning with a single digit in 
which the next term is obtained by describing the previ- 
ous term. Starting with 1, the sequence would be defined 
by “one 1, two Is, one 2 two ls,” etc., and the result is 
1, 11, 21, 1211, 111221, 312211, 13112221, 1113213211, 
. . . (Sloane’s A005150). 

Starting the sequence instead with the digit d for 2 < 
d < 9 gives d, Id, llld, 3lld, 13211d, 111312211d, 
31G1122211d, 1321132132211d, . . . The sequences for 
d= 2 and 3 are Sloane’s A006715 and A006751. The 
number of DIGITS in the nth term of both the sequences 
for 1 < n < 9 is asymptotic to CX”, where C is a con- - - 
stant and 

X = 1.303577269034296.. . 

(Sloane’s AOl4715) is CONWAY'S CONSTANT. X is given 
bythelargest ROOT ofthe POLYNOMIAL 

-X 69 _ zx6* + 2x66 + zx65 + x64 - x63 - x62 - x61 

60 -x -x 5g + 2x5s + 5x57 + 3x56 - 2x55 - 1ox54 

- 3x53 - 2~~~ + 6x51 + 6x5’ + x4’ + 9x4’ - 3x47 

-7X46 -8x45 - $x44 + 10~~~ + 6x42 + 8x41 - 4x4’ 

- l2x3g + 7x3s - 7x37 + 7x36 - 3x34 + x35 + 1ox33 

+x32 - 6x31 - 2x3’ - 10x2’ - 3x28 + 21~~~ + 9x26 

- 3x25 + l4x24 - 8~~~ - 7x21 + 9x2’ - 3x1’ - 4x18 

- 1ox17 - 7x16 + 12x= + 7x14 + 2x13 - 12x12 

- 4x11 - 2x10 - 5x9 + x7 - 7x6 

+ 7x5 - 4x4 + 12x3 - 6x2 + 3x - 6. 

In fact, the constant is even more general than this, ap- 
plying to all starting sequences (i.e., even those starting 
with arbitrary starting digits), with the exception of 22, 
a result which follows from the COSMOLOGICAL THE- 
OREM. Conway discovered that strings sometimes fac- 
tor as a concatenation of two strings whose descendants 
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never interfere with one another. A string with no non- 
trivial splittings is called an “element,” and other strings 
are called %ompounds.” Every string of Is, 2s, and 3s 

Loop space 
Let Yx be the set of continuous mappings f : X + Y. I- 
Then the TOPOLOGICAL SPACE for Yx supplied with a 
compact-open topology is called a MAPPING SPACE, and 
if Y = I is taken as the interval (0, I), then Yr = n(Y) 
is called a loop space (or SPACE OF CLOSED PATHS). 

see also MACHINE, MAPPING SPACE, MAY-THOMASON 

eventually “decays” into a compound of 92 special ele- 
merits, named after the chemical elements. 

see also CONWAY'S CONSTANT, COSMOLOGICAL THEO- 
REM 

UNIQUENESS THEOREM 
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d? = -dt2 + dx2 + dy2 + dz2. 

Loop (Algebra) 
A nonassociative ALGEBRA (and QUASIGROUP) which 
has a single binary operation. 

It is also the GROUP of ISOMETRIES of 3-D HYPER- 
BOLIC SPACE. It is time-preserving in the sense that the 
unit time VECTOR (l,O, 0,O) is sent to another VECTOR 
(t,x,y, x) such that t > 0. 

Loop Gain 
The loop gain is usually assigned a value between 0.1 
and 0.5. The CLEAN ALGORITHM performs better for 
extended structures if ~1 is set to the lower part of this 
range. However, the time required for the CLEAN AL- 
GORITHM increases rapidly for small ~1. From Thompson 
et al. (1986), the number of cycles needed for one point 

A consequence of the definition of the Lorentz group 
is that the full GROUP of time-preserving isometries of 
MINKOWSKI R4 is the DIRECT PRODUCT of the group 
of translations of Iw4 (i.e., Iw4 itself, with addition as the 
group operation), with the Lorentz group, and that the 
full isometry group of the MINKOWSKI Iw4 is a group 
extension of & by the product L @ R4. 

source is 

[cycles] = - lln((yN:i. 
n - 

see also CLEAN ALGORITHM 

The Lorentz group is invariant under space rotations 
and LORENTZ TRANSFORMATIONS. 

see UZSO LORENTZ TENSOR, LORENTZ TRANSFORMA- 
TION 
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Loop (Graph) 
A degenerate edge of a graph which joins a vertex to 

Lorentz Tensor 
The TENSOR in the LORENTZ TRANSFORMATION given 
. 

it self. bY 

Loop (Knot) 
A KNOT or HITCH which holds its form rigidly. 

L= I -70 Y 

0 0 
0 0 0 0 1 

10’ 
01 

References 
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(1) 

~~~~ZSOLORENTZ GROUP,LORENTZ TRANSFORMATION 
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Lorente Transformation 
A 4-D transformation satisfied by all FOUR-VECTORS 
au, 

a 
IP = n;a”. (1) 

where 8 is called the rapidity, 

x4 E ict, (13) 

and 
In the theory of special relativity, the Lorentz trans- 
formation replaces the GAULEAN TRANSFORMATION as 
the valid transformation law between reference frames 
moving with respect to one another at constant VE- 
LOCITY. Let xv be the POSITION FOUR-VECTOR with 
X0 

- - ct, and let the relative motion be along the ZCI axis 
with VELOCITY w. Then (1) becomes sinh 8 = 07. 

(2) LIC ROTATION, 

where the LORENTZ TENSOR is given by 

see also HYPERBO 
LORENTZ TENSOR 

L= 1 l  
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(16) 

LORENTZ GROUP, 

Here, 
(3) 

P 
21 =- - 
c (4) 

Lorentzian Distribution 1 
?= J1-p”’ (5) 

see CAUCHY DISTRIBUTION 

Written explicitly, the transformation between xy and 
2 v’ coordinate is 

Lorentzian Function 
The Lorentaian function is given by 

X0 ’ = y(xO - px’) (6) 

X l’ = y(xl - /3x0) (7) 

2’ 
X = x2 

(8) 

3’ 
X = x3. (9) 

L( > 
1 

x =- 
;I? 

7l- (x - xo)2 + @)” l  

Its FULL WIDTH AT HALF MAXIMUM isr. This function 
gives the shape of certain types of spectral lines and is 
the distribution function in the CAUCHY DISTRIBUTION. 
The Lorentzian function has FOURIER TRANSFORM 

The DETERMINANT of the upper left 2 x 2 MATRIX in 

(3) is 

FL 
[ 

+r 
7qx-xo)2+($r>2 =e 1 -27rikz()-r+l . D = (Y)~ - (-70)” = y2(1 -p”> = $ = 1, (10) 

so 

-1 L = 

see also DAMPED EXPONENTIAL COSINE INTEGRAL, 
FOURIER TRANSFORM-L• RENTZIAN FUNCTION 

Lorena System 
A simplified system of equations describing the 2-D flow 
of fluid of uniform depth H, with an imposed tempera- 
ture difference AT, under gravity g, with buoyancy ct, 
thermal diffusivity K, and kinematic viscosity V. The 
full equations are 

Y rP 0 0 - rP Y 0 0 - - [ 0 0 1 10’ (11) 
0 0 01 

A Lorentz transformation along the al-axis can also be 
writ ten cash 8 isinh8 0 0 x1 

0 1 00 x2 
0 0 1 0 x3 ' (12) 

-i sinh 8 cosh0 0 0 I[ x4 I dT dT a$ ae a$ AT a$ ----- 
at - az ax 

ZZ+~V2T+--. 
H dx (2) 
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Here, $J is the “stream function,” as usual defined such 
that 

w  w  
u=z? 

v=zG* (3) 

In the early 196Os, Lorenz accidentally discovered the 
chaotic behavior of this system when he found that, for 
a simplified system, periodic solutions of the form 

The CRITICAL POINTS at (0, 0, 0) correspond to no 
convection, and the CRITICAL POINTS at 

(&q,-Jb(r-l),r- 1) (15) 

and 
(-&kT),-Jm,r- 1) (16) 

$J = $0 sin (F)sin(g) 

0 = 8() cos (y)sin(g) 

(4) 

(5) 

grew for Rayleigh numbers larger than the critical value, 
Ra > Ra,. Furthermore, vastly different results were 
obtained for very small changes in the initial values, rep- 
resenting one of the earliest discoveries of the so-called 
BUTTERFLY EFFECT. 

Lorenz included 
equations, 

the following terms system of 

X S *II oc convective intensity (6) 

Y E Tl1 oc AT between descending and 

ascending currents (7) 

Z E To2 oc A vertical temperature profile from 

linearity, (8) 

and obtained the simplified equations 

x = a(Y - X) (9) 
P=-X2+7-X-Y (10) 
i = XY - bZ, (11) 

correspond to steady convection. This pair is stable only 
if 

r= 
a(a -I- b -I- 3) 

u-b-1 ’ (17) 

which can hold only for POSITIVE T if u > b + 1. 
The Lorenz attractor has a CORRELATION EXPONENT 
of 2.05 h 0.01 and CAPACITY DIMENSION 2.06 5 0.01 
(Grassberger and Procaccia 1983). For more details, 
see Lichtenberg and Lieberman (1983, p. 65) and Tabor 
(1989, p. 204). 

see UZSO BUTTERFLY EFFECT, R~~SSLER MODEL 
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Lorraine Cross 

see GAULLIST CRoss 

where Lotka-Volterra Equations 
An ecological model which assumes that a population 

u 
0E-x Prandtl number (12) Al: increases at a rate dz = Ax dt, but is destroyed at a 

kc 
RU 

rate dz = -Bxydt. Population y decreases at a rate 
-- 

r = Rat - 
normalized Rayleigh number (13) dy = -Cy dt, but increases at dy = Dzy dt, giving the 

A coupled differential equations 
b=Lf- 

1+a2 - 
geometric factor. 

Lorena took b E 8/3 and u = 10. 

(14) 
dx 

dt 
= Ax - Bxy 

dY 
z 

= -cy + Dxy. 

Critical points occur when dx/dt = dy/dt = 0, so 

A-By=0 

-C+Dx=O. 

The sole STATIONARY POINT is therefore located at 

(GY) = (CID, AIB). 



Low-Dimensional Topology Loxudrome 

Low-Dimensional Topology 
Low-dimensional topology usually deals with objects 
that are 2-, 3-, or 4-dimensional in nature. Properly 
speaking, low-dimensional topology should be part of 
DIFFERENTIAL TOPOLOGY, but the general machin- 
ery of ALGEBRAIC and DIFFERENTIAL TOPOLOGY gives 
only limited information. This fact is particularly no- 
ticeable in dimensions three and four, and so alternative 
specialized methods have evolved. 

see also 
POLOGY, 

ALGEBRAIC 
TOPOLOGY 

TOPOLOGY, DIFFERENTIAL To- 

Lijwenheimer-Skolem Theorem 
A fundamental result in MODEL THEORY which states 
that if a countable theory has a model, then it has a 
countable model. Furthermore, it has a model of every 
CARDINALITY greater than or equal to No (ALEPH-0). 
This theorem established the existence of “nonstandard” 
models of arithmetic, 

see also ALEPH-0 (No), CARDINALITY, MODEL THEORY 

Heterences 
chang, C. C. and Keisler, H. J. Model Theory, 3rd enZ. ed. 

New York: Elsevier, 1990. 

Lower Bound 

~~~GREATE~T LOWER BOUND 

Lower Denjoy Sum 

see LOWER SUM 

1109 

is said to exist if, for every c > 0, [S, - hi < E for 
infinitely many values of rz and if no number less than h 
has this property. 

see also LIMIT, UPPER LIMIT 

References 
Bromwich, T. 3. I’a and MacRobert, T. M. “Upper and Lower 

Limits of a Sequence.” 55.1 in An Introduction to the The- 
ory of Infinite Series, 3rd ed. New York: Chelsea, p. 40 
1991. 

Lower Sum 

For a given function f(z) over a partition of a given 
interval, the lower sum is the sum of box areas f(xz)Az, 
using the smallest value o!E the function f(zi) in each 
subinterval Axk. 

see also LOWER IN 
PER SUM 

TEGRAL, RIEMANN 

Lower-Trimmed Subsequence 

Lower Integral 

The limit of a LOWER SUM, when it exists, as the MESH 
SIZE approaches 0. 

see also LOWER SUM, RIEMANN INTEGRAL, UPPER IN- 
TEGRAL 

Lower Limit 
Let the least ter 

smaller than all 
are equal to h. 
SEQUENCE. 

A lower limit of a SERIES 

m h of a SEQUENCE be a term w hich is 
but a finite number of the terms which 
Then h is called the lower limit of the 

INTEGRAL, UP- 

The lower-trimmed subsequence of 2 = {cc~} is the se- 
quence V(z) obtained by subtracting 1 from each xn 
and then removing all OS. If x is a FRACTAL SEQUENCE, 
then V(X) is a FRACTAL SEQUENCE. If x is a SPGNA- 
TURE SEQUENCE, then V(X)= X. 

see also SIGNATURE SEQUENCEJJPPER-TRIMMED 
SEQUENCE 

SUB- 

References 
Kimberling, C. “F’ractal Sequences and Interspersions.” Ars 

Combin. 45, 157-168, 1997. 

Lowest Terms Fraction 
A FRACTION p/q for which (p, q) = 1, where (p, q) de- 
notes the GREATEST COMMON DIVISOR. 

Loxodrome 
A path, also known as a RHUMB LINE, which cuts a 
MERIDIAN on a given surface (usually a SPHERE, in 
which case the loxodrome is also called a SPHERICAL 
HELIX) at any constant ANGLE but a RIGHT ANGLE. 
The loxodrome is the path taken when a compass is kept 
pointing in a constant direction. It is not the shortest 
distance between two points. 

see also GREAT CIRCLE 

lower lim S, = lim S, = h 
n+m n+oo 



1110 Lozenge Lucas Correspondence Theorem 

This gives IV2 equations for IV2 + IV unknowns (the 
decomposition is not unique), and can be solved using 
CROUT’S METHOD. TO solve the MATRIX equation 

Lozenge 

Ax =‘(LU)x = L(Ux) = b, (7) 

first solve Ly = b for c,y. This can be done by forward 
substitution A PARALLELOGRAM whose ACUTE ANGLES are 45”. 

see also DIAMOND, PARALLELOGRAM, 
ERAL, RHOMBUS 

QUADRILAT- 
(8) 

(9) Lozenge Method 
A method for constructing MAGIC SQUARES of ODD or- 
der. 

see also MAGIC SQUARE 
for i = 2, . . . . IV. Then solve Ux = y for x. This can 
be done by back substitution 

(10) 

(11) 

Lozi Map 
A 2-D map similar to the H~~NON MAP which is given 
by the equations 

for i = Iv - 1, . . . , 1. 

see also CHULESKY DECOMPOSITION, QR DECOMPOSI- 
TION, TRIANGULAR MATRIX 

see also H~NON MAP 
References 
Press, W+ II.; Flannery, B. P.; Teukolsky, S. A.; and Vetter- 
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Lucas Correspondence 
The correspondence which relates the HANOI GRAPH to 
the ISOMORPHIC GRAPH of the ODD BINOMIAL COEF- 
FICIENTS in PASCAL'S TRIANGLE, where the adjacencies 
are determined by adjacency (either horizontal or diag- 
onal) in PASCAL'S TRIANGLE. The proof that the cor- 
respondence is given by the LUCAS CORRESPONDENCE 
THEOREM. 

LU Decomposition 
A procedure for decomposing an IV x IV matrix A into 
a product of a lower TRIANGULAR MATRIX L and an 
upper TRIANGULAR MATRIX U, 

LU = A. (1) 

Written explicitly for a 3 x 3 MATRIX, the decomposition see also BINOMIAL COEFFICIENT, HANOI GRAPH, PAS- 
CAL'S TRIANGLE 

References 
Poole, David G. “The Towers and Triangles of Professor 

Claus (or, Pascal Knows Hanoi).” Math. Msg. 07, 323- 
344, 1994. 

Lucas Correspondence Theorem 
Let 13 be PRIME and r hull 

L 121Ull 

131Ull 

hUl2 hlU13 

l21U22 

l31U12 

-I- l22U22 

+ 1322122 

l21U13 

131U13 + 13 

tl22U23 

U23 + 1332123 2 

a11 
- - a21 

a31 

r = r,pm + . - - + np + To (0 I Ti < P> (1) 

k = k,p” + 1. l  + klp + ko (0 I k < P>, (2) a12 a13 1 
(3) a22 

a32 
a23 . 

a33 1 
then 

(;) = g (;:> (mod PI* (3) 
This gives three types of equations 

This is proved in Fine (1947). 
(4 
(5) 
(6) 

i<j lilzlij + EizUzj + . . . + 1iiUij = aij 

i=j lil?.Lij + li2U2j + . . . + 1iiUjj = aij 

i>j EilUlj + lizU2j + . . . + 1ijUjj = t&j. 

References 
Fine, N. J. “Binomial Coefficients Modulo a Prime.” Amer. 

Math. Monthly 54, 589-592, 1947. 



Lucas-Lehmer Residue 

Lucas-Lehmer Residue 

~~~LUCAS-LEHMER TEST 

Lucas-Lehmer Test 
A MERSENNE NUMBER MP is prime IFF MP divides 
~~-2, where SO c 4 and 

si E S&l2 - Z(mod 2” - 1) (1) 

for i > 1. The first few terms of this series are 4, 14, 
194, $7634, 1416317954, . . . (Sloane’s AOO3OlO). The 
remainder when sp-z is divided by MP is called the 
LUCAS-LEHMER RESIDUE for p. The LUCAS-LEHMER 
RESIDUE is 0 IFF iI& is PRIME. This test can also be 
extended to arbitrary INTEGERS. 

A generalized version of the Lucas-Lehmer test lets 

N + 1 = fi qjpj, (2) 
j=l 

with qj the distinct PRIME factors, and flj their respec- 
tive POWERS. If there exists a LUCAS SEQUENCE Uv 
such that 

(3) 

i!J~+l E 0 (mod N), (4) 

then N is a PRIME. The test is particularly simple for 
MERSENNE NUMBERS, yielding the conventional Lucas- 
Lehmer test l  

see dso LUCAS SEQUENCE, MERSENNE NUMBER, 
RABIN-MILLER STRONG PSEUDOPRIME TEST 

References 
Sloane, N. J. A. Sequence A003010/M3494 in “An On-Line 

Version of the Encyclapedia of Integer Sequences.” 

Lucas’ Married Couples Problem 

see MARRIED COUPLES PROBLEM 

Lucas Number 
The numbers produced by the V recurrence in the LU- 
CAS SEQUENCE with (P, Q) = (1, -1) are called Lucas 
numbers. They are the companions to the FIBONACCI 
NUMBERS Fn and satisfy the same recurrence 

L=Ln-1+L-2, (1) 

where L1 = 1, L2 = 3. The first few are 1, 3, 4, 7, 11, 
18, 29, 47, 76, 123, . . l  (Sloane’s A000204). 

In terms ofthe FIBONACCI NUMBERS, 

Ln = K-1 + %+I. (2) 

Lucas Number 1111 

The analog of BINET'S FORMULA for Lucas numbers is 

L,= (!q)n+ (+y (3) 

Another formula is 

L, = [PI 1 (4) 

where 4 is the,GoLDEN RATIO and [z] denotes the NINT 

function. Given L,, 

L TX+1 = 

L 

Ln(1+ A) + 1 
2 1 

3 (5) 

where 1x1 is the FLOOR FUNCTION, 

Ln2-L n--1L+1= 5(-l)“, (6) 

and 
n 

IE 
Lk2 =LnLn+1-2. (7) 

k=O 

Let p be a PRIME > 3 and k be a POSITIVE INTE- 
GER. Then LZpk ends in a 3 (Honsberger 1985, p. 113). 
Analogs of the Ces&ro identities for FIBONACCI NUM- 
BERS are 

=L2n (8) 

(9) 

where 0 L is a BINOMIAL COEFFICIENT. 

L, fFm (Ln DIVIDES F,,J IFF n DIVIDES into VI an EVEN 

number of times. Ln IL, IFF n divides into m, an ODD 
number of times. 2n Ln always ends in 2 (Honsberger 
1985, p. 137). 

Defining 

Dn E 

gives 

3 i 0 0 *a* 0 0 
i 1 i 0 l  ** 0 0 
0 i 1 i l  . . 0 0 
0 0 i 1 l  ‘. 0 0 

l  . . . . . . 

. . l  l  l  . l  

0  0  0 0 ..: ; ; 

0  0  0 0 l  ‘- i 1 

=Ln+l (10) 

Dn = Dn-1 -k Dn-2 (11) 

(Honsberger 1985, pp. 113-114). 

The number of ways of picking a set (including the 
EMPTY SET) from the numbers 1, 2, . . . , n without 
picking two consecutive numbers (where 1 and n are 
now consecutive) is Ln (Honsberger 1985, p. 122). 
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The only SQUARE NUMBERS in the Lucas sequence are 
1 and 4, as proved by John H. E. Cohn (Alfred 1964). 
The only TRIANGULAR Lucas numbers are 1, 3, and 5778 
(Ming 1991). Th e only Lucas CUBIC NUMBER is 1. The 
first few Lucas PRIMES L, occur for n = 2, 4, 5, 7, 8, 
11, 13, 16, 17, 19, 31, 37, 41, 47, 53, 61, 71, 79, 113, 313, 
353, . . . (Dubner and Keller 1998, Sloane’s A001606). 

see also FIBONACCI NUMBER 
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(Horadam 1996). Setting n = 0 gives 

giving 

When k = 1, 

Special cases are given in the following table. 

Lucas Polynomial 
The w POLYNOMIALS obtained by setting p(x) = z and 

Q(X) = 1 in the LUCAS POLYNOMIAL SEQUENCE. The 
first few are 

FI(x) = x 

F2 cx> =x2+2 

F3(x) = 3x3 + 3x 

F4 cx> = x4 + 4x2 + 2 

F5(4 = x5 + 5x3 + 5x. 

The corresponding W POLYNOMIALS are called FI- 
BONACCI POLYNOMIALS. The Lucas polynomials satisfy 

La(l) = L-L, 

where the L,s are LUCAS NUMBERS. 

see ~SOFIBONACCI POLYNOMIAL,LUCAS NUMBER, Lu- 
CAS POLYNOMIAL SEQUENCE 

Lucas Pseudoprime 

Lucas Polynomial Sequence 
A pair of generalized POLYNOMIALS which generalize the 
LUCAS SEQUENCERS POLYNOMIALS is given by 

Wk( ) nx = A”WbW - kl)“bnwl 
*w 

w;(x) = a”(+“(~) + (-l)“b”(z)], 

a(x) + b(x) = P(X) 

@b(x) = -4(x) 

= A(x) 

l- (-1)‘” 
w,“(x> = Ak(x) A(x) 

w;(x) = A”@)[1 + (-I)“], 

W,“(x) = 0 

WE(X) = 2. 

W,‘(x) = w;(x) = w,(x) 

W:(X) = A”(x)W~(X) = A”(x)Wn(x)* 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 
(9) 

(10) 

(11) 

~(2) q(x) Polynomial 1 Polynomial 2 

X 1 Fibonacci F, (9) Lucas L, (x) 

2x 1 Pell P, (x) Pell-Lucas Qn (x) 
1 2x Jacobsthal Jn (x) Jacobsthal-Lucas j, (z) 
3x -2 Fermat & (x) Fermat-Lucas fn (x) 
2x -1 Chebyshev UnB1(x) Chebyshev 2TJx) 

see also LUCAS SEQUENCE 

References 
Horadam, A. F. “Extension of a Synthesis for a Class of Poly- 

nomial Sequences.” Fib. Quart. 34, 68-74, 1996. 

Lucas Pseudoprime 
When P and Q are INTEGERS such that D = P2 - 4Q # 
0,definethe LUCAS SEQUENCE {&} by 

ak - b” 
uk = - 

a-b 

for k > 0, with a and b the two ROOTS of x2 - Px +Q = - 
0. Then define a Lucas pseudoprime as an ODD COM- 
POSITE number n such that ni&, the JACOBI SYMBOL 

(o/n) = -1, and nfU,+1. 
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There are no EVEN Lucas pseudoprimes (Bruckman 
1994), The first few Lucas pseudoprimes are 705, 2465, 
2737, 3745, . . . (Sloane’s A005845). 

see also EXTRA STRONG LUCAS PSEUDOPRIME, LUCAS 
SEQUENCE, PSEUDOPRIME, STRONG LUCAS PSEUDO- 
PRIME 

References 
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Lucas Sequence 
Let P, Q be POSITIVE INTEGERS. The ROOTS of 

where 

For (P,Q) = (1, -l), the iT& are the FIBONACCI NWM- 
BERS and Vn are the LUCAS NUMBERS. For (p,Q) = 
(2, -l), the PELL NUMBERS and Pell-Lucas numbers are 
obtained. (p, Q) = (1, -2) produces the JACOBSTHAL 

NUMBERS and Pell-Jacobsthal Numbers. 

The Lucas sequences satisfy the general RECURRENCE 
RELATIONS 

a m+n -b m+n 
u mfn = 

a-b 

( am - b”)(a” + b”) anbn(amDn - bmsn) - - 
a-b - u-b 

= UmVn - anbnUm-n (17) 

V m+n = a 
m+n + bm+n 

= (am + b”)(a” +- b”) - a”b”(a”-” +- bmwn> 

= VmVn - anbnVm-n. (18) 
x2 -Px+Q=O (1) 

Taking 72 = 1 then gives 

D _= P2 - 4Q, 

(2) 

(3) 

(4) 

a+b=P (5) 

ab = +(P”-D)=Q (6) 

a-b=&. (7) 

Then define 

Un(P, Q) F 
an - bn 

u-b (8) 

Um(P, Q) = PV,-1 (PT Q) - QU,-2(P, Q) (19) 

Vm(P, Q) = PVm-1(Py Q) - QVrn-z(Pj Q). (20) 

Other identities include 

Uzn = UnVn 

U 2n+l = Un+lVn - Q” 

V 2n = Vn2 - 2(ab)” = Vn2 - ZQ” 

tin+1 = Vn+lVn - P&“. 

(21) 

(22) 

(23) 

(24) 

These formulas allow calculations for large n to be de- 
composed into a chain in which only four quantities must 
be kept track of at a time, and the number of steps 
needed is N lgn. The chain is particularly simple if n 
has many 2s in its factorization. 

The Us in a Lucas sequence satisfy the CONGRUENCE 

K(Py Q) E an + b”. (9) 
u-n-1 b- WPII s 0 (mod p”) (25) 

The first few values are therefore 

uo(P, Q) = 0 
h(P,Q) = 1 
Va(P, Q) = 2 

K(P, Q) = P. 

(10) 
(11) 
(12) 
(13) 

The sequences 

WE Q) = VW’, Q) : n 2 1) (14) 
V(Pj Q) = {h(P, Q> : n > 1) (15) 

are called Lucas sequences, where the definition is usu- 
ally extended to include 

-1 

U-l=a -b 

-1 

a-b 

=II=-1. 

ab Q (16) 

if 
GCD(2QcD,p) = 1, (26) 

where 
P2 - 4Q2 = c2D. (27) 

This fact is used in the proof of the general LUCAS- 
LEHMER TEST. 

see ~1~0 FIBONACCI NUMBER, JACOBSTHAL NUMBER, 
LUCAS-LEHMER TEST, LUCAS NUMBER, LUCAS POLY- 

NOMIAL SEQUENCE,~ELL NUMBER,RECURRENCE SE- 
QUENCE, SYLVESTER CYCLOTOMIC NUMBER 

References 
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Lucas’s Theorem 
The primitive factors Qn(x, y) of X? + yn can be written 
in the form 

Qn(x, Y) = u2(x, Y) * nzyV2(x, Y> 

for SQUAREFREE n where U and V are HOMOGENEOUS 
POLYNOMIALS with the sign chosen according to 

+ for n = 41+ 1 
- for n = 4Z+ 3 
either for n = 41 + 2. 

Lucky Number 
Write out all the ODD numbers: 1, 3, 5, 7, 9, 11, 13, 15, 

17, 19, . . . l  The first ODD number > 1 is 3, so strike 
out every third number from the list: 1, 3, 7, 9, 13, 15, 
19, . l  l  . The first QDD number greater than 3 in the list 
is 7, so strike out every seventh number: 1, 3, 7, 9, 13, 

15, 21, 25, 31, . . l  . 

Numbers remaining after this procedure has been car- 
ried out completely are called lucky numbers. The first 
few are 1, 3, 7, 9, 13, 15, 21, 25, 31, 33, 37, . . . (Sloane’s 
A000959). Many asymptotic properties of the PRIME 
NUMBERS are shared by the lucky numbers. The asymp- 
totic density is l/In N, just as the PRIME NUMBER THE- 
OREM, and the frequency of TWIN PRIMES and twin 
lucky numbers are similar. A version of the GOLDBACH 
CONJECTURE also seems to hold. 

It therefore appears that the SIEVING 
for many properties of the PRIMES. 

process accounts 

see &~GOLDBACH CONJECTURE, LUCKY NUMBER OF 
EULER, PRIME NUMBER, PRIME NUMBER THEOREM, 
SIEVE 
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Lucky Number of Euler 
A number p such that the PRIME-GENERATING POLY- 
NOMIAL 

n2 -n+p 

is PRIME for n = 0, 1, . . . , p - 2. Such numbers are 
related to the COMPLEX QUADRATIC FIELD in which 
the RING of INTEGERS is factorable. Specifically, the 
Lucky numbers of Euler (excluding the trivia1 case p = 
3) are those numbers p such that the QUADRATIC FIELD 
Q(dm) has CLASS NUMBER 1 (Rabinowitz 1913, 
Le Lionnais 1983, Conway and Guy 1996). 

As established by Stark (1967), there are only nine num- 
bers -d such that h(-d) = 1 (the HEEGNER NUMBERS 
-2, -3, -7, -11, -19, -43, -67, and -163), and of 
these, only 7, 11, 19, 43, 67, and 163 are of the re- 
quired form. Therefore, the only Lucky numbers of 
Euler are 2, 3, 5, 11, 17, and 41 (Le Lionnais 1983, 
Sloane’s A014556), and there does not exist a better 
PRIME-GENERATING POLYNOMIAL of Euler’s form. 

see also CLASS NUMBER, HEEGNER NUMBER, PRIME- 
GENERATING POLYNOMIAL 
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LUCY 
A nonlinear DECONVOLUTION technique used in decon- 
volving images from the Hubble Space Telescope before 
corrective optics were installed. 

see also CLEAN ALGORITHM, DECONVOLUTION, MAX- 
IMUM ENTROPY METHOD 

Ludolph’s Constant 

see PI 

Ludwig’s Inversion Formula 
Expresses a function in terms of its RADON TRANS- 

f (2, Y) = R-l(W 1(x, Y> 

11 O” - -- - 
7T 27T s 

igRf)(Pd dpd~ 

-~ xcosa+ ysincu-p l  

see also RADON TRANSFORM 
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LukAcs Theorem 
Let p(x) be an mth degree POLYNOMIAL which is NON- 
NEGATIVE in [--I, 11. Then p(2) can be represented in 
the form 

[A( + (1 - ~“>[B(x)]~ for m even 

(l+ x)[C(x)12 + (1 - x)[D(x)]” for m odd, 

where A(x), B(x), C(x), and D(x) are REAL POLYNO- 
MIALS whose degrees do not exceed nz. 

References 
Szegij, G. Orthogonal Polynomials, 4th ed. Providence, RI: 

Amer. Math. Sot,, p. 4, 1975. 

Lune (Plane) 

A figure bounded by two circular ARCS of unequal 
RADII. Hippocrates of Chios SQUARED the above left 
lune, as well as two others, in the fifth century BC. Two 
more SQUARABLE lunes were found by T. Clausen in the 
19th century (Dunham 1990 attributes these discoveries 
to Euler in 1771). In the 20th century, N. G. Tscheba- 
torew and A. W. Dorodnow proved that these are the 
only five squarable lunes (Shenitzer and Steprans 1994). 
The left lune above is squared as follows, 

A -A lens - quarter big circle -A triangle 

-1 
- gTT2 - iT2 

A -A lune - half small circle - Alens = iT2 

=A triangle 9 

so the lune and TRIANGLE have the same AREA. In the 
right figure, A1 + A2 = AA. 

D 

E 

A 

@ 

0 B 

c 
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Lune (Solid) 
A geometric figure consisting of two TRIANGLES at- 
tached to opposite sides of a SQUARE. 

see also SQUARE, TRIANGLE 

Lune (Surface) 

A sliver of the surface of a SPHERE of RADIUS r cut out 
by two planes through the azimuthal axis with DIHE- 
DRAL ANGLE 8. The SURFACE AREA oftheluneis 

s = 2r28, 

which is just the area of the SPHERE times 8/(2~). 

see dso LUNE (PLANE), SPHERE 
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Beyer, W. H. CRC Standard Mathematical Tables, 28th ed. 
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Lunule 

~~~LuNE (PLANE) 

Lfirot h’s Theorem 
If x and y are nonconstant rational functions of a param- 
eter, the curve so defined has GENUS 0. Furthermore, z 
and y may be expressed rationally in terms of a param- 
eter which is rational in them. 

References 
Coolidge, J. L. A Treatise on Algebraic Plane Curves. New 

York: Dover, pm 246, 1959. 

For the above lune, 

A lune - -2AAOBC. 

see UESO ANNULUS, ARC, CIRCLE, LUNE (SURFACE) 
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Lusin’s Theorem 
Let f(x) be a finite and MEASURABLE FUNCTION in 
(-00, oo), and let e be freely chosen. Then there is a 
function g(z) such that 

1. g(z) is continuous in (-oo,oo), 

2. The MEASURE of {z : f(z) # g(z)} is < e, 

3. MM; RI) I M(lf I; m 
where M(f; S) d enotes the upper bound of the aggregate 
of the values of f(P) as P runs through all values of S. 

References 
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LUX Method 
A method for constructing MAGIC SQUARES of SINGLY 
EVEN order n > 6. - 

see also MAGIC SQUARE 

Lyapunov Characteristic Exponent 
The Lyapunov characteristic exponent [LCE] gives the 
rate of exponential divergence from perturbed initial 
conditions. To examine the behavior of an orbit around 
a point X*(t), perturb the system and write 

X(t) = x*(t) + u(t), 

where U(t) is the average deviation from the unper- 
turbed trajectory at time t. In a CHAOTIC region, the 
LCE 0 is independent of X* (0). It is given by the OSED- 
ELEC THEOREM, which states that 

5i = lim In [U(t)/. 
t+m (2) 

For an n-dimensional mapping, the Lyapunov charac- 
teristic exponents are given by 

0i = lim In IX&V)1 
N+m (3) 

for i = 1, . . . . n, where Xi is the LYAPUNOV CHARAC- 
TERISTIC NUMBER. 

One Lyapunov characteristic exponent is always 0, since 
there is never any divergence for a perturbed trajec- 
tory in the direction of the unperturbed trajectory. The 
larger the LCE, the greater the rate of exponential di- 
vergence and the wider the corresponding SEPARATRIX 
of the CHAOTIC region. For the STANDARD MAP, an 
analytic estimate of the width of the CFIAOTIC zone by 
Chirikov (1979) finds 

SI = Be 
-AK-1/2 

. (4 

Since the Lyapunov characteristic exponent increases 
with increasing K, some relationship likely exists con- 
necting the two. Let a trajectory (expressed as a MAP) 
have initial conditions (20, ~0) and a nearby trajectory 

have initial conditions (z’, y’) = (20 + dz, yo + dy). The 
distance between trajectories at iteration k is then 

dk = II@ - Zo,Y’ - Yo>ll, (5) 

and the mean exponential rate of divergence of the tra- 
jectories is defined by 

51 (6) 

For an n-dimensional phase space (MAP), there are n 

Lyapunov characteristic exponents 51 

However, because the largest exponent 
> 52 2 . . . > On. - 
~1 will dominate, 

this limit is practically useful only for finding the largest 
exponent. Numerically, since dk increases exponentially 
with k 
longer 

, after a few steps the perturbed trajectory is no 
near by. It is therefore necessary to renormalize 

frequently every t steps. Defining 

one can then compute 

1 n 
01 = lim - 

x 
h TkT. 

n+=nr 
k=l 

(7) 

Numerical computation of the second (smaller) Lya- 
punov exponent may be carried by considering the evo- 
lution of a 2-D surface. It will behave as 

so 02 can be extracted if ~1 is known. 
be repeated to find smaller exponents. 

(9) 

The process may 

For HAMILTONIAN SYSTEMS, the LCEs exist in additive 
inverse pairs, so if 5 is an LCE, then so is -5. One 
LCE is always 0. For a 1-D oscillator (with a 2-D phase 
space), the two LCEs therefore must be g1 = 02 = 0, so 
the motion is QUASIPERIODIC and cannot be CHAOTIC. 
For higher order HAMILTONIAN SYSTEMS, there are al- 
ways at least two 0 LCEs, but other LCEs may enter 
in plus-and-minus pairs Z and -2. If they, too, are both 
zero, the motion is integrable and not CHAOTIC. If they 
are NONZERO, the POSITIVE LCE 2 results in an expo- 
nential separation of trajectories, which corresponds to 
a CHAOTIC region. Notice that it is not possible to have 
all LCEs NEGATIVE, which explains why convergence of 
orbits is never observed in HAMILT~NIAN SYSTEMS. 

Now consider a dissipative system. For an arbitrary n- 
D phase space, there must always be one LCE equal 
to 0, since a perturbation along the path results in no 
divergence. The LCEs satisfy xi 5; < 0. Therefore, for 
a 2-D phase space of a dissipative system, 51 = 0,52 < 
0. For a 3-D phase space, there are three possibilities: 

1. (Integrable) : 01 = 0,52 = o,u3 < 0, 
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Lyapunov Dimension 
For a 2-D MAP with 02 > ~1, 

2. (Integrable): ~1 = O,U~,Q < 0, 

3. (CHAOTIC): g1 = 0, fT2 > 0,03 < -02 < 0. 

see also CHAOS, HAMILTONIAN SYSTEM, LYAPUNOV 
CHARACTERISTIC NUMBER, OSEDELEC THEOREM 

where U, are the LYAPUNOV CHARACTERISTIC EXPO- 
NENTS. 
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Lyapunov Characteristic Number 
Given a LYAPUNOV CHARACTERISTIC EXPONENT pi, 
the corresponding Lyapunov characteristic number Xi 
is defined as 
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For an n-dimensional linear MAP, 

Lyapunov’s First Theorem 
A NECESSARY and SUFFICIENT condition for all the 
EIGENVALUES of a REAL n x n matrix A to have NEG- 
ATIVE REAL PARTS is that the equation 

X n+l = MX,. (2) 

The Lyapunov characteristic numbers Xl, . . . , X, are 
the EIGENVALUES of the MAP MATRIX. For an arbitrary 
MAP 

Xn+l = fl(Xn7Yn) (3) 

ATV+VA= -I 

has as a solution where V is an n x n matrix and (x, Vx) 
is a positive definite quadratic form. 

Yn+i = f&hYr& (4 

the Lyapunov numbers are the EIGENVALUES of the limit 
References 
Gradshteyn, I. S. and Ryzhik, I. M. Tables of Integrals, Se- 

ries, and Products, 5th ed. San Diego, CA: Academic 
Press, p. 1122, 1979. 

lim [J(Xn, yn )J(Xn-l,yn-1)" l  J(X~YY~)]~'", (5) 
n+oo 

where J(x,y) is the JACOBIAN 
Lyapunov Function 
A function which is continuous, nonnegative, and has 
continuous PARTIAL DERIVATIVES. The existence of a 
Lyapunov function guarantees the NONLINEAR STABIL- 
ITY of a FIXED POINT. 

If xi = 0 for all i, the system is not CHAOTIC. If A # 
References 
Jordan, D. W. and Smith, P. Nonlinear Ordinary Differential 

Equations. Oxford, England: Clarendon Press, p. 283, 
1977. 

0 and the MAP is AREA-PRESERVING (HAMILTONIAN), 
the product of EIGENVALUES is 1. 

see also ADIABATIC INVARIANT, CHAOS, LYAPUNOV 
CHARACTERISTIC EXPONENT 

Lyapunov’s Second Theorem 
If all the EIGENVALUES of a REAL MATRIX A have REAL 

PARTS, then to an arbitrary negative definite quadratic 
form (x, Wx) with x = x(t) there corresponds a positive 
definite quadratic form (x, Vx) such that if one takes 

Lyapunov Condition 
If the third MOMENT exists for a DISTRIBUTION of xi 
and the LEBESGUE INTEGRAL is given by 

n 

3 
Tn = 

ES 

O” [xl3 a(x), 

ix1 --OO 

dx 

2i- 
= Ax, 

then (x, Wx) and (x, Wx) satisfy then if 
lim %=O, 

n-boo sn 
$x,Vx) = (x, Wx). 

the CENTRAL LIMIT THEOREM holds. 

see also CENTRAL LIMIT THEOREM 
References 
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Lyndon Wmd 
A Lyndon word is an aperiodic notation for representing 
a NECKLACE. 

see also DE BRUIJN SEQUENCE, NECKLACE 
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Lyons Group 
The SPORADIC GROUP Ly. 

see also SPORADIC GROUP 
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Lyons Group 
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M 
Ad-Estimate 
A ROBUST ESTIMATION based on maximum likelihood 
argument l  

see also L-ESTIMATE, R-ESTIMATE 

References 
Press, W. H,; Flannery, B. P.; Teukolsky, S. A.; and Vet- 

terling, W. T. “Robust Estimation.” 5 15.7 in Numerical 

Recipes in FORTRAN: The Art of Scientific Computing, 
2nd ed. Cambridge, England: Cambridge University Press, 
pp. 694-700, 1992. 

Mac Lane’s Theorem 
A theorem which treats constructions of FIELDS of 
CHARACTERISTIC p. 

see also CHARACTERISTIC (FIELD), FIELD 

Machin’s Formula 

$7~ = 4 tan-l(i) - tan-I( A). 

There are a whole class of MACEIIN-LIKE FORMULAS 
with various numbers of terms (although only four such 
formulas with only two terms). The properties of these 
formulas are intimately connected with COTANGENT 
identities. 

see aho 196-ALGORITHM, &wGORY NUMBER, MACH- 
IN-LIKE FORMULAS, PI 

Machin-Like Formulas 
Machin-like formulas have the form 

m cot -l u + ncot-l v = $T, (1) 

where u, v, and k are POSITIVE INTEGERS and m and 
12 are NONNEGATIVE INTEGERS. Some such FORMU- 
LAS can be found by converting the INVERSE TANGENT 
decompositions for which cn # 0 in the table of Todd 
(1949) to INVERSE COTANGENTS. However, this gives 
only Machin-like formulas in which the smallest term is 
43. 

Maclaurin-like formulas can be derived by writing 

cot-l z = 
1 Z-ti 

zln - 
( > z-i 

and looking for uk and uk such that 

ak cot -1 uk = an, 
k 

(2) 

(3) 

(4) 

Machin-like formulas exist IFF (4) has a solution in IN- 
TEGERS. This is equivalent to finding INTEGER values 
such that 

(1 - i)“(u + i)“(v + i)” (5) 

is REAL (Borwein and Borwein 1987, p. 345). An equiv- 
alent formulation is to find all integral solutions to one 

1+ X2 = 2y” (6) 

1+ X2 = yn (7) 

for n = 3, 5, , . . . 

There are only four such FORMULAS, 

2~ = 4tar?(i) -tan-l(&) 

+7r = tan-l($) + tan-l(i) 

, $ = 2tan-l($) -tan-‘($) 

$7r = Ztar?(+) + tan-l($), 

known as MACHIN'S FORMULA, EULER'S MACHIN-LIKE 
FORMULA,HERMANN'S FORMULA, and HUTTON'S FOR- 
MULA. These follow from the identities 

p&)4 (s)-l=i (12) 
(5) (E) =i (13) 

(E)2 (z)-l =i (14 

(E)2(;) =i. (15) 

Machin-like formulas with two terms can also be gener- 
ated which do not have integral arc cotangent arguments 
such as Euler’s 

$7r = 5tan -‘($) + 2tan-l(k) (16) 

(Wetherfield 1996), and which involve inverse SQUARE 
ROOTS, such as 

5 =2tan-‘(-+) +tan-‘(5) l  (17) 

Three-term Machin-like formulas include GAUSS'S 
MACHIN-LIKE FORMULA 

$T = 12cot-1 18 + 8cot-1 57 - 5cot-1 239, (18) 

STRASSNITZKY'S FORMULA 

+T = cot-’ 2 + cot-’ 5 + cot-‘8, (19) 
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and the following, 

a7T = 6cot-1 8 + 2cot-’ 57 + cot-’ 239 (20) 

an = 4cot-I5 - 1 cot-l 70 + cot-l 99 (21) 

+T = 1 cot-’ 2 + 1 cot-’ 5 + cot-’ 8 (22) 

$7~ = 8cot-’ 10 - 1 cot-’ 239 - 4cot-1 515 (23) 

$7T = 5cot-l7 + 4cot-1 53 + 2cot-l4443. (24 

The first is due to StGrmer, the second due to Ruther- 
ford, and the third due to Dase. 

Using trigonometric identities such as 

cot-l II: = 2ccC1(2z) - cot-l(4x3 + 3X), (25) 

it is possible to generate an infinite sequence of Machin- 
like formulas. Systematic searches therefore most often 
concentrate on formulas with particularly “nice” prop- 
erties (such as “efficiency”). 

The efficiency of a FORMULA is the time it takes to cal- 
culate 7~ with the POWER series for arctangent 

7T = a1 cot&) + 422 cot(b2) + . . . , (26) 

and can be roughly characterized using Lehmer’s “mea- 
sure” formula . 

c 
1 

eG - 
log,, b i  l  

(27) 

The number of terms required to achieve a given preci- 
sion is roughly proportional to e, so lower e-values cor- 
respond to better sums. The best currently known effi- 
ciency is 1.51244, which is achieved by the 6-term series 

an = 183cot-1 239 + 32 cot-’ 1023 - 68 cot-’ 5832 

+12 cot-l 110443 - 12cot-‘4841182 

-100cot-1 6826318 (28) 

discovered by C.-L. Hwang (1997). Hwang (1997) also 
discovered the remarkable identities 

+r = pcot-l 2-Mcot-l3+Lcot-‘5+Kcot-‘7 

+(N+K+L-2M+3P-5)cot-l8 

+(2N + M - P + 2 - L) cot-’ 18 

-(2P - 3 - M + L + K - N) cot-’ 57 - N cot-’ 239, 

(29) 

where K, L, IM, N, and P are POSITIVE INTEGERS, and 

;T = (N+2) cot-’ 2-N cot-’ 3-(N+l) cot-’ N. (30) 

The following table gives the number N(n) of Machin- 
like formulas of n terms in the compilation by Wether- 
field and Hwang. Except for previously known identities 
(which are included), the criteria for inclusion are the 
following: 

1. first term < 8 digits: measure < 1.8. 

2. first term = 8 digits: measure < 1.9. 

3. first term = 9 digits: measure < 2.0. 

4. first term =10 digits: measure < 2.0. 

n N(n) mine 

1 1 0 
2 4 1.85113 
3 106 1.78661 
4 39 1.58604 
5 90 1.63485 
6 120 1.51244 
7 113 1.54408 
8 18 1.65089 
9 4 1.72801 

10 78 1.63086 
11 34 1.6305 
12 188 1.67458 
13 37 1.71934 
14 5 1.75161 
15 24 1.77957 
16 51 1.81522 
17 5 1.90938 
18 570 1.87698 
19 1 1.94899 
20 11 1.95716 
21 1 1.98938 

Total 1500 1.51244 

see also EULER'S MACHIN-LIKE FORMULA, GAUSS'S 
MAWWLIKE FORMULA, GREGORY NUMBER, HER- 
MANN'S FORMULA,HUTTON'S FORMULAJNVERSE Co- 
TANGENT, MACHIN'S FORMULA, PI, STQ)RMER NUM- 
BER, STRASSNITZKY'S FORMULA 
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Machine 
A method for producing infinite LOOP SPACES and spec- 
tra. 

see also GADGET, LOOP SPACE, MAY-THOMASON 
UNIQUENESS THEOREM,TURING MACHINE 

Mackey’s Theorem 
Let E and F be paired spaces with S a family of ab- 
solutely convex bounded sets of F such that the sets of 
S generate F and, if B1, I32 E S, there exists a & E S 
such that B3 1 BI and BJ 3 &. Then the dual space 
of Es is equal to the union of the weak completions of 
XB, where A > 0 and B E S. 

see also GROTHENDIECK'S THEOREM 
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Maclaurin-Bezout Theorem 
The Maclaurin-B&out theorem says that two curves of 
degree n intersect in n2 points, so two CUBICS intersect 
in nine points. This means that n(n + 3)/2 points do 
not always uniquely determine a single curve of order n. 

see UZSO CRAMER-EULER PARADOX 

Maclaurin-Cauchy Theorem 
If f(z) is POSITIVE and decreases to 0, then an EULER 
CONSTANT 

can be defined. If f(x) = l/x, then 

where y is the EULER-MASCHERONI CONSTANT. 

Maclaurin Integral Test 

see INTEGRAL TEST 

Maclaurin Polynomial 

see MACLAURIN SERIES 

Maclaurin Series 
A series expansion of a function about 0, 

f’3’(o) f(x) = f(0) + f’(O)x + qL2 + TX3 
l  

f’“’ (0) 

+...+lxn+..., (1) 
. 

named after the Scottish mathematician Maclaurin. 
Maclaurin series for common functions include 

1 
- 1 + x + x2 + x3 + x4 + x5 + l  l  l  

l-x - 

-1 < x < 1 (2) 

cn(x, Ic”) = l- $x2 + $(l + 4k2)x4 + . . . (3) 

cosx=1-~xz+$x4-$x6-.... . 
--oo<x<oo (4) 

cos -1x+-x- 
+x3 - $x5  - &x7 - . . l  

-I< x < 1 (5) 

cash x = 1+ +x2 + $x4 + &x6 + &x8 -I- l  . . (6) 

cash-‘(1 +x) = a(1 - ix + &x2 - &x3 +. . .)(7) 

cot x = x 
-1 

- ;x - &x3 - &x5 - &x7 - . . . (8) 

cot-l II: = &T - x + +x3 - ix5 + +x7 - ix9 + . . . (9) 
-1 xx -ix -3 + ;x-5 - +x-7 + ;x-g +. . . (10) 

cothz = x-l + fx  - &x4 + &x5 -&x7 + l  l  l  (II) 

coth-‘(l+ x) = $ln2+lnx+~x- $x2+... (12) 

csc x = x -l + ix + &x3 + *x5 + -. . (13) 

cschx=x-1--x+&x3+hx5+... (14) 

csch-’ x=ln2-lnx++x2-&x4+&x6--... (15) 

dn(x, k2)x = 1 - +,k2x2 + +,k”(4 + k2)x4 + . . . 

1 * 
. (16) 

erfx- - 
d- 7T 

( 2x- ix” + i x5  - &x7 + l  . .) 
(17) 

ex  = 1+x+Lx2+Lx3+ 2! 3! $x4-j- ..* . 

--oo<x<w (18) 

d 
2qQ,&y;Z)= 1+ --61: 

l!y 
& + l>P(P + Qx2 + 

WY + 1) 
. l  . 

(19) 

ln(1 +x) = x - $x2 + +x3 - +x4 + . . . 

-1 < x < 1 (20) 

In 1+x 
( ) 

l  l  . 

l-x 
= 2x + 2x3 + 2x5 + 2x7 + 

3 5 7 

-1 < 2 < 1 (21) 

secx=1+~x2+$x4+~x6+~x8+... (22) 

sech x = 1 - +x2 + &x4 - &x6 + %x8  +. l  . 
(23) 

sech-’ x = In2 - lnx - +x2 - $x4 - . . . (24) 

sinx=x- $x3+$x5+x7+... . 
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--oo<X<oO (25) 
sin 

-1 
x = 

1 3 
x  + gx  + &x5 + &x7 + &x9 + . l  l  (26) 

sinhx = x + Lx3 + 
6 &X5+ &5x7+ &x9 + l  ’  ’  (27) 

sinl? x = x - ix3 + &x5 - &x7 + %x9 - . . . (28) 

sn(x, k”) = $(l+ k2)x3 + $(l -+ 14k2 + k4)x5 +. . . (29) . 

tanz = x  + +x3 + &x5 + $&x7 + &x9 + . . l  
w 

tan-l x = 2 - +x3 + $x5 - +x7 + . . . 

-1 < x < 1 (31) 

tar?(l+ x) = $ + $X - -$x2 + &x3 + &x5 +. l  . (32) 

tanhx = x - +x3 + &x5 - $&x7 + &x9 + l  l  . 
(33) 

tanh-’ x = x  + $x3  + ix” + +x7  + $x9  + l  . . l  
(34) 

The explicit forms for some of these are 

1 

l-x 
- - Xn 

O” ( 1) 
n 

cosx = 
): 

= 
2n 

n=O 
(2 > n!x 

csc x = 
O” (-l)n+12(22”-1 - 1)&n 2n-1 

IF ?2! 
X 

n=O 
(2 1 

00 " 

n=l 

In(E) =$&)x2+1 
n= 

secx = 
O" (-I)'E2n 271 

x 
(2 1 n! x 

n=O 

n+l - 
sinx = O” ( 1) 

lE 
2n--1 

p 
n=l 

(2 n - l)!x 

tanx = 
O” (-l)n+122n(22n - l)Bz, 2n-1 

lE (2 > n! 
X 

n=l 

O” ( 
E 

1) nfl 
tan-lx= : 272-l 

2n-1 x 
n= 1 

00 4 

tanh-’ x = >: 
1 2n-1 - 

2n-lx ’ 

(35) 

(36) 

(37) 

(38) 

(39) 

w 

(41) 

(42) 

(43) 

(44) 

(45) 

where Bn are BERNOULLI NUMBERS and En are EULER 
NUMBERS. 

see U~SO ALCUIN'S SEQUENCE, LAGRANGE EXPANSION, 
LEGENDRE SERIES,TAYLOR SERIES 

References 
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Mach urin Trisec trix 

Maclaurin Xkisectrix 

A curve first studied by Colin Maclaurin in 1742. It was 
studied to provide a solution to one of the GEOMETRIC 
PROBLEMS OF ANTIQUITY, in particular TRISECTION of 
an ANGLE, whence the name trisectrix. The Maclaurin 
trisectrix is an ANALLAGMATIC CURVE, and the origin 
isa CRUNODE. 

The Maclaurin trisectrix has CARTESIAN equation 

x2(x + 34 
Y2= u-x 1 (1) 

or the parametric equations 

t2 - 3 
x=a- 

t2 + 1 (2) 

t(t2 - 3) 
y=y2+1* (3) 

The ASYMPTOTE has equation x = a, and the center 
of the loop is as (2a, 0). Draw a line L with ANGLE 
3a through the loop center. Then the angle made by 
the line through the center and point of intersection of 
L with the trisectrix is QI. The trisectrix is sometimes 
defined instead as 

x(x2 + y”) = a(y2 - 3x2) (4) 

y2 = 
x2(3a + x) 

U-X 
(5) 

(6) 

Another form of the equation is the POLAR EQUATION 

r = asec@), (7) 

where the origin is inside the loop and the crossing point 
is on the NEGATIVE X-AXIS. 

The tangents to the curve at the origin make angles of 
1t60” with the X-AXIS. The AREA of the loop is 

A loop = 3J3a2, (8) 

and the NEGATIVE x-intercept is (-3a, 0) (MacTutor 
Archive) l  



Maclaurin Disectrix Inverse Curve Mae&r’s Owl Minimal Surface 

The Maclaurin trisectrix is the PEDAL CURVE of the 
PARABOLA where the PEDAL POINT is taken as the re- 
flection of the FOCUS in the DIRECTRIX. 

see also CATALAN’S TRISECTRIX, STROPHOID 

References 
Lawrence, J. D. A Catalog of Special Plane Curves. New 

York: Dover, pp. 103-106, 1972. 
Lee, X. Ykisectrix." http://www.best.com/-xah/Special 

PlaneCurves-dir/Trisectrix-dir/trisectrix.html. 
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Maclaurin ‘I’risectrix Inverse Curve 

The INVERSE CURVE of the MACLAURIN TRISECTRIX 
with INVERSION CENTER at the NEGATIVE z-intercept 
is a TSCHIRNHAUSEN CUBIC. 

MacMahon’s Prime Number of 

Measurement 

~~~PRIME NUMBER OF MEASUREMENT 

MacRobert’s E-Function 

E(p; Qdr : ps : x) 

-',+, Xq+vaq+v -' d&+, x 

where l?(z) is the GAMMA FUNCTION and other details 
are discussed by Gradshteyn and Ryzhik (1980). 

see also FOX’S H-FUNCTION, MEIJER'S G-FUNCTION 

References 
Gradshteyn, I. S. and Ryzhik, I. M. Tables of Integrals, Se- 

ries, and Products, 5th ed. San Diego, CA: Academic 
Press, pp. 896-903 and 1071-1072, 1979. 
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Madelung Constants 
The quantities obtained from cubic, hexagonal, etc., 
LATTICE SUMS, evaluated at s = 1, are called Madelung 
constants. For cubic LATTICE SUMS, they are expressi- 
ble in closed form for EVEN indices, 

h(2) = -4P(Ml) = -42ln2 = -7rln2 (1) 

h(2) = -8~(1)77(0) = -8ln2. i = -4ln2. (2) 

b&L) is given by I~ENSON'S FORMULA, 

43(l)= 

i, j, 

00 

= 12T 
Ix 

sech2( $&XL?), (3) 

m,n=1,3,... 

where the prime indicates that summation over (0, 0, 0) 
is excluded. b3(1) is some times called “the” Madelung 
constant, corresponds to the Madelung constant for a 3- 
D NaCl crystal, and is numerically equal to -1.74756. . . . 

For hexagonal LATTICE SUM, h2 (2) is expressible in 
closed form as I 

h(2) = 7r In 3J3. (4 

see also BENSON'S FORMULA, LATTICE SUM 
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Maeder’s Owl Minimal Surface 

A MINIMAL SURFACE which resembles a CROSS-CAP. It 
is given by the polar equations 

X =l (1) 

Y=fi (2) 

z = z, (3) 
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or the parametric equations where E, F, and G are coefficients of the first FUNDA- 

X = rcoso - $r2 cos(20) 

Y== -rsinO - $r2 sin(20), 

z = 4r3i2 
3 

cos( p,* 

(4) 

(5) 

(6) 

MENTAL FORM. 

References 
Gray, A. “The Mainardi-Codazzi Equations.” $20.4 in Mod- 

ern Differential Geometry of Curves and Surfaces. Boca 
Raton, FL: CRC Press, pp. 401-402, 1993. 
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see also CROSS-CAP, MINIMAL SURFACE New York: Dover, p. 37, 1992. 

References 
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Maehly’s Procedure 
A method for finding ROOTS which defines 

Pj(X) = 
P(x) 

(X - Xl) mm ’ (X - Xj) ’ 
(1) 

so the derivative is 

p,‘( > 
.x = 

p’ (4 

(x - 21). - l  (x - Xj) 

P(x) 
J 

- 

ID (X-Xl)‘**(X-Xj) _ 

X- x$l* (2) 

One step of NEWTON’S METHOD can then be written as 

xk+l = xk - 
PCXk > 

P’(Xk) - P(xk) ~;=,(xk - xi)-l l  

(3) 

Mainardi-Codazzi Equations 

af dg 
Bv - du 

= eri2 + f (rz, - ri,> - & (2) 

where e, f, and g are coefficients of the second FUNDA- 
MENTAL FORM and rfj are CHRISTOFFEL SYMBOLS OF 
THE SECOND KIND. Therefore, 

wn f > 
au = r:, - rf, 

(3) 

(5) 
wn f > 

dv = 13, - r:, (6) 

Magic Circles 

A set of n magic circles is a numbering of the intersection 
of the n CIRCLES such that the sum over all intersections 
is the same constant for all circles. The above sets of 
three and four magic circles have magic constants 14 and 
39 (Madachy 1979). 

see also MAGIC GRAPH, MAGIC SQUARE 

References 
Madachy, J+ S. Madachy’s Mathematical Recreations. New 

York: Dover, p. 86, 1979. 

Magic Constant 
The number 

1 
iL&(n) = - 

n c 
k = &(n” + 1) 

k-l 

to which the n numbers in any horizontal, vertical, or 
main diagonal line must sum in a MAGIC SQUARE. The 
first few values are 1, 5 (no such magic square), 15, 34, 
65, 111, 175, 260, . . . (Sloane’s A006003). The magic 
constant for an nth order magic square starting with an 
INTEGER A and with entries in an increasing ARITH- 
METIC SERIES with difference D between terms is 

M&I; A, D) = $1[2a + D(n2 - I)] 

(Hunter and Madachy 1975, Madachy 1979). In a PAN- 
MAGIC SQUARE, in addition to the main diagonals, the 
broken diagonals also sum to M2 (n). 

For a MAGIC CUBE, the magic constant is 

MS(n) = - 
n2 x k = $(n3+l) = &(l+n)(n2-n+l). 

(8) 

The first few values are 1, 9, 42, 130, 315, 651, 1204, . . . 

(Sloane’s A027441). 
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There is a corresponding multiplicative magic constant 
for MULTIPLICATION MAGIC SQUARES. 

see also MAGIC CUBE, MAGIC GEOMETRIC CON- 

STANTS,MAGIC HEXAGON,MAGIC SQUARE,MULTIPLI- 
CATION MAGIC SQUARE,~ANMAGIC SQUARE 

References 
Hunter, J, A. H. and Madachy, J. S. “Mystic Arrays-" Ch* 3 
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Sloane, N. J. A. Sequences A027441 and A006003/M3849 in 
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Magic Cube 
An n x n x n 3-D version of the MAGIC SQUARE in 
which the n2 rows, n2 columns, n2 pillars (or “files”), 
and four space diagonals each sum to a single number 
A&(n) known as the MAGIC CONSTANT. If the cross- 
section diagonals also sum to A&(n), the magic cube is 
called a PERFECT MAGIC CUBE; if they do not, the cube 
is calleda SEMIPERFECT MAGIC CUBE, or sometimes an 
ANDREWS CUBE (Gardner 1988). A pandiagonal cube 
is a perfect or semiperfect magic cube which is magic 
not only along the main space diagonals, but also on 
the broken space diagonals. 

A magic cube using the numbers 1, 2, . . . , n3, if it exists, 
has MAGIC CONSTANT 

7x3 
1 

l&(n) = - 
n2 x 

k- $a(n3+1) = +(n+1)(n2-n+l). 

k=l 

There are no perfect magic cubes of order four (Beeler 
et al. 1972, Item 50; Gardner 1988). No perfect magic 
cubes of order five are known, although it is known that 
such a cube must have a central value of 63 (Beeler et 
al. 1972, Item 51; Gardner 1988). No order-six per- 
fect magic cubes are known, but Langman (1962) con- 
structed a perfect magic cube of order seven. An order- 
eight perfect magic cube was published anonymously in 
1875 (Barnard 1888, Benson and Jacoby 1981, Gard- 
ner 1988). The construction of such a cube is discussed 
in Ball and Coxeter (1987). Rosser and Walker redis- 
covered the order-eight cube in the late 1930s (but did 
not publish it), and Myers independently discovered the 
cube illustrated above in 1970 (Gardner 1988). Order 9 
and 11 magic cubes have also been discovered, but none 

For n = 1, 2, . . . , the magic constants are 1, 9, 42, 130, 
315, 651, . . . (Sloane’s A027441). 

Semiperfect pandiagonal cubes exist for all orders 8n 
and all 000 n > 8 (Ball and Coxeter 1987). A perfect 

been constructed by Planck 

Berlekamp et al. (1982, p. 783) give a magic TESSERACT. 

The above semiperfect magic cubes of orders three 
(Hunter and Madachy 1975, p. 31; Ball and Coxeter 
1987, p. 218) and four (Ball and Coxeter 1987, p. 220) 
have magic constants 42 and 130, respectively. There 
is a trivial semiperfect magic cube of order one, but no 
semiperfect cubes of orders two or three exist. Semiper- 
feet cubes of ODD order with n > 5 and DOUBLY EVEN - 
order can be constructed by extending the methods used 
for MAGIC SQUARES. 

see dso MAGIC CONSTANT, MAGIC GRAPH, MAGIC 
HEXAGON, MAGIC SQUARE 
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Magic Geometric Constants 
N.B. A detailed on-line essay by S. Finch was the start- 
ing point for this entry. 

Let E be a compact connected subset of d-dimensional 
EUCLIDEAN SPACE. Gross (1964) and Stadje (1981) 
proved that there is a unique REAL NUMBER a(E) such 
that for all x1, x2, . . . , x72 E E, there exists y E E with 

(xj,k - $&I2 = a(E). (1) 

The magic constant m(E) of E is defined by 

a(E) m(E) = - 
diam( E) ’ (2) 

where 

\ 

d 

diam(E) E max ID tik 
u,vEE 

- ?&)2. (3) 
k=l 

These numbers are also called DISPERSION NUMBERS 
and I%ENDEZVOUS VALUES. For any E, Gross (1964) 
and Stadje (1981) proved that 

i <m(E) < 1. - (4) 

If 1 is a subinterval of the LINE and D is a circular DISK 
in the PLANE, then 

mu> =m(D)= & (5) 

If c is a CIRCLE, then 

2 
m(C) = - = 0.6366.. . . 

7T (6) 

An expression for the magic constant of an ELLIPSE in 
terms of its SEMIMAJ~R and SEMIMINOR AXES lengths 
is not known. Nikolas and Yost (1988) showed that for 
a REULEAUX TRIANGLET 

0.6675276 < m(T) < 0.6675284. - - (7) 

Denote the MAXIMUM value of m(E) in n-D space by 
M(n). Then 

M(1) = + (8) 

2+d3 
M(2) : m(T) 5 M(2) < - 

- 3& 
< 0.7182336 (9) 

[r( $l)]22d-2~ 

l?(d- +)dm < 

(10) 

where I?(z) is the GAMMA FUNCTION (Nikolas and Yost 
1988). 

An unrelated quantity characteristic of a given MAGIC 
SQUARE is also known as a MAGIC CONSTANT. 
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Magic Graph 

8 6 
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A LABELLED GRAPH with e EDGES labeled with distinct 
elements (1, 2, . . . , e} so that the sum of the EDGE 
labels at each VERTEX is the same. Another type of 
magic graph, such as the PENTAGRAM shown above, has 
labelled VERTICES which give the same sum along every 
straight line segment (Madachy 1979) l  

see also ANTIMAGIC GRAPHJABELLED GRAPH,MAGIC 
CIRCLES, MAGIC CONSTANT, MAGLC CUBE, MAGIC 

HEXAGON, MAGIC SQUARE 
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Canaveral/Launchpad/4057/magicstar,htm. 

Madachy, J. S. Maduchy ‘s Mathematical Recreations. New 
York: Dover, pp. 98-99, 1979. 

Magic Hexagon 

An arrangement of close-packed HEXAGONS containing 
the numbers 1, 2, . . l  , H, = 3n(n - 1) + 1, where Hn 
is the nth HEX NUMBER, such that the numbers along 
each straight line add up to the same sum. In the above 
magic hexagon, each line (those of lengths both 3 and 
4) adds up to 38. This is the only magic hexagon of the 
counting numbers for any size hexagon. It was discov- 
ered by C. W. Adam, who worked on the problem from 
19,lO to 1957. 

see also HEX NUMBER, HEXAGON, MAGIC GRAPH, 
MAGIC SQUARE, TALISMAN HEXAGON 

References 
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Magic Labelling 
It is conjectured that every TREE with e edges whose 
nodes are all trivalent or monovalent can be given a 
“magic” labelling such that the INTEGERS 1, 2, . . l  , e  

can be assigned to the edges so that the SUM of the three 
meeting at a node is constant. 

see also MAGIC CONSTANT, MAGIC CUBE, MAGIC 
GRAPH, MAGIC HEXAGON, MAGIC SQUARE 

References 
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Magic *Number 

see MAGIC CONSTANT 

Magic Series 
n numbers form a magic series of degree p if the sum of 
their kth POWERS is the MAGIC CONSTANT of degree k 
for all /G f [l,p]. 

see also MAGIC CONSTANT, MAGIC SQUARE 

References 
Kraitchik,# M. “Magic Series.” 57.13.3 in Mathematical Recre- 

ations, New York: W. W. Norton, pp, 183-186, 1942. 

Magic Square 

A (normal) magic square consists of the distinct POST- 
TIVE INTEGERS 1, 2, . . . , n2 such that the sum of the 
n numbers in any horizontal, vertical, or main diagonal 
line is always the same MAGIC CONSTANT 

nL 
1 

M2(n) = - >: 
k- 

n 
a,(n2 + 1). 

k=l 

The unique normal square of order three was known 
to the ancient Chinese, who called it the LO SHU. A 
version of the order 4 magic square with the numbers 
15 and 14 in adjacent middle columns in the bottom 
row is called D~~RER’S MAGIC SQUARE. Magic squares 
of order 3 through 8 are shown above. 

The MAGIC CONSTANT for an nth order magic square 
starting with an INTEGER A and with entries in an in- 
creasing ARITHMETIC SERIES with difference D between 
terms is 

IV&; A, D> = $n[2a + D(n2 - l)] 

(Hunter and Madachy 1975). If every number in a 
magic square is subtracted from n2 + 1, another magic 
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square is obtained called the complementary magic 
square. Squares which are magic under multiplica- 
tion instead of addition can be constructed and are 
known as MULTIPLICATION MAGIC SQUARES. In ad- 
dition, squares which are magic under both addition 
and multiplication can be constructed and are known as 
ADDITION-MULTIPLICATION MAGIC SQUARES (Hunter 
and Madachy 1975). 

A square that fails to be magic only because one or 
both of the main diagonal sums do not equal the MAGIC 
CONSTANT is called a SEMIMAGIC SQUARE. If all diag- 
onals (including those obtained by wrapping around) 
of a magic square sum to the MAGIC CONSTANT, the 
square is said to be a PANMAGIC SQUARE (also called 
a DIABOLICAL SQUARE or PANDIAGONAL SQUARE). If 
replacing each number ni by its square ni2 produces an- 
other magic square, the square is said to be a BIMAGIC 
SQUARE (or DOUBLY MAGIC SQUARE). If a square is 
magic for ni, ni2, and ni3, it is called a TREBLY MAGIC 

SQUARE. If all pairs of numbers symmetrically opposite 
the center sum to n2 + 1, the square is said to be an 
ASSOCIATIVE MAGIC SQUARE. 

16 

22 

3 

9 

15 17 24 1 8 

Kraitchik (1942) gives general techniques of construct- 
ing EVEN and ODD squares of order n. For n ODD, a 
very straightforward technique known as the Siamese 
method can be used, as illustrated above (Kraitchik 
1942, pp. 148-149). It begins by placing a 1 in any lo- 
cation (in the center square of the top row in the above 
example), then incrementally placing subsequent num- 
bers in the square one unit above and to the right. The 
counting is wrapped around, so that falling off the top 
returns on the bottom and falling off the right returns 
on the left. When a square is encountered which is al- 
ready filled, the next number is instead placed below the 
previous one and the method continues as before. The 
method, also called de la Loubere’s method, is purpor- 
ted to have been first reported in the West when de la 
Loubere returned to France after serving as ambassador 
to Siam. 

A generalization of this method uses an “ordinary vec- 
tor” (2, y) which gives the offset for each noncolliding 
move and a “break vector” (U,ZI) which gives the off- 
set to introduce upon a collision. The standard Siamese 
method therefore has ordinary vector (1, - 1) and break 
vector (0, 1). In order for this to produce a magic square, 
each break move must end up on an unfilled cell. Special 
classes of magic squares can be constructed by consider- 
ing the absolute sums Iu+u~, ](u-x)+(;Y--)I, lzl--1, 
and j(u-x)-( ‘u - y)I = IU + y - z - ~1. Call the set 
of these numbers the sumdiffs (sums and differences). If 
all sumdiffs are RELATIVELY PRIME to n and the square 
is a magic square, then the square is also a PANMAGIC 
SQUARE. This theory originated with de la Hire. The 
following table gives the sumdiffs for particular choices 
of ordinary and break vectors. 

Ordinary Break Sumdiffs Magic Panmagic 
Vector Vector Squares Squares 

(1, -4 (07 1) (1, 3) 2k+1 none 

(17 -1) (OY 2) (09 2) 6k*l none 

(29 1) (1, -2) (1, 2, 3, 4) 6k * 1 none 
(2, 1) (1, -1) (0, 1, 2, 3) 6k * 1 6!& 1 

(27 1) (19 0) (0, 1, 2) 2k + 1 none 
0, 1) (1, 2) (0, 1, 2, 3) 6k & 1 none 

A second method for generating magic squares of ODD 

order has been discussed by J. H. Conway under the 
name of the “lozenge” method. As illustrated above, in 
this method, the ODD numbers are built up along diag- 
onal lines in the shape of a DIAMOND in the central part 
of the square. The EVEN numbers which were missed 
are then added sequentially along the continuation of 
the diagonal obtained by wrapping around the square 
until the wrapped diagonal reaches its initial point. In 
the above square, the first diagonal therefore fills in 1, 
3, 5, 2, 4, the second diagonal fills in 7, 9, 6, 8, 10, and 
so on. 
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r) 
49 154' 14 52 53 12 '10 56 

An elegant method for constructing magic squares of 
DOUBLY EVEN order n = 4nz is to draw 2s through 
each 4 x 4 subsquare and fill all squares in sequence. 
Then replace each entry aij on a crossed-off diagonal 
by (n2 + 1) - aij or, equivalently, reverse the order of 
the crossed-out entries. Thus in the above example for 
n = 8, the crossed-out numbers are originally 1, 4, . , . , 
61, 64, so entry 1 is replaced with 64, 4 with 61, etc. 

4 1 

/ 
2 3 

1 

u 

4 

2 3 

1 

X 
4 

3 2 

66 67 94 95 2 3 30 31 58 59 

92 89 20 17 28 25 56 53 64 61 
L L L L L 

90 91 18 19 26 27 54 55 62 63 

16 13 24 21 49 52 80 77 88 85 
’ L L U L L 

14 15 22 23 50 51 78 79 86 87 

37 40 45 48 76 73 81 84 9 12 
ku+u+L+u+-+ 
38 39 46 47 74 75 82 83 10 11 

41 44 69 72 97 100 5 8 33 36 
X X X X X 

A very elegant method for constructing magic squares 
of SINGLY EVEN order n = 4nz + 2 with m > 1 (there is - 
no magic square of order 2) is due to 3. H. Conway, who 
calls it the “LUX” method. Create an array consisting 
of m + 1 rows of Ls, 1 row of Us, and m - 1 rows of 
Xs, all of length n/2 = 2nz + 1. Interchange the middle 
U with the L above it. Now generate the magic square 
of order 2m + 1 using the Siamese method centered on 
the array of letters (starting in the center square of the 
top row), but fill each set of four squares surrounding 
a letter sequentially according to the order prescribed 
by the the letter. That order is illustrated on the left 
side of the above figure, and the completed square is 
illustrated to the right. The “shapes” of the letters L, 
U, and X naturally suggest the filling order, hence the 
name of the algorithm. 

It is an unsolved problem to determine the number of 
magic squares of an arbitrary order, but the number 
of distinct magic squares (excluding those obtained by 
rotation and reflection) of order n = 1, 2, . l  m are 1, 0, 1, 
880, 275305224,... (Sloane’s A006052; Madachy 1979, 
p. 87). The 880 squares of order four were enumerated 

by Frenicle de Bessy in the seventeenth century, and are 
illustrated in Berlekamp et al. (1982, pp. 778-783). The 
number of 6 x 6 squares is not known. 

t 

67 1 43 

13 37 61 

31 73 7 

3 61 19 37 

43 31 5 41 

7 11 73 29 

67 17 23 13 

The above magic squares consist only of PRIMES and 
were discovered by E. Dudeney (1970) and A. W. John- 
son, Jr. (Dewdney 1988). Madachy (1979, pp. 93-96) 
and Rivera discuss other magic squares composed of 
PRIMES. 

16 1 64 49 48 33 32 17 

Benjamin Franklin constructed the above 8 x 8 PAN- 
MAGIC SQUARE having MAGIC CONSTANT 260. Any 
half-row or half-column in this square totals 130, and 
the four corners plus the middle total 260. In addition, 
bent diagonals (such as 52-3-5-54-10-57-63-16) also total 
260 (Madachy 1979, p. 87). 

1480028153 1480028201 

1480028171 1480028129 

1480028189 1480028183 

In addition to other special types of magic squares, a 
3 x 3 square whose entries are consecutive PRIMES, illus- 
trated above, has been discovered by H. Nelson (Rivera). 
Variations on magic squares can also be constructed us- 
ing letters (either in defining the square or as entries in 
it), such as the ALPHAMAGIC SQUARE and TEMPLAR 
MAGIC SQUARE. 
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4 14 15 1 

9 7 6 12 

5 11 10 a 

16 2 3 13 

Various numerological properties have also been associ- 
ated with magic squares. Pivari associates the squares 
illustrated above with Saturn, Jupiter, Mars, the Sun, 
Venus, Mercury, and the Moon, respectively. Attractive 
patterns are obtained by connecting consecutive num- 
bers in each of the squares (with the exception of the 
Sun magic square)* 

see UZSO ADDITION-MULTIPLICATION MAGIC SQUARE 
ALPHAMAGIC SQUARE, ANTIMAGIC SQUARE, Asso- 
CIATIVE MAGIC SQUARE, BIMAGIC SQUARE, BORDER 

SQUARE, D~~RER'S MAGIC SQUARE, EULER SQUARE, 
FRANKLIN MAGIC SQUARE,GNOMON MAGIC SQUARE, 
HETEROSQUARE, LATIN SQUARE, MAGIC CIRCLES, 

MAGIC CONSTANT, MAGIC CUBE, MAGIC HEXA- 
GON, MAGIC LABELLING, MAGIC SERIES, MAGIC 
TOUR, MULTIMAGIC SQUARE, MULTIPLICATION MAGIC 

SQUARE, PANMAGIC SQUARE, SEMIMAGIC SQUARE, 
TALISMAN SQUARE, TEMPLAR MAGIC SQUARE, TRI- 
MAGIC SQUARE 
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Magic Star 

see MAGIC GRAPH 

Magic Tour 
Let a chess piece make a TOUR on an n x n CHESS- 
BOARD whose squares are numbered from 1 to n2 along 
the path of the chess piece. Then the TOUR is called a 
magic tour if the resulting arrangement of numbers is a 
MAGIC SQUARE. If the first and last squares traversed 
are connected by a move, the tour is said to be closed (or 
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%e-entrant”); otherwise it is open. The MAGIC CON- 
STANT for the 8 x 8 CHESSBOARD is 260. 

Magic KNIGHT'S TUWRS are not possible on n x n boards 
for n ODD, and are believed to be impossible for n = 
8. The “most magic” knight tour known on the 8 x 8 
board is the SEMIMAGIC SQUARE illustrated in the above 
left figure (Ball and Coxeter 1987, p. 185) having main 
diagonal sums of 348 and 168. Combining two half- 
knights’ tours one above the other as in the above right 
figure does, however, give a MAGIC SQUARE (Ball and 
Coxeter 1987, p. 185). 

The above illustration shows a 16 x 16 closed magic 
KNIGHT'S TOUR (Madachy 1979). 

A magic tour for king moves is illustrated above (Cox- 
eter 1987, p. 186). 

see also CHESSBOARD, KNIGHT'S TOUR, MAGIC 
SQUARE, SEMIMAGIC SQUARE, TOUR 
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Mahler-Lech Theorem 
Let 8L be a FIELD of CHARACTERISTIC 0 (e.g., the ra- 
tionals Q) and let {Us} be a SEQUENCE of elements of 
K which satisfies a difference equation of the form 

where the COEFFICIENTS ci are fixed elements of K. 
Then, for any c f K, we have either un. = c for only 
finitely many values of n, or tin = c for the values of n 
in some ARITHMETIC PROGRESSION. 

The proof involves embedding certain fields inside the 
p-ADIC NUMBERSQ~ for some PRIMES, andusingprop- 
erties of zeros of POWER series over Q, (STRASSMAN'S 
THEOREM). 

see also ARITHMETIC PROGRESSION, p-ADIC NUMBER, 
STRASSMAN'S THEOREM 

Mahler’s Measure 
For a POLYNOMIAL P, 

s 

27T 

IM(P)=exp 
0 

In lP(e”“)i$. 

It is related to JENSEN'S INEQUALITY. 

see also JENSEN'S INEQUALITY 

Major Axis 

see SEMIMAJOR AXIS 

Major Triangle Center 
A TRIANGLE CENTER ctr : fl : y is called a ma- 
jor center if the TRIANGLE CENTER FUNCTION Q! = 
f(a,b, c, A, B, C) is a function of ANGLE A alone, and 
therefore p and y of B and C alone, respectively. 

see U~SOREGULARTRIANGLE CENTER,TRIANGLE CEN- 
TER 
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Majorant 
A function used to study ORDINARY DIFFERENTIAL 
EQUATIONS. 
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Draw within a given TRIANGLE three CIRCLES, each of 
which is TANGENT to the other two and to two sides 
of the TRIANGLE. Denote the three CIRCLES so con- 
structed r~, r~, and rc. Then rA is tangent to AB 
and AC, rs is tangent to BC and BA, and Fc is tan- 
gent to AC and BC. 

see also AJIMA-MALFATTI POINTS, MALFATTT'S RIGHT 
TRIANGLE PROBLEM 

Makeham Curve 
The function defined by 

y = ksxbqx 

which is used in actuarial science for specifying a sim- 
plified mortality law. Using s(z) as the probability that 
a newborn will achieve age 2, the Makeham law (1860) 
uses 

s(x) = exp(-Ax - m(cp - 1)) 

for B > 0, A > -B, c > 1, x > 0. - - 

see also GOMPERTZ CURVE,LIFE EXPECTANCY, LOGIS- 
TIC GROWTH CURVE, POPULATION GROWTH 
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Malfatti Circles 
Three circles packed inside a RIGHT TRIANGLE which 
are tangent to each other and to two sides of the TRI- 
ANGLE. 

see also MALFATTI'S RIGHT TRIANGLE PROBLEM 

Malfat t i Points 

see AJIMA-MALFATTI POINTS 

Malfatti’s Right piangle Problem 
Find the maximum total AREA of three CIRCLES (of 
possibly different sizes) which can be packed inside a 
RIGHT TRIANGLE of any shape without overlapping. In 
1803, Malfatti gave the solution as three CIRCLES (the 
MALFATTI CIRCLES) tangent to each other and to two 
sides of the TRIANGLE. In 1929, it was shown that the 
MALFATTI CIRCLES were not always the best solution. 
Then Goldberg (1967) showed that, even worse, they are 
nezter the best solution. 

see also MALFATTI'S TANGENT TRIANGLE PROBLEM 
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Malfatti ‘s Tangent Triangle Problem 

c 

.lIyn & 
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Malliavin Calculus 
An infinite-dimensional DIFFERENTIAL CALCULUS on 
the WIENER SPACE. Also called STOCHASTIC CALCU- 
LUS OF VARIATIONS. 

Mallow’s Sequence 
An INTEGER SEQUENCE given by the recurrence relation 

a(n) = a(+ - 2)) + a(n - a(n - 2)) 

with a(l) = a(2) = 1. The first few values are 1, 1, 2, 
3, 3, 4, 5, 6, 6, 7, 7, 8, 9, 10, 10, 11, 12, 12, 13, 14, l  l  l  

(Sloane’s AO05229). 

see also HOFSTADTER-CONWAY $10,000 SEQUENCE, 
HOFSTADTER'S Q-SEQUENCE 
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Ma1 tese Cross 

Maltese Cross 

An irregular DODECAHEDRON CROSS shaped like a + 
sign but whose points flange out at the end: 0. The 
conventional proportions as computed on a 5 x 5 grid as 
illustrated above. 

see dso CROSS, DISSECTION, DODECAHEDRON 
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Mandelbrot Set 

The set obtained by the QUADRATIC RECURRENCE 
pp. 157-162, 1997. 

G-b+1 = zn 2 + c, 0) 

Maltese Cross Curve 

7 /\ 

i/ c 
r P 

The plane curve with Cartesian equation 

xy(x2 - y”> = x2 + y2 

and polar equation 

T2 = 
1 

cos 8 sin 8(cos2 8 - sin2 0) l  
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Malt husian Parameter 
The parameter Q: in the exponential POPULATION 
GROWTH equation 

see UZSO LIFE EXPECTANCY, POPULATION GROWTH 

Mandelbar Set 
A FRACTAL set analogous to the MANDELBROT SET or 
its generalization to a higher power with the variable z 
replaced by its COMPLEX CONJUGATE x*. 

SW also MANDELBROT SET 

where points C for which the orbit z = 0 does not tend 
to infinity are in the SET. It marks the set of points 
in the COMPLEX PLANE such that the corresponding 
JULIA SET is CONNECTED and not COMPUTABLE. The 
Mandelbrot set was originally called a p MOLECULE by 
Mandelbrot. 

J. Hubbard and A. Douady proved that the Mandel- 
brot set is CONNECTED. Shishikura (1994) proved that 
the boundary of the Mandelbrot set is a FRACTAL with 
HAUSDORFF DIMENSION 2. However, it is not yet known 
if the Mandelbrot set is pathwise-connected. If it is 
pathwise-connected, then Hubbard and Douady’s proof 
implies that the Mandelbrot set is the image of a CIR- 
CLE and can be constructed from a DISK by collapsing 
certain arcs in the interior (Douady 1986). 

The AREA of the set is known to lie between 1.5031 and 
1.5702; it is estimated as 1.50659.. . . 

Decomposing the COMPLEX coordinate x = 2 + iy and 
20 = a + ib gives 

x1 = x2 -y2+a (2) 

y’ = 2xy + b. (3) 

In practice, the limit is approximated by 

lim IZnl Z lim ]&I < Tmax- 
n+m 

(4) 
n+nmax 

Beautiful computer-generated plots can be created by 
coloring nonmember points depending on how quickly 
they diverge to rmax. A common choice is to define 
an INTEGER called the COUNT to be the largest n such 
that lZn/ < T, where T is usually taken as T = 2, and 
to color points of different COUNT different colors. The 
boundary between successive COUNTS defines a series 
of "LEMNISCATES," called EQUIPOTENTIAL CURVES by 
Peitgen and Saupe (1988), I&(C)1 = T which have dis- 
tinctive shapes. The first few LEMNISCATES are 

Ll(C) = c (5) 

L2(C)= C(C+ 1) (6) 

L@) = c + (C + c2)2 (7) 

L4(C) = c + [c + (c + c2)2]2. (8) 
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When written in CARTESIAN COORDINATES, the first 
three of these are 

r2 = x2 + y2 (9) 
T2 = (x2 + y”)[(x + l>” + y”] w 
r2 = (x2 + y2)(1 + 2x + 5x2 +6x3 +6x4 +4x5 + x6 

- 3y2 - 22y2 + 8x2y2 + 8x3y2 

+ 3x4y2 + 2y4 -I- 4xy4 + 3x2y4 + y”), (11) 

which are 8 CIRCLE, an OVAL, and a PEAR CURVE. In 
fact, the second LEMNISCATE L2 can be written in terms 
of a new coordinate system with x’ E x - l/2 as 

K x1 - $)2 + y"][(x' + i)" + y2] = r2, (12) 

which is just a CASSINI OVAL with a = l/2 and b2 = 
T. The LEMNISCATES grow increasingly convoluted with 
higher COWNT and approach the Mandelbrot set as the 
COUNT tends to infinity. 

The kidney bean-shaped portion of the Mandelbrot set 
is bordered by a CARDIOID with equations 

4x = 2 cos t - cos( 2q (13) 

4Y = 2sint - sin(2t). (14) 

The adjoining portion is a CIRCLE with center at (-1,O) 
and RADIUS l/4. One region of the Mandelbrot set con- 
taining spiral shapes is known as SEA HORSE VALLEY 
because the shape resembles the tail of a sea horse. 

Generalizations of the Mandelbrot set can be con- 
structed by replacing zn2 with 2,’ *k 

or GL ? where k is a 
POSITIVE INTEGER and z* denotes the COMPLEX CON- 
JUGATE of X. The following figures show the FRACTALS 
obtained for Jz = 2, 3, and 4 (Dickau). The plots on the 
right have z replaced with z* and are sometimes called 
“MANDELBAR SETS." 

see UZSO CACTUS FRACTAL, FRACTAL, JULIA SET, 
LEMNISCATE (MANDELBROT SET), MANDELBAR SET, 
QUADRATIC MAP,RANDELBROTSET,SEA HORSE VAL- 
LEY 
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Mandelbrot Thee Mangoldt Function 

Mandelbrot Tree 

The FRACTAL illustrated above. 
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Mangoldt Function 

80 
t 

60- 

20 40 

The function defined by 

60 80 

R(n) S { 0 
lnp ifn=pk forpaprime 

otherwise l  

(1) 

exp(h(n)) is also given by [I, 2, . , . , n]/[I, 2, . . . , n - I], 

where [a, b, c, . ..] denotes the LEAST CUMMON MULTI- 
PLE. The first few values of ekp(A(n)) for n = 1, 2, 

“‘1 plotted above, are 1, 2, 3, 2, 5, 1, 7, 2, l  l  l  (Sloane’s 
A014963). The Mangoldt function is related to the RIE- 
MANN ZETA FUNCTIUN C(Z) by 

cc > t s O” Q-4 --- 
cc > s - x ns ’ (2) 

T&=1 

where !I?[s] > 1. 

I  20 40 60 80 100 

The SUMMATORY Mangoldt function, illustrated above, 
is defined by 

Nx) = ~fw, (3) 
n<x 

where A(n) is the MANGOLDT FUNCTION. This has the 
explicit formula 

*c > X =x- 
x 

XP 
- - ln(27r) - + ln(l - x2), 
P 

(4) 
P 

where the second SUM is over all complex zeros p of the 
RIEMANN ZETA FUNCTION c(s) and interpreted as 

(5) 

Vardi (1991, p. 155) also gives the interesting formula 

ln([x]!) = y!(x) + $J($x) + *(+) + . . .) (6) 

where [z] is the NINT function and n! is a FACTORIAL. 

Vallhe Poussin’s version of the PRIME NUMBER THEO- 
REM states that 

*(x) = x + O(xe 
-a&-G 

> (7) 

for some a (Davenport 1980, Vardi 1991). The RIEMANN 
HYPOTHESIS is equivalent to 

*(x) = x + 0(d+w)2) (8) 

(Davenport 1980, p. 114; Vardi 1991). 

see &~BOMBIERI'S THEOREM, GREATESTPRIMEFAC- 
TOR,LAMBDA FUNCTION,LEAST COMMON MULTIPLE, 

LEAST PRIME FACTOR,RIEMANN FUNCTIUN 
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Manifold Mantissa 
Rigorously, an n-D (topological) manifold is a Togo- 
LOGICAL SPACE A4 such that any point in M has a 
NEIGHBORHOOD U c M whichis HOMEOMORPHIC~OW 

D EUCLIDEAN SPACE. The HOMEOMORPHISM is called a 
chart, since it lays that part of the manifold out flat, like 
charts of regions of the Earth. So a preferable statement 
is that any object which can be “charted” is a manifold. 

For a REAL NUMBER X, the mantissa is defined as the 
POSITIVE fractional part ~1: - 1x1 = frac(x), where 1x1 
denotes the FLOOR FUNCTION. 

see UZSU CHARACTERISTIC (REAL NUMBER), FLOOR 
FUNCTION, SCIENTIFIC NOTATION 

Map 
The most important manifolds are DIFFERENTIABLE 

MANIFOLDS. These are manifolds where overlapping 
charts “relate smoothly” to each other, meaning that 
the inverse of one followed by the other is an infinitely 
differentiable map from EUCLIDEAN SPACE to itself. 

Manifolds arise naturally in a variety of mathematical 
and physical applications as “global objects.” For exam- 
ple, in order to precisely describe all the configurations 
of a robot arm or all the possible positions and momenta 
of a rocket, an object is needed to store all of these pa- 
rameters. The objects that crop up are manifolds. From 
the geometric perspective, manifolds represent the pro- 
found idea having to do with global versus local proper- 
ties. 

Consider the ancient belief that the Earth was flat com- 
pared to the modern evidence that it is round. The 
discrepancy arises essentially from the fact that on the 
small scales that we see, the Earth does look Aat. We 
cannot see it curve because we are too small (although 
the Greeks did notice that the last part of a ship to 
disappear uver the horizon was the mast). We can de- 
tect curvature only indirectly from our vantage point on 
the Earth. The basic idea for this “problem” was codi- 
fied by PoincarL The problem is that on a small scale, 
the Earth is nearly flat. In general, any object which is 
nearly “flat” on small scales is a manifold, and so mani- 
folds constitute a generalization of objects we could live 
on in which we would encounter the round/flat Earth 
problem. 

see also COBORDANT MANIFOLD, COMPACT MANI- 
FOLD, CONNECTED SUM DECOMPOSITION, DIFFER- 

ENTIABLE MANIFOLD, FLAG MANIFOLD, GRASSMANN 
MANIFOLD, HEEGAARD SPLITTING, ISOSPECTRAL 
MANIFOLDS, JACO-SHALEN-JOHANNSON TORUS DE- 
COMPOSITION, K~LER MANIFOLD, POINCAR~ CON- 
JECTURE, POISSON MANIFOLD, PRIME MANIFOLD, 
RIEMANNIAN MANIFOLD, SET, SMOOTH MANIFOLD, 
SPACE, STIEFEL MANIFOLD, STRATIFIED MANIFOLD, 
SUBMANIFOLD, SURGERY, SYMPLECTIC MANIFOLD, 
THURSTON'S GEOMETRIZATION CONJECTURE, TOPO- 

LOGICAL MANIFOLD, TOPOLOGICAL SPACE, WHITE- 
HEAD MANIFOLD, WIEDERSEHEN MANIFOLD 

References 
Conlon, L. Differentiable Manifolds: A First Course. 

Boston, MA: Birkhguser, 1993. 

A way of associating unique objects to every point in a 
given SET. So a map from A I--+ B is an object f such 
that for every a E A, there is a unique object f(a) E B. 
The terms FUNCTION and MAPPING are synonymous 
with map. 

The following 
plex maps. 

table gives several common types of com- 

Mapping Formula Domain 
inversion f( 1 z =i 

magnification f( > z =ax aElW#O 
magnification+rotation f( > z =ax aEC#O 
Mijbius f( > z =q a, b, c, d E tZ 

rotation f( > z = ez ’ 
translation f(z) = z+a UEC 

see also 2a: MOD 1 MAP, ARNOLD’S CAT MAP, BAKER’S 
MAP, BOUNDARY MAP, CONFORMAL MAP, FUNC- 
TION, GAUSS MAP, GINGERBREADMAN MAP, HAR- 

MONIC MAP, H~NON MAP, IDENTITY MAP, INCLUSION 
MAP, KAPLAN-Y• RKE MAP, LOGISTIC MAP, MANDEL- 
BROT SET, MAP PROJECTION, PULLBACK MAP, QUAD- 

RATIC MAP, TANGENT MAP, TENT MAP, TRANSFOR- 
MATION, ZASLAVSKII MAP 
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392, 1985. 

Lee, X. “Transformation of the Plane.” http: //www . best . 
corn/ - xah / Math Graphics Gallery-dir / Transform 2D 
Plot-dir/transf orm2DPlot. html. 

Map Coloring 
Given a map with GENUS g > 0, Heawood showed in 
1890 that the maximum number NU of colors necessary 
to color a map (the CHROMATIC NUMBER) on an un- 
bounded surface is 

where [zJ is the FLOOR FUNCTION, g is the GENUS, 
and x is the EULER CHARACTERISTIC. This is the HEA- 
WOOD CONJECTURE. In 1968, for any orientable surface 
other than the SPHERE (or equivalently, the PLANE) and 
any nonorientable surface other than the KLEIN BOT- 
TLE, NU was shown to be not merely a maximum, but 
the actual number needed (Ringel and Youngs 1968). 

When the FOUR-COLOR THEOREM was proven, the Hea- 
wood FORMULA was shown to hold also for all orientable 
and nonorientable surfaces with the exception of the 



Map Folding Mapes’ Method 1137 

KLEIN BOTTLE. For this case (which has EULER CHAR- 
ACTERISTIC 1, and therefore can be considered to have 
g = l/2), th e actual number of colors N needed is six- 
one less than Nu = 7 (Franklin 1934; Saaty 1986, p* 45). 

surface g Nu N 
Klein bottle 1 7 6 
Mijbius strip $ 
plane 0 
projective plane $ 
sphere 0 
torus 1 

see ~2~0 CHROMATIC NUMBER, FOUR-COLOR THEO- 
REM, HEAWOOD C~XJECTURE, SIX-COLOR THEOREM, 
TORUS COLORING 
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Map Folding 
A general FORMULA giving the number of distinct ways 
of folding an N = m, x n rectangular map is not known. 
A distinct folding is defined as a permutation of N num- 
bered cells reading from the top down. Lunnon (1971) 

gi 
2xn 13X72. 

ves values up to n = 28. 

I n 1x72 

1 1 l I 
2 2 
3 6 
4 16 
5 59 
6 144 

8 
60 1368 

1980 
19512 
15552 

4xn 

300608 

5xn 

18698669 

The limiting ratio of the number of 1 x (n + 1) strips to 
the number of 1 x n strips is given by 

JE 

P x (n + 1>1 
[1 x n] 

E [3.3868,3.9821]. 

Lunnon, W. F. “A Map-Folding Problem.” Math. Comput. 
22, 193499, 1968. 

Lunnon, W. F. “Multi-Dimensional Strip Folding.” Com- 
puter J. 14, 75-79, 1971. 

Map Projection 
A projection which maps a SPHERE (or SPHEROID) onto 
a PLANE. No projection can be simultaneously CON- 
FORMAL and AREA-PRESERVING. 

see UZSO AIRY PROJECTION, ALBERS EQUAL- 
AREA CONIC PROJECTION,AXONOMETRY,AZIMUTHAL 
EQUIDISTANT PROJECTION, AZIMUTHAL PROJECTION, 
~EHRMANN CYLINDRICAL EQUAL-AREA PROJECTION, 
BONNE PROJECTION, CASSINI PROJECTION, CHRO- 
MATIC NUMBER, CONIC EQUIDISTANT PROJECTION, 
CONIC PROJECTION,CYLINDRICAL EQUAL-AREA PRO- 
JECTION, CYLINDRICAL EQUIDISTANT PROJECTION, 
CYLINDRICAL PROJECTION, ECKERT IV PROJECTION, 
ECKERT VI PROJECTION, FOUR-COLOR THEOREM, 
GNOMIC PROJECTION, GUTHRIE'S PROBLEM, HAM- 
MER-AITOFF EQUAL-AREA PROJECTION, LAMBERT 
AZIMUTHAL EQUAL-AREA PROJECTION, LAMBERT 
CONFORMAL CYNIC PROJECTION, MAP COLORING, 
MERCATOR PROJECTION, MILLER CYLINDRICAL PRO- 
JECTION, MOLLWEIDE PROJECTION, ORTHOGRAPHIC 
PROJECTION,POLYCONIC PROJECTION,PSEUDOCYLIN- 
DRICAL PROJECTION,RECTANGULAR PROJECTION,% 
NUSOIDAL PROJECTION, SIX-C• LORTHEOREM,STERE- 
OGRAPHIC PROJECTION, VAN DER GRINTEN PROJEC- 
TION, VERTICAL PERSPECTIVE PROJECTION 
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Mapes’ Method 
A method for computing the PRIME COUNTING FUNC- 
TION. Define the function 

Tk(X@) = (-1) 
Po+Pl+...+Pa-1 

L 

X 

plP0p2Pl l  . .p,Pa-1 

1 

’  

(1) 
where [xJ is the FLOOR FUNCTION and the pi are the 
binary digits (0 or 1) in 

k = 2a-1p,-l + 2"-' Pa-2+4~.+21p1+20po. (2) 

The LEGENDRE SUM can then be written 
see also STAMP FOLDING 
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2a-l 

(3) 
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The first few values of Tk(x, 3) are 

Ta(x,3) = 1x1 (4 

T4(x,3) = - 3: 
I J P3 

(5) 

(6) 

(8) 

Mapes’ method takes time N x0,?, which is slightly faster 
than the LEHMER-SCHUR METHOD. 

see also LEHMER-SCHUR METHOD, PRIME COUNTING 
FUNCTION 

- A 

Heferences 
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Mapping (finct ion) 

see MAP 

Mapping Space 
Let Yx be the set of continuous mappings f : X + Y. 
Then the TOPOLOGICAL SPACE for Yx supplied with a 
compact-open topology is called a mapping space. 

see also LOOP SPACE 

References 
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Marginal Analysis 
Let R(x) be the revenue for a production x, C(x) the 
cost, and P(x) the profit. Then 

P(x) = R(x) - C(x), 

and the marginal profit for the x0 th unit is defined by 

P’(zo) = R’(xo) - C’(xo), 

Marginal Probability 
Let S be partitioned into T x s disjoint sets Ei and Fj 
where the general subset is denoted Ei n I$. Then the 
marginal probability of Ei is 

) = f: P(Ei n FJ. 

j=l 

Markoff’s Formulas 
Formulas obtained from differentiating NEWTON'S FOR- 
WARD DIFFERENCE FORMULA, 

f’(ao + ph) = ;[Ao + +(2p - I>a; 

+i(3p2 - 6p + 2>A; + . . . + - d ’ A; -+R;> 0 1 dP n 

where 

R:, = 

+h n+l 

(i) is a BINOMIAL COEFFICIENT, and uo < < < a,. 
Abramowitz and Stegun (1972) and Beyer (1987) give 

derivatives hn fAn) in terms of A” and derivatives in 
terms of dk and Vk. 

see also FINITE DIFFERENCE 
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Markoff Number 

~~~MARKOV NUMBER 

Markov Algorithm 
An ALGORITHM which constructs allowed mathematical 
statements from simple ingredients. 

Markov Chain 
A collection of random variables {Xi}, where the index 
t runs through 0, 1, . . . l  

where P’(x), R’(x), and C’(x) are the DERIVATIVES of 
P(x), R(x), and C(x), respectively. 

see also DERIVATIVE 



Mark&s Inequality Markov’s Theorem 

Markov’s Inequality 
If =1: takes only NONNEGATIVE values, then 

P(x>a)<Z ( > 
- - 

a 

To prove the theorem, write 

(x) = fw xf (x) dx = f a xf(x) dx + Irn xf(x) dx. 
0 0 a 

Since P(x) is a probability density, it must be 2 0. We 
have stipulated that x > 0, so - 

(x) = fa xf (x) dx + srn xf(x) dx 
0 a 

> - 
s O” 

xf (4 dx 2 
a s O” 

af (4 dx 
a 

=a f(x) dx = aP(x > a), - 

Q. E. D. 

Markov Matrix 

see STOCHASTIC MATRIX 

Markov Moves 
A type I move (CONJUGATION) takes AB + BA for A, 

B E B, where B, is a BRAID GROUP. 
1 2 n-l 1 2 n-1 

A type II move (STABILIZATION) takes A + Ab, or A 
Ab,-’ for A f B,, and b,, Ab,, and Ab,-1 E &+I. 

i 7 

n 

LNLL 

see also BRAID GROUP, CONJUGATION, REIDEMEISTER 
MOVES, STABILIZATION 
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Markov Number 
The Markov numbers KQ occur in solutions to the DIO- 
PHANTINE EQUATION 

x2 + y2 + z2 = 3xya, 

and are related to LAGRANGE NUMBERS L, by 

r/n= 9-5. 
d- 

The first few solutions are (x, y, z) = (1,1, l), (1, 1, Z), 
(1, 2, 5), (1, 5, 13), (2, 5, 29), . . l  . The solutions can be 
arranged in an infinite tree with two smaller branches 
on each trunk. It is not known if two different regions 
can have the same label. Strangely, the regions adjacent 
to 1 have alternate FIBONACCI NUMBERS 1, 2, 5, 13, 34, 

and the regions adjacent to 2 have alternate PELL 
N&BERS 1, 5, 29, 169, 985, . . . . 

Let M(N) be the number of TRIPLES with x < y < z < - - - 
N, then 

M(n) = C(ln N) + 0((ln N)‘+‘), 

where C e 0.180717105 (Guy 1994, p. 166). 

see also HURWITZ EQUATION, HURWITZ'S IRRATIONAL 
NUMBER THEOREM, LAGRANGE NUMBER (RATIO- 
NAL APPROXIMATION) LIOUVILLE'S RATIONAL AP- 
PROXIMATIONTHEOREM,LIOUVILLE-ROTHCONSTANT, 
ROTH'S THEOREM,~EGRE'S THEOREM,THUE-SIEGEL- 
ROTH THEOREM 

References 
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Markov Process 
A random process whose future probabilities are deter- 
mined by its most recent values. 

see also DOOB'S THEOREM 

Markov Spectrum 
A SPECTRUM containing the REAL NUMBERS larger 
than FREIMAN'S CONSTANT. 

see also FREIMAN'S CONSTANT, SPECTRUM SEQUENCE 

References 
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Markov’s Theorem 
Published by A. A. Markov in 1935, Markov’s theorem 
states that equivalent BRAIDS expressing the same LINK 
are mutually related by successive applications of two 
types of MARKOV MOVES. Markov’s theorem is difficult 
to apply in practice, so it is difficult to establish the 
equivalence or nonequivalence of LINKS having different 
BRAID representations. 

see also BRAID, LINK, MARKOV MOVES 
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Marriage Theorem 
If a group of men and women may date only if they have 
previously been introduced, then a complete set of dates 
is possible IFF every subset of men has collectively been 
introduced to at least as many women, and vice versa. 

References 
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Married Couples Problem 
Also called the MIRAGE PROBLEM. In how many ways 
can n married couples be seated around a circular table 
in such a manner than there is always one man between 
two women and none of the men is next to his own 
wife? The solution (Ball and Coxeter 1987, p. 50) uses 
DISCORDANT PERMUTATIONS andcanbegiveninterms 
of LAISANT'S RECURRENCE FORMULA 

( n- l)A,+l = (n2 - l)A, + (n + l)A,-1 + 4(-I)~, 

with A1 = AZ = 1. A closed form expression due to 
Touchard (1934) is 

n 

A,= - Ix 
k=O 

( n - k)!(-1)“, 

where (L) is a BINOMIAL COEFFICIENT (Vardi1991). 

The first few values of A, are -1, 1, 0, 2, 13, 80, 
579, . . . (Sloane’s AOO0179), which are sometimes called 
MENAGE NUMBERS. The desired solution is then 2n!A, 
The numbers A, can be considered a special case of a 
restricted ROOKS PROBLEM. 

see also DISCORDANT PERMU TATION, LAISANT’S RE- 
CURREN CE FORMULA, ROOKS PROBLEM 
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Mascheroni Construction 

Marshall-Edgeworth Index 
The statistical INDEX 

where pn is the price per unit in period n, qn. is the 
quantity produced in period n, and wn E pnqn is the 
value of the n units. 

see also INDEX 

References 
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Martingale 
A sequence of random variates such that the CONDI- 
TIONAL PROBABILITY of ~~+i given ~1, 52, . . . , z72 is 
xn. The term was first used to describe a type of wa- 
gering in which the bet is doubled or halved after a loss 
or win, respectively. 

see also GAMBLER’S RUIN, SAINT PETERSBURG PARA- 
DOX 

Mascheroni Constant 

see EULER-MASCHERONI CONSTANT 

Mascheroni Construction 
A geometric construction done with a movable COMPASS 
alone. All constructions possible with a COMPASS and 
STRAIGHTEDGE are possible with a movable COMPASS 
alone, as was proved by Mascheroni (1797). Mascher- 
oni’s results are now known to have been anticipated 
largely by Mohr (1672). 

see aho COMPASS, GEOMETRIC CONSTRUCTION, NEU- 
SIS CONSTRUCTION ‘, STRAIGHTEDGE 
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University Press, pp. 146-158, 1996. 
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Great Problems of Elementary Mathematics: Their His- 
tory and Solutions. New York: Dover, pp. 160-164, 1965. 

Gardner, M. “Mascheroni Constructions.” Ch. 17 in 
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Maschke ‘s Theorem Masser- Gramain Constant 

Maschke’s Theorem 
If a MATRIX GROUP is reducible, then it is completely 
reducible, i.e., if the MATRIX GROUP is equivalent to the 
MATRIX GROUP in which every MATRIX has the reduced 
form 

Masser-Gramain Constant 
N.B. A detailed on-line essay by S. Finch was the start- 
ing point for this entry. 

If f(z) is an ENTIRE FUNCTION such that f(n) is an 
INTEGER for each POSITIVE INTEGER n. P6lya (1915) 
showed that if 

then it is equivalent to the MATRIX GROUP obtained by 
putting Xi = 0. 

In M, 
lim sup - <ln2=0.693..., (1) 

r-boo T 

see also MATRIX GROUP 

References 
Lomont, J. S. Applications of Finite Groups. New York: 

Dover, p. 49, 1987. 

where 

MT- = SUP If( 
141~ 

Mason’s abc Theorem 

see MASON’S THEOREM 

is the SUPREMTJM, then f is a POLYNOMIAL. F’urther- 
more, In2 is the best constant (i.e., counterexamples 
exist for every smaller value). 

Mason’s Theorem 

If f(t) is an ENTIRE FUNCTION with f(n) a GAUSSIAN 

INTEGER for each GAUSSIAN INTEGER n, then Gelfond 
(1929) proved that there exists a constant a such that 

Let there be three PULYNOMIALS a(z), b(z), and c(x) 
with no common factors such that In Mr 

limsupT, <Q! 
r+oo 

a(x) + b(x) = c(x). 

Then the number of distinct ROOTS of the three POLY- 

NOMIALS is one or more greater than their largest degree. 
The theorem was first proved by Stothers (1981). 

implies that f is a POLYNOMIAL. Gramain (1981, 1982) 
showed that the best such constant is 

Cl==; = 0.578.. l  . 
(4 

Mason’s theorem may be viewed as a very special case 
of a Wronskian estimate (Chudnovsky and Chudnovsky 
1984) l  The corresponding Wronskian identity in the 
proof by Lang (1993) is 

Maser (1980) proved 
a POLYNOMIAL if 

the weaker result that f must be 

In MT 
< a0 = + exp (-b+ %> 1 (5) 

c3 * W(a, b,c) = W(W(a, c), W(b,c)), 

lim sup T2 
r+m 

where 

so if a, b, and c are linearly dependent, then so are 
IV&c) and W(b,c). More powerful Wronskian esti- 
mates with applications toward diophantine approxima- 
tion of solutions of linear differential equations may be 
found in Chudnovsky and Chudnovsky (1984) and Os- 
good (1985). 

c = rP(l> + P’(l) = 0.6462454398948114., . , (6) 

y is the EULER-MASCHERONI CONSTANT, p(z) is the 
DIRICHLET BETA FUNCTION, 

The rational function case of FERMAT’S LAST THEO- 
REM follows trivially from Mason’s theorem (Lang 1993, 
p. 195) 

see also ABC CONJECTURE 

References 
Chudnovsky, D. V. and Chudnovsky, G. V. “The Wronskian 

Formalism for Linear Differential Equations and Pad6 Ap- 
proximations.” Adu. Math. 53, 28-54, 1984. 
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and Tk is the minimum NONNEGATIVE T for which there 
exists a COMPLEX NUMBER z for which the CLOSED 
DISK with center z and radius T contains at least k dis- 
tinct GAUSSIAN INTEGER. Gosper gave 

c= 7r{-ln[r(a)] + $+ $ln2+ $r}. (8) 

Gramain and Weber (1985, 1987) have obtained 

1.811447299 < S < 1.897327117, (9) 

Stothers, W. W. “Polynomial Identities and Hauptmodulen.” 
Quart. J. Math. Oxford Ser. II 32, 349-370, 1981. 

which implies 

0.1707339 < a0 < 0.1860446. (10) 
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(2) 

(3) 

(7) 
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Gramain (1981, 1982) conjectured that 

1 
m = 2e’ (11) 

which would imply 

4c 
S=l+- = 1.822825249. . . . (12) 7r 
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Match Problem 
Given n matches, find the number of topologically dis- 
tinct planar arrangements T(n) which can be made. The 
first few values are 1, 1, 3, 5, 10, 19, 39, . . l  (Sloane’s 
A003055). 

see also CIGARETTES, MATCHSTICK GRAPH 

References 
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Matchstick Graph 
A PLANAR GRAPH whose EDGES are all unit line seg- 
ments. The minimal number of EDGES for matchstick 
graphs of various degrees are given in the table below. 
The minimal degree 1 matchstick graph is a single EDGE, 

and the minimal degree 2 graph is an EQUILATERAL 
TRIANGLE. 

n e 21 

1 I 2 
2 3 3 
3 12 8 
4 =c 42 

Mat hemat its 
Mathematics is a broad-ranging field of study in which 
the properties and interactions of idealized objects are 
examined. Whereas mathematics began merely as a cal- 
culational tool for computation and tabulation of quan- 
tities, it has blossomed into an extremely rich and di- 
verse set of tools, terminologies, and approaches which 
range from the purely abstract to the utilitarian. 

Bertrand Russell once whimsically defined mathematics 
as, “The subject in which we never know what we are 
talking about nor whether what we are saying is true” 
(Bergamini 1969). 

The term “mathematics” is often shortened to ‘(math” 
in informal American speech and, consistent with the 
British penchant for adding superfluous letters, ‘Lmaths” 
in British English. 

see UZSO METAMATHEMATICS 

References 
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Mathematics Prizes 
Several prizes are awarded periodically for outstanding 
mathematical achievement V There is no Nobel Prize 
in mathematics, and the most prestigious mathematical 
award is known as the FIELDS MEDAL. In rough order of 
importance, other awards are the $100,000 Wolf Prize of 
the Wolf Foundation of Israel, the Leroy P. Steele Prize 
of the American Mathematical Society, followed by the 
B&her Memorial Prize, bank Nelson Cole Prizes in Al- 
gebra and Number Theory, and the Delbert Ray Fulker- 
son Prize, all presented by the American Mathematical 
Society. 

see also FIELDS MEDAL 
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Mat hemat ical Induction 

see INDUCTION Mathieu Differential Equation 

d2V 
J-p + [b - 2q cos(2w)]V = 0. 
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Mathieu Groups 
The first SIMPLE SPORADIC GROUPS discovered. A&I, 
A&, A&, A&, ik& were discovered in 1861 and 1873 
by Mathieu. IFrobenius showed that all the Mathieu 
groups are SUBGROUPS of &da 

The Mathieu groups are most simply defined as AU- 
TOMORPHISM groups of STEINER SYSTEMS. A&1 corre- 
sponds to S(4,5,11) and M23 corresponds to S(4,7,23). 
A& and iW23 are TRANSITIVE PERMUTATION GROUPS 
of 11 and 23 elements. 

The ORDERS of the Mathieu groups are 

It arises in separation of variables of LAPLACE'S EQUA- 
TION in ELLIPTIC CYLINDRICAL COORDINATES. Whit- 
taker and Watson (1990) use a slightly different form to 
define the MATHIEU FUNCTIONS. 

The modified Mathieu differential equation 

g - [b - 2q cosh( 22t)] U = 0 

arisesin SEPARATION OF VARIABLES of the HELMHOLTZ 
DIFFERENTIAL EQUATION in ELLIPTIC CYLINDRICAL 
COORDINATES. 
see &O MATHIEU FUNCTION 

pcz~~~=24~32*5~11 

p&1 = 26 ’ 33 l  5 l  11 

pz~2~ = 27 ’ 32 l  5 ’ 7 - 11 

IM23[ = 27 0 3’ l  5 l  7 l  11 v 23. 
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see also SPORADIC GROUP 
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Mat hieu Function 
The form given by Whittaker and Watson (1990, p. 405) 
defines the Mathieu function based ofi the equation 

d2u 
dZ2 + [a + 16qcos(2x)]u = 0. (1) 

This equation is closely related to HILL'S DIFFERENTIAL 

EQU ATION. For an EVEN Mathieu function, 
Matrix 
The TRANSFORMATION given by the system of equations 

s 

7r 

WI) = x 
Ck COB q cos 0 

w9 dh (2) 
-7r 

2’1 = alla+ a1222 +...+ 

+...+ 
where k z &&. For an ODD Mathieu function, 

x; = a21a+ ~2nG-b 

s 

7r 

Gb7) = x sin@ sin v sin @G(O) de. (3) 
-7r 

2; = amlXl+am2X2+..-+ arnnxn Both EVEN and ODD functions satisfy 

s 
7r G(77) z X eiksinqsineG(B) de. (4) -7r is denoted by the MATRIX EQUATION 

al2 

a22 

. . . 
l  . . 

aln 

a2n 

Xl 

x2 il . l  

. 

. 

Xn 

Letting < E cos2 z transforms the MATHIEU DIFFEREN- 
TIAL EQUATIONAL 

4<(1-<)$+2(1-2C)$+(a-Nq+32&)~ = 0. (5) am2 a mn 
l  . . 

In concise notation, this could be written 
see also MATHIEU DIFFERENTIAL EQUATION 

x’ = Ax, References 
Abramowitz, M. and Stegun, C. A. (Eds.). “Mathieu Func- 

tions.” Ch. 20 in Handbook of Mathematical Functions 
with Formulas, Graphs, and Mathematical Tables, 9th 
printing. New York: Dover, pp+ 721-746, 1972. 

Morse, P. M. and Feshbach, H. Methods of Theoretical Phys- 
ics, Part I. New York: McGraw-Hill, pp. 562-568 and 633- 
642, 1953. 

where x’ and x are VECTORS and A is called an 72 x rrz 
matrix. A matrix is said to be SQUARE if m = 12. Spe- 
cial types of SQUARE MATRICES include the IDENTITY 
MATRIX 1, with aij = dij (where 6ij is the KRONECKER 
DELTA) and the DIAGONAL MATRIX aij = CiSij (where 
ci are a set of constants). 

Whittaker, E. T. and Watson, G. N. A Course in Modern 
Analysis, 4th ed. Cambridge, England: Cambridge Uni- 
versity Press, 1990. 
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For every linear transformation there exists one and only 
one corresponding matrix. Conversely, every matrix cor- 
responds to a unique linear transformation. The matrix 

atics, and was first is an important concept in mathem 
formulated by Sylvester and Cayley. 

Matrix Decomposition Theorem 
Let P be a MATRIX of EIGENVECT~RS of a given MA- 
TRIX A and D a MATRIX of the corresponding EIGEN- 
VALUES. Then A can be written 

Two matrices may be added (MATRIX ADDITION) or 
multiplied (MATRIX MULTIPLICATION) together to yield 
a new matrix. Other common operations on a single ma- 
trix are diagonalization, inversion (MATRIX INVERSE), 
and transposition (MATRIX TRANSPOSE). The DETER- 
MINANT det(A) or /A( f o a matrix A is an very important 
quantity which appears in many diverse applications. 
Matrices provide a concise notation which is extremely 
useful in a wide range of problems involving linear equa- 
tions (e.g., LEAST SQUA RES FITTING). 

see also ADJACENCY MATRIX, ADJUGATE MATRIX, 
ANTISYMMETRIC MATRIX, BLOCK MATRIX, CARTAN 
MATRIX, CIRCULANT MATRIX, CONDITION NUMBER, 
CRAMER'S RULE, DETERMINANT, DIAGONAL MATRIX, 
DIRAC MATRICES, EIGENVECTOR, ELEMENTARY MA- 
TRIX, EQUIVALENT MATRIX, FOURIER MATRIX, GRAM 
MATRIX, HILBERT MATRIX, HYPERMATRIX, IDENTITY 
MATRIX, INCIDENCE MATRIX, IRREDUCIBLE MATRIX, 
KAC MATRIX, LU DECOMPOSITION,MARKOV MATRIX, 
MATRIX ADDITION, MATRIX DECOMPOSITION THE- 
OREM, MATRIX INVERSE, MATRIX MULTIPLICATION, 
MCCOY’S THEOREM,MINIMAL MATRIX,NORMAL MA- 
TRIX, PAULI MATRICES, PERMUTATION MATRIX, POSI- 
TIVE DEFINITE MATRIX, RANDOM MATRIX, RATIONAL 
CANONICAL FORM, REDUCIBLE MATRIX, ROTH'S RE- 
MOVAL RULE,SHEAR MATRIX,SKEW SYMMETRIC MA- 
TRIX, SMITH NORMAL FORM, SPARSE MATRIX, SPE- 
CIAL MATRIX,~QUARE MATRIX, STOCHASTIC MATRIX, 
SUBMATRIX, SYMMETRIC MATRIX,TOURNAMENT MA- 
TRIX 

References 
A&en, G. “Mat rices .” 34.2 in Mathematical Methods fur 

Physicists, 3rd ed, Orlando, F1;: Academic Press, pp. 176- 
191, 1985. 

A = PDP-l, (1) 

where D is a DIAGONAL MATRIX and the columns of P 
are ORTHOGONAL VECTORS. If P is not a SQUARE MA- 
TRIX, then it cannot have a MATRIX INVERSE. However, 
if P is m x 72 (with ~rz > n), then A can be written 

A = UDVT, (2) 

where U and V are YI x it SQUARE M 
THOGONAL columns, 

ATRICES with OR- 

UTU = VT = I. (3) 

Matrix Diagonalization 
Diagonalizing a MATRIX is equivalent to finding the 
EIGENVECTORS and EIGENVALUES. The EIGENVALUES 
make up the entries of the diagonalized MATRIX, and 
the EIGENVECTORS make up the new set of axes corre- 
sponding to the DIAGONAL MATRIX. 

see also DIAGONAL MATRIX, EIGENVALUE, EIGENVEC- 
TOR 

References 
A&en, G. “Diagonalization of Matrices.” s4.6 in Muthemati- 
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Matrix Direct Product 

see DIRECT PRODUCT (MATRIX) 

Matrix Equality 
Two MATRICES A and E3 are said to be equal IFF 

Matrix Addition 
Denote the sum of two MATRICES A and B (of the same 
dimensions) by C = A+ B. The sum is defined by adding 
entries with the same indices 

aij G bij 

for all i,j. Therefore, 

Cij E Uij + bij [: i] = [; i]T 

while 

Matrix addition 
ASSOCIATIVE. 

is therefore both COMMUTATIVE and 

see also MATRIX, MATRIX MULTIPLICATION 
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Matrix Equation 
Nonhomogeneous matrix equations of the form 

Ax = b (1) 

can be solved by taking the MATRIX INVERSE to obtain 

x = A-lb. (2) 

This equation will have a nontrivial solution IFF the 
DETERMINANT det(A) # 0. In general, more numeri- 
cally stable techniques of solving the equation include 
GAUSSIAN ELIMINATION, LU DECOMPOSITION, or the 
SQUARE ROOT METHOD. 

For a homogeneous n x n MATRIX equation 

to be solved for the X~S, consider the DETERMINANT 

a11 512 ‘.’ aln 

a21 a22 l  ’  l  
a2n 

. . . l  
. (4) 

. l  l  l  

. 
l  l  l  

ad an2 9 l  l  arm 

Now multiply by ~1, which is equivalent to multiplying 
the first row (or any row) by ~1, 

a11 512 --* aln ama 512 l  =- ain 
a21 a22 ’  l  - a2n a2m a22 l  ” 

a2n 

51 l  ' . 
- - 

l  . . . l  
l  

l  . l  . l  l  l  . 

l  . 
l  l  

m  . . l  

ani an2 '** arm adx l  an2 l  l  * %n 

(5) 

The value of the DETERMINANT is unchanged if multi- 
ples of columns are added to other columns. So add 52 
times column 2, . . . , and xn times column n, to the first 
column to obtain 

a11 6112 l  
a in  

a21 
a22 0-a 52n 

21 ' . . l  

m  l  . . 

. . l  . 

ad an2 l  l  arm 

511x1 +al2x2 + ... +alnXn a12 ‘** ain 

a2 lx l  + a2222 +. . l  + a2nXn 522 * = ’ 52n - - 
l  . 

. 
. 

. 1  . . 
. 

. . . 

anIX1 + an222 + l  l  l  + GtnXn an2 * * ’ arm 

. 

(6) 

But from the original MATRIX, each of the entries in the 
first columns is zero since 

ailxl + Ui222 + . ..+ ai,Xn = 0, (7) 

so 
0 a12 -- aln 

0 a22 l  *- azn 
. . . = 0. 

l  (8) 
. . l  . 

. 

0 ai2 -al 

. 

arm 

Therefore, if there is an x1 # 0 which is a solution, the 
DETERMINANT is zero. This is also true for x2, . l  . , 

Xn, so the original homogeneous system has a nontrivial 
solution for all xis only if the DETERMINANT is 0. This 
approach is the basis for CRAMER'S RULE. 

Given a numerical solution to a matrix equation, the 
solution can be iteratively improved using the follow- 
ing technique. Assume that the numerically obtained 
solution to 

Ax =b (9) 

is x1 = x + 6x1, where 6x1 is an error term. The first 
solution therefore gives 

A(x + 6x1) = b + 6b (10) 

where Sb is found by solving (10) 

Combining (11) and (12) then gives 

6x1 = A-?b = A-l(Axl - b) = x1 - A-lb, (13) 

so the next iteration to obtain x accurately should be 

x2 =x14x1. (14) 

see also CRAMER'S RULE, GAUSSIAN ELIMINATION, LU 
DECOMPOSITION, MATRIX, MATRIX ADDITION, MA- 
TRIX INVERSE, MATRIX MULTIPLICATION, NORMAL 
EQUATION,~QUARE ROOT METHOD 

Matrix Exponential 
Given a SQUARE MATRIX A, the matrix exponential is 
defined by 

A exp(A)Ge = 
O” A” 

Ix 
AA AAA 

~~+A+T+T+*.*, 
. . l  

n=O 

where 1 is the IDENTITY MATRIX. 

see aho EXPONENTIAL FUNCTION, MATRIX 

Matrix Group 
A GROUP in which the elements are SQUARE MATRI- 
CES, the group multiplication law is MATRIX MULTIPLI- 
CATION, and the group inverse is simply the MATRIX 
INVERSE. Every matrix group is equivalent to a unitary 
matrix group (Lomont 1987, pp* 47-48). 

see also MASCHKE'S THEOREM 

References 
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Matrix Inverse 
A MATRIX A has an inverse IFF the DETERMINANT 
IAl # 0. For a 2 x 2 MATRIX 

Matrix Multiplication 
The product C of two MATRICES A and B is defined by 

c;k = Uijbjk, (1) 
A 

a b - - - [ 1 c d ’ (1) 

the inverse is 

where j is summed over for all possible values of i and 
Ic. Therefore, in order for multiplication to be defined, 
the dimensions of the MATRICES must satisfy 

(n x m> cm x P> = (72 x P>, (2) 

where (a x b) denotes a MATRIX with a rows and b 
For a 3 x 3 MATRIX, 

a22 a23 

a32 a33 

columns. writing out the Droduct explicitly, 

1 
Cl1 

c21 

. . 

. 

&Xl 

- - 

1 

Cl2 

c22 

QP 

QP 

. 

. 

. 

cnp 1 . . . a1m 
l  l  l  a2w-b 
. l  

. l  

. . 

. l  l  Gm 1 

. . l  

A -1 1 a23 a21 - - 

PI a33 a31 
G-b2 

a11 

a21 
. . 
l  

an1 

. . . 
a21 a22 

a31 a32 

A general 71 x n matrix 

l  l  . 

01, 
. . . b 2P 

. l  1 1 . . . . . . b’ mP 

(3) 

a12 

a22 

011 h2 
h b22 

l  

. 

b’ ml b m2 such as the GAUSS-JORDAN ELIMINATION 
ELIMINATION, or LU DECOM POSITION. 

*, GAUSSIAN 

The inverse of a PRODUCT AB of MATRICES A and B 
can be expressed in terms of A-’ and B? Let 

wnere 

Cl1 = allbll + ~12b21 + l  l  l  + a lmbml  

~12 = u l lb l2  + u l2b22 + - l  l  + a lmbm2 

QP = allbl, + a12hp -I- l  l  . + alrnbrnp 

c21 = a2lbll + a22b21 + . . l  + a2mbml 

~22 = azh + a&m + . . . + a2mbm2 

C2P = mbl, -t a22b2p +. . + -I- a2mbmp 

Cnl = unlhl + un2b21 + 9 l  - + unmbml 

Cn2 = an&n + an2b22 + n n l  + anmbm2 

CnP = unlhp + an2b2p + l  l  l  + a,mbmp. 

C=AB. (4) 

Then 

and 
A = ABE-l = CB-l. (6) 

Therefore, 

C = Al3 = (CB-’ (A-lC) = CB-lA-lC, (7) 

so 
CB-lA-l = I, (8) MATRIX MULTIPLICATION is ASSOCIATIVE, as can be 

seen by taking where I is the IDENTITY MATRIX, and 

[(ub)c]ij = (ub)ikckj = (UdQk)Ckj. (4) B-IA-l = C-l = (AB)-l, (9) 

Now, since ail, blk, and ckj are SCALARS, use the 
CIATIVITY of S CALAR MULTIPLICATION to write 

see UZSO MATRIX, MATRIX ADDITION, MATRIX MUL- 
TIPLICATION,MOORE-PENROSE GENERALIZED MATRIX 
INVERSE,~TRASSEN FORMULAS 

(uilblk )ck j = &l(blkCkj) = ail(bc)lj = [~(bc)]ij. (5) 
References 
Ben-Israel, A. and Greville, T. N. E. Generalized Inverses: 

Theory and Applications. New York: Wiley, 1977. 
Nash, J. C. Compact Numerical Methods for Computers: 

Linear Algebra and Function Minimisation, 2nd ed. Bris- 
tol, England: Adam Hilger, pp* 24-26, 1990. 

Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetter- 
ling, W. T. “Is Matrix Inversion an N3 Process?” $2.11 
in Numerical Recipes in FORTRAN: The Art of Scien- 
tific Computing, 2nd ed. Cambridge, England: Cambridge 
University Press, ppm 95-98, 1992. 

Since this is true for all i and j, it must be true that 

[(ub)c]ij = [a(bc)]ij- (6) 

That is, MATRIX multiplication is ASSOCIATIVE. How- 
ever, MATRIX MULTIPLICATION is not COMMUTATIVE 
unless A and B are DIAGONAL (and have the same di- 
mensions). 



Matrix Norm Max Sequence 

The product of two BLOCK MATRICES is given by mul- 
tiplying each block 

Matrix Polynomial Identity 

see CAYLEY-HAMILTON THEOREM 

0 

0 

0 0 

0 

0 0 0 

0 

lDOll 0 0 
0 

0 0 0 1 I xx xx 1 = 

X 

X 

2 

X 

X 

x x x 
x x x 
2 x 2 I 

see also MATRIX, MATRIX ADDITION, MATRIX IN- 
VERSE, STRASSEN FORMULAS 

References 
Arfken, G. Mathematical Methods for Physicists, 3rd ed. Or- 

lando, FL: Academic Press, pp. 178-179, 1985. 

Matrix Norm 
Given a SQUARE MATRIX A with COMPLEX (or REAL) 
entries, a MATRIX NORM llA[l is a NONNEGATIVE num- 
ber associated with A having the properties 

1. IlAll > 0 h w  enA#Oand IIAII=OIFFA=O, 

2. IlkAll = Ikl llA[l for any SCALAR k, 

3. IIA + Bll 5 IPI + llW1 
4. II4 5 IIAII 11w* 

For an ~X~MATRIX Aand an n X~UNITARY MATRIX 
U 3 

IWJII = IFJAIl = IIAll* 
Let XI, . . . . A, be the EIGENVALUES of A, then 

1 
~ I 1x1 2 IIW 
IV II 

The MAXIMUM ABSOLUTE COLUMN SUM NORM I lAlll, 
SPECTRAL NORM lIAl[z, and MAXIMUM ABSOLUTE 
Row SUM NORM llAllm satisfy 

Wll2>” I IPIll IPIL 

For a SQUARE MATRIX, the SPECTRAL NORM, which is 
the SQUARE ROOT of the maximum EIGENVALUE of At A 
(where At is the ADJOINT MATRIX), is often referred to 
as “the” matrix norm. 

see also COMPATIBLE,HILBERT-SCHMIDT NORM,MAX- 
IMUM ABSOLUTE COLUMN SUM NORM,MAXIMUM AB- 
SOLUTE Row SUM NORM, NATURAL NORM, NORM, 
POLYNOMIALNORM,SPECTRALNORM,SPECTRAL RA- 
DIUS,VECTOR NORM 

References 
Gradshteyn, I. S. and Ryzhik, I. M. Tables of Integrals, Se- 

ries, and Products, 5th ed. 
Press, pp. 1114-1125, 1979. 

San Diego, CA: Academic 
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Matrix Product 
The result of a MATRIX MULTIPLICATION. 
see also PRODUCT 

Matrix Transpose 

see TRANSPOSE 

Matroid 
Roughly speaking, a finite set together with a general- 
ization of a concept from linear algebra that satisfies a 
natural set of properties for that concept. For example, 
the finite set could be the rows of a MATRIX, and the 
generalizing concept could be linear dependence and in- 
dependence of any subset of rows of the MATRIX. The 
number of matroids with n points are 1, 1, 2, 4, 9, 26, 
101, 950, l  . . (Sloane’s AQU2773). 

References 
Sloane, N. J. A. Sequences A002773/M1197 in “An On-Line 

Version of the Encyclopedia of Integer Sequences.” 
Sloane, N. 3. A. and Plouffe, S, Extended entry in The Ency- 

clopedia of Integer Sequences. San Diego: Academic Press, 
1995. 

Whitely, W. “Matroids and Rigid Structures.” In Matroid 
Applications, Encyclopedia of Muthematics and Its Appli- 
cations (Ed. N. White), Vol. 40. New York: Cambridge 
University Press, pp. l-53, 1992. 

Maurer Rose 

n = 4, d = 120 n=6,d=72 

A Maurer rose is a plot of a “walk” along an n- (or 
2n-) leafed ROSE in steps of a fixed number d degrees, 
including all cosets. 

see also STARR ROSE 

References 
Maurer, P. “A Rose is a Rose.. . ” Amer. Math. MonthZy 94, 

631-645, 1987. 
Wagon, S. Muthematica in Action. New York: W. H. Free- 

man, pp. 96-102, 1991. 

Max Sequence 
A sequence defined from a FINITE sequence a~, al, . . . , 
a, by defining a,+1 = maxi (ai + a,-J l  

see also MEX SEQUENCE 

References 
Guy, R. K. “Max and Mex Sequences.” SE27 in Unsolved 

Problems in Number Theory, 2nd ed. New York: Springer- 
Verlag, pp. 227-228, 1994. 
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Maximal Ideal 
A maximal ideal of a RING R is an IDEAL I, not equal 
to R, such that there are no IDEALS “in between” I and 
R. In other words, if J is an IDEAL which contains I as 
a SUBSET, then either J = I or J = R. For example, 
nz is a maximal ideal of z IFF 72 is PRIME, where Z is 
the RING of INTEGERS. 

see U~SO IDEAL, PRIME IDEAL, REGULAR LOCAL RING, 
RING 

Maximal Sum-Free Set 
A maximal sum-free set is a set {al, ~2, . . . , a,} of dis- 
tinct NATURAL NUMBERS such that a maximum 2 of 
them satisfy aij + ai, # urn, for 1 5 j < /G 5 2, 

l<m<n. - - 

see ah MAXIMAL ZERO-SUM-FREE SET 

References 
Guy, R. K. LLMaximal Sum-Free Sets.” SC14 in Unsolved 

&oblems in Number Theory, 2nd ed. New York: Springer- 
Verlag, pp. 128-129, 1994. 

Maximal Zero-Sum-Free Set 
A set having the largest number Fz of distinct residue 
classes modulo ~2 so that no SUBSET has zero sum. 

see U~SO MAXIMAL SUM-FREE SET 

References 
Guy, R. K. “Maximal Zero-Sum-Free Sets.” SC15 in Unsolved 

Problems in Number Theory, 2nd ed. New York: Springer- 
Verlag, pp. 129-131, 1994. 

Maximally Linear Independent 
A set of VECTORS is maximally linearly independent 
if including any other VECTOR in the VECTOR SPACE 
would make it LINEARLY DEPENDENT (i.e., if any other 
VECTOR in the SPACE can be expressed as a linear com- 
bination of elements of a maximal set-the BASIS). 

Maximum 
The largest value of a set, function, etc. The maximum 
value of a set of elements A = {u~}~=~ is denoted max A 
or maxi ai, and is equal to the last element of a sorted 
(Le., ordered) version of A. For example, given the set 
(3, 5, 4, l}, the sorted version is (1, 3, 4, 5}, so the 
maximum is 5. The maximum and MINIMUM are the 
simplest ORDER STATISTICS. 

f’(x) = 0 f'(x) < 0, 
n 

f '(x) > 0 
m> < 0 V f'(x) > 0 f'(J) > 0 f'(x) < 0 

f'(x)= 0 $ ;:<y"df fix) < 0, X- y(x) < 0 

~?lCLKiY?llU?l niinirmm stuticmury point 

A continuous FUNCTION may assume a maximum at a 
single point or may have maxima at a number of points. 
A GLOBAL MAXIMUM of a FUNCTION is the largest value 
in the entire RANGE of the FUNCTION, and a LOCAL 
MAXIMU 
hood. 

M is the largest value in some local neighbor- 

For a function f(z) which is CONTINUOUS at a point 20, 
a NECESSARY but not SUFFICIENT condition for f(z) to 
have a RELATIVE MAXIMUM at x = 20 is that 20 be 
a CRITICAL POINT (i.e., f(z) is either not DIFFEREN- 
TIABLE at ~0 or ~0 is a STATIONARY POINT, in which 
case f’(z0) = 0). 

The FIRST DERIVATIVE TEST can be applied to CON- 
TINUOUS FUNCTIONS to distinguish maxima from MIN- 
IMA. For twice differentiable functions of one variable, 
f(z), or of two variables, f(z,y), the SECOND DERIV- 
ATIVE TEST can sometimes also identify the nature of 
an EXTREMUM. For a function f(z), the EXTREMUM 
TEST succeeds under more general conditions than the 
SECOND DERIVATIVE TEST. 

see ho CRITICAL POINT, EXTREMUM, EXTREMUM 
TEST, FIRST DERIVATIVE TEST, GLOBAL MAXIMUM, 
INFLECTION POINT, LOCAL MAXIMUM, MIDRANGE, 
MINIMUM, ORDER STATISTIC, SADDLE POINT (FUNC- 
TION),~ECOND DERIVATIVE TEST,~TATIONARY POINT 

References 
Abramowita, M. and Stegun, C. A. (Eds.). Handbook 

of Mathematical Functions utith Formulas, Graphs, and 
Mathematical Tables, 9th printing. New York: Dover, 
p* 14, 1972. 

Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetter- 
ling, W. T. “Minimization or Maximization of Functions.” 
Ch. 10 in Numerical Recipes in FORTRAN: The Art of 
Scientific Computing, 2nd ed. Cambridge, England: Cam- 
bridge University Press, pp* 387-448, 1992. 

Tikhomirov, V. M. Stories About Maxima and Minima. 
Providence, RI: Amer. Math. Sot., 1991. 

Maximum Absolute Column Sum Norm 
The NATURAL NORM inducedbythe &NORM iscalled 
the maximum absolute column sum norm and is defined 

bY 

for a MATRIX A. 

see also &NORM, MAXIMUM ABSOLUTE Row SUM 
NORM 

Maximum Absolute Row Sum Norm 
The NATURAL NORM inducedbythe Lm-No~~ iscalled 
the maximum absolute row sum norm and is defined by 

IlAll~ = mpxi: I4 
j=l 

for a MATRIX A. 

see also &-NORM, MAXIMUM ABSOLUTE COLUMN 
SUM NORM 

Maximum Clique Problem 

see PARTY PROBLEM 
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Maximum Entropy Method 
A DECONVOLUTION ALGORITHM (sometimes abbrevi- 
ated MEM) which functions by minimizing a smooth- 
ness function ( 6LE~~~O~~y7) in an image. Maximum en- 
tropy is also called the ALL-POLES MODEL or AUTORE- 
GRESSIVE MODEL. For images with more than a million 
pixels, maximum entropy is faster than the CLEAN AL- 
GORITHM. 

MEM is commonly employed in astronomical synthe- 
sis imaging. In this application, the resolution depends 
on the signal to NOISE ratio, which must be speci- 
fied. Therefore, resolution is image dependent and varies 
across the map. MEM is also biased, since the ensemble 
average of the estimated noise is NONZERO. However, 
this bias is much smaller than the NOISE for pixels with 
a SNR >> 1. It can yield super-resolution, which can 
usually be trusted to an order of magnitude in SOLID 

ANGLE. 

Several definitions of “ENTROPY” normalized to the flux 
in the image are 

where l& is a “default image” and Ik is the smoothed 
image. Some unnormalized entropy measures (Cornwell 
1982, p. 3) are given by 

(6) 

see also CLEAN ALGORITHM, DEC~NV~LUTI~N, 
LUCY 
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terling, W+ T. “Power Spectrum Estimation by the Max- 
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Maximum Likelihood 
The procedure of finding the value of one or more pa- 
rameters for a given statistic which makes the known 
LIKELIHOOD distribution a MAXIMUM. The maximum 
likelihood estimate for a parameter p is denoted b* 

For a BERNOULLI DISTRIBUTION, 

ONP(l - o)Nq 1 = Np(l-0) -0Nq = 0, (1) 

so maximum likelihood occurs for 0 = p. If p is not 
known ahead of time, the likelihood function is 

f(Xl,-• ,x,Ip)=P(& =xl,**~,L=Gl~p) 
=pzl(l-p)l-"',.,p""(l -p)l-xln 

= pCXi(l _ p)c(l-“i) = pzxi(l - p)n-Exi, (2) 

where x = 0 or 1, and i = 1, . . , , 72. 

In f = 7, xi lnp + (n - x xi) ln( 1 - p) 

d(lnf) xxi n- cxi = o -=-- 
dP P 1-P 

xxi -pxxi =np--xxi 

c Xi 
$= y-’ 

For a GAUSSIAN DISTRIBUTION, 

lnf = -+nln(2X) - nln0 - CC xi - p)” 
2a2 

gives 

d(ln f > n + ccxi - PI2 -=-- - 

(3) 

(4 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) aff u m us 



Maximum Likelihood May’s Theorem 

Note that in this case, the maximum likelihood STAN- 
DARD DEVIATION is the sample STANDARD DEVIATION, 
which is a BIASED ESTIMATOR for the population STAN- 
DARD DEVIATION. 

For a weighted GAUSSIAN DISTRIBUTION, 

(2 1 7T -n/Z 
- - un exp - 

[ 

CC xi - p>” 

2+ 1 (13) 
lnf = -+nln(27r) - n~hai - x ( xi - A2 (14) 2a 

i2 

gives 

The VARIANCE of the MEAN is then 

But 
w d C(Xi/Ui2) l/Ui2 --- dXi - axi C(l/ai2) = C(l/$) ’ 

so 

2 
up = 

lz ( 

l/n2 2 

ui2 ~(l/d) > 

l/Oi2 1 - - 
x 

[C(l/a?)] 2 = C(llbi2) 

For a POISSON DISTRIBUTION, 

e-q"1 e-X~xn e-nXXC xi 

f(Xl, l  . . ,x&4) = 7 . . ’ - - ’ . Xn* - Xl!*“Xn! 

(20) 

lnf = -nX + (In A) x xi - In (n xi!) (21) 

d(ln f ) c Xi 
x =-n-l- x =0 (22 

&5i* c (23 
n 

see also BAYESIAN ANALYSIS 

References 
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Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetter- 
ling, W. T. “Least Squares as a Maximum Likelihood Es- 
timator.” 515.1 in Numerical Recipes in FORTRAN: The 
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Maxwell Distribution 

The distribution of speeds of molecules in thermal equi- 
librium as given by statistical mechanics. The probabil- 
ity and cumulative distributions are 1 

P(x) = z a3/2x2e-~x2/2 
d- 7r (1) 

D(x) = 
2y( 4, +ax2> 

d- 
1 

7r (2) 

where $a, x) is an incomplete GAMMA FUNCTION and 
x E [O,oo). The moments are 

J 2 
p=2 - 

?ra (3) 

3 

p2 = a (4) 

~8 - J 2 
P3 

a37T (5) 
15 

I-L4=77 (6) 

and the MEAN, VARIANCE, SKEWNESS, and KURTOSIS 
are 

2 
P =2 - 

/- 7ra (7) 

3n - 8 
u2 E - 

7ia (8) 

(9) 

yp-$. (10) 

see &O EXPONENTIAL DISTRIBUTION, GAUSSIAN DIS- 
TRIBUTION, RAYLEIGH DISTRIBUTION 
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Simple majority vote is the only procedure which is 
ANONYMOUS, DUAL, and MONOTONIC. 
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May-Thomason Uniqueness Theorem 
For every infinite LOOP SPACE MACHINE E, there is a 
natural equivalence of spectra between EX and Segal’s 
spectrum BX. 

References 
May, J. P. and Thomason, R. W. “The Uniqueness of Infinite 
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Weibel, C. A. “The Mathematical Enterprises of Robert 
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Maze 
A maze is a drawing of impenetrable line segments (or 
curves) with “pat Ins” between them. The goal of the 
maze is to start at one given point and find a path which 
reaches a second given point. 
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Mazur’s Theorem 
The generalization of the SCH~NFLIES THEOREM to n- 
D. A smoothly embedded n-HYPERSPHERE in an (n + 
l)-HYPERSPHERE separates the (n + l)-HYPERSPHERE 
into two components, each HOMEOMORPHIC to (n + l)- 
BALLS. It can be proved using MORSE THEORY. 

see also BALL, HYPERSPHERE 

McCay Circle 
If the VERTEX A1 of a TRIANGLE describes the NEW- 
BERG CIRCLE n1, its MEDIAN POINT describes a circle 
whose radius is l/3 that of the NEUBERG CIRCLE. Such 
a CIRCLE is known as a McKay circle, and the three 
McCay circles are CONCURRENT at the MEDIAN POINT 
iL!. Three homologous collinear points lie on the McCay 

see also CIRCLE, 
BERG CIRCLES 

CONCURRENT, MEDIAN POINT, NEU- 

McCoy’s Theorem 
If two SQUARE n x n MATRICES A and B are simulta- 
neously upper triangularizable by similarity transforms, 
then there is an ordering al, . . . , a72 of the EIGENVAL- 
UES of A and bl, . . . . b, of the EIGENVALUES of B so 
that, given any POLYNOMIAL p(x,y) in noncommuting 
variables, the EIGENVALUES of p(A, B) are the numbers 
~(a;, bi) with i = 1, . l  . , n. McCoy’s theorem states 
the converse: If every POLYNOMIAL exhibits the correct 
EIGENVALUES in a consistent ordering, then A and B 
are simultaneously triangularizable. 

References 
Luchins, E. H. and McLaughlin, M. A. “In Memoriam: Olga 

Taussky-Todd.” Nut. Amer. Math. Sot. 43, 838-847, 
1996. 

McLaughlin Group 
The SPORADIC GROUP McL. 

References 
Wilson, R. A. “ATLAS of Finite Group Representation.” 

http://for.mat.bham.ac.uk/atlas/McL.html, 

McMohan’s Theorem 
Consider a GAUSSIAN BIVARIATE DISTRIBUTION. Let 
f(sl, ~2) be an arbitrary FUNCTION. Then 

see also GAUSSIAN BIVARIATE DISTRIBUTION 

McNugget Number 
A number which can be obtained from an order of 
McDonald’s@ Chicken McNuggetsTM (prior to consum- 
ing any), which originally came in boxes of 6, 9, and 
20. All integers are McNugget numbers except 1, 2, 3, 
4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 19, 22, 23, 25, 28, 31, 
34, 37, and 43. Since the Happy MealTM-sized nugget 
box (4 to a box) can now be purchased separately, the 
modern McNugget numbers are a linear combination of 
4, 6, 9, and 20. These new-fangled numbers are much 
less interesting than before, with only 1, 2, 3, 5, 7, and 
11 remaining as non-McNugget numbers. 

The GREEDY ALGORITHM can be used to find a Mc- 
Nugget expansion of a given INTEGER, 

see also COMPLETE SEQUENCE, GREEDY ALGORITHM 

References 
Vardi, I. Computational Recreations in Mathematics. Read- 
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Mean 
A mean is HOMOGENEOUS and has the property that a 
mean p of a set of numbers zi satisfies 

There are several statistical quantities called means, 

es* t ARITHMETIC-GEOMETRIC MEAN, GEOMETRIC 
MEAN, HARMONIC MEAN, QUADRATIC MEAN, ROOT- 
MEAN-SQUARE. However, the quantity referred to as 
“the” mean is the ARITHMETIC MEAN, also called the 
AVERAGE. 

see also ARITHMETIC-GEOMETRIC MEAN, AVERAGE, 
GENERALIZED MEAN, GEOMETRIC MEAN, HARMONIC 
MEAN, QUADRATIC MEAN, ROOT-MEAN-SQUARE 

Mean Cluster Count Per Site 

see s-CLUSTER 

Mean Cluster Density 

see s-CLUSTER 

Mean Curvature 
Let fil and ~2 be the PRINCIPAL CURVATURES, then 
their MEAN 

H- +1-t- K2) (1) 

is called the mean curvature. Let RI and R2 be the radii 
corresponding to the PRINCIPAL CURVATURES, then the 
multiplicative inverse of the mean curvature H is given 
by the multiplicative inverse of the HARMONIC MEAN, 

In terms of the GAUSSIAN CURVATURE K, 

(2) 

H = +(Rl + Ra)K. (3) 

The meancurvature of a REGULAR SURFACE~IIIK~ at a 
point p is formally defined as 

H(P) = ; tr(S(p)), (4) 

where Sisthe SHAPE OPERATOR andtr(S)denotesthe 
TRACE. For a MONGE PATCH with x = h(x,y), 

H - (l+ hw2)huu - %h,hu, -+ (I+ hu2)h,, - 
(1 + hu2 + hw2)3i2 (5) 

(Gray 1993, p. 307). 

If x : U -+ R3 is a REGULAR PATCH, then the mean 
curvature is given by 

eG-2fF+gE 

IT = 2(EG- F2) ’ (6) 

where E, F, and G are coefficients of the first FUNDA- 
MENTAL FORM and e, f, and g are coefficients of the 
second FUNDAMENTAL FORM (Gray 1993, p. 282). It 
can also be written 

H 
- 

det(xuuxuxw)]xv I2 - 2  det(xuuxuxv)(xu l  xv)  

- 

qxu~2~xzI~2 - (xu l  x,)2]3’2 

det (x vvxuxv xu >I I 
2 

+ 2[ Ix4x, 12 - (xu l  xv)2]3/2 (7) 

Gray (1993, p. 285). 

The GAUSSIAN and mean curvature satisfy 

H2 > K, - (8) 

with equality only at UMBILIC POINTS, since 

H2 - K2 = +(E~ - fi2)2. (9) 

If p is a point on a REGULAR SURFACE M c Iw3 and vP 
and wP are tangent vectors to M at p, then the mean 
curvature of M at p is related to the SHAPE OPERATOR 
s bY 

S(vp) x wp + vp x S(wp) = 2H(p)v, x wp. (10) 

Let 2 be a nonvanishing VECTOR FIELD on M which is 
everywhere PERPENDICULAR to M, and let V and w  be 
VECTOR FIELDS tangent to M such that V x W = Z, 
then 

H=-Z+hZxW+VxDwZ) 

214 3 (11) 

(Gray 1993, pp. 291-292). 

Wente (1985, 1986, 1987) found a nonspherical finite 
surface with constant mean curvature, consisting of a 
self-intersecting three-lobed toroidal surface. A family 
of such surfaces exists. 

see also GAUSSIAN CURVATURE, PRINCIPAL CURVA- 
TURES, S HAPE OPER ,ATOR 
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Mean Deviation 
The MEAN of the ABSOLUTE DEVIATIONS, 

where z is the MEAN of the distribution. 

see UZSO ABSOLUTE DEVIATION 

Mean Distribution 
For an infinite population with MEAN p, STANDARD DE- 
VIATION g2, SKEWNESS yl, and KURTOSIS y2, the COP 

responding quantities for the distribution of means are 

For a population of M (Kenney and Keeping 1962, 

Pm W, 

pi”’ = p 
2 (5) 

2Wl U21Lf-N 
0 =-- 

NM-l’ (6) 

References 
Kenney, J. F. and Keeping, E. S. Mathematics of Statistics, 

Pt, I, 3rd ed. Princeton, NJ: Van Nostrand, 1962. 

Mean Run Count Per Site 

see s-RUN 

Mean Run Density 

see S-RUN 

Mean Square Error 

see ROOT-MEAN-SQUARE 

Mean-Value Theorem 
Let f(x) be DIFFERENTIABLE on the OPEN INTERVAL 
(~&and CONTINUOUS on the CLOSED INTERVAL [a$]. 
Then there is at least one point c in (a, b) such that 

f’( ) c = f(b) - f(a) 
b-a l  

see UZSO EXTENDED MEAN-VALUE THEOREM, GAUSS'S 
MEAN-VALUE THEOREM 

References 
Gradshteyn, I. S. and Ryzhik, I. M. Tables of Integrals, Se- 

ries, and Products, 5th ed. 
Press, pp. 10974098 1993* 

San Diego, CA: Academic 

Measurable Function 
A function f : X + Y for which the pre-image of every 
measurable set in Y is measurable in X. For a BOREL 
MEASURE, all continuous functions are measurable. 

Measurable Set 
If F is a SIGMA ALGEBRA and A is a SUBSET of X, then 
A is called measurable if A is a member of F. X need 
not have, a priori, a topological structure. Even if it 
does, there may be no connect& between the open sets 
in the topology and the given SIGMA ALGEBRA. 

see UZSO MEASURABLE SPACE, SIGMA ALGEBRA 

Measurable Space 
A SET considered together with the SIGMA ALGEBRA 
on the SET. 

see also MEASURABLE 
ALGEBRA 

SET, MEASURE SPACE, SIGMA 

Measure 
The terms “measure, ” “measurable,” etc., have very pre- 
cise technical definitions (usually involving SIGMA AL- 
GEBRAS) which makes them a little difficult to under- 
stand. However, the technical nature of the definitions 
is extremely important, since it gives a firm footing to 
concepts which are the basis for much of ANALYSIS (in- 
cluding some of the slippery underpinnings of CALCU- 
LUS). 

For example, every definition of an INTEGRAL is based 
on a particular measure: the RIEMANN INTEGRAL is 
based on JORDAN MEASURE, and the LEBESGUE IN- 
TEGRAL is based on LEBESGUE MEASURE, The study 
of measures and their application to INTEGRATION is 
knownas MEASURE THEORY. 

A measure is formally defined as a MAP m : F + IR (the 
reals) such that m(0) = 0 and, if A, is a COUNTABLE 
SEQUENCE in F and the A, are pairwise DISJOINT, then 

m = xm(A). 
n 

If, in addition, m(X) = 1, then m is said to be a PROB- 
ABILITY MEASURE. 

A measure m may also be defined on SETS other than 
those in the SIGMA ALGEBRA 8’. I3y adding to F all 
sets to which m assigns measure zero, we again obtain 
a SIGMA ALGEBRA and call this the “completion” of F 
with respect to m. Thus, the completion of a SIGMA 
ALGEBRA is the smallest SIGMA ALGEBRA containing 
F and all sets of measure zero. 

see U~SOALMOST EVERYWHERE,BOREL MEASURE, ER- 
GODIC MEASURE,EULERMEASURE,GAUSS MEASURE, 
HAAR MEASURE, HAUSDORFF MEASURE, HELSON- 
SZEG~ MEASURE,INTEGRAL,JORDAN MEASURE,LEB- 
ESGUE MEASURE, LIOUVILLE MEASURE, MAHLER'S 
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MEASURE, MEASURABLE SPACE, MEASURE ALGEBRA, 
MEASURE SPACE, MINKOWSKI MEASURE, NATURAL 
MEASURE, PROBABILITY MEASURE, WIENER MEA- 
SURE 

Measure Algebra 
A Boolean SIGMA ALGEBRA which possesses a MEA- 
SURE. 

Measure Polytope 

~~~HYPERCUBE 

Measure-Preserving Transformation 

see ENDOMORPHISM 

Measure Space 
A measure space is a MEASURABLE SPACE possessing a 
NONNEGATIVE MEASURE. Examples of measure spaces 
include n-D EUCLIDEAN SPACE with LEBESGUE MEA- 
SURE and the unit interval with LEBESGUE MEASURE 
(i.e., probability). 

see UZSO I;EBESGUE MEASURE,MEASURABLE SPACE 

Measure Theory 
The mathematical theory of how to perform INTEGRA- 
TION in arbitrary MEASURE SPACES. 

see also CANTOR SET, FRACTAL, INTEGRAL, MEA- 
SURABLE FUNCTION,MEASURABLE SET, MEASURABLE 
SPACE,MEASURE,MEASURE SPACE 
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New York: Dover, 1960. 

Rao, M. M. Measure Theory And Integration. New York: 
Wiley, 1987. 

Strook, D. W. A Concise Introduction to the Theory of In- 

tegration, 2nd ed. Boston, MA: Birkhguser, 1994. 

Mechanical Quadrature 

see GAUSSIAN QUADRATURE 

Mecon 
Suckminster Fuller’s term for the TRUNCATED OCTA- 
HEDRON. 

see also DYMAXXON 

Medial Axis 
The boundaries of the cells of a VORONOI DIAGRAM. 

Medial Deltoidal Hexecontahedron 
The DUAL ofthe RHOMBIDODECADODECAHEDRON. 

Medial Disdyakis Tkiacontahedron 
The DUAL of the TRUNCATED DODECADODECAHE- 
DRON. 

Medial Hexagonal Hexecontahedron 
The DUAL ofthe SNUB ICOSIDODECADODECAHEDRON. 

Medial Icosacronic Hexecontahedron 
The DUAL ofthe ICOSIDODECADODECAHEDRON. 

Medial Inverted Pentagonal 

Hexecontahedron 
The DUAL of the INVERTED SNUB D~DECADODECAHE- 
DRON. 

Medial Pentagonal Hexecontahedron 
The DUAL ofthe SNUB DODECADODECAHEDRON. 

Medial Rhombic Triacontahedron 
A ZONOHEDRON whichisthe DUAL of the DODECADO- 
DECAHEDRON. It is also called the SMALL STELLATED 
TRIACONTAHEDRON. 

References 
Cundy, H. and Rollett, A. Mathematical Models, 3rd ed. 

Stradbroke, England: Tarquin Pub., p. 125, 1989. 

Medial Triambic Icosahedron 
The DUAL of the DITRIGONAL DODECADODECAHE- 
DRON. 

Medial Triangle 

Al 4 AZ 

The TRIANGLE MM~M&Z~ formed by joining the MID- 
POINTS of the sides of a TRIANGLE AAlAaAa. The 
medial triangle is sometimes also called the AUXILIARY 
TRIANGLE (Dixon 1991). The medial triangle has TRI- 

LINEAR COORDINATES 

The medial triangle M4~M~ Mi of the medial trian- 
gle AM~M&& of a TRIANGLE AAIAzAs is similar to 
AA1A2A3. 
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see also ANTICOMPLEMENTARY TRIANGLE 

References 
Coxeter, H. S. M. and Greitzer, S. L. Geometry Revisited. 

Washington, DC: Math. Assoc. Amer., pp. 18-20, 1967. 
Dixon, R. Muthographics. New York: Dover, p, 56, 1991. 

Medial Triangle Locus Theorem 

Given an original triangle (thick line), find the MEDIAL 
TRIANGLE (outer thin line) and its INCIRCLE. Take the 
PEDAL TRIANGLE (inner thin line) of the MEDIAL TRI- 
ANGLE with the INCENTER as the PEDAL POINT. Now 

pick any point on the original triangle, and connect it to 
the point located a half-PERIMETER away (gray lines). 
Then the locus of the MIDPOINTS of these lines (the as 
in the above diagram) is the PEDAL TRIANGLE. 

References 
Honsberger, R. More Mathematical Morsels. Washington, 

DC: Math. Assoc. Amer., pp. 261-267, 1991. 
Tsintsifas, G. “Problem 674.” Crux Math., p* 256, 1982. 

Median Point 

see CENTROID (GEOMETRIC) 

Median (Statistics) 
The middle value of a distribution or average of the two 
middle items, denoted ~112 or Z. For small samples, the 
MEAN is more efficient than the median and approxi- 
mately 7r/2 less. It is less sensitive to outliers than the 
MEAN (Kenney and Keeping 1962, p. 211). 

For large N samples with population median Z,, 

2 1 
CT5 = 

8Nf2(&)’ 

The median is an L-ESTIMATE (Press et al. 1992). 

see also MEAN, MIDRANGE, MODE 

References 
Kenney, J. F. and Keeping, E. S. Mathematics of Statistics, 

Pt. I, 3rd ed. Princeton, NJ: Van Nostrand, 1962. 
Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetter- 

ling, W. T. IVumerical Recipes in FORTRAN: The Art of 
Scientific Computing, 2nd ed. Cambridge, England: Cam- 
bridge University Press, p. 694, 1992. 

Median (TkiangIe) 

The CEVIAN from a TRIANGLE’S VERTEX to the MID- 
POINT of the opposite side is called a median of the 
TRIANGLE. The three medians of any TRIANGLE are 
CONCURRENT, meeting in the TRIANGLE’S CENTROID 
(which has TRILINEAR COORDINATES l/a : l/b : l/c). 

In addition, the medians of a TRIANGLE divide one an- 
other in the ratio 2:l. A median also bisects the AREA 
of a TRIANGLE. 

Let nzi denote the length of the median of the ith side 
ai. Then 

ml2 = $(2az2 + 2as2 - U12> (1) 

ml2 + ?7Q2 + rns2 = $1” + u22 + u3”) (2) 

(Johnson 1929, p. 68). The AREA of a TRIANGLE can 
be expressed in terms of the medians by 

A = $&&m - ml)(sm - m2)(snt - ma), (3) 

where 

Sm = $(ml + m2 + m3). (4) 

see also BIMEDIAN, EXMEDIAN, EXMEDIAN POINT, 
HERONIAN TRIANGLE, MEDIAL TRIANGLE 

References 
Coxeter, H. S. M. and Greitzer, S. L. Geometry Revisited. 

Washington, DC: Math. Assoc. Amer., pp. 7-8, 1967. 
Johnson, R. A. Modern Geometry: An Elementary Treatise 

on the Geometry of the Triangle and the Circle. Boston, 
MA: Houghton Mifflin, pp. 68 and 173-175, 1929. 

Median Triangle 
A TRIANGLE whose sides are equal and PARALLEL to the 
MEDIANS of a given TRIANGLE. The median triangle of 
the median triangle is similar to the given TRIANGLE in 
the ratio 3/4. 

References 
Johnson, R. A. Modern Geometry: An Elementary Treatise 

on the Geometry of the sangle and the Circle. Boston, 
MA: Houghton MifIXn, pp. 282-283, 1929. 
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Mediant Mehler’s Hermite Polynomial Formula 

Given a FAREY SEQUENCE with consecutive terms h/k 
and h’/k’, then the mediant is defined as the reduced 
form of the fraction (h + h’)/(k + k’). 

see UZSO FAREY SEQUENCE 

O” Hn(x)Hn(Y) Ix n! 
n=O 

;W,, 

References 
Conway, J. H. and Guy, R. K. “Farey Fractions and Ford 

Circles .” The Book of Numbers. New York: Springer- 
Verlag, pp. 152-154, 1996. 

Mega 
Defined in terms of CIRCLE NOTATION by Steinhaus 
(1983, pp. 28-29) as 

I  1 

where STEINHAUS-MOSER NOTATION has also been 
used. 

see UZSO MEGISTRON, MOSER, STEINHAUS-MOSER No- 
TATION 

References 
Steinhaus, H. Mathematical Snapshots, 3rd American ed. 

New York: Oxford University Press, 1983. 

Megistron 
A very LARGE NUMBER defined in terms of CIRCLE NO- 

TATION by Steinhaus (1983) as @J 

see also MEGA, MOSER 

References 
Steinhaus, H. Mathematical Snapshots, 3rd American ed. 

New York: Oxford University Press, pp. 28-29, 1983. 

Mehler’s Bessel Function Formula 

2 O” 
Jo(x) = ; 

s 
sin@ cash t) dt, 

0 

where J&c) is a zeroth order BESSEL FUNCTION OF THE 

FIRST KIND. 

References 
Iyanaga, S. and Kawada, Y. (Eds.). Encyclopedic Dictionary 

of Mathematics. Cambridge, MA: MIT Press, p. 1472, 
1980. 

Mehler-Dirichlet Integral 

J2 
P,(cosa) = 7 L 

a cos[(n + ;>$I @ 
0 cosq5 - cosa ’ 

where P,(x) is a LEGENDRE POLYNOMIAL. 

Meijer’s G-Function 

- - 
(I+ 

where Hn(x) is a 

References 

42~~)-~‘~ exp 
[ 

2xyw - (x2 + y2)w2 

1 - w2 1 1 
HERMITE POLYNOMIAL. 

Almqvist, G. and Zeilberger, D. “The Method of Differen- 
tiating IJnder the Integral Sign.” J. Symb. Compzlt. 10, 
571-591, 1990. 

Foata, D. “A Combinatorial Proof of the Mehler Formula.” 
J. Comb. Th. Ser. A 24, 250-259, 1978. 

Petkovgek, M.; Wilf, H. S.; and Zeilberger, D. A=B. Welles- 
ley, MA: A. K. Peters, pp. 194-195, 1996. 

Rainville, E. D. Special Functions, New York: Chelsea, 
p. 198, 1971. 

Szeg6, G. Orthogonal Polynomials, 4th ed. Providence, RI: 
Amer. Math. SOL, p. 380, 1975. 

Mehler Quadrature 

see JACOBI-GAUSS QUADRATURE 

Meijer’s G-Function 

s rI X 

TX1 r(bj - z) ny=l(l - aj + s, 

rI 
4 
jzm+l w  - bj + 2) ng=,+l r(Clj - z> 

xr dz, 
YL 

where r(z) is the GAMMA FUNCTION. The CONTOUR 
ye and other details are discussed by Gradshteyn and 
Ryzhik (1980, pp. 896-903 and 1068-1071). Prudnikov 
et al. (1990) contains an extensive nearly 200-page list- 
ing of formulas for the Meijer G-function. 

see UZSO Fox’s H-FUNCTION, G-FUNCTION, MAC- 
ROBERT'S E-FUNCTION, RAMANUJAN g- AND G- 
FTJNCTIONS 
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Mathai, A. M. A Handbook of Generalized Special Functions 
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Meissel’s Formula 
Amodification of LEGENDRE'S FORMULA for the PRIME 
COUNTING FUNCTION n(z). It starts with 

+x(x)-u+P2(x,a)+P3(x,a)+..., (1) 

where 1x1 is the FLOOR FUNCTION, Pz(x, a) is the num- 
ber of INTEGERS pipj < x with a + 1 < j < j, and 
P3(x, a) is the number if INTEGERS pil?ipk 2 x with - 
a + 1 5 i 5 j 5 k. Identities satisfied by the Ps include 

Pz(x,a)=~ [T(Z) -4 (2) 

for p, < pi 5 fi ad 

P3(x,a) = TZP2 ll,a 

i>a ( > Pi 

Meissel’s formula is 

-- 

where 

b E *(x1j2) (5) 

c E 7r(xli3)* (6) 

Taking the derivation one step further yields LEHMER'S 
FORMULA. 

see also LEGENDRE’S FORMULA, LEHMER'S FORMULA, 
PRIME COWNTING FUNCTION 

References 
Riesel, H. “Meissel’s Formula.” Prime Numbers and Com- 

puter Methods for Factorization, 2nd ed, Boston, MA: 
Birkhguser, p. 12, 1994. 

Mellin Transform 

4( > x = t-l f  (t) dt 

f(t) 
1 - - 

2ri J 
t-=$(z) dz. 

--oo 

see also STRASSEN FORMULAS 

References 
Arfken, G+ Mathematical Methods for Physicists, 3rd ed. Or- 

lando, FL: Academic Press, p. 795, 1985. 
Bracewell, R. The Fourier Transform and Its Applications. 

New York: McGraw-Hill, pp. 254-257, 1965. 
Morse, P. M. and Feshbach, H. Methods of Theoretical Phys- 

ics, Part I. New York: McGraw-Hill, pp* 469-471, 1953. 

Melnikov-Arnold Integral 

Am(X) = cos [+mqb(t) - At] dt, 

where the function 

t@(t) G 4tan -1 (et) - x 

describes the motion along the pendulum SEPARATRIX. 
Chirikov (1979) h as shown that this integral has the 
approximate value 

Am(X) ==: 
{ 

4~(2wm-~~-~~/2 

w-4 

-*I?(m + 1) sin(rm) 

for x > 0 

for X < 0. 

References 
Chirikov, B, V. “A Universal Instability of Many- 

Dimensional Oscillator Systems.” Phys. Rep. 52, 264-379, 
1979. 

Melodic Series 
If al, a& a3, . . . is an ARTISTIC SERIES, then l/al, Ilag, 
l/c&3,... isa MELODIC SERIES. The RECURRENCE RE- 
LATION obeyed by melodic series is 

b* 
bibi+22 bi+22 b 

2+3 = - - - 
b. 2 + bi+1 

i+2* 
a+1 

see also ARTISTIC SERIES 

References 
Duffin, R. J. “On Seeing Progressions of Constant Cross Ra- 

tio.” Amer. Math. Monthly 100, 38-47, 1993. 

MEM . 

~~~MAXIMUM ENTROPY METHOD 
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Memoryless 

Menger Sponge 

Menelaus’ Theorem 
c A variable x is 

with I! # 0, 
memoryless with respect to t if, for all s 

P(x > s + tlx > t) = P(x > s)* (1) 

Equivalently, 

P(x > s + t,x > t) 

P(x > t) 
= P(x > s) 

ffh B D 

For TRIANGLES in the PLANE, 

(2) 
AD*BE.CF=BD*CEaAF. (1) 

P(x > s + t) = P(x > s)P(x > t). (3) For SPHERICAL TRIANGLES, 

The EXPONENTIAL DISTRIBUTION, which satisfies 
sin AD l  sin BE l  sin CF = sin BD . sin CE l  sin AF. (2) 

P(x > t) = cxt 

P(x > s + t) = e-x(s+t), 

(4) 

(5) 

This can be generalized to n-gons P = [V-, . l  . , I&], 
where a transversal cuts the side ViVi+l in Wi for i = 1, 

- - . ? n, bY 
and therefore 

P(x > s + t) = P(x > s)P(x > t) = e-x”e-xt 

is the only memoryless random distribution. 

see dso EXPONENTIAL DISTRIBUTION 

(6) 

n 

N 

viwi 

i=l 
WV,+, 

(3) 

Here, ABIICD and 
AB [ 1 CD (4) 

is the ratio of the lengths [A, B] and [C, D] with a PLUS 
or MINUS SIGN depending if these segments have the 
same or opposite directions (Griinbaum and Shepard 
1995). The case n = 3 is PASCH’S AXIOM. M6nage Number 

see MARRIED COUPLES PROBLEM 

M&age Problem 

see ah CEVA’S THEOREM, HOEHN’S THEOREM, 

PASCH’S AXIOM 

References 
see MARRIED COUPLES PROBLEM Beyer, W, H. (Ed.) CRC Standard Mathematical Tables, 

28th ed. Boca Raton, FL: CRC Press, p. 122, 1987. 
Coxeter, H. S. M. and Greitzer, S. L. Geometry Revisited. 

Washington, DC: Math. Assoc. Amer., pp. 66-67, 1967. 
Griinbaum, B. and Shepard, G. C. “Ceva, Menelaus, and the 

Menasco’s Theorem 
For a BRAID with i’W strands, R components, P positive 
crossings, and N negative crossings, 

fP-N<U++M-R ifP>N 
\P-N~U-+M-R ifPIN, 

Area Principle.” Math. Mag. 68, 254-268, 1995. 
Pedoe, D. Circles: A Mathematical View, rev. ed. Washing- 

ton, DC: Math. Assoc. Amer., p. xxi, 1995. 

Mnnger’s n-Arc Theorem 

where Uk are the smallest number of positive and nega- 
tive crossings which must be changed to crossings of the 
opposite sign. These inequalities imply BENNEQUIN’S 

CONJECTURE. Menasco’s theorem can be extended to 
arbitrary knot diagrams. 

Let G be a graph with A and B two disjoint n-tuples of 
VERTICES. Then either G contains n pairwise disjoint 
AB-paths, each connecting a point of A and a point of 
B, or there exists a set of fewer than n VERTICES that 
separate A and B. 

see also BENNEQUIN’S CONJECTURE, BRAID, UNKNOT- 
TING NUMBER 

References 
Menger, K. Kwventheorie. Leipzig, Germany: Teubner, 

References 
1932. 

Cipra, 8. ‘From Knot to Unknot.” What’s Happening in 
the Mathematical Sciences, Vol. 2. Providence, RI: Amer. Menger Sponge 
Math. Sot., pp. 8-13, 1994. 

“The Bennequin-Milnor Unknotting Con- Menasco, W. W. 
jectures.” C. R. Acad. S ci. Paris S&r. I Math. 318, 831- 
836, 1994. 
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A FRACTAL which is the 3-D analog of the SIERPI~~SKI 
CARPET. Let IVfi be the number of filled boxes, L, the 
length of a side of a hole, and Vn the fractional VOLUME 
after the nth iteration. 

Nn = 20” (1) 
L, T ($)” =3-nJ (2) 

Vn = Ln3Nn = (g)“. (3) 

The CAPACITY DIMENSION is therefore 

d 
In Nn ln( 20n) 

cap 
= - = - 

JFm In nl$nm 
In 20 1n(i2 . 5) 

7 1 ( -n 1 

2ln2 + In5 - ---- - 
- - In3 In3 In 3 

= 2.726833028.... (4 

J. Mosely is leading an effort to construct a large Menger 
sponge out of old business cards. 

see also SIERPI~~SKI CARPET, TETRIX 

References 
Dickau, R. M. “Menger (Sierpinski) Sponge.” http: //f orum 

.swarthmore.edu/advaced/robertd/sponge.html, 
Mosely, 3. “Menger’s Sponge (Depth 3).” http: //world. 

std.com/-jg/sponge/. 

Mends Surface 

A surface given by the parametric equations 

x(u, v) = u 

Y(U, v> = v 

z(u, v> = au4 -/- u2v - v2* 

References 
Gray, A. Modern Differential Geometry of Curves and Sur- 

faces. Boca Raton, FL: CRC Press, p+ 631, 1993. 

Mensuration Formula 
A mensuration formula is simply a formula for comput- 
ing the length-related properties of an object (such as 
AREA, CIRCUMRADIUS, etc., of a POLYGON) based on 
other known lengths, areas, etc. Beyer (1987) gives a 
collection of such formulas for various plane and solid 
geometric figures. 

Merca .tor Projection 

The following equations place the Z-AXIS of the projec- 
tion on the equator and the ~-AXIS at LONGITUDE X0, 
where A is the LONGITUDE and q5 is the LATITUDE. 

X =X-X0 

y = ln[tan+ + $@)I 

(1) 

(2) 

(3) 

= sinh-1 (tan 4) 

= tanh-l (sin 4) 

= ln(tan 4 + set 4). 

(4) 

(5) 

(6) 

The inverse FORMULAS are 

4 
-1 - Zn - Ztan-l(&-‘) = tan-‘(sinhy) (7) 

x=x+x~. (8) 

LOXODROMES arestraightlinesand GREAT CIRCLES are 
curved. 

References 
Beyer, W. H. CRC Standard Mathematical Tables, 28th ed. 

Boca Raton, FL: CRC Press, pp. 121-133, 1987. 
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An oblique form of the Mercator projection is illustrated 
above. It has equations 

II: _ tan-l[tan 4 cos & + sin & sin(X - X0)1 - 
cos(X - X0) (9) 

where 

A, = tan-l 
( 

cos q51 sin 42 cos A1 - sin 41 cos 42 cos X2 

sin 41 cos $2 sin X2 - cos $1 sin 42 sin X1 > 

4 = tan-l 
( 

cos(X, - A,) - P 
tan $1 > 

(12) 

A = sin& sin@ - cos~,cos&3in(~ - &). (13) 

The inverse FORMULAS are 

4 = sin 
cos qbp sin z 

cash y > 
(14) 

X=&+tan-l 
sin &, sin x - cos & sinh y 

> 
. 

cos x (15) 

There is also a transverse form of the Mercator projec- 
tion, illustrated above. It is given by the equations 

= tanh-’ B (16) 

Mercator projection with central MERIDIAN in the cen- 
ter of the zone. The zones extend from 80” S to 84” N 
(Dana). 

see also SPHERICAL SPIRAL 

References 
Dana, P. H. “Map Projections." http: //uww.utexas .edu/ 

depts/grg/gcraf t/notes/mapporo j /mappro j . html. 
Snyder, J. P. Map Projections-A Working Manual. U. S. 

Geological Survey Professional Paper 1395. Washington, 
DC: U. S. Government Printing Office, pp. 38-75, 1987. 

Mercator Series 
The TAYLOR SERIES for the NATURAL LOGARITHM 

ln(l + 2) = x - ix2 + +x3 - . . . 

which was found by Newton, but independently discov- 
ered and first published by Mercator in 1668. 

see also LOGARITHMIC NUMBER, NATURAL LOGA- 
RITHM 

Mercer’s Theorem 

see RIEMANN-LEBESGUE LEMMA 

Mergelyan- Wesler Theorem 
Let P- {D1,D+.. } be an infinite set of disjoint open 
DISKS D, of radius rn such that the union is almost the 
unit DISK. Then 

00 

>: Tn = 00. (1) 
n=l 

Define 

Then there is a number e(P) such that Mx (P) diverges 
for x < e(P) and converges for x > e(P) . The above 
theorem gives 

1 < e(P) < 2. (3) 

There exists a constant which improves the inequality, 
and the best value known is 

(17) 
S = 1.306951.. . . (4 

(19) 

where 

B E cosq5sin(X - X0) (20) 

D = y+$o* (21) 

References 
Le Lionnais, F. Les nombres remarquables. Paris: Hermann, 

pp. 36-37, 1983. 
Mandelbrot, l3. B. Fractals. San Francisco, CA: W. H. Free- 

man, p. 187, 1977, 
Melzack, 2. A. “On the Solid Packing Constant for Circles.” 

Math. Comput. 23, 1969. 

Finally, the “universal transverse Mercator projection” 
is a MAP PROJECTION which maps the SPHERE into 60 
zones of 6” each, with each zone mapped by a transverse 
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Meridian 
A line of constant LONGITUDE on a SPHEROID (or 
SPHERE). More generally, a meridian of a SURFACE OF 
REVOLUTION is the intersection of the surface with a 
PLANE containing the axis of revolution. 

see also LATITUDE, LONGITUDE, PARALLEL (SURFACE 
OF REVOLUTION), SURFACE OF REVOLUTION 

References 
Gray, A. Modern Difierential Geometry of Curves and SW- 

faces. Boca Raton, FL: CRC Press, p. 358, 1993. 

Meromorphic 
A meromorphic FUNCTION is complex analytic in all but 
a discrete subset of its domain, and at those singularities 
it must go to infinity like a POLYNOMIAL (i.e., have no 
ESSENTIAL SINGULARITIES). Anequivalentdefinitionof 
a meromorphic function is a complex analytic MAP to 
the RIEMANN SPHERE. 

see also ESSENTIAL SINGULARITY, RIEMANN SPHERE 

References 
Morse, P. M, and Feshbach, H. Methods of Theoretical Phys- 

ics, Part I. New York: McGraw-Hill, pp. 382-383, 1953. 

Mersenne Number 
A number of the form 

MnE2-1 (1) 

for n an INTEGER is known as a Mersenne number. The 
Mersenne numbers are therefore 2-REPDIGITS, and also 
the numbers obtained by setting x = 1 in a FERMAT 

POLYNOMIAL. The first few are 1, 3, 7, 15, 31, 63, 127, 
255, . . . (Sloane’s AO00225). 

The number of digits D in the Mersenne number Mn is 

D = Llog(2” - 1) + 11 , (2) 

where llc] is the FLOOR FUNCTION, which, for large n, 
gives 

D E lnlog2 + 11 = LO.301029n + 11 = 10.301029nj + 1. 

(3) 

In order for the Mersenne number Mn to be PRIME, n 
must be PRIME. This is true since for COMPOSITE n 
with factors T and s, n = TS. Therefore, 2n - 1 can be 
written as 2rs - 1, which is a BINOMIAL NUMBER and 
can be factored. Since the most interest in Mersenne 
numbers arises from attempts to factor them, many au- 
thors prefer to define a Mersenne number as a number 
of the above form 

MP = 2’ - 1, (4 

but with p restricted to PRIME values. 

The search for MERSENNE PRIMES is one of the most 
computationally intensive and actively pursued areas of 
advanced and distributed computing. 

see also CUNNINGHAM NUMBER, EBERHART'~ CON- 
JECTURE, FERMAT NUMBER, LUCAS-LEHMER TEST, 
MEFUENNE PRIME, PERFECT NUMBER, REPUNIT, 
RIESEL NUMBER, SIERPI~KI NUMBER OF THE SEC- 
OND KIND, SOPHIE GERMAIN PRIME, SUPERPERFECT 
NUMBER,~IEFERICH PRIME 

References 
Pappas, T. “Mersenne's Nwnber." The Joy of Mathematics. 

San Carlos, CA: Wide World Publ./Tetra, p. 211, 1989. 
Shanks, D. Solved and Unsolved Problems in Number Theory, 

4th ed. New York: Chelsea, pp. 14, 18-19, 22, and 29-30, 
1993. 

Sloane, N. 3. A. Sequence A000225/M2655 in “An On-Line 
Version of the Encyclopedia of Integer Sequences.” 

Mersenne Prime 
A MERSENNE NUMBER which is PRIME is called a 
Mersenne prime. In order for the Mersenne number M, 
defined by 

M, E 2n - 1 

for n an INTEGER to be PRIME, n must be PRIME. This 
is true since for COMPOSITE n with factors T and s, 
n = TS. Therefore, 2n-1 can be written as 2’“-1, which 
is a BINOMIAL NUMBER and can be factored. Every 
MERSENNE PRIME gives rise to a PERFECT NUMBER. 

If n z 3 (mod 4)is a PRIME, then 2n +l DIVIDES A& 
IFF 2n+l is PRIME. It is also true that PRIME divisors of 
2p - 1 must have the form 2@+ 1 where k is a POSITIVE 
INTEGER and simultaneously of either the form 8n.+1 or 
8n - 1 (Uspensky and Heaslet). A PRIME factor p of a 
Mersenne number Mq = 2q - 1 is a WIEFERICH PRIME 
IFF ~‘12~ - 1, Therefore, MERSENNE PRIMES are lzot 
WIEFERICH PRIMES. All known Mersenne numbers MP 
with p PRIME are SQUAREFREE. However, Guy (1994) 
believes that there are h/rp which are not SQUAREFREE. 

TRIAL DIVISION is often used to establish the COMPOS- 
ITENESS of a potential Mersenne prime. This test im- 
mediately shows Mp to be COMPOSITE for p = 11, 23, 
83, 131, 179, 191, 239, and 251 (with small factors 23, 
47, 167, 263, 359, 383, 479, and 503, respectively). A 
much more powerful primality test for MP is the LUCAS- 
LEHMER TEST. 

It has been conjectured that there exist an infinite num- 
ber of Mersenne primes, although finding them is com- 
putationally very challenging. The table below gives the 
index p of known Mersenne primes (Sloane’s AOOOO43) 
Mpr together with the number of digits, discovery years, 
and discoverer. A similar table has been compiled by 
C. Caldwell. Note that the region after the 35th known 
Mersenne prime has not been completely searched, so 
identification of “the” 36th Mersenne prime is tentative. 
L. Welsh maintains an extensive bibliography and his- 
tory of Mersenne numbers. G. Woltman has organized 
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a distributed search program via the Internet in which 
hundreds of volunteers use their personal computers to 
perform pieces of the search. 

# P Digits Year Published Reference 

1 2 1 Ant. 

2 3 1 Ant. 

3 5 2 Ant. 

4 7 3 Ant. 

5 13 4 1461 Reguis 1536, Cataldi 1603 

6 17 6 1588 Cataldi 1603 

7 19 6 1588 Cataldi 1603 

8 31 10 1750 Euler 1772 

9 61 19 1883 Pervouchine 1883, 

Seelhoff 1886 

10 89 27 1911 Powers 1911 

11 107 33 1913 Powers 1914 

12 127 39 1876 Lucas 1876 

13 521 157 1952 Lehmer 1952-3 

14 607 183 1952 Lehmer 1952-3 

15 1279 386 1952 Lehmer 1952-3 

16 2203 664 1952 Lehmer 1952-3 

17 2281 687 1952 Lehmer 1952-3 

18 3217 969 1957 Riesel 1957 

19 4253 1281 1961 Hurwitz 1961 

20 4423 1332 1961 Hurwitz 1961 

21 9689 2917 1963 Gillies 1964 

22 9941 2993 1963 Gillies 1964 

23 11213 3376 1963 Gillies 1964 

24 19937 6002 1971 Tuckerman 1971 

25 21701 6533 1978 No11 and Nickel 1980 

26 23209 6987 1979 No11 1980 

27 44497 13395 1979 Nelson and Slowinski 1979 

28 86243 25962 1982 Slowinski 1982 

29 110503 33265 1988 Colquitt and Welsh 1991 

30 132049 39751 1983 Slowinski 1988 

31 216091 65050 1985 Slowinski 1989 

32 756839 227832 1992 Gage and Slowinski 1992 

33 859433 258716 1994 Gage and Slowinski 1994 

34 1257787 378632 1996 Slowinski and Gage 

35 1398269 420921 1996 Armengaud, Woltman, et al. 

36? 2976221 895832 1997 Spence 

37? 3021377 909526 1998 Clarkson, Woltman, et al. 

see also CUNNINGHAM NUMBER,FERMAT-LUCAS NUM- 

BER, FERMAT NUMBER, FERMAT NUMBER (Lu- 
CAS), FERMAT POLYNOMIAL, LUCAS-LEHMER TEST, 
MERSENNE NUMBER, PERFECT NUMBER, REPUNIT, 
SUPERPERFECT NUMBER 
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Mertens Conjecture 
Given MERTENS FUNCTION defined by 

(1) 
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where p(n) is the MOBIUS FUNCTION, Mertens (1897) 
conjecture states that 

IM(x)I < x=i2 (2) 

for it: > 1. The conjecture has important implications, 
since the truth of any equality of the form 

IM(x)l 2 cx1’2 (3) 

Mertens Constant 
A constant related to 
which appears in the F 
PRIMES 

X 

x 

1 -- - 
‘x1 

p prime 1 

which is given by 

the TWI :N PRIMES CONSTANT 
‘ORMULA for the sum of inverse 

lnlna: + Bl + o(l) (1) 

for any fixed c (the form of Mertens conjecture with 
c = 1) would imply the RIEMANN HYPOTHESIS. In 1885, 
Stieltjes claimed that he had a proof that M(x)x-~/~ 
always stayed between two fixed bounds. However, it 
seems likely that Stieltjes was mistaken. 

z 0.261497. (2) 

Flajolet and Vardi (1996) show that 

Mertens conjecture was proved false by Odlyzko and te 
Ride (1985). Their proof is indirect and does not pro- 
duce a specific counterexample, but it does show that 

lim sup M(zc)z/‘~ > 1.06 
X+00 

(4) 

lim inf M(2)2-1’2 < -1.009. (5) 
X+m 

Odlyzko and te Riele (1985) believe that there are no 
counterexamples to Mertens conjecture for z 5 102’, or 
even 103’. Pintz (1987) subsequently showed that at 
least one counterexample to the conjecture occurs for 
3 < 10”5, using a weighted integral average of M(x)/x - 
and a discrete sum involving nontrivial zeros of the RIE- 
MANN ZETA FUNCTION. 

It is still not known if 

lim sup ~M(x)[x-~‘~ = 00, 
X-ho0 

(6) 

although it seems very probable (Odlyzko and te Riele 
1985). 

see dso MERTENS FUN 
MANN HYPOTHESIS 

CTION , M~~BIUS FUNCTION , RIE- 

17, 29-43,1986. 
Grupp, F. “On the Mertens Conjecture for Cusp Forms.” 

Mathematika 29, 213-226, 1982. 
Jurkat, W. and Peyerimhoff, A. “A Constructive Approach 

to Kronecker Approximation and Its Application to the 
Mertens Conjecture.” J. reine angew. Math. 286/287, 
322-340,1976. 

Mertens, F. &%ber eine zahlentheoretische F’unktion.” 
Sitzungsber. Akad. Wiss, Wien IIa 106, 761-830, 1897. 

Odlyzko, A. M. and te Riele, H. J. J. “Disproof of the Mertens 
Conjecture.” J. reine angew. Math. 357, 138-160, 1985. 

Pintz, J. “An Effective Disproof of the Mertens Conjecture.” 
Aste’rique 147-148, 325-333 and 346, 1987. 

te Riele, H. J. J. “Some Historical and Other Notes About 
the Mertens Conjecture and Its Recent Disproof.” Nieuw 
Arch. Wisk. 3, 237-243, 1985. 

where y is the EULER-MASCHERONI CONSTANT, c(n) is 
the RIEMANN ZETA FUNCTION, and p(n) is the MOBIUS 
FUNCTION. The constant B1 also occurs in the SUM- 
MATORY FUNCTION of the number of DISTINCT PRIME 
FACTORS, 

2 0 Wk =nlnlnn+B~n+o(n) 

k=2 

(4 

(Hardy and Wright 1979, p- 355). 

The related constant 

* 

~~ = 7 + x z 1.034653 (5) 1 In(I - p-‘) + & 1 
p prime L 

appearsinthe SUMMATORY FUNCTION of the DIVISOR 
FUNCTION so(n) = O(n), 

k=2 

= nlnlnn + B2 + o(n) (6) 

(Hardy and Wright 1979, pa 355). 

see also BRUN'S CONSTANT, PRIME NUMBER, TWIN 
PRIMES CONSTANT 
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Mertens Function References 

The summary function 

where p(n) is the M~BIWS FUNCTION. The first few 
values are 1, 0, -1, -1, -2, -1, -2, -2, -2, -1, -2, 
-2, .*. (Sloane’s A002321) The first few values of 72 at 
which M(n) = 0 are 2, 39, 40, 58, 65, 93, 101, 145, 149, 
150, l  . . (Sloane’s A028442). 

Mertens function obeys 

kM(Z) =l 
n=l 

(Lehman 1960). The analytic form is unsolved, although 
MERTENS CONJECTURE that 

pf(x)l < x1’2 

has been disproved. 

Lehman (1960) gives an algorithm for computing M(x) 
with 0(xzi3+’ ) operations, while the Lagarias-Odlyzko 
(1987) algorith m for computing the PRIME COUNT- 
ING FUNCTION n(x) can be modified to give m(x) in 

O( ZC~‘~+~) operations. 

see UZSO MERTENS CONJECTURE, MOBIUS FUNCTION 
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Me&ens Theorem 

rI 2<PIX 
p prime 

P - 3 

lim 
e--Y 

= 1, 
2-00 

In 5 

where y is the EULER-MASCHERONI CONSTANT and 
em7 = 0.56145.. . . 

Hardy, G. H. and Wright, E. M. An bztroduc~ion. to the The- 
ory of Numbers, 5th ed. Oxford, England: Oxford Univer- 
sity Press, p. 351, 1979. 

Riesel, H. Prime Numbers and Computer Methods for Fac- 
torizution, 2nd ed. Boston, MA: Birkhguser, pp. 66-67, 

Mertz Apodization Function 

An asymmetrical APODIZATION FUNCTION defined by 

for x < -b 

for x < b + 2d, 

where the two-sided portion is 2b long (total) and the 
one-sided portion is b+ 2d long (Schnopper and Thomp- 
son 1974, p. 508). The APPARATUS FUNCTION is 

MA@, b, d) = 
sin[2rk(b + 2d) 

2nk 

sin(2b) 

2nk - 4z2k2b 

References 
Schnopper, H. W. and Thompson, R. I. “Fourier Spectrom- 

eters.” In Methods of Experimental Physics 12A. New 
York: Academic Press, pp. 491-529, 1974. 

Mesh Size 
When a CLOSED INTERVAL [a, b] is partitioned by points 

a < xl < x2 < . . . < x+-1 < b, the lengths of the 
resulting intervals between the points are denoted AxI, 
A~29 .+-j Axn, and the value max Axk is called the 
mesh size of the partition. 

see UZSU INTEGRAL, LOWER SUM, RIEMANN INTEGRAL, 
UPPER SUM 

Mesokurtic 
A distribution with zero KURTOSIS (72 = 0). 

see also KURTOSIS, LEPTOKURTIC 

Metabiaugmented Dodecahedron 

see JOHNSON SOLID 

Metabiaugmented Hexagonal Prism 

see JOHNSON SOLID 
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Metabiaugmented Truncated Dodecahedron 

see JOHNSON SOLID 

Metabidiminished Icosahedron 

see JOHNSON SOLID 

Metabidiminished Rhombicosidodecahedron 

see JOHNSON SOLID 

Metabigyrate Rhombicosidodecahedron 

see JOHNSON SOLID 

Metadrome 
A metadrome is a number whose HEXADECIMAL digits 
are in strict ascending order. The first few are 0, 1, 2, 
3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 18, 19, 20, 21, 
22, 23, 24, 25, 26, 27, . . . (Sloane’s A023784). 

see also HEXADECIMAL 

References 
Sloane, N. J. A. Sequence A023784 in “An On-Line Version 

of the Encyclopedia of Integer Sequences.” 

Metagyrate Diminished 
Rhombicosidodecahedron 

see JOHNSON SOLID 

Metalogic 

see METAMATHEMATICS 

Metamathematics 
The branch of LOGIC dealing with the study of the 
combination and application of mathematical symbols, 
sometimes called METALOGIC. Metamathematics is the 
study of MATHEMATICS itself, and one of its primary 
goals is to determine the nature of mathematical rea- 
soning (Hofstadter 1989). 

see UZSO LOGIC, MATHEMATICS 
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Method 
A particular way of doing something, sometimes also 
called an ALGORITHM or PROCEDURE. (According to 
Petkovgek et al. (1996), “a method is a trick that has 
worked at least twice.“) 

see ~1~0 ADAMS-BASHFORTH-MOULTON METHOD, 
ADAMS' METHOD, BACKUS-GILBERT METHOD, BA- 
DER-DEUFLI-IARD METHOD, BAILEY'S METHOD, BAIR- 
STOW'S METHOD, BRENT'S FACTORIZATION METH- 
OD, BRENT'S METHOD,~IRCLE METHODCONJUGATE 
GRADIENT METHOD, CRISS-CROSS METHOD, CROUT'S 

METHOD, DE LA LOU~ERE’S METHOD, DIXON’S FAC- 
TORIZATION METHOD, DIXON'S RANDOM SQUARES 
FACTORIZATION METHOD, ELLIPTIC CURVE FACTOR- 
IZATION METHOD, EULER'S FACTORIZATION METHOD, 
EXCLUDENT FACTORIZATION METHOD, EXHAUSTION 
METHOD, FALSE POSITION METHOD, FERMAT'S FAC- 
TORIZATION METHOD, FROBENIUS METHOD, GILL'S 
METHOD, GOSPER'S METHOD, GRAEFFE'S METH- 
OD, GREENE'S METHOD, HALLEY'S METHOD, HOR- 
NER'S METHOD, HUTTON'S METHOD, JACOBI METH- 
OD, KAPS-RENTROP METHODS, LAGUERRE'S METH- 
OD, LAMBERT'S METHOD, LEGENDRE'S FACTORIZA- 
TION METHOD, LEHMER METHOD, I;EHMER-SCHUR 
METHOD, LENSTRA ELLIPTIC CURVE METHOD, LIN'S 
METHOD,LOZENGEMETHOD, LUX METHOD,MAPES' 
METHOD, MAXIMUM ENTROPY METHOD, MILNE'S 
METHOD, MULLER'S METHOD, NEWTON'S METHOD, 
NEWTON-RAPHSON METHOD, NUMBER FIELD SIEVE 
FACTORIZATION METHOD, OVERLAPPING RESONANCE 
METHOD, POLLARD MONTE CARLO FACTORIZATION 

.METHOD,~OLLARD p FACTORIZATION METHOD, POL- 
LARD p - 1 FACTORIZATION METHOD, PREDICTOR- 
CORRECTOR METHODS, QUADRATIC SIEVE FACTOR- 
IZATION METHOD, RESONANCE OVERLAP METHOD, 
ROSENBROCK METHODS, RUNGE-KUTTA METHOD, 
SCHR~DER'S METHOD, SECANT METHOD, SIAMESE 
METHOD, SIMPLEX METHOD, SNAKE OIL METHOD, 
SQUARE ROOT METHOD, STEEPEST DESCENT METH- 
OD,TANGENTHYPERBOLAS METHOD,~NDETERMINED 
COEFFICIENTS METHOD, WILLIAMS p + 1 FACTORIZA- 
TION METHOD,~YNN'S EPSILON METHOD 

References 
Petkovgek, M. ; Wilf, H. S.; and Zeilberger, D. A =B. Welles- 

ley, MA: A. K. Peters, p* 117, 1996. 

Metric 
A NONNEGATIVE function g(x, y) describing the “DIS- 

TANCE" between neighboring points for a given SET. A 
metric satisfies the TRIANGLE INEQUALITY 

9(x, Y) + dY7 4 2 g(c 4, 

with equality IFF x = y, and is symmetric, so 

A SET possessing a metric is called a METRIC SPACE. 
When viewed as a TENSOR, the metric is called a MET- 
RIC TENSOR. 

see also CAYLEY-KLEIN-HILBERT METRIC, DISTANCE, 
FUNDAMENTALFORMS,HYPERBOLICMETRIC,METRIC 
ENTROPY, METRIC EQUIVALENCE PROBLEM, METRIC 
SPACE, METRIC TENSOR, PART METRIC, RIEMANNIAN 
METRIC, ULTRAMETRIC 

References 
Gray, A. “Metrics on Surfaces.” Ch. 13 in Modern Difleren- 

tial Geometry of Curves and Surfaces. Boca Raton, FL: 
CRC Press, pp. 251-265, 1993. 
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Metric Entropy 
Also known as K~LMOGOROV ENTROPY, K~LMOGOR- 
OV-SINAI ENTROPY, or KS Entropy. The metric entropy 
is 0 for nonchaotic motion and > 0 for CHAOTIC motion. 

References 
Ott, E. Chaos ilz Dynamical Systems. New York: Cambridge 

University Press, p. 138, 1993. 

Metric Equivalence Problem 

1. Find a complete system of invariants, or 

2. decide when two METRICS differ only by a coordinate 
transformation. 

The most common statement of the problem is, “Given 
METRICS g and g’, does there exist a coordinate trans- 
formation from one to the other?” Christoffel and Lip- 
schitz (1870) showed how to decide this question for two 
RIEMANNIAN METRICS. 

The solution by E. Cartan requires computation of the 
10th order COVARIANT DERIVATIVES. The demonstra- 
tion was simplified by A. Karlhede using the TETRAD 
formalism so that only seventh order COVARIANT 
DERIVATIVES need be computed. However, in many 
common cases, the first or second-order DERIVATIVES 
are SUFFICIENT to answer the question. 

References 
Karlhede, A. and Lindstrijm, U. “Finding Space-Time Ge- 

ometries without Using a Metric.” Gen. Relativity Gravi- 
tafion.15, 597-610, 1983. 

Metric Space where qa:p is the MINKOWSKI METRIC. This can also be 

A SET S with a global distance FUNCTION (the METRIC 

g) which, for every two points 2, y in S, gives the DIS- 
TANCE between them as a NONNEGATIVE REAL NUM- 
BER 9(&Y)* A metric space must also satisfy 

1. g(x, X) = 0 IFF z = y, 

2. S(X,Y) = 9(YJL 

written 

9 = DTrjD, w 

D,, E g (12) 

D TED,,. acL (13) 3. The TRIANGLE INEQUALITY g(x,y) + g(y,z) 2 
9(x, 4* 

References 
Munkres, J. R. Topology: A First Cozlrse. Englewood Cliffs, 

NJ: Prentice-Hall, 1975. 
Rudin, W. Principles of Mathematical Analysis. New York: 

McGraw-Hill, 1976. 

Metric Tensor 
A TENSOR, also called a RIEMANNIAN METRIC, which 
is symmetric and POSITIVE DEFINITE. Very roughly, 
the metric tensor gij is a function which tells how to 
compute the distance between any two points in a given 
SPACE. Its components can be viewed as multiplication 
factors which must be placed in front of the differen- 
tial displacements dxi in a generalized PYTHAGOREAN 
THEOREM 

ds2 = glldx12 + g12 dxl dxz + g22 dx22 + . l  . . (1) 

In EUCLIDEAN SPACE, gij = &j where 6 is the KRON- 
ECKER DELTA (which is 0 for i # j and 1 for i = j), 
reproducing the usual form of the PYTHAGOREAN THE- 
OREM 

ds2 = dx12 + dxz2 + . . l  l  
(2) 

The metric tensor is defined abstractly as an INNER 
PRODUCT of every TANGENT SPACE of a MANIFOLD 
such that the INNER PRODUCT is a symmetric, non- 
degenerate, bilinear form on a VECTOR SPACE. This 
means that it takes two VECTORS v,w as arguments 
and produces a REAL NUMBER (v, w) such that 

(kv, w) = k (v, w) = (v, kw) (3) 

(v + w,x) = (v,x) + (w,x) (4) 

(Y w + x) = (v, w) + (v, x) (5) 

hw> = h 4 (6) 

(VT) 2 0, (7) 

with equality IFF v = 0. 

In coordinate NOTATION (with respect to the basis), 

(10) 

(14) 

gives 
agl” lk %il 

9ilG = -9 dam’ (15) 

The metric is POSITIVE DEFINITE, so a metric’s DIS- 

CRIMINANT is POSITIVE. For a metric in 2-space, 

9 = gng22 -g122 > 0. (16) 

The ORTHOGONALITY of CONTRAVARIANT and CUVARI- 
ANT metrics stipulated by 

g&j = 6; (17) 

for 
212 

i = 1, . . . . n gives n linear equations relating the 
quantities gij and g? Therefore, if n metrics are 

known, the others can be determined. 



Illetric Tensor Mice Problem 1167 

In 2-space, 

11 
9 

m 
=g (18) 

12 
9 =g21=-T 912 (19) 

22 
g 911 

=7 
(20) 

If g is symmetric, then 

In EUCLIDEAN SPACE (and all other symmetric 
SPACES), 

SO 
1 

gas = 
9 

aa ’ (24) 

The ANGLE 4 between two parametric curves is given 

bY 
r1 r2 912 

cos+~l'&=-'-=-, 

91 92 gE?2 
(25 > 

Js sin 4 = - 
QmJ 

(26) 

Ir1 xr2[ =g1g2sin+= &. (27) 

The LINE ELEMENT can be written 

ds2 = dxi dxi = gij dqi dqj (28) 

where EINSTEIN SUMMATION has been used. But 

dXi 
dxi = G dql + 

aXi dXi dXi 
- dq2 + - dq3 = - dqj 9 
hl2 &23 8% 

(29) 

For ORTHOGONAL coordinate systems, g;j = 0 
and the LINE ELEMENT becomes (for S-space) 

gij = 
a2 xk 

(30) 

for i # j, 

ds2 = 911 dq12 + gm dqz2 + 933 dqs2 

= (h dq1)’ + (hz dq2)2 + (h dq3)2, (31) 

where hi E 6 are called the SCALE FACTORS. 

see also CURVILINEAR COORDINATES, DISCRIMINANT 
(METRIC), LICHNEROWICZ CONDITIONS, LINE ELE- 
MENT, METRIC, METRIC EQUIVALENCE PROBLEM, 
MINKOWSKI SPACE, SCALE FACTOR, SPACE 

Mex 
The MINIMUM excluded value. The mex of a SET S 
of NONNEGATIVE INTEGERS is the least NONNEGATIVE 
INTEGER notin the set. 

see also MEX SEQUENCE 

References 
Guy, R. K. Wax and Mex Sequences.” SE27 in Unsolved 

Problems in Number Theory, 2nd ed. New York: Springer- 
Verlag, pp. 227-228, 1994. 

Mex Sequence 
A sequence defined from a FINITE sequence a~, al, l  . l  , 
a, by defining a,+1 = mexi (ai + a, -i) , where mex is 
the MEX (minimum excluded value). 

see also MAX SEQUENCE, MEX 

References 
Guy, R. K. “Max and Mex Sequences.” SE27 in Unsolved 

Problems in Number Theory, 2nd ed. New York: Springer- 
Verlag, ppm 227-228, 1994. 

Mian-Chowla Sequence 
The sequence produced by starting with al = 1 and 
applying the GREEDY ALGORITHM in the following way: 
for each k > 2, let ak be the least INTEGER exceeding - 
a&1 for which uj + ak are all distinct, with 1 5 j < k. 
This procedure generates the sequence 1, 2, 4, 8, 13, 
21, 31, 45, 66, 81, 97, 123, 148, 182, 204, 252, 290, 
. . . (Sloane’s A005282). The RECIPROCAL sum of the 
sequence, 

O” 1 S=X-&, 
i=l 

satisfies 
2.1568 < S < 2.1596. - - 

see also A-SEQUENCE, &-SEQUENCE 

References 
Guy, R. K. “&-Sequences.” §I328 in Unsolved Problems 

in Number Theory, 2nd ed. New York: Springer-Verlag, 
pp. 228-229, 1994. 

Sloane, N. J* A. Sequence A005282/MI094 in “An On-Line 
Version of the Encyclopedia of Integer Sequences.” 

Mice Problem 
72 mice start at the corners of a regular n-gon of unit 
side length, each heading towards its closest neighboring 
mouse in a counterclockwise direction at constant speed. 
The mice each trace out a SPIRAL, meet in the center of 
the POLYGON, and travel a distance 

d, = 
1 

1 - cos (E) ’ 

The first few values for n = 2, 3, . . l  , are 

~,~,1,~(5+~),2, ’ 
1 - cos ($?) ’ 

1 - 

2+d2, 
1 -co; ($) ’ 

3+J5,..., 
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giving the numerical values 0.5, 0.666667, 1, 1.44721, 2, 
2.65597, 3.41421, 4.27432, 5.23607, . . . . 

see also APOLLONIUS PURSUIT PROBLEM, PURSUIT 
CURVE, SPIRAL, TRACTRIX 

References 
Bernhart, A. “Polygons of Pursuit.” Scripta Math. 24, 23- 

50, 1959. 
Madachy, J. S. Madachy’s Mathematical Recreations. New 

York: Dover, pp+ 201-204, 1979. 

Mid-Arc Points 
c 

MAC 
MBC 

AT 

MAE 

The mid-arc points MAB, MAC, and MBC of a TRI- 

ANGLE AABC are the points on the CIRCUMCIRCLE of 
the triangle which lie half-way along each of the three 
ARCS determined by the vertices (Johnson 1929). These 
points arise in the definition of the FUHRMANN CIRCLE 
and FUHRMANN TRIANGLE, and lie on the extensions 
ofthe PERPENDICULAR BISECTORS of the triangle sides 
drawn from the CIRCUMCENTER 0. 

Kimberling (1988, 1994) and Kimberling and Veldkamp 
(1987) define the mid-arc points as the PUNTS which 
have TRIANGLE CENTER FUNCTIONS 

a1 = [cos( $B) + cos( $C)] sec( iA) 

a2 = [cos( $3) + cos( +C)] csc( +A). 

see also FUHRMANN CIRCLE,FUHRMANN TRIANGLE 

References 
Johnson, R. A. Modern Geometry: An Elementary Treatise 

on the Geometry of the Triangle and the Circle. Boston, 
MA: Houghton Mifflin, pp. 228-229, 1929. 

Kimberling, C. “Problem 804.” Nieuw Archief uoor 
Wiskunde 6, 170, 1988. 

Kimberling, C. “Central Points and Central Lines in the 
Plane of a Triangle.” Math. Mug. 67, 163-187, 1994. 

Kimberling, C. and Veldkamp, G. R. “Problem 1160 and So- 
lution.” Crux: Math. 13, 298-299, 1987. 

Midcircle 

The midcircle of two given CIRCLES is the CIRCLE which 
would INVERT the circles into each other. Dixon (1991) 
gives constructions for the midcircle for four of the five 
possible configurations. In the case of the two given 
CIRCLES tangent to each other, there are two midcircles. 

see ~2~0 INVERSION, INVERSION CIRCLE 

References 
Dixon, R. Mathogruphics. New York: Dover, pp. 66-68, 1991. 

Middlespoint 

~~~MITTENPUNKT 

Midpoint 

A 

The point on a LINE SEGMENT dividing it into two seg- 
ments of equal length. The midpoint of a line segment is 
easy to locate by first constructing a LENS using circular 
arcs, then connecting the cusps of the LENS. The point 
where the cusp-connecting line intersects the segment is 
then the midpoint (Pedoe 1995, p. xii). It is more chal- 
lenging to locate the midpoint using only a COMPASS, 
but Pedoe (1995, pp* xviii-xix) gives one solution. 

In a RIGHT TRIANGLE, the midpoint of the HY- 
POTENUSE is equidistant from the three VERTICES 
(Dunham 1990). 



Midpoint Ellipse Midy’s Theorem 

Given a TRIANGLE AAlAzAs with AREA A, locate the 
midpoints ik&. Now inscribe two triangles AP#& and 
AQlQ2Q3 with VERTICES Pi and Qi placed so that 
Pi Mi = QiMi. 
equal areas 

Ap = AQ=A 1 
[ 

Then APi Pz P3 and AQ, Q2Q3 ha 

ml - -+mz+ 
al a2 

-Lm2m2 

m3 

a3 > 

m3m 
+- 

a3al 

mlm2 
+- 

ala2 a2 a3 1 
where ai are the sides of the original triangle and rni are 
the lengths of the MEDIANS (Johnson 1929). 

see also ARCHIMEDES’ MIDPOINT THEOREM, BROCARD 
MIDPOINT, CIRCLE-POINT MIDPOINT THEOREM, LINE 
SEGMENT, MEDIAN (TRIANGLE), MIDPOINT ELLIPSE 

References 
Dunham, W. Journey Through Genius: The Great Theorems 

of Mathematics. New York: Wiley, pp. 120421, 1990. 
Johnson, R. A. Modern Geometry: An Elementary Treatise 

on the Geometry of the Triangle and the Circle. Boston, 
MA: Houghton Mifflin, p. 80, 1929. 

Pedoe, D. Circles: A Mathematical View, rev. ed. Washing- 
ton, DC: Math. Assoc. Amer., 1995. 

Midpoint Ellipse 
The unique ELLIPSE tangent to the MIDPOINTS of a TRI- 
ANGLE'S LEGS. The midpoint ellipse has the maximum 
AREA of any INSCRIBED ELLIPSE (Chakerian 1979). Un- 
der an AFFINE TRANSFORMATION, the midpoint ellipse 
can be transformed into the INCIRCLE of an EQUILAT- 
ERAL TRIANGLE. 

see also AFFINE TRANS FORMATION, ELLIPSE, 
CLE, MIDPOINT, TRIANG LE 

INCIR- 

References 
Central Similarities. University of Minnesota College Geom- 

etry Project, Distributed by International Film Bureau, 
Inc. 

Chakerian, G. D. “A Distorted View of Geometry.” Ch. 7 
in Mathematical Plums (Ed. R. Honsberger). Washington, 
DC: Math. Assoc. Amer., pp. 135-136 and 145-146, 1979. 

Pedoe, D. “Thinking Geometrically.” Amer. Math. Monthly 
77, 711-721, 1970. 

Midradius 
The RADIUS ofthe MIDSPHERE of a POLYHEDRON, also 
called the INTERRADIUS. For a REGULAR POLYHEDRON 
with SCHL~FLI SYMBOL {q,p}, the DUAL POLYHEDRON 
is {p, q}. Denote the INRADIUS T, midradius p, and CIR- 
CUMRADIUS R, and let the side length be a. Then 

[ 01 
2 r2 = acsc T + R2 = a2 + p2 

p2 = pot (‘)I 

(1) 

2 7T 
5 

+ R2. (2) 
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INRADIUS p2/R. Let 0 be the ANGLE subtended by the 
EDGE ofan ARCHIMEDEAN SOLID. Then 

so 

r= +a cos( is> cot( fe> (3) 

P- +acot(@) (4) 

R= +a csc( $), (5) 

r : p : R = cos(@) : 1 : set($) (6) 

(Cundy and Rollett 1989). Expressing the midradius in 
terms ofthe INRADIUS r and CIRCUMRADIUS R gives 

for an ARCHIMEDEAN SOLID. 

References 
Cundy, H. and Rollett, A. Mathematical Models, 3rd ed. 

Stradbroke, England: Tarquin Pub., pp. 126-127, 1989. 

Midrange 

midrange[f(z)] G i{max[f(z)] + min[f(z)]}. 

see also MAXIMUM, MEAN, MEDIAN (STATISTICS), 
MINIMUM 

Midsphere 
The SPHERE with respect to which the VERTICES of a 
POLYHEDRON are the poles of the planes of the faces 
of the DUAL POLYHEDRON (and vice versa). It touches 
all EDGES of a SEMIREGULAR POLYHEDRON or REGU- 

LAR POLYHEDRON. It is also called the INTERSPHERE 
or RECIPROCATING SPHERE. 

see also CIRCUMSPHERE, DUAL POLYHEDRON, IN- 
SPHERE 

Midy’s Theorem 
If the period of a REPEATING DECIMAL for a/p has an 
EVEN number of digits, the sum of the two halves is a 
string of 9s, where p is PRIME and a/p is a REDUCED 
FRACTION. 

see also DECIMAL EXPANSION, REPEATING DECIMAL 

References 
Rademacher, H. and Toeplitz, 0. The Enjoyment of Math- 

ematics: Selections from Mathematics for the Amateur. 
Princeton, NJ: Princeton University Press, pp. 158-160, 
1957. 

For REGULAR POLYHEDRA and UNIFORM POLYHEDRA, 
the DUAL POLYHEDRON has CIRCUMRADIUS p2/r and 
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Mikusiriski’s Problem Miller Cylindrical Projection 
Is it possible to cover completely the surface of a SPHERE 
with congruent, nonoverlapping arcs of GREAT CIR- 

CLES? Conway and Croft (1964) proved that it can be 
covered with half-open arcs, but not with open arcs. 
They also showed that the PLANE can be covered with 
congruent closed and half-open segments, but not with 
open ones. 

References 
Conway, J. H. and Croft, I-I. T. “Covering a Sphere with 

Great-Circle Arcs .” Proc. Cambridge Phil, Sot. 60, 787- 

900, 1964. . . ...* _ 

Gardner, M. “Point Sets on the Sphere.” Ch+ 12 in Knotted 
Doughnuts and Other Mathematical Entertainments. New 

A MAP PROJECTION given by the following transforma- 

York: W. H. Freeman, pp. 145-154, 1986. tion, 

Milin Conjecture 
An INEQUALITY which IMPLIES the correctness of the 
ROBERTSON CONJECTURE (Milin 1971). de Branges 
(1985) proved this conjecture, which led to the proof 
ofthe full BTEBERBACH CONJECTURE. 

see UZSO BIEBERBACH CONJECTURE, ROBERTSON CON- 
JECTURE 

References 
de Branges, L. “A Proof of the Bieberbach Conjecture.” Acta 

Math. 154, 137-152, 1985. 
Milin, I. M. Univalent Functions and Orthonormal Systems. 

Providence, RI: Amer. Math. Sot., 1977. 

x=x--x~ (1) 

y = % ln[tan(+x + $4)] (2) 

- it sinh-‘[tan( $)I. - (3) 

Here x and y are the plane coordinates of a projected 
point, X is the longitude of a point on the globe, X0 is 
central longitude used for the projection, and 4 is the 
latitude of the point on the globe. The inverse FORMU- 
LAS are 

Stewart, I. From Here to Infinity: A Guide to Today’s 
Mathematics. Oxford, England: Oxford University Press, 
p. 165, 1996. 

4 = $ tan-1(e4y/5) - gn = z tan-‘[sinh( (4) 

x = A() + 2. 

References 

(5) 

Mill 
The n-roll mill curve is given by the equation 

Snyder, J. P. Map Projections-A Working Manual. U. S. 
Geological Survey Professional Paper 1395. Washington, 
DC: U. S. Government Printing Office, pp. 86-89, 1987. 

ICn- (;).“-aya+ (;)x~-4y4-***=u~, Miller’s Primality Test 
* If a number fails this test, it is not a PRIME. If the 

number passes, it may be a PRIME. A number passing 

where i 0 is a BINOMIAL COEFFICIENT. 

References 
von Seggern, D. CRC Standard Curves and Surfaces. Boca 

Raton, FL: CRC Press, p. 86, 1993. 

Miller’s Algorithm 
For a catastrophically unstable recurrence in one direc- 
tion, any seed values for consecutive xj and xj+l will 
converge to the desired sequence of functions in the op- 
posite direction times an unknown normalization factor. 

Miller’s test is called a STRONG PSEUDOPRIME to base 
a. If a number n does not pass the test, then it is called a 
WITNESS for the COMPOSITENESS of n. If n is an ODD, 
POSITIVE COMPOSITE NUMBER, then n passes Miller’s 
test for at most (n - 1)/4 bases with 1 5 a 5 -1 (Long 
1995)* There is no analog of CARMICHAEL NUMBERS 
for STRONG PSEUDOPRIMES. 

The only COMPOSITE NUMBER less than 2.5 x 1013 which 
does not have 2, 3, 5, or 7 as a WITNESS is 3215031751. 
Miller showed that any composite n has a WITNESS less 
than 70(lnn)2 if the RIEMANN HYPOTHESIS is true. 

~~~ELONGATED SQUARE GYROBICUPOLA 

Miller-Askinuze Solid see UZSO ADLEMAN-POMERANCE-RUMELY PRIMALITY 
TEST,STRONG PSEUDOPRIME 

Heferences 
Long, C. T. Th. 4.21 in Elementary Introduction to Number 

Theory, 3rd ed. Prospect Heights, IL: Waveland Press, 
1995. 

Miller’s Solid 

~~~ELONGATED SQUARE GYROBICUPOLA 
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Milliard 
In British, French, and German usage, one milliard 
equals 10’. American usage does not have a number 
called the milliard, instead using the term BILLION to 
denote 10’. 

see also BILLION, LARGE NUMBER, MILLION, TRILLION 

Millin Series 
The series with sum 

1 - - - 
F2n 

$(7 - J5), 

where Fk is a FIBUNACCI NUMBER (Honsberger 1985). 

see also FIBONACCI NUMBER 

fCeferences 
Honsberger, R. Mathematical Gems III, Washington, DC: 

Math. Assoc. Amer., pp. 135-137, 1985. 

Million 
The number l,OOO,OOO = lo? While one million in 
America means the same thing as one million in Britain, 
the words BILLION, TRILLION, etc., refer to d$ferent 
numbers in the two naming systems. While Americans 
may say “Thanks a million” to express gratitude, Nor- 
wegians offer “Thanks a thousand” (“tusen takk”). 

see also BILLION, LARGE NUMBER, MILLIARD, THOU- 
SAND, TRILLION 

Mills’ Constant 
N.B. A detailed on-line essay by S. Finch was the start- 
ing point fur this entry. 

Mills (1947) proved the existence of a constant 8 = 
1.3064.. . such that 

is PRIME for all n 2 1, where Lx] is the FLOOR FUNC- 
TION. It is not, however, known if 0 is IRRATIONAL. 
Mills’ proof was based on the following theorem by Ho- 
heisel (1930) and Ingham (1937). Let p, be the nth 
PRIME, then there exists a constant K such that 

Pn+l -pn < Kpn5/’ (2) 

for all n. This has more recently been strengthened to 

Pn+l 
I pn < Kpn1051/1g20 

(3) 

(Mozzochi 1986). If the RIEMANN HYPOTHESIS is true, 
then Cram& (1937) showed that 

(Finch). 

Hardy and Wright (1979) point out that, despite the 
beauty of such FORMULAS, they do not have any prac- 
t ical consequences. In fact, unless the exact value of 
8 is known, the PRIMES themselves must be known in 
advance to determine 0. A generalization of Mills’ theo- 
rem to an arbitrary sequence of POSITIVE INTEGERS is 
given as an exercise by Ellison and Ellison (1985). Con- 
sequently, infinitely many values for 8 other than the 
number 1.3064 . . l  are possible. 

References 
Caldwell, C. “Mills’ Theorem-A Generalization.” http : // 

www.utm.edu/research/primes/notes/proofs/A3n,html. 
Ellison, W. and Ellison, F. Prime Numbers. New York: Wi- 

ley, pp. 31-32, 1985. 
Finch, S. “Favorite Mathematical Constants.” http: //www, 

mathsoft,com/asolve/constant/mills/mills.html. 
Hardy, G. H. and Wright, E. M. An Introduction to the The- 

ory of Numbers, 5th ed. Oxford, England: Clarendon 
Press, 1979. 

Mills, W. H. "A P rime-Representing Fwxtion.” Bull. Amer. 
Math. Sot. 53, 604, 1947. 

Moazochi, C. J. “On the Difference Between Consecutive 
Primes.” J. Number Th. 24, 181-187, 1986. 

Ribenboim, P. The Book of Prime Number Records, 2nd ed. 
New York: Springer-Verlag, pp* 135 and 191-193, 1989. 

Ribenboim, P. The Little Book of Big Primes. New York: 
Springer-Verlag, pp* 109-110, 1991. 

Milne’s Method 
A PREDICTOR-CORRECTOR METHOD for solution of 
ORDINARY DIFFERENTIAL EQUATIONS. Thethird-order 
equations for predictor and corrector are 

Yn+l = yn-3 + $h(2yk - Y;-1 + 2y;w2) + O(h’) 

Yn+l = Y-1 + $(&x-l + 4~; + Y;+~) + O(h5). 

Abramowitz and Stegun (1972) also give the fifth order 
equations and formulas involving higher derivatives. 

see UZSO ADAMS' METHOD, GILL's METHOD, PREDIC- 
TOR-CORRECTOR METHODS,RUNGE-KUTTA METHOD 

References 
Abramowitz, M. and Stegun, C. A. (Eds.). Handbook 

of Mathematical Functions with Formulas, Graphs, and 
Mathematical Tables, 9th printing. New York: Dover, 
pp. 896-897, 1972. 

Milnor’s Conjecture 
The UNKNOTTING NUMBER for a TORUS KNOT (p,q) 

is (p - l)(q - 1)/2. This 40-year-old CONJECTURE was 
proved (Adams 1994) in Kronheimer and Mrowka (1993, 
1995) l  

see UZSO TORUS KNOTJJNKNOTTING NUMBER 

References 
Adams, C. C. The Knot Book: An Elementary Introduction 

to the Mathematical Theory of Knots. New York: W. I-I. 
Freeman, p. 113, 1994. 

Kronheimer, P. B. and Mrowka, T. S. “Gauge Theory for 
Embedded Surfaces. I.” Topology 32, 773-826, 1993. 

Kronheimer, P. B. and Mrowka, T. S. “Gauge Theory for 
Embedded Surfaces. II.” Topology 34, 37-97, 1995. 
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Milnor’s Theorem There are ZnW1 minimal SPECIAL MATRICES of size n x 

If a COMPACT MANIFOLD M has NONNEGATIVE RICCI 
CURVATURE, then its FUNDAMENTAL GROUP has at 
most POLYNOMIAL growth. On the other hand, if A4 has 
NEGATIVE curvature, then its FUNDAMENTAL GROUP 
has exponential growth in the sense that n(X) grows ex- 
ponentially, where n(A) is (essentially) the number of 
different “words” of length A which can be made in the 
FUNDAMENTAL GROUP. 

References 
Chavel, I. Riemannian Geometry: A Modern Introduction. 

New York: Cambridge University Press, 1994. 

Minimal Cover 
A minimal cover is a COVER for which removal of one 
member destroys the covering property. Let p(n, k) be 
the number of minimal covers of { 1, . . . , n} with Fz mem- 
bers. Then 

2k -k-l 

m-k > 
m!s(n, m), 

where (i) is a BINOMIAL COEFFICIENT, s(n,m) is a 
STIRLING NUMBER OF THE SECOND KIND, and 

ak = min(n,2” - 1). 

Special cases include p(n, 1) = 1 and p(n, 2) = s(n + 

1,3)* 

k 1 2 3 4 5 6 7 
Sloane 000392 003468 016111 

n 

1 1 

2 1 1 
3 1 6 1 
4 1 25 22 1 
5 1 90 305 65 1 
6 1 301 3410 2540 171 1 
7 1 966 33621 77350 17066 420 1 

see also COVER, LEW ~-GRAM, STIRLING NUMBER OF 
THE SECOND KIND , 
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Minimal Discriminant 

see FREY CURVE 

Minimal Matrix 
A MATRIX with 0 DETERMINANT whose DETERMINANT 
becomes N~NZERO when any element on or below the 
diagonal is changed from 0 to 1. An example is 

-1 

0 
1 

0 

0 
-1 
1 
1 

0 
0 

-1 = 
0 I 

see also SPECIAL MATRIX 
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Minimal Residue 
The value b or b - nz, whichever is smaller in ABSOLUTE 
VALUE, where a E b (mod m). 

see also RESIDUE (CONGRUENCE) 

A SET for which the dynamics can be generated by the 
Minimal Set 

dynamics on any subset. 

Minimal Surface 
Minimal surfaces are defined as surfaces with zero MEAN 
CURVATURE, and therefore satisfy LAGRANGE’S EQUA- 
TION 

(1 + fy2)fxx + 2fJvfxy + (-1+ f;ea)fYY = 0. 

Minimal surfaces may also be characterized as surfaces 
of minimal AREA for given boundary conditions. A 
PLANE is a trivial MINIMAL SURFACE, and the first non- 
trivial examples (the CATENOID and HELICOID) were 
found by Meusnier in 1776 (Meusnier 1785) l  

Euler proved that a minimal surface is planar IFF its 
GAUSSIAN CURVATURE is zero at every point so that it 
is locally SADDLE-shaped. The EXISTENCE of a solution 
to the general case was independently proven by Douglas 
(1931) and Rad6 (1933), although their analysis could 
not exclude the possibility of singularities. Osserman 
(1970) and Gulliver (1973) showed that a minimizing 
solution cannot have singularities. 

The only known complete (boundaryless), embedded 
(no self-intersections) minimal surfaces of finite topol- 
ogy known for 200 years were the CATENOID, HELICOID, 
and PLANE. Hoffman discovered a three-ended GENUS 
1 minimal embedde.d surface, and demonstrated the ex- 
istence of an infinite number of such surfaces. A four- 
ended embedded minimal surface has also been found. 
L. Bers proved that any finite isolated SINGULARITY of 
a single-valued paramet erized minimal surface is remov- 
able. 

A surface can be parameterized using a ISOTHERMAL 
PARAMETERIZATION. Such a parameterization is mini- 
mal if the coordinate functions xk are HARMONIC, i.e., 
&(<) are ANALYTIC. A minimal surface can therefore 
be defined by a triple of ANALYTIC FUNCTIONS such 

that 4k+k = 0. The REAL parameterization is then ob- 
tained as 

xk = R 
s 

+k(c) dC’. (1) 



Minimal Surface 

But, for an ANALYTIC FUNCTION f and 
PHIC function g, the triple of functions 

41(C) = fU - 9”) 
42(C) = if Cl+ g2> 
$3(C) = m 

a MEROMOR- 

(2) 
(3) 
(4) 

are ANALYTIC as long as f has a zero of order > m - 
at every POLE of g of order m. This gives a minimal 
surface in terms of the ENNEPER-WEIERSTRAB PARAM- 

ETERIZATION 

(5) 

see also BERNSTEIN MINIMAL SURFACE THEOREM, 
CALCULUS OF VARIATIONS, CATALAN'S SURFACE, 
CATENOID,~OSTA MINIMAL SURFACE,ENNEPER-WEI- 
ERSTRAJ~ PARAMETERIZATION, FLAT SURFACE, HEN- 
NEBERG'S MINIMAL SURFACE, HOFFMAN'S MINIMAL 
SURFACEJMMERSED MINIMAL SURFACE,LICHTENFELS 
SURFACE,MAEDER'S OWL MINIMAL SURFACE, NIREN- 
BERG'S CONJECTURE,PARAMETERIZATION,PLATEAU'S 

SCHERK'S PROBLEM, 
UNDULOID 

MINIMAL SURFACES, TRINOID, 
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Minimax Approximation 
A minimization of the MAXIMU 
ber of terms. 

Minimum 

M error for a fixed num- 
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Minimax Polynomial 
The approximating POLYNOMIAL which has the small- 
est maximum deviation from the true function. It is 
closelyapproximatedbythe CHEBYSIIEV POLYNOMIALS 
OF THE FIRST KIND. 

Minimax Theorem 
The fundamental theorem of GAME THEORY which 
states that every FINITE, ZERO-SUM, two-person GAME 
has optimal MIXED STRATEGIES. It was proved by John 
von Neumann in 1928. 

Formally, let X and Y be MIXED STRATEGIES for play- 
ers A and B. Let A be the PAYOFF MATRIX. Then 

max min XTAY = minmaxXTAY = 2r, 
x Y Y x 

where ZI is called the VALUE of the GAME and X and Y 
are called the solutions. It also turns out that if there 
is more than one optimal MIXED STRATEGY, there are 
infinitely many. 

see also MIXED STRATEGY 
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Minimum 
The smallest value of a set, function, etc. The minimum 
value of a set of elements A = 

9 and is equal to the or mini ai 
c 1 a. vzl is denoted 
fikt” element of a 

min A 
sorted 

(i.e., ordered) version of A. For example, given the set 
(3, 5, 4, l}, the sorted version is (1, 3, 4, 5}, so the 
minimum is 1. The MAXIMUM and minimum are the 
simplest ORDER STATISTICS. 

f’(x) = 0 fW<O, 

f’W < 0 V fW > 0 
f’(x) > 0 

f'(x) = 0 A 

f “(X) > 0 

f’(x) <o 
i 

f;y:‘=“df 
x f’(x> < 0, 

f"(X) < 0 

mitlimldm maximum stationary point 

A continuous FUNCTION may assume a minimum at a 
single point or may have minima at a number of points. 
A GLOBAL MINIMUM of a FUNCTION is the smallest 
value in the entire RANGE of the FUNCTION, while a 
LOCAL MINIMUM is the smallest value in some local 
neighborhood. 

For a function f(z) which is CONTINUOUS at a point 20, 
a NECESSARY but not SUFFICIENT condition for f(s) 
to have a RELATIVE MINIMUM at 5 = 20 is that 20 be 
a CRITICAL POINT (i.e., f(s) is either not DIFFEREN- 
TIABLE at 20 or ~0 is a STATIONARY POINT, in which 
case f’(zo) = 0). 
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The FIRST DERIVATIVE TEST can be applied to CON- 
TINUOUS FUNCTIONS to distinguish minima from MAX- 
IMA. For twice differentiable functions of one variable, 
f(z), or of two variables, f(z,y), the SECOND DERIV- 

ATIVE TEST can sometimes also identify the nature of 
an E~TREMUM. For a function f(z), the EXTREMUM 
TEST succeeds under more general conditions than the 
SECOND DERIVATIVE TEST. 

see ah CRITICAL POINT, EXTREMUM, FIRST DERIVA- 

TIVE TEST, GLOBAL MAXIMUM, INFLECTION POINT, 
LOCAL MAXIMUM, MAXIMUM, MIDRANGE, ORDER 
STATISTIC, SADDLE POINT (FUNCTION), SECOND DE- 
RIVATIVE TEST, STATIONARY P~XNT 
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Minkowski-Bouligand Dimension 
In many cases, the HAUSDORFF DIMENSION correctly 
describes the correction term for a resonator with FRAC- 
TAL PERIMETER in Lorentz’s conjecture. However, in 
general, the proper dimension to use turns out to be the 
Minkowski-Bouligand dimension (Schroeder 1991). 

Let F(r) be the AREA traced out by a small CIRCLE with 
RADIUS T following a fractal curve. Then, providing the 
LIMIT exists, 

DM E lim 
r-0 

In F(r) 

- ln T 
+2 

(Schroeder 1991). It is conjectured that for all strictly 
self-similar fractals, the Minkowski-Bouligand dimen- 
sion is equal to the HAUSDORFF DIMENSION D; oth- 
erwise DM > D. 

see also HAUSDORFF DIMENSION 
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Minkowski Convex Body Theorem 
A bounded plane convex region symmetric about a LAT- 
TICE POINT and with AREA > 4 must contain at least 
three LATTICE POINTS in the interior. In n-D, the the- 
orem can be generalized to a region with AREA > 2”, 
which must contain at least three LATTICE POINTS. The 
theorem can be derived from BLICHFELDT’S THEOREM. 

see &O BLICHFELDT’S THEOREM 

Minkowski Geometry 

see MINKOWSKI SPACE 

Minkowski-Hlawka Theorem 
There exist lattices in n-D having HYPERSPHERE PACK- 
ING densities satisfying 

where ((n) is the RIEMANN ZETA FUNCTION. However, 
the proof of this theorem is nonconstructive and it is 
still not known how to actually construct packings that 
are this dense. 

see also HERMITE 
ING 
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Minkowski Integral Inequality 
If p > 1, then 

[s 

b 

1 
UP 

If (4 + d~>l” dx 
a 

2 [lb ,f(4,Pdr] Up + [Lb W)1’dx] lb l  

see also MINKOWSKI SUM INEQUALITY 
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Minkowski Measure 
The Minkowski measure of a bounded, CLOSED SET is 
the same as its LEBESGUE MEASURE. 

References 
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Minkowski Metric 
In CARTESIAN COORDINATES, 

ds2 = dx2 + dy2 + dz2 

and 

dT2 = -c2 dt2 + dx2 + dy2 + dz2, -1 0 0 0 
0 1 0 0 gafl = qkkfl = [ 1 0 010’ 
0 001 

In SPHERICAL COORDINATES, 

ds2 = dr2 + r2 d02 + r2 sin2 0 d$2 

dT2 = -c2 dt2 + dr2 + T’ d02 + r2 sin’ 0 dq32, 

and 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

see also LORENTZ TRANSFORMATION, MINKOWSKI 

Minkowski Sausage 

A FRACTAL created from the 
trated below. 

t 

base curve and motif illus- 

i * 
The number of segments after the nth iteration is 

Nn = 8”, 

and 
1 n E n= 0 4 ’ 

so the CAPACITY DIMENSION is 

DE- lim In=- -------_ lim ln8” In 8 3ln2 3 
- 

n+m lne, n+m ln4” In4 - 2ln2 - 2’ 
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Minkowski Space 
A 4-D space with the MINKOWSKI METRIC. Alterna- 
tively, it can be considered to have a EUCLIDEAN MET- 
RIC, but with its VECTORS defined by x0 ict Xl 2 - [I [I x2 - y ’ 

553 z 

where c is the speed of light. The METRIC is DIAGONAL 
with 

1 gw = 7 
ha 

rl Pa = qps* 

(2) 

(3) 
Let A be the TENSOR for a LORENTZ TRANSFORMA- 
TION. Then 

pfpa z Aor (4) 

qyyhPY = A/ (5) 

The NECESSARY and SUFFICIENT conditions for a met- 
ric gPv to be equivalent to the Minkowski metric ~~0 
are that the RIEMANN TENSOR vanishes everywhere 

CR 
x 

ClVK = 0) and that at some point gHV has three POS- 
ITIVE and one NEGATIVE EIGENVALUES. 

see also L~RENTZ TRANSFORMATION, MINKOWSKI 
METRIC 
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Minkowski Sum 
The sum of sets A and B in a VECTOR SPACE, equal to 
{a+b:a~A,b~B}. 

Minkowski Sum Inequality 
Ifp> 1 andarc, bk >O, then 

Equality holds IFF the sequences al, ~2, . l  . and bl, b2, 
. . . are proportional. 

see UZSO MINKOWSKI INTEGRAL INEQUALITY 
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Minor 
The reduced DETERMINANT of a DETERMINANT Ex- 
PANSION, denoted A&, which is formed by omitting the 
ith row and jth column 

see also COFACTOR, DETERMINANT, DETERMINANT 
EXPANSION BY MINORS 
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Minor Axis 

see SEMIMINOR AXIS 

Minor Graph 
A “minor” is a sort of SUBGRAPH and is what Kura- 
towski means when he says “contain.” It is roughly a 
small graph which can be mapped into the big one with- 
out merging VERTICES. 

Minus 
The operation of SUBTRACTION, i.e., a minus b. The 
operation is denoted a - b. The MINUS SIGN LL-" is also 
used to denote a NEGATIVE number, i.e., -x:. 

see also MINUS SIGN, NEGATIVE, PLUS, PLUS OR MI- 

NUS,TIMES 

Minus or Plus 

seePLus OR MINUS 

Minus Sign 
The symbol L” which is used to denote a NEGATIVE 
number or SUBTRACTION. 

see also MINUS, PLUS SIGN, SIGN, SUBTRACTION 

Minute 

see ARC MINUTE 

Miquel Circles 

For a TRIANGLE LlABC and three points A’, B’, and 
C’, one on each of its sides, the three Miquel circles are 
the circles passing through each VERTEX and its neigh- 
boring side points (i.e., AC’B’, BAT’, and CB’A’). 
According to MIQUEL'S THEOREM, the Miquel circles 
are CONCURRENT in a point A4 known as the MIQUEL 
POINT. Similarly, there are n Miquel circles for n lines 
taken (n - 1) at a time. 

see also MIQUEL POINT, MIQUEL'S THEOREM, MIQUEL 
TRIANGLE 

Miquel Equation 

6AzlWA3 = 6A2A1A3 + 6PzPlP3, 

where h is a DIRECTED ANGLE. 

see UZSO DIRECTED ANGLE, MIQUEL'S THEOREM 

References 
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Miquel Point 
The point of CONCURRENCE ofthe MIQUEL CIRCLES. 

see also MIQUEL CIRCLES, MIQUEL'S THEOREM, 
MIQUEL TRIANGLE 

Miquel’s Theorem 

If a point is marked on each side of a TRIANGLE AABC, 
then the three MIQUEL CIRCLES (each through a VER- 

TEX and the two marked points on the adjacent sides) 
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are CONCURRENT at a point AJ called the MIQUEL 
POINT. This result is a slight generalization of the so- 
called PIVOT THEOREM. 

If lW lies in the interior of the triangle, then it satisfies 

LP2MP3 = 180" - a1 

iP,MPz = 180" - a2 

LP&2P2 = 180* - a3, 

The lines from the MIQUEL POINT to the marked points 
make equal angles with the respective sides. (This is a 

by-product of the MIQUEL EQUATION.) 

L4 

Given four lines L1, , + . , Ld each intersecting the other 

three, the four MIQUEL CIRCLES passing through each 
subset of three intersection points of the lines meet in a 
point known as the 4-Miquel point AL Furthermore, the 

centers of these four MIQUEL CIRCLES lie on a CIRCLE 
Cd (Johnson 1929, p. 139). The lines from iW to given 

points on the sides make equal ANGLES with respect to 
the sides. 

Similarly, given n lines taken by (n- 1)s yield n MIQUEL 
CIRCLES like Cd passing through a point P,, and their 
centers lie on a CIRCLE Cn+lw 

see UZSOMIQUEL CIRCLES,MIQUEL EQUATION,MIQUEL 
TRIANGLE, NINE-POINT CIRCLE, PEDAL CIRCLE, 
PIVOT THEOREM 
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Circle. Boston, 

Miquel Triangle 
Given a point P and a triangle AAl A2 Aa, the Miquel 

triangle is the triangle connecting the side points PI, 
P2, and Pa of AAlAzAa with respect to which P is the 

MIQUEL POINT. All Miquel triangles of a given point iW 
are directly similar, and M is the SIMILITUDE CENTER 
in every case. 

Mira Fractal 
A FRACTAL based on the map 

F(x) = ax + 
2(1 - a)z2 

1+x2 . 

References 
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Mirimanoff’s Congruence 
If the first case of FERMAT'S LAST THEOREM is false for 
the PRIME exponent p, then 3p-1 E 1 (mod p”). 

see also FERMAT'S LAST THEOREM 

Mirror Image 
An image of an object obtained by reflecting it in a 

mirror so that the signs of one of its coordinates are 
reversed. 

see AMPHICHIRAL, CHIRAL, ENANTIOMER, HANDED- 
NESS 

Mirror Plane 
The SYMMETRY OPERATION (x,Y,z) + (~,y,-z), etc., 
which is equivalent to 2, where the bar denotes an IM- 
PROPER ROTATION. 

Misbe Form 
A version of NIM-like GAMES in which the player taking 

the last piece is the loser. For most IMPARTIAL GAMES, 
this form is much harder to analyze, but it requires only 
a trivial modification for the game of NIM. 

Mitchell Index 
The statistical INDEX 

where p, is the price per unit in period n and qn is the 

quantity produced in period n. 

see also INDEX 
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Miter Surface 
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A QUARTIC SURFACE named after its resemblance to Mixed Partial Derivative 
the liturgical headdress worn by bishops and given by A PARTIAL DERIVATIVE of second or greater order with 
the equation respect to two or more different variables, for example 

4x2(22 + y2 + z2) - y2(1 - y2 - z2) = 0. 
f 3”f sy = 

axay ’ 
see also QUARTIC SURFACE 

If the mixed partial derivatives exist and are continuous 
at a point x0, then they are equal at x0 regardless of 
the order in which they are taken. 

see also PARTIAL DERIVATIVE 

References 
Nordstrand, T. “Surfaces.” http://www.uib.no/people/ 
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Mittag-Leffler Function 
Mixed Strategy 
A collection of moves together with a corresponding set 
of weights which are followed probabilistically in the 
playing of a GAME. The MINIMAX THEOREM of GAME 
THEORY stat’es that every finite, zero-sum, two-person 
game has optimal mixed strategies. 

see also GAME THEORY, MINIMAX THEOREM, STRAT- 
EGY 

It is related to the GENERALIZED HYPERBOLIC FUNC- 
TIONS by 

F&(x) = &(x”). 
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Mittenpunkt see also CONTRAVARIANT 
SOR, TENSOR 

TENSOR, CUVARIANT TEN- 
I- 

-_ 
-\ 

Mnemonic 
A mental device used to aid memorization. Common 
mnemonics for mathematical constants such as e and PI 
consist of sentences in which the number of letters in 
each word give successive digits. 

see also e, JOSEPHUS PROBLEM, PI 
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Mijbius Band 

see MOBIUS STRIP 

Mijbius F’unct ion 

The LEMOINEPUINT ofthe EXCENTRALTRIANGLE, i.e., 
the point of concurrence M of the lines from the EX- 
CENTERS Ji through the corresponding TRIANGLE side 
MIDPOINT A&. It is also called the MIDDLESPOINT and 
has TRIANGLE CENTER FUNCTION 

a!=b+c-a=+cotA. 

see also EXCENTER, EXCENTRAL TRIANGLE, NAGEL 
POINT 
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Baptist, P. Die Entwicklung der Neueren Dreiecksgeometrie. 
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M6bius Group Mtibius Shorts 

4 > n= 

{ 

0 if n has one or more repeated prime factors 
1 ifn-1 

( 1) 
k - if n is a product of IC distinct primes, 

so mu(n) # 0 indicates that n is SQUAREFREE. The 
first few values are 1, -1, -1, 0, -1, 1, -1, 0, 0, 1, -1, 
0, . . . (Sloane’s A008683). 

The SUMMATORY FUNCTION of the Mijbius function is 
called MERTENS FUNCTION. 

see ~2s~ BRAUN'S CONJECTURE, MERTENS FUNC- 
TION, MOBIUS INVERSION FORMULA, MOBIUS PERI- 
ODIC FUNCTION, PRIME ZETA FUNCTION, RIEMANN 
FUNCTION, SQUAREFREE 

References 
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wood City, CA: Addison-Wesley, pp. 7-8 and 223-225, 
1991. 

Mijbius Group 
The equation 

represents an n-D HYPERSPHERE s” as a quadratic hy- 
persurface in an (n + 1)-D real projective space Pn+‘, 
where xa are homogeneous coordinates in IF? Then 
the GROUP M(n) of projective transformations which 
leave S” invariant is called the MSbius group. 

References 
Iyanaga, S. and Kawada, Y. (Eds.). “Mijbius Geometry.” 

§78A in Encyclopedic Dictionary of Mathematics. Cam- 
bridge, MA: MIT Press, pp+ 265-266, 1980. 

Mijbius Inversion Formula 

If g(n) = C+ f(d), then 

where the sums are over all possible INTEGERS d that 
DIVIDE n and p(d) isthe MOBIUS FUNCTION. The LOG- 

ARITHM ofthe CYCLOT~MIC POLYNOMIAL 

@n(X) = n(l - Sn'd)p'd) 
din 
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is the Mijbius inversion formula. 

see UZSO CYCL~T~MIC POLYNOMIAL, M~BIWS FUNC- 
TION 
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Mijbius Periodic Function 
A function periodic with period 2n such that 

P(0 + r) = -P(O) 

for all 8 is said to be Mijbius periodic. 

Miibius Problem 
Let A = {al,t~2,..~} b e a free Abelian SEMIGROUP, 
where al is the unit element. Then do the following 
properties, 

1. a < b IMPLIES UC < bc for a, b, c E A, where A has 
the linear order al < a2 < . . ., 

2. p(a,) = p(n) for all n, 

imply that 

arnla = a,a, 

for all m, n > l? The problem is known to be true for 
mn < 74 forall n < 240. - 

see also BRAUN'S CONJECTURE, MOBIUS FUNCTION 

References 
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Mijbius Shorts 
I 

Al 

A one-sided surface reminiscent of the MOBIUS STRIP. 

see also MOBIUS STRIP 

References 
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M6bius Strip MGbius Ylansformation 

A one-sided surface obtained by cutting a band width- 
wise, giving it a half twist, and re-attaching the two 
ends. According to Madachy (1979), the B. FGoodrich 
Company patented a conveyor belt in the form of a 
Mobius strip which lasts twice as long as conventional 
belts. 

A Mgbius strip can be represented parametrically by 

X== [R + s cos( $?)] cos 8 

Y== [R + s cos( it?)] sin 8 

z = s sin( @), 

for s E I-1,1] and 8 E [0,27r). Cutting a MGbius 
strip, giving it extra twists, and reconnecting the ends 
produces unexpected figures called PARADROMIC RINGS 

(Listing and Tait 1847, Ball and Coxeter 1987) which are 
summarized in the table below. 

- 
half- cuts divs. result 

twists ~--.. 
1 1 2 1 band, length 2 
1 1 3 I band, length 2 

1 Mijbius strip, length 1 
1 2 4 2 bands, length 2 
1 2 5 2 bands, length 2 

1 Mijbius strip, length 1 
1 3 6 3 bands, length 2 
i 3 7 3 bands, length 2 

1 Mijbius strip, length 1 

2 1 2 2 bands, length 1 
2 2 3 3 bands, length 1 
2 3 4 4 bands, length 1 

A TORUS can be cut into a MGbius strip with an EVEN 
number of half-twists, and a KLEIN BOTTLE can be cut 
in half along its length to make two Mijbius strips. In 
addition, two strips on top of each other, each with a 
half-twist, give a single strip with four twists when dis- 
entangled. 

There are three possible SURFACES which can be ob- 
tained by sewing a Mijbius strip to the edge of a DISK: 
the BOY SURFACE, CROSS-CAP, and ROMAN SURFACE. 

The Miibius strip has EULER CHARACTERISTIC 1, and 
the HEAWOOD CONJECTURE therefore shows that any 
set of regions on it can be colored using six-colors only. 

see ah BOY SURFACE, CROSS-CAP, MAP COLORING, 

PARADROMIC RINGS, PRISMATIC RING, ROMAN SUR- 
FACE 
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Mijbius Transformation 
A transformation of the form 

ax + b 
w=m=a+ 

where a, b, c, d f c and 

ad - bc # 0, 

is a CONFORMAL'TRANSFORMATION and is called a 
Mijbius transformation. It is linear in both w  and z. 

Every Mobius transformation except f(r) = x has one or 
two FIXED POINTS. The Mijbius transformation sends 
CIRCLES and lines to CIRCLES or lines. MSbius trans- 
formations preserve symmetry. The CROSS-RATIO is 

invariant under a Mijbius transformation. A Mijbius 
transformation is a composition of translations, rota- 
tions, magnifications, and inversions. 

To determine a particular Mijbius transformation, spec- 
ify the map of three points which preserve orientation. 
A particular MGbius transformation is then uniquely 
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determined. To determine a general Mijbius transfor- 
mation, pick two symmetric points Q! and as, Define 
p E f(a), restricting fl as required. Compute 0~. f(as) 
then equals ps since the Mijbius transformation pre- 
serves symmetry (the SYMMETRY PRINCIPLE). Plug in 
Q! and CYS into the general MGbius transformation and 
set equal to p and /3s. Without loss of generality, let 
c = 1 and solve for a and b in terms of p. Plug back 
into the general expression to obtain a Mijbius transfor- 
mation. 

see also SYMMETRY PRINCIPLE 

Miibius Triangles 
SPHERICAL TRIANGLES into which a SPHERE is divided 
by the planes of symmetry of a UNIFORM POLYHEDRON. 

see&o SPHERICAL TRIANGLEJJNIFORM POLYHEDRON 

Mock Theta Function 
Ramanujan was the first to extensively study these 
THETA FUNCTION-like functions 

f(q) = c 
q’” 

n=O 
(1 + #(l + q2)2 ' l  . (1 + qn)2 

4(q) = F 
Q 

n2 

n=O 

(1 + q2)(1 + q4) l  ' - (1+ q"") l  

see also ~-SERIES, THETA FUNCTION 
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Mod 

see CONGRUENCE 

Mode 
The most common value obtained in a set of observa- 
tions. 

see aho MEAN, MEDIAN (STATISTICS), ORDER STATIS- 
TIC 

Mode Locking 
A phenomenon in which a system being forced at an 
IRRATIONAL period undergoes rational, periodic motion 
which persists for a finite range of forcing values. It may 
occur for strong couplings between natural and forcing 
oscillation frequencies. 

The phenomenon can be exemplified in the CIRCLE MAP 
when, after Q iterations of the map, the new angle differs 
from the initial value by a RATIONAL NUMBER 

0 n+q=e,+P-. 
4 

This is the form of the unperturbed CIRCLE MAP with 
the WINDING NUMBER 

For !2 not a RATIONAL NUMBER, the trajectory is 
QUASIPERIODIC. 

see also CHAOS, QUASIPERIODIC FUNCTION 

Model Completion 
Model completion is a term employed when EXISTEN- 
TIAL CLOSURE is successful. The formation of the COM- 

PLEX NUMBERS, and the move from affine to projec- 
tive geometry, are successes of this kind. The theory of 
existential closure gives a theoretical basis of Hilbert’s 
“method of ideal elements.” 
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Model Theory 
Model theory is a general theory of interpretations of 
an AXIOMATIC SET THEORY. Itisthe branchofL0~1~ 
studying mathematical structures by considering first- 
order sentences which are true of those structures and 
the sets which are definable in those structures by first- 
order FORMULAS (Marker 1996). 

Mathematical structures obeying axioms in a system 
are called “models” of the system. The usual axioms 
of ANALYSIS are second order and are known to have 
the REAL NUMBERS as their unique model. Weakening 
the axioms to include only the first-order ones leads to 
a new type of model in what is called NONSTANDARD 
ANALYSIS. 
see also KHOVANSKI'S THEOREM, NONSTANDARD 
ANALYSIS, WILKIE'S THEOREM 
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Modified Bessel Differential Equation 
The second-order ordinary differential equation 

2 d2Y 
x GfX& dy - (x2 + n2)y = 0. 

Thesolutions arethe MODIFIED BESSEL FUNCTIONS OF 
THE FIRST and SECOND KINDS. If 72 = 0, the modified 
Bessel differential equation becomes 

2 d2Y dY 2 p +x-& - x2y = 0, 
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which can also be written 

d 
da: 

Modified Bessel Function of the First Kind 

3.0 1 

2.5 
/ / I I 

1 2 3 4 5 

A function -m(x) which is one of the solutions to the 
MODIFIED BESSEL DIFFERENTIAL EQUATION and is 
closely related to the BESSEL FUNCTION OF THE FIRST 
KIND J&). Th e above plot shows In,(x) for n = 1, 2, 

m - * 1 5. In terms of J&c), 

In(X) E imnJn(ix) = emnTij2 J,(zei”‘2). (1) 

For a REAL NUMBER V, the function can be computed 
using 

k=O 

where r(z) is the GAMMA FUNCTION. An integral for- 
mula is 

I~(~) = k I 
T 

Pose cos(ue) de 
0 

sin(u;rr) -- O” e-z cash t-ut & 

- I > (3) 
I I  Jo 

which simplifies for Y an INTEGER n to 

In(Z) = 5 I 
T 

Pose cos(nQ) de 
0 

(4) 

(Abramowitz and Stegun 1972, p. 376). 

A derivative identity for expressing higher order modi- 
fied IBessel functions in terms of 10 (z) is 

L4(x) = T, ( > g IO(X), (5) 

where Tn(x) is a CHE~YSHEV POLYNOMIAL OF THE 
FIRST. KIND. 

see also BESSEL FUNCTION OF THE FIRST KIND, MODI- 
FIED BESSEL FUNCTION OF THE FIRST KIND, WEBER’S 
FORMULA 
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Modified Bessel Function of the Second Kind 

The function K,(x) which is one of the solutions to 
the MODIFIED BESSEL DIFFERENTIAL EQUATION. The 
above plot shows J&(x) for n = 1, 2, . . . , 5. Kn(x) is 
closely related to the MODIFIED BESSEL FUNCTION OF 
THE FIRST KIND m(x) and HANKEL FUNCTION H,(X), 

Kn(x) = $~i”+~H~)(ix) (1) 
-1 - z~in+l[J,(iz) + iN&x)] (2) 

- n L(x) - La(x) -- 
2 sin(n7r) 

(Watson 1966, p. 185). A sum formula for Kn is 

n-l 

K,(z) = f(+>-” x ( n - k - l)! 
(-a~“>” ~, 

. 
k=O 

+( -l),+l q +)In(z) 

(3) 

k=O 

where $J is the DIGAMMA FUNCTION (Abramowitx and 
Stegun 1972). A n integral formula is 
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which, for v = 0, simplifies to 

Ko(x) = cos(x sinh t) dt = 
s 

* cos(xt) dt 

o @TT l  @) 

Other identities are 

d- 
00 

K,(z) = 2 
()s 

;z n --2X 

(n - $)! 
e ( x2 - 1)n-1’2 dx (7) 

1 

for n > -l/Z and 

K&) = &FE+ /a e-ttn-1l2 (1 - &)n-1’2 dt 
2’ 0 

(8) 

The modified Bessel function of the second kind is some- 
times called the BASSET FUNCTION. 
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Modified Spherical Bessel Differential 

Equation 
The SPHERICAL BESSELDIFFERENTIALEQUATION with 
a NEGATIVE separation constant, given by 

2d2k 
T -+2r---- 

dr2 
T - [k2r2 + n(n + l)]R = 0. 

The solutions are called MODIFIED SPHERICAL BESSEL 
FUNCTIONS. 

Modified Spherical Bessel Function 
Solutionstothe MODIFIED SPHERICAL BESSEL DIFFER- 
ENTIAL EQUATION, given by 

in(x) = zi & In+1/2(X) (1) 
sinh(z) 

io(z) = ~ 
X 

(2) 

kn(X) E 
c 

$ Kn+l/2(X) (3) 

e -X 
k,(x) = -1 

X 
(4) 

where In(x) is a MODIFIED BESSEL FUNCTION OF THE 
FIRST KIND and Kn(x) is a MODIFIED BESSEL FUNC- 
TION OF THE SECOND KIND. 
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Modified Struve Function 

00 2k 

'&) = (+')"" 2 I' ('c + ;) r (k + y + $) 

2( > G Y 42 - - s day+ f> 0 sinh(z cos 19) siP 8 de, 

where l?(z) is the GAMMA FUNCTION. 

see UZSO ANGER FUNCTION, STRUVE FUNCTION, WE- 
BER FUNCTIONS 
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Modular Angle 
Given a MODULUS k in an ELLIPTIC INTEGRAL, the 
modular angle is defined by k = sin QI. An ELLIPTIC 
INTEGRAL is written I($lm) when the PARAMETER is 
used, I(+, k) h w en the MODULUS is used, and I($\ctl) 
when the modular angle is used. 

see also AMPLITUDE, CHARACTERISTIC (ELLIPTIC IN- 
TEGRAL), ELLIPTIC INTEGRAL, MODULUS (ELLIPTIC 
INTEGRAL),NOME,PARAMETER 
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Modular Equation 
The modular equation of degree n gives an algebraic 
connection of the form 

K’ (2) K’ (k> - - 
KU) -nK(IE) (1) 

between the TRANSCENDENTAL COMPLETE ELLIPTIC 
INTEGRALS OF THE FIRST KIND with moduli k and 2. 
When k and 2 satisfy a modular equation, a relationship 
of the form 

M(L k) dY dx 

&l - y2)(1 - Z2y2) = J(l - x2)(1 - k2x2) 
(2) 

exists, and M is called the MODULAR FUNCTION MUL- 
TIPLIER. In general, if p is an ODD PRIME, then the 
modular equation is given by 

Rp(u,v) = (v - ug)(u - Ul) - ‘- (v - up), (3) 

where 

up = (-1) (P2-w~[~(qP)]w = (--p:4-1)/8u(q’), (4) 

X is a ELLIPTIC LAMBDA FUNCTION, and 

q = ezrt (5) 

(Borwein and Borwein 1987, p. 126). An ELLIPTIC IN- 
TEGRAL identity gives 

K’(k) K’ 

K(k)=2( 

2G 
( > l+k 

(6) 

where 

u2= -- & _ %?I) 
83 (a> 

(15) 

and 

(16) 

Here, & are THETA FUNCTIONS. 

A modular equation of degree 2T for T > 2 can be ob- 
tained by iterating the equation for 2’-l. Modular equa- 
tions for PRIME p from 3 to 23 are given in Borwein and 
Borwein (1987). 

Quadratic modular identities include 

(17) 

Cubic identities include 

bs-l]3=9$& (18) 

(19) 

[3~-l]3=9~-l. (20) 

A seventh-order identity is 

From Ramanujan (1913-1914), 
so the modular equation of degree 2 is 

2dk lx- 
l+k 

which can be written as 

Z2(1 + k)2 = 4k. (8) 

A few low order modular equations written in terms of 
k and 2 are 

!il2 = Z2(1 + k)2 - 4k = 0 (9) 
i-l7 = (kl)1’4 + (k’1’)1i4 - 1 = 0 (10) 

023 = (k1)1’4 + (k’l’)1’4 + 22’3(kEk’lr)“12 - 1 = 0. 

(11) 

In terms of u and w, 

ci3(u,v) = u4 - v4 -I- 2uv(l- U”V”) = 0 (12) 

&(u,v) = v6 - u6 + 5u2v2(v2 - u”) + 4w(lL4v4 - 1) 

(13) 
i&(u, v) = (1 - U8)(1 - 7P) - (1 - uv)8 = 0, (14) 

(1 + q)(l + q3)(1 + q”> l  ** = 21’6q1’24(kk’)-1’12 (22) 

(7) 
(1 _ q)(l - q3)(1 - q5). . . = 21/6q1/24k-1/12k’1/6. (23) 

see &O SCHL;I;FLI’S MODULAR FORM 
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Modular Form 
A modular form is a function in the COMPLEX PLANE 
with rather spectacular and special properties resulting 
from a surprising array of internal symmetries. If 

= (cz + d)2F(z), 

then F(z) is said to be a modular form of weight 2 and 
level N. If it is correctly parameterized, a modular form 
is ANALYTIC and vanishes at the cusps, so it is called 
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a CUSP FORM. It is also an eigenform under a certain 
HECKE ALGEBRA. 

A remarkable connection between rational ELLIPTIC 
CURVES and modular forms is given by the TANIYAMA- 
SHIMURA CONJECTURE, which states that any rational 
ELLIPTIC CURVE is a modular form in disguise. This 
result was the one proved by Andrew Wiles in his cele- 
brated proof of FERMAT'S LAST THEOREM. 

see also CUSP FORM, ELLIPTIC CURVE, ELLIPTIC 
FUNCTION, FERMAT'S LAST THEOREM, HECKE AL- 
GEBRA, MODULAR FUNCTION, MODULAR FUNCTION 
MULTIPLIER, SCHL;I;FLI% MODULAR FORM,TANIYAMA- 
SHIMURA CONJECTURE 

References 
Knopp, M. I. Modular Functions, 2nd ed. New York: 

Chelsea, 1993. 
Koblitz, N. Introduction to Elliptic Curves and Modular 

Forms. New York: Springer-Verlag, 1993. 
Rankin, R. A. Modular Forms and Functions. Cambridge, 

England: Cambridge University Press, 1977. 
Sarnack, P. Some Applications of Modular Forms. Cam- 

bridge, England: Cambridge University Press, 1993, 

Modular Function 
f is a modular function of level IV on the upper half H 
ofthe COMPLEX PLANE ifit is MEROMORPHIC (evenat 
the CUSPS), ad - bc = 1 for all a, b, c, d, and Nlc. 

see ah ELLIPTIC FUNCTION, ELLIPTIC MODULAR 
FUNCTION,MODULAR FORM 

References 
Apostol, T. M. Modular Functions and Dirichlet Series in 

Number Theory. New York: Springer-Verlag, 1976. 
Askey, R. In Ramanujan International Symposium (Ed. 

N. K Thakare). pp. l-83. 
Borwein, J. M. and Borwein, P. B. Pi and the AGM: A Study 

in Analytic Number Theory and Computational Gomplex- 
ity. New York: Wiley, 1987. 

Rankin, R. A. Modular Forms and Functions, Cambridge, 
England: Cambridge University Press, 1977. 

Schoeneberg, B. Elliptic Modular Functions: An Introduc- 
tion. Berlin: New York: Springer-Verlag, 1974. 

Modular Function Multiplier 
When k and 2 satisfy a MODULAR EQUATION, a rela- 
tionship of the form 

MU, k) dY dx 

J(l- y2)(1 - 12y2) = J(1 - x2)(1 - Ic222) 
(1) 

exists, and M is called the multiplier. The multiplier of 
degree n can be given by 

Mn(1, k) ii 632(q) 
&“(q’y 

= ;;;, (2) 

where & is a THETA FUNCTION and K(k) is a complete 
ELLIPTIC INTEGRAL OF THE FIRST KIND. 

The first few multipliers in terms of 2 and k are 

1 + Ii 
M&k) = -& = 2 (3) 

(4) 

In terms of the u and v defined for MODULAR EQUA- 
TIONS, 

M3 = 
V 2v3 - u -=- 

v + 2u3 3u 

M5 r ‘(’ - uv3) = 5u;;z3vl 

V - d 

M7 = v(1 - uv)[l - uv + (uv)2] 
v - u7 

V7 -u 
- - 

7U(l- uv)[l - uv + (uv)2] ’ 

(5) 

(6) 

(7) 

Modular Gamma Function 
The GAMMA GROUP I? is the set of all transformations 
w  of the form 

at + b 
w(t) = ct+ 

where a, b, c, and d are INTEGERS and ad - 6c = 1. 
r-modular functions are then defined as in Borwein and 
Borwein (1987, p. 114). 

see UZSO KLEIN'S ABSOLUTE INVARIANT, LAMBDA 
GROUP,THETA FUNCTION 

References 
Borwein, J. M. and Borwein, P. B. Pi & the AGM: A Study in 

Analytic Number Theory and Computational Complexity. 
New York: Wiley, pp. 127-132, 1987. 

Modular Group 
The GROUP of all MOBIUS TRANSFORMATIONS having 
INTEGER coefficients and DETERMINANT equal to 1. 

Modular Lambda Function 

see ELLIPTIC LAMBDA FUNCTION 

Modular Lattice 
A LATTICE which satisfies the identity 

(x A Y) v (x A 4 = x A (y v (x A x)) 

is said to be modular. 

see aho DISTRIBUTIVE LATTICE 

References 
Grgtzer, G. Lattice Theory: First Concepts and Distributive 

Lattices. San Francisco, CA: W. H. freeman, pp. 35-36, 
1971. 
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Modular System Modulo 
A set M of all POLYNOMIALS in s variables, x1, . . . , x8 
such that if P, PI, and Pz are members, then so are 
PI + Pz and QP, where Q is any POLYNOMIAL in x1, 

see CONGRUENCE 

‘**I xs. 

see also HILBERT’S THEOREM, MODULAR SYSTEM BA- 
SIS 

Modulo Multiplication Group 
A FINITE GROUP IM, of RESIDUE CLASSES prime to m 
under multiplication mod m. Mm is ABELIAN of QRDER 

4(m), where 4(m) is the TOTIENT FUNCTION. The fol- 
lowing table gives the module multiplication groups of 
small orders. Modular System Basis 

A basis of a MODULAR SYSTEM A4 is any set of POLY- 
NOMIALS &, &, . . . of A4 such that every POLYNOMIAL 

of M is expressible in the form 

where RI, R2, .- are POLYNOMIALS. 

Modular Transformation 

see MODULAR EQUATION 

Modulation Theorem 
The important property of FOURIER TRANSFORMS 
that F[cos(~~&x)~(x)] can be expressed in terms of 
F[f(x)] = F(k) as follows, 

F[cos(27&x)f(x)] = +[qlc - ko) + F(k + ko)lm 

see also FOURIER TRANSFORM 

References 
Bracewell, R. “Modulation Theorem.” The Fourier Truns- 

form and Its Applications. New York: McGraw-Hill, 
p. 108, 1965. 

Module 
A mathematical object in which things can be added to- 
gether COMMUTATIVELY by multiplying COEFFICIENTS 
and in which most of the rules of manipulating VEC- 

TORS hold. A module is abstractly very similar to a 
VECTOR SPACE, although modules have COEFFICIENTS 

in much more general algebraic objects and use RINGS 
as the COEFFICIENTS instead of FIELDS. 

The additive submodule of the INTEGERS is a set of 
quantities closed under ADDITION and SUBTRACTION 

(although it is SUFFICIENT to require closure under SUB- 
TRACTION). Numbers of the form ncy * ma for n, m f Z 
form a module since, 

na*ma= (72fm)cy. 

Given two INTEGERS a and b, the smallest module con- 
taining a and b is GCD(a, b). 

References 
Foote, D. and Dummit, D. Abstract Algebra. Englewood 

Cliffs, NJ: Prentice-Hall, 1990. 

-Mm Group b(m) Elements 

1 1 
2 1,2 
2 1,3 
4 1, 2, 3, 4 
2 1,5 
6 1, 2, 3, 4, 5, 6 
4 1, 3, 5, 7 
6 1, 2, 4, 5, 7, 8 
4 1, 3, 7, 9 

IO 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 
4 1, 5, 7, 11 

12 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 
6 1, 3, 5, 9, 11, 13 
a 1, 2, 4, 7, 8, 11, 13, 14 
8 1, 3, 5, 7, 9, 11, 13, 15 

16 1, 2, 3, . . . 16 , 
6 1, 5, 7, II, 13, 17 

18 1, 2, 3, . . . 18 , 
8 1, 3, 7, 9, 11, 13, 17, 19 

12 1, 2, 4, 5, 7, 8, 10, 11, 13, 16, 17, 19 
IO 1, 3, 5, 7, 9, 13, 15, 17, 19, 21 
22 1, 2, 3, . . . 22 , 
8 1, 5, 7, 11, 13, 17, 19, 23 

Mm is a CYCLIC GROUP (which occurs exactly when m 

has a PRIMITIVE ROOT) IFF m is of one of the forms 
= 2, 4, pn, or 2pn, where p is an ODD PRIME and 

r> 1 (Shanks 1993, p. 92). 

ISOMORPHIC modulo multiplication groups can be deter- 
mined using a particular type of factorization of 4(m) as 
described by Shanks (1993, pp. 92-93). To perform this 
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factorization (denoted &), factor m in the standard 
form 

(1) 

Now write the factorization of the TOTIENT FUNCTION 
involving each powerofan ODD PRIME 

qqpiay = (pi - l)piai-= (2) 

q5(piai) = (q?) (42b2) m - * (4?) (Pi”“-‘) 1 (3) 

where 
pi - 1 = qlb1q2b2 l  l  ’ qsbs, (4) 

( qb) denotes the explicit expansion of Qb (i.e., 52 = 25), 
and the last term is omitted if ai = 1. If pl = 2, write 

(5) 

Now combine terms from the odd and even primes. For 
example, consider m = 104 = 23 l  13. The only odd 
prime factor is 13, so factoring gives 13 - 1 = 12 = 
(2”> (3) = 3 - 4. The rule for the powers of 2 gives 

23 = 2 (23-7 = a(2) = 2 l  2. Combining these two 
gives $104 = 2 - 2 l  3 l  4. Other explicit values of & are 
given below. 

43 -2 

$4 = 2 

$5 =4 

46 = 2 

415 =2.4 

416 = 2 l  4 

417 = 16 

qb104 = 2 - 2 .3 .4 

4105 =2-2.3-4. 

M, and 1M, are isomorphic IFF @m and & are identical. 
More specifically, the abstract GROUP corresponding to 
a given Mm can be determined explicitly in terms of a 
DIRECT PRODUCT of CYCLIC GROUPS of the so-called 
CHARACTERISTIC FACTORS, whose product is denoted 
a,. This representation is obtained from & as the set 
of products of largest powers of each factor of #m. For 
example, for &rod, the largest power of 2 is 4 = 22 and 
the largest power of 3 is 3 = 3l, so the first characteristic 
factor is 4 x 3 = 12, leaving 2.2 (i.e., only powers of two). 
The largest power remaining is 2 = 2l, so the second 
CHARACTERISTIC FACTOR is 2, leaving 2, which is the 
third and last CHARACTERISTIC FACTOR. Therefore, 

a104 = 2 l  2 . 4, and the group Mm is isomorphic to 

Zz@Z2@~4* 

The following table summarizes the isomorphic modulo 
multiplication groups Mn for the first few n and iden- 
tifies the corresponding abstract GROUP. No Mm is 
ISOMORPHIC to 28, Q8, or Dq. However, every finite 
ABELIAN GROUP is isomorphic to a SUBGROUP of Mm 
for infinitely many different values of m (Shanks 1993, 
p. 96). CYCLE GRAPHS corresponding to M, for small 
12 are illustrated above, and more complicated CYCLE 
GRAPHS are illustrated by Shanks (1993, pp. 87-92). 

Group Isomorphic 1M, 

( > e M2 

zz M3, M4, 1MG 

24 M5, MIO 

zz cu2 M8, Ml2 

26 M7, M9, Ml4, M1a 

zz @z, iK5, Ml6, M20, JJ30 

22 8 22 @ 22 M24 

210 J&r, M22 

212 i&3, M26 

22 @z, M21,ndJ36, M42 

216 M17, M34 

22 828 M32 

22 @Z2 @Z4 M40, M48, M60 

z18 Mm, M27, M38, M54 

z20 M25, M50 

22 @Co M33, M44, M66 

z22 M23, M46 

22 8212 M35, Mm, m45, M52, M70, Mm, iho 

228 M29, M58 

230 M31, MS2 

236 M379 M74 

The number of CHARACTERISTIC FACTORS T of Mm 
for 77b = 1, 2, . . . are 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 
2, l  .* (Sloane’s A046072). The number of QUADRA- 
TIC RESIDUES in Mm for vz > 2 are given by 4(m)/2’ 
(Shanks 1993, p. 95). The first few for m = 1, 2, . . . are 
0, 1, 1, 1, 2, 1, 3, 1, 3, 2, 5, 1, 6, . . . (Sloane’s A046073). 

In the table below, 4(n) is the T~TIENT FUNC- 
TION (Sloane’s AOOOOlO) factored into CHARACTERISTIC 
FACTORS,X(~) is the CARMICHAEL FUNCTION (Sloane’s 
AOU773), and gi are the smallest generators of the 
group M, (of which there is a number equal to the num- 
ber of CHARACTERISTIC FACTORS). 
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-II 4(n) w  si n +> w gi 
3 2 2 2 27 18 18 2 
4 2 2 3 28 2-6 6 13, 3 
5 4 2 2 29 28 28 2 
6 2 2 5 30 2,4 4 11, 7 
7 6 6 3 31 30 30 3 
8 2*2 2 ?,3 32 2.8 8 31, 3 
9 6 6 2 33 2 * 10 10 10, 2 

10 4 4 3 34 16 16 3 
11 10 10 2 35 2.12 12 6, 2 
12 2.2 2 5,7 36 2#6 6 19,5 
13 12 12 2 37 36 36 2 
14 6 6 3 38 18 18 3 
15 2.4 4 14, 2 39 2.12 12 38, 2 
16 2.4 4 15, 3 40 2.204 4 39, 11, 3 
17 16 16 3 41 40 40 6 
18 6 6 5 42 2.6 6 13, 5 
19 18 18 2 43 42 42 3 
20 2.4 4 19, 3 44 2.10 10 43, 3 
21 2*6 6 20, 2 45 2*12 12 44, 2 
22 10 10 7 46 22 22 5 
23 22 22 5 47 46 46 5 
24 202.2 2 5, 7, 13 40 2.2.4 4 47, 7, 5 
25 20 20 2 49 42 42 3 
26 12 12 7 50 20 20 3 

see also CHARACTERISTIC FACTOR, CYCLE GRAPH, FI- 
NITE GROUP, RESIDUE CLASS 

References 
Riesel, H. “The Structure of the Group M,.” Prime Numbers 

and Cumputer Methods for Factorization, 2nd ed. Boston, 
MA: Birkhauser, pp. 270-272, 1994. 

Shanks, D. Solved and Unsolved Problems in Number Theory, 
4th ed. New York: Chelsea, pp. 61-62 and 92, 1993, 

Sloane, N. J. A. Sequences A011773, A046072, A046073, and 
AOOOOlO/M0299 in “An On-Line Version of the Encyclo- 
pedia of Integer Sequences.” 

Q$ Weisstein, E. W. “Groups.” http: //BWW. astro. Virginia. 
edu/-ewu6n/math/notebooks/Groups.m, 

Modulus (Complex Number) The REAL period K(k) and IMAGINARY period K’(k) = 
The modulus of a COMPLEX NUMBER z is denoted 1x1. K(k’) = K(JC-F) are given by 

12 + iyl E &” + y2 (1) 

jrei41 = 17-l. (2) 

Letcl E A& and ~2 = Bei#2 be two COMPLEX NUM- 
BERS. Then 

so 

Also, 

[Cl4 = 

~ - (3) 

I A 
T=B’ (4) 

(A e i# 

Ae a 

Cl I I lCll - -- - 
c2 I4 

(5) 

(B e i4 

23e i42 

Modulus (Elliptic Integral) 

so 
lc1czl = lCllI4 (8) 

and, by extension, 

lr*l = Izln. (9) 

The only functions satisfying identities of the form 

If(z + @)I = If(4 + f@!I)l (10) 

are f(z) = AZ, f(x) = Asin( and f(z) = Asinh(bz) 
(Robinson 1957). 

see also ABSOLUTE SQUARE 

References 
Abramowitz, M. and Stegun, C. A. (Eds.). Handbook 

uf Mathematical Functions with Formulas, Graphs, and 
Mathematical Tables, 9th printing. New York: Dover, 
p. 16, 1972. 

Robinson, R. M. “A Curious Mathematical Identity.” Amer. 
Math. Monthly 64, 83-85, 1957. 

Modulus (Congruence) 

~~~CONGRUENCE 

Modulus (Elliptic Integral) 
A parameter k used in ELLIPTIC INTEGRALS and ELLIP- 
TIC FUNCTIONS defined to be k E 6, where nz is the 
PARAMETER. An ELLIPTIC INTEGRAL is written I(#$) 
when the modulus is used. It can be computed explicitly 
in terms of THETA FUNCTIONS of zero argument: 

(1) 

4K(k) = ZT&~(O~T) (2) 

2iK’(k) = ~I?~~(O~T), (3) 

where K(k) is a complete ELLIPTIC INTEGRAL OF THE 
FIRST KIND and the complementary modulus is defined 

bY 
kr2 E 1 - k2, (4) 

with k the modulus. 

see UZSO AMPLITUDE, CHARACTERISTIC (ELLIPTIC IN- 
TEGRAL), ELLIPTIC FUNCTION, ELLIPTIC INTEGRAL, 
ELLIPTIC INTEGRAL SINGULAR VALUE,MODULAR AN- 
GLE,NOME, PARAMETER, THETA FUNCTION 

References 

)I = ABje ikh+d'2)l = AB 

(6) 
= ABl@ 1 lei421 = AB, (7) 

Abramowitz, M. and Stegun, C. A. (Eds.). Handbook 
of Mathematical Functions with Formulas, Graphs, and 
Mathematical Tables, 9th printing. New York: Dover, 
p. 590, 1972. 
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Modulus (Quadratic Invariants) 
The quantity ps - rq obtained by letting 

x=pX+qY 

Y =Tx+SY 

(1) 

(2) 

in 
ax2 + 2bxy + cy2 (3) 

so that 

A= ap2 +- 2bpr 4- cr2 (4 

B = apq + b(ps + qT) -+ cTs 

c = aq2 + 2bqs + cs2 
(5) 

(6) 

and 
B2 - AC = (ps - rq)‘(b2 - ac), (7) 

is called the modulus. 

Modulus (Set) 
The name for the SET of INTEGERS modulo m, denoted 
Z\mZ. If wz is a PRIME p, then the modulus is a FINITE 
FIELD IF, = Z\pZ. 

Moessner’s Theorem 
Write down the POSITIVE INTEGERS in row one, cross 
out every klth number, and write the partial sums of 
the remaining numbers in the row below. Now cross off 
every kzth number and write the partial sums of the 
remaining numbers in the row below. Continue. For 
every PUSITIVE INTEGER k > 1, if every kth number is 
ignored in row 1, every (k - 1)th number in row 2, and 
every (k + 1 - i)th number in row i, then the kth row of 
partial sums will be the kth POWERS l’, 2”, 3”, . . . . 

References 
Conway, 3+ H. and Guy, R. K. “Moessner’s Magic.” In 7% 

Book of Numbers. New York: Springer-Verlag, pp. 63-65, 
1996. 

Honsberger, R. More Mathematical Morsels. Washington, 
DC: Math. Assoc. Amer., pp. 268-277, 1991. 

Long, C. T. “On the Moessner Theorem on Integral Powers.” 
Amer. Math. MonthZy 73, 846-851, 1966. 

Long, C. T. “Strike it Out-Add it Up.” Math, Mug. 66, 
273-277,1982. 

Moessner, A. “Eine Bemerkung iiber die Potenzen der 
nat iirlichen Zahlen.” S.-B. Math.-Nat. Kl. Bayer, Akad. 

Wiss. 29, 1952. 
Paasche, I. “Ein neuer Beweis des moessnerischen Satzes.” 

S.-B. Math.-Nat. Kl. Bayer. Akad. Wiss. 1952, 1-5, 1953. 
Paasche, I. “Ein zahlentheoretische-logarithmischer ‘Rechen- 

stab’.” Math. Naturwiss. Unterr. 6, 26-28, 1953-54. 
Paasche, I. “Eine Verallgemeinerung des moessnerschen 

Satzes.” compositio Math. 12, 263-270, 1956. 

Mohammed Sign 

A curve consisting of two mirror-reversed intersecting 
crescents. This curve can be traced UNICURSALLY. 

see also UNICURSAL CIRCUIT 

M@ir& Pattern 
An interference pattern produced by overlaying similar 
but slightly offset templates. M&6 patterns can also be 
created be plotting series of curves on a computer screen. 
Here, the interference is provided by the discretization 
of the finite-sized pixels. 

see also CIRCLES-AND-SQUARES FRACTAL 

References 
Cassin, C. Visual Illusions in Motion with M&e’ Screens: 60 

Des&s and 3 Plastic Screens. New York: Dover, 1997. 
Grafton, C. B. Optical Designs in Motion with M&e’ Over- 

lays. New York: Dover, 1976. 

Mollweide’s Formulas 
Let a TRIANGLE have side lengths a, b, and c with op- 
posite angles A, B, and C. Then 

b-c sin[$(B - C)] 
- = 

a cos( +A) 

c-a sin[i(C - A)] 
- = 

b cos(;B) 

a-b sin[$(A - B)] 
- = 

c cos($C) ’ 

see dso NEWTON’S FORMULAS, TRIANGLE 

References 
Beyer, W. H. CRC Standard Mathematical Tables, 28th ed. 

Coca Raton, FL: CRC Press, pm 146, 1987. 

Mollweide Projection 
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A MAP PROJECTION also called the ELLIPTICAL PRO- 

JECTION or HOMOLOGRAPHIC EQUAL AREA PROJEC- 
TION. The forward transformation is 

with ~1 = 0. The moments about zero and 
MEAN are related by 

the 

P2 = I& - (p;)2 (5) 
x= 

2J2 (A - A,) cos 8 
7r P3 = Pb - w;p; + q/g3 (6) 

P4 = pil - 4~h-h + 614p:)~ - 3(/~;)~. (7) y = 21i2 sin& (2) 

The second 
VARIANCE 

moment MEAN is where 8 is given by 

p2 = c2, (8) 28 + sin(28) = r sin 4. (3) 

where 0 = 6 is called the STANDARD DEVIATION. ~TEWTON'S METHOD can then be used to compute 8’ 
iteratively from The related CHARACTERISTIC FUNCTION is defined by 

A$’ = - 
8’ + sin@ - rsin+ 

1-t cos 8’ ’ (4) (9) 

where 

(5) 
The moments may be simply computed 
MOM ENT~ENERATING FUNCTION, 

using the 

or, better yet, 

8’ = 2sin-l - 24 
( > 7r 

La = MC”) (0) . (10) (6) 

can be used as a first guess. A DISTRIBUTION is not uniquely 
it is by its CHA 

specified by 
RACTERISTIC 

its mo- 
FUNC- ments, although 

TION. The inverse FORMULAS are 

~=Sin-l [2e+~n(2e)] (7) 

A= x0+ nx 
2fi cos t9) 

(8) 

see UZSO CHARACTERISTIC FUNCTION, CHARLIER'S 
CHECK, CUMULANT-GENERATING FUNCTION, FAC- 
TORIAL MOMENT, KURTOSIS, MEAN, MOMENT- 
GENERATING FUNCTION, SKEWNESS, STANDARD DE- 
VIATION, STANDARDIZED MOMENT, VARIANCE 

where 
References 

(9) Press, We H.; Flannery, B. P.; Teukolsky, S. A.; and Vet- 
terling, W. T. “Moments of a Distribution: Mean, Vari- 
ance, Skewness, and So Forth.” $14.1 in Numerical Recipes 
in FORTRAN: The Art of Scientific Computing, 2nd 
ed. Cambridge, England: Cambridge University Press, 
pp. 604-609, 1992. 

References 
Snyder, 3. P. Map Projections-A Working Manual. U. S. 

Geological Survey Professional Paper 1395. Washington, 
DC: U. S. Government Printing Office, pp. 2 49-252, 1987. 

Moment-Generating Function 
Given a RANDOM VARIABLE 61: f R, if there exists an 
h > 0 such that 

Moment 
The nth moment of a distribution about zero & is de- 
fined by 

da = W) 7 (1) M(t) E (efx) 
CR etxpw for a discrete distribution - - 
s O” --oo e’“P(x) dz for a continuous distribution 

(1) (f(x)> = c f WP(x> discrete distribution 

J f (x>P(x> dx continuous distribution. 

(2) 
~‘1, the MEAN, is usually simply denoted p = ~1~ If the 
moment is instead taken about a point a, 

for ftl < h, then 
M(t) E (etx) (2) 

is the moment-generating function. 
/&n(U) = ((X - U)n) = x(X-,)"P(X)m (3) 

M(t) = 
r 

(I+ tx + +,t2x2 + . . .)P(x) dx 
-m 

-1+tm1+$t~m2+..., - . (3) 

The moments are most commonly taken about the 
MEAN. These moments are denoted pn and are defined 

bY 

/Jn = ((X - PI”> T (4 
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where m, is the rth MOMENT about zero. The moment- 
generating function satisfies 

M,+,(t) = px+q = (etxety) 
= (etx)(ety) = M,(t)lM,(t). (4 

If M(t) is differentiable at zero, then the nth MUMENTS 

about the ORIGIN are given by M” (0) 

M(t) = (etx) M(0) = 1 (5) 

M’(t) = (xetx) 

M”(t) = (x2etx) 

M’(O) = (x) (6) 

M”(O) = (x”) (7) 

M{‘.‘)(t) = (xnetx) M(“)(O) = (xn). (8) 

The MEAN and VARIANCE are therefore 

p E (2) = M’(0) (9) 
u2 G (x2) - (x)2 = M”(0) - [M’(O)]“. (10) 

It is also true that 

n / \ 

/4x = x y (-l)n-jp$&)n-j, 

0 

(11) 

j=O 

where pb = I and p> is the jth moment about the origin. 

It is sometimes simpler to work with the LOGARITHM of 
the moment-generating function, which is also called the 
CUMULANT-GENERATING FUNCTION, and is defined by 

R(t) E ln[M(t)] (12) 

R’ (t> M’(t) - -- 
MM (13) 

(14) 

But M(0) = (1) = 1, so 

/.L = M’(O) = a’(0) (15) 

o2 = M”(0) - [M’(0)12 = R”(O). (16) 

see also 
CUMULAN 

CHARACTERISTIC 
T-GENERATING F 

FUNCTION, CUMULANT, 
UNCTION, MOMENT 

References 
Kenney, J. F. and Keeping, E. S. “Moment-Generating and 

Characteristic Functians,” “Some Examples of Moment- 
Generating Functions,” and “Uniqueness Theorem. for 
Characteristic Functions.” 54.6-4.8 in Mathematics of 
Statistics, Pt. 2, 2nd ed. Princeton, NJ: Van Nostrand, 
pp. 72-77, 1951. 

Momenta1 Skewness 

,b) = 1 P3 - 571 = ~~3 7 

where 71 is the FISHER SKEWNESS. 

see also FISHER SKEWNESS, SKEWNESS 

Monad 
A mathematical object which consists of a set of a single 
element. The YIN-YANG is also known as the monad. 

see also HEXAD, QUARTET, QUINTET, TETRAD, TRIAD, 
YIN-YANG 

Money-Changing Problem 

see COIN PROBLEM 

Mange-Amp&e Differential Equation 
A second-order PARTIAL DIFFERENTIAL EQUATION of 
the form 

Hr + 2Ks + Lt + A4 + N(rt - s”) = 0, 

where H, K, L, M, and Iv are functions of 2, y, Z, p, 
and 4, and T, s, t, p, and 4 are defined by 

d2X 
r=- 

8X2 
a22 

SC- 
axay 

d2r 
t=- 

dY2 
dz 

P=z 

dz 

4=&’ 

The solutions are given by a system of differential equa- 
tions given by Iyanaga and Kawada (1980). 

References 
Iyanaga, S. and Kawada, Y. (Eds.). “Monge-Amp&e Equa- 

tions.” $276 in Encyclopedic Dictionary of Mathematics. 
Cambridge, MA: MIT Press, pp. 879-880, 1980. 

Mange’s Chordal Theorem 

see RADICAL CENTER 

Mange’s Form 
A surface given by the form z = F(x,y). 

see also MONGE PATCH 

Monge Patch 
A Monge patch is a PATCH x : U + R3 of the form 

X(% v) = (u, v, h(w v>>, (1) 

where U is an OPEN SET in Iw2 and h : U + Iw is 
a differentiable function. The coefficients of the first 
FUNDAMENTAL FORM aregivenby 

E=l+lzu2 

F = huh, 

G=l+hv2 

(2) 

(3) 

(4) 



1192 Mange ‘s Problem 

andthesecond FUNDAMENTAL FORM 

h uu 
e= 

Jl+ hu2 + hv2 

f 
h UV - - 

Jl+ hu2 + hv2 

g= svv 
&+ hu2 + hv2 ’ 

bY 

(5) 

(6) 

(7) 

For a Monge patch, the GAUSSIAN CURVATURE and 
MEAN CURVATURE are 

huuhvv - ha2 

K = (l+ hu2 -+ hv2j2 
(8) 

H (I+ hv2)huu - 2hAhuv + (l+ hu2)hvv - - 

(1 + hu2 + hv2j3j2 ’ “I 

see also MONGE'S FORM, PATCH 

References 
Gray, A. Modern Differential Geometry of Curves and Sur- 

faces. Boca Raton, FL: CRC Press, pp. 305-306, 1993. 

Mange’s Problem 

Draw a CIRCLE that cuts three given CIRCLES PERPEN- 
DICULARLY. The solution is obtained by drawing the 
RADICAL CENTER R of the given three CIRCLES. Ifit 
lies outside the three CIRCLES, then the CIRCLE with 
center R and RADIUS formed by the tangent from R to 
one of the given CIRCLES intersects the given CIRCLES 
perpendicularly. Otherwise, if R lies inside one of the 
circles, the problem is unsolvable. 

see also CIRCLE TANGENTS, RADICAL CENTER 

References 
Dgrrie, H. “Mange’s Problem.” $31 in 100 Great Problems 

of Elementary Mathematics: Their History and Solutions. 
New York: Dover, pp. 151-154, 1965. 

Mange’s Shuffle 
A SHUFFLE in which CARDS from the top of the deck in 
the left hand are alternatively moved to the bottom and 
top of the deck in the right hand. If the deck is shuffled 
m times, the final position X~ and initial position x0 of 
a card are related by 

2 m+1 xm == (4p+1)[2m-1+(-l)m-1(2m-2+***+2+1)] 

+(-l)- 2x0 + 2” + (-1)“-l 

Monica Set 

for a deck of 2p cards (Kraitchik 1942)* 

see also CARDS, SHUFFLE 

References 
Conway, J. H. and Guy, R. K. “F’ractions Cycle into Deci- 

mals.” In The Book of Numbers. New York: Springer- 
Verlag, pp. 157-163, 1996. 

Kraitchik, M. “Mange’s Shuffie.” $12.2.14 in Mathematical 
Recreations. New York: W. W. Norton, pp. 321-323, 1942. 

Mange’s Theorem 

Draw three nonintersecting CIRCLES in the plane, and 
the common tangent line for each pair of two. The points 
of intersection of the three pairs of tangent lines lie on 
a straight line. 

References 
Coxeter, H. S. M. “The Problem of Apollonius.” Amer. 

Math. Monthly 75, 5-15, 1968. 
Graham, L. A. Problem 62 in Ingenious Mathematical Prob- 

lems and Methods. New York: Dover, 1959. Ogilvy, C. S. 
Excursions in Geometry. New York: Dover, pp. 115-117, 
1990. 

Walker, W. “Monge’s Theorem in Many Dimensions.” Math. 
Gaz. 60, 185-188, 1976. 

Manic Polynomial 
A POLYNOMIAL in which the COEFFICIENT ofthe high- 
est ORDER term is 1. 

see also MONOMIAL 

Monica Set 
The nth Monica set iWn is defined as the set of COM- 

POSITE NUMBERS x for which ~]S(X) - SP(x), where 

X = Uo + UI(lOl) + l  . . + Q(lOd) = PIP2 ” ‘Pn, (1) 

and 

S(X) = ?Uj (2) 

j=O 

$3(x) = y;s(Pi). (3) 

i=l 

Every Monica set has an infinite number of elements. 
The Monica set iWn is a subset of the SUZANNE SET Sn. 
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If a~ is a SMITH NUMBER, then it is a member of the 
Monica set mn for all TL E N. For any INTEGER k > 1, 
if it: is a ~-SMITH NUMBER, then x E J&l. 

see also SUZANNE SET 

References 
Smith, M. “Cousins of Smith Numbers: Monica and Suzanne 

Sets.” Fib. Quart. 34, 102-104,1996. 

Monkey and Coconut Problem 
A DIOPHANT~NE problem (i.e., one whose solution must 
be given in terms of INTEGERS) which seeks a solution 
to the following problem. Given n men and a pile of 
coconuts, each man in sequence takes (l/n)th of the 
coconuts and gives the KQ coconuts which do not divide 
equally to a monkey. When all 72 men have so divided, 
they divide the remaining coconuts five ways, and give 
the vz coconuts which are left-over to the monkey. How 
many coconuts N were there originally? The solution is 
equivalent to solving the n+l DIOPHANTINE EQUATIONS 

N=nA+m 

(n-I)A=nB+m 

( n- l)B=nCfm 

( n- l)X=nY+m 

( n - 1)Y =nZ+m, 

and is given by 

N = knn+’ - m(n - l), 

where k is an an arbitrary INTEGER (Gardner 1961). 

For the particular case of n = 5 men and m = 1 left 
over coconuts, the 6 equations can be combined into the 
single DI~PHANTINE EQUATION 

1,024N = 15,625F + 11,529, 

where F is the number given to each man in the last 
division. The smallest POSITIVE solution in this case is 
N- 15,621 coconuts, corresponding to k = 1 and F = 
1,023 (Gardner 1961). The following table shows how 
this rather large number of coconuts is divided under 
the scheme described above. 

Removed Given to Monkey Left 

15,621 
3,124 1 12,496 
2,499 1 9,996 
1,999 1 7,996 
1,599 1 6,396 
1,279 1 5,116 

5 x 1023 1 0 

If no coconuts are left for the monkey after the final VP 
way division (Williams 1926), then the original number 
of coconuts is 

(1 + nk)n” - (n - 1) n odd 
(n - 1 + r,k)n” - (n - 1) n even. 

The smallest POSITIVE solution for case n = 5 and m = 
1 is N = 3,121 coconuts, corresponding to !C = 1 and 
1,020 coconuts in the final division (Gardner 1961). The 
following table shows how these coconuts are divided. 

Removed Given to Monkey Left 

3,121 
624 1 2,496 
499 1 1,996 
399 1 1,596 
319 1 1,276 
255 1 1,020 
5 x 204 0 0 

A different version of the problem having a solution of 
79 coconuts is considered by Pappas (1989). 

see ~SO DIOPHANTINE EQUATION-LINEAR, PELL 

EQUATION 
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Monkey Saddle 
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A SURFACE which a monkey can straddle with both his 
two legs and his tail. A simply Cartesian equation for 
such a surface is 

z = x(x2 - 3y2), (1) 

which can also be given by the parametric equations 

x(u,v) = u (2) 
Y(W) = v (3) 

z(u,v) = u3 - 3uv2. (4) 

The coefficients of the first and second FUNDAMENTAL 
FORMS of the monkey saddle are given by 

6u 
e=- 

1+ 9u4 + 18u2v2 + 9v4 

f 
6v - -- 

1 + 9u4 + 18u2v2 + 9v4 

1 + 9u4 + 18u2v2 + 9v4 

(5) 

(6) 

(7) 

E = 1 + 9(u2 - v”)” (8) 

F = -18uv(u2 - v2) (9) 
G = I+ 36u2v2, (10) 

giving RIEMANNIAN METRIC 

ds2 = [I + (3u2 - 3~~)~] du2 - 2[18~v(~~ - v2)] dudv 

+(l + 36u2v2) dv2, (11) 

AREA ELEMENT 

dA = &+ 9u4 + 18u2v2 + 9v4 du A dv, 

and GAUSSIAN and MEAN CURVATURES 

36(u2 + v”) 
K = - (1 + 9u4 + 18u2v2 + 9~~)~ 

27u(-u4 + 2u2v2 + 3v4) 

H =-, (1 + 9u4 + 18u2v2 + 9v4)3/2 (14) 

(Gray 1993). _ Every point of the monkey saddle except 
the origin has NEGATIVE GAUSSIAN CURVATURE. 

see also CROS-SED TROUGH, PARTIAL DERIVATIVE 
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York: Wiley, p. 365+ 1969. 
Gray, A. Modern. Differential Geometry of Curves and Sur- 

faces. Boca Ratron, FL: CRC Press, pp. 213-215, 262-263, 
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Monochromatic Forced Triangle 
Given a COMPLETE GRAPH Kn which is two-colored, 
the number of forced monochromatic TRIANGLES is at 
least 

i 

pL(u - l)(u - 2) for n = 2u 
-u(u - 1)(4u + 1) 
8 

for n = 4u + 1 

p(u + 1)(4u -1) forn=4u+3. 

The first few numbers of monochromatic forced triangles 
are 0, 0, 0, 0, 0, 2, 4, 8, 12, 20, 28, 40, . . . (Sloane’s 
A014557). 

see ~230 COMPLETE GRAPH,EXTREMAL GRAPH 
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Goodman, A. W. “On Sets of Acquaintances and Strangers 

at Any Party.” Amer. Math. Monthly 66, 778-783, 1959. 
Sloane, N. J+ A. Sequence A014553 in “An On-Line Version 

of the Encyclopedia of Integer Sequences.” 

Monodromy 
A general concept in CATEGORY THEORY involving the 
globalization of local MORPHISM% 

see also HOLONOMY 

Monodromy Group 
A technically defined GROUP characterizing a system of 
linear differential equations 

9; = F; ajk(X)yk 
k=l 

for j = 1, . . . . n, where ajk are COMPLEX ANALYTIC 
FUNCTIONS of x in a given COMPLEX DOMAIN. 

see ~ZSOHILBERT’S ~~STPROBLEM,RIEMANN P-SERIES 

References 
Iyanaga, S. and Kawada, Y. (Eds.). “Monodromy Groups.” 

§253B in Encyclopedic Dictionary of hlathematics. Cam- 
bridge, MA: MIT Press, p. 793, 1980. 

Monodromy Theorem 
If a COMPLEX function f is ANALYTIC in a DISK con- 
tained in a simply connected DOMAIN D and f can be 
ANALYTICALLY CONTINUED along every polygonal arc 
in D, then f can be ANALYTICALLY CONTINUED to a 
single-valued ANALYTIC FUNCTION on all of D! 

see also ANALYTIC CONTINUATION 

Monogenic Function 
If 

lim f(z) - f(zo) 
x+zo z - x0 

is the same for all paths in the COMPLEX PLANE, then 
f(z) is said to be monogenic at ~0. Monogenic there- 
fore essentially means having a single DERIVATIVE at a 
point. Functions are either monogenic or have infinitely 
many DERIVATIVES (in which case they are called POLY- 
GENE); intermediate cases are not possible. 
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see also P~LYGENIC FUNCTION 

References 
Newman, J. R. The World of Mathematics, Vol. 3. New 

York: Simon & Schuster, p. 2003, 1956. 

Monohedral Tiling 
A TILING is which all tiles are congruent. 

see also ANISOHEDRAL TILING, ISOHEDRAL TILING 

References 
Berglund, J. “Is There a /+Anisohedral Tile for k > 5?” 

Amer. Math. Monthly 100, 585-588, 1993. 
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dral Tilings of the Plane.” Math. Proc. Cambridge Philos. 
Sot. 82, 177-196, 1977. 

Monoid 
A GROUP-like object which fails to be a GROUP because 
elements need not have an inverse within the object. A 
monoid S must also be ASSOCIATIVE and an IDENTITY 
ELEMENT I E S such that for all a E S, la = al = a. 
A monoid is therefore a SEMIGROUP with an identity 
element. A monoid must contain at least one element. 

The numbers of free idempotent Gonoids on n letters 
are 1, 2, 7, 160, 332381, . . . (Sloane’s AOO5345). 

see also BINARY OPERATOR, GROUP, SEMIGROUP 

Heterences 
Rosenfeld, A. An Introduction to Algebraic Structures. New 

York: Holden-Day, 1968. 
Sloane, N. J. A. Sequence A005345/M1820 in “An On-Line 
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Monomial 
A POLYNOMIAL consisting of a single term. 

see also BINOMIAL, MONK 
TRINOMIAL 

POLYNOMIAL, POLYNOMIAL, 

Monomino 
The unique l-P~LY~MIN~, consisting of a single 
SQUARE. 

see also DOMINO, TRTOMINO 

References 
Gardner, M. “Polyominoes.” Ch. 13 in The Scientific Amer- 
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Monomorph 
An INTEGER which is expressible in only one way in the 
form x2 + Dy2 or x2 - Dy2 where x2 is RELATIVELY 

PRIME to Dy2. If the INTEGER is expressible in more 
than one way, it is called a POLYMORPH. 

Monotone 
Another word for monotonic. 

see also MONOTONIC FUNCTION, MONOTONIC SE- 
QUENCE,MONOTONIC VOTING 

Monotone Decreasing 
Always decreasing; never remaining 
ing. 

constant or increas- 

Monotone Increasing 
Always increasing; never remaining constant or decreas- 
ing. 

Monotonic F’unction 
A function which is either entirely nonincreasing or non- 
decreasing. A function is monotonic if its first DERIV- 
ATIVE (which need not be continuous) does not change 
sign. 

Monotonic Sequence 
A SEQUENCE {a,) such that either (1) ai+l 2 ai for 
every i > 1, or (2) ai+l < ai for every i > 1. - - - 

Monotonic Voting 
A term in SOCIAL CHOICE THEORY meaning a change 
favorable for X does not hurt X. 

see UZSO ANONYMOUS, DUAL VOTING 

Monster Group 
The highest order SPORADIC GROUP AL It has ORDER 

and is also called the FRIENDLY GIANT GROUP. It was 
constructed in 1982 by Robert Griess as a GROUP of 
ROTATIONS in 196,883-D space. 

see also BABY MONSTER GROUP, BIMONSTER, LEECH 
LATTICE 
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see UZSO ANTIMORPH, IDONEAL NUMBER, P~LYMORPH 

Monomorphism 
An INJECTIVE MORP 
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Monte Carlo Integration 
In order to integrate a function over a complicated DO- 

MAIN D, Monte Carlo integration picks random points 
over some simple DOMAIN D’ which is a superset of D, 
checks whether each point is within D, and estimates 
the AREA of D (VOLUME, n-D CONTENT, etc.) as the 
AREA of D’ multiplied by the fraction of points falling 
within D’ . 

An estimate of the 
nique is given by 

uncertainty produced by this tech- 

s fdVzV(f)f (f2);(f)2. 
J 

see UZSO MONTE CARLO METHOD 

References 
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tive and Recursive Monte Carlo Methods.” 57.6 and 7.8 
in Numerical Recipes in FORTRAN: The Art of Scien- 
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University Press, pp. 295-299 and 306-319, 1992. 

Monte Carlo Method 
Any method which solves a problem by generating suit- 
able random numbers and observing that fraction of 
the numbers obeying some property or properties. The 
method is useful for obtaining numerical solutions to 
problems which are too complicated to solve analyti- 
cally. The most common application of the Monte Carlo 
method is MONTE CARLO INTEGRATION. 

see also MONTE CARLO INTEGRATION 

References 
Sobol, I. M. A Primer for the Monte Carlo Method, Boca 
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Mont&s Theorem 
Let f(z) be an analytic function of Z, regular in the 
half-strip S defined by a < x < b and y > 0. If f(z) 
is bounded in S and tends to a limit 2 as y -+ 00 for 
a certain fixed value 6 of =I: between a and b, then f(x) 
tends to this limit I on every line x = x0 in S, and 
f(z) + 2 uniformly for a + S _< X:0 5 b - 6. 

see UZSO VITALI’S CONVERGENCE THEOREM 

References 
Titchmarsh, E. C. The Theory of Functions, 2nd ed. Oxford, 

England: Oxford University Press, p. 170, 1960. 

Monty Hall Dilemma 

see MONTY HALL PROBLEM 

Monty Hall Problem 
The Monty Hall problem is named for its similarity to 
the Let’s 1Muke a Deal television game show hosted by 
Monty Hall. The problem is stated as follows. Assume 
that a room is equipped with three doors. Behind two 
are goats, and behind the third is a shiny new car. You 
are asked to pick a door, and will win whatever is behind 
it. Let’s say you pick door 1. Before the door is opened, 
however, someone who knows what’s behind the doors 
(Monty Hall) opens ooze of the other two doors, revealing 
a goat, and asks you if you wish to change your selection 
to the third door (i.e., the door which neither you picked 
nor he opened). The Monty Hall problem is deciding 
whether you do. 

The correct answer is that you do want to switch. If 
you do not switch, you have the expected l/3 chance of 
winning the car, since no matter whether you initially 
picked the correct door, Monty will show you a door with 
a goat. But after Monty has eliminated one of the doors 
for you, you obviously do not improve your chances of 
winning to better than l/3 by sticking with your original 
choice. If you now switch doors, however, there is a 2/3 
chance you will win the car (counterintuitive though it 
seems) l  

& dz Winning Probability 

pick stick l/3 
pick switch 2/ 3 

The problem can be generalized to four doors as follows. 
Let one door conceal the car, with goats behind the other 
three. Pick a door dl. Then the host will open one of 
the nonwinners and give you the option of switching. 
Call your new choice (which could be the same as dl if 
you don’t switch) d2. The host will then open a second 
nonwinner, and you must decide for choice da if you 
want to stick to dz or switch to the remaining door. 
The probabilities of winning are shown below for the 
four possible strategies. 

4 dz & Winning Probability 

pick stick stick 418 
pick switch stick 318 
pick stick switch 618 
pick switch switch 5/8 

The above results are characteristic of the best strategy 
for the n-stage Monty Hall problem: stick until the last 
choice, then switch. 

see also ALIAS’ PARADOX 
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Gillman, L. “The Car and the Goats.” Amer. Math. Monthly 
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Moore Graph 
A GRAPH with DIAMETER d and GIRTH 2d+l. Moore 
graphs have DIAMETER of at most 2. Every Moore graph 
is both REGULAR and distance regular. Hoffman and 
Singleton (1960) show that k-regular Moore graphs with 
DIAMETER 2 have k f {2,3,7,57}. 

References 
Godsil, C. D. “Problems in Algebraic Combinatorics.” Elec- 

tronic J. Combinatorics 2, Fl, l-20, 1995. http://wv. 
combinatorics .org/Volume2/volume2.html#Fl. 

Hoffman, A. J. and Singleton, R. R. “On Moore Graphs of 
Diameter Two and Three.” IBM J. Res. Develop. 4, 497- 
504, 1960. 

Moore-Penrose Generalized Matrix Inverse 
Given an KQ x n MATRIX B, the Moore-Penrose gener- 
alized MATRIX INVERSE is a unique n x m. MATRIX BS 
which satisfies 

BB+B = B (1) I 
B+BB+ = B+ (2) 
(BB+)’ = BB+ (3) 
(B+B)T = B+B. (4) 

It is also true that 
z = B+c (5) 

is the shortest length LEAST SQUARES solution to the 
problem 

Bz = c. (6) 

If the inverse of (BTB) exists, then 

B+ = (BTB)-‘BT, (7) 

where BT is the MATRIX TRANSPOSE, as can be seen 
by premultiplying both sides of (7). by BT to create a 
SQUARE MATRIX which can then be inverted, 

BTBz = BTc, (8) 

giving 

z = (BTB)-‘BTc 
- - - Bf c. (9) 

see U~SO LEAST SQUARES FITTING, MATRIX INVERSE 

Mordell Conjecture 
DI~PHANTINE EQWATI~NS thatgiverisetosurfaceswith 
two or more holes have only finite many solutions in 
GAUSSIAN INTEGERS with no common factors. Fermat’s 
equation has (n - 1) ( n-2)/2 HOLES, so the Mordell con- 
jecture implies that for each INTEGER TJ 2 3, the FER- 
MAT EQUATION has at most a finite number of solutions. 
This conjecture was proved by Fakings (1984). 

see &U FERMAT EQUATION, FERMAT'S LAST THEO- 
REM, SAFAREVICH CONJECTURE, SHIMURA-TANIYAMA 
CONJECTURE 
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Mordell Integral 
The integral 

s lritz2+2xiuz 

WI 4 = e e2rria: _ 1 dx 
which is related to the THETA FUNCTIONS, MOCK 
THETA FUNCTIONS, and RIEMANN ZETA FUNCTION. 

Mordell-Weil Theorem 
For ELLIPTIC CURVES overthe RATIONALS, Q,thenum- 
ber of generators of the set of RATIONAL POINTS is al- 
ways finite. This theorem was proved by Mordell in 1921 
and extended by Weil in 1928 to ABELIAN VARIETIES 
over NUMBER FIELDS. 
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Morera’s Theorem 
If f(z) is continuous in a simply connected region D and 
satisfies 

I fdz=O 

for all closed CONTOURS yin D, then f(z) is ANALYTIC 
in D. 

see also CAUCHY INTEGRAL THEOREM 
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Morgado Identity 
An identity 
NUMBERS: 

satisfied by w GENERALIZED FIBONACCI 

where 

e = pub - qa2 - b2 

(1) 

un = wl(O, 1; P, q). 

see also GENERALIZED FIBONACCI NUMBER 

References 
Morgado, 5. “Note on Some Results of A. F. Horadam and A. 

G. Shannon Concerning a Catalan’s Identity on Fibonacci 
Numbers.” Portugaliae Math. 44, 243-252, 1987. 

Morgan-Vuyce Polynomial 
Polynomials related to the BRAHMAGUPTA POLYNOMI- 
ALS. They are defined by the RECURRENCE RELATIONS 

bn Cx) =xBn-1(x)+&-1(x) (1) 

Bn(x) = (X + l)Bn-l(x) + bn-l(x) (2) 

for n > 1, with - 

ho(x) = Be(x) = 1. (3) 

Alternative recurrences are 

B n+lBn-1 - Bn2 = -1 (4) 

b n+lbn-1 - bn2 = x:. (5) 

The polynomials can be given explicitly by the sums 

03 

b(x)= 2 (ET:)* 

k-0 

(7) 

Defining the MATRIX 

Q= [,:, il] 

gives the identities 

Q n Bn -Bn--I - - 

C 
h-1 -Bn-2 1 

Qn _ Qn-1 = bb; 
n 1 

Ii-11 , 
n 2 1 

(8) 

(9) 

Defining 

gives 

and 

cos e = 3x+2) 
cash+ = $(x + 2) 

(11) 
(12) 

Bn(x) = 
sin[(n + l)O] 

sin 8 (13) 

Bn(x) = 
sinh[(n + 1)4] 

sinh 4 (14) 

b(x) = 
cos[+(2n + l)O] 

cos( $e, (15) 

b ( ) 
nX = cosh[$n + 1)41 

cosh( $0) l  

(16) 

The MorganJoyce polynomials are related to the FI- 
BONACCI POLYNOMIALS F,(x) by 

&(x2) = Fzn+l(x) (17) 

Bn(x2)= iF2n+2(x) (18) 

(Swamy 1968). 

B,(x) satisfies the ORDINARY DIFFERENTIAL EQUA- 
TION 

x(x + 4)y” + 3(x + 2)y’ - n(n + 2)y = 0, (19) 

and bn (x) the equation 

x(x + 4)~” + 2(x + 1)~’ - n(n + I)y = 0. (20) 

These and several other identities involving derivatives 
and integrals of the polynomials are given by Swamy 
(1968). 

see also BRAHMAGUPTA POLYNOMIAL, FIBONACCI 
POLYNOMIAL 
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Morley Centers 
The CENTR~ID of MORLEY’S TRIANGLE is called Mor- 
ley’s first center. It has TRIANGLE CENTER FUNCTION 

a = cos(;A) + 2cos(9)cos(~C). 

The PERSPECTIVE CENTER of MORLEY'S TRIANGLE 
with reference TRIANGLE ABC is called Morley’s sec- 
ond center. The TRIANGLE CENTER FUNCTION is 

a = sec($A). 

see also CENTROID (GEOMETRIC), MORLEY’S THEO- 

REM, PERSPECTIVE CENTER 

References 
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Plane of a Triangle.” Math. Mag. 67, 163-187, 1994. 
Kimberling, C. “1st and 2nd Morley Centers.” http: //uww. 
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Morley% Formula 

~(~)3=l+(q)l+[m(:,:1,]3+~~~ 
k=O 

where (i) is a BINOMIAL COEFFICIENT and r(z) is the 
GAMMA FUNCTION. 

Morley’s Theorem 
A 

E 

% 

F 

D 
c 

B 

The points of intersection of the adjacent TRISECTORS 
of the ANGLES of any TRIANGLE AABC are the VER- 
TICES of an EQUILATERAL TRIANGLE ADEF known as 
MORLEY'S TRIANGLE. Taylor and Marr (1914) give two 
geometric proofs and one trigonometric proof. 

A generalization of MORLEY'S THEOREM was discov- 
ered by Morley in 1900 but first published by Taylor 
and Marr (1914). Each ANGLE of a TRIANGLE LYABC 
has six trisectors, since each interior angle trisector has 
two associated lines making angles of 120” with it. The 
generalization of Morley’s theorem states that these tri- 
sectors intersect in 27 points (denoted Dij, Eij, Fij, for 
i, j = 0, 1, 2) which lie six by six on nine lines. F’urther- 
more, these lines are in three triples of PARALLEL lines, 

(D22E22, EdAl, FloFol), (D22F22, FnDn, Eo&o), 
and (E22 F22, Fl2 E21, DloDol), making ANGLES of 60’ 
with one another (Taylor and Marr 1914, Johnson 1929, 
pa 254). 

A 

LE 

b 

F 

M DN 
c 

B 

Let 1;, A& and N be the other trisector-trisector inter- 
sections, and let the 27 points Lij, iW;j, Nij for i, j = 0, 
1, 2 be the ISOGONAL CONJUGATES of D, E, and F. 
Then these points lie 6 by 6 on 9 CONICS through 
AABC. In addition, these CONES meet 3 by 3 on the 
CIRCUMCIRCLE, and the three meeting points form an 
EQUILATERAL TRIANGLE whose sides are PARALLEL to 
those of L1DEF. 

see UZSO CONIC SECTION, MORLEY CENTERS, TRISEC- 
TION 

References 
Coxeter, H. S. M. and Greitzer, S. L. Geometry Revisited. 

Washington, DC: Math. Assoc. Amer., pp. 47-50, 1967. 
Gardner, M. Martin Gardner’s New Mathematical Diver- 

sions from Scientific American. New York: Simon and 
Schuster, pp. 198 and 206, 1966. 

Honsberger, R. “Morley’s Theorem.” Ch. 8 in Muthematical 
Gems I. Washington, DC: Math. Assoc. Amer., pp. 92-98, 
1973. 

Johnson, R. A. Modern Geometry: An Elementary l+eatise 
on the Geometry of the Triangle and the Circle. Boston, 
MA: Houghton Mifflin, pp. 253-256, 1929. 

Kimberling, C. “Hofstadter Points.” Nieuw Arch. Wiskunder 
12, 109-114, 1994. 

Marr, W. L. “Morley’s Trisection Theorem: An Extension 
and Its Relation to the Circles of Apollonius.” Proc. Ed- 
inburgh Math. Sot. 32, 136-150, 1914. 

Oakley, C. 0. and Baker, J. C. “The Morley Trisector The- 
orem? Amer. Math. Monthly 85, 737-745, 1978. 

Pappas, T. “Trisecting & the Equilateral Triangle.” The 
Joy of Mathematics. San Carlos, CA: Wide World Publ./ 
Tetra, pa 174, 1989. 

Taylor, F+ G. “The Relation of Morley’s Theorem to the Hes- 
sian Axis and Circumcentre.” Proc. Edinburgh Math. Sot. 
32, 132-135, 1914. 

Taylor, F. G. and Marr, W. L. “The Six Trisectors of Each 
of the Angles of a Triangle.” Proc. Edinburgh Math. Sot. 
32, 119-131, 1914. 



1200 Morley’s Wangle Moser’s Circle Problem 

Morley’s Triangle 
An EQUILATERAL TRIANGLE considered by M~RLEY'S 
THEOREM with side lengths 

8Rsin(iA)sin($B)sin($Y), 

where R is the CIRCUMRADIUS of the original TRIAN- 
GLE. 

Morphism 
A map between two objects in an abstract CATEGORY. 

1. A general morphism is called a HOMOMORPHISM, 

2. An injective morphism is called a MONOMORPHISM, 

3. A surjective morphism is an EPIMORPHISM, 

4. A bijective morphism is called an ISOMORPHISM (if 
there is an isomorphism between two objects, then 
we say they are isomorphic), 

5. A surjective morphism from an 
called an ENDOMORPHIS lM, and 

6. An ISOM ORPHISM between 
called an AUTOMORPHISM. 

object to itself is 

an object and itself is 

see &o AUTOMORPHISM, EPIMORPHISM, HOMEOMOR- 
PHISM, HOMOMORPHISM, ISOMORPHISM, MONOMOR- 
PHISM, OBJECT 

Morrie’s Law 

cos(20”) cos(40”) cos(80”) = ;. 

This identity was referred to by Feynman (Gleick 1992). 
It is a special case of the general identity 

k-l 
sin(2ka) 

cos(2ja) = - 
sin a ’ 

j=o 

with k = 3 and a = 20’ (Beyer et al. 1996). 

References 
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Morse Inequalities 
Topological lower bounds in terms of BETTI NUMBERS 
for the number of critical points form a smooth function 
on a smooth MANIFOLD. 

Morse Theory 
‘CALCULUS OF VARIATIONS in the large” which uses 
nonlinear techniques to address problems in the CAL- 
CULUS OF VARIATIONS. Morse theory applied to a 
FUNCTION g on a MANIFOLD T/v with g(M) = 0 and 

9(M’) = 1 shows that every COBORDISM can be real- 
ized as a finite sequence of SURGERIES. Conversely, a 
sequence of SURGERIES gives a COBORDISM. 

see also 
SURGERY 

CALCULUS OF VARIATIONS, 

Morse-Thue Sequence 

~~~THuE-MORSE SEQUENCE 

Mortal 
A nonempty finite set of n x n MATRICES with INTE- 
GER entries for which there exists some product of the 
MATRICES in the set which is equal to the zero MATRIX. 

Mortality Problem 
For a given n, is the problem of determining if a set is 
MORTAL solvable? n = 1 is solvable, n = 2 is unknown, 
and n 2 3 is unsolvable. 

see also LIFE EXPECTANCY 

Morton-Franks- Williams Inequality 
Let E be the largest and e the smallest POWER of & in 
the HOMFLY POLYNOMIAL of an oriented LINK, and 
i be the BRAID INDEX. Then the MORTON-FRANKS- 
WILLIAMS INEQUALITY holds, 

ik @z-e)+1 

(Franks and Williams 1985, Morton 1985). The inequal- 
ity is sharp for all PRIME KNOTS up to 10 crossings with 
the exceptions of 09042, 09049, 10132, 10150, and ‘10156. 

see also BRAID INDEX 

References 
Franks, J. and Williams, R. F. ‘&Braids and the Jones Poly- 

nomial.” Trans. Amer. Math. Sot. 303, 97-108, 1987. 

Mosaic 

see TESSELLATION 

Moser 
The very LARGE NUMBER consisting of the number 2 
inside a MEGA-gon. 

see also MEGA, MEGKTRON 

Moser’s Circle Problem 

see CIRCLE CUTTING 
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Moss’s Egg with Mo = 1. The Motzkin number Ma is also given by 

An OVAL whose construction is illustrated in the above 
diagram. 

see also EGG, OVAL 

References 
Dixon, R. Mathographics. T\Jew York: Dover, p. 5, 1991. 

Motzkin Number 
I-----^- 

The Motzkin numbers enumerate various combinatorial 
objects. Donaghey and Shapiro (1977) give 14 different 
manifestations of these numbers. In particular, they give 
the number of paths from (0, 0) to (n, 0) which never 
dip below y = 0 and are made up only of the steps (1, 

o), (1, I>, and (17 -l), i.e., -+, 7, and \I* The first are 
1, 2, 4, 9, 21, 51, . l  l  (Sloane’s AOOlO06). The Motzkin 
number GENERATING FUNCTION M(z) satisfies 

M=1+dW+x2M2 (1) 

and is given by 

- - - - M(x) 1 x dl 2x 3x2 = 

2x2 
c 1+ x + 2x2 + 4x3 + 9x4 + 21x5 + “. ) (2) 

or by the RECURRENCE RELATION 

(4) 

( 1) 
n+l - 

- -- 
22n+5 

a+b=n+2 
(2 

a>O,b>O 

(5) 

where (i) is a BINOMIAL COEFFICIENT. 

see ~2s~ CATALAN NUMBER, KING WALK, SCHROEDER 

NUMBER 
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Moufang Plane 
A PROJECTIVE PLANE in which every line is a transla- 
tion line is called a Moufang plane. 

References 
Colbourn, C* J. and Dinitz, J. H. (Eds.) CRC Handbook 

of Combinatorial Designs. Boca Raton, FL: CRC Press, 
p. 710, 1996. 

Mousetrap 
A PERMUTATION problem invented by Cayley. 

References 
Guy, R. K. “MoUsetrap.” SE37 in Unsolved Problems in 

Number Theory, 2nd ed. New York: Springer-Verlag, 
pp. 237-238, 1994. 

Mouth 
A PRINCIPAL VERTEX xi of a SIMPLE POLYGON P is 
called a mouth if the diagonal [xi-l, xi+11 is an extremal 
diagonal (i.e., the interior of [1ci-l, x+I] lies in the ex- 
terior of P). 

see UZSU ANTHROPOMORPHIC POLYGON, EAR, ONE- 
MOUTH THEOREM 

References 
Toussaint, G. “Anthropomorphic Polygons.” Amer. Math. 
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n-2 

Mn = an-l+ 
c 

MkMn-2-k (3) 

k=O 
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Moving Average This gives 

Given a SEQUENCE {ai}Ll, an n-moving average is a 
new sequence {si}zTn+l defined from the ai by taking 
the AVERAGE of subsequences of rz terms, 

1 
i+?l-1 

si = - 
n E 

aj. 

j=i 

see ah AVERAGE, SPENCER’S ~~-P~INT MOVING Av- 
ERAGE 

References 
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Moving Ladder Constant 
N.B. A detailed on-line essay by S. Finch was the start- 
ing point for this entry. 

What is the longest ladder which can be moved around 
a right-angled hallway of unit width? For a straight, 
rigid ladder, the answer is 2fi. For a smoothly-shaped 
ladder, the largest diameter is 2 Z(l+ 4) (Finch). 

see &U MOVING SOFA CONSTANT, PIANO MOVER’S 
PROBLEM 

References 
Finch, S. “Favorite Mathematical Constants.” http : //wnw , 
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Moving Sofa Constant 
N.B. A detailed on-line essay by S. Finch was the start- 
ing point for this entry. 

What is the sofa of greatest AREA S which can be moved 
around a right-angled hallway of unit width? Hammer- 
sley (Croft et al. 1994) showed that 

2 
S > f + - = 2 2074 

7r l  “” 

(1) 

Gerver (1992) found a sofa with larger AREA and pro- 
vided arguments indicating that it is either optimal or 
close to it. The boundary of Gerver’s sofa is a com- 
plicated shape composed of 18 ARCS. Its AREA can be 
given by defining the constants A, B, 4, and 8 by solving 

A(cos 0 - cos 4) - 2Bsin4+ (0 - $-- 1)cose 

- sin@+cos++sin$=O (2) 

A(3sin0 + sin@) - 2B cos# + 3(8 - 4 - 1) sine 

+3cos8 - sinqS+costi = 0 (3) 

Acosqk- (sin++ i - icosqS+ Bsin$) =0 (4) 

(A++qM)-[B- $?-$)(l+A)- +(0-4)‘] = 0. 

(5) 

A = 0.094426560843653.. . 

B = 1.399203?27333547., . 

4 = 0.039177364790084.. . 

0 = 0.681301509382725.. . . 

(6) 

(7) 

(8) 

(9) 

Now define 

r(a) S 

/1. 
2 

for 0 < a < 4 

;(I+~--=+a-4) 
for q5 < a < 0 - 

< w 
A+~--4 

forWa<+0 
B - +($r - a - $)(I + A) - a(+ - a - $)“, 

\ for +eh< +-@, - 

where 

s(a) E 1 - r(a) (11) 

B-+(a-$)(l+A) for#scx<8 
u(a) G -$(a - 4)” 

A+++a for 8 < Q! < +n - 

(12) 

(13) 

Finally, define the functions 

s 

a 

y&) E l- r(t) sin t dt (14 
0 

s 

a 
yz(a) G l- s(t) sin t dt (15) 

0 

I 

a 

ys(a) G l- s(t) sin t dt - u(a) sin Q. (16) 
0 

The AREA of the optimal sofa is given by 

s 

74-4 
A=2 y1 (a)r(a) cos a da 

0 

s 

6 

+2 yz(a)s(o) cos a da 

0 

J 
44 

+2 y+)[u(a) sina - &(a) cosa - s(cy)com] da 
# 

= 2.21953166887197.. , (17) 

(Finch). 

see UZSU PIANO MOVER’S PROBLEM 
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Mrs. Perkins’ Quilt 
The DISSECTION of a SQUARE of side n into a number 
S, of smaller squares. Unlike a PERFECT SQUARE DIS- 
SECTION, however, the smaller SQUARES need not be all 
different sizes. In addition, only prime dissections are 
considered so that patterns which can be dissected on 
lower order SQUARES are not permitted. The following 
table gives the smallest number of coprime dissections 
of an n x n quilt (Sloane’s A005670). 

n S, 

1 1 
2 4 
3 6 
4 7 
5 8 

6-7 9 
8-9 10 

10-13 11 
14-17 12 
18-23 13 
24-29 14 
30-39 15 

40 16 
41 15 

42-100 [17,191 

see also PERFECT SQUARE DISSECTION References 
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Mu Function 

P(d) = Sm xttP dt 

() r(P + V(t + 1) 

/+I P, 4 = 
x”+?O dt 

r(p+l)r(a+t+l) 

where r(z) is the GAMMA FUNCTION (Gradshteyn and 
Ryzhik 1980, p. 1079). 

see also LAMBDA FUNCTION, Nu FUNCTION 

References 
Gradshteyn, I. S. and Ryzhik, I. M. Tables of Integrals, Se- 
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p Molecule 

~~~MANDELBROT SET 

Much Greater 
A strong INEQUALITY in which a is not only GREATER 
than b, but much greater (by some convention), is de- 
noted a >> b. For an astronomer, “much” may mean by 
a factor of 100 (or even lo), while for a mathematician, 
it might mean by a factor of lo4 (or even much more). 

see also GREATER, MUCH LESS 

Much Less 
A strong INEQUALITY in which a is not only LESS than 
b, but much less (by some convention) is denoted a << b. 

see also LESS, MUCH GREATER 

Muirhead’s Theorem 
A NECESSARY and SUFFICIENT condition that [cy’] 
should be comparable with [cy] for all POSITIVE values 
of the a is that one of (cy’) and (a) should be majorized 
by the other. If (cy’) 4 (cw), then 

[a’] I [a], 
with equality only when (ar’) and (QI) are identical or 
when all the a are equal. See Hardy et al. (1988) for a 
definition of notation. 

Hardy, G. H.; Littlewood, J. E.; and P6lya, G. Inequalities, 
2nd ed. Cambridge, England: Cambridge University Press, 
pp. 44-48, 1988. 

Miiller-Lyer Illusion 

An optical ILLUSION in which the orientation of arrow- 
heads makes one LINE SEGMENT look longer than an- 
other. In the above figure, the LINE SEGMENTS on the 
left and right are of equal length in both cases. 

see also ILLUSION, POGGENDORFF ILLUSION, PONZO'S 
ILLUSION, VERTICAL-HORIZONTAL ILLUSION 

References 
Fineman, M. The Nature of Visual Illusion. New York: 

Dover, p. 153, 1996. 
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Muller’s Met hod 
Generalizes the SECANT METHOD of root finding by us- 

ing quadratic 3-point interpolation 

q- xn - En-1 

Xn-1 - Xn-2 l  

(1) 

Then define 

A E qP(xn) - q(l + q)P(xn-1) + q2P(xn-z) (2) 

B = (2q + l)P(Xn) - (I+ q)2P(Xn-1) + Q2P(Xn-2) 

(3) 

C E (l+ q)P(Xn), (4) 

and the next iteration is 

Xn+l = X7-b - (X7-b - Xn-1) 
2c 

max(B & JB2 - 4AC) l  

(5) 

This method can also be used to find COMPLEX zeros of 
ANALYTIC FUNCTIONS. 

References 
Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetter- 

ling, W. T. Numerical Recipes in FORTRAN: The Art of 
Scient$c Computing, 2nd ed. Cambridge, England: Cam- 
bridge University Press, p. 364, 1992. 

Mulliken Symbols 
Symbols used to identify irreducible representations of 
GROUPS: 

A- 

B= 

E= 

T- 

X, = 

x, = 

x1 = 

x2 = 

y- - 

1) - - 

singly degenerate state which is symmetric with 
respect to ROTATION about the principal Cn axis, 

singly DEGENERATE state which is antisymmetric 
with respect to ROTATION about the principal Cn 
axis, 

doubly DEGENERATE, 

triply DEGENERATE, 

(gerade, symmetric) the sign of -t;he wavefunction 
does not change on INVERSION through the center 
of the atom, 

(ungerade, antisymmetric) the sigl. of the wave- 
function changes on INVERSION through the cen- 
ter of the atom, 

(on a or b) the sign of the wavefunction does not 
change upon ROTATION about the center of the 
atom, 

(on a or b) the sign of the wavefupction changes 
upon ROTATION about the center of the atom, 

symmetric with respect to a horizontal symmetry 
plane uh, 

antisymmetric with respect to a horizontal sym- 
metry plane uh. 

see also GROUP THEORY References 

Mu1 tifractal Measure 

Multiamicable Numbers 
Two integers 72 and m < n are (a, P)-multiamicable if 

a(m) -m = an 

and 
u(n) - n = pm, 

where o(n) is the DIVISOR FUNCTION and a, p are POS- 
ITIVE integers. If a = 0 = 1, (m,n) is an AMICABLE 
PAIR. 

m cannot have just one distinct prime factor, and if it 
has precisely two prime factors, then a = 1 and m is 
EVEN. Small multiamicable numbers for small a,/3 are 
given by Cohen et al. (1995). Several of these numbers 
are reproduced in the below table. 

Qr P m n 

1 6 76455288 183102192 
1 7 52920 152280 
1 7 16225560 40580280 

1 7 90863136 227249568 

1 7 16225560 40580280 

1 7 70821324288 177124806144 
1 7 199615613902848 499240550375424 

see also AMICABLE PAIR, DIVISOR FUNCTION 

References 
Cohen, G. L; Gretton, S.; and Hagis, P. Jr. “Multiamicable 

Numbers." Math. Gomput. 64, 1743-1753, 1995. 

Multifactorial 
A generalization of the FACTORIAL and DOUBLE FAC- 
TORIAL, 

n!=n(n-l)(n-2)**92d 

n!! = n(n - 2)(n - 4) l  l  9 

n!!! = n(n-3)(n-6)**-, 

etc., where the product runs through positive integers. 
The FACTORIALS n! for n = 1, 2, . . . , are 1, 2, 6, 24, 120, 
720, . l  . (Sloane’s A000142); the DOUBLE FACTORIALS 
n!! are 1, 2, 3, 8, 15, 48, 105, . . . (Sloane’s AOO6882); 
the triple factorials n!!! are 1, 2, 3, 4, 10, 18, 28, 80, 
162, 280, . . . (Sloane’s A007661); and the quadruple 
factorials n!!!! are 1, 2, 3, 4, 5, 12, 21, 32, 45, 120, . l  l  

(Sloane’s A007662). 

see also FACTORIAL, GAMMA FUKTION 

References 
Sloane, N. J. A. Sequences A000142/M1675, AOO6882/ 

M0876, A007661/M0596, and A007662/M0534 in ‘{An On- 
Line Version of the Encyclopedia of Integer Sequences.” 

Mult ifract al Measure 
A MEASURE for which the q-DIMENSION D, varies with 

4. 

Ott, E. Chaos in Dynamical Systems. New York: Cambridge 
University Press, 1993. 
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Multigrade Equation 
A (k, Z)-multigrade equation is a DIOPHANTINE EQUA- 
TION of the form 

forj = 1, l *., k, where m and XI are Z-VECTORS. Multi- 
grade identities remain valid if a constant is added to 
each element of m and n (Madachy 1979)) so multi- 
grades can always be put in a form where the minimum 
component of one of the vectors is 1. 

Small-order examples are the (2, 3)-multigrade with 
m = {1,6,8} and n = {2,4,9}: 

the (3, 4)-multigrade with m = {1,5,8,12} and n = 
{2,3,10,11}: 

4 4 

)-),t=x,;=26 

i=l *- Z- 1 

4 4 

Em; = xnf = 2366, 
i=l i=l 

and the (4, S)- multigrade with m = {I, 5,8,12,18,19} 
and n = {2,3,9,13,X, 20): 

6 6 

i=l i=l 

6 6 

Ix 
?),&f = pq = 919 

i=l *- 1 

6 

& n; =: 15057 
i=l *- z- 1 

6 6 

x mf = x n: = 260755 

i=l *- z- 1 

(Madachy 1979). 

A spectacular example with k = 9 and 2 = 10 is given 

bY n = (f12, 1k11881,1t20231,1k20885, f23738) and 

m = (k436, H1857, &20449, k20667, f23750) (Guy 
1994), which has sums 

i=l i=l 

nf = 3100255070 

&&nf -1390452894778220678 

fp+ rt; =666573454337853049941719510 

ix1 

i=l *- I 

= ;;0958142560259813821203262692838598 

see also DIUPHANTINE EQUATIUN 

References 
Chen, S. “Equal Sums of Like Powers: On the Integer Solu- 

tion of the Diophantine System.” http://uuu.nease.net/ 
*chin/eslp/ 

Gloden, A. Mehrgeradige GEeichungen. Groningen, Nether- 
lands: Noordhoff, 1944. 

Gloden, A. “Sur la multigrade Al, Aa, Aa, Ad, A5 =k &, 
Bz, B3, &, B5 (k = 1, 3, 5, 7).” Revista Euclides 8, 
383-384, 1948. 

Guy, R. K. Unsolvid Problems in Number Theory, 2nd ed. 
New York: Springer-Verlag, p. 143, 1994. 

Kraitchik, M. “Multigrade.” $3.10 in Mathematical Recre- 
ations. New York: W. W. Norton, p. 79, 1942. 

Madachy, J. S. Madachy’s Mathematical Recreations. New 
York: Dover, pp. 171-173, 1979. 

Mult ilinear 
A function, form, etc., in two or more variables is said to 
be multilinear if it is linear in each variable separately. 

see U~SO BILINEAR, LINEAR OPERATOR 

Multimagic Series 
TI numbers form a p-multimagic series if the sum of their 
kth powers is the MAGIC CONSTANT of degree k for 
every k = 1, . . . , p. The following table gives the number 
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of pmultimagic series NP of given orders n (Kraitchik 
1942) l  

n NI N2 N3 

2 2 
3 8 
4 86 2 2 
5 1,394 8 2 
6 0 98 0 
7 0 1,844 0 
8 0 38,039 115 
9 0 0 41 

10 0 0 0 
11 0 0 961 

References 
Kraitchik, M. “Multimagic Squares.” $7.10 in kh%ematicaZ 

Recreations. New York: W. W. Norton, pp. 176-178, 1942. 

Mult imagic Square 
A MAGIC SQUARE is pmultimagic if the square formed 
by replacing each element by its kth power for k = 1, 2, 

, p is also magic. A 2-multimagic square is called a 
&MAGIC SQUARE, and a 3-multimagic square is called 
a TRIMAGIC SQUARE. 

see also BIMAGIC 
SQUARE 

References 
Kraitchik, M. “Multimagic Squares.” $7.10 in Mathematical 

Recreations. New York: W. W. Norton, pp. 176-178, 1942. 

SQUARE, MAGIC SQUARE, TRIMAGIC 

Mult inomial Coefficient 
The multinomial COEFFICIENTS 

(x1,x2,***)= 
x1+22 + l  ** 

x1!x2! l  l  l  

are the terms in the MULTINOMIAL SERIES expansion. 
They satisfy 

= (xl +x2 +x3,..~),(x1,x2,x3)= 9.m 

(Beeler et al. 1972, Item 44). 

see UZSO BINOMIAL COEFFICIENT, MULTINOMIAL SE- 
RIES 

References 
Abramowitz, M. and Stegun, C. A. (Eds.). “Multinomial 

Coefficients.” 5241.2 in Handbook of Mathematical Func- 

tions with Formulas, Graphs, and Mathematical Tables, 
9th printing. New York: Dover, pp. 823-824, 1972. 

Beeler, M.; Gosper, R. W.; and Schroeppel, R. HAKMEM. 
Cambridge, MA: MIT Artificial Intelligence Laboratory, 
Memo AIM-239, Feb. 1972. 

Spiegel, M. R. Theory and Problems of Probability and 
Statistics. New York: McGraw-Hill, p, 113, 1992. 

Multinomial Distribution 
Let a set of random variates X1, X2, . . . , X, have a 
probability function 

N! n 
P(X1 =xl,...,Xn =xn) = 72 

rI 1 Xi! rI 
&Xi 

f- z- i=l 

where xi are POSITIVE INTEGERS, & > 0, and 

n 

x 
ei = 1 

i=l 

n 

IE 
xi = N. 

f- z- 1 

(1) 

(2) 

(3) 

Then the joint distribution of X1, . . . , X, is a multino- 
mial distribution and P(X1 = xl, . . . , X, = x~) is given 
by the corresponding coefficient of the MULTINOMIAL 
SERIES 

(01 + 02 + --+ en)N. 

The MEAN and VARIANCE of Xi are 

(4) 

Pi = N& (5) 

oi 2 = N&(1 - &). (6) 

The COVARIANCE of Xi and Xj is 

2 
aij = -NOiOj. (7) 

see U~SO BINOMIAL DISTRIWTION 

References 
Beyer, W. EL CRC Standard Mathematical Tables, 28th ed. 

Boca Raton, FL: CRC Press, p. 532, 1987. 

Multinomial Series 
A generalization of the BINOMIAL SERIES discovered by 
Johann Bernoulli and Leibniz. 

(al + a2 + . . . + ~k)~ 

n 

x 

n! - - 
n&z&-nk! 

pazn2 . l  l  ap, 

where n G n1 + n2 + . . . + nk. The multinomial series 
arises in a generalization of the BINOMIAL DISTRIBU- 
TION called the MULTINOMIAL DISTRIBUTION. 

see UZSO BINOMIAL SERIES, MULTINOMIAL DISTRIBU- 
TION 

Mult inomial Theorem 

see MULTINOMIAL SERIES 
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Multiperfect Number 
A number n is k-multiperfect (also called a &MULTIPLY 
PERFECT NUMBER or ~-PLUPERFECT NUMBER) if 

44 = kn 

for some INTEGER k > 2, where o(n) isthe DIVISOR 
FUNCTION. The value of Fz is called the CLASS. The spe- 
cial case k = 2 corresponds to PERFECT NUMBERS pZ, 
which are intimately connected with MERSENNE PRIMES 

(Sloane’s A000396). The number 120 was long known 
to be 3-multiply perfect (&) since 

U( 120) = 3 l  120. 

The following table gives the first few Pn. for n = 2, 3, 

* * - 7 6. 

n Sloane P, 

2 000396 6, 28, 496, 8128, l  . . , 

3 005820 120, 672, 523776, 459818240, . q q 
4 027687 30240, 32760, 2178540, 23569920, . . . 
5 046060 14182439040, 31998395520, . . . 
6 046061 154345556085770649600, . . . 

In 1900-1901, Lehmer proved that Pz has at least three 
distinct PRIME factors, pd has at least four, P5 at least 
six, Ps at least nine, and P7 at least 14. 

As of of 1911, 251 pluperfect numbers were known (Car- 
michael and Mason 1911). As of 1929, 334 pluperfect 
numbers were known, many of them found by Poulet. 
fianqui and Garcia (1953) found 63 additional ones (five 
Pss, 29 Pss, and 29 PUS), several of which were known to 
Poulet but had not been published, bringing the total to 
397. Brown (1954) discovered 110 pluperfects, includ- 
ing 31 discovered but not published by Poulet and 25 
previously published by fianqui and Garcia (1953), for 
a total of 482. Franqui and Garcia (1954) subsequently 
discovered 57 additional pluperfects (3 pus, 52 PUS, and 
2 PBS), increasing the total known to 539. 

An outdated database is maintained by R. Schroeppel, 
who lists 2,094 multiperfects, and an up-to-date list by 
J. L. Moxham (1998). It is believed that all multiperfect 
numbers of index 3, 4, 5, 6, and 7 are known. The 
number of known n-multiperfect numbers are 1, 37, 6, 
36, 65, 245, 516, 1101, 1129, 46, 0, 0, . l  . . 

If n is a Ps number such that 3{n, then 3n is a P4 num- 
ber. If 3n is a P4k number such that 3{n, then n is a 
P3k number. If n is a Pa number such that 3 (but not 5 
and 9) DIVIDES n, then 45n is a P4 number. 

see U~SO e-MULTIPERFECT NUMBER, FRIENDLY PAIR, 
HYPERPERFECT NUMBER, INFINARY MULTIPERFECT 
NUMBER,MERSENNE PRIME,~ERFECT NUMBER,UNI- 
TARY MULTIPERFECT NUMBER 

References 
Brown, A. L. “Multiperfect Numbers.” Scti#a IMath. 20, 

103-106, 1954. 

Dickson, L. E. History of the Theory of Numbers, Vol. 1: 
Divisibility and Primality. New York: Chelsea, pp. 33-38, 
1952. 

Flammenkamp, A. “Multiply Perfect Numbers.” http : // 
uuu.uni-bielefeld.de/-achim/mpn.html. 

Franqui, B. and Garcia, M. “Some New Multiply Perfect 
Numbers.” Amer. Math. Monthly 60, 459-462, 1953. 

fianqui, B. and Garcia, M. “57 New Multiply Perfect Num- 
bers.” Scriphz Math. 20, 169-171, 1954. 

Guy, R. K. “Almost Perfect, Quasi-Perfect, Pseudoperfect, 
Harmonic, Weird, Multiperfect and Hyperperfect Num- 
bers.” §B2 in Unsolved Problems in Number Theory, 2nd 
ed. New York: Springer-Verlag, pp* 45-53, 1994. 

Helenius, F. W. “Multiperfect Numbers (MPFNs)? http: // 
uww.netcom.com/-fredhh/mpfn. 

Madachy, J. S. Mudachy’s Mathematical Recreations. New 
York: Dover, pp. 149-151, 1979. 

Moxham, J. L. “13 New MPFN’s.” math-fun&s. arizona. 
edu posting, Aug 13, 1998. 

Poulet, P. La Chasse aux nombres, Vol. 1, Brussels, pp. 9-27, 
1929. 

Schroeppel, R. “Multiperfect Numbers-Multiply Perfect 
Numbers-Pluperfect Numbers-MPFNs.” Rev. Dec. 
13, 1995. ftp://ftp.cs.arizona.edu/xkemel/rcs/ 
mpfn. html. 

Schroeppel, R. (moderator). mpfn mailing list. e-mail 
rcsc9cs. arizona. edu to subscribe. 

Sloane, N. Jm A. Sequences A000396/M4186 and A005820/ 
MS376 in “An On-Line Version of the Encyclopedia of In- 
teger Se+ences.” 

Multiple Integral 
A repeated integral over n > 1 variables 

s s l  . . f(x1,...,xn)dxr-dxn 

n 

is called a multiple integral. An nth order integral cor- 
responds, in general, to an n-D VOLUME (CONTENT), 
with n = 2 corresponding to an AREA. In an indefinite 
multiple integral, the order in which the integrals are 
carried out can be varied at will; for definite multiple 
integrals, care must be taken to correctly transform the 
limits if the order is changed. 

see UZSO INTEGRAL, MONTE CARLO INTEGRATION 

References 
Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetter- 

ling, W. T. “Multidimensional Integrals.” $4.6 in Numeri- 
cal Recipes in FORTRAN: The Art of Scientific Comput- 
ing, 2nd ed. Cambridge, England: Cambridge University 
Press, pp. 155-158, 1992. 

Multiple Regression 
A REGRESSION giving conditional expectation values of 
a given variable in terms of two or more other variables. 

see ~1~0 LEAST SQUARES F ITTING, MULTIVARIATE 
ANA .LYSIS, N~NL NEAR LEAST SQUARES FITTING 

References 
Edwards, A. L. Multiple Regression and the Analysis of Vati- 

unce and Covuriunce. San Francisco, CA: W. H. Freeman, 
1979. 
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Multiplication 
In simple algebra, multiplication is the process of cal- 
culating the result when a number a is taken b times. 
The result of a multiplication is called the PRODUCT of 
a and b. It is denoted a x b, a l  b, (a)(b), or simply ab. 
The symbol x is known as the MULTIPLICATION SIGN. 
Normal multiplication is ASSOCIATIVE, COMMUTATIVE, 
and DISTRIBUTIVE. 

More generally, multiplication can also be defined for 
other mathematical objects such as GROUPS, MATRI- 
CES, SETS, and TENSORS. 

Karatsuba and Ofman (1962) discovered that multipli- 
cation of two n digit numbers can be done with a BIT 
COMPLEXITY of less than n2 using an algorithm now 
known as KARATSUBA MULTIPLICATION. 

see UZSO ADDITION, BIT COMPLEXITY, COMPLEX MUL- 
TIPLICATION, DIVISION, KARATSUBA MULTIPLICATION, 
MATRIX MULTIPLICATION, PRODUCT, RUSSIAN MULTI- 
PLICATION, SUBTRACTION, TIMES 

References 
Karatsuba, A. and Ofman, Yu. ‘LMultiplication of Many- 

Digital Numbers by Automatic Computers.” Doklady 
Akad. Nauk SSSR 145, 293-294, 1962. Translation in 
Physics-Doklady 7, 595-596, 1963. 

Multiplication Magic Square 
* 

t i i 1 

A square which is magic under multiplication instead 
of addition (the operation used to define a conventional 
MAGIC SQUARE) is called a multiplication magic square. 
Unlike (normal) MAGIC SQUARES, the n2 entries for an 
nth order multiplicative magic square are not required to 
be consecutive. The above multiplication magic square 
has a multiplicative magic constant of 4,096. 

see &SO ADDITION-MULTIPLICATION MAGIC SQUARE, 
MAGIC SQUARE 

References 
Hunter, 5. A. H. and Madachy, J. S. “Mystic Arrays.” Ch+ 3 

in Mathematical Diversions. New York: Dover, pp. 30-31, 
1975. 

Madachy, J. S. Madachy’s Mathematical Recreations. New 
York: Dover, pp. 89-91, 1979. 

Multiplication Principle 
If one event can occur in vx ways and a second can occur 
independently of the first in n ways, then the two events 
can occur in mn ways. 

Multiplication Sign 
The symbol x used to denote MULTIPLICATION, i.e., 
a x b denotes a times b. 

Multiplication Table 
A multiplication table is an array showing the result of 
applying a BINARY OPERATOR to elements of a given 
set S. 

xl1 2 3 4 5 6 7 8 9 10 

1 1 2 3 4 5 6 7 8 9 10 
2 2 4 6 8 10 12 14 16 18 20 
3 3 6 9 12 15 18 21 24 27 30 
4 4 8 12 16 20 24 28 32 36 40 
5 5 10 15 20 25 30 35 40 45 50 
6 6 12 18 24 30 36 42 48 54 60 
7 7 14 21 28 35 42 49 56 63 70 
8 8 16 24 32 40 48 56 64 72 80 
9 9 18 27 36 45 54 63 72 81 90 

10 10 20 30 40 50 60 70 80 90 100 

see also BINARY OPERATOR, TRUTH TABLE 

Multiplicative Character 

see CHARACTER (MULTIPLICATIVE) 

Multiplicative Digital Root 
Consider the process of taking a number, multiplying 
its DIGITS, then multiplying the DIGITS of numbers de- 
rived from it, etc., until the remaining number has only 
one DIGIT. The number of multiplications required to 
obtain a single DIGIT from a number n is called the 
MULTIPLICATIVE PERSISTENCE of n, and the DIGIT ob- 
tained is called the multiplicative digital root of n. 

For example, the sequence obtained from the starting 
number 9876 is (9876, 3024, 0), so 9876 has a MUL- 
TIPLICATIVE PERSISTENCE of two and a multiplicative 
digital root of 0. The multiplicative digital roots of the 
first few positive integers are 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 

1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 2, 4, 6, 8, 0, 2, 4, 6, 8, 0, 3, 6, 
9, 2, 5, 8, 2, . . . (Sloane’s A031347). 

see UZSO ADDITIVE PERSISTENCE, DIGITADITION, DIGI- 
TAL ROOT, MULTIPLICATIVE PERSISTENCE 

References 
Sloane, N. J. A. Sequence A031347 in “An On-Line Version 

of the Encyclopedia of Integer Sequences.” 

Multiplicative F’unct ion 
A function f( m is called multiplicative if (m, m’) = ) 
1 (i.e., the statement that m and m’ are RELATIVELY 
PRIME) implies 

f(mm’> = f (m)f (m’>* 

see also QUADRATIC RESIDUE, TOTIENT FUNCTION 

Multiplicative Inverse 
The multiplicative of a REAL or COMPLEX NUMBER x 
is its RECIPROCAL l/z. For complex z = Al: + iy, 

1 1 X Y _-p-p 
z- 2 + iy - x2 - y2 

-$I.---- 
x2- 2' Y 
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Multiplicative Perfect Number 
A number n for which the PRODUCT of DIVISORS is 
equal to n2. The first few are 1, 6, 8, 10, 14, 15, 21, 22, 
. . . (Sloane’s A007422) - 

see also PERFECT NUMBER 

References 
Sloane, N. J. A, Sequence AO07422/M4068 in “An On-Line 

Version of the Encyclopedia of Integer Sequences.” 

Multiplicative Persistence 
Multiply all the digits of a number n by each other, 
repeating with the product until a single DIGIT is ob- 
tained. The number of steps required is known as the 
multiplicative persistence, and the final DIGIT obtained 
is called the MULTIPLICATIVE DIGITAL Rook of n. 

For example, the sequence obtained from the starting 
number 9876 is (9876, 3024, 0), so 9876 has an mul- 
tiplicative persistence of two and a MULTIPLICATIVE 
DIGITAL ROOT of 0. The multiplicative persistences 
of the first few positive integers are 0, 0, 0, 0, 0, 0, 

0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 
2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 1, 1, + . . (Sloane’s 
A031346). Th e smallest numbers having multiplicative 
persistences of 1, 2, . . . are 10, 25, 39, 77 679 6788 
68889 267889 26888999 3778888999 277777788888899 

(Sloane’s AO03001) There is no number < 105’ with 
multiplicative persistence > 11. 

The multiplicative persistence of an ~-DIGIT number is 
also called its LENGTH. The maximum lengths for 72 = 
2-, 3-, . . . ) digit numbers are 4, 5, 6, 7, 7, 8, 9, 9, 10, 10, 
10, . . . (Sloane’s AOl4553; (Beeler et al. 1972, Item 56; 
Gottlieb 1969-1970). 

The concept of multiplicative persistence can be gener- 
alized to multiplying the kth powers of the digits of a 
number and iterating until the result remains constant. 
All numbers other than REPUNITS, which converge to 
1, converge to 0. The number of iterations required for 
the kth powers of a number’s digits to converge to 0 
is called its k-multiplicative persistence. The following 
table gives the n-multiplicative persistences for the first 
few positive integers. 

n Sloane n-Persistences 

2 031348 0, 7, 6, 6, 3, 5, 5, 4, 5, 1, . . . 
3 031349 0, 4, 5, 4, 3, 4, 4, 3, 3, 1, . . . 
4 031350 0, 4, 3, 3, 3, 3, 2, 2, 3, 1, l  l  l  

5 031351 0, 4, 4, 2, 3, 3, 2, 3, 2, 1, . . . 
6 031352 0, 3, 3, 2, 3, 3, 3, 3, 3, 1, . . . 
7 031353 0, 4, 3, 3, 3, 3, 3, 2, 3, 1, l  l  l  

8 031354 0, 3, 3, 3, 2, 4, 2, 3, 2, 1, . . . 
9 031355 0, 3, 3, 3, 3, 2, 2, 3, 2, 1, l  l  l  

10 031356 0, 2, 2, 2, 3, 2, 3, 2, 2, 1, l  . . 

NARCISSISTIC NUMBER, RECURRING DIGITAL INVARI- 
ANT 
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1969. 
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Multiplicative Primitive Residue Class 

Group 

see MODULO MULTIPLICATION GROUP 

Multiplicity 
The word multiplicity is a general term meaning “the 
number of values for which a given condition holds.” 
The most common use of the word is as the value of the 
TOTIENT VALENCE FUNCTION. 

see also DEGENERATE, NOETHER? FUNDAMENTAL 
THEOREM,TOTIENT VALENCE FUNCTION 

Multiplier 

see MODULAR FUNCTION MULTIPLIER 

Multiply Connected 
Aset whichis CONNECTED butnot SIMPLY CONNECTED 
is called multiply connected. A SPACE is ~-MULTIPLY 
CONNECTED ifitis (n- 1)-connected and if every MAP 
from the n-SPHERE into it extends continuously over the 
(n + l)-DISK 

A theorem of Whitehead says th 
connected IFF it is contractible. 

.at a SPACE is infinitely 

see also CONNECTIVITY, LOCALLY PATHWISE-CON- 
NECTED SPACE,PATHWISE-CONNECTED,~IMPLY CON- 
NECTED 

Multiply Perfect Number 

see MULTIPERFECT NUMBER 

Mult isect ion 

see SERIES MULTISECTION 

Multivalued Function 
A FUNCTION which assumes two or more distinct values 
at one or more points in its DOMAIN. 

see also BRANCH CUT, BRANCH POINT 

see U~SO 196-ALGORITHM, ADDITIVE PERSISTENCE, 
DIGITADITION, DIGITAL ROOT, KAPREKAR NUMBER, 
LENGTH (NUMBER), MULTIPLICATIVE DIGITAL ROOT, 
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Multivariate Analysis 
The study of random distributions involving more than 
one variable. 

see also GAUSSIAN JOINT VARIABLE THEOREM 
TIPLE REGRESSION , MULTIVARIATE FUNCTION 

, MUL- 
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Hair, J. F. Jr. Multivariate Data Analysis with Readings, 
4th ed. Englewood Cliffs, NJ: Prentice-Hall, 1995. 

Sharma, S. Applied Multivariate Techniques. New Y&k: Wi- 
ley, 1996. 

Multivariate Function 
A FUNCTION of more than one variable. 

see UZSO MULTIVARIATE ANALYSIS, UNIVARIATE FUNC- 

Multivariate Theorem 

see GAUSSIAN JOINT VARIABLE THEOREM 

Miintz Space 
A Miintz space is a technically defined SPACE 

M(A) G span{zXo, &, . . .} 

which arises in the study of function approximations. 

Miintz’s Theorem 
Miintz’s theorem is a generalization of the WEIERSTRAJ~ 
APPROXIMATION THEOREM, which statesthatany con- 
tinuous function on a closed and bounded interval can 
be uniformly approximated by POLYNOMIALS involv- 
ing constants and any INFINITE SEQUENCE of POWERS 
whose RECIPROCALS diverge. 

In technical language, Miintz’s theorem states that the 
M~~NTZ SPACE Iw(A) is dense in CIO, 11 IFF 

see also WEIERSTRAJ~ APPROXIMATION THEOREM 

Mutant Knot 
Given an original KNOT K, the three knots produced 
by MUTATION together with K itself are called mutant 
knots. Mutant knots are often difficult to distinguish. 
For instant, mutants have the same HOMFLY POLY- 
NOMIALS and HYPERBOLIC KNOT volume. Many but 
not all mutants also have the same GENUS (KNOT). 

Mutation 
Consider a KNOT as being formed from two TANGLES. 
The following three operations are called mutations. 

1. Cut the knot open along four points on each of the 
four strings coming out of Z& flipping 572 over, and 
gluing the strings back together. 

2. Cut the knot open along four points on each of the 
four strings coming out of Tz, flipping T2 to the right, 
and gluing the strings back together. 

3. Cut the knot, rotate it by 180”, and reglue. This is 
equivalent to performing (1), then (2). 

Mutations applied to an alternating KNOT projection 
always yield an ALTERNATING KNOT. The mutation of 
a KNOT is always another KNOT (a opposed to a LINK). 

References 
Adams, C. C. The Knot Book: An Elementary Introduction 

to the Mathematical Theory of Knots. New York: W. H. 
Freeman, p. 49, 1994. 

Mutual Energy 
Let s2 be a SPACE with MEASURE p 2 0, and let +(P, Q) 
be a real function on the PRODUCT SPACE n x s1. When 

(w4 = 
ff 

W, Q> d/4&> W’) 

exists for measures 1-1, v 2 0, (p, V) is called 
energy. (p, p) is then called the ENERGY. 

see also ENERGY 

the mutual 

References 
Iyanaga, S. and Kawada, Y. (Eds.). “General Potential.” 

5335.B in Encyclopedic Dictionary of Mathematics. Cam- 
bridge, MA: MIT Press, p. 1038, 1980. 

Mutually Exclusive 
Two events El and E2 are mutually exclusive if El n 
Ez E 0. n events El, Es, . l  . , En are mutually exclusive 
if Ei n Ej E 0 for i # j. 

Mutually Singular 
Let M be a SIGMA ALGEBRA 2M, and let X1 and X2 be 
MEASURES on iK If there EXISTS a pair of disjoint SETS 
A and B such that X1 is CONCENTRATED on A and X2 
is CONCENTRATED on B, then X1 and X2 are said to be 
mutually singular, written X1 1 A2* 

see also ABSOLUTELY 
SIGMA ALGEBRA 

CONTINUOUS, CONCENTRATED, 

References 
Rudin, W. Functional Analysis. New York: McGraw-Hill, 

p. 121, 1991. 

Myriad 
The Greek word for 10,000. 



Myriagon 

Myriagon 
A lO,OOO-sided POLYGON. 

MYS tic Pentagram 

see P ENTAGRAM 

Mystic Pentagram 1211 
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N n-plex 
n-plex is defined as 10n. 

see also GOOGOLPLEX, WMINEX 
N 
The SET of NATURAL NUMBERS (the POSITIVE INTE- 

GERS Z’ 1, 2, 3, . , . ; Sloane’s AOOOOZ7), denoted N, 
also called the WHOLE NUMBERS. Like whole numbers, 
there is no general agreement on whether 0 should be 
included in the list of natural numbers. 

Due to lack of standard terminology, the following terms 
are recommended in preference to ‘COUNTING NWM- 
BER, ” “natural number,” and “WHOLE NIJMBER~” 

Set Name Symbol 

l *‘? 
-2, -1, 0, 1, 2, . . . integers z 

1, 2) 3, 4, l  l  l  positive integers z+ 
0) 1, 2) 3) 4 n l  l  nonnegative integers Z* 
-1, -2, -3, -4, l  . . negative integers z- 

see &O c, CARDINAL NUMBER, COUNTING NUMBER, 
1, INTEGER, Q, Iw, WHOLE NUMBER, Z, Z+ 

References 
Sloane, N. J. A. Sequence A000027/M0472 in “An On-Line 

Version of the Encyclopedia of Integer Sequences.” 

N-Cluster 
A LATTICE POINT configuration with no three points 
COLLINEAR and no four CONCYCLIC. An example is 
the 6-cluster (0, 0), (132, -720), (546, -272)) (960, 
-720)) (1155, 540)) (546, 1120). Call the RADIUS of 
the smallest CIRCLE centered at one of the points of an 
N-cluster which contains all the points in the N-cluster 
the EXTENT. No11 and Bell (1989) found 91 nonequiv- 
alent prime 6-clusters of EXTENT less than 20937, but 
found no 7-clusters. 

Heierences 
Guy, R. K. Unsolved Problems in Number Theory, 2nd ed. 

New York: Springer-Verlag, pm 187, 1994. 
Noll, L. C and Bell, D. I. “n-clusters for I < n < 7.” Math. 

Comput. 53, 439-444, 1989. 

n-Cube 

see HYPERCUBE, POLYCUBE 

n-in-a-Row 

see TIC-TAG-TOE 

n-minex 
n-minex is defined as lo-“. 

see also n-PLEX 

References 
Conway, J. H. and Guy, R. K. The Book of Numbers. New 

York: Springer-Verlag, p. 16, 1996. 

n-Sphere 

see HYPERSPHERE 

Nabla 

see DEL, LAPLACIAN 

Nagel Point 

Let A’ be the point at which the A-EXCIRCLE meets the 
side BC of a TRIANGLE LIABC, and define B’ and C’ 
similarly. Then the lines AA’, BB’, and CC’ CONCUR 
in the NAGEL POINT. 

The Nagel point can also be constructed by letting A” 
be the point half way around the PERIMETER of AABC 
starting at A, and B” and C” similarly defined. Then 
the lines AA”, BB”, and CC” concur in the Nagel point. 
It is therefore sometimes known as the BISECTED PER- 

IMETER POINT (Bennett et al. 1988, Chen et al. 1992, 
Kimberling 1994). 

The Nagel point has TRIANGLE CENTER FUNCTION 

b+c-a 
a=- 

a ' 

It is the ISOTOMIC CONJUGATE POINT of the GER- 
GONNE POINT. 

see &OEXCENTER,EXCENTRAL TRIANGLE,EXCIRCLE, 
MITTENPUNKT, TRISECTED PERIMETER POINT 

References 
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n-Omino 

see POLYOMINO 
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Chen, J.; Lo, C.-H,; and Lossers, 0. P. “Problem E 3397 and 
Solution.” Amer. Math. Monthly 99, 70-71, 1992. 
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1 lnb - lnu 1 

b< b-a <a’ 

References 
Nelsen, R. B. “Napier’s Inequality (Two Proofs).” CoEZege 

Math. J. 24, 165, 1993. 

Naive Set Theory 
A branch of mathematics which attempts to formalize 
the nature of the SET using a minimal collection of in- 
dependent axioms. Unfortunately, as discovered by its 
earliest proponents, naive set theory quickly runs into a 
number of PARADOXES (such as RUSSELL’S PARADOX), 
so a less sweeping and more formal theory known as 
AXIOMATIC SET THEORY must be used. 

see also AXIOMATIC SET THEORY, RUSSELL'S PARA- 
DOX,SET THEORY 

Napier % Analogies 
Let a SPHERICAL TRIANGLE have sides a, b, and c with 
A, B, and C the corresponding opposite angles. Then 

sin[i(A - B)] 

sin[i(A + B)] = 

tan[$(a - b)] 

tan(ic) 

cos[+(A - B)] 
cos[;(A + B)] = 

tan[+(a + b)] 
tan( $2) 

sin[+(a - b)] 

sin[+(a + b)] = 

tan[$(A - B)] 

cot( +c> 

cos[~(u - b)] 

cos[~(u + b)] = 

tan[$(A + B)] 

cot($) - 

(1) 

(3 > 

see also SPHERICAL TRIGONOMETRY 

Napier’s Bones 
Numbered rods which can be used to perform MULTI- 
PLICATION. This process is also called RABDOLOGY. 

see dso GENAILLE RODS 

References 
Gardner, M. “Napier’s Bones.” Ch. 7 in Knotted Dough- 

nuts and Other Mathematical Entertainments. New York: 
Wm H. F’reeman, 1986. 

Pappas, T. “Napier’s Bones.” The Joy of Mathematics. San 
Carlos, CA: Wide World Publ./Tetra, pp. 64-65, 1989. 

Napier’s Constant 

see e 

Napoleon Points 

Napierian Logarithm 

2. 3x108 

2. 2x108 

2.1x108d 

1.9x 

1.8x 

1.7x 

1.6x 

Write a number IV as 

N = 107(1 - 10-7)L, 

then L is the Napierian logarithm of J7. This was the 
original definition of a LOGARITHM, and can be given in 
terms of the modern LOGARITHM as 

WV = - log (it-4 
1% ( 

107 ’ 
log > 

The Napierian logarithm decreases with increasing num- 
bers and does not satisfy many of the fundamental prop- 
erties of the modern LOGARITHM, e.g., 

Nlog(xy) # Nlog x + Nlog ym 

Napkin Ring 

see SPHERICAL RING 

Napoleon Points 
EAB 

,  

‘\ 

,  ’ I  

I  \  

I  1 

The inner Napoleon point N is the CONCURRENCE of 
lines drawn between VERTICES of a given TRIANGLE 
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AABC and the opposite VERTICES of the correspond- 
ing inner NAPOLEON TRIANGLE AIVABIVACIVBC* The 
TRIANGLE CENTER FVNCTION of the inner Napoleon 
point is 

a = csc(A - $). 

The outer Napoleon point N’ is the CONCURRENCE of 
lines drawn between VERTICES of a given TRIANGLE 

AABC and the opposite VERTICES of the correspond- 
ing outer NAPOLEON TRIANGLE ANisNicN&. The 
TRIANGLE CENTER FUNCTION of the point is 

a = csc(A + ;TT>. 

see UZSO NAPOLEON’S THEOREM, NAPOLEON TRIAN- 
GLES 

References 
Casey, J. Analytic Geometry, 2nd ed. Dublin: Hodges, Fig- 

gis, & Co., pp, 442-444, 1893. 
Kimberling, C. “Central Points and Central Lines in the 

Plane of a Triangle.” Math. Mug. 87, 163-187, 1994. 

Napoleon’s Problem 
Given the center of a CIRCLE, divide the CIRCLE into 
four equal arcs using a COMPASS alone (a MASCHERONI 
CONSTRUCTION). 

see als 
TION 

oc IRCLE, COMPASS, MASCHERONI CONSTRUC- 

Napoleon’s Theorem 
If EQUILATERAL TRIANGLES are erected externally on 
the sides of any TRIANGLE, then the centers form an 
EQUILATERAL TRIANGLE (the outer NAPOLEON TRI- 
ANGLE). Furthermore, the inner NAPOLEON TRIANGLE 

is also EQUILATERAL and the difference between the ar- 
eas of the outer and inner Napoleon triangles equals the 
AREA of the original TRIANGLE. 

see UZSO NAPOLEON POINTS, NAPOLEON TRIANGLES 

References 
Coxeter, H. S. M. and Greitzer, S. L. Geometry Revisited. 

Washington, DC: Math. Assoc. Amer., pp* 60-65, 1967. 
Pappas, T. “Napoleon’s Theorem.” The Joy of Mathematics. 

San Carlos, CA: Wide World Publ./Tetra, p. 57, 1989. 
Schmidt, F. "200 Jahre franzijsische Revolution-Problem 

und Satz von Napoleon.” Didaktik der Muthemafik 19, 

Napoleon Triangles 
E AB 

The inner Napoleon triangle is the TRIANGLE 

ANABNAC~Z formed by the centers of inter- 
nally erected EQUILATERAL TRIANGLES AABEAB, 
AACEA~, and ABCEBC on the sides of a given TRI- 
ANGLE AABC. It is an EQUILATERAL TRIANGLE. 

, \ 
1 

Nt4B ,” 
1 

erAB 

The outer Napoleon triangle is the TRIANGLE 

ANkBNI,.Nf,. formed by the centers of exter- 
nally erected EQUILATERAL TRIANGLES AABE~, , 
AACE& and ABCE& on the sides of a given TRI- 
ANGLE AABC. It is also an EQUILATERAL TRIANGLE. 

see also EQUILATERAL TRIANGLE, NAPOLEON POINTS, 
NAPOLEON’S THEOREM 

References 
Coveter, H. S. M. and Greitzer, S. L. Geometry Revisited. 

Washington, DC: Math. Assoc. Amer.! pp. 60-65, 1967. 

NaPPe 

One of the two pieces of a double CONE (i.e., two CONES 
placed apex to apex). 

see also CONE 

15-29, 1990. 
Wentzel, J. E. “Converses of Napoleon’s Theorem.” Amer. 

Math. Monthly 99, 339-351, 1992. 
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Narcissistic Number 
An n-DIGIT number which is the SUM of the nth POW- 
ERS of its DIGITS is called an n-narcissistic number, or 
sometimesan ARMSTRONG NUMBERO~PERFECT DIGI- 
TAL INVARIANT (Madachy 1979). The smallest example 
other than the trivial I-DIGIT numbers is 

153 = l3 + 53 + 33. 

The series of smallest narcissistic numbers of n digits 
are 0, (none), 153, 1634, 54748, 548834, . . . (Sloane’s 
A014576). Hardy (1993) wrote, “There are just four 
numbers, after unity, which are the sums of the cubes of 
their digits: 153 = 13+53+33, 370 = 33+73+03, 371 = 
33 + 73 + 13, and 407 = 43 +03 + 73. These are odd facts, 
very suitable for puzzle columns and likely to amuse 
amateurs, but there is nothing in them which appeals 
to the mathematician.” The following table gives the 
generalization of these “unappealing” numbers to other 
POWERS (Madachy 1979, p. 164). 

n n-Narcissistic Numbers 

1 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 
2 none 
3 153, 370, 371, 407 
4 1634, 8208, 9474 
5 54748, 92727, 93084 
6 548834 
7 1741725,4210818,9800817,9926315 
8 24678050, 24678051, 88593477 
9 146511208,472335975,534494836,912985153 

10 4679307774 

A total of 88 narcissistic numbers exist in base-10, as 
proved by D. Winter in 1985 and verified by ID. Hoey. 
These numbers exist for only 1, 3, 4, 5, 6, 7, 8, 9, 10, 
11, 14, 16, 17, 19, 20, 21, 23, 24, 25, 27, 29, 31, 32, 33, 
34, 35, 37, 38, and 39 digits. It can easily be shown that 
base-10 n-narcissistic numbers can exist only for n < 60, - 
since 

73.9” < lO”-l 

for rt > 60. The largest base-10 narcissistic number is 
the 39-narcissistic 

115132219018736992565095597973971522401 

A table of the largest known narcissistic numbers in var- A theorem in GAME THEORY which guarantees the ex- 

ious BASES is given by Pickover (1995). A tabulation of istence ofa NASH EQUILIBRIUM for MIXED STRATEGIES 

narcissistic numbers in various bases is given by (Corn- in finite, noncooperative GAMES of two or more players. 

ing) . see also MIXED STRATEGY, NASH EQUILIBRHJM 

A closely related set of numbers generalize the narcissis- 
tic number to ~-DIGIT numbers which are the sums of 
any single POWER of their DIGITS. For example, 4150 
is a ~-DIGIT number which is the sum of fifth POWERS 
of its DIGITS. Since the number of digits is not equal to 
the power to which they are taken for such numbers, it is 

not a narcissistic number. The smallest numbers which 
are sums of any single positive power of their digits are 
1, 2, 3, 4, 5, 6, 7, 8, 9, 153, 370, 371, 407, 1634, 4150, 
4151, 8208, 9474, . . . (Sloane’s A023052), with powers 
1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 3, 4, 5, 5, 4, 4, l  . . 
(Sloane’s A046074). 

The smallest numbers which are equal to the nth powers 
of their digits for n = 3, 4, . l  . , are 153, 1634, 4150, 
548834, 1741725, . . . (Sloane’s A003321). The n-digit 
numbers equal to the sum of nth powers of their digits 
(a finite sequence) are called ARMSTRONG NUMBERS or 
PLUS PERFECT NUMBERS andaregivenby1,2,3,4,5, 
6, 7, 8, 9, 153, 370, 371, 407, 1634, 8208, 9474, 54748, 
l  . . (Sloane’s A005188). 

If the sum-of-kth-powers-of-digits operation applied it- 
eratively to a number n eventually returns to n, 
the smallest number in the sequence is called a /z- 
RECURRING DIGITAL INVARIANT. 

see also ADDITIVE PERSISTENCE,DIGITAL ROOT,DIGI- 
TADITION, KAPREKARNUMBER, MULTIPLICATIVE DIG- 
ITAL ROOT, MULTIPLICATIVE PERSISTENCE, RECUR- 
RING DIGITAL INVARIANT, VAMPIRE NUMBER 
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Nash Equilibrium 
A set of MIXED STRATEGIES for finite, noncooperative 
GAMES of two or more players in which no player can 
improve his payoff by unilaterally changing strategy. 

see also FIXED POINT, GAME, MIXED STRATEGY, 
NASH'S THEOREM 

Nash’s Theorem 

Nasik Square 

~~~PANMAGIC SQUARE 
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Nasty Knot 
An UNKNOT which can only be unknotted by first in- 
creasing the number of crossings. 

Natural Density 

see NATURAL INVARIANT 

Natural Equation 
A natural equation is an equation which specifies a curve 
independent of any choice of coordinates or parameter- 
ization. The study of natural equations began with the 
following problem: given two functions of one parame- 
ter, find the SPACE CURVE for which the functions are 
the CURVATURE and TORSION. 

Euler gave an integral solution for plane curves (which 
always have TORSION 7 = 0). Call the ANGLE between 
the TANGENT line to the curve and the X-AXIS 4 the 
TANGENTIAL ANGLE, then 

where E is the CURVATURE. Then the equations 

where 7 is the TORSION, are solved by the 
equations parametric 

(1) 

K = E(S) (2) 

7 = 0, (3) 

x= 
I 

cos q5 ds 

curve with 

Y= 
I 

sin 4 ds. (5) 

The equations fi = E(S) and 7 = T(S) are called the nat- 
ural (or INTRINSIC) equations of the space curve. An 
equation expressing a plane curve in terms of s and RA- 
DIUS OF CURVATURE R (orK)iscalleda CES~RO EQUA- 
TION, and an equation expressing a plane curve in terms 
ofs and $is called a WHEWELL EQUATION. 

Among the special planar cases which can be solved in 
terms of elementary functions are the CIRCLE, LOGA- 
RITHMIC SPIRAL, CIRCLE INVOLUTE, and EPICYCLOID. 

Enneper showed that each of these is the projection of a 
HELIX on a CONIC surface of revolution along the axis 
of symmetry. The above cases correspond to the CYL- 
INDER, CONE,PARABOLOID, and SPHERE. 

see also CES~RO EQ 
WHEWELL EQUATION 

References 

Natural Independence Phenomenon 
A type of mathematical result which is considered by 
most logicians as more natural than the METAMATH- 
EMATICAL incompleteness results first discovered by 
Gijdel. Finite combinatorial examples include GOOD- 

STEIN'S THEOREM, a finite form of RAMSEY’S THEO- 
REM, and a finite form of KRUSKAL'S TREE THEOREM 

(Kirby and Paris 1982; Smorynski 1980, 1982,1983; Gal- 
lier 1991). 

see UE~O G~DEL'S INCOMPLETENESS THEOREM, GOAD- 
STEIN'S THEOREM,KRUSKAL'S TREE THEOREM,RAM- 
SEY'S THEOREM 
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Natural Invariant 
Let p(z) dx be the fraction of time a typical dynamical 
ORBIT spends in the interval [x, II: + dz], and let p(x) be 
normalized such that 

I p(x)dx = 1 

over the entire interval of the map. Then the fraction 
the time an ORBIT spends in a finite interval [a, b], is 
given by 

fb 

J P(X) dx* 
a 

The natural invariant is also called the INVARIANT DEN- 
SITY or NATURAL DENSITY. 

Natural Logarithm 
The LOGARITHM having base e, where 

e = 2.718281828.. . , (1) 

which can be defined 
UATION , INTRINSIC EQUATION, 

lnz E (2) 

Ce&ro, E. Lezioni di Geometria Intrinseca. Napoli, Italy, 
1896. 

Euler, 1;. Comment. Acad. Petropolit. 8, 66-85, 1736. 
Gray, A. Modern Differential Geometry of Curves and Sur- 

faces. Boca Raton, FL: CRC Press, pp. 111-112, 1993. 
Melzak, 2. A. Companion to Concrete Mathematics, Vol. 2. 

New York: Wiley, 1976. 
Struik, D. J. Lectures on Classical Differential Geometry. 

New York: Dover, pp. 26-28, 1988. 

for x > 0. The natural logarithm can also be defined for 
COMPLEX NUMBERS as 

lnz E In Iz] + iarg(z), (3) 
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where 1~1 is the MODVLUS and a&) is the ARGUMENT. 
The natural logarithm is especially useful in CALCULUS 
because its DERIVATIVE is given by the simple equation 

An identity for the natural logarithm of 2 discovered 
using the PSLQ ALGORITHM is 

(ln2)2=-i I6 
(8k + 1)2 

d 1 
dz InIt: = -, 

X 
(4) 

40 8 28 4 

- (8k + 2)2 - (8k + 3)2 - (8k + 4)2 + (8k + 5)2 

28 4 10 2 

- (8k + 4)2 - (8k + 5)2 + (8k + 5)2 - (8k + 7)2 1 (15) 
whereas logarithms in other bases have the more com- 
plicated DERIVATIVE 

d 1 
z log* x = - 

xlnb’ (5) 

(Bailey et al. 1995, Bailey and Plouffe). 

see also e, JENSEN'S FORMULA, LG, LOGARITHM 
The MERCATOR SERIES 

ln(l+ 2) = x - +x2 + +x3 - . +. (6) References 
Bailey, II.; Borwein, P.; and Plouffe, S. “On the Rapid Com- 

putation of Various Polylogarithmic Constants.” http : // 
www.cecm.sfu.ca/-pborwein/PAPERS/Pl23.ps. 

Bailey, D. and Plouffe, S. “Recognizing Numerical 
Constants.” http://www.cecm.sfu.ca/organics/papers/ 
bailey. 

gives a TAYLOR SERIES for the natural logarithm. 

CONTINUED FRACTION representations of logarithmic 
functions include 

ln( 1 + 2) = 
X 

12X 
(7) 

‘1+ 
12Z 

2+ a 

Natural Measure 
pi(~), sometimes denoted Pi(c), is the probability that 
element i is populated, normalized such that 2”x 

3+ 
22x 

N 
4+ 

E/&(E) = 1. 32x 
5+ 

32x i=l 
6+ 

7+... 
see also INFORMATION DIMENSION, Q-DIMENSION 

2x 

X2 

l  
(8) 

l- 

4x2 
3- 

9x2 
5- 

16x2 
7-- 

9-Y.. 

Natural Norm 
Let jlz[l be a VECTOR NORM of z such that 

IlAlf = max IIAz[[* 
llzll=l 

Then IPI is a MATRIX NORM which is said to be the 
natural norm INDUCED (or SUBORDINATE) to the VEC- 
TOR NORM I Ial 1. For any natural norm, For a COMPLEX NUMBER z, the natural logarithm sat- 

isfies 

lllll = 13 

where I is the IDENTITY MATRIX, The natural matrix 
norms induced by the Ll-No~~, &-NORM, and L,- 
NORM are called the MAXIMUM ABSOLUTE COLUMN 

SUM NORM, SPECTRAL NORM, and MAXIMUM Asso- 
LUTE Row SUM NORM, respectively. 

PV(lnx) = lnr + i0, 

where PV is the PRINCIPAL VALUE. 

(10) 

Some special values of the natural logarithm are 

References 
Gradshteyn, I. S. and Ryzhik, I. M. Tables of Integrals, Se- 

ries, and Products, 5th ed. San Diego, CA: Academic 
Press, p. 1115, 1979. 

lnl-0 (11) 

lnO=-oo (12) 

ln(-1) = 7ri (13) 

ln(fi) = f+i. (14) 
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Natural Number 
A POSITIVE INTEGER 1, 2, 3, . l  . (Sloane’s A000027). 
The set of natural numbers is denoted N or z+. Un- 
fortunately, 0 is sometimes also included in the list of 
“natural” numbers (Bourbaki 1968, Halmos 1974), and 
there seems to be no general agreement about whether 
to include it. 

Due to lack of standard terminology, the following terms 
are recommended in preference to "‘C~UNTNNG NUM- 
BER, ” “natural number,” and “WHOLE NUMBER." 

Set Name Symbol 

l  l  ’  7  -2, -1, 0, 1, 2, . l  . integers z 
1, 2, 3, 4, . . . positive integers z’ 
0, 1, 2, 3, 4 l  . l  nonnegative integers Z* 

- 
-1, -2, -3, -4, . . . negative integers z 

see also COUNTING NUMBER, INTEGER, N, POSITIVE, 
z, z-, z+, z* 

References 
Bourbaki, N. Elements of Mathematics: Theory of Sets. 

Paris, France: Hermann, 1968. 
Courant, R. and Robbins, H. “The Natural Numbers.” Ch. 1 

in What is Mathematics ?: An Elementary Approach to 
Ideas and Methods, 2nd ed. Oxford, England: Oxford Uni- 
versity Press, pp. l-20, 1996. 

Halmos, P. R. Naive Set Theory. New York: Springer-Verlag, 
1974. 

Sloane, N. J. A. Sequence A000027/M0472 in “An On-Line 
Version of the Encyclopedia of Integer Sequences.” 

Naught 
The British word for YZERO? It is often used to indicate 
0 subscripts, so a0 would be spoken as “a naught.” 

see also ZERO 

Navigation Problem 
A problem in the CALCULUS OF VARIATIONS. Let a 
vessel traveling at constant speed c navigate on a body 
of water having surface velocity 

The navigation problem asks for the course which travels 
between two points in minimal time. 

References 
Sagan, H. Introduction to the Calculus of Variations. New 

York: Dover, pp. 226-228, 1992. 

Near Noble Number 
A REAL NUMBER 0 < v < 1 whose CONTINUED FRAC- 
TION is periodic, and the periodic sequence of terms 
is composed of a string of 1s followed by an INTEGER 
n > 1, 

U= P 1 Lnlm 
’ 

(1) 

P 

This can be written in the form 

u== P 1 1, n, 4, 
’ 

(2) 

P 

which can be solved to give 

“=i”(//-1)) (3) 

where & is a FIBONACCI NUMBER. The special case 
n- 2 gives 

u= J FP+~ 
- - 1. 

FP 

see also NOBLE NUMBER 

(4) 

References 
Schroeder, M. R. Number Theory in Science and Communi- 

cation: With Applications in Cryptography, Physics, Digi- 
tal Information, Computing, and Self-Similarity, 2nd enl. 
ed., corr. printing. Berlin: Springer-Verlag, 1990. 

Schroeder, M. “Noble and Near Noble Numbers.” In Frac- 
tals, Chaos, Power Laws: Minutes from an Infinite Par- 
adise. New York: W. H, Freeman, pp. 392-394, 1991. 

Near-Pencil 
An arrangement of n > 3 points such that n - 1 of them 
are COLLINEAR. 

see also GENERAL POSITION, ORDINARY LINE, PENCIL 

References 
GUY, R. K. “Unsolved Problems Come of Age.” Amer. Math. 

Monthly 96, 903-909, 1989. 

Nearest Integer Function 

[xl Ceiling 4. 

[x] Nint (Round) 
- - - LxJ Floor 
"_----...- x 2- 

Near-Integer 

see ALMOST INTEGER 

The nearest integer function nint (x) of z, also called 
NINT or the ROUND function, is defined such that [x] is 
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the INTEGER closest to x. It is shown as the thin solid 
curve in the above plot. Note that while [x] is used to 
denote the nearest integer function in this work, [x] is 
more commonly used to denote the FLOOR FUNCTION 

1 J x . 

see UZSO CEILING FUNCTION, FLOOR FUNCTION 

Nearest Neighbor Problem 
The problem of identifying the point from a set of points 
which is nearest to a given point according to some mea- 
sure of distance. The nearest neighborhood problem in- 
volves identifying the locus of points lying nearer to the 
query point than to any other point in the set. 

References 
Martin, E. C. “Computational Geometry.” http : // www . 

mathsource . corn / cgi -bin /MathSource/Enhancements/ 
DiscreteMath/0200-181. 

Necessary 
A CONDITION which must hold for a result to be true, 
but which does not guarantee it to be true. If a CON- 
DITION is both NECESSARY and SUFFICIENT, then the 
result is said to be true IFF the CONDITION holds. 

see also SUFFICIENT 

Necker Cube 

An ILLUSION in which a Z-D drawing of an array of 
CUBES appear to simultaneously protrude and intrude 
into the page. 

References 
Fineman, M. The Nature of Visual Illusion. New York: 

Dover, pp. 25 and 118, 1996. 
Jablan, S. “Impossible Figures.” http://members.tripod. 

corn/-modularity/impos.htm. 
Newbold, M. “Animated Necker Cube.” http: //www. sover . 

net/-manx/necker.htm1. 

Necklace 

In the technical COMBINATORIAL sense, an a-ary neck- 
lace N(n, a) of length n is a string of n characters, each 
of a possible types. Rotation is ignored, in the sense that 
b& . . . b, is equivalent to b&+1 g 4&z l  ** bk-1 for any 
!c, but reversal of strings is respected. Necklaces there- 
fore correspond to circular collections of beads in which 
the FIXED necklace may not be picked up out of the 
PLANE (so that opposite orientations are not considered 
equivalent) l  

The number of distinct FREE necklaces N’(n, a) of n 
beads, each of a possible colors, in which opposite ori- 
entations (MIRROR IMAGES) are regarded as equivalent 
(so the necklace can be picked up out of the PLANE and 
flipped over) can be found as follows. Find the DIVI- 
SORS of YZ and label them dl G 1, d2, ..*, d,(n) E n 
where v(n) is the number of DIVISORS of n. Then 

1 CLz’ $(di)a”/di + na(n+1)/2 

N’(n,a) = 2n for n odd 
Cy$) 4(di)anjdi + in<1 + a)t~“/~ 

n 
t tar n even, 

where 4(x) is the TOTIENT FUNCTION. For a = 2 and 
n = p an ODD PRIME, this simplifies to 

p-1 _ 1 

N’(p, 2) = ~ + $P-w + 1. 

P 

0 0 
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A table of the first few numbers of necklaces for a = 2 
and a = 3 follows. Note that N(n,2) is larger than 
N’(n,Z) for n 2 6. For n = 6, the necklace 110100 
is inequivalent to its MIRROR IMAGE 0110100, account- 
ing for the difference of 1 between N(6,2) and N’(6,2). 
Similarly, the two necklaces 0010110 and 0101110 are 
inequivalent to their reversals, accounting for the differ- 
ence of 2 between N(7,2) and N/(7,2). 

n N(n,2) N’(n,2) N’(n,3) 
Sloane 000031 000029 027671 

1 2 2 3 
2 3 3 6 
3 4 4 10 
4 6 6 21 
5 8 8 39 
6 14 13 92 
7 20 18 198 
8 36 30 498 
9 60 46 1219 

10 108 78 3210 
11 188 126 8418 
12 352 224 22913 
13 632 380 62415 
14 1182 687 173088 
15 2192 1224 481598 

Ball and Coxeter (1987) consider the problem of finding 
the number of distinct arrangements of n people in a 
ring such that no person has the same two neighbors 
two or more times. For 8 people, there are 21 such 
arrangements. 

see also ANTOINE’S NECKLACE, DE BRUIJN SEQUENCE, 
FIXED, FREE, IRREDUCIBLE POLYNOMIAL, JOSEPHUS 
PROBLEM,LYNDUN WORD 
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Riordan, J. An Introduction to Combinatorial Analysis. New 
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Needle 

see BUFFON-LAPLACE NEEDLE PROBLEM, BUFFON’S 
NEEDLE PROBLEM, KAKEYA NEEDLE PROBLEM 

Negation 

see NOT 

Negative 
A quantity less than ZERO (< 0), denoted with a MINUS 
SIGN, i.e., -x:. 

see also NONNEGATIVE, NONPOSITIVE, NONZERO, Pos- 
ITIVE, 2~~0 

Negative Binomial Distribution 
Also known as the PASCAL DISTRIBUTION and P~LYA 

DISTRIBUTION. The probability of T - 1 successes and Al: 
failures in 5 + T - 1 trials, and success on the (z + r)th 
trial is 

x-$-r-l - - ( > r-l P’U -P)“, (1) 

where 0 i is a BINOMIAL COEFFICIENT. Let 

p=l-p 
P 

(2) 

Q 
1 - - -* (3) 
P 

The CHARACTERISTIC FUNCTION is given by 

qb(t) = (Q - Peit)-‘, (4) 

and the MOMENT-GENERATING FUNCTION by 

M(t) = (etx) = yletx (x TI T l)p’(l -p)“, (5) 
x=0 

but, since (3 = (Ln) 

M(t) = p’ F cz + L - ‘) [(l - p)et]” 

x=0 \ / 

= p’[l - (1 - p)e”]-’ (6) 
M’(t) = p’(-r)[l - (1 - p)et]-‘-l(p - l)et 

= ~‘(1 - p)r[l - (1 - p)et]-‘-let (7) 
M"(t) = (1 -p)~p’(l - et +pet)-‘-2 

x (-1 - etr + etpr)et (8) 
M”‘(t) = (1 -p)~p’(l - et + etp)-T-3 

x [l+et(l-p+3r-3pr) 

+ r2e2t(l - p)2]et. (9) 
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The MOMENTS about zero pk = M”(0) are therefore 

TU-P) v p&&z--- 
P -p 

(10) 

P$ = 
(l-p)r(2-p+3r-3pr+r2-2pr2+p2r2 (12) 

P3 

Pi = 
(-1 + p)r(-6 + 6p - p2 - Ilr + 15pr - 4p2r - 6r2 

P4 

+ 
12pT2 - 6p2r2 - r3 + 3pT3 - 3p2r3 -+ p3r3) 

1 l  (13) 
P’ 

\ I 

(Beyer 1987, p. 487, apparently gives the MEAN incor- 
rectly.) The MOMENTS about the mean are 

r(l - P) p2 = o2 = ~ 
P2 

(14) 

p3 = 
7-p - 3P +- P”> _ T(P - l)(P - 2) 

v3 - 273 (15) 
1 1 

p4 = 
TC1 - p)(6 - 6p + p2 + 3~ - 3~79 

P4 
. (16) 

The MEAN, VARIANCE, SKEWNESS and KURTOSIS are 
then 

NLR = 
[true negative rate] [specificity] 

[false negative rate] = 1 - [sensitivity] ’ 

41 - P> p=- 
P 

(17) 

v 
P3 

?l=a3= 
T(P- q(P-21 P2 

P3 [ 1 41 - P> 

- T(2-PP)(l-PI P3 - 
P3 r(1 - PIG5 

2-P 

=&cm 
P4 

YZ=,-~ 

-6 + 6p - p2 - 3r + 3pr - - 
(P- l>r ’ 

which can also be written 

p = nP 

p2 = nPQ 
Q+P 

y1 = m 
72 = 

1+6PQ 3 - - 
rPQ * 

The first CUMULANT is 

Kl = nP, 

(18) 

(19) 

(20) 
(21) 

(22) 

(23) 

(24) 
and subsequent CUMULANTS are given by the recurrence 
relation 

dKr 
K~+~ = PQ-. 

dQ (25) 

References 
Beyer, W. H. CRC Standard Mathematical Tables, 28th ed. 

Boca Raton, FL: CRC Press, p. 533, 1987, 
Spiegel, M. R. Theory and Problems of Probability and 

Statistics. New York: McGraw-Hill, p. 118, 1992. 

Neighborhood 

Negative Binomial Series 
The SERIES which arises in the BINOMIAL THEOREM for 
NEGATIVE integral n, 

n+k-1 k --n-k 

k 
xu . 

For a = 1, the negative binomial series simplifies to 

(x+1)-n = l-nx+$n(n+1)x2- j$(n+l)(n+2)+. . . . 

see also BINOMIAL SERIES, BINOMIAL THEOREM 

Negative Likelihood Ratio 
The term NEGATIVE likelihood ratio is also used (es- 
pecially in medicine) to test nonnested complementary 
hypotheses as follows, 

see also LIKELIHOOD RATIO, SENSITIVITY, SPECIFICITY 

Negative Integer 

see Z- 

Negative Pedal Curve 
Given a curve C and 0 a fixed point called the PEDAL 
POINT, then for a point P on C, draw a LINE PERPEN- 
DICULAR to OP. The ENVELOPE of these LINES as P 
describes the curve C is the negative pedal of C. 

see also PEDAL CURVE 

References 
Lawrence, J. D. A Catalog of Special Plane Curves. New 

York: Dover, pp. 46-49, 1972. 
Lockwood, E. H. “Negative Pedals.” Ch. 19 in A Bcok 

of Curves. Cambridge, England: Cambridge University 
Press, pp. 156-159, 1967. 

Neighborhood 
The word neighborhood is a word with many different 
levels of meaning in mathematics. One of the most 
general concepts of a neighborhood of a point x E Iw” 
(also called an EPSILON-NEIGHBORHOOD or infinitesi- 
mal OPEN SET) is the set of points inside an n-B&L 
with center x and RADIUS c > 0. 



Wile’s Parabola 

Neil& Parabola 

The solid curve in the above figure which is the EVO- 
LUTE of the PARABOLA (dashed curve). In CARTESIAN 
COORDINATES, 

y = $ (2@3 + : 
2’ 

Neil& parabola is also called the SEMICUBICAL 

PARABOLA, and was discovered by William Neile in 
1657. It was the first nontrivial ALGEBRAIC CURVE 
to have its ARC LENGTH computed. Wallis published 
the method in 1659, giving Neile the credit (MacTutor 
Archive). 

see also PARABOLA EVOLUTE 

References 
Lee, X. “Semicubic Parabola.” http: //www. best. corn/-xah/ 

Special Plane Curves _ dir / Semicubic Parabola _ dir / 
semicubicParabola, html. 

MacTutor History of Mathematics Archive. “Neile’s Semi- 
Cubical Parabola.” http: //www-groups. dcs . St-and. ac. 
uk/-history/Curves/Neiles.html. 

Nephroid 

The Z-CWSPED EPICYCLOID is called 
n = 2, a = b/2, and the equation for 
parameter 4 is given by EPICYCLOID 

7 

a nephroid. Since 
r2 in terms of the 
equation 

aa 
T2 =: - n2 [(n2 + 272 --I- 2) - 2(n + 1) co&b)] (1) 

with n = 2, 

T2 = $[(2’ + 2 ’ 2 + 2) - 2(2 + 1) cos(2$)] 

= $a2[10 - 6cos(2$)] = $a2[5 - 3cos(24)], (2) 

where 

tan0 = 
3 sin 4 - sin(34) 

3 cos 4 - cos(34) l  

(3) 
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This cati lbe written 

‘T ’ 
( > 

w 
z. = [sin( $)]“/” + [cos( $)]“‘“. (4) 

The parametric equations are 

x = a[3cost - cos(3t)] (5) 

y = a[3 sin t - sin(3t)l. (6) 

The Cartesian equation is 

(x2 + y2 - 4a2)3 = 108a4y2. (7) 

The name nephroid means “kidney shaped” and was 
first used for the two-cusped EPICYCLOID by Proctor 
in 1878 (MacTutor Archive). The nephroid has ARC 
LENGTH 24a and AREA 12x2a2. The CATACAUSTIC for 
rays originating at the CUSP of a CARDIOID and reflected 
by it is a nephroid. Huygens showed in 1678 that the 
nephroid is the CATACAUSTIC of a CIRCLE when the 
light source is at infinity. He published this fact in 2+&e 
de la Zumin&e in 1690 (MacTutor Archive). 

see UZSO ASTROID, DELTOID, FREETH’S NEPHROID 
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Nephroid Evolute 

The EVOLUTE ofthe NEPHROID given by 

x = 3 [3 cos t - cos(st)] 

Y- $ [3 sin t - sin(3t)] 

is given by 

x = cos3 t 

Y== i [3 sin t + sin(3t)], 

which is another NEPHROID. 
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Nephroid 

Nephroid hvolu te 

Involute 

/7x7 

The INVOLUTE ofthe NEPHROID given by 

2 = i[3cost - cos(3t)J 

y = $[3sint - sin(3t)] 

beginning at the point where the nephroid cuts the y- 
AXIS is given by 

X = 4 cm3 t 

y = 3sint + sin(3t), 

Netto’s Conjecture 

For this to equal a given INTEGER 5, it must be true 
that 

SO 

X2 =n+x (3) 

and 
n = x(x - 1). (4) 

Nested radicals in the computation of PI, 

and in TRIGONOMETRICAL values of COSINE and SINE 
for arguments of the form 7~/2~, e.g., 

sin(i) = $CZ (6) 

cos (;) = $hTz (7) 

another NEPHROID. If the INVOLUTE is begun instead 
at the CUSP, the result is CAYLEY’S SEXTIC. 

sin(&) = 4Jz-- &G-Z (8) 

N&on-Severi Group 
Let V be a complete normal VARIETY, and write G(V) 
for the group of divisors, G, (V) for the group of divisors 
numerically equal to 0, and G,(V) the group of divisors 
algebraically equal to 0. Then the finitely generated 
QUOTIENT GROUP iVS(V) = G(V)/G,(V) is called the 
N&on-Severi group. 

References 
Iyanaga, S. and Kawada, Y. (Eds.). Encyclopedic Dictionary 

of Mathematics. Cambridge, MA: MIT Press, p. 75, 1980. 

Nerve 
The SIMPLICIAL COMPLEX formed from a family of ob- 
jects by taking sets that have nonempty intersections. 

see also DELAUNAY TRIANGULATION, SIMPLICIAL COM- 
PLEX 

Nested Hypothesis 
Let S be the set of all possibilities that satisfy HYPOTH- 
ESIS H, and let S’ be the set of all possibilities that 
satisfy HYPOTHESIS H’. Then H’ is a nested hypothe- 
sis within H IFF S’ c S, where c denotes the PROPER 
SUBSET. 

see also LOG LIKELIHOOD PROCEDURE 

Nes,ted Radical 
A RADICAL of the form 

J J n+ n+dK. (1) 

cos($) =$2/2+&z. (9) 

see also SQUARE ROOT 

References 
Berndt, B. C. Ramanujan’s Notebooks, Part IV. New York: 

Springer-Verlag, pp. 14-20, 1994. 

Net 
A generalization of a SEQUENCE used in general topol- 
ogy and ANALYSIS when, the spaces being dealt with 
are not FIRST-COUNTABLE. (Sequences provide an ad- 
equate way of dealing with CONTINUITY for FIRST- 
COUNTABLE SPACES.) Nets are used in the study of 
the RIEMANN INTEGRAL. 

see also FIBER BUNDLE, FIBER SPACE, FIBRATION 

Net (Polyhedron) 
A plane diagram in which the EDGES of a POLYHEDRON 
are shown. All convex POLYHEDRA have nets, but not 
all concave polyhedra do (the constituent POLYGONS 
can overlap one another when a concave POLYHEDRON 
is flattened out). The GREAT DODECAHEDRON and 
STELLA OCTANGWLA are examples of a concave poly- 
hedron which have nets. 

Netto’s Conjecture 
The probability that two elements P-1 and & of a SYM- 
METRIC GROUP generate the entire GROUP tends to 3/4 
as ?z + 00. This was proven by Dixon in 1967. 

References 
Le Lionnais, F. Les nombres remarquables. Paris: Hermann, 

p. 31, 1983. 
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Network 
A DIRECTED GRAPH having a SOURCE, SINK, and a 

bound on each edge. 

see also GRAPH (GRAPH THEORY), SINK (DIRECTED 

GRAPH),~MITH'S NETWORK THEOREM,~OURCE 

Neumann Series (Bessel F’unct ion) 
A series of the form 

00 

x G-l Jw+n(~), (1) 
n=O 

where v is a REAL and Jv+,&) is a BESSEL FUNCTION 
Neuberg Circles OF THE FIRST KIND. Special cases are 
The Locus ofthe VERTEX A1 ofa TRIANGLE onagiven 
base AzAa and with a given BRUCARD ANGLE w is a 
CIRCLE on either side of AzA3. From the center I&, the 

( > $z ++n 
zy = aT( ++ 1)T Jv/2+&), (2) ,I 

l  

base AzAa subtends the ANGLE 2~. The RADIUS of the 
n=O 

CIRCLE is where r(z) is the GAMMA FUNCTION, and 

T= 00 00 

see also BROCARD ANGLE 

References where 
Johnson, R. A. Modern Geometry: An Elementary Treatise 

on the Geometry of the Triangle and the Circle. Boston, 
MA: Houghton Mifflin, pp. 287-290, 1929. 

1421 2 w+n-2m 

z h-b - 
IE 

T‘(+++-m+l) 

m! 
bt-2m, 

m=O 

x bnt u+n = xa, (+)++n)lz J(,+,)/2(4 (3) 

n=O n=O 

(4) 

Neumann Algebra 

~~~VONNEUMANN ALGEBRA 
and 1x1 is the FLOOR FUNCTION. 

see also KAPTEYN SERIES 

Neumann Boundary Conditions 
PARTIAL DIFFERENTIAL EQUATION BOUNDARY CONDI- 
TIONS which give the normal derivative on a surface. 

see also BOUNDARY CONDITIONS, CAUCHY BOUNDARY 
CONDITIONS 

References KIND 

References 
Watson, G. N. A Treatise on the Theory of Bessel Functions, 

2nd ed. Cambridge, England: Cambridge University Press, 
1966. 

Neumann Series (Integral Equation) 
A FREDHOLM INTEGRAL EQUATION OF THE SECOND 

Morse, P. M. and Feshbach, H. Methods of Theoretical Phys- 
ics, Part I. New York: McGraw-Hill, p. 679, 1953. w = f(x) + /b KwM(t) dt (1) 

Ja 

Neumann Function may be solved as follows. Take 

see BESSEL FUNCTION OF THE SECOND KIND 40(x) = f(x) (2) 

Neumann Polynomial 
Polynomials which obey the RECURRENCE RELATION 

0,+1(X) = (?I + l)‘On(X) - *On-l(X) 
X n-l 

2n 
+- x sin2( +). 

The first few are 

s 

b 

444 = f(x) + x K(x, t>f (t> dt (3) 
a 

s 

b 

42(x> = f(x) + x K(x, tl)f (tl) dtl 
a 

b b 

+ x2 
ss 

K(q tl)K(tl, h)f (h) & & (4) 
a a 

(h(x) = +Ji(X), (5) 

1 
00(x) = - 

X 

1 
O,(x) = - 

X2 

02(x)= 
1 4 

; + 23’ 

see also SCHL;~FLI POLYNOMIAL 

References 
von Seggern, D. CRC Standard Curves and Surfaces. Boca 

Raton, FL: CRC Press, p. 196, 1993. 

u&d = f(x) (6) 

s 

b 
w(x) = K(x, t)f (h) dtl (7) 

a 

b b 

w(x) = 

ss 

K(x, h)K(tl, tz)f (h) dt2 dtl (8) 
a a 

b b 

sss 

b 

un(X)= K(x, h)K(h, t2) l  l  l  

a  a a 

x K(tn--1, tn> f (tn) dt, l  * n dtl. (9) 



1226 Neusis Construction 

The Neumann series solution is then 

4(x) = lim &&c) = $i-iI 2 XiUi(X). (10) 
n+m *- z- 0 

References 
A&en, G. “Neumann Series, Separable (Degenerate) Ker- 

nels.” § 16.3 in Mathematical Methods for Physicists, 3rd 
ed. Orlando, FL: Academic Press, pp* 879-890, 1985. 

Neusis Construction 
A geometric construction, also called a VERGING CON- 
STRUCTION, which allows the classical GEOMETRIC 
CONSTRUCTION rules to be bent in order to permit slid- 
ing of a marked RULER. Using a Neusis construction, 
CUBE DUPLICATION and angle TRISECTION are soluble. 
Conway and Guy (1996) give Neusis constructions for 
the 7-, 9-, and 13-gons which are based on angle TRI- 

SECTION. 

see UZSO CUBE DUPLICATION, GEOMETRIC CONSTRUC- 
TION, MASCHERONI CONSTRUCTION, RULER, TRISEC- 
TION 

References 
Conway, J. H. and Guy, R. K. The Book of Numbers. New 

York: Springer-Verlag, ppm 194-200, 1996. 

Neville’s Algorithm 
An interpolation ALGORITHM which proceeds by first 
fitting a POLYNOMIAL Pk of degree 0 through the points 
(xk,yk) for k = 0, . . l  , n, i.e., pk = yk. A second 
iteration is then performed in which P12 is fit through 
pairs of points, yielding Plz, Pz3, . . . . The procedure 
is repeated, generating a “pyramid” of approximations 
until the final result is reached 

fi 

p2 
fi2 

p3 
p23 

fi23 

p234 
pl234= 

p4 
p34 

The final result is 

( X- 

E(i+l)...(i+m) = 
zi+m)pi(~+l).~~(~+m-l) 

Xi - Xi+m 

+ 
( xi - x)qi+l)(i+2)...(i+m) 

l  

xi - Xi+m 

see also BULIRSCH-STOER ALGORITHM 

Neville Theta Function 
The functions 

H(u) 
‘s(u) = H’(O) 

ad(u) = 
O(u + K) 

W) 

g,(u) = Ho 

H(K) 

l?,(u) = 3, 

(1) 

(2) 

(3) 

(4) 

Newton’s Backward Difference Formula 

where H and 0 are the JACOBI THETA FUNCTIONS and 
K(u) isthecomplete ELLIPTIC INTEGRAL OF THE FIRST 
KIND. 

see ah JACOBI THETA FUNCTION, THETA FUNCTION 

Newcomb’s Paradox 
A paradox in DECISION THEORY. Given two boxes, Bl 
which contains $1000 and B2 which contains either noth- 
ing or a million dollars, you may pick either B2 or both. 
However, at some time before the choice is made, an om- 
niscient Being has predicted what your decision will be 
and filled B2 with a million dollars if he expects you to 
take it, or with nothing if he expects you to take both. 

see UZSO ALIAS’ PARADOX 

References 
Gardner, M. The Unexpected Hanging and Other Muthemat- 

ical Diversions. Chicago, IL: Chicago University Press, 
1991. 

Gardner, M. “Newcomb’s Paradox.” Ch. 13 in Knotted 
Doughnuts and Other Mathematical Entertainments. New 
York: W. H. Freeman, 1986. 

Nozick, R. “Reflections on Newcomb’s Paradox.” Ch. 14 in 
Gardner, M. Knotted Doughnuts and Other Mathematical 
Entertainments. New York: W. H. Freeman, 1986. 

Newman-Conway Sequence 
The sequence 1, 1, 2, 2, 3, 4, 4, 4, 5, 6, 7, 7, . . . (Sloane’s 
AOO4OOI) defined by the recurrence P( 1) = P(2) = 1, 

P(n) = P(P(n - 1)) + P(n - P(n - 1)). 

It satisfies 
P(2”) = 2”-l 

and 
P(2n) < 2P(n). 

References 
Bloom, D. M. “Newman-Conway Sequence.” Solution to 

Problem 1459. Math. Msg. 68, 400-401, 1995. 
Sloane, N. J. A. Sequence A004001/M0276 in “An On-Line 

Version of the Encyclopedia of Integer Sequences.” 

Newton’s Backward Difference Formula 

fp = fo+P~o+~P(P+~)v~+~p(p+~)(P+~)V~+..., 

for P f [OJ], where V is the BACKWARD DIFFERENCE. 

see also NEWTON'S FORWARD DIFFERENCE FORMULA 

References 
Beyer, W. H. CRC Standard Mathematical Tables, 28th ed. 

Boca Raton, FL: CRC Press, p. 433, 1987. 
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Newton-Cotes Formulas 
The Newton-Cotes formulas are an extremely useful 
and straightforward family of NUMERICAL INTEGRA- 
TION techniques . 

Integrating over the interval (i.e., finding the area of the 
trapezoid) then gives 

J 
22 

s 

xl+h 

f(x) dx = P2(4dx 

Xl 

= &(f2 - fl);:2]:; 

+ f1+ Tfl - ?f2) [xl:; 

To integrate a function f(x) over some interval [a, b], 
divide it into n equal parts such that fn = f(xn) and 
h=(b- a)/n. Then find POLYNOMIALS which approxi- 
mate the tabulated function, and integrate them to ap- 
proximate the AREA under the curve. To find the fitting 
POLYNOMIALS, use LAGRANGE INTERPOLATING POLY- 

= &(f2 - fl)(X2 +x1)(22 - a) NOMIALS. The resulting formulas are called Newton- 

Cotes formulas, or QUADRATURE FORMULAS. 
+(x2 - Xl) 

( 

Xl 
fl -I- hfl - y 2 f) 

Newton-Cotes formulas may be “closed” if the inter- 
val [xl, xn] is included in the fit, “open” if the points 
[x2, zn-l] are used, or a variation of these two. If the for- 
mula uses n points (closed or open), the COEFFICIENTS 

= +(fi - f@xl + h) + fib + xl(fi - f2) 

= xl(fi - fi) + $(fi - fi) + hfi - xl(f2 - fi) 

- ;h(fi + fi) - $h3fff(t). - (3) 
of terms sum to n - 1. 

This is the trapezoidal rule, with the final term giving 
the amount of error (which, since x1 2 e 2 ~2, is no 
worse than the maximum value of f” (<) in this range). 

If the function f(z) is given explicitly instead of sim- 
ply being tabulated at the values. xi, the best numer- 
ical method of integration is called GAUSSIAN QUAD- 
RATURE. By picking the intervals at which to sample 
the function, this procedure produces more accurate ap- 
proximations (but is significantly more complicated to 
implement). 

The 3-point rule is known as SIMPSON'S RULE. The 
ABSCISSAS are 

x2 = XI +h 
x3 = xl + 2h 

(4) 

(5) 

4 
f-h-i2 

and the LAGRANGE INTERPOLATING POLYNOMIAL is 

P3(x) = 
( X- x2)(57-x3) 

(Xl - x2)(x1 - 53) 
fl 

+ 
(x-x1)(x-x3) 

f2+ ( 
X- x1)(x -x2> 

(x2 - x1)(22 - x3) (x3 -x1)(23 -x2) 
f3 

The 2-point closed Newton-Cotes formula is called the 
TRAPEZOIDAL RULE because it approximates the area 
under a curve by a TRAPEZOID with horizontal base and 
sloped top (connecting the endpoints x1 and x2). If the 
first point is x1, then the other endpoint will be located 
at 

X2 - 4x2 +x3)+x2x3 - - 

Wh) 
fl 

X2 
+ - 

+l+x3)+Zlx3 X2 - 

f+ 
~(~l+x2)+xlx2 

he4 
2 

Wh) 
f3 

= +{x2(+fl - f2 - if3) 

x2 = x1 + h, 

+X[-+(2X1 + 3h)fl + (2x1 + 2h)f2 - $(2x1 + h)] 

+[+(x1+h)(xl+2h)fi -Xdx~+2h)fi+~x1(x~+h)f3]}. 

(6) 

and the LAGRANGE INTERPOLATING POLYNOMIAL 
through the points (XI, fl) and (x2,f2) is 

Integrating and simplifying gives 2 - x2 
Pz(x) = - f-t 

x - Xl 
1 

Xl -x2 
-f2 
x2 -a 

x-xl-h 
f+ 

x - Xl - - 
-h 1 h -ffi J 

x3 

f(x) dx = 
Xl s 

=1+2h 

P3(x) da: 

=x;h(fi + 4f2 + f3) - &h5f(4’(<). (7) 
- - i(f2 - fl) + (fl + %fl - ?f2) ’ (2) 

The 4-point closed rule is SIMPSON’S 3/8 RULE, 

s x4 

f(x) dx = ;h(fi+3fi+3f3+f+&h5f(4)(E)m (8) 
Xl 
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The 5-point closed rule is BODE'S RULE, 

s 

x5 

f(x) dx = &h(7fi + 32fi + 12f3 + 32f4 + 7f5) 

Xl 

- &h7f YE) (9) 

(Abramowitz and Stegun 1972, p. 886). Higher order 
rules include the 6-point 

s 

x0 

f(x) dx = &h(19fi + 75fz + 50f3 + 5Of4 + 75f5 
Xl 

+19f6) - g&h7fYE)r (10) 

7-point 

s 

x7 

f(x) dx = &h(41fl + 216fi + 27f3 + 272f4 

Xl 

+27f5 + 216f6 + 41f7) - &hgf @‘(t)~ (11) 

8-point 

s 
xa 

f(x) dx = &h(751fi +3577fi+1323fi +2989f3 
Xl 

+2989f5 + 1323f6 + 3577f7 + 751fa) - &hgf(8’(~), 

(12) 

s 

XQ 

f(x) dx = kh(989fl + 5888fi - 928f3 

+;10496f4 - 4540f5 + 10496f6 - 928f7 + 5888f8 + 989f9) 

--Jg&hll f ‘10’(E), (13) 

lo-point 

s 

x10 

f(x) dx = &h[2857(fl + fd 

Xl 

+15741(fz + fg) + lOSO(f3 + f8 + 19344(f4 + f7) 

+5788(f5 + f6)] - &h’lf(lo)(E), (14) 

and 1 l-point 

s 

Xl1 

f(x) dx = &$[1606qfl + fd 

;;063OD(fi + flo) - 48525(f3 + fs) + 2724Oo(f4 + f8) 

-26055O(f5 + f7) + 427368f6] - mh’3f’12)(E) 

(15) 

rules. 

Closed “extended” rules use multiple copies of lower 
order closed rules to build up higher order rules. By 
appropriately tailoring this process, rules with particu- 
larly nice properties can be constructed. For n tabulated 

points, using the TRAPEZOIDAL RULE (n - I) times and 
adding the results gives 

- +h[(fi + fi) + (f2 + f3) + . . . + (fn-2 + fn-1) - 

+(fn-1 +fn>l = h($fl+fi+fa+*. .+fn-zsfn-l++fn) 

-&nh3ft’([). (16) 

Using a series of refinements on the extended TRAPE- 
ZOIDAL RULE gives the method known as ROMBERG IN- 
TEGRATION. A 3-point extended rule for ODD n is 

s 

XTl 

f (2) dx = h[(ifi + if2 + if3) + (if3 + if4 + f f5) 

Xl 

+... -k (if+4 + $frL-3 + if?+2) 

+($ffl-2 + ;fn-l + $fn)] 

- +(fl + 4f2 + 2f3 + 4f4 + 2f5 + . . v + 4fn--1 + fn) - 

-=&h5ff(4)(c). (17) 
2 

Applying SIMPSON'S 3/8 RULE, then SIMPSON'S RULE 
(3-point) twice, and adding gives 

= h[(ifl + ;fi + if3 + if4) 

+(+f4 + if5 + +f6) + (if6 + if7 + +f8)] 

= h[ifl+ ifi + ;f3 + (i + ;)f4 -5 $fs 

+(; + $)f6 + if7 + +fS] 

= h(ifi + If2 + if3 + +$f4 

+$f5 + if6 + $f7 + ifs). (18) 

Taking the next Simpson’s 3/8 step then gives 

S 
211 

f(x) dx = h(ifs + if9 + gf,, + ifil). (19) 
xa 

Combining with the previous result gives 

s 

X11 

f (2) da: = h[;fi + if2 + ;f3 + 5 f4 + 2 fs 
Xl 

+$f6 + $f7 + (+ + i)fS + if9 + ;fio + ;fil] 

= h(;fi + if2 + ifa + gf4 + if5 + pfs + if7 

++$fs + if9 + Efio + ifll), (20) 

where terms up to 
mined. Continuing 

fl0 have now been completely deter- 

h($fi + if2 + if3 + Ef4 $- $f5 + if6 $- l  l  n  

+ ~f?+5+~f,_,+~f,_,+~f?+2+~frd+~frJ. (21) 
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Now average with the 3-point result 

1229 

h(+fl+ $2 + $fz + $f4+ $f5+ ff--I+ +fn) (22) 

to obtain 

h[~fl+gfi+gf4+gf4+(f5+f6+*'~+fn-5+fn-4) 

+gf?l--3+ %fn-2 + gfn-l + gfn]+ 6(ne4>. (23) 

Note that all the middle terms now have unity COEFFI- 
CIENTS. Similarly, combining a 4-point with the (2+4)- 
point rule gives 

h(&fi+$$fi+fs+f4+*. .+fn-3+fn-2++&L-l+~) 

-I-O(nD3). (24) 

Other Newton-Cotes rules 
elude DURAND'S RULE 

occasionally encountered in- 

s Xn 

f(x)dx 
Xl 

= h($fi+~f2+fa+.*.+fn--2+~fn--l+;fn) (25) 

(Meyer 1987), HARDY'S RULE 

s =o-t3h 

f(x) da: = &h(28f-3 + 162f-2 + 22fo + 162fi 
so-3h 

+W3)+ &h7Pfc4)(52) - h2f~8k1)1, (26) 

and WEDDLE'S RULE 

I 

X072 

f(x)dx = &h(fi 
Xl 

+5f2+f3+6f4+5f5+f~+..*+5f~n-1+f6n) (27) 

(Beyer 1987). 

The open Newton-Cotes rules use points outside the in- 
tegration interval, yielding the l-point 

I 
x2 

f(x)dx = 2hf1, (28) 
X0 

2-point 

f( X 

1 - -- 
2h ’ (f 

P,(x)dx 

q+2h 
xl-h 

- ;h(fi + fz)+ +h3f"(t), - (29) 

3-point 

r x4 

J f(x) dx = $h(2fi - f2 + 2f3)+ $$5f'4'(t), (30) 

X0 

I 
x5 

f(x) dx = ~h(llf~+fz+f3+llf4)+~h5f~4~(~)~ 
X0 -, 

(31) 
&point 

s 

x0 

f(x) dx = &h(llfi 
X0 

-14f2 + 26f3 - 14f4 + llfs) - $&h7f@)(5), (32) 

6-point 

I 
x7 

f(x) dx = $&(6llfi - 453fz + 562f3 + 562f4 
X0 

-453f5 +611fG)- ~h7fYE), (33) 

and 7-point 

s 

xa 

f(x) dx = &h(46QfI - 954f2 +2196f3 - 2459f4 
X0 

+2196f5 - 954f6 + 46Of7) - Eh’f(“(5) (34) 

rules. 

A 2-point open extended formula is 

I 

Xn 

f(x) dx = h[( ifI + f2 + . . . + fn-1 + +fn) 
Xl 

+&(-fo + f2 + fn-1 + fn+l>] + 11(;2; ‘1 h5fc4)(<). 

(35) 

Single interval extrapolative rules estimate the integral 
in an interval based on the points around it. An example 
of such a rule is 

hfi t- o(h2f’) (36) 
$(3fi - fi) + O(h3f”) (37) 

&h(23fl - 16fi + 5f3) + 6(h4ft3)) (38) 

& h(55fi - 59fz + 37f3 - 9fd) + 6(h5fc4)). (39) 

see also BODE’S RULE, DIFFERENCE EQUATION, Du- 
RAND'S RULE, FINITE DIFFERENCE, GAUSSIAN QUAD- 
RATURE, HARDY'S RULE, LAGRANGE INTERPOLATING 
POLYNOMIAL, NUMERICAL INTEGRATION, SIMPSON'S 
RULE, SIMPSON'S 3/8 RULE, TRAPEZOIDAL RULE, 
WEDDLE'S RULE 
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las, Graphs, and Mathematical Tables, 9th printing. New 
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Hildebrand, F. B. Introduction to Numerical Analysis. New 
York: McGraw-Hill, pp. 160461, 1956. 

Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetter- 
ling, W. T. “Classical Formulas for Equally Spaced Abscis- 
sas .” 54.1 in Numerical Recipes in FORTRAW The Art of 
Scient$c Computing, 2nd ed. Cambridge, England: Cam- 
bridge University Press, pp. 124-130, 1992. 
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Newton’s Diverging Parabolas 
Curves with CARTESIAN equation 

uy2 = x(x2 - 2bx + c) 

with a > 0. The above equation represents the third 
class of Newton’s classification of CUBIC CURVES, which 
Newton divided into five species depending on the 
ROOTS of the cubic in x on the right-hand side of the 
equation. Newton described these cases as having the 
following characteristics: 

“All the ROOTS are REAL and unequal. Then the 
Figure is a diverging Parabola of the Form of a Bell, 
with an Oval at its Vertex. 

Two of the ROOTS are equal. A PARABOLA will 
be formed, either Nodated by touching an Oval, or 
Punctate, by having the Oval infinitely small. 

The three ROOTS are equal. This is the NEILIAN 
PARABOLA, commonly called SEMI-CUBICAL. 

Only one REAL ROOT. If two of the ROUTS are 
impossible, there will be a Pure PARABOLA of a Bell- 
like Form” 

(MacTutor Archive). 

References 
MacTutor History of Mathematics Archive. “Newton’s Di- 

verging Parabolas.” http://uww-groups.dcs.st-and.ac. 
uk/whistory/Curves/Newtons.html. 

Newton’s Divided Difference Interpolation 
Formula 
Let 

n-b(x) = fi(x - xn), (1) 
i=l 

then 

f(~)=f~+j:lO1o[ZO,xl,~w~rx~,+R~, (2) 
FE=1 

where [xl,. . .] is a 
mainder is 

DIVIDED DIFFERENCE, and the re- 

L(x) = G(x)[xo,. . . ,xn,x] = G(X) ftn+ll (6) 
(n + 1) (3) 

for 50 < [ < xn. 

see also DIVIDED DIFFERENCE! FINITE DIFFERENCE 

References 
Abramowitz, M. and Stegun, C. A. (Eds.). Handbook 

of Mathematical Functions with Formulas, Graphs, and 
Mathematical Tables, 9th printing. New York: Dover, 
p. 880, 1972. 

Hildebrand, F. B. Introduction to Numerical Analysis. New 
York: McGraw-Hill, pp.43-44 and 62-63, 1956. 

Newton’s Identities 

Newton’s Forward Difference Formula 
A FINITE DIFFERENCE identity giving an interpolated 
value between tabulated points {fp} in terms of the first 
valuefoandthe POWERS ofthe FORWARD DIFFERENCE 
A. For a E [O, 11, the formula states 

fa = fo+uA+&a(a-l)A2++,a(a-l)(u-2)A3+.... 

When written in the form 

f (II: + a) = 2 yf (4 
. 

with (a), the POCHHAMMER SYMBOL, the formula looks 
suspiciously like a finite analog of a TAYLOR SERIES ex- 

pansion. This correspondence was one of the motivating 
forces for the development of UMBRAL CALCULUS. 

The DERIVATIVE of Newton’s forward difference formula 
gives MARKOFF'S FORMULAS. 

see also FINITE DIFFERENCE, MARKOFF'S FORMULAS, 
NEWTON'S BACKWARD DIFFERENCE FORMULA, NEW- 
TON'S DIVIDED DIFFERENCE INTERPOLATION FOR- 
MULA 

Heterences 
Abramowitz, M. and Stegun, C. A. (Eds.). Handbook 

of Mathematical Functions with Formulas, Graphs, and 
Mathematical Tables, 9th printing. New York: Dover, 
p* 880, 1972. 

Beyer, W. EL CRC Standard Mathematical Tables, 28th ed. 
Boca Raton, FL: CRC Press, p. 432, 1987. 

Newton’s Formulas 
Let a TRIANGLE have side lengths a, b, and c with op- 
posite angles A, B, and C. Then 

b+c cos[@ - C)] - - 
a - sin( $A) 

c+a cos[;(C - A)] P - 
b - sin(iB) 

a + b P - cos[ + (A - B)] 
- 

c sin($) ’ 

see also MOLLWEIDE’S FORMULAS, TRIANGLE 

References 
Beyer, W. H. CRC Standard Mathematical Tables, 28th ed. 

Boca Raton, FL: CRC Press, p. 146, 1987. 

Newton’s Ident ities 

see also NEWTON’S RELATIONS 
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Newton’s Iteration 
An algorithm for the SQUARE ROOT of a number r 
quadratically as lim,,, zn, 

G-&+1= ; (z,+ $)y 

where x0 = 1. The first few approximants to fi are 
given by 

1, g1-t n), 1 -yn+;y2, 
n 

1 + 26n + 7Qn2 + 28n3 -f- n4 

But 

f (2,) = f(x) + f(X)En + y(x)h2 + - ’ - 

= f(X)& + 3 ff’(X)En2 + . . l  
(6) 

f’(z,) = f’(x) + fyx)E9a +. . ’ , (7) 

SO 

f (xn) - - ff(x)En + +fft(x)En2 + 0’ ’ 
fT4 - f/(x) + f”(+-L + l  ‘0 

==: f’(xk+ ;f1Y+n2 = ~ + f”(x) 2 

f’(x) + f’l(+n n men 7 C8) 

8(1+n)(l+6n+n2) '"" 

and (5) becomes 
For A, this gives the convergents as 1, 3/2, 17/12, 
5771408, 6658571470832, . . . . 

see also SQUARE ROOT 

Newton’s Method 
A ROOT-finding ALGORITHM which uses the first few 
terms of the TAYLOR SERIES in the vicinity of a sus- 
pected ROOT to zero in on the root. The TAYLOR SE- 
RIES of a function f(x) about the point x + E is given 

bY 

f(x+c)= f(x)+f’(x)~+~ff’(x)E2+mm~~ (1) 

Keeping terms only to first order, 

f (x + E) = f(x) + f’(X)E. (2) 

This expression can be used to estimate the amount of 
offset E needed to land closer to the root starting from 
an initial guess x0. Setting f (x0 + E) = 0 and solving 
(2) for E gives 

which is the first-order adjustment to the ROOT'S posi- 
tion. By letting xl = x0 + ~0, calculating a new ~1, and 
so on, the process can be repeated until it converges to 
a root. 

Unfortunately, this procedure can be unstable near a 
horizontal ASYMPTOTE or a LOCAL MINIMUM. HOW- 
ever, with a good initial choice of the ROOT'S position, 
the algorithm can by applied iteratively to obtain 

f (xd 
xn+1 = x:72 - ~ 

f’(Xn) (4 

for n = 1, 2, 3, . . m . 

The error En+1 after the (n + 1)st iteration is given by 

En+1 =En+(Xn+l -X7-h) 

I/- \ 
J txnl 

=cn-- 

f’(xn) * 

En+1 = ha - 

[ 

f”(x) 2 
en + - 1 f”(x) 2 

2fqxp = -2f’oEn l  (g) 

Therefore, when the method converges, it does so 
quadratically. 

A FRACTAL is obtained by applying Newton’s method to 
finding a ROOT of zn - 1 = 0 (Mandelbrot 1983, Gleick 
1988, Peitgen and Saupe 1988, Press et al. 1992, IX&au 
1997). Iterating for a starting point x0 gives 

zi 
n 

-1 
zi+1 = zi - ~ 

nxin-l ’ (10) 

Since this is an nth order POLYNOMIAL, there are n 
ROOTS to which the algorithm can converge. 

Coloring the BASIN OF ATTRACTION (the set of initial 
points zo which converge to the same ROOT) for each 
ROOT a different color then gives the above plots, cor- 
responding to n = 2, 3, 4, and 5. 

see also HALLEY'S IRRATIONAL FORMULA, HALLEY'S 
METHOD, HOUSEHOLDER'S METHOD, LAGUERRE'S 
METHOD 
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Newton Number 

see KISSING NUMBER 

Newton’s Parallelogram 
Approximates the possible values of y in terms of EX: if 

n 

>: 
i i 

Q+jX y = 0. 

i,j=O 

Newton-Raphson F’ractal 

~~~NEwT~N's METHOD 

Newton-Raphson Method 

see NEWTON'S METHOD 

Newton’s Relations 
Let si be the sum of the products of distinct ROOTS Tj 
of the POLYNOMIAL equation of degree n 

u,xn + &-1X 

n-l 
+ . l  . + UlX + a0 = 0, (1) 

where the roots are taken i at a time (i.e., si is 
defined as the ELEMENTARY SYMMETRIC FUNCTION 

Newton’s Theorem 

E(T1, l  ’  
l ,rn)) si isdefinedfori- 1, . . . . n. For exam- 

ple, the first few values of si are 

Sl = T1 + T2 + T3 + T4 + l  . . 
(2) 

S2 = T1T2 + TlT3 + TlT4 + T2T3 +. . . (3) 

s3 = TlT2T3 + TlTgT4 + TzT3T4 + . . . , (4) 

and so on. Then 

( 1) 
i&-b-i 

si= - . (5) 
an 

This can be seen for a second DEGREE POLYNOMIAL by 
multiplying out, 

U2X2 + UlX + a0 = m(x - Tl)(X - 7-2) 

= 4x2 - (TI + T2)X + W2], (6) 

so 

2 

x 

a1 
Sl = Ti = Tl +T2 = -- 

a2 
(7) 

i=l 

2 
a0 

232 = TiTj = TlT2 = -, 
a2 

(8) 

i,j=l 

i#j 

and for a third DEGREE POLYNOMIAL, 

U3X3 + U2X2 + UlX + Uo = U3(X - Tl)(X - T2)(X - T3) 

- - @[X3- (Tl +Tz+T3)X2+(T1T2+T1T3+T2T3)X--rlT2T3], 

so 

3 

>: 

a1 s2 = TiTj = TlT2 + TlT3 + T2T3 = - 
U3 Gj i#j 

3 

s3 = ): a0 
TirjTk = TlT2T3 = --d 

a3 
i,j,k 

i#j#k 

(9) 

(10) 

(11) 

w 

see also ELEMENTARY SYMMETRIC FUNCTION 
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Newton’s Theorem 
If each of two nonparallel transversals with nonminimal 
directions meets a given curve in finite points only, then 
the ratio of products of the distances from the two sets 
of intersections to the intersection of the lines is inde- 
pendent of the position of the latter point. 

References 
Coolidge, J. L. A Treatise on Algebraic Plane Curves. New 

York: Dover, p. 189, 1959. 
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Newtonian Form Nicholson% Formula 

see NEWTQN'S DIVIDED DIFFERENCE INTERPOLATION 
FORMULA 

Next Prime 
The next prime function NP(n) gives the smallest 
PRIME larger than n. The function can be given ex- 
plicitly as 

where pi is the ith PRIME and r(n) is the PRIME 
COUNTING FUNCTION. For n = 1, 2, . . . the values 
are 2, 3, 5, 5, 7, 7, 11, 11, 11, 11, 13, 13, 17, 17, 17, 17, 
19, l  . . (Sloane’s A007918). 

see &O FORTUNATE PRIME, PRIME COUNTING FUNC- 
TION, PRIME NUMBER 
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Nexus Number 
A FIGURATE NUMBER built up of the nexus of cells less 
than n steps away from a given cell. In k-D, the (n+l)th 
nexus number is given by 

k /.\ 

where (z) is ~BINOMIAL COEFFICIENT. Thefirstfew k- 
dimensional nexus numbers are given in the table below. 

k Nn+l name 

0 1 unit 
1 1+2n odd number 
2 1 + 3n+ 3n2 hex number 
3 1 + 4n + 6n2 + 4n3 rhombic dodecahedral 

number 

see also HEX NUMBER, ODD NUMBER, RHOMBIC Do- 
DECAHEDRAL NUMBER 

References 
Conway, J. H. and Guy, R. K. The 

York: Springer-Verlag, pp+ 53-54, 

Neyman-Pearson Lemma 
If there exists a critical region C 
NEGATIVE constant k such that 

Book of Numbers. New 
1996. 

of size QI and a NON- 

for points in C and 

for points not in C, then C is a best critical region of 
size a. 

References 
Hoel, P. G.; Port, S. C.; and Stone, C. J. “Testing Hypothe- 

ses.” Ch. 3 in Introduction to Statistical Theory. New 

York: Houghton Mifflin, pp. 56-67, 1971. 

Let J&z) be a BESSEL FUNCTION OF THE FIRST KIND, 
Y&z) a BESSEL FUNCTION OF THE SECOND KIND, and 
K,(z) a MODIFIED BESSEL FUNCTION OF THE FIRST 
KIND. Also let R[z] > 0. Then 

J,“(z) +Yv”(z) = $ Ko(2~ sinh t) cos(2vt) dt. 

see also DIXON-FERRAR FORMULA, WATSON'S FOR- 

MULA 

References 
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Nicomachus’s Theorem 
The nth CUBIC NUMBER n3 is a sum of n consecutive 
ODD NUMBERS, for example 

etc. This identity follows from 

f$(n - 1) - 1 + 24 = n3, 
i=l 

It also follows from this fact that 

see &O ODD NUMBER THEOREM 

Nicomedes’ Conchoid 

see CONCHOID OF NICOMEDES 

Nielsen-Ramanujan Constants 
N.B. A detailed on-line essay by S. Finch was the start- 
ing point for this entry. 

N. Nielsen (1909) and Ramanujan (Berndt 1985) con- 
sidered the integrals 

ak= - 
s 

2 (lnx)k da: 
1 x-l l  

(1) 
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They found the values for k = 1 and 2. The general 
constants for k > 3 were found by V. Adamchik (Finch) 

up = p![(p + 1) - 
p(ln2)p+1 , ‘--l Li,+~--&)(In2>” 

p+l -’ PIE k! 
? 

k=O 

(2-J 
where C(Z) is the RIEMANN ZETA FUNCTION andLi,(z) 
is the POLYLOGARITHM. The first few values are 

al = g(2) = $T” (3) 

a2 = fC(3) (4) 

a3 = $7r4 + $~“(ln2)~ - +(ln2)4 

- SLi& - 7 ln2<(3) (5) 

a4 = $7r2(ln2)3 - $(ln2)5 - 24ln2Li&) 

- 24L#) - y(ln 2)2C(3) + 24<(5). (6) 

see ah POLYLOGARITHM, RIEMANN ZETA FUNCTION 
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Nielsen’s Spiral 

- 

The SPIRAL with parametric equations 

x(t) = aci(t) (1) 
Y(t) = asi( (2) 

where ci(t) is the COSINE INTEGRAL and si(t) is the SINE 
INTEGRAL. The CES~RO EQUATION is 

s/a 
IE=e. 

a (3) 

see also CORNU SPIRAL, COSINE INTEGRAL, SINE IN- 
TEGRAL 

References 
Gray, A. Modern Differential Geometry of Curves and Sur- 

faces. Boca Raton, FL: CRC Press, p. 119, 1993. 

Nil Geometry 

Nim 

The GEOMETRY of the LIE GROUP consisting of REAL 
MATRICES of the form 

1 x Y 

[ I 

0 1 z , 
0 0 1 

i.e., the HEISENBERG GROUP. 

~~~&~HEISENBERG GROUP,LIE GROUPJHURSTON'S 
GE~METRI~ATI~N CUNJECTURE 

Nilmanifold 
Let 1v be a NILPOTENT, connected, SIMPLY CON- 
NECTED LIE GROUP, and let D be adiscrete SUBGROUP 
of IV with compact right QUOTIENT SPACE. Then N/D 
is called a nilmanifold. 

Nilpotent Element 
An element B of a RING is nilpotent if there exists a 
POSITIVE INTEGER k for’which B” = 0. 

see also ENGEL'S THEOREM 

Nilpotent Group 
A GROUP G for which the chain of groups 

I = 20 c 21 c , , . c && - - - 

with &+I/& (equal to the CENTER of G/&) termi- 
nates finitely with G = Zn is called a nilpotent group. 

see also CENTER (GROUP),NILPOTENT LIE GROUP 

Nilpotent Lie Group 
A LIE GROUP which has a simply connected covering 
group H~MEOMORPHIC to Iw”. The prototype is any 
connected closed subgroup of upper triangular COM- 
PLEX matrices with Is on the diagonal. The HEISEN- 
BERG GROUP is such a group. 

References 
Knapp, A. W. “Group Representations and Harmonic Anal- 
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Nilpotent Matrix 
A SQUARE MATRIX whose EIGENVALUES are all 0. A 
related definition is a SQUARE MATRIX M such that M” 
is 0 for some POSITIVE integral POWER. 

see also EIGENVALUE, SQUARE MATRIX 

Nim 
A game, also called TACTIX, which is played by the fol- 
lowing rules. Given one or more piles (NIM-HEAPS), 
players alternate by taking all or some of the counters 
in a single heap. The player taking the last counter or 
stack of counters is the winner. Nim-like games are also 
called TAKE-AWAY GAMES and DISJUNCTIVE GAMES. 
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If optimal strategies are used, the winner can be deter- and is the MIDPOINT of the line between the CIRCUM- 
mined from any intermediate position by its associated CENTER C and ORTHOCENTERH. It lies onthe EULER 
NIM-VALUE. LINE. 

see also MISBRE FORM, NIM-VALUE, WYTHOFF’S see also EULER LINE, NINE-POINT CIRCLE, NINE- 
GAME POINT CONIC 
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Nim-Heap 
A pile of counters in a game of NIM. 

Nim-Sum 

see NIM-VALUE 
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Nine-Point Circle 

\ 
\ I 
\ / 

\ / 
\ / 

. / I , . . ------we /’ 

Nim-Value 
Every position of every IMPARTIAL GAME has a nim- 
value, making it equivalent to a NIM-HEAP. To find the 
nim-value (also called the SPRAGUE-GRUNDY NUMBER), 

take the MEX of the nim-values of the possible moves. 
The nim-value can also be found by writing the num- 
ber of counters in each heap in binary, adding without 
carrying, and replacing the digits with their values mod 
2. If the nim-value is 0, the position is SAFE; otherwise, 
it is UNSAFE. With two heaps, safe positions are (x, z) 
where x E [l, 71. With three heaps, (I, 2, 3), (1, 4, 5), 
(1, 6, 71, (2, 4, 61, (2, 5, 71, and (3, 4, 7). 
see also GRUNDY’S GAME, IMPARTIAL GAME, MEX, 
NIM, SAFE, UNSAFE 

The CIRCLE, also called EULER’S CIRCLE and the 
FEUERBACH CIRCLE, which passes through the feet of 
the PERPENDICULAR FA, FB, and FC dropped from the 
VERTICES of any TRIANGLE AABC on the sides op- 
posite them. Euler showed in 1765 that it also passes 
through the MIDPOINTS &ZA, IMB, A& of the sides of 
AABC, 

By FEUERBACH’S THEOREM, the nine-point circle also 
passes through the MIDPOINTS A&A, UHB, ~MHC of 
the segments which join the VERTICES and the ORTHO- 

CENTER H. These three triples of points make nine in 
all, giving the circle its name. The center F of the nine- 
point circle is called the NINE-POINT CENTER. 

The RADIUS of the nine-point circle is R/2, where R is 
the CIRCUMRADIUS. The center of KIEPERT’S HYPER- 

BOLA lies on the nine-point circle. The nine-point circle 
bisects any line from the ORTHOCENTER to a point on 
the CIRCUMCIRCLE. The nine-point circle of the INCEN- 

TER and EXCENTERS of a TRIANGLE is the CIRCUMCIR- 
CLE. 
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The sum of the powers of the VERTICES with regard to 
the nine-point circle is 

:<a” + m2 + m2)* 

Nine-Point Center 
The center F (or N) of the NINE-POINT CIRCLE. It has 
TRIANGLE CENTER FUNCTION 

a = cos(B - C) = cosA+ 2cosBcosC Also, 

= bc[a2b2 + u2c2 + (b2 - c2)2], 
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where F is the NINE-POINT CENTER, Ai are the VER- 
TICES, H is the ORTHOCENTER, and R is the CIRCUM- 
RADIUS. All triangles inscribed in a given CIRCLE and 
having the same ORTHOCENTER have the same nine- 
point circle. 

see also COMPLETE QUADRILATERAL, EIGHT-POINT 
CIRCLETHEOREM,FEUERBACH'S THEOREM, FIN TENI? 
THEOREMS, GRIFFITHS’ THEOREM, NINE-POINT CEN- 

TER, NINE-POINT CONIC, ORTHOCENTRIC SYSTEM 
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Nine-Point Conic 
A CONIC SECTION on which the MIDPOINTS of the sides 
of any COMPLETE QUADRANGLE lie. The three diagonal 
points also lie on this conic. 

see UZSO COMPLETE QUADRANGLE, CONIC SECTION, 
NINE-POINT CIRCLE 

Nint 

see NEAREST INTEGER FUNCTION 

Nint Zeta Fhction 
Let 

S,(s) = y)nlqs, 
n=l 

(1) 

where [z] denotes NINT, the INTEGER closest to LC. For 
s > 3, 

Sz(s) = 2C(s - 1) (2) 
&(s) = 3C(s - 2) + 43s) (3) 

&(s) = 4C(s - 3) + [(s - 1)a (4) 

S,(n) is a POLYNOMIAL in 7~ whose COEFFICIENTS are 
ALGEBRAIC NUMBERS whenever n - IV is ODD. The 
first few values are given explicitly by 

53(4) = (5) 

170912 + 49928& 

25 (6) 

s6 c7) = TT2 + 
x4 2 
18+- 2520 

+ 246013 + 353664fi ;rr7 

45 227 ’ 

(7) 
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Nirenberg’s Conjecture 
If the GAUSS MAP of a complete minimal surface omits 
a NEIGHBORHOOD of the SPHERE, then the surface is a 
PLANE. This was proven by Osserman (1959). Xavier 
(1981) subsequently generalized the result as follows. If 
the GAUSS MAP ofacomplete MINIMAL SURFACE omits 
2 7 points, then the surface is a PLANE. 

see also 
HOOD 

GAUSS MAP, MINIMAL SURFACE, NEXGHBOR- 
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Niven’s Constant 
NJ. A detailed on-line essay by S. Finch was the start- 
ing point for this entry. 

Given a POSITIVE INTEGER YJX > 1, let its 
TORIZATION be written 

PRIME FAC- 

m= pl” lp2a2p3a3 . l  .pkak.  

(1) 

Define the functions h and H by h(l) = 1, H(1) = 1, 
and 

h(m) = min(al, a2, . . l  , ak) 

H(m) = max(al,az,.. . ,uk). 

(2) 

(3) 

Then 

(4) 



Niven Number Nuether’s Fundamental Theorem 

lim C~=l h(m) - n ~(~) - - 
n-+00 d- n C(3) 

7 (5) 

where C(Z) is the RIEMANN ZETA FUNCTION (Niven 
1969). Niven (1969) also proved that 

see UZSO COLLINEAR, CONTACT TRIANGLE, EVANS 
POINT, FLETCHER POINT, GERGONNE LINE, PERSPEC- 

TIVE TRIANGLES 

References 

lim 1 e H(m) = C, (6) n+mn- WL=l 

Jhere 

c=1+ F 

{ [ 

1-h 
j=2 

Sloane’s AO33150). 

= 1.705221.. . (7) 

The CONTINUED FRACTION of Niven’s constant is 1, 1, 
2, 2, 1, 1, 4, 1, 1, 3, 4, 4, 8, 4, 1, . . . (Sloane’s AO33151). 
The positions at which the digits 1, 2, . l  . first occur in 
the CONTINUED FRACTION are 1, 3, 10, 7, 47, 41, 34, 
13, 140, 252, 20, . . . (Sloane’s A033152). The sequence 
of largest terms in the CONTINUED FRACTION is 1, 2, 4, 
8, 11, 14, 29, 372, 559, . . . (Sloane’s AOO33153), which 
occur at positions 1, 3, 7, 13, 20, 3?, 51, 68, 96, . . . 
(Sloane’s A033154). 
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ca/piDATA/niven.txt, 

Niven Number 

see HARSHAD NUMBER 

Nobbs Points 

D’ 

Given a TRIANGLE AABC, construct the CONTACT 

TRIANGLE ADEF. Then the Nobbs points are the 
three points D’, E’, and F’ from which AABC and 
ADEF are PERSPECTIVE, as illustrated above. The 
Nobbs points are COLLINEAR and fall along the GER- 
GONNE LINE. 
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Oldknow, A. “The Euler-Gergonne-Soddy Triangle of a ‘Tri- 
angle.” Amer. Math. Monthly 103, 319-329, 1996. 

Noble Number 
A noble number is defined as an IRRATIONAL NUMBER 
which has a CONTINUED FRACTION which becomes an 
infinite sequence of 1s at some point, 

vE [al+2 ,..., unri]. 

The prototypeisthe GOLDEN RATIO q5 whose CONTIN- 
UED FRACTION is composed entirely of Is, [ i 1. Any 
noble number can written as 

V== 
An+ 4&-1 

B7-b +$Bn+l' 

where Ak and Bk are the NUMERATOR and DENOMI- 
NATOR of the kth CONVERGENT of [al, ~2,. . . , an]. The 
noble numbers are a SUBFIELD of Q(d). 

see also NEAR NOBLE NUMBER 
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Node (Algebraic Curve) 
see ORDINARY DOUBLE POINT 

Node (Fixed Point) 
A FIXED POINT for which the STABILITY MATRIX has 
both EIGENVALUES of the same sign (i.e., both are POS- 
ITIVE or both are NEGATIVE). If Xi < X2 < 0, then the 
node is called STABLE; if Xi > X2 > 0, then the node is 
called an UNSTABLE NODE. 

see also STABLE NODE, UNSTABLE NODE 

Node (Graph) 
Synonym for the VERTICES of a GRAPH, i.e., the points 
connected by EDGES. 

see U~SOACNODE,CRUNODE,TACNODE 

Noet her’s Fundamental Theorem 
If two curves 4 and $ of MULTIPLICITIES ri # 0 and 
si # 0 have only ordinary points or ordinary singular 
points and CUSPS in common, then every curve which 
has at least MULTIPLICITY 

Ti + si - 1 
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at every point (distinct or infinitely near) can be written References 
Davenport, W. B. and Root, W. L. An Introduction to the 

Theory of Random Signals and Noise. New York: IEEE 
Press, 1987. 

where the curves 4’ and $’ have MULTIPLICITIES at least 

Ti - 1 and si - 1. 

References 
Coolidge, J. L. A Treatise on Algebraic Plane Curves. New 

York: Dover, pp. 29-30, 1959. 

Noether-Lasker Theorem 
Let M be a finitely generated MODULE over a commu- 
tative NOETHERIAN RING R. Then there exists a finite 
set 

1. 

2. 

3. 

4. 

(Nil1 < i < I} of submodules of M such that - - 

f-f i=l N = 0 and n+i,Ni is not contained in Ni, for 
all 1 5 i0 5 1. 

Each quotient M/Ni is primary fur some prime Pi. 

The Pi are all distinct for 1 < i < L. - - 

Uniqueness of the primary component Ni is equiva- 
lent to the statement that Pi does not contain Pj for 
any j # i. 

Noether’s Transformation Theorem The graphical result can yield unexpected structure 

Any irreducible curve may be carried by a factorable which indicates correlations between triples and there- 

CREMONA TRANSFORMATION into one with none but fore that the numbers are not truly RANDOM. 

ordinary singular points. References 

References 
Coolidge, J. L. A Treatise on Algebraic Plane Curves. New 

York: Dover, p. 207, 1959. 

Noetherian Module 
A MODULE M is Noetherian if every submodule is 
finitely generated. 

see also NOETHERIAN RING 

Noetherian Ring 
An abstract commutative RING satisfying the abstract 
chain condition. 

see also LOCAL RING, NOETHER-LASKER THEOREM 

Noise 
An error which is superimposed on top of a true sig- 
nal. Noise may be random or systematic. Noise can be 
greatly reduced by transmitting signals digitally instead 
of in analog form because each piece of information is 
allowed only discrete values which are spaced farther 
apart than the contribution due to noise. 

CODING THEORY studies how to encode information ef- 
ficiently, and ERROR-CORRECTING CODES devise meth- 
ods for transmitting and reconstructing information in 
the presence of noise. 

see also ERROR 

McDonough, R. N. and Whalen, A. D. Detection of SignaEs 
in Noise, 2nd ed. Orlando, FL: Academic Press, 1995. 

Pierce, J. R. Symbols, Signals and Noise: The Nature and 
Process of Communication. New York: Harper & Row, 
1961. 

Vainshtein, L, A. and Zubakov, V. D. Extraction of Signals 
from Noise. New York: Dover, 1970. 

van der Ziel, A. Noise: Sources, Characterization, Measure- 
ment. New York: Prentice-Hall, 1954. 

van der Ziel, A. Noise in Measurement. New York: Wiley, 
1976. 

Wax, N. Selected Papers on Noise and Stochastic Processes. 
New York: Dover, 1954. 

Noise Sphere 
A mapping of RANDOM NUMBER TRIPLES to points in 
SPHERICAL COORDINATES, 

Pickover, C. A. Computers and the Imagination. New York: 
St. Martin’s Press, 1991. 

Pickover, C. A. “Computers, Randomness, Mind, and In- 
finity.” Ch. 31 in Keys to Infinity. New York: W. H. 
Freeman, pp. 233-247, 1995. 

Richards, T. “Graphical Representation of Pseudorandom 
Sequences.” Computers and Graphics 13, 261-262, 1989. 

Nolid 
An assemblage of faces forming a POLYHEDRON of zero 
VOLUME (Holden 1991, p. 124). 

see ah ACOPTIC POLYHEDRON 

References 
Holden, A. Shapes, Space, and Symmetry. New York: Dover, 

1991. 

Nome 
Given a THETA FUNCTION, the nome is defined as 

q(m) E exri = e -7rK(l-m)/K(m) ~ e-7rK’(m)/K(m) 
Y (1) 

whereK(k)isthecomplete ELLIPTIC INTEGRAL OFTHE 
FIRST KIND, and m is the PARAMETER. 

&(z, 4) = f@lT) 

19i = 6(O,q). 

(2) 

(3) 
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Solving the nome for the PARAMETER VI gives 

fi24 m4> 
m(4) = - 

634 (014) ’ 
(4 

where &(z, q) is a THETA FUNCTION. 

see also AMPLITUDE, CHARACTERISTIC (ELLIPTIC IN- 
TEGRAL), ELLIPTIC INTEGRAL, MODULAR ANGLE, 
MODULUS (ELLIPTIC INTEGRAL),~ARAMETER 

References 
Abramowitz, M. and Stegun, C. A. (Eds.). Handbook 

of Mathematical Functions with Formulas, Graphs, and 
Mathematical Tables, 9th printing. New York: Dover, 
p. 591, 1972. 

Nomogram 
A graphical plot which can be used for solving certain 
types of equations. 

References 
Iyanaga, S. and Kawada, Y. (Eds.). “Nomograms.” §282 

in Encyclopedic Dictionary of Mathematics. Cambridge, 
MA: MIT Press, ppm 891-893, 1980. 

Menzel, D. (Ed.). Fundamental Formulas of Physics, Vol. I. 
New York: Dover, p. 141, 1960. 

Nonagon 

The unconstructible regular POLYGON with nine sides 
and SCHLXFLI SYMBOL (9). It is sometimes called an 
ENNEAGON. 

Although the regular nonagon is not a CONSTRUCTIBLE 
POLYGON, Dixon (1991) gives several close approxi- 
mations. While the ANGLE subtended by a side is 
360”/9 = 40”, Dixon gives constructions containing an- 
gles of tar?(5/6) ==: 39.8805571’ and 2 tan-‘((a - 
1)/Z) = 40.207818”. 

Madachy (1979) illustrates how to construct a nonagon 
by folding and knotting a strip of paper. 

see U~SO NONAGRAM,TRIGONOMETRY VALUES--n/9 

References 
Dixon, R. Mathographics. New York: Dover, pp. 40-44, 1991. 
Madachy, J. S. Madachy’s Mathematical Recreations. New 

York: Dover, pp. 60-61, 1979. 

Nonagonal Number 

A FIGURATE NUMBER of the form n(7n - 5)/2, also 
called an ENNEAGONAL NUMBER. The first few are 1, 
9, 24, 46, 75, 111, 154, 204, l  . . (Sloane’s A001106). 

References 
Sloane, N. J. A. Sequence A001106/M4604 in “An On-Line 

Version of the Encyclopedia of Integer Sequences.” 

Nonagram 

A STAR POLYGON composed of three EQUILATERAL 
TRIANGLES rotated at angles O”, 40”, and 80”. It has 
been called the STAR OF GOLIATH by analogy with the 
STAR OF DAVID (HEXAGRAM). 

see also HEXAGRAM, 
VALUES-+ 

NONAGON, 

Nonassociative Algebra 
An ALGEBRA which does not satisfy 

a&) = (ab)c 

TRIGONOMETRY 

is called a nonassociative algebra. Bott and Milnor 
(1958) proved that the only nonassociative DIVISION 
ALGEBRAS are for n = 1, 2, 4, and 8. Each gives rise to 
an ALGEBRA with particularly useful physical applica- 
tions (which, however, is not itself necessarily nonassoc- 
iative), and these four cases correspond to REAL NUM- 
BERS, COMPLEX NUMBERS, QUATERNIONS, and CAY- 
LEy NUMBERS, respectively. 

see U~SO ALGEBRA,~AYLEY NUMBER, COMPLEX NUM- 
BER, DIVISION ALGEBRA, QUATERNION, REAL NUM- 
BER 

References 
Bott, R. and Milnor, J* “On the Parallelizability of the 

Spheres.” Bull. Amer, Math. Sot. 64, 87-89, 1958. 

Nonassociat ive Product 
The number of nonassociative n-products with k ele- 
ments preceding the rightmost left parameter is 

F(n, k) = F(n - 1, k) + F(n - 1,k - 1) 

= y-2) - (“:1;‘), 

where z 0 is a BINOMIAL COEFFICIENT. Thenumber of 
n-products in a nonassociative algebra is 

n-2 
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References 
Niven, I. M. Mathematics of Choice: Or, How to Count 
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pp. 140-152, 1965. 

Nonaveraging Sequence 
N.B. A detailed on-line essay by S. Finch was the start- 
ing point for this entry. 

An infinite sequence of POSITIVE INTEGERS 

1 < a1 < u2 < u3 < l  l  . 
- 

is a nonaveraging sequence if it contains no three terms 
which are in an ARITHMETIC PROGRESSION, so that 

ai + aj # 2ak 

for all distinct ai, aj, ak. Wr6blewski (1984) showed 
that 

S(A) = 
* 1 

SUP 
all nonaveraging 

E - > 3.00849. 
ak 

sequences k=l 

References 
Behrend, F. “On Sets of Integers which Contain no Three 

Terms in an Arithmetic Progression.” Proc. Nat. Acad. 
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Finch, S. “Favorite Mathematical Constants.” http: //www. 

mathsoft,com/asolve/constant/erdos/erdos.html. 
Gerver, J. L. ‘(The Sum of the Reciprocals of a Set of Integers 

with No Arithmetic Progression of JG Terms.” Proc. Amer. 
Math, Sot. 62, 211-214, 1977. 

Gerver, J. L. and Ramsey, L. “Sets of Integers with no Long 
Arithmetic Progressions Generated by the Greedy Algo- 
rithm.” Math. Comput. 33, 1353-1360, 1979. 

Guy, R. K. “Nonaveraging Sets. Nondividing Sets.” SC16 in 
Unsolved Problems in Number Theory, 2nd ed, New York: 
Springer-Verlag, pp. 131-132, 1994. 

Wrbblewski, J. “A Nonaveraging Set of Integers with a Large 
Sum of Reciprocals.” Math. Comput. 43, 261-262, 1984. 

Noncentral Distribution 

see CHI-SQUARED DISTRIBUTION, F-DISTRIBUTION, 
STUDENT’S ~-DISTRIBUTION 

Noncommutative Group 
A group whose elements do not commute. The simplest 
noncommutative GROUP is the DIHEDRAL GROUP D3 
of ORDER six. 

see also COMMUTATIVE, FINITE GROUP-& 

Nonconformal Mapping 
Let y be a path in C, uf = f(r), and 8 and 4 be the 
tangents to the curves y and f(r) at zo and WO. If there 
is an N such that 

fN)(Zo) # 0 (1) 

pqzo) = 0 (2) 

Noncototient 

for all n < N (or, equivalently, if f’(z) has a zero of 
order N - 1), then 

fCN) (20) 
fk) = fhd + - N! ‘- ( Zo)N 

fN+l)(Zo) 
+ (N+l)! (z-zo) 

N+l 
+*- c3) 

SO the ARGUMENT is 

arg[f(z) - f(zo)] = Narg(z - 20) + arg 
f (NM 

N! 

fcN+l) (20) 
+ (N+l)! (x-zo)+*** ’ c5) 1 

As x + 20, arg( 

qb = NO + arg = NO + arg[f(N)(a)]. (6) 

see also CONFORMAL TRANSFORMATION 

Nonconstructive Proof 
A PROOF which indirectly shows a mathematical object 
exists without providing a specific example or algorithm 
for producing an example. 

see also PROOF 

References 
Courant, R. and Robbins, H. “The Indirect Method of 

Proof.” $2.4.4 in What is Mathematics?: An Elementary 
Approach to Ideas and Methods, 2nd ed. Oxford, England: 
Oxford University Press, pp. 86-87, 1996. 

Noncototient 
A POSITIVE value of n for which x - 4(x) = L has no 
solution, where #(x) is the TOTIENT FUNCTION. The 
first few are 10, 26, 34, 50, 52, . . . (Sloane’s A005278). 

see do NONTOTIENT, TOTIENT FUNCTION 

References 
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Noncylindrical Ruled Surface 
A RULED SURFACE parameterization X(U,V) = b(u) + 
vg(u) is called noncylindrical if g x g’ is nowhere 0. A 
noncylindrical ruled surface always has a parameteriza- 
tion of the form 

x(u,u) = a(u) + v&J), 

where 161 = 1 and U’ 4 8’ = 0, where 0 is called the 
STRICTION CURVE ofx and 6 the DIRECTOR CURVE. 

see &O DISTRIBUTION 
STRICTION CURVE 

PARAMETER, RULED SURFACE, 

References 
Gray, A. “Noncylindrical Ruled Surfaces.” 517.3 in Modern 
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Nondecreasing finct ion 
A function f(z) is said to be nondecreasing on an IN- 
TERVAL I if f(b) 2 f(a) f or all b > a, where a, b E I. 
Conversely, a function f(z) is said to be nonincreasing 
on an INTERVAL I if f(b) 5 f(a) for all b > a with 
u, b f I. 

see also DECREASING 
Fury CTION 

FUNCTION, NONINCREASING 

Nondividing Set 
A SET in which no element divides the SUM of any other. 

References 
Guy, R. K. “Nonaveraging Sets. Nondividing Sets.” SC16 in 
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Nonessential Singularity 

see REGULAR SINGULAR POINT 

Non-Euclidean Geometry 
In 3 dimensions, there are three classes of constant cur- 
vature GEOMETRIES. All are based on the first four 
of EUCLID'S POSTULATES, but each uses its own ver- 
sion of the PARALLEL POSTULATE. The “flat” geom- 
etry of everyday intuition is called EUCLIDEAN GE- 
OMETRY (or PARABOLIC GEOMETRY), and the non- 
Euclidean geometries are called HYPERBOLIC GEOM- 
ETRY (or LOBACHEVSKY-BOLYAI-GAUSS GEOMETRY) 
and ELLIPTIC GEOMETRY (or RIEMANNIAN GEOME- 
TRY). It was not until 1868 that Beltrami proved that 
non-Euclidean geometries were as logically consistent as 
EUCLIDEAN GEOMETRY. 

see &O ABSOLUTE GEOMETRY, ELLIPTIC GEOMETRY, 
EUCLID'S POSTULATES, EUCLIDEAN GEOMETRY, HY- 
PERBOLIC GEOMETRY,~ARALLEL POSTULATE 
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Nonillion 
In the American system, 103’. 

see also LARGE NUMBER 

Nonincreasing finct ion 
A function f (2) is said to be nonincreasing on an IN- 
TERVAL I if f(b) 2 f(a) for all b > a, where a$ E I. 
Conversely, a function f(s) is said to be nondecreasing 
on an INTERVAL I if f(b) 2 f(a) for all b > a with 
a, b f I. 

see also INCREA 
FUNCTION 

FUNCTION, NONDECREASING 

Nonlinear Least Squares Fitting 
Given a function f(z) of a variable 2 tabulated at m val- 
ues yr = f(xr), . . . , ym = f(xm), assume the function 
is of known analytic form depending on n parameters 

f(x;k,. l Jn), and consider the overdetermined set of 
nz equations 

y1 = f(a;h,h,*-,Xn) (1) 

ym = f( xnz;Xl,X2,***,Xn)~ (2) 

We desire to solve these equations to obtain the values 

Xl, “‘7 X, which best satisfy this system of equations. 
Pick an initial guess for the Xi and then define 

(3) 

Now obtain a linearized estimate for the changes dXi 
needed to reduce dpi to 0, 

(4 
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is shown above, where the thin solid curve iS the initial 
guess, the dotted curves are intermediate iterations, and 
the heavy solid curve is the fit to which the solution con- 
verges. The actual parameters are (A, 20, a) = (1, 20,5), 
the initial guess was (0.8, 15, 4), and the converged val- 
ues are (1.03105, 20.1369, 4.86022), with R2 = 0.148461. 
The PARTIAL DERIVATIVES used to construct the matrix 
A are 

fori = 1, . . . . n. This can be written in component form 
as 

@i = Aij dXi, (5) 

where A is the m x n MATRIX 

Aij = (6) 
(13) w 

dA 
= e-(x-xo)2/(2~2~ 

w 4 X- 20) 
-= 

ax0 u2 
e ( - 2-q)2/(2a2) (14) 

In more concise MATRIX form, 
w 4 X- 

aa= u3 

x0)2 e-(” -XO)2/W2) 
. (15) 

dp = Ad& (7) 

The technique could obviously be generalized to multiple 
Gaussians, to include slopes, etc., although the conver- 
gence properties generally worsen as the number of free 
parameters is increased. 

where dp and dX are ~-VECTORS. Applying the MA- 
TRIX TRANSPOSE of A to both sides gives 

AT dp = (ATA) dX. (8) 
An analogous technique can be used to solve an overde- 
termined set of equations. This problem might, for ex- 
ample, arise when solving for the best-fit EULER AN- 

GLES corresponding to a noisy ROTATION MATRIX, in 
which case there are three unknown angles, but nine 
correlated matrix elements. In such a case, write the 
7z drifferent functions as fi(X1, l  . l  ,&-J for i = 1, . l  . , 12, 
call their actual values yi , and define 

Defining 

a s ATA 

in terms of the known 
the MATRIX EQUATION 

quantities A and dp then gives 

adX = b, 

which can be solved for dX using standard matrix tech- 
niques such as GAUSSIAN ELIMINATION. This offset is 
then applied to X and a new dp is calculated. By iter- 
atively applying this procedure until the elements of dA 
become smaller than some prescribed limit, a solution 
is obtained. Note that the procedure may not converge 
very well for some functions and also that convergence is 
often greatly improved by picking initial values close to 
the best-fit value. The sum of square residuals is given 
by R2 = d@ l  d/3 after the final iteration. 

and 

(17) 

where Xi are the numerical values obtained 
iteration. Again, set up the equations as 

after the ith 

AdX=d@, (18) 

and proceed exactly as before. 

SW UZSO LEAST SQUARES FITTING, LINEAR REGRES- 
SION, MOORE-PENROSE GENERALIZED MATRIX IN- 
VERSE 

Nonnegative 
A quantity which is either 0 (ZERO) or POSITIVE, i.e., 
> 0. - 

see U~SO NEGATIVE, NONNEGATIVE INTEGER, NONPOS- 
ITIVE, NONZERO, POSITIVE, ZERO 

An example of a nonlinear least squares fit to a noisy 
GAUSSIAN FUNCTION 

Nonnegative Integer 

see Z* 

f(A, xo,  a; x) = Ae-(“-xO~2/(2u2~ 

(12) 
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Nonnegative Partial Sum 
The number of sequences with NONNEGATIVE partial 
sums which can be formed from n 1s and n -1s (Bailey 
1996, Buraldi 1992) is given by the CATALAN NUMBERS. 
Bailey (1996) gives the number of NONNEGATIVE partial 
sums of n 1s and /C -1s al, ~2, . . l  , an+k, so that 

and restricting 8 to [O, 2~) and 4 to [O,n/Z] defines a 
map of the REAL PROJECTIVE PLANE to Iw3. 

In 3-Q there is no unbounded nonorientable surface 
which does not intersect itself (Kuiper 1961, Pinkall 
1986). 

see also BOY SURFACE, CROSS-CAP, MOBIUS STRIP, 

al + a2 + . ..+ ai > 0 (1) ORIENTABLE 
SURFACE 

SURFACE, PROJECTIVE PLANE, 

for all 1 < i < n + !L The closed form expression is - - References 

{> 

Banchoff, T. “Differential Geometry and Computer Graph- 
n 

=1 (2) 
its.” In Perspectives uf Mathematics: Anniversary of 

0 Oberulolfach (Ed. W. Jager, R. Remmert, and J. Moser). 
Basel, Switzerland: Birkhauser, 1984. 

for n > 0, - 

for n > 1, and - 

=n (3) 

Gray, A. “Nonorientable Surfaces.” Ch. 12 in Modern Dif- 
ferential Geometry of Curves and Surfaces. Boca Raton, 
FL: CRC Press, pp. 229-249, 1993. 

Kuiper, N. Ii. “Convex Immersion of Closed Surfaces in E3 .” 
Comment. Math. Helv. 35, 85-92, 1961. 

Pinkall, U. “Models of the Real Projective Plane.” Ch. 6 in 
Mathematical Models from the Collections of Universities 

(n -+ 1 - k)(n + 2)(n + 3) d d d (n + k) 
and Museums (Ed. G. Fischer). Braunschweig, Germany: 

(4) 
Vieweg, pp. 63-67, 1986. 

k! 7 

for n > k > 2. Setting k = n then recovers the CATALAN 
NUMBERS- 

Nonpositive 
A quantity which is either 0 (ZERO) or NEGATIVE, i.e., 
5 0. 

(5) 
see also NEGATIVE, NONNEGATIVE, NONZERO, Posr- 
TIVE, ZERO 

see also CATALAN NUMBER 
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Nonsquarefree 

see SQUAREFUL 

Nonstandard Analysis 
Nonstandard analysis is a branch of mathematical 
LOGIC which weakens the axioms of usual ANALYSIS to 

Nonorientable Surface 
A surface such as the MOBIUS STRIP on which there ex- 
ists a closed path such that the directrix is reversed when 
moved around this path. The EULER CHARACTERISTIC 
of a nonorientable surface is < 0. - The real PROJEC- 

TIVE PLANE is also a nonorientable surface, as are the 
BOY SURFACE, CROSS-CAP, and ROMAN SURFACE, all 
of which are homeomorphic to the REAL PROJECTIVE 
PLANE (Pinkall 1986). There is a general method for 
constructing nonorientable surfaces which proceeds as 
follows (Banchoff 1984, Pinkall 1936). Choose three HO- 

MOGENEOUS POLYNOMIALS of POSITIVE EVEN degree 
and consider the MAP 

include only the first-order ones. 
PERREAL NUMBERS to allow for 

It also introduces I-W- 
the existence of “gen- 

uine INFINITESIMALS,” numbers which are less than l/2, 
l/3, l/4, l/5, . . l  , but greater than 0. Abraham Robin- 
son developed nonstandard analysis in the 1960s. The 
theory has since been investigated for its own sake and 
has been applied in areas such as BANACH SPACES, dif- 
ferential equations, probability theory, microeconomic 
theory, and mathematical physics (Apps). 

see also AX-KOCHEN ISOMORPHISM THEOREM, LOGIC, 

MODEL THEORY 

f = (fi(~,~,~),fi(~,y,z),f3(2,y,z)) :R3 +R”. (1) 
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Then restricting 61;, y, and z to the surface of a sphere 
by writing 

= cost9sinq5 X 

Y = sin&in4 

z = cosq5 

(2) 

(3) 
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Davis, P. J. and Hersch, R. The Mathematical Experience. Norm 
Boston: Birkhauser, 1981. Given a n-D VECTOR 

Keisler, H. J. Elementary Culculus: An Infinitesimal Ap- 
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a VECTOR NORM lIx[I is a NONNEGATIVE number sat- 
isfying 

Nontotient 
A POSITIVE EVEN value of n for which 4(x) = n, where 
4(z) is the TOTIENT FUNCTION, has no solution. The 
first few are 14, 26, 34, 38, 50, . . . (Sloane’s AO05277). 

see also NONCOTOTIENT, TOTIENT FUNCTION 

References 
Guy, R. K. Unsolved Problems in Number Theory, 2nd ed. 

New York: Springer-Verlag, p. 91, 1994. 
Sloane, N. J. A. Sequence A005277/M4927 in “An On-Line 

Version of the Encyclopedia of Integer Sequences.” 

Nonwandering 
A point x in a MANIFOLD A4 is said to be nonwandering 
if, for every open NEIGHBORHOOD U of x, it is true that 
$-“V U U # 0 for a MAP q5 for some n > 0. In other 
words, every point close to II: has some iterate under 4 
which is also close to x. The set of all nonwandering 
points is denoted R(b), which is known as the nonwan- 
dering set of 4. 

see also AN 
MORPHISM, 

osov D 
SMALE 

IFFEOMORPHISM, A 
HORSESHOE MAP 

.XIOM A DIFFEO- 

Nonzero 
A quantity which does not equal ZERO is said to be 
nonzero. A REAL nonzero number must be either POS- 
ITIVE or NEGATIVE, and a COMPLEX noneero number 
can have either REAL or IMAGINARY PART nonzero. 

see also NEGATIVE, NONNEGATIVE, NONPOSITIVE, 
POSITIVE, ZERO 

Nordstrand’s Weird Surface 
An attractive CUBIC SURFACE defined by Nordstrand. 
It is given by the implicit equation 

25[z3(y + z) + y3(x + z) + Z”(X + y)] + 50(x2y2 + x2z2 

+y2z2) - 125(x2yz + y2xx + z2xy) + 6Oxyx 

-4(xy + xz + yz) = 0. 

References 
Nordstrand, T. “Weird Cube.” http: //wau. uib .no/people/ 

nf ytn/weirdtxt . htm. 

1. 1jx1I > 0 when x # 0 and Ilxll = 0 IFF x = 0, 

2. ((kx(( = (k( ((x(( for any SCALAR k, 

3. IIX + YII L II4 + lIYII* 
The most common norm is the vector &-NORM, defined 

bY 

ll4b = I4 = -/- 222 + l  . l  + xn2.  

Given a SQUARE MATRIX A, a MATRIX NORM j[All is 
a NONNEGATIVE number associated with A having the 
properties 

1. IlAil > 0 h w  en A # 0 and \lAll = 0 IFF A = 0, 

2. IlkAll = [kl IlAll for any SCALAR k, 

3. IIA + WI 5 IIAII + 11w 
4. IIABII 5 IIAII IIW 
see also BOMBIERI NORM, COMPATIBLE, EUCLIDEAN 
NORM,HILBERT-SCHMIDT NORM,~NDUCED NORM,&- 
NORM, &-NORM, &-NORM, MATRIX NORM, MAXI- 
MUM ABSOLUTE COLUMN SUM NORM,MAXIMUM AB- 
SOLUTE Row SUM NORM, NATURAL NORM, NOR- 
MALIZED VECTOR, NORMED SPACE, PARALLELOGRAM 
LAW, POLYNOMIAL NORM, SPECTRAL NORM, SUBOR- 
DINATE NORM,VECTORNORM 

References 
Gradshteyn, I. S. and Ryzhik, I. M. Tables of Integrals, Se- 

ries, and Products, 5th ed. San Diego, CA: Academic 
Press, pp* 1114-1125, 1979. 

Norm Theorem 
If a PRIME number divides a norm but not the bases of 
the norm, it is itself a norm. 

Normal 

see NORMAL CURVE, NORMAL DISTRIBUTION, NOR- 
MAL DISTRIBUTION FUNCTION, NORMAL EQUATION, 
NORMAL FORM, NORMAL GROVP, NORMAL MAGIC 
SQUARE, NORMAL MATRIX, NORMAL NUMBER, NOR- 
MAL PLANE,NORMAL SUBGROUP,NORMAL VECTOR 

Normal (Algebraically) 

see GAL~I~IAN 



Normal Curvature 

Normal Curvature 
Letu,beaunit TANGENT VECTOR ofa REGULAR SUR- 
FACE M c R3. Then the normal curvature of A4 in the 
direction u, is 

dup) = S(UP) l  up7 (1) 

where S is the SHAPE OPERATOR. Let A4 c R3 be a 
REGULAR SURFACE, p E A&xbeaninjective REGULAR 
PATCH of M with p = ~(2~0, wo), and 

V - ~Xu(~O, vo) + bXv(UO, uo), P- (2) 

where vP f i&. Then the normal curvature in the 
direction vp is 

+P) = 
ea2 + 2fab + gb2 

Ea2 + 2Fab + Gb2 ’ (3) 

where E, F, and G are first FUNDAMENTAL FORMS and 
e, f,and g second FUNDAMENTAL FORMS. 

The MAXIMUM and MINIMUM values of the normal cur- 
vature on a REGULAR SURFACE at a point on the surface 
are called the PRINCIPAL CURVATURES Q and ~2. 

see also CURVATURE, FUNDAMENTAL FORMS, GAUS- 
SIAN CURVATURE,MEAN CURVATURE,~RINCIPAL CUR- 
VATURES,~HAPE OPERATOR,TANGENT VECTOR 

References 
Euler, L. “Rkherches sur la coubure des surfaces.” 1Me’m. de 

PAcad. des Sciences, Berlin 10, 119-143, 1760. 
Gray, A. “Normal Curvature.” 514.2 in Modern Differential 

Geometry of Curves and Surfaces. Boca Raton, FL: CRC 
Press, pp+ 270-273 and 277, 1993. 

Meusnier, J. B. “Mhmoire sur la courbure des surfaces.” 
AI&m. des swans &rangers 10 (lu 1776), 477-510, 1785. 

Normal Curve 

see GAUSSIAN DISTRIBUTION 

Normal Developable 
A RULED SURFACE JW is a normal developable of a curve 
y if M can be parameterized by x(u, V) = y(u) +&(u), 
where Nisthe NORMAL VECTOR. 

see also BINORMAL DEVELOPABLE, TANGENT DEVEL- 
OPABLE 

References 
Gray, A. “Developables.” 517.6 in Modern Differential Ge- 

ometry of Curves and Surfaces. Boca Raton, FL: CRC 
Press, pp. 352-354, 1993. 

Normal Distribution 

x 

a, 

z 
X 

Normal Distribution Function 1245 

Another name for a GAUSSIAN DISTRIBUTION. Given a 
normal distribution in a VARIATE x with MEAN p and 
VARIANCE 02, 

the so-called “STANDARD NORMAL DISTRIBUTION" is 
given by taking p = 0 and o2 = 1. An arbitrary normal 
distribution can be converted to a STANDARD NORMAL 
DISTRIBUTION by changing variables to z E (z - ~)/a, 
so dx = dx/a, yielding 

P(x) dx = &e-22/2 dz. 

The FISHER-BEHRENS PROBLEM is the determination 
of a test for the equality of MEANS for two normal dis- 
tributions with different VARIANCES. 

see also FISHER-BEHRENS PROBLEM, GAUSSIAN DIS- 
TRIBUTION, HALF-NORMAL DISTRIBUTION, KOLMOGO- 
ROV-SMIRNOV TEST, NORMAL DISTRIBUTION FUNC- 
TION, STANDARD NORMAL DISTRIBUTION, TETRA- 
CHORIC FUNCTION 

Normal Distribution Function 

Y... I .,,, . .,a 
I 

0.5 1 1.5 2 2.5 3 

A normalized form of the cumulative GAUSSIAN DISTRI- 
BUTION function giving the probability that a variate 
assumes a value in the range [0, x], 

a(x) G Q(x) E & Jx eBt212 dt. 
7T 0 

(1) 

It is related to the PROBABILITY INTEGRAL 

e-t2/2 dt 

bY 
@( > x = $2(x). 

(2) 

(3) 
Let u G t/fi so du = dt/&. Then 
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Here, ERF is a function sometimes called the error func- 
tion. The probability that a normal variate assumes a 
value in the range [XI, ~21 is therefore given by 

@(xl, x2) = z erf l[ (++)]. (5) 

Neither G(z) nor ERF can be expressed in terms of fi- 
nite additions, subtractions, multiplications, and root 
extractions, and so must be either computed numeri- 
cally or otherwise approximated. 

Note that a function different from @(z) is sometimes 
defined as “the” normal distribution function 

(a’(x) E - 1 + erf ; [ ($1 = i++(x) (6) 

(Beyer 1987, p. 551), although this function is less 
widely encountered than the usual G(z). 

The value of a for which P(z) falls within the interval 
[-a, a] with a given probability P is a related quantity 
called the CUNFIDENCE INTERVAL. 

For small values x << 1, a good approximation to G(z) 
is obtained from the MACLAURIN SERIES for ERF, 

w 1 
1 x =- 

6 
(2x - ix” + &x5 - $x7 +. - .). (7) 

7T 

For large values x >> 1, a good approximation is ob- 
tained from the asymptotic series for ERF, 

a( > 

1 &/2 

5+ 
( 

-1 
-3 x = -X 6 -X + 3x-5 

7r 

-15x-7 + IO~X-~ + . . ,). (8) 

The value of a(x) for intermediate x can be computed 
using the CONTINUED FRACTION identity 

Normal Equation 
Given an overdetermined MATRIX EQUATION 

s 

X 

e -u2 du = -d! - J 

2 
l  

1 
(9) 

0 
a:+ 3 

L 

2rr: + 

3 
x+ 

4 
2x + - 

x+... 

A simple approximation of a(x) which is good to two 
decimal places is given by 

for 0 < 2 < 2.2 - - 
for 2.2 < x < 2.6 
for x > 2.6. - 

Abramowitz and Stegun (1972) and Johnson and Katz 
(1970) give other functional approximations. An ap- 
proximation due to Bagby (1995) is 

@2(x) = i{l- 37e 
-x2/2 

+16e- x2c2-aJz + (7 + $x2)e-x2]}1/2. (11) 

The plots below show the differences between @ and the 
two approximations. 
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The first QUARTILE of a standard NORMAL DISTRIBU- 
TION occurs when 

The solution is t = 0.6745. . ,. The value of t giving a 
is known as the PROBABLE ERROR of a normally dis- 
tributed variate. 

see also CONFIDENCE INTERVAL, ERF, ERFC, FISHER- 
BEHRENS PROBLEM, GAUSSIAN DISTRIBUTION, GAUS- 
SIAN INTEGRAL, HH FUNCTION, NORMAL DISTRIBU- 
TION, PROBABILITY INTEGRAL, TETRACHORIC FUNC- 
TION 
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Abramowitz, M. and Stegun, C. A. (Eds.). Hand book 

of Mathematical Functions with Formulas, Graphs, and 
Mathematical Tables, 9th printing. New York: Dover, 
pp. 931-933, 1972. 

Bagby, R. J. “Calculating Normal Probabilities.” Amer, 
Math, Monthly 102, 46-49, 1995. 

Beyer, W. H. (Ed.). CRC Standard Mathematical Tables, 
28th ed. Boca Raton, FL: CRC Press, 1987. 

Johnson, N.; Katz, S.; and Balakrishnan, N. Continuous 
Univariate Distributions, Vol. 1, 2nd ed. Boston, MA: 
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Ax=b, 

the normal equation is that which minimizes the sum of 
the square differences between left and right sides 

ATAx = ATb. 

see also LEAST SQUARES FITTING, MOORE-PENROSE 
GENERALIZED MATRIX INVERSE, NONLINEAR LEAST 
SQUARES FITTING 

Normal Form 
A way of representing objects so that, although each 
may have many different names, every possible name 
corresponds to exactly one object. 

see also CANONICAL FORM 

References 
Petkovgek, M.; Wilf, H. S.; and Zeilberger, D. A=B. Welles- 

ley, MA: A. K. Peters, pa 7, 1996. 
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Normal Function 
A SQUARE INTEGRABLE function 4 is said to be normal 
if 

s 
qS2 dt = 1 

Normal to a Plane 

~~~N~RMAL VECTOR 

Normal Section 
Let ikf c Ik3 be 8 REGULAR SURFACE and up a unit 
TANGENT VECTOR to iV, and let II&N(p)) be the 
PLANE determined by up and the normal to the surface 
N(p). Then the normal section of M is defined as the 
intersection of H(u,, N(p)) and A4. 

However, the NORMAL DISTRIBUTION FUNCTION is also 
sometimes called “the normal function.” 

see also NORMAL DISTRIBUTION FUNCTION, SQUARE 
INTEGRABLE 

References 
Gray, A. Modern DifferentiaE Geometry of Curves and Sur- 

faces. Boca Raton, FL: CRC Press, p. 271, 1993. 

References 
Sansone, CL Orthogonal Functions, rev. English ed, New 

York: Dover, p. 6, 1991. 

Normal Subgroup 
Let H be a SUBGROUP of a GROUP G. Then H is a 
normal subgroup of G, written H 4 G, if 

Normal Group 

~~~N~RMAL SUBGROUP 

xHx-’ = H Normal Magic Square 

see MAGIC SQUARE 
for every element c1: in H. Normal subgroups are also 
known as INVARIANT SUBGROUPS, 

see also GROUP, SUBGROUP 
Normal Matrix 
A normal matrix A is a MATRIX for which 

[A, A+] = 0, Normal Vector 
The normal to a PLANE specified by 

where 
JOINT 

is the C 
RATOR. 

OMMUTATOR and t denotes the AD- 
f(x, Y7 4 =ax+by+cz+d=O (1) 

is given by 
Normal Number 
An IRRATIONAL NUMBER for which any FINITE pattern 
of numbers occurs with the expected limiting frequency 
in the expansion in any base. It is not known if r or e are 
normal. Tests of fi for n = 2, 3, 5, 6, 7, 8, 10, 11, 12, 
13, 14, 15 indicate that these SQUARE ROOTS may be 
normal. The only numbers known to be normal are ar- 
tificially constructed ones such as the CHAMPERNOWNE 
CONSTANT and the COPELAND-ERD~S CONSTANT. 

(2) 

The normal vector at a point (20, yo) on a surface z = 

f (x9 Y) is 
fx (a Yd 

N = fy(Xo,Yo) l  [ 1 (3) 

-1 

see also CHAMPERNOWNE CONSTANT, COPELAND- 
ERD~S CONSTANT, e, PI 

In the PLANE, the unit normal vector is defined by 

(4) Normal Order 
f(n) has th e normal order F(n) if f(n) is approximately 
F(n) for ALMOST ALL values of n. More precisely, if where * is the unit TANGENT VECTOR and 4 is the 

polar angle. Given a unit TANGENT VECTOR 
(1 - e)F(n) =C f(n) -C (I+ E)F(n) 

for every positive E and ALMOST ALL values of n, then 
the normal order of f(n) is F(n). 

see UZSO ALMOST ALL 

with du12 + uz2 = I, the normal is 

References 
Hardy, G. H. and Weight, E. M. An Introduction to the The- 

ory of Numbers, 5th ed. Oxford, England: Oxford Univer- 
sity Press, p. 356, 1979. 

For a function given parametrically by (f(t),g(t)), the 
normal vector relative to the point (f(t),g(t)) is there- 
fore given by 

I 
x(t) = - &q2 (7) Normal Plane 

The PLANE spannedbyNand B (the NORMAL VECTOR 
and BINORMAL VECTOR). 

(8) 
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To actually place the vector normal to the curve, it must 
be displaced by (f(t), g(t)). 

In 3-D SPACE, the unit normal is 

(9) 

where K is the CURVATURE. Given a 3-D surface 

F(x, Y, 4 = 0, 

fix Fx + Fr + E 

dFz2 + Fy2 + Fz” 

If the surface is defined parametrically in the form 

define the VECTORS x4 
a= y# [ 1 Z+ 

Then the unit normal vector is 

(14) 

(16) 

Let g be the discriminant of the METRIC TENSOR. Then 

N- 
I‘1 x r2 
- = Cijr j 

Js 

, (17) 

see also BINORMAL VECTOR, CURVATURE, FRENET 
FORMULAS, TANGENT VECTOR 

References 
Gray, A. “Tangent and Normal Lines to Plane Curves.” §k5 

in Modern Differential Geometry of Curves and Surfaces. 
Boca Raton, FL: CRC Press, pp* 85-90, 1993. 

Normalized Vector 
The normalized vector of X is a VECTOR in the same 
direction but with NORM (length) 1. It is denoted k 
and given by 

X k-, 
1x1 

where IX 
VECTOR. 

see also T 

is the NORM of X. It is also called a UNIT 

NIT VECTOR 

Normalizer 
A set of elements g of a GROUP such that 

g-lHg = H, 

is said to be the normalizer NC(H) with respect to a 
subset of group elements H. 

see also CENTRALIZER, TIGHTLY EMBEDDED 

Normed Space 
A VECTOR SPACE possessing a NORM. 

Nosarzewska’s Inequality 
Given a convex PLANE region with AREA A and PERI- 
METERP, 

A-$p<N<A$;pfl, - 

where 1v is the number of enclosed LATTICE POINTS 
(Nosarzewska 1948). This improves on JARNICK'S IN- 
EQUALITY 

IN - Al < p. 

see UZSO JARNICK'S INEQUALITY, LATTICE POINT 

References 
Nosarzewska, M. “fivaluation de la diff&ence entre l’aire 

d’une rhgion plane convexe et le nombre des points aux 
coordonn6es entihes couverts par elle.” CuZZoq. Math. 1, 
305-311,1948. 

Not 
An operation in LOGIC which converts TRUE to FALSE 
and FALSE to TRUE. NOT A is denoted !A or 1A. 

7 A 

F T 
T F 

see also AND, OR, TRUTH TABLE, XOR 

Notation 
A NOTATION is a set of well-defined rules for represent- 
ing quantities and operations with symbols. 

see also ARROW NOTATION, CHAINED ARROW NOTA- 
TION, CIRCLE NOTATJON,~LEBSCH-ARONHOLD NOTA- 
TION, CONWAY'S KNOT NOTATION, DOWKER NOTA- 
TION, DOWN ARROW NOTATION, PETROV NOTATION, 
SCIENTIFIC NOTATION, STEINHAUS-MOSER NOTATION 

References 
Cajori, F. A History of Mathematical Notations, Vols. l-2. 

New York: Dover, 1993. 
Miller, J. “Earliest Uses of Various Mathematical Symbols.” 

http://members.aol.com/jeff57O/mathsym.html. 
Miller, J. “Earliest Uses of Some of the Words of Mathemat- 

ics.” http://memb8rs.ao~.com/jeff570/mathword.html, 

Nijther 

see NOETHER'S FUNDAMENTAL THEOREM, NOETHER- 
LASKER THEOREM, NOETHER’S TRANSFORMATION 
THEOREM, NOETHERIAN MODULE, NOETHERIAN RING 
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Novemdecillion 
In the American system, 106’. 

see also LARGE NUMBER 

NP-Complete Problem 
A problem which is both NP (solvable in nondetermin- 
istic POLYNOMIAL time) and NP-HARD (can be trans- 
lated into any other NP-PROBLEM). Examples of NP- 
hard problems include the HAMILTONIAN CYCLE and 
TRAVELING SALESMAN PROBLEMS. 

In a landmark paper, Karp (1972) showed that 21 in- 
tractable combinatorial computational problems are all 
NP-complete. 

see also HAMILTONIAN CYCLE, NP-HARD PROBLEM, 
NP-PROBLEM, P-PROBLEM, TRAVELING SALESMAN 
PROBLEM 

References 
Karp, R. M. “Reducibility Among Combinatorial Problems.” 

In Complexity 0f Computer Computations, (Proc, Sympos. 
IBM Thomas J. Watson Res. Center, Yorktown Heights, 
N.Y., 1972). New York: Plenum, pp. 85-103, 1972. 

NP-Hard Problem 
A problem is NP-hard if an ALGORITHM for solving it 
can be translated into one for solving any other NP- 
PROBLEM (nondeterministic POLYNOMIAL time) prob- 
lem. NP-hard therefore means “at least as hard as any 
NP-PROBLEM," although it might, in fact, be harder. 

see also COMPLEXITY THEORY, HITTING SET, NP- 
COMPLETE PROBLEM, NP-PROBLEM, P-PROBLEM, 
SATISFIABILITY PROBLEM 

NP-Problem 
A problem is assigned to the NP (nondeterministic 
POLYNOMIAL time) class if it is solvable in polynomial 
time by a nondeterministic TURING MACHINE. (A non- 
deterministic TURING MACHINE is a “parallel” TURING 
MACHINE which can take many computational paths 
simultaneously, with the restriction that the parallel 
Turing machines cannot communicate.) A P-PROBLEM 
(whose solution time is bounded by a polynomial) is al- 
ways also NP. If a solution to an NP problem is known, 
it can be reduced to a single P (POLYNOMIAL time) ver- 
ification. 

LINEAR PROGRAMMING, long known to be NP and 
thought not to be P, was shown to be P by L. Khachian 
in 1979. It is not known if all apparently NP problems 
are actually P. 

A problem is said to be NP-HARD if an ALGORITHM 
for solving it can be translated into one for solving any 
other NP-problem problem. It is much easier to show 
that a problem is NP than to show that it is NP-HARD. 
A problem which is both NP and NP-HARD is called an 
NP-COMPLETE PROBLEM. 

see also COMPLEXITY THEORY,NP-COMPLETE PROB- 
LEM, NP-HARD PROBLEM, P-PROBLEM, TURING MA- 
CHINE 

References 
Borwein, J. M. and Borwein, P. B. Pi and the AGIM: A Study 

in Analytic Number Theory and Computational Complex- 
ity. New York: Wiley, 1987. 

Greenlaw, R.; Hoover, H. J.; and Ruaeo, W. I,. Limits to 
Parallel Computation: P-completeness Theory. Oxford, 
England: Oxford University Press, 1995. 

NSW Number 
The numbers 

S 
(1+ fi)2m+1 + (1 - JZ)2”+1 

277x+1= 
2 

for positive integer m.. The first few terms are 1, 7, 41, 
239, 1393, . . . (Sloane’s A002315). The indices giving 
PRIME NSW numbers are 3, 5, 7, 19, 29, 47, 59, 163, 
257, 421, 937, 947, 1493, 1901, . . . (Sloane’s A005850). 

References 
Ribenboim, P. “The NSW Primes.” $5.9 in The New Book 

of Prime Number Records. New York: Springer-Verlag, 
pp. 367-369, 1996. 

Sloane, N. J. A. Sequences A002315/M4423 and A005850/ 
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Nu Function 

u(x) z 
SW 0 

U(X,Q) = 

r 0 

xt dt 

qt + 1) 
X ar+t dt 

qa + t + 1)’ 

where r(z) is the GAMMA FUNCTION. See Gradshteyn 
and Ryzhik (1980, p. 1079). 

see also LAMBDA FUNCTION, Mu FUNCTION 

References 
Gradshteyn, I. S. and Ryzhik, I. M. Tables of Integrals, Se- 

ries, and Products, 5th ed. San Diego, CA: Academic 
Press, 1979. 

Null Function 
A null function So(x) satisfies 

s 

b 

So(x) dx = 0 
a 

for all a, b, so 

J 
O” Id’(x)1 dz = 0. 

-m 

Like a DELTA FUNCTION, they satisfy 

(1) 

(2) 

(3) 

see also DELTA FUNCTION, LERCH'S THEOREM 
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Null Graph 
A GRAPH containing only VERTICES and no EDGES. 

Null Hypothesis 
A hypothesis which is tested for possible rejection under 
the assumption that it is true (usually that observations 
are the result of chance). The concept was introduced 
by R. A. Fisher. 

Null Tetrad 010 0 
10 0 0 gij = [ 0 0 0 -1 1 ’ 
0 0 -1 0 

It can be expressed as 

gab = lanb + lb7La - ma?%& - mb?Ba. 

see also TETRAD 

Heferences 
d’Inverno, R. Introducing Einstein’s Rehtivity. Oxford, Eng- 

land: Oxford University Press, pp. 248-249, 1992. 

Nullspace 
Also called the KERNEL. If T is a linear transformation 
of IV, then Null(T) is the set of all VECTORS X such 
that T(X) = 0, k, 

Null(T) G {X : T(X) = 0). 

Nullstellansatz 

see HILBERT'S NULLSTELLANSATZ 

Number 
The word “number” is a general term which refers to a 
member of a given (possibly ordered) SET. The meaning 
of “number” is often clear from context (i.e., does it re- 
fer to a COMPLEX NUMBER,INTEGER,REAL NUMBER, 
etc.?). Wherever possible in this work, the word “num- 
ber” is used to refer to quantities which are INTEGERS, 
and TONSTANT" is reserved for nonintegral numbers 
which have a fixed value. Because terms such as REAL 
NUMBER,BERNOULLINUMBER, and IRRATIONAL NUM- 
BER are commonly used to refer to nonintegral quanti- 
ties, however, it is not possible to be entirely consistent 
in nomenclature. 

see also ABUNDANT NUMBER, ACKERMANN NUM- 
BER, ALGEBRAIC NUMBER, ALMOST PERFECT NUM- 
BER, AMENABLE NUMBER, AMICABLE NUMBERS, AN- 
TIMORPHIC NUMBER, APOCALYPSE NUMBER, APOC- 
ALYPTIC NUMBER, ARMSTRONG NUMBER, ARRANGE- 
MENT NUMBER, BELL NUMBER, BERNOULLI NUM- 
BER, BERTELSEN'S NUMBER, BETROTHED NUMBERS, 

BETTI NUMBER, BEZOUT NUMBERS, BINOMIAL NUM- 
BER, BRAUER NUMBER, BROWN NUMBERS, CAR- 
DINAL NUMBER, CARMICHAEL NUMBER, CATALAN 
NUMBER, CAYLEY NUMBER, CENTERED CUBE NUM- 
BER, CENTERED SQUARE NUMBER, CHAITIN'S NUM- 
BER, CHERN NUMBER, CHOICE NUMBER, CHRISTOF- 
FEL NUMBER, CLIQUE NUMBER, COLUMBIAN NUM- 
BER, COMPLEX NUMBER, COMPUTABLE NUMBER, 
CONDITION NUMBER, CONGRUENT NUMBERS, CON- 
STRUCTIBLE NUMBER, CITES NUMBER, CROSSING 
NUMBER (GRAPH), CROSSING NUMBER (LINK), Cu- 
BIC NUMBER, CULLEN NUMBER, CUNNINGHAM NUM- 
BER, CYCLIC NUMBER, CYCLOMATIC NUMBER, D- 
NUMBER, DE M~IVRE NUMBER, DEFICIENT NUMBER, 
DELANNOY NUMBER, DEMLO NUMBER, DIAGONAL 
RAMSEY NUMBER, e-PERFECT NUMBER, EBAN NUM- 
BER, EDDINGTON NUMBER,EDGE NUMBER,ENNEAG- 
ONAL NUMBER, ENTRINGER NUMBER, ERD~S NUM- 
BER, EUCLID NUMBER, EULER'S ID~NEAL NUMBER, 
EULER NUMBER, EULERIAN NUMBER, EULER ZIGZAG 
NUMBER, EVEN NUMBER, FACTORIAL NUMBER, FER- 
MAT NUMBER, FIBONACCI NUMBER, FIGURATE NUM- 

BER, G-NUMBER, GENOCCHI NUMBER, GIUGA NUM- 
BER, GNOMIC NUMBER, G~NAL NUMBER, GRAHAM~S 
NUMBER, GREGORY NUMBER, HAILSTONE NUMBER, 
HANSEN NUMBER,HAPPY NUMBER,HARMONIC DIVI- 
SOR NUMBER, HARMONIC NUMBER, HARSHAD NUM- 
BER, HEEGNER NUMBER, HEESCH NUMBER, HELLY 
NUMBER, HEPTAGONAL NUMBER, HETEROGENEOUS 
NUMBERS, HEX NUMBER, HEX PYRAMIDAL NUM- 
BER,HEXAGONALNUMBER,HOMOGENEOUS NUMBERS, 
HURW~TZ NUMBER, HYPERC~MPLEX NUMBER, HY- 
PERPERFECT NUMBER, i, IDONEAL NUMBER, IMAG- 
INARY NUMBER, INDEPENDENCE NUMBER, INFINARY 
MULTIPERFECT NUMBER, INFINARY PERFECT NUM- 
BER, IRRATIONAL NUMBER, IRREDUCIBLE SEMIPER- 
FECT NUMBER, IRREDUNDANT RAMSEY NUMBER, j, 
KAPREKAR NUMBER, KEITH NUMBER, KISSING NUM- 
BER, KN~DEL NUMBERS, LAGRANGE NUMBER (DIo- 

PHANTINE EQUATION), LAGRANGE NUMBER (RATIO- 
NAL APPROXIMATION), LARGE NUMBER,LEAST DEFI- 
CIENT NUMBER, LEHMER NUMBER, LEVIATHAN NUM- 

BER, LIOUVILLE NUMBER,LOGARITHMICNUMBER, Lu- 
CAS NUMBER,];UCKY NUMBER, MACMAHON'S PRIME 
NUMBER OF MEASUREMENT,MARKOV NUMBER, Mc- 
NUGGET NUMBER, MBNAGE NUMBER, MERSENNE 
NUMBER, MOTZKIN NUMBER, MULTIPLICATIVE PER- 
FECT NUMBER, MULTIPLY PERFECT NUMBER, NAR- 

CISSISTIC NUMBER, NATURAL NUMBER, NEAR No- 
BLE NUMBER, NEXUS NUMBER, NIVEN NUMBER, No- 
BLE NUMBER, NONAGONAL NUMBER, NORMAL NUM- 
BER, NSW NUMBER, NUMBER GUESSING, OBLONG 
NUMBER, OCTAGONAL NUMBER, OCTAHEDRAL NUM- 
BER,ODDNUMBER,ORENUMBER,ORDINALNUMBER, 
PENTAGONAL NUMBER, PENTATOPE NUMBER, PER- 
FECT DIGITAL INVARIANT,~ERFECT NUMBER,~ERSIS- 
TENT NUMBER,PLUPERFECTNUMBER, PLUS PERFECT 
NUMBER,PLUTARCHNUMBERS,POLYGONALNUMBER, 
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PONTRYAGIN NUMBER, POULET NUMBER, POWER- 
FUL NUMBER, PRACTICAL NUMBER, PRIMARY, PRIM- 
ITIVE ABUNDANT NUMBER, PRIMITIVE PSEUDUPER- 
FECT NUMBER, PRIMITIVE SEMIPERFECT NUMBER, 
PSEUDOPERFECTNUMBER,PSEUDORANDOMNUMBER, 
PSEUDOSQUARE, PYRAMIDAL NUMBER, Q-NUMBER, 
QUASIPERFECT NUMBER, RAMSEY NUMBER, RATIO- 
NAL NUMBER,REAL NUMBER,RENCONTRES NUMBER, 
RECURRING DIGITAL INVARIANT, REPFIGIT NUMBER, 
RHOMBIC DODECAHEDRAL NUMBER,RIESEL NUMBER, 
ROTATION NUMBER, RSA NUMBER,~ARRUS NUMBER, 
SCHR~DER NUMBER, SCHUR NUMBER, SECANT NUM- 
BER, SEGMENTED NUMBER, SELF-DESCRIPTIVE NUM- 
BER,SELF NUMBER,%MIPERFECT NUMBER,~IERPI~- 
SKI NUMBER OF THE FIRST KIND, SIERPI~~SKI NUM- 
BER OF THE SECUND KIND, SINGLY EVEN NUMBER, 
SKEWES NUMBER, SMALL NUMBER, SMITH NUMBER, 
SMOOTH NUMBER, SOCIABLE NUMBERS, SPRAGUE- 
GRUNDY NUMBER, SQUARE NUMBER, SQUARE PYRA- 
MIDAL NUMBER, STAR NUMBER, STELLA OCTANGULA 
NUMBER, STIEFEL-WHITNEY NUMBER, STIRLING CY- 

CLENUMBER,STIRLING SETNUMBER,STBRMERNUM- 
BER, SUBLIME NUMBER, SUITABLE NUMBER, SUM- 
PRODUCT NUMBER, SUPER-~ NUMBER, SUPER CATA- 
LAN NUMBER, SUPERABUNDANT NUMBER,~UPERPER- 
FECT NUMBER, SUPER-P• ULET NUMBER, TANGENT 
NUMBER,TAXICAB NUMBER, TETRAHEDRAL NUMBER, 
TRANSCENDENTAL NUMBER, TRANSFINITE NUMBER, 
TRIANGULAR NUMBER, TRIBONACCI NUMBER, TRI- 
MORPHIC NUMBER, TRUNCATED OCTAHEDRAL NUM- 
BER, TRUNCATED TETRAHEDRAL NUMBER, TWIST 
NUMBER, U-NUMBER, ULAM NUMBER, UNDULATING 
NUMBER, UNHAPPY NUMBER, UNITARY MULTIPER- 
FECT NUMBER, UNITARY PERFECT NUMBER, UN- 
TOUCHABLE NUMBER, VAMPIRE NUMBER, VAN DER 
WAERDEN NUMBER, VR NUMBER, WEIRD NUMBER, 
WHOLE NUMBER, WOODALL NUMBER, Z-NUMBER, 
ZAG NUMBER, ZEISEL NUMBER, ZIG NUMBER 

References 
Barbeau, E. J. Power PEay: A Country Walk through the 

Magical World of Numbers. Providence, RI: Amer. Math. 
sot., 1997. 

Bogomolny, A. “What is a Number.” http: //uwn. cut-the- 
knot. corn/do-youAnow/numbers . html. 

Borwein, J. and Borwein, P. A Dictionary of Real Numbers. 
London: Chapman & Hall, 1990. 

Conway, J. H. and Guy, R. K. The Book of Numbers. New 
York: Springer-Verlag, 1996. 

Da&zig, T. Number: The Language of Science, 4th rev. ed. 
New York: Free Press, 1985. 

Davis, P. J. The Lore of Large Numbers. New York: Random 
House, 1961. 

F’rege, G. Grmndlagen der Arithmetik: Eine log&h mathe- 
matische Untersuchung iiber den Begriff der Zshl. New 
York: Georg Olms, 1997. 

F’rege, G. Foundations of Arithmetic: A Logico-Mathematical 
Enquiry into the Concept of Number. Evanston, IL: North- 
western University Press, 1968. 

Ifrah, G. From One to Zero: A Universal History of Num- 
bers. New York: Viking, 1987. 

Le Lionnais, F. Les nombres remarquables. Paris: Hermann, 
1983. 

Phillips, R. Numbers: Facts, Figures & Fiction. Cambridge, 
England: Cambridge University Press, 1994. 

Russell, B. “Definition of Number.” Introduction to Mathe- 
matical Philosophy. New York: Simon and Schuster, 1971. 

Smeltzer, D. Man and Number. Buchanan, NY: Emerson 
Books, 1974. 

Wells, D. W. The Penguin Dictionary of Curious and In- 
teresting Numbers. Harmondsworth, England: Penguin 
Books, 1986. 

Number Axis 

see REAL LINE 

Number Field 
If T is an ALGEBRAIC NUMBER of degree n, then the 
totality of all expressions that can be constructed from 
T by repeated additions, subtractions, multiplications, 
and divisions is called a number field (or an ALGEBRAIC 
NUMBER FIELD) generated by T, and is denoted F[T]. 

Formally, a number field is a finite extension Q(Q) of 
the FIELD ($ of RATIONAL NUMBERS. 

The numbers of a number field which are ROOTS of a 
POLYNOMIAL 

zn + an-lx n-1 +...+a0 =u 

with integral coefficients and leading coefficient 1 are 
called the ALGEBRAIC INTEGERS ofthatfield. 

see also ALGEBRAIC FUNCTION FIELD, ALGEBRAIC IN- 
TEGER, ALGEBRAIC NUMBER,FIELD,FINITE FIELD& 
QUADRATIC FIELD 
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Number Field Sieve Factorization Method 
An extremely fast factorization method developed by 
Pollard which was used to factor the RSA-130 NUMBER. 
This method is the most powerful known for factoring 
general numbers, and has complexity 

o{exp[c(log n)1’3(log log n)2j3]}, 

reducing the exponent over the CONTINUED FRACTION 
FACTORIZATION ALGORITHM and QUADRATIC SIEVE 
FACTORIZATION METHOD. There are three values of 
c relevant to different flavors of the method (Pomerance 
1996). For the “special” case of the algorithm applied 
to numbers near a large POWER, 

32 l/3 c= 9 ( 1 = 1.523.. . , 

for the “general” case applicable to any ODD POSITIVE 
number which is not a POWER, 

64 l/3 c= 9 ( 1 = 1.923.. ‘, 
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and for a version using many POLYNOMIALS (Copper- 
smith 1993), 

C= +(92 + 262/13)1’3 = 1.9OZ.e 1. 
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Number Group 

see FIELD 

Number Guessing 
l3y asking a small number of innocent-sounding ques- 
tions about an unknown number, it is possible to re- 
construct the number with absolute certainty (assum- 
ing that the questions are answered correctly). Ball and 
Coxeter (1987) give a number of sets of questions which 
can be used. 

One of the simplest algorithms uses only three questions 
to determine an unknown number n: 

1. Triple n and announce if the result n’ = 3n is EVEN 
or ODD. 

2. If you were told that n’ is EVEN, ask the person to 
reveal the number n” which iS half of n’. If you were 
told that n’ is ODD, ask the person to reveal the 
number nr’ which is half of n’ + 1. 

3. Ask the person to reveal the number of times /z which 
9 divides evenly into n’” = 3rK 

The original number n is then given by 2k if n’ was 
EVEN, or 2k + 1 if n’ was ODD. For n = 2772 even, 
n’ = 6m, n” = 3m, n”’ = 9m, k = m, so 2k = 2m = n. 
For n = 2m + 1 odd, n’ = 6m + 3, nrt = 3m + 2, 

n III =9m+6,k=m,so2k+1=2m+l=n. 

Another method asks: 

1. Multiply the number n by 5. 

2. Add 6 to the product. 

Number Theoretic Transform 

3. Multiply the sum by 4. 

4. Add 9 to the product. 

5. Multiply the sum by 5 and reveal the result n’. 

The original number is then given by n = (n’- 165)/100, 
since the above steps give n’ = 5(4(5n+6)+9) = lOOn+ 

165. 
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Number Pyramid 
A set of numbers obeying a pattern like the following, 

91 l  37 = 3367 

9901 l  3367 = 33336667 

999001 l  333667 = 333333666667 

99990001 l  33336667 = 3333333366666667 

4’ = 16 

342 = 1156 

3342 = 111556 

72 = 49 

672 = 4489 

6672 = 444889. 

see also AVTOMORPHIC NUMBER 
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Number System 

see BASE (NUMBER) 

Number Theoretic Transform 
Simplemindedly, a number theoretic transform is a gen- 
eralization of a FAST FOURIER TRANSFORM obtained 
by replacing e-2xzkIN with an nth PRIMITIVE ROOT 
OF UNITY. This effectively means doing a transform 
over the QUOTIENT RING Z/pZ instead of the COM- 
PLEX NUMBERS c. The theory is rather elegant and 
uses the language of FINITE FIELDS and NUMBER THE- 
ORY. 

see &O FAST FOURIER TRANSFORM, FINITE FIELD 
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Cohen, H. A Course in Computational Algebraic 
Theory. New York: Springer-Verlag, 1993. 

Number 
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Number Theory 
A vast and fascinating field of mathematics consisting of 
the study of the properties of whole numbers. PRIMES 
and PRIME FACTORIZATION are especially important in 
number theory, as are a number of functions such as the 
DIVISOR FUNCTION, RIEMANN ZETA FUNCTION, and 
TOTIENT FUNCTION. Excellent introductions to num- 
ber theory may be found in Ore (1988) and Beiler (1966). 
The classic history on the subject (now slightly dated) 
is that of Dickson (1952). 

see also ARITHMETIC, CONGRUENCE, DIOPHANTINE 
EQUATION, DIVISOR FUNCTION, G~DEL'S INCOM- 
PLETENESS THEOREM, PEANO'S AXIOMS, PRIME 
COUNTING FUNCTION, PRIME FACTORIZATION, PRIME 

NUMBER, QUADRATIC RECIPROCITY THEOREM, RIE- 
MANN ZETA FUNCTION, TOTIENT FUNCTION 
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Num her Triangle NURBS Surface 

Number Triangle 

see BELL TRIANGLE, CLARK’S TRIANGLE, EULER'S 
TRIANGLE, LEIBNIZ HARMONIC TRIANGLE, PASCAL'S 
TRIANGLE, SEIDEL-ENTRINGER-ARNOLD TRIANGLE, 
TRINOMIAL TRIANGLE 

Number Wall 

see QUOTIENT-DIFFERENCE TABLE 

Numerator 
The number p in a FRACTION Plq* 

see also 
BER 

DENOMINATOR, FRACTION, RATIONAL NUM- 

Numeric Function 
A FIJNCTION f : A -+ B such that B is a SET of num- 
bers. 

Numerical Derivative 
While it is usually much easier to compute a DERIVA- 
TIVE instead of an INTEGRAL (which is a little strange, 
considering that “more” functions have integrals than 
derivatives), there are still many applications where 
derivatives need to be computed numerically. The sim- 
plest approach simply uses the definition of the DERXV- 
ATIVE 

f’(z) = lirn f (x + h, - f(x) - 
h--t0 h 

for some small numerical value of h << 1. 

see also NUMERICAL INTEGRATION 
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Numerical Integration 
The approximate computation of an INTEGRAL. The 
numerical computation of an INTEGRAL is sometimes 
called QUADRATURE. There are a wide range of methods 
available for numerical integration. A good source for 
such techniques is Press et al. (1992). 

The most straightforward numerical integration tech- 
nique uses the NEWTON-C• TES FORMULAS (also called 
QUADRATURE FORMULAS), which approximate a func- 
tion tabulated at a sequent of regularly spaced INTER- 
VALS by various degree POLYNOMIALS. If the endpoints 
are tabulated, then the 2- and 3-point formulas are 
called the TRAPEZOIDAL RULE and SIMPSON'S RULE, 
respectively. The 5-point formula is called BODE'S 
RULE. A generalization of the TRAPEZOIDAL RULE is 
R~MBERG INTEGRATION, which can yield accurate re- 
sults for many fewer function evaluations. 

If the functions are known analytically instead of being 
tabulated at equally spaced intervals, the best numeri- 
cal method of integration is called GAUSSIAN QUADRA- 
TURE. By picking the abscissas at which to evaluate the 
function, Gaussian quadrature produces the most accu- 
rate approximations possible. However, given the speed 
of modern computers, the additional complication of the 
GAUSSIAN QUADRATURE formalism often makes it less 
desirable than simply brute-force calculating twice as 
many points on a regular grid (which also permits the 
already computed values of the function to be re-used). 
An excellent reference for GAUSSIAN QUADRATURE is 
Hildebrand (1956). 

see UZSO DOUBLE EXPONENTIAL INTEGRATIUN,FILON'S 
INTEGRATION FORMULA, INTEGRAL, INTEGRATION, 
NUMERICAL DERIVATIVE, QUADRATURE 
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Numerology 
The study of numbers for the supposed purpose 

future events or connections dieting 
occult. 

seeking 
of pre- 

with 

see also BEAST NUMBER, NUMBER THEORY 

NURBS Curve 
A nonuniform rational B-SPLINE curve defined by 

the 

where p is the order, Ni,p are the B-SPLINE basis func- 
tions, Pi are control points, and the weight wi of Pi is 
the last ordinate of the homogeneous point Py. These 
curves are closed under perspective transformations and 
can represent CONIC SECTIONS exactly. 

see also B-SPLINE, B~ZIER CURVE, NURBS SURFACE 

References 
Piegl, L. and Tiller, W. The NURBS Book, 2nd ed New York: 

Springer-Verlag, 1997. 

NURBS Surface 
A nonuniform rational B-SPLINE surface of degree (p, q) 
is defined by 



Nyquist Frequency 

where Ni,p and Nj,p are the B-SPLINE basis functions, 
PQ are control points, and the weight wi,j of Pi,j is the 
last ordinate of the homogeneous point Pyj. , 
see also B-SPLINE, EJ~ZIER CURVE, NURBS CURVE 

Nyquist Frequency 
In order to recover all FOURIER components of a periodic 
waveform, it is necessary to sample twice as fast as the 
highest waveform frequency v, 

f Nyquist = 23/a 

The minimum sampling frequency is called the Nyquist 
frequency. 

see dso FOURIER SERIES, FOURIER TRANSFORM, 
NYQUIST SAMPLING, OVERSAMPLING, SAMPLING THE- 
OREM 

Nyquis t Sampling 1255 

Nyquist Sampling 
Sampling at the NYQUIST FREQUENCY. 
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0 
Obelus 
The symbol + used to indicate DIVISION. In typography, 
an obelus has a more general definition as any symbol, 
such as the dagger (t), used to indicate a footnote. 

see ah DIVISION, SOLIDUS 

Object 
A mathematical structure (e.g., a GROUP, VECTOR 

SPACE, or DIFFERENTIABLE MANIFOLD) in a CATE- 
GORY. 

see also MORPHISM 

Oblate Spheroid 

A “squashed” SPHEROID for which the equatorial radius 
a is greater than the polar radius c, so a > c. To first 
approximation, the shape assumed by a rotating fluid 
(including the Earth, which is “fluid” over astronomical 
time scales) is an oblate spheroid. The oblate spheroid 
can be specified parametrically 
equations (for a SPHEROID with 
axis), 

by the usual SPHEROID 
Z-AXIS as the symmetry 

x = asinwcosu (1) 
y = asinusinu 

z = ccos21, 

(2) 

(3) 

with a > c, u E [0,27r), and 2t E [O, ~1. Its Cartesian 
equation is 

x2 + y2 + z2 

CL2 c2 
= 1. (4) 

The ELLIPTICITY of an oblate spheroid is defined by 

(5) 

as a function of the LATITUDE 6. 

The SURFACE AREA and VOLUME of an oblate spheroid 
are 

C2 
S=2;rra2+7v--In 

e 
V = +a2c. 

(8) 

(9) 

An oblate spheroid with its origin at a FOCUS has equa- 
tion 

T= 
a(1 - e2) 

1+ecoqb’ (10) 

Define k and expand up to POWERS of e6, 

k E e2(1 - e2)-l = e2(1 + e2 - 2e4 + 6e6 + . . .) 

= e2 + e4 - 2e” + . . l  
(11) 

k2  = e4 + e6 + . . . 
(12) 

k3  = e” + . . . . 
(13) 

Expanding r in POWERS of ELLIPTICITY to e6 therefore 
yields 

T - 
a 

= 1 - 3 (e2 + e4 - 2e4 + 6e6) sin’ 8 

+$(e4+e”)sin46- ye6sin6b+.... (14 

In terms of LEGENDRE POLYNOMIALS, 

T -- - - 
a (1 ii&” - 

+ (-+e” - &e4 - &e6)P2 

+ (se4 + $$)Pd - 5&e6~6 +. . l  l  
(15) 

The ELLIPTICITY may also be expressed in terms of the 
OBLATENESS (also called FLATTENING), denoted E or f. 

a-c 
EE- 

a (16) 

C = a(1 - E) (17) 

c2 = a2(1 - E)2 (18) 

(1 - E)2 = 1 - e2, (19) 

so 

and 

E =1-J= (20) 

so that 

1 - e2 = ” 
2’ (6) 

Then the radial distance from the rotation axis is given 

bY 
--1/2 

sin’ S 
> 

(7) 

e2=1-(1-~)2=1-(l-22E+E2)=2E-E2 (21) 

i 

2c - c2 1 
--1/z 

?-=a l-t- 
(l-42 s in26  l  

(22) 
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Define k and expand up to POWERS of c6 Plugging (34) into (33)) 

k E (2~ - ~)(l - E)-~ = (26 - c2)(1 + 2~ - 6~~ + . l  l ) 
= 2E + 4E4 - 12E3 - E2 - 2c3 + l  . . 

= 2E + 3E2 - 14e3 + . l  l  

(23) 

k2 = 4e2 + 6e3 + . . . (24) 
k3 = 8e3 + . . , . (25) 

Expanding T in POWERS of the OBLATENESS to e3 yields 

r - =I- 
a 

$ (26 + 3e2 - 14~~) sin2 6 

+~(4c2+6~3)sin4b+8E3sin66+.... (26) 

In terms of LEGENDRE POLYNOMIALS, 

T -- - 
a (1 $2 - +&E3) + (-;E - fE2 - $E3)P2 

+ (+$E2 - $&-E3)P4 - $iE3P6 + . . , . (27) 

To find the projection of an oblate spheroid onto a 
PLANE, set up a coordinate system such that the Z-AXIS 
is towards the observer, and the x-axis is in the PLANE 
of the page. The equation for an oblate spheroid is 

[ 2e - E2 1 
-l/2 TV) = a l+ p-q cos2 e . (28) 

Define 
2E - E2 

k=(l-e)“’ (29) 

and x s sin 8. Then 

w = U[I + k(l - x2)1-l/2 = a(1 + k - kx2)-1’2. (30) 

Now rotate that spheroid about the x-axis by an ANGLE 
B so that the new symmetry axes for the spheroid are 
x1 G x, y’, and L The projected height of a point in 
the x = 0 PLANE on the y-axis is 

Y = ~(0) cos(8 - B) = T(S) (cos 19 cos B - sin 0 sin B) 

=r(B)(&-&osB+xsinB). (31) 

To find the highest projected point, 

dY asin(B - 8) 
dB = (I+ kcos2t?)1/2 + ak 

cos( B - 19) cos 8 sin 8 

(l+ kcos2 8)3/2 = ‘* 

Simplifying, 
(32) 

tan(B - @)(l+ kcos2 0) + kcosIYsin0 = 0. (33) 

But 

tan@ - 0) = 
tanB - tan0 tanB - * 

l+tanBtan8 = l+tanB- sin 8 

~~ 

d 1 - sin2 8 tan B - sin 0 

= &GZ+ tanBsint?’ 
(34) 

dl 
&$“,“;ya;; [l+k(l-x2)]+kxy/~ = 0 (35) 

and performing a number of algebraic simplifications 

- x2 tan B - x)(1 + k - kx2) 

+kxJ1-2(da+xtanB) = 0 (36) 

[(l+ k)dstanB - kx2-\/l-cZtanB 

-x - kx + kx3] + [kx(l - x2) + kx2 dstan B] 

(37) 

(1+k)tanB~l-x2-kx(1-x2)-x+kx(1-~2)=0 

(38) 
(1 + k) tan Bdg = x (39) 

(1 + k)2 tan2 B(l - x2) = x2 (40) 

x2[1 + (1 + k)” tan2 B] = (1 + k)” tan2 B (41) 

finally gives the expression for x in terms of B and k, 

x2 = 
tan2 B(l + k)2 

1 + (1 + k)2 tan2 B l  

Combine (30) and (31) and plug in for x, 

1/l 
Y - 

x2cosB+xsinB 
=U 

1/l + k - kx2 

=U 
cosB + (I+ k)* 

&1 + k)[l + (1 + k) tan2 B] 

(42) 

=a 
cos2 B + (1 + k) sin2 B 

cos B&l + k)[l + (1-t k) tan2 B] ’ 
(43) 

Now re-express k in terms of a and c, using c E 1 - c/a, 

k= (2-E)E (l+:) (l-z) 
- = 

so 

(44 

(45) 
Plug (44) and (45) into (43) to obtain the SEMIMINOR 

AXIS of the projected oblate spheroid, 

=a 
cos2B+ (:)2sin2B 

cos2B+ (:)2sin2B 

=cJcos2B+ (z)2sin2J= JC2cos2B+u2sin2B 

= u&l - E)~ cos2 B + sin2 B. (46) 
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equation 

(60) 

We wish to find the equation for a spheroid which has 
been rotated about the x E XI-axis by ANGLE B, then 
the z-axis by ANGLE P 

z can now be computed using the quadratic 
when (x, y) is given, 

z= 
4(x, y) * &2(x, Y) - 4CG(X? Y> 

2c 
l  [I X1 YJ zJ = [ 0 0 1 - COSB sinB 0 cosB sin 0 B I[ -sinP cos 0 P 0 0 1 COSP sinP 0 I[1 2 Y z 

If P = 0, then we have sin P = 0 and cos P = 1, so (51) 
to (56) and (58) to (59) become - - 

[ 

cos P 0 sin P 2 - sin B sin P cos B sinBcosP y . 
- cosBsinP - sinB cosBcosP I[1 z 

(47) (61) 

(62) 

(63) 
(64) 
(65) 

(66) 

(67) 

BG 
sin2 B cos2 B 
a2+7 Now, in the original coordinates (x’, yJ, zJ), the spheroid 

is given by the equation 
cos2 B sin2 B cs- - 

a2 + b2 
D=O 

E=O 

t2 J2 J2 

$+>=1, (48) 

which becomes in the new coordinates, 
F G ZsinBcosB (S-i) 

(xcosP + ysinP)2 
G(x, y) G Fy = 2ysin B cos B ($-$) a2 

+ 
(-xsinBsinP+zcosB + ysinBcosP)2 

a2 
H(x, y) = Ax2 + By2 - 1 

- - - 1. (68) + 
(-x cos B sin P - zsinB+ ycosBcosP)2 

C2 
= 1. (49) 

Collecting COEFFICIENTS, 
see aho DARWIN-DE SITTER SPHEROID, ELLIPSOID, 
OBLATE~PHEROIDAL COORDINATES,PROLATESPHER- 
OID, SPHERE, SPHEROID 

Ax2 + By2 + Cr2 + Dxy + Exz + Fyx = 1, (50) 

where 

A= - 

BE 

CE 

DE 

References 
Beyer, W. K CRC Standard Mathematical Tables, 28th ed. 

Boca Raton, FL: CRC Press, p. 131, 1987. cos2 P + sin2 B sin2 P 

a2 
sin2 P + sin2 B cos2 P 

cos2 B sin2 P 
+ 

C2 
(51) 

cos2 B cos2 P 
+ 

c2 (52) Oblate Spheroid Geodesic 
The GEODESIC on an OBLATE SPHEROID can be com- 
puted analytically for a spheroid specified parametri- 
cally by 

a2 

cos2 B sin2 B 
T+yr (53) 

2 cos P sin P ( 1 - sin2 B cos2 B \ 
a2 -yT- 

/ 
x = asinvcosu (1) 

Y = a sin 21 sin u (2) 
z = ccosw, (3) 

= 2cos PsinPcos2 B (S-f> 

E = 2 sin B cos B sin P (j&$) 

F G 2sinBcosBcosP 

(54) 

(55) 

(56) 

with a > c, although it is much more unwieldy than for 
asimple SPHERE. Usingthefirst PARTIAL DERIVATIVES 

da: . l  da: If we are interested in computing x, the radial distance 
from the symmetry axis of the spheroid (y) correspond- 
ing to a point 

(4) 

(5) 

(6) 

(7) 

au.= -a sin 21 sm u 
dv 

= acosvcosu 

8Y aY 
au. 

= asinvcosu - = acosusinu 
dV Cz2 + (Ex + Fy)x + (Ax2 + By2 + Dxy - 1) 

= Cz2 + G(x, y)z + H(x, y) = 0, (57) dz 
d,=O 

dz . 
dv = -cslnwy 

where and second PARTIAL DERIVATIVES 

G(x, y) = Ex + Fy (58) 
H(x, y) = Ax2 + By2 + Dxy - 1. (59) 

d2X a2 
-- 

au2 - 
-asinwcosu 5c = -asinwcosu 

dV2 



1260 Oblate Spheroid Geodesic 

a2Y - -asinvsinu a2Y - 
au2 

- = -asinvsinu 
dV2 

d2z a22 

au2 
=o a =--zcosv, 

gives the GEODESICS functions as 

PE(g)2+(g)2+(g)2 

= a2 ( sin2 21 cos2 u + sin2 21 sin2 u) 

= a2 sin2 v 

(8) 

(9) 

(10) 

(11) 

- a2 + (c” - a”) sin2 v = a2(1 - e2 sin2 v). - (12) 

Since Q = 0 and P and R are explicit functions of v only, 
we can use the special form of the GEODESIC equation. 

7.L= SJ R 
2 dv 

=I Jqdv 

1 - e2 sin2 v dv 
= Cl SJ a 

( > 
2 (13) 

- sin2 v _ 1 sin V ’ 
Cl 

Integrating gives Oblate Spheroidal Coordinates 

where 

d=% 
Cl (15) 

dcosv 
cos@= m’ (16) 

F(4lm) is an ELLIPTIC INTEGRAL OF THE FIRST KIND 
with PARAMETER m, and II(+lm, k) is an ELLIPTIC IN- 
TEGRAL OF THE THIRD KIND. 

GEODESICS other than MERIDIANS of an OBLATE 
SPHEROID undulate between two parallels with latitudes 
equidistant from the equator. Using the WEIERSTRAB 
SIGMA FUNCTION and WEIERSTRA~~ ZETA FUNCTION, 
the GEODESIC on the OBLATE SPHEROID can be written 
as 

(17) 

z2 
= x53 u(wll + u)u(wfl - u) 

u2 (u)u2 (a> 

Oblate Spheroidal Coordinates 

(Forsyth 1960, pp. 108-109; Halphen 1886-1891). 

The equation of the GEODESIC can be put in the form 

d4 = d 1 - e2 sin2 v sin a dv 

sin2 v - sin2 a sin v 
1 (20) 

where a is the smallest value of v on the curve. F’ur- 
thermore, the difference in longitude between points of 
highest and next lowest latitude on the curve is 

~ _ 2 dl - e2 sin2 a 

s 

K dnu-dn2u du 

sin a 0 l+cot2usn2u ’ (21) 

where the MODULUS of the ELLIPTIC FUNCTION is 

(Forsyth 1960, p. 446). 

see &O ELLIPSOID GEODESIC, OBLATE SPHEROID, 
SPHERE GEODESIC 

References 
Fcrsyth, A. R. Cahdus of Variations. New York: Dover, 

1960. 
Halphen, G. H. Trait& des fonctions elliptiques et de leurs 

applications fonctions elliptiques, VoZ. 2. Paris: Gauthier- 
Villars, pp. 238-243, 1886-1891. 

A system of CURVILINEAR COORDINATES in which two 
sets of coordinate surfaces are obtained by revolving 
the curves of the ELLIPTIC CYLINDRICAL COORDI- 
NATES about the ~-AXIS which is relabeled the Z-AXIS. 
The third set of coordinates consists of planes passing 
through this axis. 

X = acoshtcosqcosq5 (1) 

Y = acoshccosvsin# (2) 
x = a sinh c sin q, (3) 
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where < E [0, m), v E [--r/2, r/2], and # E [O, 274 Arf- 
ken (1970) uses (u, w, q) instead of (6,~~ 4). The SCALE 
FACTORS are 

hc = a&inh2 t + sin2 7 (4) 

h, = adsinh2 c + sin2 q 

h4 = a cash c cos 77. 
(5) 

(6) 

The LAPLACIAN is 

V2f = 1 

a3 ( sinh2 c + sin2 77) cash e cos v 

af acosh[cosy-- 
% 

af + - af a2 (sinh2 [ + sin2 7) d2 f 
& 

acoshccosq- 
arl 

+ 
a cash < cos q $b2 1 

1 af - - 
a3 (sinh2 [ + sin2 7) cash t cos q 

asinh<cosy-- 
x 

a2f w ucoshecosq- + usinh[cosq- 
x2 drl 

a2f +a cash t cos q- 
av2 1 1 2 

+ af 
u2 (sinh2 c + sin2 7) a42 

- - ’ [= (cash@ 
u2 (sinh2 < + sin2 7) cash c a[ 

+&& (cos’~)] + $(co,h2;+cos+) $i 

(7) 
1 a2 - - 

sin2 q + sinh2 c 
( sech2 < tan2 q + sec2 tanh2 c) W 

d a2 d d2 
+tanhEg + at2 - tan777 + 772 . 

I 
(8) 

An alternate form useful for “two-center” problems is 
defined by 

<l = sinh< 

c ;= cash < 

& = cosq 

c3 = $7 

where cl E [l, 001, & f C-1,1], and & E [0,27r). In these 
coordinates, 
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(Abramowitz and Stegun 1972). The SCALE FACTORS 
are 

he, = a 
J 

Cl2 - 522 

Cl2 - 1 
(16) 

(17) 

(18) 

and the LAPLACIAN is 

V2f=L l 
a2 { 

a [(b2+1)g] El2 + 522 at1 

+E12 +<22 x2 
1 z- [Cl-Ez2g] 

1 
+ 8”f 

(Cl2 + l)(l - &2) q32 > 
’ (19) 

The HELMHOLTZ DIFFERENTIAL EQUATION is separa- 
ble. 

see also HELMH~LTZ DIFFERENTIAL EQUATION- 
OBLATE SPHEROIDAL COORDINATES, LATITUDE, LON- 
GITUDE,~ROLATE SPHEROIDAL COORDINATES,~PHER- 
IcAL COORDINATES 
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FL: Academic Press, pp. 107-109, 1970. 
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Oblate Spheroidal Wave Function 
The wave equation in OBLATE SPHEROIDAL COORDI- 
NATES is 

d 
V2@ + k2@ = a~, CC 12 

+$ [(l- t2,g 
2 2 

where 

da? 
+ UK 

1 
I 

1 + t12 + [2” d2@ 
(El2 + l)(l - m2) a$2 

_t_C2(C12 + t22)+ = 0, (1) 

CG iuk. (2) 

Substitute in a trial solution 

cos 
@ = -Rnn(c~~l)Smn(c,&) l  (m4)m 

sin (3) 

The radial differential equation is 

$ [(1+ EzZ)&&Ea) 
2 2 1 

m2 - A,, - C2<22 + - 
1+s22 

&nn(~,~z) = 0, (4) 
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and the angular differential equation is 

$ [(l- ~22)$S""(C~~2) 
2 2 1 

m2 - A,, - c2<22 + - 
1 -{22 

&-r&,t2) = 0 (5) 

(Abramowitz and Stegun 1972, pp. 753-755). 

see also PROLATE SPHEROIDAL WAVE FUNCTION 

References 
Abramowitz, M. and Stegun, C. A. (Eds.). “Spheroidal Wave 

Functions.” Ch. 21 in Handbook of Mathematical Func- 
tions with Formulas, Graphs, and Mathematical Tables, 
9th printing. New York: Dover, pp. 751-759, 1972. 

Oblateness 

see FLATTENING 

Oblique Angle 
An ANGLE which is not a RIGHT ANGLE. 

Oblong Number 

see PRONIC NUMBER 

Obstruction 
Obstruction theory studies the extentability of MAPS us- 
ing algebraic GADGETS. While the terminology rapidly 
becomes technical and convoluted (as Iyanaga and 
Kawada note, “It is extremely difficult to discuss higher 
obstructions in general since they involve many com- 
plexities” ), the ideas associated with obstructions are 
very important in modern ALGEBRAIC TOPOLOGY. 

see also ALGEBRAIC TOPOLOGY, CHERN CLASS, 
EILENBERG-MAC LANE SPACE, STIEFEL-WHITNEY 
CLASS 

Heierences 
Iyanaga, S. and Kawada, Y. (Eds.). “Obstructions.” §300 - 

in Encyclopedic Dictionary of Mathematics. Cambridge, 
MA: MIT Press, pp. 948-950, 1980. 

Obtuse Angle 
An ANGLE greater than n/2 RADIANS (90”). 

see also ACUTE ANGLE, OBTUSE TRIANGLE, RIGHT 
ANGLE,~TRAIGHT ANGLE 

Obtuse Triangle 

A 
An obtuse triangle is a TRIANGLE in which one of the 
ANGLES is an OBTUSE ANGLE. (Obviously,onlyasingle 
ANGLE in a TRIANGLE~~~ be OBTUSELY it wouldn’t be 
a TRIANGLE.) A triangle must be either obtuse, ACUTE, 
or RIGHT. 

A famous problem is to find the chance that three points 
picked randomly in a PLANE are the VERTICES of an 
obtuse triangle (Eisenberg and Sullivan 1996). Unfor- 
tunately, the solution of the problem depends on the 
procedure used to pick the “random” points (Portnoy 
1994). In fact, it is impossible to pick random variables 
which are uniformly distributed in the plane (Eisenberg 
and Sullivan 1996). Guy (1993) gives a variety of so- 
lutions to the problem. Woolhouse (1886) solved the 
problem by picking uniformly distributed points in the 
unit DISK, and obtained 

P2 = 1- ($ - ;) =; - f =0.719715.... (1) 

The problem was generalized by Hall (1982) to n-D 
BALL TRIANGLE PICKING, and Buchta (1986) gave 
closed form evaluations for Hall’s integrals. 

A 2r B 

Lewis Carroll (1893) posed and gave another solution 
to the problem as follows. Call the longest side of a 
TRIANGLE AB, and call the DIAMETER 2~. Draw arcs 
from A and I3 of RADIUS 2~. Because the longest side of 
the TRIANGLE is defined to be AB, the third VERTEX 
of the TRIANGLE must lie within the region ABCA. If 
the third VERTEX lies within the SEMICIRCLE, the TRI- 

ANGLE is an obtuse triangle. If the VERTEX lies 072 the 
SEMICIRCLE (which will happen with probability O), the 
TRIANGLE is a RIGHT TRIANGLE. Otherwise, it is an 
ACUTE TRIANGLE. The chance of obtaining an obtuse 
triangle is then the ratio of the AREA of the SEMICIRCLE 
to that of ABCA. The AREA of ABCA is then twice the 
AREA ofa SECTOR minus the AREA of the TRIANGLE. 

A whole figure 

Therefore, 

P= 
37T 

.2(gT _ a) = Bn _ 6fi = o*63g38m*” (3) 

Let the VERTICES of a triangle in n-D be NORMAL 
(GAUSSIAN) variates. The probability that a Gaussian 
triangle in n-D is obtuse is w4 Pm = - s ‘1/a &x-2)/2 

r2(+> 0 @Tqddr 

Wn) - - 
s 

43 

I?( +x)2+1 o 
sin n-1 8dO 

6r(n) #I ( +n,n, 1+ in; -$) - - 
3n/2nl?2(+n) 

9 (4) 
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where r(n) is the GAMMA FUNCTION and &(a, b; c; 2) 
is the HYPERGEOMETRIC FUNCTION. For EVEN n E Zk, 

Pzk = 3g (2,; 1) (a)’ (;)2k-1-j 
- 

(5) 

(Eisenberg and Sullivan 1996). The first few cases are 
explicitly 

P2 = ; = 0.75 (6) 

p3 =-l-z 32/17 = 0.586503.. . (7) 

P4 = 15 - 0 l  46875 . . . 32- (8) 

9fi 
Ps = 1 - T = 0.379755. * . rn (9) 

see also ACUTE ANGLE, ACUTE TRIANGLE, BALL TRI- 
ANGLE PICKING, OBTUSE ANGLE, RIGHT TRIANGLE, 
TRIANGLE 
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Ochoa Curve 
The ELLIPTIC CURVE 

3Y2 = 2X3 + 386X2 + 256X - 58195, 

given in WeierstraB form as 

y2 = x3 - 440067~ + 106074110. 

The complete set of solutions to this equation con- 
sists of (x,y) = (-761,504), (-745, 4520), (-557, 
13356), (-446, 14616), (-17, 10656), (91, 8172), (227, 
4228), (247, 3528), (271, 2592), (455, 200), (499, 3276), 
(523, 4356), (530, 4660), (599, 7576), (751, 14112), 
(1003, 25956), (1862, 75778), (3511, 204552), (5287, 
381528), (23527, 3607272), (64507, 16382772), (100102, 
31670478), and (1657891, 2134685628) (Stroeker and de 
Weger 1994). 
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Octacontagon 
An 80-sided POLYGON. 

Octadecagon 

An 18-sided POLYGON, sometimes also called an UC- 
TAKAIDECAGON. 

see also POLYGON, REGULAR POLYGON, TRIGONOME- 
TRY VALUES-+8 

Octagon 

0 
The regular 8-sided POLYGON. The INRADIUS T, CIR- 
CUMRADIUS R, and AREA A can be computed directly 
from the formulas for a general regular POLYGON with 
side length s and n = 8 sides, 

r- $(l+ J2)s (1) 

(2) 

(3) 

see also OCTAHEDRON, POLYGON, REGULARPOLYGON, 
TRIGONOMETRY VALUES--T/~ 

Octagonal Number 

A POLYGONAL NUMBER of the form n(3n - 2). The 
first few are 1, 8, 21, 40, 65, 96, 133, 176, . . . (Sloane’s 
A000567). The GENERATING FUNCTION for the octag- 
onal numbers is 

x(5x + 1) 
(1 - x)3 

z x + 8x2 + 21x3 + 40x4 + . l  4  l  

Heterences 
Sloane, N. J. A. Sequence A000567/M4493 in “An On-Line 

Version of the Encyclopedia of Integer Sequences.” 
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Octagram 

The STAR POLYGON {8,3}. 

Octahedral Graph 

m 
The POLYHEDRAL GRAPH having the topology of the 
OCTAHEDRON. 

see also CUBICAL GRAPH, DODECAHEDRAL GRAPH, 
ICOSAHEDRAL GRAPH, OCTAHEDRON, TETRAHEDRAL 
GRAPH 

Octahedral Group 
The POINT GROUP of symmetries ofthe OCTAHEDRON, 
denoted Oh* It is also the symmetry group of the CUBE, 
CUBOCTAHEDRON, and TRUNCATED OCTAHEDRON. It 
has symmetry operations E, 8C3, 6C4, 6Cz, 3Cz = C& 
i, 6S4, 8&, 3oh, and 604 (Cotton 1990). 

see also CUBE, CUBOCTAHEDRON, ICOSAHEDRAL 
GROUP, OCTAHEDRON, PRINT GROUPS, TETRAHE- 
DRAL GROUP,TRUNCATED OCTAHEDRON 

References 
Cotton, F. A. Chemical Applications of Group Theory, 3rd 

ed. New York: Wiley, p. 47-49, 1990. 
Lomont, J. S+ “Octahedral Group.” $3.10.D in Applications 

of Finite Groups. New York: Dover, p. 81, 1987. 

Octahedral Number 
A FKXJRATE NUMBER which is the sum of two consec- 
utive PYRAMIDAL NUMBERS, 

0, = p,-1+P, = +(2n2+1). 

The first few are 1, 6, 19, 44, 85, 146, 231, 344, 489, 670, 
891, 1156, . . . (Sloane’s A005900). The GENERATING 
FUNCTION for the octahedral numbers is 

x(x + 1)” 
(x - 1)” 

= x + 6x2 + 19x3 + 44x4 + . . . . 

see also TRUNCATED OCTAHEDRAL NUMBER 

References 
Conway, J. H. and Guy, R. K. The Book of Numbers. New 

York: Springer-Verlag, p* 50, 1996. 
Sloane, N. J. A. Sequence AO05900/M4128 in “An On-Line 

Version of the Encyclopedia of Integer Sequences.” 

Octahedron 

A PLATONIC SOLID (P) 3 with six VERTICES, 12 EDGES, 
and eight equivalent EQUILATERAL TRIANGULAR faces 
(8{3}), given by the SCHL~~FLI SYMBOL {3,4}. It is also 
UNIFORM POLYHEDRON U5 with the WYTHOFF SYM- 
BOL 4 123. Its DUAL POLYHEDRON is the CUBE. Like 
the CUBE, it has the Oh OCTAHEDRAL GROUP of sym- 
metries. The octahedron can be STELLATED to give the 
STELLA OCTANGULA. 

The solid bounded by the two TETRAHEDRA of the 
STELLA OCTANGULA (left figure) is an octahedron (right 
figure; Ball and Coxeter 1987). 

In one orientation (left figure), the VERTICES are given 
by (fl,O,O), (O,fl,O), (0,0,&l). In another orien- 
tation (right figure), the vertices are (fl, H,O) and 
(O,O,ffi). In the latter, the constituent TRIANGLES 
are specified by 

fi = I(-1,-v), (1, -w,wM)) 

Tz = ((-1, -LO), (1, -LO), (o,o, -J3)} 

T3 = U-1, v), (11 ho>7 (w,J3)) 

T4 = {(-~,1,0>,(1,1,0>,(0,0,-~)} 

T5 = {(l,-1,0>,(1,~,0),(0,0,~)} 

T6 = ((-1, -l,O), (-l,l,O), (o,o, ti)} 

T7 = {(l,-LO>,(l, l,O>, (w-J3)) 

Ts = ((-1, -l,O), (-1, LO), (WA -A)}. 
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The face planes are kc 41 y k x = 1, so a solid octahedron 
is given by the equation 

A plane PERPENDICULAR to a C3 axis of an octahedron 
cuts the solid in a regular HEXAGONAL CROSS-SECTION 
(Holden 1991, pp. 22-23)+ Since there are four such axes, 
there are four possibly HEXAGONAL CROSS-SECTIONS. 
Facetedformsarethe CUBOCTATRUNCATED CUBOCTA- 
HEDRON and TETRAHEMIHEXAHEDRON. 

Let an octahedron be length a on a side. The height 
of the top VERTEX from the square plane is also the 

where 
d=+ha 

is the diagonal length, so 

R = I a2 - ;u" = +&a z 0.70710a 

NOW compute the INRADIUS. 

12 1 

t=--=3* ma 

Now use similar TRIANGLES to obtain 

(4) 

(5) 
(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

SO the INRADIUS is 

T = dw = a Jm = @z z 0.40824~. 

The INTERRADIUS is 

p = fu = 0.5a. (13) 

The AREA ofone faceisthe AREA ofan EQUILATERAL 
TRIANGLE 

A= $&"v (14) 

The volume is two times the volume of a square-base 
pyramid, 

The DIHEDRAL ANGLE is 

a = cos -‘(-$) = 70.528779". (16) 

see also OCTAHEDRAL GRAPH, OCTAHEDRAL GROUP, 
OCTAHEDRON 5-Comou~~, STELLA OCTANGULA, 
TRUNCATED OCTAHEDRON 

References 
Davie, T. “The Octahedron.” http : //uuw , dcs . St-and. ac . 

uk/-ad/mathrecs/polyhedra/octahedron.html. 
Holden, A. Shupes, Space, and Symmetry. New York: Dover, 

1991. 

Octahedron &Compound 

A POLYHEDRON COMPOUND composedoffive OCTAHE- 
DRA occupyingthe VERTICES ofan ICOSAHEDRON. The 
30 VERTICES of the compound form an IC~SID~DECA- 
HEDRON (Ball and Coxeter 1987). 

see ~ES~ICOSIDODECAHEDRON,OCTAHEDRON,POLYHE- 
DRON COMPOUND 

References 
Ball, W. W. R. and Coxeter, H. S. M. Mathematical Recre- 

ations and Essays, 13th ed. New York: Dover, pp. 135 and 
137, 1987. 

Cundy, H. and Rollett, A. Mathematical Models, 3rd ed. 
Stradbroke, England: Tarquin Pub., pp. 137-138, 1989. 

Wenninger, M. J. PoEyhedron 1ModeZs. New York: Cambridge 
University Press, p. 43, 1989. 

Octahemioctacron 
The DUAL POLYHEDRON of the OCTAHEMIOCTAHE- 
DRON. 
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Octahemioctahedron 

The UNIFORM POLYHEDRON U3, also called the Oc- 
TATETRAHEDRON, whose DUAL POLYHEDRON is the 
OCTAHEMIOCTACRON. Ithas WYTHOFF SYMBOL % 313, 
Its faces are 8{3} +4{6}. It is a FACETED CUBOCTAHE- 
DRON. For unit edge length, its CIRCUMRADIUS is 

R= 1. 

References 
Wenninger, M. J. Polyhedron Models. Cambridge, England: 

Cambridge University Press, p. 103, 1989. 

Octakaidecagon 

see OCTADECAGON 

Octal 
The base 8 notational system for representing REAL 
NUMBERS. The digits used are 0, 1, 2, 3, 4, 5, 6, 
and 7, so that 810 (8 in base 10) is represented as 108 
(10 = 1 l  8l + 0 - 8”) in base 8. 

see UZSO BASE (NUMBER), BINARY, DECIMAL, HEXA- 
DECIMAL,QUATERNARY,TERNARY 

References 
Lauwerier, H. Fractals: Endlessly Repeated Geometric Fig- 

ures. Princeton, NJ: Princeton University Press, pp. 9-10, 
1991. 

@ Weisstein, E. W. “Bases.” http: //uww , astro . Virginia. 
edu/-eww6n/math/notebooks/Bases.m. 

Octant 
z-axis 

+> 

One of the eight regions of SPACE defined by the eight 
possible combinations of SIGNS (*, &, &) for 2, y, and 
z. 

see dso QUADRANT 

Octatetrahedron 

see OCTAHEMIOCTAHEDRON 

Octic Surface 
An ALGEBRAIC SURFACE of degree eight. The maxi- 
mum number of ORDINARY DOUBLE POINTS known to 
exist on an octic surface is 168 (the ENDRASS OCTICS), 
although the rigorous upper bound is 174. 

see UZSO ALGEBRAIC SURFACE, ENDRASS OCTIC 

Octillion 
In the American system, 1027. 

see also LARGE NUMBER 

Octodecillion 
In the American system, 1057. 

see also LARGE NUMBER 

Octonion 

see CAYLEY NUMBER 

Odd Function 
An odd function is a function for which f(s) = -f(-s). 
An EVEN FUNCTION times an odd function is odd. 

Odd Number 
An INTEGER of the form Iv = 2n + 1, where n is an 
INTEGER. The odd numbers are therefore . . . , -3, -1, 
1, 3, 5, 7, . l  l  (Sloane’s A005408), which are also the 
GNOMIC NUMBERS. The GENERATING FUNCTION for 
the odd numbers is 

x(1 + 2) 
= ( 1)” x + 3x2 + 5x3 + 7x4 + . . . . 2 - 

Since the odd numbers leave a remainder of 1 when di- 
vided by two, N E 1 (mod 2) for odd N. Integers which 
are not odd are called EVEN. 

see also EVEN NUMBER, GNOMIC NUMBER, NICO- 
MACHUS'S THEOREM, ODD NUMBER THEOREM, ODD 
PRIME 

References 
Sloane, N. J. A. Sequence A005408/M2400 in “An On-Line 

Version of the Encyclopedia of Integer Sequences.” 
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Odd Number Theorem 
The sum of the first n ODD NUMBERS is a SQUARE NUM- 
BER: 

n 

C( 
2h-1)=&k-jl:l =2[~l-n 

k=l k=l k=l 

= n(n + 1) - n = n2* 

see also NICOMACHUS’S THEOREM 

Odd Order Theorem 

see FEIT-THOMPSON THEOREM 

Odd Prime 
Any PRIME NUMBER other than 2 (which is the only 
EVEN PRIME). 

see UZSO PRIME NUMBER 

Odd Sequence 
A SEQUENCE of n OS and 1s is called an odd sequence if 
each of the n SUMS cyrlk a&+k for k = 0, 1, . n . , n- 1. 

References 
Guy, R. K. “Odd Sequences.” SE38 in Unsolved Problems 

in Number Theory, 2nd ed. New York: Springer-Verlag, 
pp. 238-239, 1994. 

Odds 
Betting odds are written in the form r : s (‘Y to s”) and 
correspond to the probability of winning P = s/(r + s). 
Therefore, given a probability P, the odds of winning 
are (l/P) - f : 1. 

see ah FRACTION, RATIO, RATIONAL NUMBER 

References 
Kraitchik, M. “The Horses.” 56.17 in Mathematical Recre- 

ations. New York: W. W. Norton, pp. 134-135, 1942. 

ODE 

see ORDINARY DIFFERENTIAL EQUATION 

Offset Rings 

see SURFACE OF REVOLUTION 

Ogive 
Any cumulative frequency curve. 

see also HISTOGRAM 

References 
Kenney, J. F. and Keeping, E. S. “Ogive Curves.” 52.7 in 

Mathematics of Statistics, Pt. I, 3rd ed. Princeton, NJ: 
Van Nostrand, pp. 29-31, 1962. 

Oldknow Points 
The PERSPECTIVE CENTERS ofatriangle and the TAN- 
GENTIAL TRIANGLES ofitsinner and outer SODDY CIR- 
CLES, given by 

Ol=I+2Ge 

01’ = I - 2Ge, 

where 1 is the INCENTER and Ge is the GERGONNE 
POINT. 

see also GERGONNE POINT, INCENTER, PERSPECTIVE 
CENTER,~ODDY CIRCLES,TANGENTIAL TRIANGLE 

References 
Oldknow, A. “The Euler-Gergonne-Soddy Triangle of a T!ri- 

angle .” Amer. Math. Monthly 103, 319-329, 1996. 

Omega Constant 

W(1) = 0.5671432904.. . , (1) 

where W(x) is LAMBERT'S W-FUNCTION. It is avail- 
able in M&hematicu@ (Wolfram Research, Champaign, 
IL) using the function PxoductLog[lll W(1) can be 
considered a sort of “GOLDEN RATIO" for exponentials 
since 

=P[-wu = Wh (2) 

giving 
1 

ln wo = W(1). [ 1 (3) 

see also GOLDEN RATIO, LAMBERT'S VV-FWNCTION 

References 
Corless, R. M.; Gonnet, G. H.; Hare, D. E. G.; and Jeffrey, 

D. J. “Qn Lambert’s T/Tr Function.” ftp://watdragon. 
uwaterloo.ca/cs-archive/CS-93-03/W.ps.Z. 

Plouffe, S. “The Omega Constant or w(l).” http://lacim. 
uqam.ca/piDATA/omega.txt. 

Omega Function 

see LAMBERT'S W-FUNCTION 

Omino 

see POLYOMINO 

Omnific Integer 
The appropriate notion of INTEGER for SURREAL NUM- 

O’Nan Group 
The SPORADIC GROUP O’N. 

References 
Wilson, R. A. “ATLAS 

http://for.mat ,bham. 
of Finite Group Representation.” 
ac .uk/atlas/ON,html. 

Onduloid 

see '~TNDULOID 
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One 

see 1 

One-Form 
A linear, real-valued FUNCTION of VECTORS such that 
wl(v) t+ Ik. VECTORS and one-forms are DUAL to each 
other because VECTORS are CONTRAVARIANT (LCK~~~": 
I$)) and one-forms are COVARIANT VECTORS (LLB~~~7': 

(4) 1 so 

w'(v) = v(w') E (wl,v) = (+fq. 

The operation of applying the one-form to a VECTOR 
w1 (v) is called CONTRACTION. 

see also ANGLE BRACKET, BRA, DIFFERENTIAL Fz- 

FORM,KET 

One-Mouth Theorem 
Except for convex polygons, every SIMPLE POLYGON has 
at least one MOUTH. 

see AOMOUTH, PRINCIPAL VERTEX, TWO-EARS THE- 
OREM 

References 
Toussaint , G. “Anthropomorphic Polygons.” Amer. Math. 

Monthly 122, 31-35, 1991. 

One-Ninth Constant 
N.B. A detailed on-line essay by S. Finch was the start- 
ing point for this entry. 

Let Am+ be CHEBYSHEV CONSTANTS. Schiinhage 
(1973) proved that 

lim (XOJ’” = $ (1) n+clo 

It was conjectured that 

A = lim (Xn,n)lln = i. (2) n+oo 

Carpenter et al. (1984) obtained 

A = 0.1076539192.. . (3) 

numerically. Gonchar and Rakhmanov (1980) showed 
that the limit exists and disproved the l/9 conjecture, 
showing that A is given by 

A = exp 
[ 

7rK(dc7) 
- 1 K(c) ’ 

(4) 

where K is the complete ELLIPTIC INTEGRAL OF THE 
FIRST KIND, andc = 0.9089085575485414., . is the PA- 
RAMETER which solves 

K(k) = 2E(k), (5) 

One-Ninth Constant 

and E isthecomplete ELLIPTIC INTEGRAL OF THE SEC- 
OND KIND. This gives the value for A computed by 
Carpenter et al. (1984) A is also given by the unique 
POSITIVE ROOT of 

where 

f( > z =+, (6) 

f(Z) F CajZj (7) 
j=l 

and 

Uj = 

(Gonchar and Rakhmanov 1980). aj may also be com- 
puted by writing j as 

x(-l)dd I 

dlj I 

(8) 

j= 2”pl”Ip2m2 . . . Pkrnk, 
(9) 

where m, 2 0 and rni 2 I, then 

ml+1 - 1 - 1 aj pzm2+l - 1 plcmk+l = 12 m+l l  l  , 

p1 - 1 p2 - 1 pk - 1 

(10) 

(Gonchar 1990). Y t e another equation for A is due to 
Magnus (1986). A is the unique solution with GL: E (0,l) 

00 

ID 
2k + l)2(-~)k(k+1)/2 = 0, 

k=O 

(11) 

an equation which had been studied and whose root had 
been computed by Halphen (1886). It has therefore been 
suggested (Varga 1990) that the constant be called the 
HALPHEN CONSTANT. l/Aissometimescalled VARGA'S 
CONSTANT. 

see als 0 CHEBYSHEV CON 
STANT, VARGA'S CONSTANT 

STANTS, HALPHEN CON- 
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One-to-One 
Let f be a FUNCTION defined on a SET S and taking 
values in a set T. Then f is said to be one-to-one (a.k.a. 
an INJECTIONO~EMBEDDING) if,wheneverf(z) = f(y), 
it must be the case that II: = y. In other words, f is one- 
to-one if it MAPS distinct objects to distinct objects. 

If the function is a linear OPERATOR which assigns a 
unique MAP to each value in a VECTOR SPACE, it is 
called one-to-one. Specifically, given a VECTOR SPACE 
v with X, Y E V, then a TRANSFORMATION T defined 
on V is one-to-one if T(X) # T(Y) for all X # Y. 

see UZSO BIJE~TI~N, ONTO 

One-Way Function 
Consider straight-line algorithms over a FINITE FIELD 
with Q elements. Then the E-straight line complexity 
C#) of a function 4 is defined as the length of the 
shortest straight-line algorithm which computes a func- 
tion f such that f( 5 = II: is satisfied for at least (1 - E)Q ) 
elements of F. A function 4 is straight-line “one way” 
of range 0 5 S 5 1 if 4 satisfies the properties: 

There exists an infinite set S of finite fields such that 
4 is defined in every F E S and c is ONE-TO-ONE in 
every F f S. 

For every E such that 0 < E < S, C&5-‘) tends to - - 
infinity as the cardinality 4 of F approaches infinity. 

For every E such that 0 < E < 6, the “work function” - - 
q satisfies 

It is not known if there is a one-way function with work 
factor 77 > (lnq)3. 

References 
Ziv, J. “In Search of a One-Way Function” $4.1 in 

Open Problems in Communication and Computation (Ed. 
T. M. Cover and B. Gopinath). New York: Springer- 
Verlag, pp. 104-105, 1987. 

Open Map 

Only Critical Point in Town Test 

0 71 lo 0. 
azoo 2 . -0. 

2 2 

22 

If there is only one CRITICAL POINT at an EXTREMUM, 
the CRITICAL POINT must be the EXTREMUM for func- 
tions of one variable. There are exceptions for two vari- 
ables, but none of degree 5 4. Such exceptions include 

2 = 3xeY - x3 - e3y 

x = x2(1 + y)” + y2 

{ 

XYCX2-Y2) 

Z= X2-tY 
2 for (xr Y> # (02 0) 

0 for (2, Y) = (03 0) 

(Wagon 1991). This latter function has discontinuous 

zxy and zyx, and zy2(0,0) = 1 and zzy(O,O) = 1. 

Heferences 
Ash, A, M. and Sexton, H. “A Surface with One Local Min- 

imum.” Math. Mag. 58, 147-149, 1985. 
Calvert, B. and Vamanamurthy, M. K. “Local and Global 

Extrema for Functions of Several Variables,” J. Austral. 
Math. Sot. 29, 362-368, 1980. 

Davies, R. Solution to Problem 1235. Math. Mug. 61, 59, 
1988. 

Wagon, S. “Failure of the Only- Critical-Point-in-Town Test .” 
53.4 in M a th ematica in Action. New York: W. H. Freeman, 
pp. 87-91 and 228, 1991. 

Onto 
Let f be a FWNCTION defined on a SET S and taking 
values in a set 57. Then f is said to be onto (a.k.a. a 
SURJECTION) if, for any t E T, there exists an s E S for 
which t = f(s). 

Let the function be an OPERATOR which MAPS points 
in the DOMAIN to every point in the RANGE and let V 
be a VECTOR SPACE with X,Y E v. Then a TRANS- 
FORMATION T defined on V is onto if there is an X E V 
such that T(X) = Y for all Y. 

see also BIJECTION, ONE-TO-ONE 

Open Disk 
An n-D open disk of RADIUS T is the collection of points 
of distance less than T from a fixed point in EUCLIDEAN 
n-space. 

see also CLOSED DISK, DISK 

Open Interval 
An INTERVAL which does not include its LXMIT POINTS, 
denoted (a, b). 

see also CLOSED INTERVAL, HALF-CLOSED INTERVAL 

Open Map 
A MAP which sends OPEN SETS~~ OPEN SETS. 

see also OPEN MAPPING THEOREM 
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Open Mapping Theorem 
There are several flavors of this theorem. 

1. A continuous surjective linear mapping between BA- 
NACH SPACES is an OPEN MAP. 

2. A nonconstant ANALYTIC FUNCTION on a DOMAIN 
D isan OPEN MAP. 

References 
Zeidler, E. Applied Functional Analysis: Applications to 

Mathematical Physics. New York: Springer-Verlag, 1995. 

Open Set 
A SET is open if every point in the set has a NEIGHBOR- 
HOOD lying in the set. An open set of RADIUS T and 
center x0 is the set of all points x such that Ix - x0 1 < r, 

and is denoted &(x0). In l-space, the open set is an 
OPEN INTERVAL. In 2-space, the open set is a DISK. In 
&space, the open set is a BALL. 

The complement of an open set is a CLOSED SET. It is 
possible for a set to be neither open nor CLOSED, e.g., 
the interval (0, 11. 

see also BALL$LOSED SET, EMPTY SET, 
VAL 

OPEN INTER- 

Operad 
A system of parameter chain complexes used for MUL- 
TIPLICATION on differential GRADED ALGEBRAS up to 
H~MOTOPY. 

Operand 
A mathematical object upon which an OPERATOR acts. 
For example, in the expression 1 x 2, the MULTIPLICA- 
TION OPERATOR acts upon the operands 1 and 2. 

see also OPERAD, OPERATOR 

Operational Mathematics 
The theory and applications of LAPLACE TRANSFORMS 
and other INTEGRAL TRANSFORMS. 

References 
Churchill, R. V. Operational Mathematics, 3rd ed. New 

York: McGraw-Hill, 1958. 

Operations Research 
A branch of mathematics which encompasses many di- 
verse areas of minimization and optimization. Bron- 
son (1982) describes operations research as being “con- 
cerned with the efficient allocation of scarce resources.” 
It includes the CALCULUS OF VARIATIONS, CONTROL 
THEORY, CONVEX OPTIMIZATION THEORY, DECISION 

THEORY, GAME THEORY, LINEAR PROGRAMMING, 
MARKOV CHAINS, network analysis, OPTIMIZATION 
THEORY, queuing systems, etc. The more modern term 
for operations research is OPTIMIZATION THEORY. 

see UZSOCALCULUS OFVARIATIONS, CONTROL THEORY, 
CONVEX OPTIMIZATION THEORY, DECISION THEORY, 
GAME THEORY, LINEAR PROGRAMMING, MARKOV 
CHAIN, OPTIMIZATION THEORY, QUEUE 

References 
Bronson, R. Schaum’s Outline of Theory and Problems of 

Operations Research. New York: McGraw-Hill, 1982. 
Hiller, F. S. and Lieberman, G. J. Introduction to Operations 

Research, 5th ed. New York: McGraw-Hill, 1990. 
Trick, M. “Michael Trick’s Operations Research Page.” 

http://mat.gsia,cmu.edu 

Operator 
An operator A . f@)(l) ++ f(1) assigns to every function 
f E f’“‘(1) a function A(f) E f(1). It is therefore a 
mapping between two FUNCTION SPACES. If the range 
is on the REAL LINE or in the COMPLEX PLANE, the 
mapping is usually called a FUNCTIONAL instead. 

see also ABSTRACTION OPERATOR, ADJOINT OP- 
ERATOR, ANTILINEAR OPERATOR, BIHARMONIC OP- 
ERATOR, BINARY OPERATOR, CASIMIR OPERATOR, 
CONVECTIVE OPERATOR, D'ALEMBERTIAN OPERA- 
TOR,DIFFERENCE OPERATOR,FUNCTIONALANALYSIS, 
HECKE OPERATOR,HERMITIAN OPERATOR,~DENTITY 
OPERATOR, LAPLACE-BELTRAMI OPERATOR, LINEAR 
OPERATOR, OPERAND, PERRON-FROBENIUS OPERA- 
TOR, PROJECTION OPERATOR, ROTATION OPERATOR, 
SCATTERING OPERATOR, SELF-ADJOINT OPERATOR, 
SPECTRUM (OPERATOR), THETA OPERATOR, WAVE 
OPERATOR 

References 
Gohberg, I.; Lancaster, P.; and Shivakuar, 
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Hutson, V. and Pym, J. S. Applications of 
ysis and Operator Theory. New York: 
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Functional Anal- 
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Optimization Theory 

see OPERATIONS RESEARCH 

Or 
A term in LOGIC which yields TRUE if any one of a 
sequence conditions is TRUE, and FALSE if all conditions 
are FALSE. A OR B is denoted AIB, A + B, or A V B. 
The symbol V derives from the first letter of the Latin 
word “vel” meaning “or? The BINARY OR operator has 
the following TRUTH TABLE. 

A B AvB 

F-F F 
FT T 
TF T 
TT T 



OrbifoId 

A product of ORs is called a DISJUNCTION and is de- 
noted 7l 

V & 
k=l 

Two BINARY numbers can have the operation OR per- 
formed bitwise. This operation is sometimes denoted 

Al IB- 
see also AND, BINARY OPERATOR, LOGIC, NOT, PRED- 
ICATE,TRUTH TABLE,UNION,XOR 

Orbifold 
The object obtained by identifying any two points of a 
MAP which are equivalent under some symmetry of the 
MAP’S GROUP. 

Orbison’s Illusion 

The illusion illustrated above in which the bounding 
RECTANGLE and inner SQUARE both appear distorted. 

see UZSO ILLUSION, MUELLER-LYER ILLUSION, PONZO'S 
ILLUSION, VERTICAL-HORIZONTAL ILLUSION 

References 
Fineman, M. The Nature of Visual Illusion. New York: 
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Orbit (Group) 
Given a PERMUTATION GROUP G on a set S, the orbit 
of an element s E S is the subset of S consisting of 
elements to which some element G can send s. 

Orbit (Map) 
The SEQUENCE generated by repeated application of a 
MAP. The MAP is said to have a closed orbit if it has a 
finite number of elements. 

see also DYNAMICAL SYSTEM, SINK (MAP) 
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Orchard-Planting Problem 

a 
a s a 
rl=3,r=1 

a = a 
n=4,r= I n=5,r=2 

n=6,r=4 n=7,r=6 n=8,r=7 

n=g,r= 10 n= lO,r= 12 

Also known as the TREE-PLANTING PROBLEM. Plants, 
trees so that there will be T straight rows with k trees in 
each row. The following table gives max( T) for various 
km k= 3 is Sloane’s A003035 and k = 4 is Sloane’s 
A006065. 

n 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

k=3 k=4 k=5 

1 
1 
2 
4 
6 
7 

10 
12 
16 
19 

[22,241 
[26,271 
[31,321 

37 

140,421 
[46,48] 
[52,541 
[57,601 
[w 671 
VA 731 
[77,811 
Iw 881 
p2,gq 

1 
1 
1 
2 
2 
3 
5 
6 
7 

>9 
>-lo 
s 12 
> 15 
7 15 
7 18 
> 19 
> 21 - 

1 
1 
1 
1 
2 
2 
2 
3 
3 
4 

26 
>6 
$7 
>9 

z-10 
> 11 - 

Sylvester showed that 

r(k = 3) > L$(n - l)(n - 2)] , 

where 1x1 is the FLOOR FUNCTION (Ball and Coxeter 
1987). Burr, Griinbaum and Sloane (1974) have shown 
using cubic curves that 

r(k = 3) 5 l-t- L$(n - 3)] , 
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except for n = 7, 11, 16, and 19, and conjecture that 
the inequality is an equality with the exception of the 
preceding cases. For n 2 4, 

r(k = 3) 2 L#n(n - I) - [+21]] , 

where [xl is the CEILING FUNCTION. 

see also ORCHARD VISIBILITY PROBLEM 
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Orchard Visibility Problem 
A tree is planted at each LATTICE PRINT in a circular 
orchard which has CENTER at the ORIGIN and RADIUS 
r. If the radius of trees exceeds l/r units, one is unable 
to see out of the orchard in any direction. However, if 
the RADII of the trees are < l/d-, one can see out 
at certain ANGLES. 

see also LATTICE POINT, ORCHARD-PLANTING PROB- 
LEM, VISIBILITY 
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Order (Algebraic Curve) 
The order of the POLYNOMIAL defining the curve. 

Order (Algebraic Surface) 
The order n of an ALGEBRAIC SURFACE is the order 
of the POLYNOMIAL defining a surface, which can be 
geometrically interpreted as the maximum number of 
points in which a line meets the surface. 

Order Surface 

3 cubic surface 
4 quartic surface 
5 quintic surface 
6 sextic surface 
7 heptic surface 
8 octic surface 
9 nonic surface 

10 decic surface 

see also ALGEBRAIC SURFACE 

References 
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of Universities and Museums. Braunschweig, Germany: 
Vieweg, p. 8, 1986. 

Order (Conjugacy Class) 
The number of elements of a GROUP in a given CONJU- 
GACY CLASS. 

Order (Difference Set) 
Let G be GROUP of ORDER h and D be a set of k el- 
ements of G. If the set of differences di - dj contains 
every NONZERO element of G exactly X times, then D 
is a (h, k, A)-difference set in G of order n = k - A, 

Order (Field) 
The number of elements in a FINITE FIELD. 

Order (Group) 
The number of elements in a GROUP G, denoted ICI. 
The order of an element g of a finite group G is the 
smallest POWER of n such that gn = I, where 1 is the 
IDENTITY ELEMENT. In general, finding the order of the 
element of a group is at least as hard as factoring (Meijer 
1996). However, the problem becomes significantly eas- 
ier if IG[ and the factorization of [Cl are known. Under 
these circumstances, efficient ALGORITHMS are known 
(Cohen 1993). 

see also ABELIAN GROUP, FINITE GROUP 

References 
Cohen, H. A Course in Computational Algebraic Number 

Theory. New York: Springer-Verlag, 1993. 
Meijer, A. R. “Groups, Factoring, and Cryptography.” Math. 
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Order (Modulo) 
For any INTEGER a which is not a multiple of a PRIME 
p, there exists a smallest exponent h 2 1 such that ah E 
1 (mod p) IFF hlb. In that case, h is called the order of 
a modulo p. 

see also CARMICHAEL FUNCTION 
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Order (Ordinary Differential Equation) 
An ORDINARY DIFFERENTIAL EQUATION of order n is 
an equation of the form 

F(x,y,y’,..., y’“‘) =o. 

Order (Permutation) 

see PERMUTATION 

Order (Polynomial) 
The highest order POWER in a one-variable POLYNOM- 
IAL is known as its order (or sometimes its DEGREE). 
For example, the POLYNOMIAL 

is of order n. 

u,xn + . . l  +a2x2 +wz+ao 

Order Statistic 
Given a sample of n variates X1, . . . , Xn , reorder them 
so that Xi < Xi < . . . < Xk. Then the ith order 
statistic Xii) is defined as Xi, with the special cases 

mn = $1) = min(Xj) 

lLfn = X’“’ = l&X(X,). 
j 

A ROBUST ESTIMATION technique based on linear com- 
binations of order statistics is called an L-ESTIMATE. 

see ~ZSOEXTREME VALUE DISTRIBUTION, HINGE, MAX- 
IMUM, MINIMUM, MODE, ORDINAL NUMBER 
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Order (Vertex) 
The number of EDGES meeting at a given node in a 
GRAPH is called the order of that VERTEX. 

Ordered Geometry 
A GEOMETRY constructed without reference to measure- 
ment. The only primitive concepts are those of points 
and intermediacy. There are 10 AXIOMS underlying or- 
dered GEOMETRY. 

see also ABSOLUTE GEOMETRY, AFFINE GEOMETRY, 
GEOMETRY 

Ordered Pair 
A PAIR of quantities (a, b) where ordering is significant, 
so (a, b) is considered distinct from (b, a) for a # b. 

see also PAIR 

Ordered Tree 
A ROOTED TREE in which the order of the subtrees 
is significant. There is a ONE-TO-ONE correspondence 
between ordered FORESTS with n nodes and BINARY 
TREES with n nodes. 

see dso BINARY TREE, FOREST, ROOTED TREE 

Ordering 
The number of "ARRANGEMENTS" in an ordering of n 
items is given by either a COMBINATION (order is ig- 
nored) or a PERMUTATION (order is significant). 

see U~SOARRANGEMENT, COMBINATION, CUTTING, DE- 
RANGEMENT, PARTIAL ORDER, PERMUTATION, SORT- 
ING,TOTAL ORDER 

Ordering Axioms 
The four of HILBERT'S AXIOMS which 
rangement of points . 

concern the ar- 

see also CONGRUENCE AXIOMS, CONTINUITY AXIOMS, 
HILBERT'S AXIOMS, INCIDENCE AXIOMS, PARALLEL 
POSTULATE 
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Ordinal Number 
In informal usage, an ordinal number is an adjective 
which describes the numerical position of an object, e.g., 
first, second, third, etc. 

In technical mathematics, an ordinal number is one of 
the numbers in Georg Cantor’s extension of the WHOLE 
NUMBERS. The ordinal numbers are 0, 1, 2, . l  . , w, w+l, 
w-j-2, . . . . w  + w, w  + w  + 1, . . . . Cantor’s “smallest” 
TRANSFINITE NUMBER w is defined to be the earliest 
number greater than all WHOLE NUMBERS, and is de- 
noted by Conway and Guy (1996) as w  = (0, 1, , , . I}. 
The notation of ordinal numbers can be a bit counter- 
intuitive, e.g., even though 1+ w  = w, w  + I > w. 

Ordinal numbers have some other rather peculiar prop- 
erties. The sum of two ordinal numbers can take on two 
different values, the sum of three can take on five values. 
The first few terms of this sequence are 2, 5, 13, 33, 81, 
193, 449, 332, 33 l  81, 812, 81 l  193, 192’, . . . (Conway 
and Guy 1996, Sloane’s A005348). The sum of n ordi- 
nals has either 193”81b or 33 9 81a possible answers for 
n > 15 (Conway and Guy 1996). 

T x w is the same as w, but w  x T is equal 

w2 is larger than any number of the form w  x T, w3 is 
larger than w2, and so on. 
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There exist ordinal numbers which cannot be con- 
structed from smaller ones by finite additions, multi- 
plications, and exponentiations. These ordinals obey 
CANTOR'S EQUATION. The first such ordinal is 

The next is 

Cl = (Eo + l)+w 
Eo+l + ww+l + l  l  l  , 

see also AXIOM OF 
CARDINAL NUMBER, 
SURREAL NUMBER 

CHOICE, CANTOR’S 
ORDER STATISTIC, P 

EQUATION, 
OWER SET, 
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Ordinary Differential Equation 
An ordinary differential equation (frequently abbrevi- 
ated ODE) is an equality involving a function and its 
DERIVATIVES. An ODE of order 72 is an equation of the 
form 

F(x,y,y’,...,y(“)) =0, (1) 

where y’ = dy/da: is a first DERIVATIVE with respect 
to x and ~(“1 = d”y/dx” is an nth DERIVATIVE with 
respect to x. An ODE of order n is said to be linear if 
it is of the form 

an(x)yCn) + a,-l(x)y(n-l) + . l  . + a(x)y’ + ao(x)y 

= QW (2) 

A linear ODE where Q(X) = 0 is said to be homoge- 
neous. Confusingly, an ODE of the form 

(3) 

is also sometimes called “homogeneous.” 

Simple theories exist for first-order (INTEGRATING FAC- 
TOR) and second-order ( STURM-LIOUVILLE THEORY) 
ordinary differential equations, and arbitrary ODES 
with linear constant COEFFICIENTS can be solved when 
they are of certain factorable forms. Integral transforms 
such as the LAPLACE TRANSFORM can also be used 
to solve classes of linear ODES. Morse and Feshbach 

The solutions to an ODE satisfy EXISTENCE and 
UNIQUENESS properties. These can be formally estab- 
lished by PICARD'S EXISTENCE THEOREM for certain 
classes of ODES. Let a system of first-order ODE be 
given by 

dxi -- 
dt - 

fi(Xl7m--7Xnjt)j (4 

for i = 1, l .*, n and let the functions fi(x1,. l  l  , xn, t), 
where i = 1, ..,, n, all be defined in a DOMAIN D of 
the (n + 1)-D space of the variables ~1, . . . , xn, t. Let 
these functions be continuous in D and have continuous 
first PARTIAL DERIVATIVES afi/axj for i = 1, . , . , n 
andj = 1, . . . . n in D. Let (xy,, . . ,xE) be in D. Then 
there exists a solution n of (4) given by 

Xl =x l(t),-,%3 = &L(t) (5) 

for to-& < t < to+8 (where S > 0) satisfying the initial 
conditions 

(1953, pp* 667-674) g ive canonical forms and solutions 
for second-order ODES. 

While there are many general techniques for analyti- 
cally solving classes of ODES, the only practical solution 
technique for complicated equations is to use numeri- 
cal methods (Milne 1970). The most popular of these 
is the RUNGE-KUTTA METHOD, but many others have 
been developed. A vast amount of research and huge 
numbers of publications have been devoted to the nu- 
merical solution of differential equations, both ordinary 
and PARTIAL (PDEs) as a result of their importance in 
fields as diverse as physics, engineering, economics, and 
electronics, 

X((t))= Xy,. ..,Xn(t(J) = Xi. 

Furthermore, the solution is unique, so that if 

(6) 

Xl = Xi(t), . . . ,Xn = XL(t) (7) 

is a second solution of (4) for to - S < t < to + S sat- 
isfying (6), then xi(t) z x;(t) for to - S < t < to + 6. 
Because every nth-order ODE can be expressed as a sys- 
tem of n first-order differential equations, this theorem 
also applies to the single nth-order ODE. 

In general, an nth-order ODE has n linearly indepen- 
dent solutions. Furthermore, any linear combination of 
LINEARLY INDEPENDENT FUNCTIONS solutions is also a 
solution. 

An exact FIRST-ORDER ODES is one of the form 

where 

PC? Y> dx + &,Y) dY = 0, 

BP &I 
Fy=ax* 

(8) 

(9) 
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An equation of the form (8) with Theundampedequationof SIMPLEHARMONIC MOTION 
. 
1s 

which becomes 

d2Y 
dZ2 + Wo2Y = 0, (22) 

aP &l 
-#- ay ax w 

is said to be nonexact. If 

8P 6s --- 
dy ax 

- = f( > 2 

4 (11) 

d2Y dY 
d22 + PC, + Wo2Y = 0 (23) 

when damped, and 

in (8), it has an x-dependent integrating factor. If 
d2Y dY 
d22 + flz + dy = Acos(wt) (24) 

3 8P -e 
dX -----% = f (xy) 
XP - Y4 

(12) when both forced and damped. 

SYSTEMS WITH CONSTANT COEFFICIENTS are of the 
form .a 

in (8), it has an xy-dependent integrating factor. If 

$ = Ax(t) + p(t). (25) g-“” 
aY - - 

P - 
f(Y) (13) 

The following are examples of important ordinary dif- 
ferential equations which commonly arise in problems 
of mathematical physics. 

in (8), it has a y-dependent integrating factor. 

Other special first-order types include cross multiple 
AIRY DIFFERENTIAL EQUATION equations 

Yf by) dx + x&y) dy = 0, (14) 
(26) homogeneous equations 

BERNOULLI DIFFERENTIAL EQUATION dY -- 
f( > 

!! - 
dx x ’ (15) 

2 +P(4Y = q(4Yn. (27) 
linear equations 

BESSEL DIFFERENTIAL EQUATION 

$ +Pb)Y = 44, (16) 
2d2Y dY 

x d22 + xz + (X2x2 - n2)y = 0. (28) 
and separable equations 

2 = X(x)Y(y). (17) 

CHEBYSHEV DIFFERENTIAL EQUATION 

(1 
2 d2y dY - 

“b dx 
- x- + a2y = 0. (29) 

Special classes of SECOND-ORDER ODES include 
CONFLUENT HYPERGEOMETRIC DIFFERENTIAL EQUA- 
TION 

d2Y dY 
xp + (y - X)& + ay = 0. 2 = f(YTY’> (18) (30) 

EULER DIFFERENTIAL EQUATION (x missing) and 

2 = f(GY’) (19) 2 d2Y dY 
x -+ax- 

dx2 
dx + by = S(x). (31) 

(y missing). A second-order linear homogeneous ODE 

HERMITE DIFFERENTIAL EQUATION 
d2Y 
&% + p(x) dx 3 + Q(x)y = 0 (20) 

d2Y dY 
dx2 

- 2x-& + xy = 0. (32) 
for which 

HILL's DIFFERENTIAL EQUATION 
Q’(x) + 2PWQ(x) 

2[~(~)]3/2 = [col’stantl (21) 
d2Y 
d22 + [oo + 253ncos(hz)] = 0. (33) 

n=l can be transformed to one with constant coefficients. 
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HYPERGEOMETRIC DIFFERENTIAL EQUATION 

x(x - l)-jp d2y + [(1+ Q! +p>x - 712 + apy = 0. (34) 

JACOBI DIFFERENTIAL EQUATION 

LAGWERRE DIFFERENTIAL EQUATION 

d2Y x= + (1 - x)2 +Ay = 0. 

LANE-EMDEN DIFFERENTIAL EQUATION 

1 d 
-- c2d< 

LEGENDRE DIFFERENTIAL EQUATION 

(1 
2 d2Y dY - 

XI=- 2x-g + a(0 + l)y = 0 

LINEAR CONSTANT COEFFICIENTS 

d”Y dY 
a0 dz" + -. - + G-1 -& + any = p(X). 

MALMST~N'S DIFFERENTIAL EQUATION 

y" + by' = AZ” +; y. 
> 

RICCATI DIFFERENTIAL EQUATION 

dw 
dz = qo(x)+q1(x)w+q2(+J2. 

RIEMANN P-DIFFERENTIAL EQUATION 

d2u 1-a-a’ 

dz2+ 

+I-p-p’+l-y-j du 

Z-U z-b X-C l- dz 

+ rr’(c-a)(c--b) 
X-C 1 (2 - a&” b)(x - c) 

= 0. (42) 

see also ADAMS’ METHOD, GREEN'S FUNCTION, 
ISOCLINE, LAPLACE TRANSFORM, LEADING ORDER 
ANALYSIS, MAJORANT, ORDINARY DIFFERENTIAL 
EQUATION-FIRST-ORDER, ORDINARY DIFFERENTIAL 
EQUATION-SECOND-ORDER, PARTIAL DIFFERENTIAL 
EQUATION, RELAXATION METHODS, RUNGE-KUTTA 
METHOD, SIMPLE HARMONIC MOTION 
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Ordinary Differential Equation-First-Order 
Given a first-order ORDINARY DIFFERENTIAL EQUA- 
TION 

2 = F(X,Y), (1) 

if F(x, y) can be expressed using SEPARATION OF VARI- 
ABLES as 

F(x, Y> = X(X>Y(Y)l (2) 

then the equation can be expressed as 

dY - = X(x) dx 
Y(Y) 

(3) 

and the equation can be solved by integrating both sides 
to obtain 

/$$ =/X(x)dx. 

Any first-order ODE of the form 

dY 
z + PWY = 44 

(4 

(5) 

canbe solvedbyfinding an INTEGRATING FACTORY= 
p(x) such that 

Dividing through by py yields 

1 dY + 1 dP ¶W -- ---- 
Y dx pdx- y’ 

(6) 

(7) 
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Complex ROOTS alwayscomein COMPLEX CONJUGATE 
pairs, rk = a 3~ ib. For nonrepeated COMPLEX ROUTS, 
the solutions are 

However, this condition enables us to explicitly deter- 
mine the appropriate p for arbitrary p and 4. To ac- 
complish this, take 

1 dP 
P(X) = CL& 

y = eax cos(bx),y = eax sin(bx). (21) (8) 

If the COMPLEX ROOTS are repeated k times, the lin- 
early independent solutions are in the above equation, from which we recover the origi- 

nal equation (5), as required, in the form 

y = eax cos(bx),y = eax sin(bx), . . . , 

Y = xk-‘eax cos(bx), y = xk--leas sin(bx). (22) 
1 dY a(x) 
y& +p(x) = -m 

Y 
(9) 

But we can integrate both sides of (8) to obtain 
Linearly combining solutions of the appropriate types 
with arbitrary multiplicative constants then gives the 
complete solution. If initial conditions are specified, the 
constants can be explicitly determined. For example, 
consider the sixth-order linear ODE 

/p(x)dx=/:=hp+c (10) 

(B - l)(O - 2)3(i32 + i3 + l)y = 0, (23) Now integrating both sides of (6) gives 

which has the characteristic equation 

PY = 
s 

Pm dx + c (12) 
(T - l)(r - 2)3(r2 + T + 1) = 0. (24) 

(with p 
y to obt 

now a function), which can be solved for 
The roots are 1, 2 (three times), and (-1 & &)/2, so 
the solution is 

y 
- Spq(x)dx+c Je~xp’x”dx’q(x)dx+c (13) - - - 

s 
1 

c-l e 
x p(x’) dx’ 

y = Aex+Be2x+Cxe2x+Dx2e3x+Ee-x’2~~~(~&~) 

+Fe-” sin($hx). (25) 

where c is an arbitrary constant of integration. 

Given an nth-order linear ODE with constant COEFFI- 
CIENTS 

If the original equation is nonhomogeneous (Q (x) # 0) , 
now find the particular solution y* by the method of 
VARIATION OF PARAMETERS. The general solution is 
then 

d”Y dn-‘y 
j-g +%-I- 

dY 
dxn--l 

+-+al~ + JOY = Q(& (14) 

y(x) = >) CiYi(X) + Y* (x), (26) 

first solve the characteristic equation obtained by writ- 
ing 

Y E eTX (15) 

and setting Q(x) = 0 to obtain the n COMPLEX ROOTS. 

where the solutions to the linear equations are yl(x), 

YdX>, "' , yn(x), and y*(x) is the particular solution. 

see dso INTEGRATING FACTOR, ORDINARY DIFFEREN- 
TIAL EQUATION-FIRST-ORDER EXACT, SEPARATION 
OF VARIABLES,~ARIATION OF PARAMETERS rnerx + an-lrn-leTx + . . . + alrerx + uOeTx = 0 (16) 

References 
Arfken, G. Mathematical Methods for Physicists, 3rd ed. Or- rn + an-p 

n-l 
+ . . l  + air + a0 = 0. 

(17) 

lando, FL: Academic Press, pp. 440-445, 1985. 
Factoring gives the ROOTS ri, 

Ordinary Differential Equation-First-Order 

Exact 
Consider a first-order ODE in the slightly different form 

(T - Tl)(T - 93) l  l  l  (T - Tn) = 0. (18) 

For a nonrepeated REAL ROOT T, the corresponding so- 
lution is 

y = erx. (19) 

If a REAL ROOT T is repeated Jz times, the solutions are 
degenerate and the linearly independent solutions are 

P(X, Y> dx + q(x7 Y) dY = 0. (1) 

Such an equation is said to be exact if 

(2) Y = erx,y=xeTx,... Icdlerx ,y=x 1 (20) 
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This statement is equivalent to the requirement that a 
CONSERVATIVE FIELD exists, so that a scalar potential 
can be defined. For an exact equation, the solution is 

becomes 

Solving for dfi/dx gives 

s 

(X,Y) 

P(X, Y) dx + 4x, Y> dY = G (3) 
bOlY0) a/L z-2 

- = P(X) 
dX 

- = f (5 YM47 (15) q 
where c is a constant. 

A first-order ODE (1) is said to be inexact if 
which will be integrable if 

aP %I --- 

f(x,y) E = = f(x), 
Q 

(16) (4 

in which case For a nonexact equation, the solution may be obtained 
by defining an INTEGRATING FACTOR p of (6) SO that 
the new equation 

dP 
F = f(x)dx, (17) 

so that the equation is integrable 
pp(x, y) drr: + m(x, Y> dy = 0 (5) 

p(x) = e S f@ldx, (18) 

(6) and the equation 

or, written out explicitly, 
[pp(x, Y)ldX + [/4x7 YPY = 0 (19) 

(7) with known p(x) is now exact and can be solved as an 
exact ODE. 

This transforms the nonexact equation into an exact 
one. Solving (7) for p gives 

Given in an exact first-order ODE, look for an INTE- 
GRATING FACTOR p(x,y) = g(xy). Then 

* ai Qax -pay 

kJ = ap aq l  
--- 

ay  6x  

(20) (8) 

(21) Therefore, if a function p satisfying (8) can be found, 
then writing 

Combining these two, 

(22) 

in equation (5) then gives 
For the equation to be exact in pp and pq, the equation 
for a first-order nonexact ODE 

P(x, Y) da: + Q(x, Y> dy = 0, 

(23) which is then an exact ODE. Special cases in which p 
can be found include x-dependent, xy-dependent, and 
y-dependent integrating factors. becomes 

Given an inexact first-order ODE, we can also look for 
an INTEGRATING FACTOR &c)sothat $(p-fq)=(%-@A* 

(12) Therefore, 

ldp 2-2 -- - -P- 
x dY - XP - Y4 

Define a new variable 

(25) For the equation to be exact in pp and pq, the equation 
for a first-order nonexact ODE 

(13) t(x,y) = XY, (26) 
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then dt/dy = x, so If 

2 = F(x, y) = G(v), 

dCL dpdy 2 - 2 

8t= 
-- - -cl(t) = f (6 y)At) 
By at - xp - yq 

Now, if 

&? -92 
f(X,Y) = g$ = f(XY) = f(t), 

then 

g = f WPW7 

so that 

P 
= ,J f(t) dt 

and the equation 

[PP(X, Y)] dx + [/4x, YN dY = 0 

l  (27) 

(28) 

(29) 

(30) 

(31) 

is now exact and can be solved as an exact ODE. 

Given an inexact first-order ODE, assume there exists 
an integrating factor 

P = f(Y), (32) 

so dpldx = 0. For the equation to be exact in pp and 
PQ, equation (7 becomes 

a9 aP -- 
3X - - -% = f (2, Y>P(Y)- (33) 

P 

Now, if 

then 
dP 
7 = f(Y) dY3 (35) 

so that 

p(y) c e f(yjdy, s (36) 

and the equation 

pp(x, Y) dx + /4(x, Y) dY = 0 (37) 

is now exact and can be solved as an exact ODE. 

Given a first-order ODE of the form 

Yf(XY)dX + X9(XY)dY = 07 (38) 

define 
v E xy. (39) 

Then the solution is 

where 
Y v E -, 
X 

then letting 

Y = xv 

gives 
dY - = xdv/dx + v 
dx 

dv 
X& + v = G(v). 

This can be integrated by quadratures, so 

lnx = 
s 

dv 
-3-c 
f( > 

for f(v) # v 
V -V 

y = cx forf(v) = v. 
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Ordinary Differential Equation-Second- 
Order 
An ODE 

y” + P(x)y’ + Q(x)y = 0 (1) 

has singularities for finite x = x0 under the following 
conditions: (a) If either P(x) or Q(x) diverges as x -+ 
x0, but (x - x@(x) and (x - xO)~Q(X) remain finite 
as x --+ x0, then x0 is called a regular or nonessential 
singular point. (b) If P(x) diverges faster than (x - 

x0)-l so that (x - xo)P(x) -+ 00 as x + x0, or Q(x) 
diverges faster than (x - ~0)~~ so that (x - x~)~Q(x) + 
00 as x -+ x0, then x0 is called an irregular or essential 
singularity. 

Singularities of equation (1) at infinity are investigated 
by making the substitution x = z-l, so dx = -zB2 dz, 
giving 

dY 2 dY - 
da:-- dx (2) 

d2Y -= 
dx2 

Then (1) becomes 

4d2Y z p + [2n3 - z2P(z)] 
dY 
dz + &MY = 0. (4) 

{ 

d4 dv 
Ins = s c[g(+--f(w)] + c for 9(v) # f(v) 

for g(v) = f(t$ 
(40) 

xy = c 
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Equation (11) therefore becomes 

1280 

Case (a): If 

d2Y 
dZ2+ 

q’(x) + 2P(X)W Bl/2 dy 

2&)1”‘” 
z+By=O, (16) a(z) = 

22 - P(z) 

z2 (5) 

/3(z) E Q(z) -- 
z4 (6) which has constant COEFFICIENTS provided that 

A E dx) + 2p(x)q(x) B1/2 = [constant] 
2kz(x>13’2 

. (17) 
remain finite at x = koo (y = 0), then the point is ordi- 
nary. Case (b): If either a(z) diverges no more rapidly 
than l/z or p(z) diverges no more rapidly than 1/z2, 
then the point is a regular singular point. Case (c): 
Otherwise, the point is an irregular singular point. 

Eliminating constants , this gives 

A’ _ dx) + 2p(x)dx) = [constant] - - 
[4(~)13’2 

. 
Morse and Feshbach (1953, pp. 667-674) give the canon- 
ical forms and solutions for second-order ODES classified 
by types of singular points. So for an ordinary differential equation in which A’ is 

a constant, the solution is given by solving the second- 
order linear ODE with constant COEFFICIENTS 

For special classes of second-order linear ordinary differ- 
ential equations, variable COEFFICIENTS can be trans- 
formed into constant COEFFICIENTS. Given a second- 
order linear ODE with variable COEFFICIENTS 

d2 dY s+Az+By=O (19) 

2 + P(X) 
dY 
dz + dX>Y = 0. (7) 

for z, where z is defined as above. 

A linear second-order homogeneous differential equation 
of the general form Define a function z = y(x), 

dY dz dy ---- 
dx - dx dx 

y”(x) + P(x)y’ + Q(x)y = 0 

can be transformed into standard form 
2 d2 d2z dy 

s+-- 
dx2 dx (9) z”(x) + q(x)z = 0 (21) 

(g)2 3 + [g +p(x$] 2 +q(z)y = 0 (10) 
L 

with the first-order term eliminated using the substitu- 
tion 

ln Y Elnx- $ 
I 

P(x) dx. (22) 

d2Y 
dZ2+ ]$+[#]y Then 

yl - L - ;p(x) 
y-x (23) 

- d2Y 
=dr2+Adz &+By=O. (11) yyll - y'2 _ &' - p 

y2 - z2 
- iP’(x) (24) 

This will have constant COEFFICIENTS if A and B are 
not functions of x. But we are free to set B to an ar- 
bitrary POSITIVE constant for q(x) > 0 by defining z - 
as P 

Y” Yl 
2 

-- 
Y 0 _ < I e _ c _ +p’(x) 

y -2 z x2 (25) 

z E B-1’2 
J 

[q(x)]‘/” dx:. (12) 
$= [;-~p(x)]2+p-$-fp’(x) 

z 12 
- --- IP(,) + ;p”(x) + c - $ - 

x2 z z 
p’(z), (26) 

Then 

(13) 

d2z 
-= 
dx2 

$B -““[q(x)]-“‘“9.‘(x), (14) so 

f + p(,)d + Q(x) = -<P(~) 
Y z 

and 

A = $B-“2[dx>l -1’2q’(x) + B-““p(x)[q(x)]“” 

B-bl(x) 

T q’(x) + 2P(x)q(x) B1/2 

2[4(xN3’2 - (15) 

+iP2(x) + -z” - $P’(x) + P(x) 
z 

1; - tp(,)] 

+Q(x) = $ - iP’(x) - +P”(x) + Q(x) = 0. (27) 



Ordinary Differential Equation. . . Ordinary Differential Equation. . . 1281 

Disregarding W(a), since it is simply a multiplicative 
constant, and the constants a and b, which will con- 
tribute a solution which is not linearly independent of 

Therefore, 

z” + [Q(x) - +p’(x) - +p2(X)lz 

E z”(x) + q(x)z = 0, (28) Yl’ 

s 

x 

Y&X) =Ydx) 
exp [- s”’ P(z”) dl”] 

[y1(x’)]2 dx’- (43) 

where 
q(x) E Q(x) - fP’(x) - +P”(x)m (29) 

If Q(x) = 0, then the differential equation becomes If P(x) = 0, this simplifies to 

y” + P(x)yl = 0, 

I 
2 

Yz(X> = Y&9 
dx’ 

~ 
IY1W12 l  

(44) 
which can be solved by multiplying by 

exp [lx P(x’) dx’] 
For a nonhomogeneous second-order ODE in which the 
x term does not appear in the function f(z, y, y’), (31) 

2 = f(Y,Y’L 

let v E y’, then 

~=,(v,y)=~~~vg 

So the first-order ODE 

vg = f(Y74 

to obtain (45) 

(46) 

(47) 

O- -${exp [/xP(xt)dxt] $} (32) 

cl = exp [lx P(x’> do’] g (33) 

(34) 
s 

X 
dx 

y = Cl 
exp [J” P(x’) dx’] ’ 

If one solution (yl) to a second-order ODE is known, 
the other (~2) may be found using the REDUCTION OF if linear, can be solved for v as a linear first-order ODE. 

Once the solution is known, ORDER method. From the ABEL'S IDENTITY 

dW 
-= 
W 

-P(x) dx, 

where 
w = y1yh - y:y2 

lx g =l’P(x’)dZ) 

In [z] = lx P(xf)dxt 

W(x) = W(a)exp [- Lx,P(,‘) dx’] . 

But 
2d Y2 

w = y1y; - y;yz = y1- 

( > 
- 

dx yl 
l  

Combining (39) and (40) yields 

= W(a) 
exp[- s,” P(x’) dx’] 

Yf 

dY 
da: = V(Y) (48) (35) 

(36) 

(37) 

(38) 

(39) 

(40) 

(41) 

1% =/dx. (49) 

On the other hand, if y is missing from f(x, y, y’), 

2 = f(X’Y’)’ (50) 

let v = y’, then vi = y”, and the equation reduces to 

vt = f(v), (51) 
which, if linear, can be solved for v as a linear first-order 
ODE. Once the solution is known, 

Y= 
s 

v(x) dx. (52) 

see also ABEL'S IDENTITY, ADJOINT OPERATOR 

J x 
Y2W = Yl(4WW 

exp[- JI’ P(x”> dx”] dx, 
l  

b [Yl cxt )I2 
(42) 
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Ordinary Differential Equation-System 
with Constant Coefficients 
To solve the system of differential equations 

g = Ax(t) + p(t), (1) 

where A is a MATRIX and x and p are VECTORS, first 
consider the homogeneous case with p = 0. Then the 
solutions to 

2 = Ax(t) (2) 

are given by 

x(t) = eAtx(t). (3) 

But, by the MATRIX DECQ 
MATRIX EXPONENTIA .L can 

MPOSITION 
be written 

THE 
as 

where the EIGENVECTOR MATRIX is 

where the cis are arbitrary constants. 

The general procedure is therefore 

1. Find the EIGENVALUES of the MATRIX A (Xl, . . . . 
X,) by solving the CHARACTERISTIC EQUATION. 

2. Determine the corresponding EIGENVECTORS ul, 

l **t un* 

3. Compute 
= Ait xi _ e ui (10) 

eAt = UDlP, (4) 

and the EIGENVALUE MATRIX is 

D= 

Now consider 

for i = 1, . . . . n. Then the VECTORS xi which are 
REAL are solutions to the homogeneous equation. If 
A is a 2 x 2 matrix, the COMPLEX vectors xj corre- 
spond to REAL solutions to the homogeneous equa- 
tion given by R(xj) and S(xj). 

4. If the equation is nonhomogeneous, find the partic- 
ular solution given by 

x*(t) = X(t) s x-l (t)p(t) & (11) 

l~~~~, the 
where the MATRIX X is defined by 

u- [Ill ‘** un] (5) 

eAtu = uDu-‘u = UD 

-[Ii j! ill ?]F e! ;; .I.] 

I 

me Xlt . . . 
unl e 

X7-&t 

me w l  ., 
un2e 

&It 

- 
- 

l  
. . l  

(7) 
l  l  . 

1  

1 

l  l  

u, le 
w ..: 

Unae 

b-d 

The individual solutions are then 

x i  =: (eAtu) l  & = uiexi t ,  

so the homogeneous solution is 

n 

x= 
x 

ciuieXit, 

i=l 

X(t) S[Xl l  ** xn]* 
(12) 

If the equation is homogeneous so 
then look for a solution of the form 

that p(t) = 0, 

This leads to an equation 

x = <ext. (13) 

(A - xl)< = o, (14) 

so (is an EIGENVECTOR and X an EIGENVALUE. 

5. The general solution is 

x(t) = x*(t) + k cixi. (15) 

i=l 

Ordinary Double Point 

A RATIONAL DOUBLE POINT of CONIC DOUBLE POINT 
type, known as “Al.” An ordinary DOUBLE POINT is 
called a NODE. The above plot shows the curve x3 - 
x2 + y2 = 0, which has an ordinary double point at the 
ORIGIN. 



Ordinary Double Point 

A surface in complex 3-space admits at most finitely 
many ordinary double points. The maximum possi- 
ble number of ordinary double points p(d) for a SUF- 
face of degree d = 1, 2, . . . , are 0, 1, 4, 16, 31, 65, 
93 < ~(7) < 104, 168 < ,u(8) < 174, 216 < ~(8) < 246, 
345- < p(cO) < 360,425 2 ~(11) c-480, 576 < 
/1(12)-c 645 . . .- 

- 
(Sloane’s A046001; ChGtov 1992, ErL 

drafi 1995). The fact that ~(5) = 31 was proved by 
Beauville (1980), and ~(6) = 65 was proved by Jaffe 
and Ruberman (1994). For d > 3, the following inequal- 
ity holds: 

P(d) 2 $(d - 1) - 31 

(EndraB 1995). Examples of ALGEBRAIC SURFACES 
having the maximum (known) number of ordinary dou- 
ble points are given in the following table. 

d p(d) Surface 

3 4 Cayley cubic 
4 16 Kummer surface 
5 3 1 dervish 
6 65 Barth sextic 
8 168 EndraB octic 

10 345 Barth decic 

see also ALGEBRAIC SURFACE, BARTH DECK, BARTH 
SEXTIC, CAYLEY CUBIC, CUSP, DERVISH, ENDRASS 
OCTIC, KUMMER SURFACE, RATIONAL DOUBLE POINT 
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Ordinary Line 
Given an arrangement of 72 > 3 points, a LINE contain- - 
ing just two of them is called an ordinary line. Moser 
(1958) proved that at least 3n/7 lines must be ordinary 
(Guy 1989, p. 903). 

see also GENERAL POSITION, NEAR-PENCIL, 
POINT, SPECIAL POINT, SYLVESTER GRAPH 

ORDINARY 
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Ordinary Point 
A POINT which lies on at least one ORDINARY LINE. 

see also ORDINARY LINE, SPECIAL POINT, SYLVESTER 
GRAPH 

References 
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Ordinate 
The y- (vertical) axis of a GRAPH. 

see also ABSCISSA, X-AXIS, ~-AXIS, Z-AXIS 

Ore’s Conjecture 
Define the HARMONIC MEAN ofthe DIVISORS of n 

H(n) E -$f& 
z - dfn d 

where T(n) is the TAU FUNCTION (the number of DI- 
VISORS of n). If n is a PERFECT NUMBER, H(n) is an 
INTEGER. Ore conjectured that if n is ODD, then H(n) 
is not an INTEGER. This implies that no ODD PERFECT 
NUMBERS exist. 
see als 0 HARMONIC DIVISOR NUMBER, HARMONIC 
MEAN, P ERFECT NUMBER,TAU FUNCTION 

Ore Number 

see HARMONIC DIVISOR NUMBER 

Ore’s Theorem 
If a GRAPH G has n > 3 VERTICES such that every pair - 
of the n VERTICES which are not joined by an EDGE has 
a sum of VALENCES which is 2 n, then G is HAMILTUN- 
IAN. 

see also HAMILTONIAN GRAPH 

Orientable Surface 
A REGULAR SURFACE M c R” is called orientable if 
each TANGENT SPACEM~ hasa COMPLEX STRUCTURE 
Jp : 1Mp + M, such that p + Jp is a continuous func- 
tion. 
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Orientation (Plane Curve) 
A curve has positive orientation if a region R is on the 
left when traveling around the outside of R, 
right when traveling around the inside of R. 

or on the 

Orientation-Preserving 
A nonsingular linear MAP A : R” + R” is orientation- 
preserving if det (A) > 0. 

see also ORIENTATION-REVERSING, ROTATION 

Orientation-Reversing 
A nonsingular linear MAP A : Iw” -+ IEX” is orientation- 
reversing if det (A) < 0. 
see UZSO ORIENTATION-PRESERVING 

Orientation (Vectors) 
Let 0 be the ANGLE between two VECTORS. If 0 < 0 < 
x, the VECTORS are positively oriented. If x < 0 < Zn, 
the vectors are negatively oriented. 

Two vectors in the plane 

[::I and [ii] 

are positively oriented IFF the DETERMINANT 

DZ 
I I 

Xl Yl > 0 
x2y2 ’ 

and are negatively oriented IFF the DETERMINANT D < 
0. 

Origami 
The Japanese art of paper folding to make 3-dimensional 
objects. CUBE DUPLICATION and TRISECTION of an 
ANGLE can be solved using origami, although they can- 
not be solved using the traditional rules for GEOMETRIC 
CONSTRUCTIONS. 

see also FOLDING, GEOMETRIC CONSTRUCTION, STOM- 
ACHION, TANGRAM 
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jp/Origami. 

Origin 
The central point (r = 0) in POLAR COORDINATES, or 

the point with all zero coordinates (0, . . . , 0) in CARTE- 
SIAN COORDINATES. In 3-D, the X-AXIS, ~-AXIS, and 
Z-AXIS meet at the origin. 

see also OCTANT, QUADRANT, X-AXIS, y-Am, Z-AXIS 

Ornstein’s Theorem 
An important result in ERGODIC THEORY. It states that 
any two “Bernoulli schemes” with the same MEASURE- 
THEORETIC ENTROPY are MEASURE-THEORETICALLY 
1s0~0RPHIc. 

see also ERGODIC THEORY, ISOMORPHISM, MEASURE 
THEORY 

Orr’s Theorem 
If 

(1 - 4 a+P+7-1/2 2Fl(2a, 2p; 27; a) = 7, a&, (1) 

where 217~(~, b; C; Z) is a HYPERGEOMETRIC FUNCTION, 

then 

&(a,p;=y;z)2&(y-a+ &r-P+ $r+w - - x a,2. (2) 

(T+$/(7+% 

Furthermore, if 

(1 - 4 
a+&7-w &(2a - 1,zp; 27 - 1;z) = XC&, 

(3) 
then 

2Fl(cr,p;r;z)r(y-a+~,y-p- $w) 
- - x wn, (4 
(7- &Jh)n 

where r(z) is the GAMMA FUNCTION. 

Orthic Triangle 

Ai H3 A2 

Given a TRIANGLE a&AA, the TRIANGLE 
AH&Ha with VERTICES at the feet of the ALTITUDES 
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(perpendiculars from a point to the sides) is called the 
orthic triangle. The three lines AiHi are CONCURRENT 
at the ORTH~CENTER H of aAIAzAs. 

The intersection H of the three ALTITUDES of a TRIAN- 
GLE is called the orthocenter. Its TRILINEAR C~~RDI- 
NATES are 

The centroid of 
TER FUNCTION 

the ort hit triangle TRIANGLE CEN- 
cosBcosC: cosCcosA: cosAcosB. (1) 

If the TRIANGLE is not a RIGHT TRIANGLE, then (1) 
can be divided through by cos A cos B cos C to give 

a = a2 cos(B - C) 

(Casey 1893, Kimberling 199/4j. The ORTHOCENTER of 
the orthic triangle has TRIANGLE CENTER FUNCTION secA: secB : secC. (2) 

a = cos(2A) cos(B - C) If the triangle is ACUTE, the orthocenter is in the interior 
of the triangle. In a RIGHT TRIANGLE, the orthocenter 
is the VERTEX ofthe RIGHT ANGLE. 

(Casey 1893, Kimberling 1994). The SYMMEDIAN 
PRINT of the orthic triangle has TRIANGLE CENTER 
FUNCTION 

Q = tanAcos(B - C) 

(Casey 1893, Kimberling 1994). 

see UZSO ALTITUDE, FAGNANO’S PROBLEM, ORTHOCEN- 
TER, PEDAL TRIANGLE, SCHWARZ'S TRIANGLE PROB- 
LEM, SYMMEDIAN POINT 
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The CIRCUMCENTER 0 and orthocenter H are ISOGO- 
NAL CONJUGATE points. The orthocenter lies on the 
EULER LINE. 

Orthobicupola 
aI2 + a22 + us2 + A1H2 + AzH2 + AaH2 = 12R2 (3) 

- - - 
AIH + A2H + A3H = 2(r + R), (4) 

A BKUPOLA in which the bases are in the same orien- A1H2 + A2H2 + A3H2 = 4R2 - 4Rr, (5) 

where T is the INRADIUS and R is the CIRCUMRADIUS 

(Johnson 1929, p. 191). 
see also PENTAGONAL ORTHOBICUPOLA, SQUARE OR- 
THOBICUPOLA,TRIANGULAR ORTHOBICUPOLA 

Any HYPERBOLA circumscribed on a TRIANGLE and 
passing through the orthocenter is RECTANGULAR, and 
has its center on the NINE-POINT CIRCLE (Falisse 1920, 
Vandeghen 1965) l  

Orthobirotunda 
A BIROTUNDA in which the bases are in the same orien- 

see also CENTROID (TRIANGLE), CIRCUMCENTER, Eu- 
LER LINE, INCENTER, ORTHIC TRIANGLE, ORTHOCEN- 

TRIG COORDINATES, ORTHOCENTRIC QUADRILATERAL, 
ORTHOCENTRIC SYSTEM, POLAR CIRCLE 

Orthocenter 
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Orthocentric Coordinates 
Coordinates defined by an ORTHOCENTRIC SYSTEM. 

see UZSO TRILINEAR COORDINATES 

Orthocentric Quadrilateral 
If two pairs of opposite sides of a COMPLETE QUADRI- 
LATERAL are pairs of PERPENDICULAR lines, the QUAD- 
RILATERAL is said to be orthocentric. In such a case, 
the remaining sides are also PERPENDTCULAR. 

Orthocentric System 

A set of four points, one of which is the ORTHOCEN- 
TER of the other three. In an orthocentric system, each 
point is the ORTHOCENTER of the TRIANGLE of the 
other three, as illustrated above. The INCENTER and 
EXCENTERS of a TRIANGLE are an orthocentric system. 
The centers of the CIRCUMCIRCLES of an orthocentric 
system form another orthocentric system congruent to 
the first. The sum of the squares of any nonadjacent 
pair of connectors of an orthocentric system equals the 
square of the DIAMETER of the CIRC~MCIRCLE. Or- 
thocentric systems are used to define ORTHOCENTRIC 

. 5 \ 
. . . 

l&L+ 

\ I . I . I . . I . I \ * 

I I I I I * I I’ 

& 

I’ I’ 

l l ---A-- ---~---d-- 

The four triangles of an orthocentric system have a com- 
mon NINE-POINT CIRCLE, illustrated above. 

see UZSO ANGLE BISECTOR, CIRCUMCIRCLE, CYCLIC 
QUADRANGLE, NINE-POINT CIRCLE, ORTHIC TRIAN- 
GLE, ORTHOCENTER, ORTHOCENTRIC SYSTEM, POLAR 
CIRCLE 
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Orthocupolarotunda 
A CUPOLAROTUNDA in which the bases are in the same 
orientation. 

see UlSO 

THO CUP0 

GYROCUPOLAROTU NDA, PENTAGONAL OR- 
LARONTUNDA 

Orthodrome 

see GREAT CIRCLE 

Orthogonal Array 
An orthogonal array OA(k, s) is a k x s2 ARRAY with 
entries taken from an s-set S having the property that 
in any two rows, each ordered pair of symbols from S 
occurs exactly once. 

References 
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Orthogonal Basis 
A BASIS of vectors x which satisfy 

xjxk = cjkdjk 

The four CIRCUMCIRCLES of points in an orthocentric 
system taken three at a time (illustrated above) have 
equal RADIUS. 

where cjk, c: are Constants (not necessarily equal to 
1) and & is the KRONECKER DELTA. 

see ~2~0 BASIS, ORTHONORMAL BASIS 
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Orthogonal Circles Orthogonal Group 

see GENERAL ORTHOGONAL GROUP, LIE-TYPE 
GROUP,ORTHOGONALROTATIONGROUP,PROJECTIVE 
GENERAL ORTHOGONAL GROUP, PROJECTIVE SPECIAL 
ORTHOGONAL GROUP,~PECIAL ORTHOGONAL GROUP 

Orthogonal circles are ORTHOGONAL CURVES, i.e., they 
cut one another at RIGHT ANGLES. Two CIRCLES with 
equations 

References 
Wilson, R. A. “ATLAS of Finite Group Representation.” 
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Orthogonal Group Representations 
Two representations of a GROUP xi and xj are said to 

x2 + y2 + 2gx + 2fy + c = 0 (1) 
be orthogonal if 

x2 + y2 + 2g’x + 2f ‘y + ct = 0 (2) 

are orthogonal if 
for i # j, where the sum is over all elements R of the 

299’ + 2f f’ = c + ct. (3) 
representation. 

see also GROUP 

A theorem of Euclid states 
cles in the above diagram, 

that, for the orthogonal cir- 

OPxOQ=OT2 (4) 

(Dixon 1991, p. 65). 
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Orthogonal Curves 
Two intersecting curves which are PERPENDICULAR at 
their INTERSECTION are said to be orthogonal. 

Orthogonal Functions 
Two functions f(x) and g(x) are orthogonal on the in- 
terval a 2 z 5 b if 

(f (x)19(x)> = Ib f(x)9(x) dx = 0. 
Ja 

Orthogonal Lines 
Two or more LINES or LINE SEGMENTS which are PER- 
PENDICULAR are said to be orthogonal. 

Orthogonal Matrix 
Any ROTATION can be given as a composition of rota- 
tions about three axes (EULER’S ROTATION THEOREM), 
and thus can be represented by a 3 x 3 MATRIX operating 
on a VECTOR, 

We wish to place conditions on this matrix so that it 
is consistent with an ORTHOGONAL TRANSFORMATION 
(basically, a ROTATION or ROTOINVERSION). 

In a 
so it 

ROTATION, a VECTOR must keep its original 
must be true that 

for i = 1, 2, 3, where EINSTEIN SUMMATION is being 
used. Therefore, from the transformation equation, 

x;x; = xixi (2) 

(UijXj)(UikXk) = XiXi. (3) 

This can be rearranged to 

In order for this to hold, it must be true that 

see UZSJ ORTHOGONAL POLYNOMIALS, ORTHONORMAL 
FUNCTIONS 

&j&k = djk (5) 
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for j, k = 1, 2, 3, where &j is the KRONECKER DELTA. 
This isknownasthe ORTH~GONALITY CONDITION, and 
it guarantees that 

A -1 =AT, (6) 

. and 
ATA = I, (7) 

where AT is the MATRIX TRANSPOSE and 1 is the IDEN- 

TITY MATRIX. Equation (7) is the identity which gives 
the orthogonal matrix its name. Orthogonal matrices 
have special properties which allow them to be manip- 
ulated and identified with particular ease. 

Let A and B be two orthogonal matrices. By the OR- 

THOGONALITY CONDITION, they satisfy 

and 

aij ai k = fijk, (8 

where &j is the KRONECKER DELTA. NOW 

&j&k = (ab)ij(ab)jk = aisbsjaitbtk = aisaitbsjbtk 

= Jstbsjbtk = &j&k = 6jkl (10) 

so the product C = AB of two orthogonal matrices is 
also orthogonal. 

The EIGENVALUES of an orthogonal matrix must satisfy 
one of the following: 

1. All EIGENVALUES are 1. 

2. One EIGENVALUE is 1 and the other two are -1. 

3. One EIGENVALUE is 1 and the other two are COM- 
PLEX CONJUGATES of the form ei8 and e-T 

An orthogonal MATRIX A is classified as proper (corre- 
sponding to pure ROTATION) if 

det(A) = 1, (11) 

where det (A) is the DETERMINANT of A, or improper 
(corresponding to inversion with possible rotation; RO- 
TOINVERSION) if 

det(A) = -1. (12) 

see also EULER'S ROTATION THEOREM, ORTHOGONAL 
TRANSFORMATION, ORTHOGONALITY CONDITION, Ro- 
TATION, ROTATION MATRIX, ROTOINVERSION 
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Orthogonal Polynomials 
Orthogonal polynomials are classes of POLYNOMIALS 
{p&c)} over a range [a, b] which obey an ORTHOGO- 
NALITY relation 

s b 

w(x)p&)pn(x) dx = bnncn, (1) 
a 

where w(x) is a WEIGHTING FUNCTION and S is the 
KRONECKER DELTA. Ifc, = l,thenthe POLYNOMIALS 
are not only orthogonal, but orthonormal. 

Orthogonal polynomials have very useful properties in 
the solution of mathematical and physical problems. 
Just as FOURIER SERIES provide a convenient method of 
expanding a periodic function in a series of linearly inde- 
pendent terms, orthogonal polynomials provide a natu- 
ral way to solve, expand, and interpret solutions to many 
typesofimportant DIFFERENTIAL EQUATIONS. Orthog- 
onal polynomials are especially easy to generate using 
GRAM-SCHMIDT ORTHONORMALIZATION. Abramowitz 
and Stegun (1972, pp. 774-775) give a table of common 
orthogonal polynomials. 

IntervaI 

Chebyshev First [--I, I] (1 - x2p2 

Kind 

Chebyshev Second 

Kind 
Hermite 
Jacobi 

Laguerre 

Laguerre 

(Associated) 

Legendre 

Ultraspherical 

L-1, 11 Jm 

(-w, 00) e-=* 
(-131) (1 - x)“(1+ x>O 

[0, w) eB2 

LO? 4 xkemz 

[-1711 1 

[--I, 11 (1 - x2)a-l/2 

{ ;rn=o 
otherwise 

ix 

fi2"n! 

hn 

1 
(n+k)! 

n! 

2n+1 

{ 

7r2l-** r( n+2a) 

~~~~+4w)l~ 

a 

1 for a # 0 
for a = 0 

In the above table, the normalization constant is the 
value of 

r 
cn E w(x)[p,(x)]2dx 

J 
(2) 

and 

h, G 
y+p+1 

2n+ar+p+1 

r(n+a+l)r(n+p+l) (3) 

n!r(n+a+p+l) ’ 

where r(z) is a GAMMA FUNCTION. 

The ROOTS of orthogonal polynomials possess many 
rather surprising and useful properties. For instance, 
let xl < x2 < . . . < xn be the ROOTS of the p,(x) with 
x0 = a and X~+I = b. Then each interval [xv, xv+11 for 
Y = 0, 1, l ... 72 contains exactly one ROOT of pn+l(x). 
Between two ROOTS of pn(x) there is at least one ROOT 
of p,(x) for m > 72. 
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Let c be an arbitrary REAL constant, then the POLY- 
NOMIAL 

(4) 

has 72 + 1 distinct REAL ROOTS. If c > 0 (c < 0), these 
ROOTS lie in the interior of [a, b], with the exception of 
the greatest (least) ROOT which lies in [a, b] only for 

c < Pn+l(b) - (c+&$ 
- Pm 

(5) 

The following decomposition into partial fractions holds 

pn(x) n L - = 
Pn+l (x) Ix 

U=O 
X-S) 

where {&,} are the ROOTS of pn+l(x) and 

(6) 

Pn(tv) 
I, = - 

P;+l(sa 

- - Pd+l(Eu)P&) - PXJPnSl(6J > o 

[px+I(~~)12 
. (q 

Another interesting property is obtained by letting 
{pn(x)} be the orthonormal set of POLYNOMIALS asso- 
ciated with the distribution da(x) on [a, b]. Then the 
CONVERGENTS Rn/S, ofthe CONTINUED FRACTION 

I c2 c3 

Alx + & - Azx + B2 - A32 + B3 

- . . . - 
Cn + 

A,x + Bn *” 
(8) 

are given by 

Rx = %x(x) 

= c(J-~/‘&+~ pn’x; 1 fnct) da(t) (9) 

a 

Sn = S,(X) = fipn(x)r (10) 

where YX = 0, 1, . . . and 

(11) 

Furthermore, the ROOTS of the orthogonal polynomials 
pn(x) associated with the distribution da(x) on the in- 
terval [a, b] are REAL and distinct and are located in the 
interior of the interval [a, b]. 

~~~&&HEBYSHEV POLYNOMIAL OF THEFIRSTKIND, 
CHEBYSHEV POLYNOMIAL OF THE SECOND KIND, 
GRAM-SCHMIDT ORTHONORMALIZATION, HERMITE 
POLYNOMIAL, JACOBI POLYNOMIAL, KRAWTCHOUK 
POLYNOMIAL, LAGUERRE POLYNOMIAL, LEGENDRE 
POLYNOMIAL, ORTHOGONAL FUNCTIONS, SPHERICAL 

HARMONIC, 
POLYNOMIA 

ULTRASPHERICAL POLYNOMIAL, 
L 

ZERNIKE 
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Orthogonal Projection 
A PROJECTION of a figure by parallel rays. In such a pro- 
jection, tangencies are preserved. Parallel lines project 
to parallel lines. The ratio of lengths of parallel segments 
is preserved, as is the ratio of areas. 

Any TRIANGLE can be positioned such that its shadow 
under an orthogonal projection is EQUILATERAL. Also, 
the MEDIANS of a TRIANGLE project to the MEDIANS 
of the image TRIANGLE. ELLIPSES project to ELLIPSES, 

and any ELLIPSE can be projected to form a CIRCLE. 
The center of an ELLIPSE projects to the center of the 
image ELLIPSE. The CENTROID ofa TRIANGLE projects 
to the CENTROID of its image. Under an ORTHOGO- 
NAL TRANSFORMATION, the MIDPOINT ELLIPSE canbe 
transformed into a CIRCLE INSCRIBED in an EQUILAT- 
ERAL TRIANGLE. 

SPHEROIDS project to ELLIPSES (or CIRCLE in the DE- 
GENERATE case). 

see also PROJECTION 

Orthogonal Rotation Group 
Orthogonal rotation groups are LIE GROUPS. The or- 
thogonal rotation group 03(n) is the set of n x n REAL 
ORTHOGONAL MATRICES. 

The orthogonal rotation group O;(n) is the set of n x 

n REAL ORTHOGONAL MATRICES (having n(n - I)/2 
independent parameters) with DETERMINANT -1. 

The orthogonal rotation group Q(n) is the set of n x n 
REAL ORTHOGONAL MATRICES, having n(n-1)/2 inde- 
pendent parameters, with DETERMINANT +l. O:(n) is 



1290 Orthogonal Tensors Orthographic Projection 

HOMEOMORPHIC with W(2). Its elements can be writ- 
ten using EULER ANGLES and ROTATION MATRICES as 

(3) 
. (4 
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Orthogonal Tensors 
Orthogonal CONTRAVARIA .NT and COVARIANT satisfy 

where $ is the KRONECKER DELTA. 

see also CONTRAVARIANT TENSOR, COVARIANT TEN- 
SOR 

Orthogonal Transformat 
Any linear transformation 

2’1 = a1121 + 

x; = a21x1+ 

Orthogonal Vectors 
Two vectors u and v whose DOT PRODUCT is u l  v = 0 

( i.e., the vectors are PERPENDICULAR) are said to be 
orthogonal. The definition can be extended to three or 
more vectors which are mutually PERPENDICULAR. 

see also DOT PRODUCT, PERPENDICULAR 

Orthogonality Condition 
A linear transformation 

I 

Xl = ama +a12x2 +x13x3 

x; = a21xl -k a2232 -t a2323 

& = a3lxl+a32x2 +a33x3, 

is said to be an ORTHOGONAL TRANSFORMATION ifit 
satisfies the orthogonality condition 

where EINSTEIN SUMMATION has been used and &j is 
the KRONECKER DELTA. 

see also ORTHOGONAL TRANSFORMATION 
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Orthogonality Theorem 

SUBGROUP ORTHOGONALITY THEOREM 

ion 
Orthographic Projection 

al2x2 

a2222 

213x3 

a23x3 

x; = a3121 + a3222 + a3353 

satisfying the ORTHOGONALITY CONDITION 

&j&k = ajky 

where EINSTEIN SUMMATION has been used and 6ij is 
the KRONECKER DELTA, is called an orthogonal trans- 
formation. 

Orthogonal transformations correspond to rigid ROTA- 
TIONS (or ROTOINVERSIONS), and may be represented 
using ORTHOGONAL MATRICES. If A: Iw” -+ IIB” is an 
orthogonal transformation, then det(A) = H. 

see ~SOAFFINE TRANSFORMATION,~RTHOGONAL MA- 
TRIX, ORTHOGONALITY CONDITION, ROTATION, Ro- 
TOINVERSION 
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A projection from infinity which preserves neither 
nor angle. 

x = coqbsin(A - &) (1) 

Y =cos&sin+ sin& cos~cos(X - X0). (2) 

The inverse FORMULAS are 

4 = sin -1 
( 

coscsin& + 
ysinccos& 

P > 
(3) 

X = X0 + tan-l 
( 

pcos~I cosxCsinC 
- y sin q51 sin c > ’ (4) 
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where 

P= &” + y2 (5) 
-1 c = sin p* (6) 
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Orthologic 
Two TRIANGLES AlBlCl and A&& are orthologic 
if the perpendiculars from the VERTICES Al, B1, Cl 
on the sides B&z, A2 Cz, and Aa BQ pass through one 
point. This point is known as the orthology center of 
TRIANGLE 1 with respect to TRIANGLE 2. 

Orthonormal Basis 
A BASIS of VECTORS x which satisfy 

xjxk = 6jk 

and 
xpxv = a,“, 

where 6jk is the KRONECKER DELTA. An orthonormal 
basis is a normalized ORTHOGONAL IBASIS. 

see also BASIS, ORTHOGONAL BASIS 

Orthonormal Functions 
A pair of functions & and 4j are orthonormal if they 
are ORTHOGONAL and each normalized. These two con- 
ditions can be succinctly written as 

s 

b 

~~(x)~j(x)w(x) dx = Jij, 
a 

where w(x) is a WEIGHTING FUNCTION and 6ij is the 
KRONECKER DELTA. 

see also ORTHOGONAL POLYNOMIALS 

Orthonormal Vectors 
UNIT VECTORS which are ORTHOGONAL are said to be 
orthonormal. 

see U~SO ORTHOGONAL VECTORS 

Orthopole 
If perpendiculars are dropped on any line from the ver- 
tices of a TRIANGLE, then the perpendiculars to the 
opposite sides from their FEET are CONCURRENT at a 
point called the orthopole. 

References 
Johnson, R. A. Modern Geometry: An Elementary Treatise 

on the Geometry of the Triangle and the Circle. Boston, 
MA: Houghton Mifflin, p. 247, 1929. 

Orthoptic Curve 
An ISOPTE CURVE formed from the locus of TAN- 
GENTS meeting at RIGHT ANGLES. The orthoptic of 
a PARABOLA is its DIRECTRIX. The orthoptic of a cen- 
tral CONIC was investigated by Monge and is a CIRCLE 
concentric with the CONIC SECTION. The orthoptic of 
an ASTROID is a CIRCLE. 

Curve Orthoptic 

astroid quadrifolium 
cardioid circle or limaqon 
deltoid circle 
logarithmic spiral equal logarithmic spiral 

References 
Lawrence, J. D. A Catalog of Special Plane Curves. New 

York: Dover, pp, 58 and 207, 1972. 

Orthotomic 
Given a source S and a curve y, pick a point on y 
and find its tangent T. Then the LOCUS of reflections 
of S about tangents T is the orthotomic curve (also 
known as the secondary CAUSTIC). The INVOLUTE of 
the orthotomic is the CAUSTIC. For a parametric curve 

(f (tL9W with respect to the point (50, yo), the ortho- 
tomic is 

x=x0- 2g’[f’(L7 - Yd - d(f - xdl 
ft2 + gt2 

y=yo+ ?f’[f’(g - Yo) - 9’(f - xdl 
f t2 + #2 - 

see U~SO CAUSTIC, INVOLUTE 

Meferences 
Lawrence, 3. D. A Catalog of Special Plane Curves. New 

York: Dover, p* 60, 1972. 

Orthotope 
A PARALLELOTOPE whose edges are all mutually PER- 
PENDICULAR. The orthotope is a generalization of the 
RECTANGLE and RECTANGULAR PARALLELEPIPED. 
see also RECTANGLE,RECTANGULAR PARALLELEPIPED 

References 
Coxeter, H. S. M. Regular Polytopes, 3rd ed. New York: 

Dover, pp. 122-123, 1973+ 

Osborne’s Rule 
The prescription that a TRIGONOMETRY identity can 
be converted to an analogous identity for HYPERBOLIC 
FUNCTIONS by expanding, exchanging trigonometric 
functions with their hyperbolic counterparts, and then 
nipping the sign of each term involving the product of 
two HYPERBOLIC SINES. For example, given the iden- 
tity 

cos(x - y) = cos x cos y + sin 2 sin y, 

Osborne’s rule gives the corresponding identity 

cosh(x - y) = cash x cash y - sinh x sinh ye 

see also HYPERBOLIC FUNCTIONS, TRIGONOMETRY 
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Oscillation 
The variation of a FUNCTION which exhibits SLOPE 
changes, also called the SALTUS of a function. 

Oscillation Land 

see CAROTID-KUNDALINI FUNCTION 

Osculating Circle 

The CIRCL 
at a given 
osculating 

,E which 
point. 
circle is 

shares the same TANGENT as a curve 
The RADIUS OF CURVATURE of the 

1 

P(t) = IK(t (1) 

where K is the CURVATURE, and the center is 

x=f- (ft2 + gt2)9’ 
t 

f9 
II _ II I f9 (2) 

(f t2 + gt2 19’ 
y = 9 + f ig!l _ f Ilg’ j (3) 

i.e., the centers of the osculating circles to a curve form 
the EVOLUTE to that curve. 

In addition, let C(tr, is, t3) denote the CIRCLE passing 
through three points on a curve (f(t), g(t)) with tl < 
t2 < tS* Then the osculating circle C is given by 

c= lim C(h,t21t3) (4) 
t1rk2,t3+t 

(Gray 1993). 

see also CURVATURE, EVOLUTE, RADIUS OF CURVA- 
TURE,TANGENT 

References 
Gardner, M. “The Game of Life, Parts I-III.” Chs. 20-22 in 

Wheels, Life, and other Mathematical Amusements. New 
York: W. H. Freeman, pp. 221, 237, and 243, 1983. 

Gray, A. “Osculating Circles to Plane Curves.” 55.6 in Mod- 
ern Differential Geometry of Curves and Surfaces. Boca 
Raton, FL: CRC Press, pp. 90-95, 1993. 

Osculating Curves 
1.4 

1.2: 

1: 

0.8: 

0.6: 

0.4: 

Osculating Sphere 

An osculating curve to f(x) at 20 is tangent at that point 
and has the same CURVATURE. It therefore satisfies 

yCh)(xo) = f CW (x0) 

for k = 0, 1, 2. The point of tangency is called a TAC- 
NODE. The simplest example of osculating curves are x2 
and x4 , which osculate at the point x0 = 0. 

see also TACNODE 

Osculating Interpolation 

see HERMITE'S INTERPOLATING FUNDAMENTAL POLY- 
NOMIAL 

Osculating Plane 
The PLANE spanned by the three points x(t), x(t + hl), 
and x(t + h2) on a curve as hl, hz + 0. Let z be a point 
on the osculating plane, then 

K Z- x), x’,x”] = 0, 

where[A, B,C]denotes the SCALARTRIPLE PRODUCT. 
The osculating plane passes through the tangent. The 
intersection of the osculating plane with the NORMAL 
PLANE is known as the PRINCIPAL NORMAL VECTOR. 
The VECTORS TandN (TANGENT VECTOR and NOR- 
MAL VECTOR) span the osculating plane. 

see also NORMAL VECTOR, OSCULATING SPHERE, 
SCALARTRIPLE PRODUCT,TANGENT VECTOR 

Osculating Sphere 
The center of any SPHERE which has a contact of (at 
least) first-order with a curve C at a point P lies in the 
normal plane to C at P. The center of any SPHERE 
which has a contact of (at least) second-order with C at 
point P, where the CURVATURE K > 0, lies on the polar 
axis of C corresponding to P. All these SPHERES inter- 
sect the OSCULATING PLANE of C at P along a circle of 
curvature at P. The osculating sphere has center 

a =x+pe+ efi 
7 
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where fi is the unit NORMAL VECTOR, h is the unit Otter’s Tree Enumeration Constants 
BINORM AL VECTOR, p is the RADI 
and T is the TORSION, and RADIUS 

us OF CURVATURE, see TREE 

Outdegree 
The number of outward directed EDGES from a given 
VERTEX ina DIRECTED GRAPH. 

and has contact of (at least) third order with C. 

see also CURVATURE, OSCULATING PLANE, RADIUS OF 
CURVATURE, SPHERE, TORSION (DIFFERENTIAL GE- 
OMETRY) 

~~~UZSODIRECTED GRAPH,INDEGREE,LOCAL DEGREE 

Outer Automorphism Group 
A particular type of AUTOMORPHISM GROUP which 
exists only for GROUPS. For a GROUP G, the 
outer automorphism group is the QUOTIENT GROUP 
Aut(G)/ Inn(G), which is the AUTOMORPHISM GROUP 
ofG modulo its INNER AUTOMORPHISM GROUP. 

References 
Kreyszig, E. DiflerentiaE Geometry. New York: Dover, 

pp. 54-55, 1991. 

Osedelec Theorem 
For an n-D MAP, the LYAPUNOV CHARACTERISTIC Ex- 
PONENTS are given by 

see also AUTO 
PHISM GROUP, 

MORPHISM GROUP, INNER AUTOMOR- 
QUOTIENT GROUP 

Outer Product 

see DIRECT PRODUCT (TENSOR) 

for i = 1, 
TERISTIC 

n, where 
NUMBER. 

Xi is the LYAPUNOV CHARAC- 
Oval 

see also LYAPUNOV CHARACTERISTIC EXPONENT, LYA- 
PUNOV CHARACTERISTIC NUMBER 

Ostrowski’s Inequality 
Let f(z) be a monotonic function integrable on [a, b] and 

let f (47 f(b) < 0 and If(a)] 2 [f(b)i, then if g is a REAL 

function integrable on [a, b], 
An oval is a curve resembling a squashed CIRCLE but, 
unlike the ELLIPSE, without a precise mathematical def- 
inition. The word oval derived from 
L‘ovus” for egg* Unlike ellipses, ovals 

the Latin word 
have, sometimes 

only a single axis of reflection symmetry (instead of two). References 
Gradshteyn, I. S. and Ryzhik, I. M. Tables of Integrals, Se- 

Ovals can be constructed with a COMPASS by joining to- 
gether arcs of different radii such that the centers of the 
arcs lie on a line passing through the join point (Dixon 
1991). Albrecht Diirer used this method to design a 
Roman letter font. 

see also CARTESIAN OVALS, CASSINI OVALS, EGG, EL- 
LIPSE, OVOID, SUPERELLIPSE 

ries, and Products, 5th ed. San Diego, CA: Academic 
Press, p. 1100, 1979. 

Ostrowski’s Theorem 
Let A = aij be a MATRIX with POSITIVE COEFFICIENTS 
and X0 be the POSITIVE EIGENVALUE in the FROBENIUS 

THEOREM, thenthen- 1 EIGENVALUES Xj # X0 satisfy 
the INEQUALITY 

References 
Critchlow, K. Time Stands Still. London: Gordon Fraser, 

1979. 
Cundy, H. and Roll&t, A. MathematicaI Models, 3rd ed. 

Stradbroke, England: Tarquin Pub., 1989. 
Dixon, R. Mathographics. New York: Dover, pp. 3-11, 1991. 
Dixon, R. ‘&The Drawing Out of an Egg.” New Sci., July 29, 

1982. 
Pedoe, D. Geometry and the Liberal Arts. London: Pere- 

grine, 1976. 

where 

iI4 = max tZij 

Gj 
m = min Uij 

i,j 

and i,j = 1, 2, . . . . n. 

see also FROBENWS THEOREM 
Oval of Descartes 

see CARTESIAN OvArs 
References 
Gradshteyn, I. S. and Ryzhik, I. M. Tables of Integrals, Se- 

ries, and Products, 5th ed. San Diego, CA: Academic 
Press, p* 1121, 1980. 

Ovals of Cassini 

see CASSINI OVALS 
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Overlapping Resonance Met hod 

see RESONANCE OVERLAP METHOD 

Oversampling 
A signal sampled at a frequency higher than the 
NYQUIST FREQUENCY is said to be oversampled p times, 
where the oversampling ratio is defined as 

P - 
Vsampling 

C -* 
YNyquist 

see also NYQUIST FREQUENCY, NYQUIST SAMPLING 

Ovoid 
An egg-shaped curve. Lockwood (1967) calls the NEGA- 
TIVE PEDAL CURVE ofan ELLIPSE with ECCENTRICITY 
e 5 l/2 an ovoid. 

see also OVAL 

References 

Ovoid 

Lockwood, E. H. A Book of Curves. Cambridge, England: 
Cambridge U niversity Press, p. 157, 1967. 
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P 
p-adic Number 
A p-adic number is an extension of the FIELD of RA:- 
TIONAL NUMBERS such that CONGRUENCES MODULO 
POWERS of a fixed PRIME p are related to proximity in 
the so called “p-adic metric.” 

Any NONZERO RATIONAL NUMBERX canbe represented 

bY 
Par 

GL:=-, 
s (1) 

where p is a PRIME NUMBER, T and s are INTEGERS not 
DIVISIBLE by p, and a is a unique INTEGER. Then define 
the p-adic absolute value of x by 

Ixlp = p-Y 

Also define the p-adic value 

loI - 0. P- 

As an example, consider the FRACTION 

140 297 = 22 l  3-3 l  5 ’ 7 l  11-l 

It has p-adic absolute ralues given by 

I 2972-4 140 I -I 

I$$$3 = 27 

l-l 297 140 5 = i 
I 140 1 -L 
ziv-7 

I 297 140 I 11 = 11. 

The p-adic absolute value satisfies the relations 

1. IzIp 2 0 for all 61: I 

2. jxlp = 0 IFF x = 0, 

3* IXYI, = lxlP lylP for all x and y, 

(2) 

(3) 

(4) 

(5) 
(6) 
(7) 
(8) 
(9) 

4. IZ + yip 5 Izip + IyIp for all =1: and y (the TRIANGLE 
INEQUALITY), and 

5. Ix+ylp 5 max(lxl,, IyIP) for all x and y (the STRONG 
TRIANGLE INEQUALITY). 

In the above, relation 4 follows trivially from relation 5, 
but relations 4 and 5 are relevant in the more general 
VALUATION THEORY. 

The p-adics were probably first introduced by Hensel 
in 1902 in a paper which was concerned with the de- 
velopment of algebraic numbers in POWER SERIES. p- 
adic numbers were then generalized to VALUATIONS by 
Kiirsch&k in 1913. In the early 192Os, Hasse formulated 
the LOCAL-GLOBAL PRINCIPLE (now usually called the 
HASSE PRINCIPLE), which is one of the chief applica- 
tions of LOCAL FIELD theory. Skolem’s p-adic method, 

1295 

which is used in attacking certain DIOPHANTINE EQUA- 
TIONS, is another powerful application of p-adic num- 
bers. Another application is the theorem that the HAR- 
MONIC NUMBERS & are never INTEGERS (except for 

HI 1. A similar application is the proof of the VON 
STAUDT-CLAUSEN THEOREM usingthep-adicvaluation, 
although the technical details are somewhat difficult. 
Yet another application is provided by the MAHLER- 
LECH THEOREM. 

Every RATIONAL x has an “essentially” unique p-adic 
expansion (“essentially” since zero terms can always be 
added at the beginning) 

00 

x= IE ajp3 1 (10) 
j=m 

with m an INTEGER, aj the INTEGERS between 0 and 

P - 1 inclusive, and where the sum is convergent with 
respect to p-adic valuation. If x # 0 and a, # 0, then 
the expansion is unique. Burger and Struppeck (1996) 
show that for p a PRIME and n a POSITIVE INTEGER, 

ln!lp = p-~"-~PoMP--l) 1 

where the p-adic expansion of n is 

and 

n = a0 + alp + a2p2 + . . . + ALPS, (12) 

A,(n) = a0 + al + . . . + aL. 

For sufficiently large n, 

(13) 

ln!l, 5 P 
--72/(2P--2) 

’ 

The p-adic valuation on Q gives rise to the p-adic metric 

d(XYY) = lx - YIP1 (15) 

which in turn gives rise to the p-adic topology. It can 
be shown that the rationals, together with the p-adic 
metric, do not form a COMPLETE METRIC SPACE. The 
completion of this space can therefore be constructed, 
and the set of p-adic numbers QP is defined to be this 
completed space. 

Just as the REAL NUMBERS are the completion of the 
RATIONALS Q with respect to the usual absolute valu- 
ation Ix - yl, the p-adic numbers are the completion of 
Q with respect to the p-adic valuation Ix - yip. The p- 
adic numbers are useful in solving DIOPHANTINE EQ~A- 
TIONS. For example, the equation X2 = 2 can easily be 
shown to have no solutions in the field of 2-adic numbers 
(we simply take the valuation of both sides). Because 
the 2-adic numbers contain the rationals as a subset, we 
can immediately see that the equation has no solutions 
in the RATIONAL% So we have an immediate proof of 
the irrationality of 4. 
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This is a common argument that is used in solving these see AOCATALAN NUMBER,LATTICEPATH,SCHR~DER 
types of equations: in order to show that an equation NUMBER 

has no solutions in (9, we show that it has no solutions 
in a FIELD EXTENSION. For another example, consider 
X2 + 1 = 0. This equation has no solutions in Q because 
it has no solutions in the reals R, and Q is a subset of 
Et. 

Now consider the converse. Suppose we have an equa- 
tion that does have solutions in Ik and in all the QP. 
Can we conclude that the equation has a solution in Q? 
Unfortunately, in general, the answer is no, but there are 
classes of equations for which the answer is yes. Such 
equations are said to satisfy the HASSE PRINCIPLE. 

see also AX-KOCHEN ISOM~RPHISM THEOREM, DIO- 
PHANTINE EQUATION, HARMONIC NUMBER, HASSE 
PRINCIPLE, LUCAL FIELD, LOCAL-GLOBAL PRINCIPLE, 
MAHI,ER-LECH THEOREM, PRODUCT FORMULA, VAL- 
UATION, VALUATION THEORY, VON STAUDT-CLAUSEN 
THEOREM 

References 
Burger, E. B. and Struppeck, T. ‘LDoes .xy=0 -$ Really Con- 

verge? Infinite Series and padic Analysis .” ‘Amer. Math. 
Monthly 103, 565-577, 1996. 

Cassels, J. W. S. and Scott, J. W* Local Fields. Cambridge, 
England: Cambridge University Press, 1986. 

Gouvea, F. Q. P-adic Numbers: An Introduction, 2nd ed. 
New York: Springer-Verlag, 1997. 

Koblitz, N. P-adic Numbers, P-adic Analysis, and Zeta- 
Functions, 2nd ed. New York: Springer-Verlag, 1984. 

Mahler, K. P-adic Numbers and Their Functions, 2nd ed. 
Cambridge, England: Cambridge University Press, 1981. 

P-Circle 

see SPIEKER CIRCLE 

p-Element 

see SEMISIMPLE 

p-Good Path 
A LATTICE PATH from one point to another is p-good if 
it lies completely below the line 

y = (p - 1)x. 

Hilton and Pederson (1991) show that the number of 
p-good paths from (1, Q - 1) to (k, n - k) under the 
condition 2 5 k 5 n - p + 1 < p(k - 1) is - 

References 
Hilton, P. and Pederson, J. “Catalan Numbers, Their Gener- 

alization, and Their Uses . ” Math. Intel. 13, 64-75, 1991. 

p-Group 
A FINITE GROUP of ORDER p” for p a PRIME is called 
a p-group. Sylow proved that every GROUP of this form 
has a POWER-commutator representation on n genera- 
tors defined by 

n 

up 
- 

rI 

PW) 
i- uk 

k=i+l 

for 0 < p(i,k) <p, 1 < i <n and - - - 

n 

[Qj,G] = 
rI 

k=j+l 

(1) 

(2) 

for 0 < p(i,j, k) < p, 1 < i < j < n. Ifp is PRIME and - - - 
f(p) the number of GROUPS of order pm, then 

f  (P> = PArn2 3 (3) 

where 
lim A = & (4) m+oo 

(Higman 1960a,b) l  

see also FINITE GROUP 

References 
Higman, G . “Enumerating p Groups. I. Inequalities .” Proc. 

London Math. Sot. 10, 24-30, 1960a. 
Higman, G. “Enumerating p-Groups. II. Problems Whose 

Solution is PORC.” Proc. London Math. Sot. 10, 566- 
582, 196Ob. 

p’-Group 
X is a p/-group if p does not divide the ORDER of X. 

p-layer 
The player of H, L,I (H) is the unique minimal NORMAL 
SUBGROUP of H which maps onto E(H/O,t(H)). 

see also Bp-THEOREM, L,+BALANCE THEOREM, SIG- 
NALIZER FUNCTORTHEOREM 

P-Polynomial 

see HOMFLY POLYNOMIAL 

where (z) is a BINOMIAL COEFFICIENT, and 

where 1x1 is the FLOUR FUNCTION. 
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Packing P-Problem 
A problem is assigned to the P (POLYNOMIAL time) class 
if the number of steps is bounded by a POLYNOMIAL. 
see dso COMPLEXITY THEORY, NP-COMPLETE PROB- 
LEM, NP-HARD PROBLEM,NP-PROBLEM 

The placement of objects so that they touch in some 
specified manner, often inside a container with specified 
properties. 

see UZSO BOX-PACKING THEOREM, CIRCLE PACKING, 
GROEMER PACKING, HYPERSPHERE PACKING, KE- 
PLER PROBLEM, KISSING NUMBER PACKING DENSITY, 
POLYHEDRON PACKING,~PACE-FILLING POLYHEDRON, 
SPHERE PACKING 

Keferences 
Borwein, 3. M. and Borwein, P. B. Pi and the AGM A Study 

in AnaEytic Number Theory and Computational Complex- 
ity. New York: Wiley, 1987. 

Greenlaw, R.; Hoover, H. J.; and Ruazo, W. L. Limits to 
Parallel Computation: P-Completeness Theory. Oxford, 
England: Oxford University Press, 1995. 

References 
Eppstein, D. “Covering and Packing.” http : //vww . its . uci 

.edu/-eppstein/junkyard/cover.html. 

p-Series 
A shorthand name for a POWER SERIES with a NEGA- 
TIVE exponent, crX1 kMp, where p > 0. 

see also POWER SERIES, RIEMANN ZETA FUNCTION 

Packing Density 
The fraction of a volume filled by a given collection of 
solids. 

see also HYPERSPHERE PACKING, PACKING, SPHERE 
PACKING p-Signature 

Diagonalize a form over the rationals to 
Pad6 Approximant 
Approximants derived by expanding a function as a ra- 
tio of two P OWER SERIES and determining both the 
NUMERATO R and D ENOMINATOR COEFFICIENTS. Pad6 
approximations are usually superior to TAYLOR EX- 
PANSIONS when functions contain POLES, because the 
use of RATIONAL FUNCTIONS allows them to be well- 
represented. 

diag[p” l  A,$ l  B, . . .I, 

where all the entries are INTEGERS and A, B, . , . are 
RELATIVELY PRIME to p. Then the p-signature of the 
form (for p # -1,2) is 

pa +pb +... +4k (mod S), 

where k is the number of ANTISQUARES. For p = -1, 
thepsignatureis SYLVESTER'S SIGNATURE. 

see also SIGNATURE (QUADRATIC FORM) 

The Pad6 approximant RL/O corresponds to the MAC- 
LAURIN SERIES. When it exists, the RL~M E [L/M] 
Pad6 approximant to any POWER SERIES 

A(X) = F ajx’ (1) 
j=O 

P-Symbol 
A symbol employed in a formal PROPOSITIONAL CAL- 
CULUS. 

is unique. If A(X) is a TRANSCENDENTAL FUNCTION, 
then the terms are given by the TAYLOR SERIES about 

References 
Nidditch, P. H. Propositional Calculus. New York: Free 

Press of Glencoe, p* 1, 1962. x0 

a, = $AO(xo). 
. (2) P-Value 

The PROBABILITY that a variate would assume a value 
greater than or equal to the observed value strictly by 
chance: P(z 2 zobserved) l  

The COEFFICIENTS are found by setting 

(3) see also ALPHA VALUE, SIGNIFICANCE 

Paasche’s Index 
The statistical INDEX 

and equating COEFFICIENTS. QM(x) can be multiplied 
by an arbitrary constant which will rescale the other 
COEFFICIENTS, so an addition constraint can be 
The conventional normalization is 

applied. 
C Pnqn 

Pp E ~ 
C PO% ’ 

QM(O) = 1. (4) where pn is the price per unit in period n and qn is the 
quantity produced in period n. 

Expanding (3) gives 
see also INDEX 

PL(x)=po+pl~+...+pLx 
L 

(5) 

&M(X) = 1+ qlx + . l  . + QMX 
M 

. (6) 

References 
Kenney, J. F. and Keeping, E. S. Mathematics of Statistics, 

Pt. 1, 3rd ed. Princeton, NJ: Van Nostrand, p. 65, 1962. 
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These give the set of equations The first few Pad6 approximants for e” are 

a0 = PO 

a1 + a041 = Pl 

a2 + alql + a0q2 = 132 

(7) 

(8) 

(9) 

a~ + aL-lql + l  . . + a0qL = PL 

aL+l + aLq1 + . . . + aL-M+lqM = 0 

(10) 

(11) 

qL+M + aL+M-lql + . . g + aLqM = 0, 

where a, = 0 for n < 0 and qj = 0 for j > AL Solving 
these directly gives 

aL--m+1 UL-m+2 . l  l  aL+l 

l  l  
l  

l  

l  l  . l  

l  . . * 

aL aL+l . . m  
aL+M 

L L L 

c 
aj-MXj 

c 
Uj-M+lXj l  l  * 

c  

UjXj 

[L/&f] = j=M 

j=M-1 j=O 
9 

aL-MH aLeM+ "" a+1 

. l  
. 

l  

l  l  l  * 

. . . . 

aL a-t-1 l  aL+M 

XM xM--- ..* 1 

(13) 

where sums are replaced by a zero if the lower index 
exceeds the upper. Alternate forms are 

L-M 

[L/M] = x ajxj + x~-~+~wE/MW,;MWL/M 

j=O 

L+n 

for 

- - CZjX3 + X L+n+lWTL+M),M w $hfW(L+n)IM 

j=O 

aL-M+l - ZaL-M+2 

. - - . 
* 

aL - xaL+l 

WL/M = 1 

and 0 < n 5 AL 

l  l  . 

aL - xaL+ l  

l  . 

l  . 

l  
. 

l  l  . 

aL+M-1 - xaL+M 1 
(15) 

=Po,&) = 1 

exPo,&) = j+ - 

exPo/2(z) 2 = 
2 - 2X + x2 

exp,/,(x) 6 = 

expl,o(z) = 1 + x 

2+x 
exp&) = 2 - 

exp1/2(x) = 6 
6+2x 

- da: + x2 

exp,,, (4 = 
24+6x 

24-18x+6x2 -x3 

exp2/0 (4 = 

2+2x+x2 

2 

exp,,, (4 = 

6+4x+x2 

6-2x 

12+6x+x2 
exp2/2(x) = 12 - Gx + x2 

exp2,3(x) = 

60+24x+3x2 

60 -36x+9x2 -x3 

exp3,o (4 = 

6+6x+3x2 +x3 

6 

exp3/1 w = 

24+18x+16x2 +x3 

24-6x 

exp3,2 (4 = 
60+36x+9x2 +x3 

60-24x+3x2 

exp3/3 (4 = 
120+60x+12x2+x3 

120-60x+12x2 -x3' 

Two- term identities include 

pL+lw pf, (4 
QM+&) - G$GJ = 

C(L+I),(M+I)2xL+M+1 

QM+~ (4Q’Mb) (16) 

pL+l(x> - = C(L+l)/MC(L+l)/(M+l)xL+M+l PA (4 - - 
QM (2) Q’M (X> Qd+?b(x) 

(17) 

PL (4 PL (4 

%+1(x) - m = 

CL/(M+l)c(L+l)/(M+l)x 
L+M+l 

QM (d&b (2) 

(18) 

pL cx> %+I cx> C(L+1)/(M+1)2xL+M+2 (1g) 
- = 

Q~+dx) - QL QM+~& 

pL+1 P’ (4 L-l ---= 

QM (2) Q’M (4 

CL/(M+l)C(L+l)/MxL+M + CL/M~(L+l)/(M+l)xL+M+l 

QM OQ’M (4 
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PL (4 PA (4 ---= 
QM++) &Z-d4 

CL/(M+l)C(L+l)/MxL+M - CL/MC(L+l)/(M+l)xL+M+l 

h-t1 (+&g-l (2) 
3 

(21) 

where C is the C-DETERMINANT. Three-term identities 
can be derived using the FROBENIUS TRIANGLE IDEN- 
TITIES (Baker 1975, p* 32). 

A five-term identity is 

S(L+l)/MS(L-1)/M - SL/(M-tl)SL/(M-1) = SL/M2. 

(22) 

Cross ratio identities include 

CR / LM - RLI(M+l))(R(L+l)/M - R(L+l)I(M+l)) 

(R / LM - R(L+l)/dRL/(M+l) - R(L+l)/(M+I)) 

- CL/(M+1)c(L+2)/(M+1) - 
C(L+l)/Mc(L+l)/@f+P) (23) 

@L/M - R(L+l)/(M+l))(R(L+l)/M - RL/(M+1)) 
CR / LM - RL/(M+l))(R(L+l)/M - R(L+l)/(M+l)) 

c(L+l)/(1M+l)2a: 

= CL/(M+1)C(L+2)/(M+1) 
(24) 

CR / LM - R(L+l)/(M+l))(R(L+l)/M - RL/(M+l)) ---~ 
cRL/M - R(L+l)/d(RL/(M+l) - R(L+l)/(M+l)) 

- c(L+1)/(M+l)2x - 
c(L+1)/&L+1)/(M+2) (25) 

(R / LM - R(L+l)/(M-l))(RL/(M+l) - R(L+l)/M) 

(R / LM - RL/(M+l))(R(L+l)/(M+l) - R(L+l)/M) 

- c(L+l)/Mc(L+l)/(M+l)jc 
- 

CL/(M+1)C(L+2)/M 
(26) 

CR / L M - R(L--l)/(M+l))(R(L+l)/M - RL/(M+l)) 
CR / LM - R(L+l)/M)(R(L-l)/(M+l) - RL/(M+l)) 

- cL/(M+l~c(L+l)/(M+l)x - 
C(L+1)/MCL/(M+2) - 

(27) 

see also C-DETERMINANT, ECONOMIZED RATIONAL 
APPROXIMATION, FROBENIUS TRIANGLE IDENTITIES 
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1975. 
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Pad6 Conjecture 
If P(z) is a POWER series which is regular for Iz 1 5 1 
except for WJ POLES within this CIRCLE and except for 
x = +l, at which points the function is assumed contin- 
uous when only points 121 5 1 are considered, then at 
least a subsequence ofthe [NJV] PA& APPROXIMANTS 
are uniformly bounded in the domain formed by remov- 
ing the interiors of small circles with centers at these 
POLES and uniformly continuous at z = +1 for 1x1 < 1. - 

see also PADS APPROXIMANT 

References 
Baker, G. A. Jr. “The Pad& Conjecture and Some Con- 

sequences .” sI1.D in Advances in Theoretical Physics, 
Vol. 1 (Ed. K. A. Brueckner). New York: Academic Press, 
pp. 23-27, 1965. 

Padcwan Sequence 
The INTEGER SEQUENCE defined by the RECURRENCE 
RELATION 

P(n) = P(n - 2) + P(n - 3) 

with the initial conditions P(0) = P(1) = P(2) = 1. 
The first few terms are 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, . . . 
(Sloane’s AO00931). The ratio lim,,, P(n)/P(n - 1) 
is called the PLASTIC CONSTANT. 

see UZSO PERRIN SEQUENCE, PLASTIC CONSTANT 

References 
Sloane, N. J. A. Sequence A000931/M0284 in “An On-Line 

Version of the Encyclopedia of Integer Sequences.” 
Stewart, I. “Tales of a Neglected Number.” Sci. Amer. 274, 
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Painlev6 Property 
Following the work of Fuchs in classifying first-order 
ORDINARY DIFFERENTIAL EQUATIONS, PainleG stud- 
ied second-order ODES of the form 

d2Y 
dx2 = w, Y, 4, 

where F is ANALYTIC in x and rational in y and y’. 
Painleve found 50 types whose only movable SINGULAR- 
ITIES are ordinary POLES. This characteristic is known 
as the Painlev6 property. Six of the transcendents de- 
fine new transcendents known as PAINLEV~ TRANSCEN- 
DENTS, and the remaining 44 can be integrated in terms 
of classical transcendents, quadratures, or the PAINLEV~ 
TRANSCENDENT% 

see also PAINLEV~ TRANSCENDENTS 

Painlevh Tkanscendents 

y” = 6y2 + x (1) 

yrr = 2y3 + xy + a (2) 

Y 
I2 

yri = 7 - 

1 P 6 
,+ay3+-+I+-. 
XY XY2 x Y 

(3) 
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Transcendents 4-6 do not have known first integrals, but 
all transcendents have first integrals for special values of 
their parameters except (1). Painlevh found the above 
transcendents (1) to (3), and the rest were investigated 
by his students. The sixth transcendent was found by 
Gambier and contains the other five as limiting cases. 

Paley Class 
The Paley class of a POSITIVE INTEGER m E 0 (mod 4) 
is defined as the set of all possible QUADRUPLES 

(k, e, q, n) where 

m = 2e(q” + l), 

see SO PAINLEV~ PROPERTY 
4 is an ODD PRIME, and 

Pair 
A SET of two numbers or objects linked in some way are 
said to be a pair. The pair a and b are usually denoted 
(a, b). In certain circumstances, pairs are also called 
BROTHERS or TWINS. 

if q =o 
if qn - 3 E 0 (mod 4) 
if qn - 1s 0 (mod 4) 

undefined otherwise. 

see UZSO AMICABLE PAIR, AUGMENTED AMICABLE 
PAIR, BROWN NUMBERS, FRIENDLY PAIR, HEXAD, 
HOMOGENEOUS NUMBERS, IMPULSE PAIR, IRREGU- 
LAR PAIR, LAX PAIR, LONG EXACT SEQUENCE OF A 

PAIR AXIOM, MONAD, ORDERED PAIR, PERKO PAIR, 
QUADRUPLET, QUASIAMICABLE PAIR, QUINTUPLET, 
REDUCED AMICABLE PAIR, SMITH BROTHERS, TRIAD, 

TRIPLET, TWIN PEAKS, TWIN PRIMES, TWINS, UNI- 
TARY AMICABLE PAIR, WILF-ZEILBERGER PAIR 

see also HADAMARD MATRIX, PALEY CONSTRUCTION 

Paley Construction 
HADAMARD MATRICES H, can be constructed using 
GALO~S FIELD GF(p”) when p = 42 - 1 and vz is ODD. 
Pick a representation T RELATIVELY PRIME to p. Then 
by coloring white L(p - 1)/Z] (where IzJ is the FLOOR 
FUNCTION) distinct equally spaced RESIDUES mod p (TO, 
T, T2, l  l  l  ; r”, r2, r4, . . . ; etc.) in addition to 0, a HAD- 
AMARD MATRIX is obtained if the POWERS of T (mod 
p) run through < L(p - 1)/Z]. For example, 

n = 12 = 111 + 1 = 2(5 + 1) = 22(2 + 1) 

Pair Sum 
Given an AMICABLE PAIR (m,n), the quantity 

h-4 = u(n) = s(m) + s(n) = m -+ n 

is called the pair sum, where a(n) is the DIVISOR FUNC- 
is of this form with p =11=4x3-landm=l. Since 

TION and s(n) is the RESTRICTED DIVISOR FUNCTION. 
= 1, we are dealing with GF(ll), so pick p = 2 and 

Impute its RESIDUES (mod ll), which are 
see also AMICABLE PAIR 

Paired &Test 
Given two paired sets Xi and Yi of n measured values, 
the paired t-test determines if they differ from each other 
in a significant way. Let 

then define t by 

p” G 1 

p1 E 2 

p2 E 4 

p3 c 8 

p4 E 16~5 

p5 E 10 

p6 E 20 G 9 

p7 s 18 c 7 

P *=14=3 

pg s 6 
10 

P E 12 = 1. 

This statistic has n - 1 DEGREES OF FREEDOM. 

A table of STUDENT’S ~-DISTRIBUTION confidence in- 

Picking the first 111/2J = 5 RESIDUES and adding 0 
gives: 0, 1, 2, 4, 5, 8, which should then be colored 
in the MATRIX obtained by writing out the RESIDUES 

terval can be used to determine the significance level at increasing to the left and up along the border (0 through 
which two distributions differ. p- 1, followed b y oo), then adding horizontal and vertical 
see also FISHER SIGN TEST, HYPOTHESIS TESTING, coordinates to get the residue to place in each square. 
STUDENT’S ~-DISTRIBUTION, WILCOXON SIGNED RANK 
TEST 

References 
Goulden, C. H. Methods of Statistical Analysis, 2nd ed. New 
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-00 w  00 00 00 00 00 00 00 00 00 00’ 
10 0 1 2 3 4 5 6 7 8 9 00 
9 10 0 1 2 3 4 5 6 7 8 00 
8 9 10 0 1 2 3 4 5 6 7 00 

7 8 9 10 0 1 2 3 4 5 6 00 
6 7 8 9 10 0 1 2 3 4 5 00 
5 6 7 8 9 10 0 1 2 3 4 00 
4 5 6 7 8 9 10 0 1 2 3 00 
3 4 5 6 7 8 9 10 0 1 2 00 
2 3 4 5 6 7 8 9 10 0 1 00 
1 2 3 4 5 6 7 8 9 10 0 00 

LO 1 2 3 4 5 6 7 8 9 10 00. 

HIa can be trivially constructed from Hd 8 Hd* Hz0 
cannot be built up from smaller MATRICES, so use n = 
20 = 19 + 1 = 2(32 + 1) = 22(22 + 1). Only the first 
form can be used, with p = 19 = 4 x 5 - 1 and KQ = 1. 
We therefore use GF(19), and color 9 RESIDUES plus 0 

white. Hz4 can be constructed from Ha 8 Hl2. 

Now consider a more complicated case. For n = 28 = 
33 + 1 = 2(13+ l), the only form having p = 41- 1 is the 
first, so use the GF(33) field. Take as the modulus the 
IRREDUCIBLE POLYNOMIAL a3+2~+1,written1021. A 
four-digit number can always be written using only three 
digits, since ZOOO- 1021 E 0012 and 2000-2012 = 0021. 
Now look at the moduli starting with 10, where each 
digit is considered separately. Then 

x0 E 1 x1 E 10 x2 E 100 
x3 E 1000 G 12 x4 = 120 - x5 =1 1200 E 212 
x8 = 2120 E 111 
x0 z 2020 E 11 

x7 E 1100 E 122 x8 E 1220 = 202 
xl0 E 110 xl1 E 1100-L 112 

xl2 E 1120 E 102 xl3 F 1020 E 2 xl4 = 20 
Xl5 E 200 xl6 E 2000 E 21 xl7 i 210 
xl8 = 2100 E 121 - xl0 E 1210 E 222 x20 = 2220 G 211 
X21 s 2110 E 101 z22 E 101 E 22 X23 L 220 
x24 = 2200 G 221 - x25 s 2210 s 201 x26 G 2010 E 1 

Taking the alternate terms gives white squares as 000, 
001, 020, 021, 022, 100, 102, 110, 111, 120, 121, 202, 
211, and 221. 
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Paley’s Theorem 
Proved in 1933. If q is an ODD PRIME or Q = O]and n 
is any POSITIVE INTEGER, then there is a HADAMARD 
MATRIX of order 

m = 23” + 1), 

where e is any POSITIVE INTEGER such that m = 
0 (mod 4). If nt is of this form, the matrix can be 
constructed with a PALEY CONSTRUCTION. If m is di- 
visible by 4 but not of the form (l), the PALEY CLASS is 
undefined. However, HADAMARD MATRICES have been 
shown to exist for all m = 0 (mod 4) for m < 428. 

see UZSO HADAMARD MATRIX, PALEY CLASS, PALEY 

CONSTRUCTION 

Palindrome Number 

see PALINDROMIC NUMBER 

Palindromic Number 
A symmetrical number which is written in some base b 
as ala2 ..* a2al. The first few are 0, 1, 2, 3, 4, 5, 6, 7, 
8, 9, 11, 22, 33, 44, 55, 66, 77, 88, 99, 101, 111, 121, . . . 
(Sloane’s A002113). 

The first few n for which the PRONE NUMBER Pn is 

palindromic are 1, 2, 16, 77, 538, 1621, . . . (Sloane’s 
A028336), and the first few palindromic numbers which 
are PRONE are 2, 6, 272, 6006, 289982, . . . (Sloane’s 
A028337). The first few numbers whose squares are 
palindromic are 1, 2, 3, 11, 22, 26, . . . (Sloane’s 
A002778), and the first few palindromic squares are 1, 
4, 9, 121, 484, 676, . l  . (Sloane’s A002779). 

see ~~DEMLO NUMBER,~ALINDROMIC NUMBERCON- 
JECTURE,REVERSAL 
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de Gee&, P. “Palindromic Squares." http: //wwu .ping* be/ 

-ping6758/square.htm. 
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On-Line Version of the Encyclopedia of Integer Sequences.” 

Palindromic Number Conjecture 
Apply the 196~ALGORITHM, which consists of taking 
any POSITIVE INTEGER of two digits or more, revers- 
ing the digits, and adding to the original number. Now 
sum the two and repeat the procedure with the sum. 
Of the first 10,000 numbers, only 251 do not produce a 
PALINDROMIC NUMBER in < 23 steps (Gardner 1979). - 

It was therefore conjectured that all numbers will even- 
tually yield a PALINDROMIC NUMBER. However, the 
conjecture has been proven false for bases which are a 
POWER of 2, and seems to be false for base 10 as well. 
Among the first 100,000 numbers, 5,996 numbers appar- 
ently never generate a PALINDROMIC NUMBER (Gruen- 
berger 1984). The first few are 196, 887, 1675, 7436, 
13783, 52514, 94039, 187088, 1067869, 10755470, . . . 
(Sloane’s A006960), 

It is conjectured, but not proven, that there are an infi- 
nite number of palindromic PRIMES. With the exception 
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of 11, palindromic PRIMES must have an ODD number 
of digits. 

see also 196~ALGORITHM 
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Pancake Cutting 

see CIRCLE CUTTING 

Pancake Theorem 
The 2-D version ofthe HAM SANDWICH THEOREM. 

Pandiagonal Square 

see PANMAGIC SQUARE 

Pandigital 
A decimal INTEGER which contains -each of the digits 
from 0 to 9. 

Panmagic Square 

I I I I I I 
8 17 1 15 24 

22 6 20 4 13 

If all the diagonals (including those obtained by “wrap- 
ping around” the edges) of a MAGIC SQUARE, as well 
as the usual rows, columns, and main diagonals sum 
to the MAGIC CONSTANT, the square is said to be a 
PANMAGIC SQUARE (also called DIABOLICAL SQUARE, 
NASIK SQUARE, or PANDIAGONAL SQUARE). NO pan- 
magic squares exist of order 3 or any order 4K+2 for k an 
INTEGER. The Siamese method for generating MAGIC 
SQUARES produces panmagic squares for orders 6k III 1 
with ordinary vector (2, 1) and break vector (1, -1). 

1 15 24 8 17 

23 7 16 5 14 

20 4 13 22 6 

12 21 10 19 3 

9 18 2 11 25 

The LO SHU is not panmagic, but it is an ASSOCIATIVE 
MAGIC SQUARE. Order four squares can be panmagic or 
ASSOCIATIVE, but not both. Order five squares are the 
smallest which can be both ASSOCIATIVE and panmagic, 
and 16 distinct ASSOCIATIVE panmagic squares exist, 
one of which is illustrated above (Gardner 1988). 

The number of distinct panmagic squares of order 1, 
2, ..* are 1, 0, 0, 384, 3600, 0, l  . . (Sloane’s A027567, 
Hunter and Madachy 1975). Panmagic squares are re- 
lated to HYPERCUBES. 

see also ASSOCIATIVE MAGIC SQUARE, HYPERCUBE, 

FRANKLIN MAGIC SQUARE, MAGIC SQUARE 
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Pantograph 

A LINKAGE invented in 1630 by Christoph Scheiner for 
making a scaled copy of a given figure. The linkage 
is pivoted at 0; hinges are denoted 0. By placing a 
PENCIL at P (or P’), a DILATED image is obtained at 
P’ (or P). 

see also LINKAGE 

Papal Cross 

see also CROSS 
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Pappus’s Centroid Theorem 
The SURFACE AREA ofa SURFACE OF REVOLUTION is 

given by 

S solid of rotation 

= [perimenter] x [distance traveled by centroid], 

and the VOLUME of a SOLID OF REVOLUTION is given 

bY 

V solid of rotation 

= [cross-section area] x [distance traveled bY centroidl . 

see also CENTROID (GEOMETRIC), CROSS-SECTION, 
PERIMETER, SOLID OF REVOLUTION, SURFACE AREA, 
SURFACE OF REVOLUTION, TOROID, TORUS 
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If B divides AC in the GOLDEN RATIO 4, then the cir- 
cles in the chain satisfy a number of other special prop- 
erties (Bankoff 1955). 

~~~UZSOARBEL~S,C~XETER'SLOX~DROMICSEQUENCE 
OF TANGENT CIRCLES, SODDY CIRCLES, STEINER 
CHAIN 
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Pappus Chain 

Inthe ARBELOS, constructachainof TANGENT CIRCLES 
starting with the CIRCLE TANGENT to the two small 
interior semicircles and the large exterior one. Then the 
distance from the center of the first INSCRIBED CIRCLE 
to the bottom line is twice the CIRCLE'S RADIUS, from 
the second CIRCLE is four times the RADIUS, and for the 
nth CIRCLE is 2n times the RADIUS. The centers of the 
CIRCLES lie on an ELLIPSE, and the DIAMETER of the 
nth CIRCLE Cn is (l/n)th PERPENDICULAR distance to 
the base of the SEMICIRCLE. This result was known to 
Pappus, who referred to it as an ancient theorem (Hood 
1961, Cadwell 1966, Gardner 1979, Bankoff 1981). The 
simplest proof is via INVERSIVE GEOMETRY. 

If T = AB/AC, th en the radius of the nth circle in the 
pappus chain is 

T - 
(1 - r)r 

n - 2[n2(1 - r)2 + T] * 

This equation can be derived by iteratively solving the 
QUADRATIC FORMULA generated by DESCARTES CIR- 
CLE THEOREM for the radius of the SODDY CIRCLE. 
This general result simplifies to rn. = l/(6 + n2) for 
T = 2/3 (Gardner 1979). Further special cases when 
AC = 1 + AB are considered by Gaba (1940). 

Pappus-Guldinus Theorem 

see PAPPUS% CENTROID THEOREM 

Pappus’s Harmonic Theorem 
z 

D 

: 

c 

A W B Y 

AW, AB, and AY in the above figure are in a HAR- 
MONIC RANGE. 

see also CEVA'S THEOREM, MENELAUS' THEOREM 
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Pappus’s Hexagon Theorem 

B 
c 

A 

z 

% 

x - -- - -- 

D E F 

If A, B, and C are three points on one LINE, D, E, and 
F are three points on another LINE, and AE meets BD 
at X, AF meets CD at Y, and BF meets GE at 2, then 
the three points X, Y, and 2 are COLLINEAR. Pappus’s 
hexagon theorem is essentially its own dual according to 
the DUALITY PRINCIPLE of PROJECTIVE GEOMETRY. 
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see also CAYLEY-BACHARACH THEOREM, DESARGUES’ 
THEOREM, DUALITY PRINCIPLE, PASCAL’S THEOREM, 
PROJECTIVE GEOMETRY 

References 
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Pappus’s Theorem 
There are several THEOREMS that generally are known 
by the generic name “Pappus’s Theorem.” 

see also PAPPUS’S CENTROID THEOREM, PAPPUS 
CHAIN, PAPPUS’S HARMONIC THEOREM, PAPPUS% 
HEXAGON THEOREM 

Parabiaugmented Dodecahedron 

see JOHNSON SOLID 

Parabiaugmented Hexagonal Prism 

see JOHNSON SOLID 

Parabiaugmented Truncated Dodecahedron 

see JOHNSON SOLID 

Parabidiminished Rhombicosidodecahedron 

see JOHNSON SOLID 

Parabigyrate Rhombicosidodecahedron 

see JOHNSON SOLID 

0.8, 

0.6. 

O-d- 

0.2. 

t/ . avectrix 7 

*‘he setY”Gf all points 5; the PLANE equidistant from a 
given LINE (the DIRECTRIX) and a given point not on 
the line (the FOCUS). 

The parabola was studied by Menaechmus in an attempt 
to achieve CUBE DUPLICATION. Menaechmus solved the 
problem by finding the intersection of the two parabolas 
X2 = y and y2 = 2x:. Euclid wrote about the parabola, 
and it was given its present name by Apollonius. Pascal 
considered the parabola as a projection of a CIRCLE, and 
Galileo showed that projectiles falling under uniform 
gravity follow parabolic paths. Gregory and Newton 
considered the CATACAUSTIC properties of a parabola 
which bring parallel rays of light to a focus (MacTutor 
Archive). 

Parabola 

For a parabola opening to the right, the equation in 
CARTESIAN COORDINATES is 

J(x-p)2+y2 =x-+p (1) 

(x - p)” -+ y2 = (x + p)” (2) 

X2 -2px+p2+y2=x2+2pxtp2 (3) 

y2 = 4px* (4) 

If the VERTEX is at (x0, yo) instead of (0, 0), the equa- 
tion is 

(y - yo)2 = 4p(x - x0)* 

If the parabola opens upwards, 

(5) 

X2 = 4PY (6) 

(which is the form shown in the above figure at left). 
The quantity 4p is known as the LATUS RECTUM. In 
POLAR COORDINATES, 

(7) 

In PEDAL COORDINATES withthe PEDAL POINT at the 
FOCUS, the equation is 

p2 = ar. (8) 

The parametric equations for the parabola are 

2 = 2at (9) 

Y = at’. w  

The CURVATURE, 
GLE are 

ARC LENGTH, and TANGENTIAL AN- 

K(t) = 
2(1 +;y (11) 

s(t) = t& + t2 + sinhA t 

4(t) = tan-l t. 

The TANGENT VECTOR of the parabola is 

(12) 

(13) 

1 
XT(t) = - 

dW 
(14 

yT(t) = t 
JiTF 

(15) 

The plots below 
to a parabola. 

show the normal and tangent vectors 



Parabola Caustic Parabola Inverse Curve 1305 

see also CONIC SECTION, ELLIPSE, HYPERBOLA, QUAD- 
Rfmc CURVE, REFLECTION PROPERTY, TSCHIRN- 
HAUSEN CUBIC PEDAL CURVE 

References 
Beyer, W. H. CRC Standard Mathematical Tables, 28th ed. 

Coca Raton, FL: CRC Press, p. 198, 1987. 
Casey, J. “The Parabola.” Ch. 5 in A Treatise on the An- 

alytical Geometry of the Point, Line, Circle, and Conic 
Sections, Containing an Account of Its Most Recent Exten- 
sions, with Numerous Examples, 2nd ed., rev. enl. Dublin: 
Hodges, Figgis, & Co., pp. 173-200, 1893. 

Coxeter, H. S. M. “Conies." $8.4 in Introduction to Geome- 
try, 2nd ed. New York: Wiley, pp. 115419, 1969. 

Lawrence, J. D. A Catalog of Special Plane Curves. New 
York: Dover, pp. 67-72, 1972. 

Lee, X. “Parabola.” http://www.best.com/-xah/Special 
PlaneCurves-dir/Parabola-dir/parabola. html. 

Lockwood, E. H. “The Parabola.” Ch. 1 in A Book of Curves. 
Cambridge, England: Cambridge University Press, pp. 2- 
12, 1967. 

MacTutor History of Mathematics Archive. “Parabola.” 
http: //www-groups .dcs, St-and. ac .uk/-history/Curves 
/Parabola. html. 

Pappas, T. “The Parabolic Ceiling of the Capitol.” The 
Joy of Mathematics. San Carlos, CA: Wide World Publ./ 
Tetra, pp. 22-23, 1989. 

Parabola Caustic 
The CAUSTIC of a PARABOLA with rays PERPENDICU- 
LAR to the axis of the PARABOLA is TSCHIRNHAUSEN 
CUB1C. 

Parabola Evolute 
Given a PARABOLA 

y=x2, 

the parametric equation and its derivatives are 

x=t x1 = t Y’ = 2t 

y = t2 XII = 0 y” = 2. 

The RADIUS OF CURVATURE is 

R = (x’2 + y’2)3’2 _ (1+ 4t2)3’2 
xty” _ x”yt - 2 ’ 

The TANGENT VECTOR is 

so the parametric equations of the evolute are 

t = -4p 

rl= $ +3t2, 

(1) 

(2) 

(3) 

(4 

(5) 
(6) 

and 

+(q - h) = (-$)2’3 = 32<)2’3, 

The EVOLUTE is therefore 

This is known as NEILE'S PARABOLA and is a SEMICU- 
BICAL PARABOLA. From a point above the evolute three 
normals can be drawn to the PARABOLA, while only one 
normal can be drawn to the PARABOLA from a point 
below the EVOLUTE. 

see UZSO NEILE'S PARABOLA, PARABOLA, SEMICUBICAL 
PARABOLA 

Parabola Inverse Curve 
The INVERSE CURVE for a PARABOLA givenby 

x = at2 (1) 

y = 2at (2) 

with INVERSION CENTER (xo,yo) and INVERSION RA- 
DIUS k is 

x=x0+ 
k(at2 - x0) 

(at2 + XO)~ + (2at - 90)” 

k(2at - y0) 

’ = ‘O + (at2 + ~0)~ + (2at - y~)~ ’ 

(3) 

(4 

For (x0, yo) = (a,O) at the Focus, the INVERSE CURVE 
is the CARDIOID 

2 
iqt" - 1) 

= a + a(1 + t2)2 

2kt 
Y= a(1 + t2)2 * 
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For (~,y~) = (O,O)atthe VERTEX, the INVERSE CURVE 
is the CISSOID OF DIOCLEs 

k 

x = a(4 + t2) 

2k 
Y== 

at(4 + t”) l  

Parabola Involute 

1 ‘1 
+=djq-@ 2t [ 1 

ds2 = ldr12 = (1 + 4t2) dt2 

ds = dl + 4t2 dt 

(7) 

(8) 

(1) 

(21 

(3) 

(4) 

s = / dwdt = ;tdw+ + sinh-r(2t). (5) 
J 

So the equation of the INVOLUTE is 

+tJw + i sinh-‘(2t) 1 

&TiiF [ I 2t 

t - i sinh-‘(2t) 1 -sinhW1(2t) l  

(6) 

Parabola Pedal Curve 

Onthe DIRECTRIX, the PEDAL CURVE ofa PARABOLA is 
a STROPHOID (top left). On the foot ofthe DIRECTRIX, 
it is a RIGHT STROPHOID (top middle). On reflection of 
the Focus in the DIRECTRIX, it is a MACLAURIN TRI- 
SECTRIX (top right). On the VERTEX,~~~S~ CISSOID OF 
DIOCLES (bottom left). On the FOCUS, it is a straight 
line (bottom right). 

References 
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Parabolic Coordinates 

Parabolic Coordinates 

A system of CURVILINEAR COORDINATES in which two 
sets of coordinate surfaces are obtained by revolving the 
parabolas of PARABOLIC CYLINDRICAL COORDINATES 
about the X-AXIS, which is then relabeled the Z-AXIS. 
There are several notational conventions. Whereas 
(u, w, 0) is used in this work, A&en (1970) uses (& 7, cp). 

The equations for the parabolic coordinates are 

x= uv cos e (1) 
y = uvsin9 (2) 
z = $(u” - v2), (3) 

where u E [0, oo), w  f [0, oo), and 8 f [0,27r). To solve 
for u, w, and 0, examine 

x2 + y2 + z2 = u2v2 + a<?? - 2u2v2 + v”) 

so 

and 

We therefore 

The SCALE FACTORS are 

h, = du2 + v2 

h, = du2 + v2 

he = UV. 



Parabolic Cyclide Parabolic Cylinder lhction 

The LINE ELEMENT is 

ds2 = (u” + v2)(du2 -+- dv2) -t u22r2 d02, (14 

and the VOLUME ELEMENT is 

Parabolic Cylinder Function 
These functions are sometimes called WEBER FUNC- 
TIONS. Whittaker and Watson (1990, p. 347) define the 
parabolic cylinder functions as solutions to the WEBER 
DIFFERENTIAL EQUATION 

dV = uv(u2 + v”) dudvdk (15) 

The LAPLACIAN is 

o”f= l [” (uv%) + g (uvgf)] uv(u2 + v2) du 
+ 1 a2f -- u2v2 de2 

- - & [g (UE) +g (v&f)] + &2g 
1 1 af a”f - - - --+=+ laf S"f 1 d2f -- 

u2 -I- v2 ( u du v av +w +-- 
> u2v2 a2 ’ 

(16) 

The HELMHOLTZ DIFFERENTIAL EQUATION is SEPARA- 
BLE in parabolic coordinates. 

see UESO CONFOCAL PARABOLOIDAL COORDINATES, 
HELMHOLTZ DIFFERENTIAL EQUATION-PARABOLIC 
COORDINATES, PARABOLIC CYLINDRICAL COORDI- 
NATES 

References 
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ematical Methods for Physicists, 2nd ed. Orlando, FL: 
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Parabolic Cyclide 
A CYCLIDE formed by inversion ofa STANDARD TORUS 
when the sphere of inversion is tangent to the torus. 

see also PARABOLIC HORN CYCLIDE, PARABOLIC RING 
CYCLIDE, PARABOLIC SPINDLE CYCLIDE 

Parabolic Cylinder 

A QUADRATIC SURFACE givenbythe equation 

x2 + 27% = 0. 
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d2D&) + ( + I 
dz2 n 2- 

$2)Dn(z) = 0. (1) 

The two independent solutions are given b 
D-n-&ei”/2), where 

Dn(z) = 2n/2+1/4z-1/2 W,lz+l,4,-1,4(~z2) 

- - 
Mn/2+1/4,-1/4 

D&z) and 

(2) 

-I- 

q+2n/2+v4a-w 

I?(+) 
Ma,2+1,4,1,4(+2)* (3) 

Here, W&) is a WHITTAKER FUNCTION and 

Ma&) = &(a; b; Z) are CONFLUENT HYPERGEOMET- 
RIG FUNCTIONS. 

Abramowitz and Stegun (1972, p. 686) define the para- 
bolic cylinder functions as solutions to 

ytt + (ax2 + bx + c) = 0. (4 

This can be rewritten by COMPLETING THE SQUARE, 

ytt+ [a(,.&)2-~+iJycOm (5) 

Now letting 

b 
U =x+z 

du = dx 

(6) 

(7) 

gives 

d2Y 
u + (au’ + d)y = 0 (8) 

where 

(9) 

Equation (4) has the two standard forms 

ytt - (ix2 + a)y = 0 

ytt + (ax” - a)y = 0. 

(10) 

(11) 

For a general a, the EVEN and ODD solutions to (10) 
are 

yl(x) = eBxzi4 IF&a + a; f; ix”) 

yz(x) = xe-x2’4 1Fl(+ + $3; $x2), 

(12) 

(13) 



1308 Parabolic Cylinder Function 

where &(a;b;z) is a CONFLUENT HYPERGEOMETRIC 
FUNCTION. If y(a, x) is a solution to (lo), then (11) has 
solutions 

y( *ia, xeTiTi4), y(fia, -xeTzsr’4). (14) 

Abramowitz and Stegun (1972, p* 687) define standard 
solutions to (10) as 

U(~,X) = COS[~T( 2 + +)]YI - sin[r( + + +)]E2 (15) 

V(a,x) = 
sin[7r( + + +)]Yl + cos[fl( + + +)]Y2 

r( L - a) 
7 (16) 

2 

where 

1 r(+ - $u) 
K = fi 2u/2+1/4 y1 

1 I-($ - $a> -- - fi p/2+1/4 e -x2’41Fl(~a + +; +; +x2) (17) 

1 r(3 - &) 
yz E fi 2a/2+1/4 y2 

(18) 

In terms of Whittaker and Watscn’s functions, 

q, x) = D--a-1/2 (2) (19) 
v(a, 4 

q; + a>[s+ap-,-l/2(x) + D-a-1/2(-X)] 
- 
- l  

7T 

(20) 

For NONNEGATIVE INTEGER n, the solution D, reduces 
to 

=e -x2/4Hen(z), 

(21) 
where I&(z) is a HERMITE POLYNOMIAL and He, is a 
modified HERMITE POLYNOMIAL. 

The parabolic cylinder functions D, satisfy the RECUR- 
RENCE RELATIONS 

&+1(z) - z%(z) + uD,-I(Z) = 0 (22) 

D;(z) + +D&) - vD,-&z) = 0. (23) 

The parabolic cylinder function for integral n can be 
defined in terms of an integral by 

D&z) = 1 s 7r 
sin(n0 - z sin 0) ~59 (24 

7r 0 

Parabolic Cylindrical Coordinates 

(Watson 1966, p. 308), which is similar to the ANGER 
FUNCTION. The result 

Dm(x)Dn.(x) dx = 6,,n!&, (25) 

where 6ij is the KRONECKER DELTA, can also be used 
to determine the COEFFICIENTS in the expansion 

(26) 

as 
1 

a, = - 
s- n!fi --oo 

Dn@) f (t> dt- (27) 

For v real, 

s L-1 
7DY(t)12 & = &22-3/24O(2 

1 
0 

$1 -;p0(-2v) 

--Y 

(28) 

(Gradshteyn and Ryzhik 1980, p. 885, 7.711.3), where 
I?(X) is the GAMMA FTJNCTION and 40(z) is the POLY- 
GAMMA FUNCTION of order 0. 

see also ANGER FUNCTION, BESSEL FUNCTION, DAR- 
WIN'S EXPANSIONS, HH FUNCTION, STRUVE FUNCTION 
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Parabolic Cylindrical Coordinates 
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A system of CURVILINEAR COORDINATES. There are 
several different conventions for the orientation and des- 
ignation of these coordinates. Arfken (1970) defines co- 
ordinates (& 7, z) such that 

In this work, following Morse and Feshbach (1953), the 
coordinates (u, w, z) are used instead. In this convention, 
the traces of the coordinate surfaces of the ZCY-PLANE 
are confocal PARABOLAS with a common axis. The u 
curves open into the NEGATIVE X-AXIS; the v curves 
open into the POSITIVE X-AXIS. The u and w  curves 
intersect along the ~-AXIS. 

Y = UZI (5) 

z = z, (6) 

where u E [O,m), w  E [0, oo), and z E (-m,m)~ The 
SCALE FACTORS are 

hl = &L” + u2 

h2 = d u2 + v2 (8) 
hJ = 1. (9) 

LAPLACE'S EQUATION is 

O”f = -& ($+fg) +g. (10) 

The HELMHOLTZ DIFFERENTIAL EQUATION is SEPARA- 
BT,E in parabolic cylindrical coordinates. 

see UZSO CONFOCAL PARABOLOIDAL COORDINATES, 
HELMHULTZ DIFFERENTIAL EQUATION-PARABOLIC 
CYLINDRICAL COORDINATES, PARABOLIC COORDI- 
NATES 
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Parabolic Fixed Point 
A FIXED PRINT of a LINEAR TRANSFORMATION for 
which the resealed variables satisfy 

(6 - a)2 + 4py = 0. 

see also ELLIPTIC FIXED POINT (MAP), HYPERBOLIC 
FIXED POINT (MAP),LINEAR TRANSFORMATION 

Parabolic Geometry 

see EUCLIDEAN GEOMETRY 

Parabolic Horn Cyclide 

A PARABOLIC CYCLIDE formed by inversion of a HORN 
TORUS when the inversion sphere is tangent to the 
TORUS. 
see also CYCLIDE, PARABOLIC RING CYCLIDE, PARA- 
BoLIC S PINDLE CYCLIDE 

Parabolic Partial Differential Equation 
A PARTIAL DIFFERENTIAL EQUATION of second-order, 
i.e., one of the form 

Auxx + 2Bux, -I- Cu,, + Duz -I- Eu, -I- F = 0, (1) 

is called parabolic if the MATRIX 

satisfies det (z) = 0. The HEAT CONDUCTION EQUA- 
TION and other diffusion equations are examples. Initial- 
boundary conditions are used to give 

u(x, t) = g(x, t) for x f XI, t > 0 (3) 

u(x, 0) = v(x) for 2 E s2, (4) 

where 

holds in s2. 

uxx = f @x9 uy, u, 2, Y) (5) 

see also ELLIPTIC PARTIAL DIFFERENTIAL EQUATION, 
HYPERBOLIC PARTIAL DIFFERENTIAL EQUATION,PAR- 
TIAL DIFFERENTIAL EQUATION 

Parabolic Point 
A point p on a REGULAR SURFACE iI4 E Iw3 is said to 
be parabolic if the GAUSSIAN CURVATURE K(p) = 0 

but S(P) # 0 ( w  h ere S is the SHAPE OPERATOR), or 
equivalently, exactly one of the PRINCIPAL CURVATURES 
~1 and ~2 is 0. 

see also ANTICLASTIC, ELLIPTIC POINT, GAUSSIAN 
CURVATURE, HYPERBOLIC POINT, PLANAR POINT, 
SYNCLASTTC 

References 
Gray, A. Modern Differential Geometry of Curves and Sur- 
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Parabolic Ring Cyclide 

A PARABOLIC CY Y LIDE formed by inversion of a RING 
TORUS when the inversion sphere is tangent to the 
TORUS. 

see also CYCLIDE, PARABOLIC HORN CYCLIDE, PARA- 
BOLIC SPINDLE CYCLIDE 

Parabolic Rotation 
The MAP 

Xl =x+1 (1) 

y' x 257 + y + 1, (2) 

which leaves the PARABOLA 

X 
I2 - yt = (x + 1)2 - (2x + y + 1) = x2 - y (3) 

invariant. 

see ah PARABOLA, ROTATION 

Parabolic Segment 

t 

Y 

s --- 
x 

Y 

The ARC LENGTH of the parabolic segment shown above 
is given by 

Y2 s=dm+&n 
2x+qg 

Y 

The AREA contained between the curves 

y = x2 

Y =ax+b 

can be found by eliminating y, 

x2 - ux - b = 0, 

so the points of intersection are 

xh = +(a* Ja2+4b). 

(1) 

(2) 
(3) 

(4 

(5) 

Therefore, for the AREA to be NONNEGATIVE, a2+4b > 
0, and 

%t= 4 qa2 * 2aJa2+b2+ a2 + 4b) 

= +(2a2 +4bzk 2aJa2+4b) 

- $(a2+2bfaJa2$4b), - 

so the AREA~~ 

“+ 
A= [(ax + b) - x2] dx 

(6) 

- - 
[ 

1 3 (a+&2+4b)/2 
+x2 +bx- 3x ] 

(a-&qz)/2' 
(7) 

Now, 

2 2 
X+ -x- =a 

[ 
(a” + 2&7-z+ a2 + 4b) 

- a2- ( 2aJa2+4b + a2 + 4b) 1 
= i [4adG] = aJa2+4b (8) 

3 3 
x+ -x- = (x+ - x-)(x+" + x-x+ + xe2) 

= Ja2+~{+(a2+2aJa2+4b+a2+4b) 

+$[a2 -(a2+4b)]+ :(a”- 2aJa2+4b + a2 + 4b) 
> 

- aJa2$-4b(4a2 + 4b) = Ja2+4b(a2 + b). - (9) 

so 

A= ia2Ja2+4b+bJa2f4b= i(a”+b)Ja2+4b 

= da2 + 4b [(i - ;)a” + b(l - i)] 

= (ia2 + $b)da2 + 4b 

- ;(a” +4b)Ja2+4b = :(a2 + 4b)3i2. - (10) 

We now wish to find the maximum AREA of an inscribed 
TRIANGLE. This TRIANGLE will have two of its VER- 
TICES at the intersections, and AREA 

An = +(x-y* - x,y- - x+y* + x*y+ + x+y- - x-y+). 

(11) 
But y* = x+~, so 

AA = $(x-x*~ - X,Y- - x+x*~ 

+ x*y* +x+y- - x-y+) 
- 1 -- 

2 I 
2 -x 

* (x+ -x-)+x*(y+ -Y-l 

+ (X+Y- - x-Y+)l* (12) 

The maximum AREA will occur when 

BAA I 
- - -[-2(x+ - x-)x* + (y+ - y-)] = 0. - 

ax* 
2 (13) 
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But 

Paraboloid 

Parabolic Spindle Cyclide 
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x+-x-= t/a” + 4b (14) 

Y+ - Y- = a&qTb, (15) 

so 

x* = 1 Y+ - Y- --= 
2 x+ - x- 

;u (16) 

and 

AA = ;[-(+a)‘(~+ - x-) + ($4(Y+ - Y-1 

+(x+y- - x-Y+)l* (17) 

Working on the third term 

x+y- = $(a+ Ja2+4b)(a” + 2b - aJa2-t4b) 

= $ 
[ 
a3 + 2ab - a 2JG+U2Ja2f-4b 

+ 2bJa2+4b- a(a2 + 4b)] 

= $[-2ab+2@x2+4b] (18) 

x-y+= 4 ‘(a- Ja2$4b)(a2+2b+aJa2$4b) 

- $ - 
[ 
a3+2ab+a2~~-a2Ja2+4b 

- 2b~/G- a(a2 + 4b)] 

- $[-2ab - 2bdw1, - (19 

so 

X+Y- -x-y+ = 4 L(4bJa2+4b) = bJa2f4b (20 

and 

l Aa = $-p 2Ja2+4b+ ~a2Ja2+4b+bJa2+bZ) 

= $Ja2+4b [(+ - +)a” + b] = +Ja2+4b($a2 + b) 

= &/-(a’ + 4b) = i(a” + 4b)3’2, (21) 

which gives the result known to Archimedes in the third 
century BC that 

A ; 4 -=--I- - 
AA i 3* (22) 

The AREA of the parabolic segment of height h opening 
upward along the ~-AXIS is 

A=2 
I 

h 
&dy = ;h3/‘. 

Cl 

The weighted mean of y is 

(23) 

h 
(Y> = 2 I y&dy = 2 

0 I 
h 

y3” dy = $h5i2. (24) 
0 

The CENTROID is then given by 

(Y> 
g = A = gh* (25) 

see &O CENTR~ID (GEOMETRIC), PARABOLA, SEG- 
MENT 
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A PARABOLIC CYCLIDE formed by inversion of a SPIN- 
DLE TORUS when the inversion sphere is tangent to the 
TORUS. 

see UZSO CYCLIDE, PARABOLIC HORN CYCLIDE, PARA- 
BOLIC RING CYCLIDE 

Parabolic Spiral 

see FERMAT'S SPIRAL 

Parabolic Umbilic Catastrophe 
A CATASTROPHE which can occur for four control fac- 
tors and two behavior axes. 

Paraboloid 

The SURFACE OF REVOLUTION ofthe PARABOLA. It is 
a QUADRATIC SURFACE which can be specified by the 
Cartesian equation 

z = a(x2 + y"), (1) 

or parametrically by 

x(u,v) = 6 cosv 

y(u, v) = fi sinv 

x(u, v) = u, 

where u E [0, h], v E [0, ZK), and h is the height. 

The VOLUME of the paraboloid is 

(2) 

(3) 

(4 

v=7r 
I 

h 
zdz = $nh2. (5) 

0 
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The weighted mean of z over the paraboloid is 

s h 

( > % =7r x2 dz = $h3. 
0 

The CENTROID is then given by 

( > z-L+ 
V (7) 

(Beyer 1987). 

see also ELLIPTIC PARABOLOID, HYPERBOLIC 
PARABOLOQPARABOLA 
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Paraboloid Geodesic 
A GEODESIC on a PARABOLOID has differential param- 
eters defined by 

PE(g)2+($)2+(g)2 
_l+C~~v+si~~v 1 

=l+z 

Q 
d2X a22 - 

= dudv + 
a2Y 

dUdV + &Law 

(1) 

(2) 
R E 0 - S! + FE! = L(cosv _ sinv). 

w  w  w  
(3) 

The GEODESIC is then given by solving the EULER- 
LAGRANGE DIFFERENTIAL EQUATION 

E $2~~2 +d2g d Q + Rv’ -- 
P + 2Qv’ + Rv’2 du P + 2Qv’ + Rvt2 ) 

= 0. 

(4) 
As given by Weinstock (1974), the solution simplifies to 

u - c2 

= u(l+ 4c2) sin2{v - Zcln[k(Z& - C2 + J4u+l)]}. 

(5) 

see also GEODESIC 

References 
Weinstock, R. Calculus of Variations, with Applications to 

Physics and Engineering. New York: Dover, p. 45, 1974. 

Paracompact Space 
A paracompact space is a HAUSDORFF SPACE such that 
every open COVER has a LOCALLY FINITE open REFINE- 
MENT. Paracompactness is a very common property 
that TOPOLOGICAL SPACES satisfy. Paracompactness is 
similar to the compactness property, but generalized for 
slightly “bigger” SPACES. All MANIFOLDS (e.g, second 

countable and Hausdorff) are paracompact. 

see also HAUSDORFF SPACE, LOCALLY FINITE SPACE, 
MANIFOLD,TOPOLOGICAL SPACE 

Paracycle 

see ASTROID 

Paradox 
A statement which appears self-contradictory or con- 
trary to expectations, also known as an ANTINOMY. 
Bertrand Russell classified known logical paradoxes into 
seven categories. 

Ball and Coxeter (1987) give several examples of geo- 
metrical paradoxes. 

see also ALIAS, PARADOX, ARISTOTLE'S WHEEL PARA- 

DOX, ARROW'S PARADOX, BANACH-TARSKI PARA- 
DOX, BARBER PARADOX, BERNOULLI'S PARADOX, 
BERRY PARADOX, BERTRAND'S PARADOX, CANTOR'S 
PARADOX, COASTLINE PARADOX, COIN PARADOX, 
ELEVATOR PARADOX, EPIMENIDES PARADOX, Eu- 
BULIDES PARADOX, GRELLING'S PARADOX, HAUS- 
DORFF PARADOX, HEMPEL'S PARADOX, HETERO- 
LOGICAL PARADOX, LEONARDO,S PARADOX, LIAR'S 
PARADOX, LOGICAL PARADOX, POTATO PARADOX, 
RICHARD'S PARADOX, RUSSELL’S PARADOX, SAINT PE- 
TERSBURG PARADOX, SIEGEL'S PARADOX, SIMPSON'S 
PARADOX, SKOLEM PARADOX, SMARANDACHE PARA- 
DOX,SOCRATES'PARADOX, SORITESPARADOX,THOM- 
SON LAMP PARADOX, UNEXPECTED HANGING PARA- 
DOXJEEMAN’S PARADOX,~ENO,S PARADOXES 
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Paraboloidal Coordinates 
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Paradromic Rings 

Paradromic Rings 
Rings produced by cutting a strip that has been given 
m half twists and been re-attached into n equal strips 
(Ball and Coxeter 1987, pp. 127-128). 

see also MOBIUS STRIP 

References 
Ball, W. W. R. and Coxeter, H. S. M. Mathematical Recre- 

ations and Essays, 13th ed. New York: Dover, pp. 127- 
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Paragyrate Diminished Rhombicosidodeca- 

hedron 
see JOHNSON SOLID 

Parallel 
, 

Two lines in 2-dimensional EUCLIDEAN SPACE are said 
to be parallel if they do not intersect. In Z&dimensional 
EUCLIDEAN SPACE, parallel lines not only fail to inter- 
sect, but also maintain a constant separation between 
points closest to each other on the two lines. (Lines in 
3-space which are not parallel but do not intersect are 
called SKEW LINES.) 

In a NON-EUCLIDEAN GEOMETRY, the concept ofpar- 
allelism must be modified from its intuitive meaning. 
This is accomplished by changing the so-called PARAL- 
LEL POSTULATE. While this has counterintuitive re- 
sults, the geometries so defined are still completely self- 
consistent. 

see UZSO ANTIPARALLEL, HYPERPARALLEL, LINE, NON- 
EUCLIDEAN GEOMETRY, PARALLEL CURVE,~ARALLEL 
POSTULATE PERPENDICULAR,~KEW LINES 

Parallel Axiom 
see PARALLEL POSTULATE 

Parallel Class 
A set of blocks, also called a RESOLUTION CLASS, that 
partition the set V, where (V, B) is a balanced incom- 
plete I3LocK DESIGN. 

see UZSO BLOCK DESIGN, RESOLVABLE 
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Parallel Postulate 1313 

The two branches of the parallel curve a distance k away 
from a parametrically represented curve (f(t), g(t)) are 

The above figure shows the curves parallel to the EL- 
LIPSE. 
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Parallel Postulate 
Given any straight line and a point not on it, there “ex- 
ists one and only one straight line which passes” through 
that point and never intersects the first line, no matter 
how far they are extended. This statement is equivalent 
to the fifth of EUCLID'S POSTULATES, which Euclid him- 
self avoided using until proposition 29 in the Elements. 
For centuries, many mathematicians believed that this 
statement was not a true postulate, but rather a theorem 
which could be derived from the first four of EUCLID'S 
POSTULATES. (That part of geometry which could be 
derived using only postulates 1-4 came to be known as 
ABSOLUTE GEOMETRY.) 

Over the years, many purported proofs of the parallel 
postulate were published. However, none were correct, 
including the 28 “proofs” G. S. Kliigel analyzed in his 
dissertation of 1763 (Hofstadter 1989). In 1823, Janos 
Bolyai and Lobachevsky independently realized that en- 
t irely self-consistent “NON-EUCLIDEAN GEOMETRIES" 
could be created in which the parallel postulate did not 
hold. (Gauss had also discovered but suppressed the 
existence of non-Euclidean geometries.) 

As stated above, the parallel postulate describes the 
type of geometry now known as PARABOLIC GEOME- 
TRY. If, however, the phrase “exists one and only one 
straight line which passes” is replace by “exist no line 
which passes,” or ‘&exist at least two lines which pass,” 
the postulate describes equally valid (though less intu- 
itive) types of geometries known as ELLIPTIC and HY- 
PERBOLIC GEOMETRIES, respectively. 

Parallel Cu 

The parallel postulate is equivalent to the EQUIDIS- 
TANCEPOSTULATE,PLAYFAIR'S AXIOM,PROCLUS' Ax- 
IOM, TRIANGLE POSTULATE. There is also a single par- 
allel axiom in HILBERT'S AXIOMS which is equivalent to 
Euclid’s parallel postulate. 
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see also ABSOLUTE GEOMETRY, EUCLID’S AXIOMS, 
EUCLIDEAN GEOMETRY, HILBERT'S AXIOMS, NON- 
EUCLIDEAN GEOMETRY, PLAYFAIR’S AXIOM, TRIAN- 

GLE POSTULATE 
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Iyanaga, S. and Kawada, Y. (Eds.). “Hilbert’s System of Ax- 

ioms.” $163B in Encyclopedic Dictionary of Mathematics. 
Cambridge, MA: MIT Press, pp, 544-545, 1980. 

Parallel (Surface of Revolution) 
A parallel of a SURFACE OF REVOLUTION is the inter- 
section of the surface with a PLANE orthogonal to the 
axis of revolution. 

see also MERIDIAN, SURFACE OF REVOLUTION 

References 
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Parallelepiped 
In 3-D, a parallelepiped is a PRISM. whose faces are all 
PARALLELOGRAMS. The volume of a 3-D parallelepiped 
is givenbythe SCALAR TRIPLE PRODUCT 

V parallelepiped = ]B l  (B x C)l 

= IC l  (A x B)I = IB n (C x A)I. 

In n-D, a parallelepiped is the POLYTOPE spanned by 
n VECTORS ~1, "', V~ in a VECTOR SPACE over the 
reals, 

span(vl,. . . , vn) = tlvl + l  . . + tnvn, 

where ti E [0, l] for i = 1, . . . , m In the usual inter- 
pretation, the VECTOR SPACE is taken as EUCLIDEAN 
SPACE, and the CONTENT of this parallelepiped is given 

bY 
abs(det(vl, . , . ,vn)), 

where the sign of the determinant is taken to be the 
“orientation” of the “oriented volume” of the parallele- 
piped. 

see also PRISMATOID, RECTANGULAR PARALLELE- 
PIPED, Z~NOHEDR~N 
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Parallelism 

see ANGLE OF PARALLELISM 

Parallelizable 
A sphere S” is parallelizable if there exist n cuts contain- 
ing linearly independent tangent vectors. There exist 
only three parallelizable spheres: S1, S3, and S7 (Adams 
1962, Le Lionnais 1983). 

see also SPHERE 
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Parallelogram 

A b B 

A QUADRILATERAL with opposite sides parallel (and 
therefore opposite angles equal). A quadrilateral with 
equal sides is called a RHOMBUS, and a parallelogram 
whose ANGLES are all RIGHT ANGLES is called a RECT- 
ANGLE. 

A parallelogram of base b and height h has AREA 

A = bh = absinA = absinB. 

The height of a parallelogram is 

h = asinA = asinB, 

and the DIAGONALS are 

(1) 

(2) 

P= z/a” + b2 - 2ab cos A (3) 

q=da2+b 2 - 2abcos B (4) 
- - da” + b2 + 2abcos A (5) 

(Beyer 1987). 

The AREA of the parallelogram with sides formed by the 
VECTORS (a, c) and (b, d) is 

= lad - bcl. (6) 

Given a parallelogram P with area A(P) and linear 
transformation T, the AREA of T(P) is 

(7) 
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As shown by Euclid, if lines parallel to the sides are 
drawn through any point on a diagonal of a parallelo- 
gram, then the parallelograms not containing segments 

of that diagonal are equal in AREA (and conversely), so 
in the above figure, Al = Aa (Johnson 1929). 

see also DIAMOND, LOZENGE, PARALLELOGRAM XLLU- 
SION, RECTANGLE, RHOMBUSJARIGNON PARALLELO- 
GRAM,~ITTENBAUER'S PARALLELOGRAM 
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Parallelogram Illusion 

The sides a and 
the cant rary. 

b have the same length, appearances to 

Parallelogram Law 
Let 1.1 denote the NORM of a quantity. Then the quan- 
tities z and y satisfy the parallelogram law if 

If the NORM is defined as IfI = &flf) (the so-called 
&-NORM), then the law will always hold. 

see also &NORM, NORM 

Parallelohedron 
A special class of ZONOHEDRON. There are five par- 
allelohedra with an infinity of equal and similarly sit- 
uated replicas which are SPACE-FILLING POLYHEDRA: 
the CUBE, ELONGATED DODECAHEDRON, hexagonal 
PRISM, RHOMBIC DODECAHEDRON, and TRUNCATED 
OCTAHEDRON. 

see also 
DRON 

PARALLELOTOPE, SPACE-FILLING POLYHE- 

References 
Coxeter, H. S. M. Regular Polytopes, 3rd ed. New York: 

Dover, p. 29, 1973. 

Parallelotope 
Move a point II0 along a LINE for an initial point to a 
final point. It traces out a LINE SEGMENT IT1. When 
II, is translated from an initial position to a final po- 
sition, it traces out a PARALLELOGRAM I&. When II2 
is translated, it traces out a PARALLELEPIPED II3. The 
generalization of IX, to n-D is then called a parallelo- 
tope. II, has 2n vertices and 

nks, where (F) is a BINOMIAL COEFFICIENT and k = 0, 
1, “., n (Coxeter 1973). These are also the coefficients 
of (2k + 1)“. 

see ~~~HONEYCOMB, HYPERCUBE,~RTHOTOPE, PAR- 
ALLELOHEDRON 
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Paralogic Triangles 
At the points where a line cuts the sides of a TRIAN- 
GLE AAl A2 AS, perpendiculars to the sides are drawn, 
forming a TRIANGLE N3&& similar to the given 
TRIANGLE. The two triangles are also in perspective. 
One point of intersection of their CIRCUMCIRCLES is the 
SIMILITUDE CENTER, andtheotheristhe PERSPECTIVE 
CENTER. The CIRCUMCIRCLES meet, ORTHOGONALLY. 

see also CIRCUMCIRCLE, ORTHOGONAL CIRCLES, PER- 
SPECTIVE CENTER, SIMILITUDE CENTER 
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Parameter 
A parameter m. used in ELLIPTIC INTEGRALS defined 
to be nz = k2, where k is the MODULUS. An ELLIPTIC 
INTEGRAL is written 1($lm) when the parameter is used. 
The complementary parameter is defined by 

m’ G 1 - m, (1) 

where m is the parameter. Let 4 be the NOME, k the 
MODULUS, and m E k2 the PARAMETER. Then 

q(m) = e 
-dT’(m)/K(m) 

(2) 

where K(m) is the complete ELLIPTIC INTEGRAL OF 
THE FIRST KIND. Then the inverse of q(m) is given by 

m(q) 82*(q) - -- 
h4 (4 ’ 

(3) 
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where & is a THETA FUNCTION. 

see also AMPLITUDE, CHARACTERISTIC (ELLIPTIC IN- 
TEGRAL)&LLIPTIC INTEGRAL, ELLIPTIC INTEGRAL OF 
THE FIRST KIND, MODULAR ANGLE, MODULUS (EL- 
LIPTIC INTEGRAL), NOME, PARAMETER,THETA FUNC- 
TION 
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Abramowitz, M. and Stegun, C. A. (Eds.). Handbook 

of Mathematical Functions with Formulas, Graphs, and 
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Parameter (Quadric) 
The number 8 in the QUADRIC 

X2 

a2 +8 

Y2 + z2 
+ b2+0 

-=I 
c2 + 8 

is called the parameter. 

see also QUADRIC 

Parameterization 
The specification of a curve, surface, etc., by means of 
one or more variables which are allowed to take on values 
in a given specified range. 

see UZSO ISOTHERMAL PARAMETERIZATION, REGULAR 
PARAMETERIZATION, SURFACE PARAMETERIZATION 

Parametric Latitude 
An AUXILIARY LATITUDE also called the REDUCED 
LATITUDE and denoted q or 0. It gives the LATITUDE 
on a SPHERE of RADIUS a for which the parallel has the 
same radius as the parallel of geodetic latitude 4 and 
the ELLIPSOID through a given point. It is given by 

Pareto Distribution 
The distribution 

P(x) = (E)“‘” . 4 

References 
von Seggern, D. CRC Standard Curves and Surfaces. Boca 

Raton, FL: CRC Press, p. 252, 1993. 

Parity 
The parity of a number 72 is the sum of the bits in BI- 
NARY representation (mod 2). The parities of the first 
few integers (starting with 0) are 0, 1, 1, 0, 1, 0, 0, 1, 1, 
0, 0, . . . (Sloane’s A010060) summarized in the following 
table. 

Iv Binary Parity 1 N Binary Parity 

1 1 1 
2 10 1 
3 11 0 
4 100 1 
5 101 0 
6 110 0 
7 111 1 
8 1000 1 
9 1001 0 

10 1010 0 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

1011 
1100 
1101 

1110 
1111 

10000 
10001 
10010 
10011 
10100 

1 
0 
1 
1 
0 
1 
0 
0 
1 
0 

The constant generated by the sequence of parity digits 
is called the THUE-MORSE CONSTANT. 

see also BINARY, THUE-MORSE CONSTANT 

References 
Sloane, N. J. A. Sequence A010060 in ‘(An On-Line Version 

of the Encyclopedia of Integer Sequences.” 

q = tan-l(& - e2 tan4). 

In series form, 

q = 4 - el sin&b) + $e12 sin&b) - ie13 sin(64) + , . . , 

where 

Parity Constant 

see THUE-MORSE CONSTANT 

Parking Constant 

see RI?NYI'S PARKING CONSTANTS 

see also AUXILIARY LATITUDE, ELLIPSOID, LATITUDE, 
SPHERE 
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Geological S urvey Professional Paper 1395. Washington, 
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Parametric Test 
A STATISTICAL TEST in which assumptions are made 
about the underlying distribution of observed data. 

Parodi’s Theorem 
The EIGENVALUES X satisfying P(X) = 0, where P(A) is 
the CHARACTERISTIC POLYNOMIAL, lieinthe unions of 
the DISKS 

References 
Gradshteyn, I. S. and Ryzhik, I. M. Tables of Integrals, Se- 

ries, and Products, 5th ed. San Diego, CA: Academic 
Press, pm 1119, 1979. 
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Parry Circle 
The CIRCLE passing through the ISODYNAMIC PRINTS 
and the CENTROID of a TRIANGLE (Kimberling 1998, 
pp. 227-228). 

see also CENTROID (TRIANGLE), ISODYNAMIC POINTS, 
PARRY POINT 

References 
Kimberling, C. “Triangle Centers and Central Triangles.” 
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Parry Point 
The intersection of the PARRY CIRCLE and the CIRCUM- 
CIRCLE of a TRIANGLE. The TRILINEAR COORDINATES 
of the Parry point are 

a b C 
2a2 _ b2 - 3 ' 202 - c2 - a2 ' 2C2 - a2 - b2 

(Kimberling 1998, pp. 227-228). 

see also PARRY CIRCLE 

References 
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Parseval’s Integral 
The POISSON INTEGRAL with n = 0. 

1 

J 

7r 

Jo(4 = [qn + +)I2 o cos(z co4 4 

where JO(Z) isa BESSEL FUNCTION OFTHE FIRST KIND 
and r(x) is a GAMMA FUNCTION. 

Parseval’s Relation 
Let F(V) and G(v) be the FOURIER TRANSFORMS of 

f(t) and g(t)7 respectively. Then 

SW 

f (t)g* (t> dt 

--oo 

= J- [s- F(u)e-2rrivt du --oo Jm G* (uf)e2?Tiv't &,I --oo --oo 1 &,I 

F(u)G*(u) du. 

see also FOURIER TRANSFORM, PARSEVAL’S THEOREM 

Parseval’s Theorem 
Let E(t) be a continuous function and E(t) and E, be 
FOURIER TRANSFORM pairs so that 

w = - J= Eve -2=ivt du (1) 
--cx) 

E*(t) E E,,*e2Tivft du’. (2) 
Then 

s O” IE(t)12df = 
J 

O” E(t)E*(t) dt 
-m --6o 

-2rivt du 
Sm 

E,, *eaxivft dv’ & 
-m 1 E Ev,*e2dt(~f-v) v dv du’ dt 

EVE,, *e2'+"-v~ dt du dv' 
J( VI - u)EyEv~* dudu’ 

EVE,* du = 
J 

O” lEpi2 du. 
-m 

where S(x - ~0) is the DELTA FUNCTION. 

For finite FOURIER TRANSFORM pairs hk and Hn, 

(3) 

N-l N-l 

x 
Ih I k 2 = ; 1 jH,12. (4) 

k=O n=O 

If a function has a FOURIER SERIES given by 

f( ) 2 - -+0-t 2 a, cos(nx) + y4 b, sin(nx), (5) 
n=l n=l 

then BESSEL'S INEQUALITY becomes an equality known 
as Parseval’s theorem. From (5)) 

If(x = +ao2 + a0 fjan cos(nx) + b, sin(nx)] 
TL=l 

+FF[ a,a, cos(nx) cos(mx) 
n=l m=l 

+a,b, cos(nx) sin(mx) + a,& sin(nx) cos(mx) 

+b,b, sin(nx) sin(mx)]. (6) 

References 
A&en, G. Mathematical Methods for Physicists, 3rd ed. Or- 
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Integrating 

+a0 
I >: 

[a, cos(nx) + b, sin(nz)] dz 
7r n-1 

00 

+I$ 

[UnUm COS(nX) cos(mx) 
= - 

+a,b, cos(nx) sin(mx) + a&, sin(nx) cos(mx) 

+b,b, sin(nz) sin(mx)] dx = itzo2(27r) + 0 

n=l m=l 

so 

The above partial derivative is sometimes denoted fz, 
for brevity. For a “nice” 2-D function f(x,y) (i.e., one 
for which f, &, fy, &,, fyz exist and are continuous 
in a NEIGHBORHOOD (a, b)), then &,(a, b) = f&z, b). 
Partial derivatives involving more than one variable are 
called MIXED PARTIAL DERIVATIVES. 

For nice functions, mixed partial derivatives must be 
equal regardless of the order in which the differentiation 
is performed so, for example, 

f xy = f yx (2) 

f xxy = f xyx = f yxx. (3) 

so 

1 7r 
00 

- 
7T s 

[f(x)]” dx = +02 + E( an2 + bn2). (8) 
-7r n=l 

For an EXACT DIFFERENTIAL, 

df= (g>, dz+ ($ dy, 

For a generalized FOURIER SERIES with a COMPLETE 
BASIS {&}ZI, an analogous relationship holds. For a 
COMPLEX FOURIER SERIES, 

References 
Gradshteyn, I. S. and Ryzhik, I. M. Tables of Integrals, Se- 
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Part Metric 
A METRIC defined by 

d(z, w) = sup [~$+EH’], 

where H+ denotes the POSITIVE HARMONIC FUNC- 
TIONS on a DOMAIN. The part metric is invariant under 
CONFORMAL MAPS for any DOMAIN. 

References 
Bear, H. S. “Part Metric and Hyperbolic Metric.” Amer, 
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Partial Derivative 
Partial derivatives are defined as derivatives of a func- 
tion of multiple variables when all but the variable of 
interest are held fixed during the differentiation. 

af - - _ 
dXm - 

lim f(X1,~~~~X~+h~...,X~)- f(X1y*--,Xm,maa,Xn) 

h+O h 
l  

(1) 

(4) 

(5) 

If the continuity requirement for MIXED PARTTALS is 
dropped, it is possible to construct functions for which 
MIXED PARTIALS are nlot equal. An example is the func- 
tion 

1 XY(X2-Y21 

f (x3 Y> = o x2+y2 
for (x, y) = 0 

for (x,y) = 0, 
(6) 

which has f,y(O,O) = -1 and fyx(O,O) = 1 (Wagon 
1991). This function is depicted above and by Fischer 
(1986). 

Abramowitz and Stegun (1972) give FINITE DIFFER- 
ENCE versions for partial derivatives. 

see also ABLOWITZ-RAMANI-SEGUR CONJECTURE, DE- 
RIVATIVE,MIXED PARTIAL DERIVATIVE,MONKEY SAD- 
DLE 
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Partial Differential Equation 

is an equation 
DERIVATIVES; 

Partial Differential Equation 
A partial differential equation (PDE) 
volving functions and their PARTIAL 
example, the WAVE EQUATION 

in- 
for 

a2+ ---- 
da2 + ay2 + &2 - 212 at2 ' (1) 

In general, partial differential equations are much more 
difficult to solve analytically than are ORDINARY DIF- 
FERENTIAL EQUATIONS. They may sometimes be solved 
using a B~CKLUND TRANSFORMATION, CHARACTERIS- 
TIC, GREEN’S FUNCTION, INTEGRAL TRANSFORM, LAX 
PAIR, SEPARATION OF VARIABLES, or-when all else 
fails (which it frequently does)-numerical methods. 

Fortunately, partial differential equations of second- 
order are often amenable to analytical solution. Such 
PDEs are of the form 

Auez + ZBu,, -I- GIL,, + Du, + Eu, -I- F = 0. (2) 

Second-order PDEs are then classified according to the 
properties of the MATRIX 

Z 
A B - - [ 1 - B C (3) 

as ELLIPTIC, HYPERBOLIC, or PARABOLIC. 

If Z is a POSITIVE DEFINITE MATRIX, i.e., det(Z) > 0, 
the PDE is said to be ELLIPTIC. LAPLACE’S EQUATION 
and POISSON’S EQUATION are examples. Boundary con- 

ditions are used to give the constraint u(x, y) = g(x, y) 
on do, where 

uxx -+ uyy = f (‘llX,UY, u, 5, Y) (4) 

holds in 0. 

If det(Z) < 0, the PDE is said to be HYPERBOLIC. The 
WAVE EQUATION is an example of a hyperbolic par- 
tial differential equation. Initial-boundary conditions 
are used to give 

~(2, y, t) = g(x, y, t) for x f do, t > 0 (5) 

u(x, y, 0) = 210(x, y) in f2 (6) 

Ut (XI Y, 0) = *ul(x, y) in 0, (7) 

where 

uxy = f(Ux,W,X,Y) (8) 

holds in s2. 

If det(Z) = 0, the PDE is said to be parabolic. The 
HEAT CONDUCTION EQUATION equation and other dif- 
fusion equations are examples. Initial-boundary con&- 

tions are used to give 

u(x, t) = g(x, t) for x E do, t > 0 (9) 

Partial Fraction Decomposition 

u(x, 0) = v(x) for x f fl, 

where 

1319 

(10) 

holds in n. 

U xx = f( UxrUyr%X,Y) (11) 

see ah B;~CKLUND TRANSFORMATION, I~OUNDARY 
CONDITIONS, CHARACTERISTIC (PARTIAL DIFFEREN- 
TIAL EQUATION), ELLIPTIC PARTIAL DIFFERENTIAL 
EQUATION, GREEN’S FUNCTION, HYPERBOLIC PAR- 
TIAL DIFFERENTIAL EQUATION, INTEGRAL TRANS- 
FORM, JOHNSON’S EQUATION, LAX PAIR, MONGE- 
AMPERE DIFFERENTIAL EQUATION, PARABOLIC PAR- 
TIAL DIFFERENTIAL EQUATION, SEPARATION OF VARI- 
ABLES 
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Webster, A. G. Partial Differential Equations of Mathemat- 
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Partial Fraction Decomposition 
A RATIONAL FUNCTION P(x)/Q(x) can be rewritten 
using what is known as partial fraction decomposition. 
This procedure often allows integration to be performed 
on each term separately by inspection. For each factor 
of Q(x) the form (ax + b)“, introduce terms 

Al A2 h-t2 

aa: + (ax + b)2 + " ' + (ax + b)"' (1) 

For each factor of the form (as2 + bx + c)~, introduce 
terms 

4x + BI A2x+B2 Amx -I- B, 

ax2+bx+c+(ax2+bx+c)2+-m*+(ax2+bx+c)m’ 

(2) 
Then write 

PC > - - 

QCX) 
Al 

x - 
-+...+ 
ax + b 

Aza:-tB2 + 

ax2 -I- bx + c l  l  l  

(3) 

and solve for the Ais and Bis. 

References 
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Partial Latin Square Partially Ordered Set 

In a normal n x n LATIN SQUARE, the entries in each row 
and column are chosen from a “global” set of n objects. 
Like a Latin square, a partial Latin square has no two 
rows or columns which contain the same two symbols. 
However, in a partial Latin square, each cell is assigned 
one of its own set of n possible “local” (and distinct) 
symbols, chosen from an overall set of more than three 
distinct symbols, and these symbols may vary from lo- 
cation to location. For example, given the possible sym- 
bols (1, 2, . . . , 6) which must be arranged as 

A partially ordered set (or POSET) is a SET taken to- 
gether with a PARTIAL ORDER on it. Formally, a par- 
tially ordered set is defined as an ordered pair P = 
(X, I), where X is called the GROUND SET of P and 
5 is the PARTIAL ORDER of P. 

see U~SO CIRCLE ORDER, COVER RELATION, DOMI- 
NANCE,GROUND SET,HASSEDIAGRAM, INTERVAL OR- 
DER, ISOMORPHIC POSETS, PARTIAL ORDER, POSET 
DIMENSION, REALIZER, RELATION 

References 

{1,2,3) {l,W wm 
{2,%5) (v43) c4,w 
{4,3,6} {3,5,61 (27% 51, 

the 3 x 3 partial Latin square 

1 3 2 
2 4 5 
6 5 3 

can be constructed. 

see ah DINITZ PROBLEM, LATIN SQUARE 

References 
Cipra, B. “Quite Easily Done.” In What’s Happening in the 

Mathematical Sciences 2, pp. 41-46, 1994. 

Part ial Order 
A RELATION “<” is a partial order on a SET S if it has: - 

1. Reflexivity: a 5 a for all a f S. 

2. Antisymmetry: a < b and b < a implies a = b. - - 

3. Transitivity: a < b and b < c implies a < c. - - - 

For a partial order, the size of the longest CHAIN (AN- 
TICHAIN) is called the LENGTH (WIDTH). A partially 
ordered set is also called a POSET. 

see also ANTICHAIN, CHAIN, FENCE POSET, IDEAL 
(PARTIAL ORDER), LENGTH (PARTIAL ORDER), LIN- 
EAR EXTENSION, PARTIALLY ORDERED SET, TOTAL 
ORDER,WIDTH (PARTIAL ORDER) 

References 
Ruskey, F. “Informat ion on Linear Extension .” http://sue 

. csc.uvic.ca/-cos/inf/pose/LinearExt.html. 

Partial Quotient 
If the SIMPLE CONTINUED FRACTION of a REAL NUM- 
BER x is given by 

x=ao+ 1 

1 ’ 
a1 + 

1 
u2 + - 

as+... 

Dushnik, B. and Miller, E. W. “Partially Ordered Sets.” 
Amer. J. Math. 63, 600-610, 1941. 

Fishburn, P. C. Interval Orders and Interval Sets: A Study 
of Partially Ordered Sets. New York: Wiley, 1985. 

Trotter, W. T. Combinatorics and Partially Ordered Sets: 
Dimension Theory. Baltimore, MD: Johns Hopkins Uni- 
versity Press, 1992. 

Particularly Well-Behaved Functions 
Functions which have DERIVATIVES of all orders at all 
points and which, together with their DERIVATIVES, fall 
off at least as rapidly as IX/-~ as [xl + 00, no matter 
how large n is. 

see also REGULAR SEQUENCE 

Part isan Game 
A GAME for which each player has a different set of 
moves in any position. Every position in an IMPARTIAL 
GAME has a NIM-VALUE. 

Partition 
A partition is a way of writing an INTEGER n as it sum 
of POSITIVE INTEGERS without regard to order, possibly 
subject to one or more additional constraints. Particu- 
lar types of partition functions include the PARTITION 
FUNCTION P, giving the number of partitions of a num- 
ber without regard to order, and PARTITION FUNCTION 
Q, giving the number of ways of writing the INTEGER n 

as a sum of POSITIVE INTEGERS without regard to order 
with the constraint that all INTEGERS in each sum are 
distinct. 

see ~2s~ AMENABLE NUMBER, DURFEE SQUARE, EL- 
DER'S THEOREM, FERRERS DIAGRAM, GRAPHICAL 
PARTITION, PARTITION FUNCTION P, Partition Func- 
tion Q, PERFECT PARTITION, PLANE PARTITION, SET 
PARTITION, SOLID PARTITION, STANLEY'S THEOREM 

References 
Andrews, G. E. The Theory of Partitions. Cambridge, Eng- 

land: Cambridge University Press, 1998. 
Dickson, L. E. “Partitions.” Ch. 3 in History of the Theory 

of Numbers, Vol. 2: Diophantine Analysis. New York: 
Chelsea, pp. 101-164, 1952, 

then the quantities ai are called partial quotients. 

see also CONTINUED FRACTION, CONVERGENT, SIMPLE 
CONTINUED FRACTION 
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Partition Function P 
P(n) gives the number of ways of writing the INTEGER 
n as a sum of POSITIVE INTEGERS without regard to 
order. For example, since 4 can be written 

A RECURRENCE RELATION is 

n-l 

P(n) = 1 x o(n - m)P(m), 
n (4) 

4-4 

=3+1 

=2+2 

=2+1+1 

=l+l+l+l, (1) 

so P(4) = 5. P(n) satisfies 

P(n) 5 +[P(n + 1) + P(n - l)] (2) 

(Honsberger 1991). Th e values of P(n) for n = 1, 2, 
are 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, l  l  l  (Sloane’s 

A&0041). The following table gives the value of P(n) 

for selected small n. 

where a(n) is the DIVISOR FUNCTION (Berndt 1994, 
p. 108). Euler also showed that, for 

00 00 

f (2) E n (1 - x”) = x (-l)nXn(3n+1)‘2 (5) 
m=l n=--00 

where the exponents are generalized PENTAGONAL 
NUMBERS 0, 1, 2, 5, 7, 12, 15, 22, 26, 35, . . . (Sloane’s 
A001318) and the sign of the kth term (counting 0 as 
the 0th term) is (-1) LCk+1)/21 (with 1x1 the FLOOR 
FUNCTION), the partition numbers P(n) are given by 
the GENERATING FUNCTION 

& = F P(n)xn. 

n=O 
(7) 

n p(n) 
50 204226 

100 190569292 
200 3972999029388 
300 9253082936723602 
400 6727090051741041926 
500 2300165032574323995027 
600 458004788008144308553622 
700 60378285202834474611028659 
800 5733052172321422504456911979 
900 415873681190459054784114365430 

1000 24061467864032622473692149727991 

n for which P(n) is PRIME are 2, 3, 4, 5, 6, 13, 36, 
77, 132, 157, 168, 186, . l  . (Sloane’s A046063). Num- 
bers which cannot be written as a PRODUCT of P(n) are 
13, 17, 19, 23, 26, 29, 31, 34, 37, 38, 39, . . . (Sloane’s 
A046064), corresponding to numbers of nonisomorphic 
ABELIAN GROUPS which are not possible for any group 
order. 

When explicitly listing the partitions of a number n, 
the simplest form is the so-called natural representation 

which simply gives the sequence of numbers in the rep- 
resentation (e.g., (2, 1, 1) for the number 4 = 2 + l+ 1). 
The multiplicity representation instead gives the number 
of times each number occurs together with that number 

(e-g.7 (2, 11, (1, 2) for 4 = 2 m 1 + 1 l  2). The FERRERS 
DIAGRAM is a pictorial representation of a partition. 

Euler invented a GENERATING FUNCTION which gives 
rise to a POWER SERIES in P(n), 

P(n) = F(-1)“+’ [P(n - +m(3m - 1)) 

?YL=l 

+P(n - +(3m + l))]. (3) 

MacMahon obtained the beautiful RECURRENCE RELA- 
TION 

P(n) - P(n - 1) - P(n - 2) + P(n - 5) -+ P(n - 7) 

-P(n - 12) - P(n - 15) + l  + l  = 0, (8) 

where the sum is over generalized PENTAGONAL NUM- 
BERS 5 n and the sign of the kth term is (-1) L(k+1V21, 
as above. 

In 1916-1917, Hardy and Ramanujan used the CIRCLE 
METHOD and elliptic MODULAR FUNCTIONS to obtain 
the approximate solution 

(9) 

Rademacher (1937) subsequently obtained an exact se- 
ries solution which yields the Hardy-Ramanujan FOR- 
MULA (9) as the first term: 

where 

K-T 
2 

J 5 

L,(n) = x ~~~~~~~~~~~~~ 

P 

WP79 = e 
n'isP,q 

1 

5 > 

(11) 

(12) 

(13) 

(14) 

A,= n-h J (15) 
$,(n) = -$ {f [“i”h~~‘]}mx~7 (16) 
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1x1 is the FLOOR FUNCTION, and p runs through the 
INTEGERS lessthanand RELATIVELY PRIME toq (when 

Q = 1,p = 0). Th e remainder after Q terms is 

R(Q) < CQ-li2 +DEsinh (y), (17) 

where C and D are fixed constants. 

With f(z) as defined above, Ramanujan also showed 
that 

5f5’x5) - - F P(5m + 4)x” 
fY4 - m=O 

l  
(18) 

Ramanujan also found numerous CONGRUENCES such as 

P(5m + 4) E 0 (mod 5) 

P(7m + 5) G 0 (mod 7) (20) 

P(llm+ 6) E 0 (mod 11). (21) 

RAMANUJAN'S IDENTITY gives the first ofthese. 

Let PO(n) be the number of partitions of n containing 
ODD numbers only and P&n) be the number of parti- 
tions of n without duplication, then 

PO(n) = IQ(n) = rI( 
1 + Zk + x2k + z3k + . l  l ) 

k=1,3,... 

= rp+x”) = ~+x+x~+~x~+~x~+~x~+..., (22) 
k=l 

as discovered by Euler (Honsberger 1985). The first few 
values of PO = PD are 1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 10, . . . 
(Sloane’s AOOOO09). 

Let P&n) be the number of partitions of EVEN num- 
bers only, and let PE,(n) (P&n)) be the number of 
partitions in which the parts are all EVEN (ODD) and 
all different. The first few values of PDo (n) are 1, 1, 0, 
1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, . . . (Sloane’s AOOO7OO). 
Some additional GENERATING FUNCTIONS are given by 
Honsberger (1985, pp* 241-242) 

00 

P ( > 
n 

no even part repeated n X 

- - 
nc 

1-X 2k-1)-1(1+ x2") (23) 
k=l 

00 

c 
P ( > 

n 
no part occurs more than 3 times 7% 2 

n=l 

- - rI( 1 + xk + x2’ + x3’) (24) 
k=l 

00 
( > 

n 
pno part divisible by 4 ?I z = rI 

1 - x4k 
- 

1 - xk 
!tl= 1 k=l 

(25) 

Partition Function P 
00 

P no part occurs more than d times n x ( > 
n 

n=l 

= nkxik = n ‘,“y’k (26) 
k=l i-0 k=l 

00 

P every part occurs 2, 3, or 5 times n X ( > 
n 

n=l 

1 - 
rI( 

1 + x2k + x3k + x”“) 
k=l 

- - 
rI( 

1 I x4k 1 - p 
1+ x2k)(l + x3”) = n -- 

k=l 1 - x2k 1 - x3k (27) 
k=l 

00 

P no part occurs exactly once n X ( > 
n 

n=l 

- - 
(1 + 

1-t x6k 

k 
(1 

- x2k)(l _ x3k) ’ (28) 

Some additional interesting theorems following from 
these (Honsberger 1985, pp. 64-68 and 143-146) are: 

1. 

2. 

3. 

4. 

5. 

The number of partitions of n in which no EVEN part 
is repeated is the same as the number of partitions of 
n in which no part occurs more than three times and 
also the same as the number of partitions in which 
no part is divisible by four. 

The number of partitions of n in which no part oc- 
curs more often than d times is the same as the num- 
ber of partitions in which no term is a multiple of 
d+1. 

The number of partitions of n in which each part ap- 
pears either 2, 3, or 5 times is the same as the number 
of partitions in which each part is CONGRUENT mod 
12 to either 2, 3, 6, 9, or 10. 

The number of partitions of n in which no part ap- 
pears exactly once is the same as the number of par- 
titions of n in which no part is CONGRUENT to 1 or 
5 mod 6. 

The number of partitions in which the parts are all 
EVEN and different is equal to the absolute differ- 
ence of the number of partitions with ODD and EVEN 
parts. 

P(n,k), also written Pk(n), is the number of ways of 
writing n as a sum of k terms, and can be computed 
from the RECURRENCE RELATION 

P(n, k) = P(n - 1, k - 1) + P(n - k, k) (29) 

(Ruskey). The number of partitions of n with largest 
part k is the same as P(n, k). 

The function P(n, Iz) can be given explicitly for the first 
few values of k, 

P(n,2) = L+nj 

p(o) = [&n21, 

(30) 

(31) 
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References where 1x1 is the FLOOR FUNCTION and [s] is the NINT 
function (Honsberger 1985, pp. 40-45). 

see also ALCUIN’S SEQUENCE, ELDER'S THEOREM, Eu- 
LER’S PENTAGONAL NUMBER THEOREM,FERRERS DI- 
AGRAM,~ARTITION FUNCTION Q,PENTAGONAL NUM- 
BER, T&J), ROGERS-RAMANUJAN IDENTITIES, STAN- 
LEY'S THEOREM 
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Partition Function Q 
Q(n) gives the number of ways of writing the INTEGER n 
as a sum of POSITIVE INTEGERS without regard to order 
with the constraint that all INTEGERS in each sum are 
distinct. The values for n = 1, 2, . . . are 1, 1, 2, 2, 3, 4, 
5, 6, 8, 10, . . . (Sloane’s A000009), The GENERATING 
FUNCTION for Q(n)is 

= 1 + x -I- x2 + 2x3 + 2x4 + 3x5 + , l  l  , 

The values of 72 for which Q(n) is PRIME are 3, 4, 5, 
7, 22, 70, 100, 495, 1247, 2072, . . . (Sloane’s A046065), 
with no others for n 2 15,000. 

The number of PARTITIONS of n with < IC summands is 
denoted q(n, k) or q&z). Therefore, q&z) = P(n) and 

qk(n) = qk-l(n) + qk(n - k>* 

Abramowitz, M. and Stegun, C. A. (Eds.). “Partitions into 
Distinct Parts.” $24.2.2 in Handbook of Mathematical 
Functions with Formulas, Graphs, and Mathematical Ta- 
bles, 9th printing. New York: Dover, pp. 823-824, 1972. 

Sloane, N. J. A. Sequences A046065 and A000009/M0281 in 
“An On-Line Version of the Encyclopedia of Integer Se- 
quences .” 

Party Problem 
Also known as the MAXIMUM CLIQUE PROBLEM. Find 
the minimum number of guests that must be invited so 
that at least VL will know each other or at least n will not 
know each other. The solutions are known as RAMSEY 
NUMBERS. 

see also CLIQUE, RAMSEY NUMBER 

Parzen Apodization Function 
An APODIZATI~N FUNCTION similar to the BARTLETT 
FUNCTION. 

see also 
TION 

APODIZATION FUNCTION, BARTLETT FUNC- 

References 
Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetter- 

ling, W, T. Numerical Recipes in FORTRAN: The Art of 
Scientific Computing, 2nd ed. Cambridge, England: Cam- 
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Pascal Distribution 

see NEGATIVE BINOMIAL DISTRIBUTION 

Pascal’s Formula 
Each subsequent row of PASCAL'S TRIANGLE is obtained 
by adding the two entries diagonally above. This follows 
immediately from the BINOMIAL COEFFICIENT identity 

n 0 n! n- - ( l)!n 
Z 

T ( n- r)!r! = (n - r)!r! 

( n - l)!(n - T) (n - l)!r - - 
(n - r)!r! 

+ 
( n- T)!T! 

see also BINOMIAL COEFFICIENT, PASCAL'S TRIANGLE 

Pascal’s Hexagrammum Mysticum 

see PASCAL’S THEOREM 

Pascal’s Limason 

see LIMA~ON 

Pascal Line 
The line containing the three points of the intersection 
of the three pairs of opposite sides of two TRIANGLES. 

see also PASCAL'S THEOREM see also PARTITION FUNCTION P 
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Pascal’s Rule 

see PASCAL'S FORMULA 

Pascal’s Theorem 

The dual of BRIANCHON'S THEOREM. It states that, 
given a (not necessarily REGULAR, or even CONVEX) 
HEXAGON inscribed in a CYNIC SECTION, the three 
pairs of the continuations of opposite sides meet on a 
straight LINE, called the PASCAL LINE. There are 6! 
(6! means 6 FACTORIAL, where 6! = 6 9 5 l  4 l  3 l  2 l  1) 
possible ways of taking all VERTICES in any order, but 
among these are six equivalent CYCLIC PERMUTATIONS 
and two possible orderings, so the total number of dif- 
ferent hexagons (not all simple) is 

6! 720 --- 
2m6- 12 

= 60. 

There are therefore a total of 60 PASCAL LINES created 
by connecting VERTICES in any order. These intersect 
three by three in 20 STEINER POINTS. 

see also BRAIKENRIDGE-MACLAURIN CONSTRUCTION, 
BRIANCHON'S THEOREM, CAYLEY-BACHARACH THEO- 
REM,CONIC SECTION,DUALITY PRINCTPLE,HEXAGON, 
PAPPUS%HEXAGONTHEOREM,PASCALLINE, STEINER 
POINTS 
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Pascal’s Triangle 
A TRIANGLE of numbers arranged in staggered rows 
such that 

?t! n - - 
G&r = 

r!(n-T)!= T ’ 0 
(1) 

where 0 z is a BINOMIAL COEFFICIENT. The trian- 
gle was studied by B. Pascal, although it had been 
described centuries earlier by Chinese mathematician 

Yanghui (about 500 years earlier, in fact) and the Ara- 
bian poet-mathematician Omar KhayyBm. It is there- 
fore known as the YANGHUI TRIANGLE in China. Start- 
ing with n = 0,the TRIANGLE is 

1 

1 1 

1 2 1 

1 3 3 1 

1 4 6 4 1 

1 5 10 10 5 1 

1 6 15 20 15 6 1 

(Sloane’s AOO7318). PASCAL'S FORMULA shows that 
each subsequent row is obtained by adding the two en- 
tries diagonally above, 

n 0 n! - 
T - (n - r)!r! 

== (y’) + (:I:). (2) 

10 10 5 1 

15 20 15 6 1 

In addition, the SHALLOW DIAGONALS" of Pascal’s tri- 
angle sum to FIBONACCI NUMBERS, 

a,“,) = (-1)n3Fz(l,2,1-n;$(3-n),2- in;-:) 

= E&+1, (3) 

r(2 - 3?I + n2) 
k=l 

where &(a, b,~; d,e;x) is a GENERALIZED HYPERGEO- 
METRIC FUNCTION. 

Pascal’s triangle contains the FIGURATE NUMBERS 
along its diagonals. It can be shown that 

n 

>: 

n+1 
ai j  = - j + 1% = qn+q ,(j+1) (4) 

*_ 2- 1 

and 

+...+ ( >. “,’ l p = (72 + l)[(n + 1)” - 11. (5) 



Pascal’s YEangle 

The “shallow diagonals” sum to the FIB~NACCI SE- 
QuENCE, i.e., 

1 =l 

1-l 

2=1+1 

3=2+1 

5= 1+3+1 

8=3+4+1. (6 

In addition, i 
x %j = zi - 1. 

j=l 

‘1 

It is also true that the first number after the 1 in each 
row divides all other numb lers in 
PRIME. If Pn. is the number of OD 

that row 
D terms in 

IFF it is a 
the first n 

rows of the Pascal triangle, then 

0.812.. . < P,~I-‘“~‘~~~ < 1 (8) 

(Harborth 1976, Le Lionnais 1983). 

The BINOMIAL COEFFICIENT (r) mod 2 can be com- 
puted using the XOR operation n XOR m, making Pas- 
cal’s triangle mod 2 very easy to construct. Pascal’s tri- 
angle is unexpectedly connected with the construction 
of regular POLYGONS and with the SIERPI &KI SIEVE. 

see also BELL TRIANGLE, BINOMIAL COEFFICIENT, BI- 
NOMIAL THEOREM, BRIANCHON’S THEOREM, CATA- 
LAN’S TRIANGLE, CLARK’S TRIANGLE, EULER’S TRI- 

ANGLE, FIBONACCI NUMBER, FIGURATE NUMBER 
TRIANGLE, LEIBNIZ HARMONIC TRIANGLE, NUMBER 
TRIANGLE, PASCAL’S FORMULA, POLYGON, SEIDEL- 
ENTRINGER-ARNOLD TRIANGLE, SIERPI~~SKI SIEVE, 
TRINOMIAL TRIANGLE 
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Pascal’s Wager 
“God is or He is not.. . Let us weigh the gain and the 
loss in choosing. . . ‘God is.’ If you gain, you gain all, if 
you lose, you lose nothing. Wager, then, unhesitatingly, 
that He is.” 

Pasch’s Axiom 
In the plane, if a line intersects one side of a TRIANGLE 
and misses the three VERTICES, then it must intersect 
one of the other two sides. This is a special case of the 
generalized MENELAUS’ THEOREM with n = 3. 

see UZSO HELLY’S THEOREM, MENELAUS’ THEOREM, 

PASCH’S THEOREM 

Pasch’s Theorem 
A theorem stated in1882 which cannot be derived from 
EUCLID'S POSIWLATES. Given points a, b, c, and d on 
a LINE, if it is’sknown that the points are ordered as 
(a, b, c) and (b, C, d), ‘it is also true that (a, b, d). 

see UZSO EU,CLID”S POSTULATES, LINE, PASCH’S AXIOM 

Pass Equivalent 
Two KNOTS are pass equivalent if there exists a sequence 
of pass moves taking one to the other. Every KNOT 
is either <pass equivalent to the UNKNOT or TREFOIL 

KNOT. Th&e two-knots are not pass equivalent to each 
other, but%he+ENANTIOMERS of the TREFOIL KNOT are 
pass equivalent. A KNOT has ARF INVARIANT 0 if the 
KNOT is pass equivalent to the UNKNOT and 1 if it is 
pass equivalent to the TREFOIL KNOT. 

see also ARF INVARIANT, KNOT, PASS MOVE, TREFOIL 
KNOT, UNKNOT 

References 
Adams, C. C. The Knot Book: An Elementary Introduction 
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Pass Move 
A change in a knot projection such that a pair of oppo- 
sitely oriented strands are passed through another pair 
of oppositely oriented strands. 

see also PASS EQUIVALENT 

Patch 
A patch (also called a LOCAL SURFACE) is a differen- 
tiable mapping x : U + IV‘, where U is an open subset 
of R2. More generally, if A is any SUBSET of R2, then 
a map x : A -+ IV is a patch provided that x can be 
extended to a differentiable map from U into R”, where 
U is an open set containing A. Here, x(U) (or more 
generally, x(A)) is called the TRACE of x. 

see also GAUSS MAP, INJECTIVE PATCH, MONGE 

PATCH, REGULAR PATCH, TRACE (MAP) 

References 
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Path 
A path y is a continuous mapping y : [a, b] t+ C, where 
r(a) is the initial point and y(b) is the final point. It is 
often written parametrically as a(t). 

Path Graph 
The path Pn is a TREE with two nodes of valency 1, and 
the other n - 2 nodes of valency 2. Path graphs Pn are 
always GRACEFUL for n. > 4. 

see also CHAIN (GRAPH), GRACEFUL GRAPH, HAMIL- 
TONIAN PATH, TREE 

Path Integral 
Let y be a PATH given parametrically by a(t). Let s 
denote ARC LENGTH from the initial point. Then 

~fW = l f k(t)> la’(t)l dt 

= 
s 

f (x(t)7 y(t)7 w b’(t>l dt* 
Y 

see also LINE INTEGRAL 

References 
Press, W. H.; Flannery, B. P.; Teukolsky, S; A.; and Vetter- 

ling, W. T. “Evaluation of Functions by Path Integration.” 
$5.14 in Numerical Recipes in FORTRAN: The Art of Sci- 
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Pathwise-Connected 
A TOPOLOGICAL SPACE X is pathwise-connected IFF 
for every two points x,y E X, there is a CONTINUOUS 

FUNCTION f from [O,l] to X such that f (0) = x and 
f(l) = y. Roughly speaking, a SPACE X is pathwise- 
connected if, for every two points in X, there is a path 
connecting them. For LOCALLY PATHWISE-CONNECTED 
SPACES (which include most “interesting spaces” such as 
MANIFOLDS and CW-COMPLEXES), being CONNECTED 
and being pathwise-connected are equivalent, although 
there are connected spaces which are not pathwise con- 

Pathwise-connected spaces are also called O- nected. 
connected. 

see also CONNECTED SPACE, CW-COMPLEX, LOCALLY 
PATHWISE-CONNECTED SPACE, TOPOLOGEAL SPACE 

Patriarcha Cross 
see GAULLIST CROSS 

Pauli Matrices 
Matrices which arise in Pauli’s treatment of spin in 
quantum mechanics. They are defined by 

(1) 

u2 = 
uy 

E P2 E [ 0 i 
4 0 1 

u3 = ur E P3 [ 1 0 
E 0 -1 1 l  

(2) 

The Pauli matrices plus the 2 x 2 IDENTITY MATRIX 
I form a complete set, so any 2 x 2 matrix A can be 
expressed as 

A - - cd + wn + c2u2 + c3u39 (4) 

The associated matrices 

a+=2 I 0 1 o () 1 (5) 

U- =2 [ o O 
1 0 1 (6) 

u2 E 
3 [ 1 0 0 1 1 (7) 

can also be defined. The Pauli spin matrices satisfy the 
identities 

UiUj = 16ij + EijkiUk (8) 

UiUj + UjUi = 2Uij (9) 

u’a:px -+- “ypy + hP% = &z2 + Py2 + Pz2* (10) 

see also DIRAC MATRICES, QUATERNION 
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Pauli Spin Matrices 

see PAULI MATRICES 

Payoff Matrix 
A nz x n MATRIX which gives the possible outcome of a 
two-person ZERO-SUM GAME when player A has m pos- 
sible strategies and player B n strategies. The analysis of 
the MATRIX in order to determine optimal strategies is 
the aim of GAME THEORY. The so-called “augmented” 
payoff matrix is defined as follows: 

PO Pl p2 *** pn R+1 e&+2 .'. el+Tn 

F. 1 1 l  ** 0 0 0 l  I l  
0  

-1 a11 a12 *** al, 1 0 . . . 0 

G = -1 a21 a22 * * ’ a2n 0 1 . . . 0 . 
* . . . . . . . . * . . . . . . . . . . 1 * . . . . 

,--1 a&l G&2 *-- amrr 0 0 . . . 1 I 

see also GAME THEORY, ZERO-SUM GAME 

Peacock’s Tail 
One name for the figure used by Euclid to prove the 
PYTHAGOREAN THEOREM. 

(3) see also BRIDE’S CHAIR, WINDMILL 



Peano Arithmetic 

Peanr> Arithmetic 
The theory of NATURAL NUMBERS defined by the five 
PEANO'S AXIOMS. Any universal statement which is 
undecidable in Peano arithmetic is necessarily TRUE. 
Undecidable statements may be either TRUE or FALSE. 
Paris and Harrington (1977) gave the first “natural” ex- 
ample of a statement which is true for the integers but 
unprovable in Peano arithmetic (Spencer 1983). 

see also KREISEL CONJECTURE, NATURAL INDEPEN- 
DENCEPHENOMENON,NUMBER THEORY, PEANO? Ax- 
IOMS 
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Peano’s Axioms 

1. 

2. 

3. 

4. 

5. 

n 

Zero is a number. 

If a is a number, the successor of a is a number. 

ZERO is not the successor of a number. 

Two numbers of which the successors are equal are 
themselves equal. 

(INDUCTION AXIOM.) If a set S of numbers contains 
ZERO and also the successor of every number in S, 
then every number is in S. 

reano’s axioms 
THEORY known 

are the basis for the version 
as PEANO ARITHMETIC. 

of NUMBER 

see also INDUCTION AXIOM, PEANO ARITHMETIC 

A FRACTAL curve which can be written as a LINDEN- 
MAYER SYSTEM. 

see also DRAGON CURVE, HILBERT CURVE, LINDEN- 
MAYER SYSTEM, SEERPI~KI CURVE 
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Peano-Gosper Curve 

A PLANE-FILLING CURVE originally called a FLOW- 
SNAKE by R. W. Gosper and M. Gardner. Mandel- 
brot (1977) subsequently coined the name Peano-Gosper 
curve. The GOSPER ISLAND bounds the space that the 
Peano-Gosper curve fills. 

see also DRAGON CURVE, EXTERIOR SNOWFLAKE, 
GOSPER ISLAND, HILBERT CURVE, KOCH SNOWFLAKE, 
PEANO CURVE, SIERPI~~SKI ARROWHEAD CURVE,SIER- 
PI~KI CURVE 
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Peano Surface 

The function 

f (x7 Y> = (2x2 - Y>(Y - x2> 

which does not have a LOCAL MAXIMUM at (0, O), de- 
spite criteria commonly touted in the second half of the 
1800s which indicated the contrary. 

see also LOCAL MAXIMUM 
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Pear Curve 



1328 Pear-Shaped Curve 

The LEMNISCATE L3 in the iteration towards the MAN- 
DELBROT SET. In CARTESIAN COORDINATES with a 
constant T, the equation is given by 

f2 = (~2+y2)(1+2x+5z2+6~3+6~4+4~5+~6-3y2 

-225~~ + 8x2y2 + 8z3y2 + 3z4y2 + 2y4 + 4xy4 

+3x2y4 +y6). 

see also PEAR-SHAPED CURVE 

Pear-Shaped Curve 

A curve given by the Cartesian equation 

b2y2 = x3(u - x). 

see also PEAR CURVE, TEARDROP CURVE 

References 
MacTutor History of Mathematics Archive. “Pear-Shaped 
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Pearson’s Correlation 

see CORRELATION COEFFICIENT 

Pearson-Cunningham Function 

see CUNNINGHAM FUNCTION 

Pearson’s Function 

where r(x) is the GAMMA FUNCTION. 

see also CHI-SQUARED TEST, GAMMA FUNCTION 

Pearson Kurtosis 
Let ~4 be the fourth MOMENT of a DISTRIBUTION and 
0 its VARIANCE. Then the Pearson kurtosis is defined 

bY 

P 
P4 2 Ii -. 
o4 

see dso FISHER KURTOSIS, KURTOSIS 

Pearson Sys tern 

Pearson Mode Skewness 
Given a DISTRIBUTION with measured MEAN, MODE, 
and STANDARD DEVIATION S, the Pearson mode skew- 
ness is 

mean - mode 
l  

s  

see UZSO MEAN, MODE, PEARSON SKEWNESS, PEAR- 
SON’S SKEWNESS COEFFICIENTS, SKEWNESS 

Pearson Skewness 
Let a DISTRIEWTION have third MOMENT p3 and STAN- 
DARD DEVIATION 0, then the Pearson skewness is de- 
fined by 

p1= (5)". 

see also FISHER SKEWNESS, PEARSON’S SKEWNESS Co- 
EFFICIENTS, SKEWNESS 

Pearson’s Skewness Coefficients 
Given a DISTRIBUTION with measured MEAN, MEDIAN, 
MODE, and STANDARD DEVIATION s, Pearson’s first 
skewness coefficient is 

3[mean] - [mode] 
9 

S 

and the second coefficient is 

3[mean] - [median] 
. 

s 

see UZSO FISHER SKEWNESS, PEARSON SKEWNESS, 
SKEWNESS 

Pearson System 
Generalizes the differential equation for the GAUSSIAN 

DISTRIBUTION 
dY Y(” - 4 
dz= a (1) 

to 
dY Y(“-4 
dz= a + bx + cx2 ’ (2) 

Let cl, c2 be the roots of a + bx + cx2. Then the possible 
types of curves are 

0. b = c = 0, a > 0. E.g., NORMAL DISTRIBUTION. 

I. b2/4uc < 0, cl 2 x 5 c2* E.g., BETA DISTRIBU- 
TION. 

II. b2/4ac = 0, c < 0, -cl 5 x 2 cl where cl s 

&qi. 

III. b2/4ac = 00, c = 0, cl 5 x < 00 where cr = 
-u/b. E.g., GAMMA DISTRIBUTION. This case is 
intermediate to cases I and VI. 

IV. 0 < b2/4uc < 1, -m < x < 00. 

V. b2/4ac = 1, cl 5 x < 00 where cl = -b/2u. 
Intermediate to cases IV and VI. 



Pearson System 

VI. b2/4ac > 1, cl < z < 00 where cl is the larger 
root. E.g., BETA PRIME DISTRIBUTION. 

VII. b2/4ac = 0, c > 0, --oo < x < 00. E.g., STU- 
DENT'S ~-DISTRIBUTION. 

Classes IX-XII are discussed in Pearson (1916). See also 
Craig (in Kenney and Keeping 1951). If a Pearson curve 
possesses a MODE, it will be at zc = nz. Let y(z) = 0 at 
cl and ~2, where these may be --oo or 00. If yzTs2 also 
vanishes at cl, ~2, then the rth MOMENT and (T + l)th 
MOMENTS exist. 

s c2 dy 
da: (axT+bxr+1+cxr+2) dx = c2 y(mxr -x’+l) dx 

Cl s Cl 

(3) 

giving 

[y(ax’ + bxrfl + cx’+2)]E; 

s 

c2 

- Y[ arxr-l + b(r + 1)~’ + C(T + Z)S’+~] dx 
Cl 

s 

c2 
- - y(mxr - xrsl) dx (4) 

Cl 

s 

=2 

O- y[aTxr-l + b(r + l)xT + C(T + 2)2’+7 dx 
Cl 

c2 
- - 

s 

y(mx’ - xr+l) dx (5 
Cl 

also, 

s 

c2 

UT = yx’ dx, (6 
Cl 

so 

aT@--I + b(T •k 1)Yr -!- C(T -f- 2)vT+1 = -mv, + v~+~, (7) 

For T = 0, 
b+2cvl = -m+vl, (8) 

so 
m+b 

u1 = - 
l-2& (9) 

For T = 1, 

a -i- 2bvl + 3~2 = -rnvl + ~2, (10) 

so 

u2 = 
a + (m + 2b)w 

I-3c l  

Now let t = (x - Y~)/u. Then 

(11) 

Ul =0 (12) 

u2 = p2 = 1 (13) 

QIf=pf=up (14) 
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Hence b = -m, and a = 1 - c so 

(1 - 3c)rar,-1 - rnT& + [C(T + 2) - I]&+1 = 0. (15) 

For T = 2, 

2m + (1 - ~C)QQ = 0. 

For T = 3, 

3(1 - 3c) - 3ma3 - (1 - 5c)a4 = 0. 

So the SKEWNESS and K~RTOSIS are 

2m 
y1 =Q(3 = 4c-1 

72 
I 3 _ 6(m2 - 4c2 + c) 

=a4 - 

(4 c - 1)(5c - 1) l  

So the parameters a, b, and c can be written 

a=l-3c 

b=-m= ” 
2(1+ 2s) 

where 
JG 272 -3W2* 

72 + 6 
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Pearson Type III Distribution 
A skewed distribution which is similar to the BINOMIAL 
DISTRIBUTION when p # q (Abramowitz and Stegun 
1972, p. 930). 

y = k(t + A)A2-1e-At, 

for t E [O,oo) where 

A = 2/y (2) 

AA 
2 

KE 
e-A2 

l?(A2) ’ (3) 

l?(z) is the GAMMA FUNCTION, and t is a standardized 
variate. Another form is 

p(x) = @r(p) 
L (y)‘-‘exp (7). (4) 
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For this distribution, the CHARACTERISTIC FUNCTION 

is 

4(t) = gay1 - Qt)-“, (5) 

and the MEAN, VARIANCE, SKEWNESS, and KURTOSIS 

C1=a+PO 

u2 = PP2 

2 
71 = - 

fi 

(6) 

(7) 

(8) 

6 
72 = -. 

P 
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Pearls of She 

(9) 

(Eds.). Handbook 
mmulas, Graphs, and 

New York: Dover, 

ym = kx”(a - x>“e 

The curves with integral 72, p, and m were studied by 
de Sluee between 1657 and 1698. The name “Pearls 
of Sluze” was given to these curves by Blaise Pascal 
(MacTutor Archive). 
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Peaucellier Cell 

see PEAUCELLIER INVERSOR 

Peaucellier Inversor 

0 P 

0 
-- P’ 

A LINKAGE with six rods which draws the inverse of a 
given curve. When a pencil is placed at P, the inverse 
is drawn at P’ (or vice versa). If a seventh rod (dashed) 
is added (with an additional pivot), P is kept on a circle 
and the locus traced out by P’ is a straight line. It there- 
fore converts circular motion to linear motion without 

sliding, and was discovered in 1864. Another LINKAGE 

which performs this feat using hinged squares had been 
published by Sarrus in 1853 but ignored. Coxeter (1969, 
p. 428) shows that 

OP x OP’ = OA2 - PA2. 

see ah HART’S INVERSOR, LINKAGE 
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Peaucellier’s Linkage 

see PEAUCELLIER INVERSOR 

Pedal 
The pedal of a curve with respect to a point P is the 
locus of the foot of the PERPENDICULAR from P to 
the TANGENT to the curve. When a CLOSED CURVE 
rolls on a straight line, the AREA between the line and 
ROULETTE after a complete revolution by any point on 
the curve is twice the AREA of the pedal (taken with 
respect to the generating point) of the rolling curve. 

Pedal Circle 
The pedal CIRCLE of a point P in a TRIANGLE is the 
CIRCLE through the feet of the perpendiculars from P 
tothesidesofthe TRIANGLE (the CIRCUMCIRCLE about 
the PEDAL TRIANGLE). When P is on a side of the 
TRIANGLE, the line between the two perpendiculars is 
called the PEDAL LINE. Given four points, no three of 
which are COLLINEAR, then the four PEDAL CIRCLES of 
each point for the TRIANGLE formed by the other three 
have a common point through which the NINE-POINT 
CIRCLES of the four TRIANGLES pass. The radius of the 
pedal circle of a point P is 

- - 
AIP l  A2P. ASP 

T- 
2(R2 - m2) 

(Johnson 1929, p. 141). 

see also MIQUEL POINT, NINE-POINT CIRCLE, PEDAL 
TRIANGLE 

References 
Johnson, R. A. Modern Geometry: An Elementary Treatise 

on the Geometry of the Triangle and the Circle. Boston, 
MA: Houghton Mifflin, 1929. 
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Pedal Coordinates 
The pedal coordinates of a point P with respect to the 
curve C and the PEDAL PUINT 0 are the radial distant 
T from 0 to P and the PERPENDICULAR distance p from 
0 to the line L tangent to C at P. 

Heferences 
Lawrence, J. D. A Catalog of Special Plane Curves. New 

York: Dover, pp. 2-3, 1972. 
Yates, R. C. “Pedal Equations .” A Handbook on Curves 

and Their Properties. Ann Arbor, MI: J. W. Edwards, 
pp. 166-169, 1952. 

Pedal Curve 
Given a curve C, the pedal curve of C with respect to 
a fixed point 0 (the PEDAL POINT) is the locus of the 
point P of intersection of the PERPENDICULAR from 0 
to a TANGENT to C. The parametric equations for a 

curve (f(h(W 1 t rea ive to the PEDAL POINT (x~,y~) 
are 

x= 
20f’2 + fgf2 + (Yo - s)f’s’ 

f I2 + gi2 

Y- 
gf’” + Yos’2 + (x0 - f)f’s’ 

f’2 + 9’22 l  

Curve Pole Pedal 

astroid 

cardioid 

central conic 

circle 

circle 
circle involute 

cissoid of Diocles 

deltoid 

deltoid 

deltoid 

deltoid 

epicycloid 

hypocycloid 

line 

logarithmic spiral 

parabola 

parabola 

parabola 

parabola 

parabola 

sinusoidal spiral 

Tschirnhausen 

cubic 

center 

cusp 

focus 
any point 

on circumference 

center of circle 

focus 

center 

cusp 

on the curve 

vertex 

center 

center 

any point 

pole 

focus 

foot of directrix 

on direct rix 

refl. of focus by dir. 

vertex 

pole 

focus of pedal 

quadrifolium 

Cayley ‘s sext ic 

circle 

limaqon 

cardioid 

Archimedean spiral 

cardioid 

trifolium 

simple folium 

unsymmetrical 

double folium 

double folium 

rose 

rose 

point 

logarithmic spiral 

line 

right strophoid 

strophoid 

Maclaurin trisectrix 

cissoid of Diocles 

sinusoidal spiral 

parabola 

see also NEGATIVE PEDAL CURVE 

References 
Lawrence, J. D. A Catalog of Special Plane Curves. New 

York: Dover, pp. 46-49 and 204, 1972. 
Lee, X. “Pedal.” http://wuw.best.com/-xah/SpecialPl~e 

Curves-dir/Pedal-dir/pedal.html. 
Lockwood, E. H. “Pedal Curves.” Ch. 18 in A Book 

of Curves. Cambridge, England: Cambridge University 
Press, pp. 152-155, 1967. 

Yates, R. C. “Pedal Curves.” A Handbook on Curves and 
Their Properties. Ann Arbor, MI: J. W. Edwards, pp* 160- 
165, 1952. 

Pedal Line 
Mark a point P on a 
perpendiculars from 
The line between the 
called the pedal line. 
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side of a TRIANGLE and draw the 
the point to the two other sides. 
feet, of these two perpendiculars is 

see also PEDAL TRIANGLE, SIMSON LINE 

Pedal Point 
The fixed point with respect to which a PEDAL CURVE 
is drawn. 

Pedal Triangle 

A2 

Given a point P, the pedal triangle of P is the TRIANGLE 
whose VERTICES are the feet of the perpendiculars from 
P to the side lines. The pedal triangle of a TRIANGLE 
with TRILINEAR COORDINATES a : p : y and angles A, 
B, and C has VERTICES with TRILINEAR CUORDINATES 

O:p+acosC:~+acosB (1) 
a+~cosC:o:~+~cosA (2) 
a+ycosB:~+~cosA:O. (3) 

The third pedal triangle is similar to the original one. 
This theorem can be generalized to: the nth pedal n- 
gon of any n-gon is similar to the original one. It is also 
true that 

p2p3 = AlPsinaI (4) 

(Johnson 1929, pp. 135436). The AREA A of the pedal 
triangle of a point P is proportional to the POWER of P 
with respect to the CIRCUMCIRCLE, 

A = +(R2 - Op’) sin al sin a2 sin 03 = 
R2-op2a 

4R2 
(5) 

(Johnson 1929, pp. 139-141). 

see also ANTIPEDAL TRIANGLE, FAGNANO'S PROBLEM, 
PEDAL CIRCLE, PEDAL LINE, SCHWARZ’S TRIANGLE 
PROBLEM 

References 
Coxeter, H. S. M. and Greitzer, S. L. Geometry Revisited. 

Washington, DC: Math. Assoc. Amer., pp. 22-26, 1967. 
Johnson, R. A+ Modern Geometry: An Elementary Treatise 

on the Geometry of the Triangle and the Circle. Boston, 
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Peg Knot 

~~~CL~VEHITCH 

Peg Solitaire 

A game played on a cross-shaped board with 33 holes. 
All holes but the middle one are initially filled with pegs. 
The goal is to remove all pegs but one by jumping pegs 
from one side of an occupied peg hole to an empty space, 
removing the peg which was jumped over. Strategies 
and symmetries are discussed in Beeler et al. (1972, Item 
75). A triangular version called HI-Q also exists (Beeler 
et al. 1972, Item 76). Kraitchik (1942) considers a board 
with one additional hole placed at the vertices of the 
central right angles. 

see also HI-Q 

Meierences 
Beeler, M.; Gosper, R. W.; and Schroeppel, R. HAKIMEM+ 

Cambridge, MA: MIT Artificial Intelligence Laboratory, 
Memo AIM-239, Feb. 1972. 

Gardner, M. “Peg Solit aire.” Ch. 11 in The Unexpected 
Hanging and Other Mathematical Diversions. New York: 
Simon and Schuster, pp. 122-135 and 250-251, 1969+ 

Kraitchik, M. “Peg Solitaire.” 512.19 in Mathematical Recre- 
ations. New York: W. W. Norton, pp. 297-298, 1942. 

Peg Top 

see PIRIFORM 

Peirce’s Theorem 
The only linear associative algebra in which the coor- 
dinates are REAL NUMBERS and products vanish only 
if one factor is zero are the FIELD of REAL NUMBERS, 
the FIELD of COMPLEX NUMBERS, and the algebra of 
QUATERNIONS with REAL COEFFICIENTS. 

see ~2s~ WEIERSTRAB'S THEOREM 

Pell Equation 
A special case of the quadratic DIOPHANTINE EQUATION 
having the form 

x2 - Dy2 = 1, (1) 

where D is a nonsquare NATURAL NUMBER. 
(1965) defines the equation as 

Diirrie 

Pell Equation 

Pell equations, as well as the analogous equation with 
a minus sign on the right, can be solved by finding the 
CONTINUED FRACTION [u~,u~,.,.] for m. (The triv- 
ial solution z = 1, y = 0 is ignored in all subsequent 
discussion.) Let pm/q, denote the nth CONVERGENT 
[m,a2,-4*, a,], then we are looking for a convergent 
which obeys the identity 

2 
Pn - Dqn2 = (-l)“, (3) 

which turns out to always be possible since the CONTIN- 

UED FRACTION of a QUADRATIC SURD always becomes 

periodic at some term a,+l, where ar+l = 2al, i.e., 

JD= [u1+2,..*4,,2al]. (4) 

Writing n = rk gives 

P,k2 - DqTk2 = (-l)‘“, (5) 

for k anPOSITIVE INTEGER. If T is ODD, solutions to 

x2 -Dy2=H (6) 

can be obtained if k is chosen to be EVEN or ODD, but 
if T is EVEN, there are no values of k: which can make 
the exponent ODD. 

If T is EVEN, then (-1)’ is POSITIVE and the solution 
in terms of smallest INTEGERS is x = p, and y = qr, 

where pJq, is the rth CONVERGENT. If r is ODD, then 
(-1)’ is NEGATIVE, but we can take k = 2 in this case, 
to obtain 

P2r2 - Dq2T2 = 1, (7) 

so the solution in smallest INTEGERS is zc = pzr, y = qzr. 

Summarizing, 

Given one solution (x, y) = (p, CJ) (which can be found 
as above), a whole family of solutions 
taking each side to the nth POWER, 

can be found by 

x2 - Dy2 = (p” - Dq2)n = 1. (9) 

Factoring gives 

(x+Joy)(x-JDY) = (P+JDq)n(P--JDQ)n (10) 

X2 -Dy2=4 (2) 

and calls it the FERMAT DIFFERENCE EQUATION. The 
general Pell equation was solved by the Indian mathe- 
matician Bhaskara, 

x+fiy=(p+JDq)" 

X- fi y = (p - fip)", 

(11) 

(12) 
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which gives the family of solutions D x Y D X I/ 

y=(p+qm~n-~P-qdB~n 

2a 
l  (14) 

These solutions also hold for 

x2 - Dy2 = -1, (15) 

except that n can take on only ODD values. 

The following table gives the smallest integer solutions 
(x, y) to th e e equation with constant D 5 102 (Beiler P 11 
1966, p. 254). SQUARE D = d2 are not included, since 
they would result in an equatidn of the form 

x2 - d 2y2 = x2 - (dy)2 = x2 - yt2 c 1, (16) 

which has no solutions (since the difference of two 
SQUARES cannot be 1). 

2 3 2 
3 2 1 
5 9 4 
6 5 2 
7 8 3 
8 3 1 

10 19 6 
11 10 3 
12 7 2 
13 649 180 
14 15 4 
15 4 1 
17 33 8 
18 17 4 
19 170 39 
20 9 2 
21 55 12 
22 197 42 
23 24 5 
24 5 1 
26 51 10 
27 26 5 
28 127 24 
29 9801 1820 
30 11 2 
31 1520 273 
32 17 3 
33 23 4 
34 35 6 
35 6 1 
37 73 12 
38 37 6 
39 25 4 
40 19 3 
41 2049 320 
42 13 2 
43 3482 531 
44 199 30 
45 161 24 
46 24335 3588 
47 48 7 
48 7 1 
50 99 14 
51 50 7 
52 649 90 
53 66249 9100 

54 485 66 
55 89 12 
56 15 2 
57 151 20 
58 19603 2574 
59 530 69 
60 31 4 
*- 1766319049 226153980 01 
62 
63 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

101 
102 

63 8 
8 1 

129 16 
65 8 

48842 5967 
33 4 

7775 936 
251 30 

3480 413 
17 2 

2281249 267000 
3699 430 

26 3 
57799 6630 

351 40 
53 6 
80 9 

9 1 
163 18 

82 9 
55 6 

285769 30996 
10405 1122 

28 3 
197 21 

500001 53000 
19 2 

1574 165 
1151 120 

12151 1260 
2143295 221064 

39 4 
49 5 

62809633 6377352 
99 10 
10 1 

201 20 
101 10 

The first few minimal values of II: and y for nonsquare D 
are 3, 2, 9, 5, 8, 3, 19, 10, 7, 649, . . . (Sloane’s AO33313) 
and 2, 1, 4, 2, 3, 1, 6, 3, 2, 180, . . . (Sloane’s AO33317), 
respectively. The values of D having x = 2, 3, . . . are 
3, 2, 15, 6, 35, 12, 7, 5, 11, 30, l  l  . (Sloane’s A033314) 
and the values of D having y = 1, 2, . . l  are 3, 2, 7, 5, 
23, 10, 47, 17, 79, 26, l  . . (Sloane’s A033318) l  Values 
of the incrementally largest minimal x are 3, 9, 19, 649, 
9801, 24335, 66249, . . . (Sloane’s A033315) which occur 
at D = 2, 5, 10, 13, 29, 46, 53, 61, 109, 181, . l  . (Sloane’s 
A033316). Values of the incrementally largest minimal 
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y are 2, 4, 6, 180, 1820, 3588, 9100, 226153980, . . . 
(Sloane’s AO33319), which occur at D = 2, 5, 10, 13, 29, 
46, 53, 61, . . . (Sloane’s A033320). 

see also DI~PHANTINE EQUATION, DIOPHANTINE 
EQUATION-QUADRATIC, LAGRANGE NUMBER ( DIO- 
PHANTINE EQUATION) 
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Pell-Lucas Number 

see PELL NUMBER 

Pell-Lucas Polynomial 

Pell Polynomial 
The Pell polynomials P(x) and Lucas-Pell polynomi- 
als Q(X) are generated by a LUCAS POLYNOMIAL SE- 
QUENCE using generator (2x, 1). This gives recursive 
equations for P(x) from &(x) = I’&) = 1 and 

pn+z(x) = 2eL+1(x) + E-L(x). (1) 

The first few are 

PI = 1 

p2 = 2x 

p3 = 4x2 - 1 

p4 = 8x3 - 4x 

p5 = 16x4 - 12x2 + 1, 

The Pell-Lucas numbers are defined recursively by 

Qo (4 = 1, ql(x) = x and 

see PELL POLYNOMIAL 
Qn+2(X) = 2X&+1(X) + %(X)7 (2) 

Pell Number 
The numbers obtained by the Uris in the LUCAS SE- 
QUENCE with P = 2 and Q = -1. They and the Pell- 
Lucas numbers (the Vns in the LUCAS SEQUENCE) sat- 
isfy the recurrence relation 

Pn = 2P,-1 -+ P7-4. (1) 

Using Pi to denote a Pell number and Qi to denote a 
Pell-Lucas number, 

P m+n. =enP,+1+en-& (2) 

P m+n = 2P,Q, - (-l)“Pm+, (3) 

Pztm = Pm(2Qm)@Q~m)(2&4,) - n  n  (2Qzt-lm) (4) 

Q m 2 = 2Pm2 + (-qm (5) 

Q 2m = 2Qm2 - (-I)m. (6) 

The Pell numbers have PO = 0 and pl = 1 and are 0, 
1, 2, 5, 12, 29, 70, 169, 408, 985, 2378, . . . (Sloane’s 
AOOO129). The Pell-Lucas numbers have QO = 2 and 
Ql = 2 and are 2, 2, 6, 14, 34, 82, 198, 478, 1154, 2786, 
6726, . . . (Sloane’s A002203). 

together with 

Qn(x) = @n(x)* (3) 

The first few are 

Q 1 = 2x 

Q2 = 4x2 - 2 

Q3 = 8x3 - 6x 

Q4 = 16~~ - 16x2 + 2 

Q5 = 32x5 - 40x3 + 10X. 

see UZSO LUCAS POLYNOMIAL SEQUENCE 

References 
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Pell Sequence 

see PELL NUMBER 

The only TRIANGULAR Pell number is 1 (McDaniel 
1996). 
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Pencil 
The set of all LINES through a point. Woods (1961), 
however, uses this term as a synonym for RANGE. 

see dso NEAR-PENCIL, PERSPECTIVITY, RANGE (LINE 
SEGMENT), SECTION (PENCIL), SHEAF (GEOMETRY) 

References 
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Penrose Stairway 

An IMPOSSIBLE FIGURE (also called the SCHROEDER 
STAIRS) in which a stairway in the shape of a square 

tiles, shown above. Now define “deflation” and “infla- 
tion” operations. The deflation operator takes an acute 
TRIANGLE to the union of two ACUTE TRIANGLES and 
one OBTUSE, and the OBTUSE TRIANGLE goes to an 
ACUTE and an OBTUSE TRIANGLE. These operations 
are illustrated below. 

When applied to a collection of tiles, the deflation op- 
erator leads to a more refined collection. The operators 
do not respect tile boundaries, but do respect the half 
tiles defined above. There are two ways to obtain aperi- 
odic TILINGS with 5-fold symmetry about a single point. 
They are known an the “star” and ‘%un” configurations, 
and 

appears to circulate indefinitely while still possessing 
normal steps. The Dutch artist M. C. Escher included 
Penrose stairways in many of his mind-bending illustra- 
tions. 

see also IMPOSSIBLE FIGURE 
Higher order versions can then be obtained by deflat ion. 
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Penrose Tiles 

A pair of shapes which tile the plane only aperiodically 
(when the markings are constrained to match at bor- 
ders). The two tiles, illustrated above, are called the 
“KITE" and “DART? 

\ \ 
'i 1 \ 

For example, the following are third-order deflations: - 
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Penrose Triangle 

see TRIBAR 

Penrose Tribar 

see TRIBAR 

Pentabolo 
A 5-POLYABOLO, 

To 
the 

see how the plane may be tiled aperiodically using 
kite and dart, divide the kite into acute and obtuse Pentacle 

see PENTAGRAM 
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Pentacontagon 
A 50-sided POLYGON. 

Pentad 
A group of five elements. 

see dso MONAD, PAIR, QUADRUPLET, QUINTUPLET, 
TETRAD, TRIAD, TRIPLET, TWINS 

Pentadecagon 

A 15-sided POLYGON, sometimes also called the PEN- 
TAKAIDECAGON. 

see UZSO POLYGON, REGULAR POLYGON, TRIGONOME- 
TRY VALUES-415 

Pentaflake 

\ 
\ 
\ 
\ 
/ / 

h 

A FRACTAL with 5-fold symmetry. As illustrated above, 
five PENTAGONS can be arranged around an identical 
PENTAGON to form the first iteration of the pentaflake. 
This cluster of six pentagons has the shape of a pentagon 
with five triangular wedges removed. This construction 
was first noticed by Albrecht Diirer (Dixon 1991). 

For a pentagon of side length 1, the first ring of pen- 
tagons has centers at RADIUS 

dl = 2r = $(l+ &)R = #R, (1) 

Peniaffake 

where qb is the GOLDEN RATIO. The INRADIUS T and 
CIRCUMRADIUS R are related by 

r = Rcos(;r) = a(&+ l)R, 

and these are related to the side length s by 

s = 22/R2_rz = ~R~iciz. 

The height h is 

h = ssin@) = as da=;v%R, 

giving a RADIUS of the second ring as 

d2 = 2(R+ h) = (2 -j- &)R = 4”R. 

Continuing, the nth pentagon ring is located at 

d, = q$2n-1. 

(2) 

(3) 

(4) 

(5) 

(6) 

Now, the length of the side of the first pentagon com- 
pound is given by 

s2 = 2J(2~ + R)2 - (h + R)2 = R&-%, (7) 

so the ratio of side lengths of the original pentagon to 
that of the compound is 

s2 Rd5 + 2& -- - =1++* 
s +RJ- 

(8) 

We can now calculate the dimension of the pentafiake 
fractal. Let Nn be the number of black pentagons and 
L, the length of side of a pentagon after the n iteration, 

Nn = 6” (9) 

Ln = (l+ 4)-"m (10) 

The CAPACITY DIMENSION is therefore 

d 
In Nn In 6 In 2 + In 3 

cap = - 
n@k In = n ln(l + 4) = IQ+ 4) 

= 1.861715.. l  q (11) 

see also PENTAGON 
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4 
The regular convex 5-gon is called the pentagon. By 
SIMILAR TRIANGLES in the figure on the left, 

d 1 
4 

i=H= ’ 
(1) 

where d is the diagonal distance. But the dashed vertical 
line connecting two nonadjacent VERTICES is the same 
length as the diagonal one, so 

+1+; (2) 

(b”-(b-1 (3) 

This number is the GOLDEN RATIO. The coordinates of 
the VERTICES relative to the center of the pentagon with 
unit sides, starting at the right VERTEX and moving 
clockwise, are (cos( inn), sin(inn)) for n = 0, 1, . . . , 4, 
or 

(1,O),(Cl,Sl),(C2,~2)I (C2r-321, (c1,-s1)7 (5) 

where 

Cl = cos K = l 
( > 5 

,(J5+ 1) (6) 

‘Zn 
c2 = cos - - 

c > 
- a(&- 1) 

sl=sin($ =+&L-Z (8) 

52 = sin ($) = giiTx (9) 

For aregular POLYGON, the CIRCUMRADIUS,~NRADIUS, 
SAGITTA, and AREA are given by 

(10) 

X n=Rn-Tn=iatan (12) 

(13) 

Plugging in n = 5 gives 

R = iacsc($ > - &ad50 + lo& - (14) 
T = +acot(+) = &a d25 + lo& (15) 

1 
2=za d25 - 16 (16) 

A= $a2J25 + lo&. (17) 

Five pentagons can be arranged around an identical pen- 
tagon to form the first iteration of the “PENTAFLAKE," 
which itself has the shape of a pentagon with five trian- 
gular wedges removed. For a pentagon of side length 1, 
the first ring of pentagons has centers at radius 4, the 
second ring at @3, and the nth at 42n-1. 

* 

In proposition IV.11, Euclid showed how to inscribe a 
regular pentagon in a CIRCLE. Ptolemy also gave a 
RULER and COMPASS construction for the pentagon in 
his epoch-making work The Almagest. While Ptolemy’s 
construction has a SIMPLICXTY of 16, a GEOMETRIC 
CONSTRUCTION using CARLYLE CIRCLES can be made 
with GEOMETROGRAPHY symbol 2S1 + S2 + 8C1 + OC2 + 
4C3, which has SIMPLICITY 15 (De Temple 1991). 

PO 

Pentagon 

The following elegant construction for the pentagon is 
due to Richmond (1893). Given a point, a CIRCLE may 
be constructed of any desired RADIUS, and a DIAM- 
ETER drawn through the center. Call the center 0, 
and the right end of the DIAMETER PO. The DIAME- 
TER~ERPENDICULAR totheoriginal DIAMETER maybe 
constructed by finding the PERPENDICULAR BISECTOR. 
Call the upper endpoint of this PERPENDICULAR DIAM- 
ETER B. For the pentagon, find the MIDPOINT of OB 
and call it D. Draw DPo, and BISECT LOD&, calling 
the intersection point with OpO Nl. Draw N#l PAR- 
ALLEL to OB, and the first two points of the pentagon 
are PO and pl (Coxeter 1969). 

Madachy (1979) illustrates how to construct a pentagon 
by folding and knotting a strip of paper. 
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see &O CYCLIC PENTAGON, DECAGON, DISSECTION, 
FIVE DISKS PROBLEM, HOME PLATE, PENTAFLAKE, 
PENTAGRAM, POLYGON, TRIGONOMETRY VALUES- 

45 

References 
Ball, W, W. R. and Coxeter, H. S. M. lMathematical Recre- 

ations and Essuys, 13th ed. New York: Dover, pp+ 95-96, 
1987. 

Coxeter, H. S. M. Introduction to Geometry, 2nd ed. New 
York: Wiley, pp. 26-28, 1969. 

De Temple, D. W. “Carlyle Circles and the Lemoine Simplic- 
ity of Polygonal Constructions.” Amer. Math. MonthEy 98, 
97-108, 1991. 

Dixon, R. Muthogmphics. New York: Dover, p. 17, 1991. 
Dudeney, H. E. Amusements in kfathemutics. New York: 

Dover, p. 38, 1970. 
Madachy, J. S. Mudachy’s Mathematical Recreations. New 

York: Dover, p. 59, 1979. 
Pappas, T. “The Pentagon, the Pentagram & the Golden 

Triangle l ” The Joy of 1Mathemutics. San Carlos, CA: Wide 
World Publ./Tetra, pp. 188489, 1989. 

Richmond, H. W- “A Construction for a Regular Polygon of 
Seventeen Sides.” Quart. J. Pure Appl. Math, 26, 206- 
207,1893. 

Wantzel, P. L. “Recherches sur les moyens de reconnaitre si 
un Problkme de G&om&trie peut se rksoudre avec la Ggle 
et le compas.” J. Muth. pures uppliq. 1, 366-372, 1836. 

Pentagonal Antiprism 

An ANTIPRISM and UNIFORM POLYHEDRON U77 whose 
DUAL POLYHEDRON is the PENTAGONAL DELTAHE- 
DRON. 

Pentagonal Cupola 

n 

JOHNSON SOLID &. The bottom 10 VERTICES are 

( *(1+\/5)&z*3+&$ 

41/2 2 
1 

7 

(0, ++(1+ J5), 0) 

and the top five VERTICES are 

Pentagonal Deltahedron 
A DELTAHEDRON which is the DUAL POLYHEDRON of 
the PENTAGONAL ANTIPRISM. 

Pentagonal Dipyramid 

The pentagonal dipyramid is one of the convex DELTA- 
HEDRA, and JOHNSON SOLID Jls. It is also the DUAL 
POLYHEDRON of the PENTAGONALPRISM. Thedistance 
between two adjacent VERTICES on the base of the PEN- 
TAGONis 

dlz2 = [l - cos( ;7r)]” + sin2( $7r) 

11 - a(&- l)]” + 

[ 

(1+&)&z 2 - - 
4a I 

- 35 - h), - 
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and the distance between the apex and one of the base 
points is 

dlh2 = (0 - 1)” + (0 - 0)” + (h - 0)" = 1+ h2. (2) 

But 
d2 

2 
12 = dlz (3) 

;(5-4=l+h2 (4) 

h2 = i(3 - J5), (5) 

and 

(6) 

This root is of the form du + b&, so applying SQUARE 
ROOT simplification gives 

h= i(&- 1) = #- 1, (7) 

where 4 is the GOLDEN MEAN. 

see also DELTABEDRON, DIPYRAMID, GOLDEN MEAN, 
ICOSAHEDRON, JOHNSON SOLID, TRIANGULAR DIPYR- 
AMID 

Pentagonal Gyrobicupola 

see JOHNSON SOLID 

Pentagonal Gyrocupolarotunda 

see JOHNSON SOLID 

Pentagonal Hexecontahedron 

The D UALPOLYHEDRON ofthe SNUB DODECAHE IDRoN. 

Pentagonal Icositetrahedron 

The DUAL POLYHEDRON ofthe SNUB CUBE. 

Pentagonal Number 

A POLYGONAL NUMBER of the form n(3n- 1)/2. The 
first few are 1, 5, 12, 22, 35, 51, 70, l  . . (Sloane’s 
A000326). The GENERATING FUNCTION for the pen- 
tagonal numbers is 

42s + 1) 
(1 - x)3 

= 2 + 5x2 + 12x3 + 22x4 + . . . . 

Every pentagonal number is l/3 of a TRIANGULAR 
NUMBER. 

The so-called generalized pentagonal numbers are given 
by n(3n - I)/2 with n = 0, H, 412, . l  . , the first few of 
which are 0, 1, 2, 5, 7, 12, 15, 22, 26, 35, . . . (Sloane’s 
A001318). 

see also EULER'S PENTAGONAL NUMBER THEOREM, 
PARTITION FUNCTION P, POLYGONAL NUMBER, TRI- 
ANGULAR NUMBER 
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Pentagonal Orthobicupola 

see JOHNSON SOLID 

Pentagonal Orthobirotunda 

see JOHNSON SOLID 

Pentagonal Orthocupolarontunda 

see JOHNSON SOLID 

Pentagonal Prism 

A PRISM and UNIFORM POLYHEDRON VT6 whose DUAL 
POLYHEDRON is the PENTAGONAL DIPYRAMID. 

see also PENTAGRAMMIC PRISM 

Pentagonal Pyramid 

see JOHNSON SOLID 

Pentagonal Pyramidal Number 
A PYRAMIDAL NUMBER of the form n2(n + 1)/Z. The 
first few are 1, 6, 18, 40, 75, . . . (Sloane’s A002411). The 
GENERATING FUNCTION for the pentagonal pyramidal 
numbers is 

422 + 1) 
(x - q4 

= x + 62’ + 18x3 + 40x4 + . . . . 
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Pentagonal Rotunda 

Half of an ICOSIDODECAHEDRON, denoted Rg. It has 10 
triangular and five pentagonal faces separating a PEN- 
TAGONAL ceiling and a DODECAHEDRAL floor. 

JOHNSON SOLID J6, and the only true ROTUNDA. 
It is 

see also ICOSIDODECAHEDRON, JOHNSON SOLID, Ro- 
TUNDA 

Pentagonal Tiling 

see TILING 

Pentagram 

The STAR POLYGON {$}, also called the PENTACLE, 
PENTALPHA, or PENTANGLE. 

see also DISSECTION, HEXAGRAM,HOEHN'S THEOREM, 
PENTAGON,~TAR FIGURE,~TAR OF LAKSHMI 
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Pentagrammic Antiprism 

An ANTIPRISM and UNIFORM POLYHEDRON UT9 whose 
DUAL POLYHEDRON is the PENTAGRAMMIC DELTAHE- 
DRON. 

Pentagrammic Concave Deltahedron 
The DUAL POLYHEDRON of the PENTAGRAMMIC 
CROSSED ANTIPRISM. 

Pentagrammic Crossed Antiprism 
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An ANTIPRISM and UNIFORM POLYHEDRON &I whose 
DUAL POLYHEDRON is the PENTAGRAMMIC CONCAVE 
DELTAHEDRON. 

Pentagrammic Deltahedron 
The DUAL POLYHEDRON ofthe PENTAGRAMMIC ANTI- 
PRISM. 

Pentagrammic Dipyramid 
The DUALPOLYHEDRON ofthe PENTAGRAMMIC PRISM. 

Pentagrammic Prism 

A PRISM and UNIFORM POLYHEDRON i& whose DUAL 

POLYHEDRON is the PENTAGRAMMIC DIPYRAMID. 

see also PENTAGONAL PRISM 

Pentakaidecagon 

~~~PENTADECAGON 

Pentakis Dodecahedron 

Pentalpha 

see PENTAGRAM 

Pent angle 

see PENTAGRAM 

Pentatope 
The simplest regular figure in 4-D. 

Pentatope Number 
A FIGURATE NUMBER which is given by 

ptop, = aTen(n+3) = $p(n + l)(n + 2)(7~ + 3), 

where Te, is the nth TETRAHEDRAL NUMBER. The 
first few pentatope numbers are 1, 5, 15, 35, 70, 126, 
. . . (Sloane’s A000332). The GENERATING FUNCTION 
for the pentatope numbers is 

25 (1: > = 2 + 5x2 + 15x3 + 35x4 + , , , , 

see &O FIGURATE NUMBER, TETRAHEDRAL NUMBER 
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Pentomino 
fILNPTUV W XyZ 

q~pPTmhb+g% 

The twelve &POLYOMINOES illustrated above and 
known by the letters of the alphabet they most 
closely resemble: f, I, L, N, P, T, U, V, W, X, y, 2 (Gard- 
ner 1960). 
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The DUAL POLYHEDRON ofthe TRUNCATED ICOSAHE- 
DRON. 

see also ARCHIMEDEAN SOLID, DUAL POLYHEDRON, 
TRUNCATED ICOSAHEDRON 
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P6pin’s Test 
A test for the PRIMALITY of FERMAT NUMBERS Fn = 
22n + 1, with n 2 2 and k 2 2. Then the two following 
conditions are equivalent: 

1. Fn is PRIME and k/F, = -1. 

2 . k(Fn-1J/2 = -1 (mod &) - l  

k is usually taken as 3 as a first test. 

see also FERMAT NUMBER, P~PIN'S THEOREM 
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P&pin’s Theorem 
The FERMAT NUMBER Fn is PRIME IFF 

3 
22n-l 

E -1 (mod Fn) . 

see also FERMAT NUMBER, P~~PIN'S TEST, SELFRIDGE- 
HURWITZ RESIDUE 

Percent 
The use of percentages is a way of eipressing RATIOS in 
terms of whole numbers. Given a RATIO or FRACTION, 
it is converted to a percentage by multiplying by 100 
and appending a “percentage sign” %. For example, 
if an investment grows from a number P = 13.00 to 
a number A = 22.50, then A is 22.50/13.00 = 1.7308 
times as much as P, or 173.08%, and the investment 
has grown by 73.08%. 

see also PERCENTAGE ERROR,PERMIL 

Percentage Error 
The percentage error is 100% times the RELATIVE ER- 
ROR. 

see also ABSOLUTE ERROR, ERROR PROPAGATION, 
PERCENT, RELATIVE ERROR 
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Percolation Theory 

bond percok tiun site percolatiun 

Percolation theory deals with fluid flow (or any other 
similar process) in random media. If the medium is a set 
of regular LATTICE POINTS, then there are two types of 

Perfect Box 

percolation. A SITE PERCOLATION considers the lattice 
vertices as the relevant entities; a BOND PERCOLATION 
considers the lattice edges as the relevant entities. 

see &SO BOND PERCOLATION, CAYLEY TREE, CLUS- 
TER$LUSTER PERIMETER,LATTICE ANIMAL,PERCO- 
LATION THRESHOLD, POLYOMINO, ~-CLUSTER, S-RUN, 
SITE PERCOLATION 
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Percolation Threshold 
The critical fraction of lattice points which must be filled 
to create a continuous path of nearest neighbors from 
one side to another. The following table is from Stauffer 
and Aharony (1992, p. 17). 

Lattice Site Bond 
Cubic (Body-Centered) 0.246 0.1803 
Cubic (Face-Centered) 0.198 0.119 
Cubic (Simple) 0.3116 0.2488 
Diamond 0.43 0.388 
Honeycomb 0.6962 0.65271 
4-Hypercubic 0.197 0.1601 
5-Hypercubic 0.141 0.1182 
6-Hypercubic 0.107 0.0942 
7-Hypercubic . 0.089 0.0787 
Square 0.592746 0.50000 
Triangular 0.50000 0.34729 

The square bond value is l/2 exactly, as is the triangu- 
lar site. pc = 2sin(7r/l8) for the triangular bond and 

PC = 1 - 2sin@/l8) for the honeycomb bond+ An exact 
answer for the square site percolation threshold is not 
known. 

see also PERCOLATION THEORY 
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Perfect Box 

see EULER BRICK 
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Perfect Cubic 
A perfect cubic POLYNOMIAL can be factored into a lin- 
ear and a quadratic term, 

( a3 - b3) = (a - b)(a2 + ab + b2) 

(a3 + b3) = (a + b)(a’ - ab + b2). 

see also 
NOMIAL 

CUBIC EQUATION, PERFECT SQUARE, POLY- 

Perfect Cuboid 

see EULER BRICK 

Perfect Difference Set 
A SET of RESIDUES {al, a~, . . . , ak+r} (mod n) such that 
every NONZERO RESIDUE can be uniquely expressed in 
the form ai - aj. Examples include { 1, 2, 4) (mod 7) 

and Cl,% 5,7) ( mod 13). A NECESSARY condition for a 
difference set to exist is that n be of the form k2 + IZ + 1. 
A SUFFICIENT condition is that k be a PRIME POWER. 
Perfect sets can be used in the construction of PERFECT 
RULERS. 

see also PERFECT RULER 
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Perfect Digital Invariant 

see NARCISSISTIC NUMBER 

Perfect Information 
A class of GAME in which players move alternately and 
each player is completely informed of previous moves. 
FINITE, ZERO-SUM, two-player GAMES with perfect in- 
formation (including checkers and chess) have a SADDLE 
POINT, and therefore one or more optimal strategies. 
However, the optimal strategy may be so difficult to 
compute as to be effectively impossible to determine (as 
in the game of CHESS). 

see also FINITE GAME, GAME, ZERO-SUM GAME 

Perfect Magic Cube 
A perfect magic cube is a MAGIC CUBE for which the 
cross-section diagonals, as well as the space diagonals, 
sum to the MAGIC CONSTANT. 

see also MAGIC CUBE, SEMIPERFECT MAGIC CUBE 
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Perfect Number 
Perfect numbers are INTEGERS n such that 

n = S(n), (1) 

where s(n) is the RESTRICTED DIVISOR FUNCTION (i.e., 
the SUM of PROPER DIVISORS of n), or equivalently 

u(n) = 273, (2) 

where a(n) is the DIVISOR FUNCTION (i.e., the SUM of 
DIVISORS of n including n itself). The first few perfect 
numbers are 6, 28, 496, 8128, . . . (Sloane’s A000396). 
This follows from the fact that 

6=>;1,2,3 

28 = >) 1,2,4,7,14 

496 = x 1,2,4,8,16,31,62,124,248, 

etc. 

Perfect numbers are intimately connected with a class 
of numbers known as MERSENNE PRIMES. This can be 
demonstrated by considering a perfect number P of the 
form P = ~2~~~ where q is PRIME. Then 

u(P) = 2P, (3) 

and using 

4l) = Q + 1 (4) 

for Q prime, and 

u(F) = 2”+l - 1 (5) 

gives 

a(q2P-I) = a(q)a(2P-1) = (q-l- 1)(2p - 1) 

= 2q2 P--l = @P 
(6) 

4(2p - 1) + 2p - 1 = q2p (7) 

Q = 2p - 1. (8) 

Therefore, if iWp = q = 2p - 1 is PRIME, then 

P = +(M, + l)Mp = 2’-72’- 1) (9) 

is a perfect number, as was stated in Proposition IX.36 
of Euclid’s Elements (Dunham 1990). The first few per- 
fect numbers are summarized in the following table. 

1 2 
2 3 
3 5 
4 7 
5 13 
6 17 
7 19 
8 31 

P 

6 
28 

496 
8128 

33550336 
8589869056 

137438691328 
2305843008139952128 
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All EVEN perfect numbers are of this form, as was proved 
by Euler in a posthumous paper. The only even perfect 
number of the form x3 + 1 is 28 (Mgkowski 1962). 

It is not known if any ODD perfect numbers exist, al- 
though numbers up to 10300 have been checked (Brent 
et al. 1991, Guy 1994) without success, improving the 
result of Tuckerman (1973), who checked odd numbers 
up to 103? Euler showed that an ODD perfect number, 
if it exists, must be of the form 

m = p4a+‘Q2, (10) 

where p is an ODD PRIME RELATIVELY PRIME to Q, 
In 1887, Sylvester conjectured and in 1925, Gradshtein 
proved that any ODD perfect number must have at least 
six different prime aliquot factors (or eight if it is not 
divisible by 3; Ball and Coxeter 1987). Catalan (1888) 
proved that if an ODD perfect number is not divisible 
by 3, 5, or 7, it has at least 26 distinct prime aliquot 
factors. Stuyvaert (1896) proved that an ODD perfect 
number must be a sum of squares. All EVEN perfect 
numbers end in 16, 28, 36, 56, or 76 (Lucas 1891) and, 
with the exception of 6, have DIGITAL ROOT 1. 

Every perfect number of the form 2p(2p’1 - 1) can be 
written 

P/2 

2y2pfl - 1) = E(2k - 1)3. (11) 
k=l 

All perfect numbers are HEXAGONAL NUMBERS and 
therefore TRIANGULAR NUMBERS. It therefore follows 
that perfect numbers are always the sum of consecutive 
POSITIVE integers starting at 1, for example, 

6=2 n (12) 
n=l 

28 = 9; n (13) 
n=l 

496=? n (14) 
n=l 

(Singh 1997). All EVEN perfect numbers P > 6 are of 
the form 

P+l+gT,, (15) 

where Tn. is a TRIANGULAR NUMBER 

such that n = Sj + 2 (Eaton 1995, 1996). The sum of 
reciprocals of all the divisors of a perfect number is 2, 
since 

n+... +c+b+a=2n 
L / (17) 

v 

f+%+.. . = 2n (18) 

Perfect Num her 

(19) 

If s(n) > n, n is said to be an ABUNDANT NUMBER. If 
s(n) < n, n is said to be a DEFICIENT NUMBER. And if 

44 = kn for a POSITIVE INTEGER k > 1, 72 is said to 
be a MULTIPERFECT NUMBER oforder k. 

see also ABUNDANT NUMBER, ALIQUOT SEQUENCE, 
AMICABLE NUMBERS, DEFICIENT NUMBER, DIVISOR 
FUNCTION,~-PERFECT NUMBER,HARMONIC NUMBER, 
HYPERPERFECT NUMBER, INFINARY PERFECT NUM- 
BER, MERSENNE NUMBER, MERSENNE PRIME, MULTI- 
PERFECT NUMBER, MULTIPLICATIVE PERFECT NUM- 
BER, PLUPERFECT NUMBER, PSEUDOPERFECT NUM- 
BER, QUASIPERFECT NUMBER, SEMIPERFECT NUM- 
BER, SMITH NUMBER, SOCIABLE NUMBERS, SUBLIME 
NUMBER, SUPERPERFECT NUMBER, UNITARY PER- 
FECT NUMBER, WEIRD NUMBER 
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Perfect Partit ion 
A PARTITION of n which can generate any number 1, 2, 

l  ’  l  ?  
12. 

see also PARTITION 
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Perfect Proportion 
Since 

2a 2ab 

a=-= (1 > 

it follows that 
2ab 

a a+b --- 
a+b - b ’ 

2 

so 
rl u 11 
; = b’ (3) 

where A and IT are the ARITHMETIC MEAN and HAR- 
MONIC MEAN of a and b. This relationship was purport- 
edly discovered by Pythagoras. 

see also ARITHMETIC MEAN, HARMONIC MEAN 

Perfect Rectangle 50 

A RECTANGLE which cannot be built up of SQUARES 
all of different sizes is called an imperfect, rectangle. A 
RECTANGLE which can be built up of SQUARES all of 
different sizes is called perfect. 

order perfect imperfect 

<9 0 0 
9 2 1 
10 6 0 
11 22 0 
12 67 9 
13 213 34 
14 744 104 
15 2609 282 

Perfect Ruler 

0 1 4 6 
1 I I I ! I I 
d-3-2-b 
-4- 

-5- 
A6h 

A type of RULER considered by Guy (1994) which has Fc 
distinct marks spaced such that the distances between 
marks can be used to measure all the distances 1, 2, 3, 4, 

up to some maximum distance n > Ic. Such a ruler 
cah be constructed from a PERFECT DIFFERENCE SET 
by subtracting one from each element. For example, the 
PERFECT DIFFERENCE SET (1, 2, 5, 7) gives 0, 1, 4, 
6, which can be used to measure 1 - 0 = 1, 6 - 4 = 2, 
4 - 1 = 3, 4 - 0 = 4, 6 - 1 = 5, 6 - 0 = 6 (so we get 6 
distances with only four marks). 

see also PERFECT DIFFERENCE SET 

References 
Guy, R. K. “Modular Difference Sets and Error Correcting 

Codes.” SC 10 in Unsolved Problems in Number Theory, 
2nd ed. New York: Springer-Verlag, pp. 118-121, 1994. 

Perfect Set 
A SET P is called perfect if P = P’, where P’ is the 
DERIVED SET of P. 

see also DERIVED SET, SET 

Perfect Square 
The term perfect square is used to refer to a SQUARE 
NUMBER, a PERFECT SQUARE DISSECTION, or a fac- 
torable quadratic polynomial of the form a2 - b2 = 
(a - b)(u + b). 

see UZSO PERFECT SQUARE DISSECTION, QUADRATIC 
EQUATION,~QUARE NUMBER,~QUAREFREE 

Perfect Square Dissection 
I 

29 

33 

27 
35 

8 I 

17 11 
19 

15 
/2 6 

9 7 
18 

24 
25 

4 16 

37 42 

A SQUARE which can be DISSECTED into a number of 
smaller SQUARES with no two equal is called a PERFECT 
SQUARE DISSECTION (or a SQUARED SQUARE). Square 
dissections in which the squares need not be different 
sizes are called MRS. PERKINS' QUILTS. If no subset 
of the SQUARES forms a RECTANGLE, then the perfect 
square is called “simple.” Lusin claimed that perfect 
squares were impossible to construct, but this assertion 
was proved erroneous when a %-SQUARE perfect square 
was published by R. Sprague in 1939 (Wells 1991). 

There is a unique simple perfect square of order 21 
(the lowest possible order), discovered in 1978 by 
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A. J. W. Duijvestijn (Bouwkamp and Duijvestijn 1992). 
It is composed of 21 squares with total side length 112, 
and is illustrated above. There is a simple notation 
(sometimes called Bouwkamp code) used to describe 
perfect squares. In this notation, brackets are used to 
group adjacent squares with flush tops, and then the 
groups are sequentially placed in the highest (and left- 
most) possible slots. For example, the 21-square illus- 
trated above is denoted [50, 35, 271, [8, 191, [15, 17, 111, 
[6, 241, [29, 25, 9, 21, [7, 1% [16], 14% [4, 371, [=I. 

The number of simple perfect squares of order n for 
n 2 21 are 1, 8, 12, 26, 160, 441, . . . (Sloane’s A006983). 
Duijvestijn’s Table I gives a list of the 441 simple perfect 
squares of order 26, the smallest with side length 212 and 
the largest with side length 825. Skinner (1993) gives 
the smallest possible side length (and smallest order for 
each) as 110 (22), 112 (21), 120 (24), 139 (22), 140 (23), 

for simple perfect squared squares, and 175 (24), 
235 (25), 288 (26), 324 (27), 325 (27), . . . for compound 
perfect squared squares. 

There are actually three simple perfect squares having 
side length 110. They are [60, 501, [23, 271, [24, 22, 141, 

[7, 161, [8, 61, 112, 151, [13], [2, 281, [26], [4, 21, 31, [Is], 
[17] (order 22; d iscovered by A. J. W. Duijvestijn); [60, 

501, [27, 231, [24, 22, 141, [4 191, [8, 61, [% 12, 161, [g], 
12, 281, [26], [al], [l, 181, [17] (order 22; discovered by 
T. H. Willcocks); and [44, 29, 371, [Zl, 81, [13, 321, [28, 

161, [15, 191, [l&4], [3, 11, [2, 141, [5], [lo, 411, 138, 71, 
[31] (order 23; d iscovered by A. J. W. Duijvestijn). 

D. Sleator has developed an efficient ALGORITHM for 
finding non-simple perfect squares using what he calls 
rectangle and “ell” grow sequences. This algorithm finds 
a slew of compound perfect squares of orders 24-32. 
Weisstein gives a partial list of known simple and com- 
pound perfect squares (where the number of simple per- 
fect squares is exact for orders less than 27) as well as 
Mathematics @ (Wolfram Research, Champaign, IL) al- 
gorithms for drawing them. 

Order # Simple # Compound 

21 1 0 
22 8 0 
23 12 0 
24 26 1 
25 160 1 
26 441 2 
27 ? 2 
28 ? 4 
29 ? 2 
30 ? 3 
31 ? 2 
32 ? 2 
38 1 0 
69 1 0 

Keferences 
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Periapsis 

r+ 

ti 

l r- 
F 

The smallest radial distance of an ELLIPSE as measured 
from a FOCUS. Taking ‘u = 0 in the equation of an 
ELLIPSE 

T = au- e2) 
l+ecosv 

gives the periapsis distance 

T- = a(1 - e), 

see also MRS. PERKINS' QUILT 
Periapsis for an orbit around the Earth is called perigee, 
and periapsis for an orbit around the Sun is called per- 
ihelion. 
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see also APOAPSIS, ECCENTRICITY, ELLIPSE, Focus References 

Perigon 
An ANGLE of 2~ radians = 360” corresponding to the 
CENTRAL ANGLE of an entire CIRCLE. 

Perimeter 
The ARC LENGTH along the boundary of a closed 2-D 
region. The perimeter of a CIRCLE is called the CIR- 
CUMFERENCE. 

see also CIRCUMFERENCE, CLUSTER PERIMETER, 
SEMIPERIMETER 

Perimeter Polynomial 
A sum over all CLUSTER PERIMETERS. 

Period Doubling 
A characteristic of some systems making a transition 
to CHAOS. Doubling is followed by quadrupling, etc. 
An example of a map displaying period doubling is the 
LOGISTIC MAP. 

see UZSO CHAOS, LOGISTIC MAP 

Period Three Theorem 
Li and Yorke (1975) proved that any 1-D system which 
exhibits a regular CYCLE of period three will also dis- 
play regular CYCLES of every other length as well as 
completely CHAOTIC CYCLES. 

see also CHAOS, CYCLE (MAP) 

References 
Li, T. Y. and Yorke, J. A. “Period Three Implies Chaos .” 

Amer. Math. Monthly 82, 985-992, 1975. 

Periodic Function 

-2 

A FUNCTION f( x is said to be periodic with period p ) 
if f(z) = f(z + np) for n = 1, 2, . . . . For example, the 
SINE function sinrr: is periodic with period 2~ (as well 
as with period -k, 4q 675 etc.). 

The CONSTANT FUNCTION f(z) = 0 is periodic with 
any period fc for all NONZERO REAL NUMBERS R, so 
there is no concept analogous to the LEAST PERIOD of 
a PERIODIC POINT for functions. 

see also PERIODIC POINT, PERIODIC SEQUENCE 

Morse, P. M. and Feshbach, H. Methods of Theoretical Phys- 
ics, Part I. New York: McGraw-Hill, pp. 425-427, 1953. 

Spanier, J. and Oldham, K. B. “Periodic Functions." Ch. 36 
in An Atlas of Functions. Washington, DC: Hemisphere, 
pp, 343-349,1987. 

Periodic Point 
A point ~0 is said to be a periodic point of a FIJNCTION 
f of period n if f”(zo) = 50, where fo(zc) = z and f”(x) 
is defined recursively by fn(x) = f(f”-‘(z)). 

see also LEAST PERIOD, PERIODIC FUNCTION, PERI- 
ODIC SEQUENCE 

Periodic Sequence 
A SEQUENCE {ai} is said to be periodic with period p 
with if it satisfies ui = ai+np for n = 1, 2, . . . , For 
example, { 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, . . . } is a 
periodic sequence with LEAST PERIOD 2. 

see UZSO EVENTUALLY PERIODIC, PERIODIC FUNCTION, 
PERIODIC POINT 

Perkins’ Quilt 

see MRS. PERKINS' QUILT 

Perko Pair 

The KNOTS 10 161 and 10162 illustrated above. They 
are listed as separate knots in the pictorial enumeration 
of Rolfsen (1976, Appendix C), but were identified as 
identical by Perko (1974). 

References 
Perko, K. A. Jr. “On the Classification of Knots.” Proc. 

Amer. Math. Sot. 45, 262-266, 1974. 
Rolfsen, D . “Table of Knots and Links." Appendix C in 

Knots and Links. Wilmington, DE: Publish or Perish 
Press, pp. 280-287, 1976. 

Permanence of Algebraic Form 
All ELEMENTARY FUNCTIONS can be extended to the 
COMPLEX PLANE. Such definitions agree with the REAL 
definitions on the X-AXIS and constitute an ANALYTIC 
CONTINUATION. 

see also ANALYTIC CONTINUATION, ELEMENTARY 
FUNCTION, PERMANENCE OF MATHEMATICAL RELA- 
TIONS PRINCIPLE 

References 
A&en, G, Mathematical Methods for Physicists, 3rd ed. Or- 

lando, FL: Academic Press, p. 380, 1985. 
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Permanence of Mat hemat ical Relations 

Principle 
The metric properties discovered for a primitive fig- 
ure remain applicable, without modifications other than 
changes of signs, to all correlative figures which can be 
considered to arise from the first. 

This principle was formulated by Poncelet, and amounts 
to the statement that if an analytic identity in any finite 
number of variables holds for all real values of the vari- 
ables, then it also holds by ANALYTIC CONTINUATION 
for all complex values (Bell 1945). This principle is also 
called PUNCELET'S CONTINUITY PRINCIPLE. 

see UZSO ANALYTIC CONTINUATION, CONSERVATION OF 
NUMBER PRINCIPLE, DUALITY PRINCIPLE, PERMA- 
NENCE OF ALGEBRAIC FORM 

References 
Bell, E. T. The Development of Mathematics, 2nd ed. New 

York: McGraw-Hill, p. 340, 1945. 

Permanent 
An analog of a DETERMINANT where all the signs in 
the expansion by MINORS are taken as POSITIVE. The 
permanent of a MATRIX A is the coefficient of ~1 l  l  l  xn 
in 

n 

ID 
%1X1 +aizm +..*+ainxn) 

i=l 

(Vardi 1991). Another equation is the RYSER FORMULA 

perm(aij) = (-1)” x (-1P fi x aij, 
i=l jEs 

where the SUM is over all SUBSETS of (1, . . . , n}, and 
1s is the number of elements in s (Vardi 1991). 

If M is a UNITARY MATRIX, then 

I perm(M)l < 1 - 

(Mint 1978, p. 25; Vardi 1991). 

see also DETERMINANT, FROBENIUS-K~NIG THEOREM, 
IMMANANT,RYSER FORMULA, SCHUR MATRIX 

References 
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Mint, H. Permanents. Reading, MA: Addison-Wesley, 1978. 
Vardi, I. “Permanents.” 56.1 in Computational Recreations 

in Mathematics. Reading, MA: Addison-Wesley, pp. 108 
and 110-112, 1991. 

Permil 
The use of percentages is a way of expressing RATIOS in 
terms of whole numbers. Given a RATIO or FRACTION, 
it is converted to a permil-age by multiplying by 1000 
and appending a “mil sign” o/00. For example, if an 
investment grows from a number P = 13.00 to a number 
A = 22.50, then A is 22.50/13.00 = 1.7308 times as 
much as P, or 1730.8 %o. 

see also PERCENT 

Permutation 
The rearrangement of elements in a set into a ONE- 
TO-ONE correspondence with itself, also called an AR- 
RANGEMENT or ORDER. The number of ways of obtain- 
ing T ordered outcomes from a permutation of n elements 
is 

nPy E 
n! 

- = r! 
n 

( n- r)! 0 T ’ 

where n! is n FACTORIAL and (E) is a BINOMIAL Co- 
EFFICIENT. The total number of permutations for n 
elements 1s given by n!. 

A representation of a permutation as a product of CY- 
CLES is unique (up to the ordering of the cycles). An 
example of a cyclic decomposition is ({ 1, 3, 4)) {a}), cor- 
responding to the permutations (1 -+ 3, 3 + 4, 4 + 1) 
and (2 + 2), which combine to give (4, 2, 1, 3). 

Any permutation is also a product of TRANSPOSI- 
TIONS. Permutations are commonly denoted in LEX- 
ICOGRAPHIC or TRANSPOSITION ORDER. There is a 
correspondence between a PERMUTATION and a pair of 
YOUNG TABLEAUX known as the SCHENSTED CORRE- 
SPONDENCE. 

The number of wrong permutations of n objects is [n!/e] 
where [x] is the NINT function. A permutation of n 
ordered objects in which no object is in its natural place 
is called a DERANGEMENT (or sometimes, a COMPLETE 
PERMUTATION) and the number of such permutations is 
given by the SUBFACTORIAL !n. 

Using 
n 

(x + y)” = 

c(> 

p g-ryr 

T=O 

with x = y = 1 gives 

2-3 n 0 T ’ 
r=o 

(2) 

(3) 

so the number of ways of choosing 0, 1, , . . , or n at a 
time is 2Y 

The set of all permutations of a set of elements 1, l  . . , n 
can be obtained using the following recursive procedure 

1 2 

I (4) 
2 1 

1 2 3 

I 
1 3 2 

/ 
31 2 

1 
3 2 1 

\ 
2 3 1 

\ 
2 1 3 

(5) 
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Let the set of INTIXI~FG 1, 2, . . . , n be permuted and 
the resulting sequence be divided into increasing RUNS. 
As n approaches INFINITY, the average length of the nth 
RUN is denoted L,. The first few values are 

Permutation Matrix 
A MATRIX pij obtained by permuting the ith and jth 
rows of the IDENTITY MATRIX with i < j. Every row 

and column therefore contain precisely a single 1, and 
every permutation corresponds to a unique permutation 
matrix. The matrix is nonsingular, so the DETERMI- 
NANT is always NONZERO. It satisfies 

p-2 = 1, 23 

L1 = e - 1 = 1.7182818.. . 

Lz = e2 - 2e = 1.9524.. . 

L~=e~-3e~+ie=1.9957..., 

(6) 

(7) 

(8) 

where e is the base of the NATURAL LOGARITHM (Knuth 

see also ALTERNATING PERMUTATION, BINOMIAL Co- 
EFFICIENT, CIRCULAR PERMUTATION, COMBINATION, 

1973, Le Lionnais 1983). 
where I is the IDENTITY MATRIX. Applying to another 

changed, a;d Ap,, gives A with the ith and jth columns 
interchanged. 

MATRIX, piiA gives A with the ith and jth rows inter- 

COMPLETE PERMUTATION, DERANGEMENT, DISCOR- 

DANT PERMUTATION, EULERIAN NUMBER, LINEAR Interpreting the Is in an n x n permutation matrix as 

EXTENSION, PERMUTATION MATRIX, SUBFACTORIAL, ROOKS gives an allowable configuration of nonattacking 

TRANSPOSITION ROOKS on an n x n CHESSBOARD. 
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Permutation Symbol 
A three-index object sometimes called the LEVI-CIVITA 

SYMBOL defined by 

0 for i = j,j = k, or k = i 
Eijk = -t-l for (a, k> E {(1,2,3), (2,3, l), (3,1,2>} 

-1 for (u, k> E {(l, 3,2), (3,2,1>, (2,1,3)}. 
(1) 

The permutation symbol satisfies 

6ijEijk = 0 (2) 

Permutation Group 
A finite GROUP of substitutions of elements for each 
other. For instance, the order 4 permutation group (4, 
2, 1, 3) would rearrange the elements {A, B, C, D} in 
the order {D, B, A, C}. A SUBSTITUTION GROUP of 
two elements is called a TRANSPOSITION. Every SUB- 
STITUTION GROUP with > 2 elements can be written as 
a product of transpositions. For example, 

(abc) = (ab)(ac) 

(abcde) = (ab)(ac)(ad)(ae). 

CONJUGACY CLASSES of elements which are inter- 
changed are called CYCLES (in the above example, the 
CYCLES are ((1, 3, 4}, (2))). 

see ~OCAYLEY’S GROUP THEOREM$YCLE (PERMU- 
TATION), GROUP, SUBSTITUTION GROUP, TRANSPOSI- 

Eipq Ejpq = 26ij (3) 
cijkcijk =6 (4) 

cijkepqk = 6ip6jq - 6iq6jp, (5) 

where &j is the KRONECKER DELTA. The symbol can be 
defined as the SCALAR TRIPLE PRODUCT of unit vectors 
in a right-handed coordinate system, 

A 
cijk = xi ’ (kj X kk). (6) 

The symbol can also be interpreted as a TENSOR, in 
which case it is called the PERMUTATION TENSOR. 

see &O PERMUTATION TENSOR 

References 
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TION 
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Permutation Tensor 

Perrin Pseudoprime 

Perpendicular Bisector 
A PSEUDOTENSOR whichis ANTISYMMETRIC under the 
interchange of any two slots. Recalling the definition 
of the PERMUTATION SYMBOL in terms of a SCALAR 
TRIPLE PRODUCT of the Cartesian unit vectors, 

the pseudotensor is a generalization to an arbitrary BA- 
SIS defined by 

(3) 

1. P QI, ,-VP] = 
1 the arguments are an even permutation 
-1 the arguments are an odd permutation 
0 two or more arguments are equal, 

(4) 

and g E det(g,p), where gap is the METRIC TENSOR. 
E(Xl,.*., xn) is NONZERO IFF the VECTORS are LXN- 
EARLY INDEPENDENT. 

see also PERMUTATION SYMBOL, SCALAR TRIPLE 
PRODUCT 

Peron Integral 

see DENJOY INTEGRAL 

Perpendicular 
c 

-L- 
A D B 

Two lines, vectors, planes, etc., are said to be perpen- 
dicular if they meet at a RIGHT ANGLE. In R”, two 
VECTORS A and I3 are PERPENDICULAR if their DOT 
PRODUCT 

A*B=O. 

In R2, a LINE with SLOPE 7122 = -l/ml is PERPENDIC- 
ULAR to a LINE with SLOPE ml. Perpendicular objects 
are sometimes said to be “orthogonal.” 

In the above figure, the LINE SEGMENT AB is perpen- 
dicular to the LINE SEGMENT CD. This relationship is 
commonly denoted with a small SQUARE at the vertex 
where perpendicular objects meet, as shown above. 

see also ORTHOGONAL VECTORS, PARALLEL, PERPEN- 
DICULAR BISECTOR, PERPENDICULAR FOOT, RIGHT 
ANGLE 

The perpendicular bisectors of a TRIANGLE AAlAzAg 
are lines passing through the MIDPOINT Mi of each side 
which are PERPENDICULAR to the given side. A TRIAN- 
GLE'S three perpendicular bisectors meet at a point C 
known as the CIRCUMCENTER (which is also the center 
of the TRIANGLE'S CIRCUMCIRCLE). 

see also CIRCUMCENTER, MIDPOINT, PERPENDICULAR, 
PERPENDICULAR FOOT 

Perpendicular Foot 

foot 

The FOOT of the PERPENDICULAR is the point on the 
leg opposite a given vertex of a TRIANGLE at which the 
PERPENDICULAR passing through that vertex intersects 
the side. The length of the LINE SEGMENT front ver- 
tex to perpendicular foot is called the ALTITUDE of the 
TRIANGLE. 

see also ALTITUDE, FOOT, PERPENDICULAR, PERPEN- 
DICULAR BISECTOR 

Perrin Pseudoprime 
If p is PRIME, then pip(p), where P(p) is a member of 
the PERRIN SEQUENCE 0, 2, 3, 2, 5, 5, 7, 10, 12, 17, . . . 
(Sloane’s A001608). A Perrin pseudoprime is a COM- 
POSITE NUMBER n such that n/P(n). Several “unre- 
stricted” Perrin pseudoprimes are known, the smallest 
of which are 271441, 904631, 16532714, 24658561, . . . 
(Sloane’s A013998). 

Adams and Shanks (1982) discovered the smallest unre- 
stricted Perrin pseudoprime after unsuccessful searches 
by Perrin (1899), Malo (1900), Escot (1901), and Jar- 
den (1966). (St ewart’s 1996 article stating no Perrin 
pseudoprimes were known was in error.) 

Grantham (1996) generalized the definition of Perrin 
pseudoprime with parameters (T, s) to be an ODD COM- 
POSITE NUMBER n for which either 
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. 1. (A/n) = 1 and n has an S-SIGNATURE, 01 

2. (A/n) = - 1 and n has a Q-SIGNATURE, 

where (a/b) is the JACOBI SYMBOL. All the 55 Perrin 
pseudoprimes less than 50 x 10’ have been computed 
by Kurtz et al. (1986). All have S-SIGNATURE, and 
form the sequence Sloane calls “restricted” Perrin pseu- 
doprimes: 27664033,46672291, 102690901, . . . (Sloane’s 
A018187). 

see ~2~0 PNWN SEQUENCE, PSEUDOPRIME 
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102-103, June 1996. 

Perrin Sequence 
The INTEGER SEQUENCE defined by the recurrence 

P(n) = P(n - 2) + P(n - 3) (1) 

with the initial conditions P(0) = 3, P(1) = 0, P(2) = 
2. The first few terms are 0, 2, 3, 2, 5, 5, 7, 10, 12, 
17, *.* (Sloane’s A001608). P(n) is the solution of a 
third-order linear homogeneous DIFFERENCE EQUATION 
having characteristic equation 

X3-X-1=0, (2) 

discriminant -23, and ROOTS 

a = 1.324717957 

P = -0.6623589786 + 0.5622795121i 

Y = -0.6623589786 - 0.5622795121i. 

The solution is then 

(3) 

(4) 

(5) 

A( > n =cw”+p”+-y, (6) 

where 
A(n) N ana (7) 

Perrin (1899) investigated the sequence and noticed that 
if n is PRIME, then nip(n). The first statement of this 
fact is attributed to I%. Lucas in 1876 by Stewart (1996). 
Perrin also searched for but did not find any COMPoS- 
ITE NUMBER n in the sequence such that nip(n). Such 
numbers are now known as PERRIN PSEUDOPRIMES. 
Malo (1900), Escot (1901), and Jarden (1966) subse- 
quently investigated the series and also found no PER- 
RIN PSEUDOPRIMES. Adams and Shanks (1982) subse- 
quently found that 271,441 is such a number. 

see also PADOVAN SEQUENCE, PERRIN 
SIGNATURE (RECURRENCE RELATION) 

PSEUDOPRIME, 

References 
Adams, W. and Shanks, D. “Strong Primality Tests that Are 

Not Sufficient .” Math. Comput. 39, 255-300, 1982. 
Escot, E.-B. “Solution to Item 1484.” L’lnterme’diare des 

Math. 8, 63-64, 1901. 
Jarden, D. Recurring Sequences. Jerusalem: Riveon Le- 

matematika, 1966. 
Malo, E. L’Interme’diare des Math. 7, 281 and 312, 1900. 
Perrin, R. “Item 1484.” L ‘Interme’diare des Math. 6, 76-77, 

1899. 
Stewart, I. “Tales of a Neglected Number.” Sci. Amer. 274, 

102-103, June 1996. 
Sloane, N. J. A. Sequence A001608/M0429 in “An On-Line 

Version of the Encyclopedia of Integer Sequences.” 

Perron-Frobenius Operator 
An OPERATOR which describes the time evolution of 
densities in PHASE SPACE. The OPERATUR can be de- 
fined by 

Pn+l = z&-&j 

where pn are the NATURAL DENSITIES after the nth 
iteric %n of a map f. This can be explicitly written as 

PC > 
UY) = >: - 

IfTX >I x  l  

zEf-W 

References 
Beck, C. and Schlijgl, F. “Transfer Operator Methods.” 

Ch. 17 in Thermodynamics of Chaotic Systems. Cam- 
bridge, England: Cambridge University Press, pp. 190- 
203, 1995. 

Perron-Fkobenius Theorem 
If all elements Uij of an IRREDUCIBLE MATRIX A are 
NONNEGATIVE, then R= min&ZA is an EIGENVALUE of 
A and all the EIGENVALUES of A lie on the DISK 

1x1 I R, 

where, if X = (X1,&,...,Xn) is a set of NONNEGATIVE 
numbers (which are not all zero), 
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and R = minMx. Furthermore, if A has exactly p 
EIGENVALUES (p 5 n) on the CIRCLE IzI = R, then the 
set of all its EIGENVALUES is invariant under rotations 
by %/p about the ORIGIN. 

see also WIELANDT’S THEOREM 

References 
Gradshteyn, I. S. and Ryzhik, I, M. Tables of Integrals, Se- 

ries, and Products, 5th ed. San Diego, CA: Academic 
Press, pm 1121, 1979. 

Perron’s Theorem 
If/J = (/wJ27-*44 is an arbitrary set of POSITIVE 
numbers, then all EIGENVALUES A of the n x n MATRIX 

A = aij lie on the DISK Izl < lMc,, where - 

. Heferences 
Gradshteyn, I. S. and Ryzhik, I. M. Tables of Integrals, Se- 

ries, and Products, 5th ed. San Diego, CA: Academic 
Press, p. 1121, 1979. 

Persistence 

see ADDITIVE PERSISTENCE, MULTIPLICATIVE PERSIS- 
TENCE, PERSISTENT NUMBER, PERSISTENT PROCESS 

Persistent Number 
An n-persistent number is a POSITIVE INTEGER k which 
contains the digits 0, 1, . . . , 9, and for which 2k, . . . , nk 
also share this property. No m-persistent numbers exist. 
However, the number k = 1234567890 is 2-persistent, 
since 2k = 2469135780 but 3k = 3703703670, and 
the number k = 526315789473684210 is 18-persistent. 
There exists at least one k-persistent number for each 
POSITIVE INTEGER k 

see UZSO ADDITIVE PERSISTENCE, 
PERSISTENCE 

MULTIPLICATIVE 

References 
Honsberger, R. More Mathematical 1MorseZs. Washington, 

DC: Math. Assoc. Amer., pp. 15-18, 1991. 

Persistent Process 
A FRACTAL PROCESS for which H > I/2, SO T > 0. 

see UZSOANTIPERSISTENT PROCESS, FRACTAL PROCESS 

Perspective 

one-p&r 
perspective 

hw-point 
perspective 

three-p&t 
perspective 

v 

Perspective is the art and mathematics of realistically 
depicting 3-D objects in a 2-D plane. The study of the 
projection of objects in a plane is called PROJECTIVE 
GEOMETRY. The principles of perspective drawing were 
elucidated by the Florentine architect F. Brunelleschi 
(1377-1446). These rules are summarized by Dixon 
(1991): 

1. The horizon appears as a line. 

2. Straight 
image. 

lines space appear as straight in the 

3. Sets of PARALLEL lines meet at a VANISHING POINT. 

4. Lines PARALLEL to the picture plane appear PARA 
LEL and therefore have no VANISHIN G POINT. 

.L- 

There is a graphical method for selecting vanishing 
points so that a CUBE or box appears to have the correct 
dimensions (Dixon 1991). 

see &~.LEONARDO'S PARADOX, PERSPECTIVE AXIS, 
PERSPECTIVE CENTER, PERSPECTIVE COLLINEATION, 
PERSPECTIVE TRIANGLES, PERSPECTIVITY, PROJEC- 
TIVE GEOMETRY,VANISHING POINT, ZEEMAN'S PARA- 
DOX 

References 
de Vries, V. Perspective. New York: Dover, 1968. 
Dixon, R. “Perspective Drawings.” Ch. 3 in Mathographics. 

New York: Dover, pp. 79-88, 1991. 
Parramon, J. M. Perspective-How to Draw. Barcelona, 

Spain: Parramon Editions, 1984. 

Perspective Axis 
The line joining the three collinca points of intersection 
of the extensions of corresponding sides in PERSPECTIVE 
TRIANGLES. 

see also PERSPECTIVE CEN 
GLES, SONDAT'S THEOREM 

TER, PERSPECTIVE TRIAN- 

Perspective Center 
The point at which the three LINES connecting the VER- 
TICES of PERSPECTIVE TRIANGLES (fromapoint) CON- 
CUR. 

Perspective Collineation 
A perspective collineation with center 0 and axis o is 
a COLLINEATION which leaves all lines through 0 and 
points of o invariant. Every perspective collineation is a 
PROJECTIVE COLLINEATION. 

see also COLLINEATION, ELATION, HOMOLOG 
ETRY),PROJECTIVE COLLINEATION 

References 
Coxeter, H. S. 

York: Wiley, 

Y (GEOM- 

M. Introduction to 

PP. 247-248, 1969. 
Geometry, 2nd ed. New 
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Perspective Xkiangles 
Two TRIANGLES are perspective from a line if the ex- 
tensions of their three pairs of corresponding sides meet 
in COLLINEAR points. The line joining these points is 
calledthe PERSPECTIVE AXIS. TWO TRIANGLES are per- 
spective from a point if their three pairs of correspond- 
ing VERTICES are joined by lines which meet in a point 
of CONCURRENCE. This point is called the PERSPEC- 
TIVE CENTER. DESARGUES' THEOREM guarantees that 
if two TRIANGLES are perspective from a point, they are 
perspective from a line. 

see also DESARGUES’ THEOREM, HOMOTHETIC TRI- 
ANGLES, PARALOGIC TRIANGLES, PERSPECTIVE AXIS, 
PERSPECTIVE CENTER 

Perspectivity 
A correspondence between two RANGES that are sec- 
tions of one PENCIL by two distinct lines. 

see also PENCIL, PROJECTIVITY, RANGE (LINE SEG- 
MENT) 

Pesin Theory 
A theory of linear HYPERBOLIC MAPS in which the lead- 
ing constants do depend on the variable X. 

Peter-Weyl Theorem 
Establishes completeness for a REPRESENTATION. 

References 
Knapp, A. W. “Group Representations and Harmonic Anal- 

ysis, Part II.” Not. Amer. Math. Sot. 43, 537-549, 1996. 

Peters Projection 
A CYLINDRICAL equal-area projection that shifts the 
standard parallels to 45” or 47”. 

see also CYLINDRICAL PROJECTION 

References 
Dana, P. H. “Map Projections.” http: //www .utexas . edu/ 

depts/grg/gcraft/notes/mapproj/mapproj.html. 

Petersen Graphs 

Y Y 

“The” Petersen graph is the GRAPH illustrated above 
possessing ten VERTICES all of whose nodes have DE- 
GREE 3 (Saaty and Kainen 1986). The ?etersen graph 
is the only smallest-girth graph which has no Tait col- 
oring. 

The seven graphs obtainable from the COMPLETE 
GRAPH I& by repeated triangle-Y exchanges are also 
called Petersen graphs, where the three EDGES forming 
the TRIANGLE are replaced by three EDGES and a new 
VERTEX that form a Y, and the reverse operation is also 
permitted. A GRAPH is intrinsically linked IFF it con- 
tains one of the seven Petersen graphs (Robertson et al. 
1993) l  

see  ah HOFFMAN-SINGLETON GRAPH 

References 
Adams, C+ C. The Knot Book: An Elementary Introduction 

to the Mathematical Theory of Knots. New York: W. H. 
Freeman, pp. 221-222, 1994. 

Robertson, N.; Seymour, P. D.; and Thomas, R. “Linkless 
Embeddings of Graphs in 3-Space.” Bull. Amer. Math. 
Sot. 28, 84-89, 1993. 

Saaty, T. L. and Kainen, P. C. The Four-Color Problem: 
Assaults and Conquest. New York: Dover, p. 102, 1986. 

Petersen-Shoute Theorem 

If AABC and AA’B’C’ are two directly similar tri- 
angles, while A AA’ A”, ABB’B”, and ACC’C” are 
three directly similar triangles, then AA”B”C” is 
directly similar to AABC. 

When all the points P on AB are related by a SIM- 
ILARITY TRANSFORMATION to all the points P’ on 
A’B’ , the points dividing the segment PP’ in a given 
ratio are distant and collinear, or else they coincide. 

References 
Coxeter, H. S. M. and Greitzer, S. L. Geometry Revisited. 

Washington, DC: Math. Assoc. Amer., pp. 95-100, 1967. 

Petrie Polygon 

(39 31 {3*41 

A skew POLYGON such that every two consecutive sides 
(but no three) belong to a face of a regular POLYHE- 

DRON. Every finite POLYHEDRON can be orthogonally 
projected onto a plane in such a way that one Petrie 
polygon becomes a REGULAR POLYGON with the re- 
mainder of the projection interior to it. The Petrie poly- 
gon of the POLYHEDRON {p,q} has h sides, where 

co2 (;) =cos2 (a> +cos2 (a>. 



1354 Petrov Notation Phasor 

The Petrie polygons shown above correspond to the 
PLATONIC SOLIDS. 

see also PLATONIC SOLID, REGULAR POLYGON 

References 
Ball, W. W. R. and Coxeter, H. S. M. 1MathemakaZ Recre- 

ations and Essays, 13th ed. New York: Dover, p, 135, 
1987. 

Coxeter, H. S. M. “Petrie Polygons.” s2.6 in Regular Poly- 
topes, 3rd ed. New York: Dover, pp.24-25, 1973. 

Petrov Notation 
A TENSOR notation which considers the RIEMANN TEN- 
SOR &m as a matrix R(x~J(~~) with indices Xp and VK,. 

References 
Weinberg, S. Gravitation and Cosmology: Principles and 

Applications of the General Theory of Relativity. New 
York: Wiley, p. 142, 1972. 

Pfaffian Form 
A ~-FORM 

0 = t Q(X) dXi 

i=l 

such that 
w  = 0. 

fteterences 
Knuth, D. E. “Overlapping Pfaffians.” Electronic J. Com- 

binatorics 3, No. 2, R5, l-13, 1996. http://wuu, 
combinatorics.org/Volume3/volume3ZLhtml#R5. 

Phase 
The angular position of a quantity. For example, the 
phase of a function cos(wt + $0) as a function of time is 

The ARGUMENT ofa COMPLEX NUMBER is sometimes 
also called the phase. 

see UZSO ARGUMENT (COMPLEX NUMBER), COMPLEX 
NUMBER,~HASOR, RETARDANCE 

Phase Space 
For a function or object with n DEGREES OF FREEDOM, 
the n-D SPACE which is accessible to the function or 
object is called its phase space. 

see also WORLD LINE 

Phase Transition 

~~~RANDOM GRAPH 

P hasor 
The representation, beloved of engineers and physicists, 
of a COMPLEX NUMBER in terms of a COMPLEX expo- 
nential 

x+iy= lzle ;4 , (1) 

where i (called j by engineers) is the IMAGINARY NUM- 
BER and the MODULUS and ARGUMENT (also called 
PHASE) are 

Izl = .\/x” + y2 (2) 

4 = tan-l II: . 
0 

i! (3) 

Here, 4 is the counterclockwise ANGLE from the POX- 

TIVE REAL axis. In the degenerate case when z = 0, 

-- 2 ify<O 

4 - - undefined if y = 0 (4 
ix ify>O+ 

It is trivially true that 

(5) 

NOW consider a SCALAR FUNCTION $ E $#. Then 

I = [R($)12 = [i($ + $‘)I” = a<+ + $*)2 

= ;<q” + 2*$J* + $*"). (6) 

Look at the time averages of each term, 

(Q”) = (.Qo2p) c eo2 (p) = 0 
(7) 

(?/q/J*) = (qboei~+le-i+) = $0” = ]$I” (8) 

($*2) = ($02e-2i+) = $02 (e-2i”) = 0, (9) 

Therefore, 

(1) - #12~ - (10) 

Consider now two scalar functions 

Then 

In general, 

ln 
2 

(0 
- -- 

2 
I I 
x * i  l  (15) 

i=l 

see also AFFIX, ARGUMENT (COMPLEX NUMBER), 
COMPLEX MULTIPLICATION, COMPLEX NUMBER, 
MODULUS (COMPLEX NUMBER),PHASE 
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Phi Curve 
An ADJOINT CURVE which bears a special relation to 
the base curve. 

References 
Coolidge, J. L. A Treatise on Algebraic Plane Curves. New 

York: Dover, pm 310, 1959. 

Phi Number System 
For every POSITIVE INTEGER n, there is a corresponding 
finite sequence of distinct INTEGERS kl, l  l  . , k, such 
that 

where 4 is the GOLDEN MEAN. 

fteierences 
Bergman, G. “A Number System with an Irrational Base.” 
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Phragmhn-LindGGf Theorem 
Let f(z) be an ANALYTIC FUNCTION in an angular do- 
main W : 1 argxl < a7r/2. Suppose there is a constant 
M such that for each E > 0, each finite boundary point 
has a NEIGHBORHOOD such that If(z)1 < M + E on the 
intersection of D with this NEIGHBORHOOD, and that 
for some POSITIVE number fl > QI for sufficiently large 
Ix[, the INEQUALITY If( < exp(lzll’B) holds. Then 
If(x)1 < A4 in D. 

References 
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Phyllotaxis 
The beautiful arrangement of leaves in some plants, 
called phyllotaxis, obeys a number of subtle mathemat- 
ical relationships. For instance, the florets in the head 
of a sunflower form two oppositely directed spirals: 55 
of them clockwise and 34 counterclockwise. Surpris- 
ingly, these numbers are consecutive FIBONACCI NUM- 

BERS. The ratios of alternate FIBONACCI NUMBERS are 
given by the convergents to #-2, where $ is the GOLDEN 
RATIO, and are said to measure the fraction of a turn 
between successive leaves on the stalk of a plant: l/2 
for elm and linden, l/3 for beech and hazel, 2/5 for 
oak and apple, 3/8 for poplar and rose, 5/13 for willow 
and almond, etc. (Coxeter 1969, Ball and Coxeter 1987). 
A similar phenomenon occurs for DAISIES, pineapples, 
pinecones, cauliflowers, and so on. 

Lilies, irises, and the trillium have three petals; col- 
umbines, buttercups, larkspur, and wild rose have five 
petals; delphiniums, bloodroot, and cosmos have eight 
petals; corn marigolds have 13 petals; asters have 21 
petals; and daisies have 34, 55, or 84 petals-all FI- 
BONACCI NUMBERS. 

see also DAISY, FIBONACCI NUMBER, SPIRAL 
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Pi 

A REAL NUMBER denoted 7r which is defined as the 
ratioofaCIRcLE’s CIRCUMFERENCEC toits DIAMETER 
d = 25 

c c x=-z-- 
d 2r (1) 

It 1s equal to 

7T = 3.141592653589793238462643383279502884197.. 

(2) 
(Sloane’s A000796). 7r has recently (August 1997) been 
computed to a world record 51,539,600,000 z 3 l  234 
DECIMAL DIGITS by Y. Kanada. This calculation 
was done using Borwein’s fourth-order convergent al- 
gorithm and required 29 hours on a massively parallel 
1024-processor Hitachi SR2201 supercomputer. It was 
checked in 37 hours using the BRENT-SALAMIN FOR- 
MULA on the same machine. 

The SIMPLE CONTINUED FRACTION for X, which gives 
the “best” approximation of a given order, is [3, 7, 15, 
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1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2, 2, 2, . . .] 
(Sloane’s A001203). The very large term 292 means 
that the CONVERGENT 

[3,7,15, l] = [3,7,16] = E = 3.14159292. l  0 (3) 

is an extremely good approximation. The first few CON- 

VEILGENTS are 22/7, 333/106, 355/113, 103993/33102, 
104348133215, . . . (Sloane’s A002485 and A002486). 
The first occurrences of n in the CONTINUED FRAC- 

TION are 4, 9, 1, 30, 40, 32, 2, 44, 130, 100, . . . (Sloane’s 
A032523) l  

Gosper has computed 17,001,303 terms of r’s CONTIN- 
UED FRACTION (Gosper 1977, Ball and Coxeter 1987), 
although the computer on which the numbers are stored 
may no’ longer be functional (Gosper, pers. comm., 
1998). According to Gosper, a typical CONTINUED 

FRACTION term carries only slightly more significance 
than a decimal DIGIT. The sequence of increasing terms 
in the CONTINUED FRACTION is 3, 7, 15, 292, 436, 
20776, . . . (Sloane’s A033089), occurring at positions 
1, 2, 3, 5, 308, 432, . . . (Sloane’s AO3309O) l  In the first 
26,491 terms of the CONTINUED FRACTION (counting 3 
as the Oth), the only five-DIGIT terms are 20,776 (the 
431st), 19,055 (l5,543rd), and 19,308 (23,398th) (Beeler 
et al. 1972, Item 140). The first ~-DIGIT term is 528,210 
(the 267,314th), and the first ~-DIGIT term is 12,996,958 
(453,294th). The term having the largest known value 
is the whopping g-DIGIT 87,878,3625 (the 11,504,93lst 
term). 

The SIMPLE CONTINUED FRACTION for r does not show 
any obvious patterns, but clear patterns do emerge in 
the beautiful non-simple CONTINUED FRACTIONS 

1 -2 
4 1 
- =1+ 
7T 32 

(4) 

2+ 
52 

2+ 
72 

2+- 
2+... 

(Brouckner), giving convergents 1, 3/2, 15/13, 105/76, 
315/263, . . . (Sloane’s A025547 and AO07509) and 

T 1 

2 
=I- 

2-3 
3- 

1*2 -a 

l- 
3.4 

3- 
6.7 

5.6 
1-p 

3- . . . 

(5) 

(Stern 1833), giving convergents 1, 2/3, 4/3, 16/15, 
64145, 128/105, . . l  (Sloane’s A001901 and A046126). 

7r crops up in all sorts of unexpected places in mathe- 
matics besides CIRCLES and SPHERES. For example, it 
occurs in the normalization of the GAUSSIAN DISTRI- 

BUTION, in the distribution of PRIMES, in the construc- 
tion of numbers which are very close to INTEGERS (the 
RAMANWJAN CONSTANT), and in the probability that 
a pin dropped on a set of PARALLEL lines intersects a 
line (BUFFON’S NEEDLE PROBLEM). Pi also appears as 
the average ratio of the actual length and the direct dis- 
tance between source and mouth in a meandering river 
(St@llum 1996, Singh 1997). 

A brief history of NOTATION for pi is given by Castel- 
lanos (1988). 7r is sometimes known as LUDOLPH’S CON- 
STANT after Ludolph van Ceulen (1539-1610), a Dutch 
7r calculator. The symbol *TT was first used by William 
Jones in 1706, and subsequently adopted by Euler. In 
Measurement of a Circle, Archimedes (ca. 225 BC) ob- 
tained the first rigorous approximation by INSCRIBING 
and CIRCUMSCRIBING 6. 2n-gonsona CIRCLE using the 
ARCHIMEDES ALGORITHM. Using n = 4 (a 96-gon), 
Archimedes obtained 

3+g <n<3++ (6) 

(Shanks 1993, p. 140). 

The Bible contains two references (I Kings 7:23 and 
Chronicles 4:2) which give a value of 3 for n. It should 
be mentioned, however, that both instances refer to 
a value obtained from physical measurements and, as 
such, are probably well within the bounds of experi- 
mental uncertainty. I Kings 7:23 states, “Also he made 
a molten sea of ten Cubits from brim to brim, round 
in compass, and five cubits in height thereof; and a line 
thirty cubits did compass it round about.” This implies 
T = C/d = 30/10 = 3. The Babylonians gave an esti- 
mate of 7r as 3 + l/8 = 3.125. The Egyptians did better 
still, obtaining 28/34 = 3.1605.. . in the Rhind papyrus, 
and 22/7 elsewhere. The Chinese geometers, however, 
did best of all, rigorously deriving r to 6 decimal places. 

A method similar to Archimedes’ can be used to esti- 
mate x by starting with an n-gon and then relating the 
AREA of subsequent 2n-gons. Let p be the ANGLE from 
the center of one of the POLYGON'S segments, 

P - +-3)x. - (7) 

Then 

fn sin(2P) 

7T= cospcos(~)cos(~)cos(~)‘** 
(8) 

(Beckmann 1989, pp. 92-94). Vikte (1593) was the first 
to give an exact expression for 7r by taking n = 4 in the 
above expression, giving 

1 
co@ = sin0 = - = + 

Jz 
& 1 (9) 
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which leads to an INFINITE PRODUCT of CONTINUED The SURFACE AREA and VOLUME of the unit SPHERE 
SQUARE ROOTS, are 

(Beckmann 1989, p. 95). However, this expression was 
not rigorously proved to converge until Rudio (1892). 
Another exact FORMULA is MACHIN’S FORMULA, which 
is 

7T 
- 4tar?(+) -tar?(&). 

z- (11) 

There are three other MACHIN-LIKE FORMULAS, as well 
as other FORMULAS with more terms. An interesting 
INFINITE PRODUCT formula due to Euler which relates 
YT ;+Snd the nth PRIME p, is 

2 T= 1. (12) 
n 2-n 00 -- [ l+ sin( 2 7rpn) 1 Pn 

2 - - rI 00 i=Tt [ 1 + (-qbn-w (13) 
Pn 1 

(Blatner 1997, p* 119), plotted below as a function of 
the number of terms in the product. 
3.16 

3.15 

3.14 

3.13 

- 
1000 2000 3000 4000 5000 

The AREA and CIRCUMFERENCE of the UNIT CIRCLE 
are given by 

and 

s=47T (18) 
v = +. (19) 

n is known to be IRRATIONAL (Lambert 1761, Legendre 
1794) and even TRANSCENDENTAL (Lindemann 1882). 
Incidentally, Lindemann’s proof of the transcendence 
of 7r also proved that the GEOMETRIC PROBLEM OF 
ANTIQUITY known as CIRCLE SQUARING is impossible. 
A simplified, but still difficult, version of Lindemann’s 
proof is given by Klein (1955). 

It is also known that r is not a LIOUVILLE NUMBER 
(Mahler 1953). In 1974, M. Mignotte showed that 

(20) 

has only a finite number of solutions in INTEGERS (Le 
Lionnais 1983, p. 50). This result was subsequently 
improved by Chudnovsky and Chudnovsky (1984) who 
showed that 

(21) 

although it is likely that the exponent can be reduced to 
2 + e, where E is an infinitesimally small number (Bor- 
wein et al. 1989). It is not known if 7~ is NORMAL (Wagon 
1985), although the first 30 million DIGITS are very UNT- 
FORMLY DISTRIBUTED (Bailey 1988): The following dis- 
tribution is found for the first 12 DIGITS of 7r--3. It shows 
no statistically SIGNIFICANT departure from a UNIFORM 
DISTRIBUTION (technically, in the CHI-SQUARED TEST, 
it has a value of xS2 = 5.60 for the first 5 x lOlo terms). 

digit 1 x lo5 

0 9,999 
1 10,137 
2 9,908 
3 10,025 
4 9,971 
5 10,026 
6 10,029 
7 10,025 
8 9,978 
9 !?902 

1 x loo 6 x 10’ 5 x 1o’O 

99,959 599,963,005 5,000,012,647 
99,758 600,033,260 4,999,986,263 

100,026 599,999,169 5,000,020,237 
100,229 600,000,243 4,999,914,405 
100,230 599,957,439 5,000,023,598 
100,359 600,017,176 4,999,991,499 

99,548 600,016,588 4,999,928,368 
99,800 600,009,044 5,000,014,860 
99,985 599,987,038 5,000,117,637 

100,106 600,017,038‘ 4,999,990,486 

The Ggits .-JF 1 /;TT are also very uniformly distributed 

(X 
2 

S = 7.04’ shown in the following table. 

s 1 

C=2n=4 
dx 

on 
(16) 

1 
=4 sd ( 1+ $&z)2dz. (17) 

0 
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digit 5 x lOlO from c(2n) f or all POSITIVE INTEGERS n, Gregory and 
Leibniz found 0 4,999,969,955 

1 5,000,113,699 
2 4,999,987,893 
3 5,000,040,906 
4 4,999,985,863 
5 4,999,977,583 
6 4,999,990,916 
7 4,999,985,552 
8 4,999,881,183 
9 5,000,066,450 

?r 

4 
=I- ; +; +.**, (28) 

which is sometimes known as GREGORY'S FORMULA. 
The error after the nth term of this series in GREGORY'S 
FORMULA is larger than (2n)-’ so this sum converges 
so slowly that 300 terms are not sufficient to calculate 
7r correctly to two decimal places! However, it can be 
transformed to 

It is not known if T + e, n/e, or lnr are IRRATIONAL. 
However, it is known that they cannot satisfy any POLY- 
NOMIAL equation of degree 5 8 with INTEGER COEFFI- 
CIENTS of average size 10’ (Bailey 1988, Borwein et al. 
1989). 

k=l 

(29) 

where S(Z) is the RIEMANN ZETA FUNCTION (Vardi 
1991, pp* 157-158; Flajolet and Vardi 1996), so that 
the error after k terms is = (3/4)“. Newton used 

7r satisfies the INEQUALITY 

1 
( > 

x+1 
l+- ==: 3.14097 < 7r. 

7T (22) 
d=dz (30) 

1 1 1 

- 
------ 
5 l  25 28.2? 72.29 '*' > 

(31) 

l  Using Euler's CONVERGENCE IM- 

3a 1 - - 4 + 24 
12 

Beginning with any POSITIVE INTEGER n, round up to 
the nearest multiple of n - 1, then up to the nearest 
multiple of n - 2, and so on, up to the nearest multiple 
of 1. Let f(n) d enote the result. Then the ratio 

(Borwein et al. 1989) 
PROVEMENT transformation gives 

(23) 
7T loo 
212 E 

(n!)22n+1 O” n! 
x 

n=O 
(2nf I)! = 

n=O 
(272 + l)!! (Brown). David (1957) credits this result to Jabotinski 

and Erdes and gives the more precise asymptotic result 
1 1.2 102.3 

=1-t,+,,+- . 3.5.7+*.* (32) 2 

f(n) = 72 + C+Y3). 
7r (24) 

The first few numbers in the sequence {f(n)} are 1, 2, 
4, 6, 10, 12, 18, 22, 30, 34, . . . (Sloane’s A002491). 

(Beeler et al. 1972, Item 120). This corresponds to plug- 
ging x = l/fiintothe POWER SERIES for the HYPER- 
GEOMETRIC FUNCTION 2Fl(~,b;~;~), 

A particular case of the WALLIS FORMULA gives 

7r (2 > n2 
I 

2.24.46.6 
2' = (2n-1)(2n+l) 1.3 - 3-5 -*** 5.7 ’ 

(25) 
This formula can also be written 

- - (2x>""+'(i!)2 =2Fl(l 1;;;22)a: 
2(2i + l)! 

3 . (34) 

Despite the convergence improvement, series (33) con- 
verges at only one bit/term. At the cost of a SQUARE 
ROOT, Gosper has noted that x = l/2 gives 2 bits/term, 

4n 
lim - 2 nmJ12 

n+m 2n 2 
nn ( > = 7r 7EE3 [r( i + n)12 

= 7r, (26) 

where (I) d enotes a BINOMIAL COEFFICIENT and r(x) 

is the GAMMA FUNCTION (Knopp 1990). Euler obtained L h 
1 O” (i!)” 

9 
n=- 

2 E 
i=l 

(2i' (35) 

1 1 1 
7T= $+s+s+... (27) and x = sin(r/lO) gives almost 3.39 bits/term, 

lr 1 O” 
Ix 

( > i! 2 --- 
5&q - 2 '-. p+q2i+ l)!’ (36) 

z- 

which follows from the special value of the RIEMANN 
ZETA FUNCTION c(2) = 7r2/6. Similar FORMULAS follow 
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where g5 is the GOLDEN RATIO. Gosper also obtained 

2.3 
8+783(13+ 

3.5 
l  l  10*11*3 

(37) 

An infinite sum due to Ramanujan is 

(38) 

(Borwein ef al. 1989). Further sums are given in Ra- 
manujan (1913-14), 

4 -- O” (-l)n(1123 + 21460n)(% - 1)!!(472 - I)!! 
- 

7T >: 
n=O 

8822”+132”(n!)3 

(39) 

and 

1 -- O” (1103 + 26390n)(2n - 1)!!(4n - l)!! 
- 

7T a 994n+232n (nvj3 . 
n=O 

\  c 

Js - - 
9801 Ix 

O” (4n)!(ll03 + 26390n) (40) 

n=O 
(n!)43964n 

(Beeler et al. 1972, Item 139; Borwein et al. 1989). 
Equation (40) is derived from a modular identity of or- 
der 58, although a first derivation was not presented 
prior to Borwein and Borwein (1987). The above series 
both give 

22OSfi 
TTT==: 

9801 
= 3.14159273001 l  l  l  (41) 

as the first approximation and provide, respectively, 
about 6 and 8 decimal places per term. Such series exist 
because of the rationality of various modular invariants. 
The general form of the series is 

0 RL a t + rib(t)] (6 > n! 1 

(3n)!(n!)3 [jo3” = 7’ (42) 
n=O 

where t is a QUADRATIC FORM DISCRIMINANT, j(t) is 
the j-FUNCTION, 

b(t) = -\/t[1728 - j(t)] (43) 

a(t) = - b(6t){l-~[&(t)--$]}, (44) 

and the Ei are RAMANUJAN-EISENSTEIN SERIES. A 
CLASS NUMBER p field involves pth degree ALGEBRAIC 
INTEGERS of the constants A = a@), B = b(t), and 
C = c(t). The fastest converging series that uses only 

INTEGER terms corresponds to the largest CLASS NUM- 
BER 1 discriminant of d = -163 and was formulated 
by the Chudnovsky brothers (1987). The 163 appearing 

here is the same one appearing in the fact that erra 
(the RAMANUJAN CONSTANT) is very nearly an INTE- 
GER. The series is given by 

1 -- OQ (-1)“(6n)!(13591409 + 545140134n) - 
7T 12E 

n=O 
(n!)3(3n)!(6403203)n+1/2 

163 l  8  n  27 l  7.11 l  19 l  127 - - 
6403203i2 
00 

X 
U 163 - z  - 9  13591409 l  7 l  11 l  19.127 +n > n=O 

(6 > n! -n ( 1) 
’ (3n)!(n!)3 6403203” (45) 

(Borwein and Borwein 1993). This series gives 14 digits 
accurately per term. The same equation in another form 
was given by the Chudnovsky brothers (1987) and is 
used by Muthematica@ (Wolfram Research, Champaign, 
IL) to calculate x (Vardi 1991), 

where 

A = 13591409 (47) 
BS- 1 

151931373056000 (48) 

cz 30285563 
1651969144908540723200' (49) 

The best formula for CLASS NUMBER 2 (largest discrim- 
inant -427) is 

1 -- O” (-1)“(6n)!(A + Bn) 
- 

7T 12C n-o (n!)3(3n)!Cn+1/2 ’ (50) 
- 

where 

A = 212175710912&i + 1657145277365 (51) 

B G 13773980892672fi + 107578229802750 (52) 

C = [5280(236674 + 30303a13 (53) 

(Borwein and Borwein 1993). This series adds about 25 
digits for each additional term. The fastest converging 
series for CLASS NUMBER 3 corresponds to d = -907 
and gives 37-38 digits per term. The fastest converging 
CLASS NUMBER 4 series corresponds to d = -1555 and 
is 

where 

dm O” (6n)! A+nB - - - 
7T lx 

n=O 
(3n)!(n!)3 C3n ’ (54) 
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A = 63365028312971999585426220 
+28337702140800842046825600~ 
+384~(108917285511711782004674~~~ 

~~~36212395209160385656017+487902908657881022~~~ 
m . . 5077338534541688721351255040~)1'2 (55) 

B = 7849910453496627210289749000 
+3510586678260932028965606400~ 
+2515968d3110(62602083237890016~~~ 
~~~36993322654444020882161+279965027306~444296~~~ 
. . . 577206890718825190235&)1'2 (56) 

C = -214772995063512240 - 96049403338648032& 
- 1296&(10985234579463550323713318473 

+4912746253692362754607395912&)'? (57) 

This gives 50 digits per term. Borwein and Borwein 
(1993) have developed a general ALGORITHM for gener- 
ating such series for arbitrary CLASS NUMBER. Bellard 
gives the exotic formula 

1 

-IT = 740025 
- 3P(n) 

x 
n=l ( > 

iz 27x-l 
- 20379280 1 , (58) 

where 

P(n) s -885673181d + 3125347237n4 - 2942969225n3 

+1031962795n2 - 196882274n + 10996648. (59) 

A complete listing of Ramanujan’s series for l/n found 
in his second and third notebooks is given by Berndt 
(1994, pp. 352-354), 

4 -- O” (6n + 1)(+),x3 
- 

7T c 
n=O 

4”(n!)3 

16 -- O” (42n + 5)(+)n3 
- 

7T >: n=O wn (4” 

32 -- O” (42&t+ 5J5+30n- 1)(+)n3 

n- x 
n=O 

(64)n(n!)3 

27 -- - (15n+2)($)n($t(?j)n 
4r - x 

rt=o 
(n!)3 

156 O” (33n+4)(~)&&($ 
lx 

n - - 
27r - 

n=O 
(n!)3 

5Js - - O” (lln+l)(+)&)n($3 
x 

n 

274 - n=o (n!)3 

85& 
- - 

O" (133n+8)($)n(i)n(i)n 

IE 1874 - n=O ( > n! 3 

O” 4 -- 
x 

(-Qn(20n + 3)( +)n($)n( $>- - 
7r 

n=O 
(n!)322n+1 

(60) 

(61) 

(62) 

(63) 

(64) 

(65) 

(66) 

(67) 

4 
- - 

O" (-1)n(28n+3)(~)n(~)n(~)n 

IE 
Tfi - n-o 

(n!)33n4n+1 
- 

4 
-- 

O" (-l)n(260n+23)($J$)n(~)n 

r- E 
n=O 

(n!)3(18)2n+1 

4 - - O” (-l)n(644n+41)(~)n(~)n(~)n 
c d-n o (n!)35n(72)2n+1 

4 -- 
O” T-1)“(21460n+ 1123)(~)~(~)n(~)n 

r- IE 
n=O 

(n!)3(882)2n+1 

2a 
-- 

O" (8n+l)(~)n(~)n(~)n 

T  - x 
n=O 

(n!)39n 

1 
- - 

O" (lon+1)(3)n($)n(i)n 

c 
2d-n o (n!)392n+1 

1 
- = 

’ (don + 3)(+)n(a>n(~)n 

3n& E 
n=O 

(n!)3(49)2n+1 

2 
- - 

O" (280n+19)(3)n(~)n(~)n 

>: 
na - n-o (n!)3(99)2n+1 

’ 1 - - 
>: 

(2639072 + 1103)( $)n( a)n( a)n 

24 - n-o (n!)3(99)4n+2 
. 

- 

. 
Pl 

(68) 

(69) 

(70) 

(71) 

(72) 

(73) 

0% 

(75) 

(76) 

These equations were first proved by Borwein and 
Borwein (1987, pp. 177-187). Borwein and Borwein 
(198713, 1988, 1993) proved other equations of this type, 
and Chudnovsky and Chudnovsky (1987) found similar 
equations for other transcendental constants. 

A SPIGOT ALGORITHM for 7r is given by Rabinowitz 
and Wagon (1995). Amazingly, a closed form expression 
giving a digit e&action algorithm which produces digits 
of 7r (or r2) in base-16 was recently discovered by Bailey 
et al. (Bailey et al. 1995, Adamchik and Wagon 1997), 

7r= 
00 

c( 

4 2 1 1 1 n ------ 
8n + 1 8n + 4 8n + 5 8n+6 >( > 16 ’ 

n=O 

(77) 

which can also be written using the shorthand notation 

00 

{Pi} = {4,&O,-2,-I,-l,O,O}, 

where {pi} is given by the periodic sequence obtained by 
appending copies of {4,0,0, -2, -1, -l,O,O} (in other 
words, pi E P[(i-1) (mod S>]+l for i > 8) and [LCJ is the 
FLOOR FUNCTION. This expression was discovered us- 
ing the PSLQ ALGORITHM and is equivalent to 

1 
- 16 

7T= s 169 
y4 dY* - - o 2y3 + 4y 4 
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A similar formula was subsequently discovered by Fergu- 
son, leading to a 2-D lattice of such formulas which can 
be generated by these two formulas. A related integral 
is 

?r+- 

s 

l x4(1 - 2)4 
dx 

0 
1+ x2 (80) 

(Le Lionnais 1983, p. 22). F. Bellard found the more 
rapidly converging digit-extraction algorithm (in HEX- 
ADECIMAL) 

1 O” (-1)” 
x 

( 

z5 1 28 r==: - --- 
26 4-p" 472 + 1 

-+- 
4n + 3 lOn+ 1 

n=O 

26 22 22 1 ----- 
lOn+3 lb+5 

-+- 
lb+7 > lb-t-9 ’ (81) 

More amazingly still, S. Plouffe has devised an algo- 
rithm to compute the nth DIGIT of 7~ in any base in 
O(n3(log nJ3> steps. 

Another identity is 

n2 = 36Lis(i)-36Li&)-12Li2(i)+6Li2(&), (82) 

where L, is the P~LYLOGARITHM. (82) is equivalent to 

2 00 
ai 36= E pi2 {ai) = [ 1, -3, -2, -3,1, O] (83) 

i=l 

and 
n2 = 12Lz( i) -t 6(ln 2)2 (84) 

(Bailey et al. 1995). F’urthermore 

144 216 72 
(6b + 1)” - (Sk + 2)2 - (6k + 3)2 

54 9 

- (6k + 4)2 + (6k + 5)2 1 (85) 
and 

7r2 - - 
00 

x 

k=O 

16 16 

(8k + 1)” (8k + 2)2 
8 IT may also be computed using iterative ALGORITHMS. 

(8k + 3)2 A quadratically converging ALGORITHM due to Borwein 

16 4 4 2 

- (8k + 4)2 - (8k + 5)2 - (8k + 6)2 + (8k + 7)2 1 (86) 
(Bailey et al. 1995, Bailey and Plouffe) l  

A slew of additional identities due to Ramanujan, Cata- 
lan, and Newton are given by Castellanos (1988, pp. 86- 
88), including several involving sums of FIB~NACCI 
NUMBERS. 

er quotes the result 

16 -1 
r=- 

3 
hm xl&(+; 2,3; -x2) 1 , (87) 

X*00 

where $2 isa GENERALIZED HYPERGEOMETRICFUNC- 
TION, and transforms it to 

7T= hm 4x &( i; & z; -X2)* (88) 
2-00 

Fascinating results due to Gosper include 

2n 

lim p 
rI 

7r 

2 tan-l i 
= 41/r = 1.554682275. . . 

n--km (89) 

and 

O” 1 F ( n2 cos 
-1 

- - --= 
12e3 

-0.040948222.. . l  (90) 

Gosper also gives the curious identity 

i fi (& + 1)3”+1’2 

- 3'3l'24dm 
- 

Z5i6 exp 8 - +F + 
[ 

ml(+) WC9 
127r - 7 - 1 X5/6 1 

= 1.012378552722912.. l  l  (91) 

Another curious fact is the ALMOST INTEGER 

en-r= 19.999099979.. . , (92) 

which can also be written as 

(7T+ 2u)i = -0.9999999992 - 0.0000388927i = -1 (93) 

cos(ln(n + 20)) ==: -0.9999999992. 

Applying COSINE a few more times gives 

cos(n cos(7r cos(ln(7r + 20)))) 

z -1 + 3.9321609261 x 10 

1s 

x0 = v5 (96) 
7To = 2+d5 (97) 

Yl 
=21/4 

(98) 

and 

I 
xn+F;(A+&) 

yn+1 = 

Yn&+& 

Yn + 1 

x72 + 1 
x72 = 7rn-1- 

yn + 1. 

(99) 

(100) 

(101) 
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(Borwein and Borwein 1987, Bailey 1938, Borwein et al. 
1989) This ALGORITHM rests on a MODULAR EQUA- 
TION identity of order 4. 

nn. decreases monotonically to 7r with 

-p+l 
x7-L - 7T < 10 (102) 

A quintically converging ALGORITHM is obtained by let- 
ting for n > 2. The BRENT-SALAMIN FORMULA is another - 

quadratically converging algorithm which can be used 
to calculate 7r. A quadratically convergent algorithm 
for 7~/ In 2 based on an observation by Salamin is given 
by defining 

so = 5(J5 - 2) (115) 
Qg=+ W) 

Then let 

f(k) = k2-k’4 
25 

sn+1 = (2 + ; + 1)2s, ’ 
(117) 

where 
then writing 

(104) 
5 x:=--l 

Sn 
(118) 

y = (x - 1)2 + 7 (119) Now iterate 
x = [$x(y + dy2 - 4xi)]1/5. (120) 

gk=/;(gk-I++-) (105) Finally, let 

Qln+l =Sn2cYn -5n[i(Sn2 -5)+ Sn (Qn2 -2&x+5)], to obtain 

(106) then 
(121) 

1 
O<Ctn-- ~ < 16 l  5%-‘@ (122) 

A cubically converging ALGORITHM which converges to 
the nearest multiple of rr to fo is the simple iteration 

(Borwein et al. 1989) l  This ALGORITHM rests on a 
MODULAR EQUATION identity of order 5. 

Another ALGORITHM is due to Woon (1995). Define 
a(0) = 1 and 

fn = fn-1 -I- Sin(f,-1) W) 

(Beeler et al. 1972). For example, applying to 23 gives 
the sequence rn-1 l2 

(123) 
{23,22.1537796,21.99186453,21.99114858, l  . a}, (108) 

which converges to 7n ==: 21.99114858. It can be proved by induction that 

A quartically converging ALGORITHM is obtained by let- 
ting a(n) = csc & . 

( > (124) 

yo=J2-1 w9 
a=6-4&, (110) 

For n = 0, the identity holds. If it holds for n < t, then - 

a(t + 1) =++ [p(&)]2j then defining (125) 

1 - (1 - yn4)1’4 
Yn+l = 1+(1- yn4)1/4 (111) but 

csc (&) =cot [&) -cot (&) 1 (126) &-&+I = (I+ Yn+1)4Qn - 22n+3yn+l(l + &+I + Yn+12)* 

(112) 

Then 
1 

7r = lim - 
n-man 

(113) 

so 

(127) 
k=O and an converges to l/n quartically with 

Therefore, 

a-b - < l&4ne-2”4n (114) 
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so the identity holds for TZ = t + 1 and, by induction, for 
all NONNEGATIVE n, and 

2 n+l 
lim - - 

n+oo a(n) - 
lim 2”” sin --& 

n-+m ( > 

= lim zn+lL sin (a) 
n+m p+1 L 2n+l 

sin B 
= n lim - = 7r. 

8+0 8 (129) 

Other iterative ALGORITHMS are the ARCHIMEDES AL- 
GORITHM, which was derived by Pfaff in 1800, and the 
BRENT-SALAMIN FORMULA. Borwein et al. (1989) dis- 
cuss pth order iterative algorithms. 

KOCHANSKY'S APPROXIMATION 

9x4 -240x2 + 

given by 

7mJ--= 

An approximation involving the 

is the ROOT of 

1492. (130) 

3.141533. (131) 

GOLDEN MEAN is 

7 
2 

= g(3+-\/5)=3.14164.... 

(132) 
Some approximations due to Ramanujan 

19fi 
T5z- 

16 (133) 

z (g2 + g)1'4 = (102 - g)1'4 (136) 

sz (97 + $ - ++p4 = (97 + +p4 (137) 

(138) 

3551 ( 
0.0003 

= 113 - 3533 > (139) 
12 

= zln [ 

(3+rn)(J8+J10) 
2 1 (140) 

24 
= =ln 

&o + llfi + dl0 + 7fi 

2 (141) 

a &ln[(3+fi)(&+JQ] 

12 
z Jln[i(3+&)(2+JZ) (5-k2J10 

+Jm >3 
4 

* -In K ) 
y ‘l(5rn+ 1W-Q 

(142) 

(143) 

x (@$3+pq]. (144) 

, 
Pl 1363 

which are accurate to 3, 4, 4, 8, 8, 9, 14, 15, 15, 18, 23, 
31 digits, respectively (Ramanujan 1913-1914; Hardy 
1952, p. 70; Berndt 1994, pp. 48-49 and 88-89). 

Castellanos (1988) gives a slew of curious formulas: 

7T x (2e3 +ey7 (145) 

==: bi%12 (146) 

a ($)"(~)" (147) 
z($+)" (148) 

z ( 663$;62)2 
W) 

a 1.09999901 l  1.19999911 l  1.39999931 l  1.69999961 

(150) 
473 +203 -1 

2+ym 

(151) 

(152) 

( 77729 254 1 l/5 (153) 

( 

6Z2 +14 'I3 
31+ 284 

> 
054) 

17003 +8Z3 - lo3 -g3 - 63 - 33 
6g5 (155) 

( 95+ 934 + 344 +174 + 88 'j4 
z4 > 

(156) 

loo- 
21253 +2143 +303 +37' 1'4 

825 > 1 (157) 

which are accurate to 3, 4, 4, 5, 6, 7, 7, 8, 9, 10, 11, 
12, and 13 digits, respectively. An extremely accurate 
approximation due to Shanks (1982) is 

6 
x"J3502 

- ln(2u) + 7.37 X 10Bg2, (158) 

where u is the product of four simple quartic units. A 
sequence of approximations due to Plouffe inchrdes 

yr z 437i23 W) 
In 2198 

z- 
A 

(160) 

~ ( 13 1 1~81/1216 4 (lfw 

689 

z 396ln (g) 
(162) 

a (2;;s )W 
(163) 

z 064) 

sz: ( gj& 63023 1/3 +a++<~+11 (165) 

(166) 
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(168) 
$=: 2766948197539631/l= 

226588 +2 (169) 

In 262537412640768744 
z 

Jiia 
? (170) 

which are accurate to 4, 5, 7, 7, 8, 9, 10, 11, 11, 11, 23, 
and 30 digits, respectively. 

Ramanujan (1913-14) and Olds (1963) give geomet- 
ric constructions for 355/113. Gardner (1966, pp. 92- 
93) gives a geometric construction for 3 + 16/113 = 
3.1415929 l  l  l  * Dixon (1991) g ives constructions for 

6/W + 4) = 3.141640 l  l  . and d4 + (3 - tan(30”)) = 
3.141533 l  l  l  * Constructions for approximations of x are 
approximations to CIRCLE SQUARING (which is itself im- 
possible). 

A short mnemonic for remembering the first eight DEC- 
IMAL DIGITS of r is “May I have a large container of 
coffee?” giving 3.1415926 (Gardner 1959; Gardner 1966, 
p. 92; Eves 1990, p. 122, Davis 1993, p. 9). A more sub- 
stantial mnemonic giving 15 digits (3.14159265358979) 
is “How I want a drink, alcoholic of course, after the 
heavy lectures involving quant urn mechanics,” originally 
due to Sir James Jeans (Gardner 1966, p. 92; Castellanos 
1988, p, 152; Eves 1990, p. 122; Davis 1993, pa 9; Blatner 
1997, p. 112). A slight extension of this adds the phrase 
“All of thy geometry, Herr Planck, is fairly hard,” giving 
24 digits in all (3.14159265358979323846264). 

An even more extensive rhyming mnemonic giving 31 
digits is “Now I will a rhyme construct, By chosen 
words the young instruct. Cunningly devised endeav- 
our, Con it and remember ever. Widths in circle here 
you see, Sketched out in strange obscurity.” (Note that 
the British spelling of “endeavour” is required here.) 

The following stanzas are the first part of a poem written 
by M. Keith based on Edgar Allen Poe’s “The Raven.” 
The entire poem gives 740 digits; the fragment below 
gives only the first 80 (Blatner 1997, p. 113). Words 
with ten letters represent the digit 0, and those with 11 
or more digits are taken to represent two digits. 

Poe, E.: Near a Raven. 

Midnights so dreary, tired and weary. 
Silently pondering volumes extolling all by-now obsolete 

lore. 
During my rather long nap-the weirdest tap! . 
An ominous vibrating sound disturbing my chamber’s 

antedoor. 
‘This,’ I whispered quietly, ‘I ignore.’ 

Perfectly, the intellect remembers: the ghostly fires, a 
glittering ember. 

Inflamed by lightning’s outbursts, windows cast penum- 
bras upon this floor. 

Sorrowful, as one mistreated, unhappy thoughts I heed- 
ed: 

That inimitable lesson in elegance-Lenore- 
is delighting, exciting. . . nevermore. 

An extensive collection of x mnemonics in many lan- 
guages is maintained by A. P. Hatzipolakis. Other 
mnemonics in various languages are given by Castellanos 
(1988) and Blatner (1997, pp. 112-118). 

In the following, the word “digit” refers to decimal digit 
after the decimal point. J. H. Conway has shown that 
there is a sequence of fewer than 40 FRACTIONS Fl, I$ 

with the property that if you start with 2n and re- 
peatedly multiply by the first of the Fi that gives an 
integral answer, then the next POWER of 2 to occur will 
be the 2”th decimal digit of n. 

The first occurrence of n OS appear at digits 32, 307, 
601, 13390, 17534, . . . . The sequence 9999998 occurs at 
decimal 762 (which is sometimes called the FEYNMAN 
POINT). This is the largest value of any seven digits 
in the first million decimals. The first time the BEAST 
NUMBER 666 appears is decimal 2440. The digits 314159 
appear at least six times in the first 10 million decimal 
places of r (Pickover 1995). In the following, “digit” 
means digit of 7r - 3. The sequence 0123456789 oc- 
curs beginning at digits 17,387,594,880, 26,852,899,245, 
30,243,957,439, 34,549,153,953, 41,952,536,161, and 
43,289,964,000. The sequence 9876543210 occurs 
beginning at digits 21,981,157,633, 29,832,636,867, 
39,232,573,648, 42,140,457,481, and 43,065,796,214. 
The sequence 27182818284 (the digits of e) occur be- 
ginning at digit 45,111,908,393. There are also in- 
teresting patterns for l/r. 0123456789 occurs at 
6,214,876,462, 9876543210 occurs at 15,603,388,145 
and 51,507,034,812, and 999999999999 occurs at 
12,479,021,132 of l/r. 

Scanning the decimal expansion of 7r until all n-digit 
numbers have occurred, the last l-, 2-, l  . . digit num- 
bers appearing are 0, 68, 483, 6716, 33394, 569540, . . . 
(Sloane’s A032510). These end at digits 32, 606, 8555, 
99849, 1369564, 14118312, l  . . . 

see also ALMOST INTEGER, ARCHIMEDES ALGORITHM, 
BRENT-SALAMIN FORMULA, BUFFON-LAPLACE NEE- 
DLE PROBLEM, BUFFON'S NEEDLE PROBLEM, CIR- 
CLE, DIRICHLET BETA FUNCTION, DIRICHLET ETA 
FUNCTION, DIRICHLET LAMBDA FUNCTION, e, EULER- 
MASCHERONI CONSTANT, GAUSSIAN DISTRIBUTION, 
MACLAURIN SERIES, MACHIN'S FORMULA, MACHIN- 
LIKE FORMULAS, RELATIVELY PRIME,RIEMANN ZETA 
FUNCTION, SPHERE,TRIGONOMETRY 
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Piano Mover’s Problem 
N.B. A detailed on-line essay by S. Finch was the start- 
ing point for this entry. 

Given an open subset U in n-D space and two compact 
subsets Co and Cr of U, where Cl is derived from Co 
by a continuous motion, is it possible to move Co to Cl 
while remaining entirely inside U? 

see also MOV 
CONSTANT 

ING LADDER CONSTANT, MOVING SOFA 

References 
Buchberger, B.; Collins, G. E.; and Kutzler, B. ‘&Algebraic 

Methods in Geometry." Annual Rev. Comput. Sci. 3, 85- 
119, 1988. 

Feinberg, E. B. and Papadimitriou, C. H. “Finding Feasible 
Points for a Two-point Body." J. Algorithms 10, 109-119, 
1989. 

Finch, S. “Favorite Mathematical Constants." http: //www. 
mathsoft. com/asolve/constant/sof a/sof a.html. 

Leven, D. and Sharir, M. “An Efficient and Simple Mo- 
tion Planning Algorithm for a Ladder Moving in Two- 
Dimensional Space Amidst Polygonal Barriers.” J. AZgo- 
rithms 8, 192-215, 1987. 

Picard’s Existence Theorem 
If f is a continuous function that satisfies the LIPSCHITZ 
CONDITION 

MT t) - f(Y, t>l 5 4x - YI 

in a surrounding of (20, to) E n c Iw. x IV = {(x, t) : 
II:--201 <b,It- to 1 < a}, then the differential equation 

h ~as a unique solution x(t) in the interval It - toI < d, 

$ =f(G) 

x(.to) = x0 

where d = min(a, b/B), min denotes the MINIMUM, B = 

SUP If(t7 4 I7 and sup denotes the SUPREMWM. 

see also ORDINARY DIFFERENTIAL EQUATION 

Picard’s Little Theorem 
Any ENTIRE ANALYTIC FUNCTION whose range omits 
two points must be a constant. 

Picard’s Theorem 
An ANALYTIC FUNCTION assumes every COMPLEX 
NUMBER, with possibly one exception, infinitely often 
inany NEIGHBORHOOD ofan ESSENTIAL SINGULARITY. 

see ~SO ANALYTIC F 
ITY ,NEIGHBORHOOD 

UNCTION, ESSENTIAL SINGULAR- 

A HEPTOMINO in the shape of the Greek character T. 
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Picard Variety 
Let V be a VARIETY, and write G(V) for the set of di- 
visors, Gl (V) for the set of divisors linearly equivalent 

to 0, and Ga(V) for the group of divisors algebraically 
equal to 0. Then Ga(V)/Gi(V) is called the Picard va- 
riety. The ALBANESE VARIETY is dual to the Picard 
variety. 

see also ALBANESE VARIETY 
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Pick’s Formula 

see PICK’S THEOREM 

Pick’s Theorem 
Let A be the AREA of a simply closed POLYGON whose 
VERTICES are lattice points. Let B denote the number 
of LATTICE POINTS on the EDGES and I the number of 
points in the interior of the POLYGON. Then 

A=I+;B-1. 

The FORMULA has been generalized to 3-D 
dimensions using EHRHART POLYNOMIALS. 

and higher 

see also BLICHFELDT'S THEOREM, EHRHART POLY- 
NOMIAL, LATTICE POINT, MINKOWSKI CONVEX BODY 
THEOREM 
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Picone’s Theorem 
Let f(x) be integrable in [-I, I], let (1 - x2)f(x) be of 
bounded variation in [- 1, 11, let M’ denote the least up- 
per bound of ]f(x)(l -x2)] in [-l,l], and let V’ denote 
the total variation of f(x)(l - x”) in I-1,1]. Given the 

function 
2 4 F(x) = F(-1) + J f (4 dx, 

1 

thentheterms ofits LEGENDRE SERIES 

F(x) - &d%(x) 
n=O 

J 
1 

un = @n + 1) F(x)P,(x) dx, 

-1 

where p,&) is a LEGENDRE POLYNOMIAL, satisfy the 
inequalities 

2 W+V -3/2 IGaK(x)I < 1 8r ;(1_92)1/4n for 1x1 5 6 < 1 

2(M’+ I+-l for Ix] < I - 

for n > 1 (Sansone 1991). - 

see UZSO JACKSON'S THEOREM,LEGENDRE SERIES 
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Pie Cutting 

see CIRCLE CUTTING, CYLINDER CUTTING, PANCAKE 
THEOREM,~IZZA THEOREM 

Piecewise Circular Curve 
A curve composed exclusively of circular ARCS, e.g., the 
FLOWER OF LIFE, LENS, REULEAUX TRIANGLE, SEED 
OF LIFE, and YIN-YANG. 

see also ARC, REULEAUX TRIANGLE, YIN-YANG 
FLUWER OF LIFE, LENS, REULEAUX POLYGON, 
REULEAUX TRIANGLE, SALINON, SEED OF LIFE, TRI- 
ANGLE ARCS,YIN-YANG 

References 
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Pigeonhole Principle 

see DIRICHLET'S Box PRINCIPLE 

Pillai’s Conjecture 
For every k > 1, there exist only finite many pairs of 
POWERS (p,p’> with p and p’ PRIME and k = p’ - p. 

References 
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Pilot Vector 

~~~VECTOR SPHERICAL HARMONIC 

Pinch Point 
A singular point such that every NEIGHBORHOOD of the 
point intersects itself. Pinch points are also called Whit- 
ney singularities or branch points. 

Pinching Theorem 
Let g(x) 5 f(x) 2 h(x) for all x in some open interval 
containing a. If 

lim g(x) = lim h(x) = L, 
Ax+a Ax+a 

then limAxta f(x) = L. 
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Pine Cone Number 

see FIB~NACCI NUMBER 

Piriform 

A plane curve also called the PEG TOP and given by the 
CARTESIAN equation 

a4y2 = b2x3(2a - 2) (1) 

and the parametric curves 

X = a(1 + sint) (2) 

y = bcosi(1 + sint) (3) 

for t E [-r/27/2]. It was studied by G. de Longchamps 
in 1886. The generalization to a QUARTIC 3-D surface 

( x4 - x3) + y2 + z2 = 0, (4) 

Pisot (1938) proved that if 8 is such that there exists 
a X # 0 such that the series c,“=O sin2(rX8)” con- 
verges, then 0 is an ALGEBRAIC INTEGER whose conju- 
gates all (except for itself) have modulus < 1, and A is 
an algebraic INTEGER of the FIELD K(B). Vijayaragha- 
van (1940) proved that the set of Pisot-Vijayaraghavan 
numbers has infinitely many limit points. Salem (1944) 
proved that the set of Pisot-Vijayaraghavan constants is 
closed. The proof of this theorem is based on the LEMMA 
that for a Pisot-Vijayaraghavan constant 8, there always 
exists a number X such that 1 2 X < 8 and the following 
inequality is satisfied, 

2 sin2(nXBn) _< r;O:)2. (2) 
n=O 

The smallest Pisot-Vijayaraghavan constant is given by 
the POSITIVE ROOT 80 of 

x3 - 2 -l=O. (3) 

This number was identified as the smallest known by 
Salem (1944), and proved to be the smallest possible by 
Siegel (1944). Siegel also identified the next smallest 
Pisot-Vijayaraghavan constant 81 as the root of 

x4 - x3 -l=O, (4) 
is shown below (Nordstrand) . 

showed that Br and $2 are isolated in S, and showed that 
the roots of each POLYNOMIAL 

xn(x2 - x - 1) +x2 - 1 n = 1,2,3,. . l  
(5) 

see U~SOBUTTERFLYCURVE,DUMBBELL CURVE, EIGHT 
CURVE, HEART SURFACE, PEAR CURVE 
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Pisot-Vijayaraghavan Constants 
Let 0 be a number greater than 1, X a POSITIVE number, 
and 

( > X E x - 1x1 (1) 

denote the fractional part of x. Then for a given A, the 
sequence of numbers (Aen) for n = 1, 2, . l  . is uniformly 
distributed in the interval (0, 1) when 0 does not be- 
long to a X-dependent exceptional set S of MEASURE 
zero (Koksma 1935). Pisot (1938) and Vijayaraghavan 
(1941) independently studied the exceptional values of 
8, and Salem (1943) proposed calling such values Pisot- 
Vijayaraghavan numbers. 

xn - 
xn+l - 1 
s2 n=3,5,7,... 

xn - 
X 

n--l 
-1 

x-l 
n = 3,5,7,. . . 

(6) 

(7) 

belong to S, where 00 = 4 (the GOLDEN MEAN) is the 
accumulation point of the set (in fact, the smallest; Le 
Lionnais 1983, p. 40). Some small Pisot-Vijayaraghavan 
constants and their POLYNOMIALS are given in the fol- 
lowing table. The latter two entries are from Boyd 
(1977). 

k Number Order Polynomial 

0 1.3247179572 3 10 -1-l 
1 1.3802775691 4 l-100-1 

1.6216584885 16 1 -2 2 -3 2 -2 10 0 1 
-12 -2 2 -2 l-l 

1.8374664495 20 1 -2 0 l-l 0 l-1 0 
10 -10 1-l 0 1-l 
0 1-l 

All the points in S less than # are known (Dufresnoy 
and Pisot 1955). Each point of S is a limit point from 
both sides of the set T of SALEM CONSTANTS (Salem 
1945). 



Pistol 

see also SALEM CONSTANTS 
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Pitchfork Bifurcation 
Let f : Iw x Iw -+ Iw be a one-parameter family of C3 
map satisfying 

f(-x,/J) = -f(w) (1) 
af [ 1 =l 

x p=o,x=o 

jai w da: p,x = dx [ I af p=o,x=p 
2 

af 1 1 ax+ 00 >o , 
3 af [ 1 dP3 < 0. p=o,x=o 

(2) 

(3) 

(4) 

(5) 

Then there are intervals having a single stable fixed 
point and three fixed points (two of which are stable 
and one of which is unstable). This BIFURCATION is 

Place (Field) 

called a pitchfork bifurcation. An example 
tion displaying a pitchfork bifurcation is 

1369 

of an equa- 

ii? = px - x3 (6) 

(Guckenheimer and Holmes 1997, p. 145). 

see also BIFURCATION 
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Pivot Theorem 
If the VERTICES A, B, and C of TRIANGLE AABC lie 
on sides QR, RP, and PQ of the TRIANGLE APQR, 
then the three CIRCLES CBP, ACQ, and BAR have a 
common point. In extended form, it is MIQUEL’S THE- 

OREM. 

see also MIQUEL'S THEOREM 
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Pivoting 
The element in the diagonal of a matrix by which other 
elements are divided in an algorithm such as GAUSS- 
JORDAN ELIMINATION is called the pivot element. Par- 
tial pivoting is the interchanging of rows and full piv- 
oting is the interchanging of both rows and columns in 
order to place a particularly CLgood” element in the di- 
agonal position prior to a particular operation. 

see also GAUSS-JORDAN ELIMINATION 
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Pizza Theorem 
If a circular pizza is divided into 8, 12, 16, . . . slices by 
making cuts at equal angles from an arbitrary point, 
then the sums of the areas of alternate slices are equal. 

Place (Digit) 

see DIGIT 

Place (Field) 
A place vofanumber FIELD k is an ISOMORPHISM class 
of field maps k onto a dense subfield of a nondiscrete 
locally compact FIELD ky. 

In the function field case, let F be a function field of al- 
gebraic functions of one variable over a FIELD hr. Then 
by a place in F, we mean a subset p of F which is the 
IDEAL of nonunits of some VALUATION RING 0 over K. 
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Place (Game) 
For 72 players, n - 1 games are needed to fairly determine 
first place, and n - 1 + lg(n - 1) are needed to fairly 
determine first and second place. 

Planar Bubble Problem 

see BUBBLE 

Planar Distance 
For n points in the PLANE, there are at least 

Nl= n-z-$ J 
different DISTANCES. The minimum DISTANCE can oc- 
cur only 2 3n - 6 times, and the MAXIMUM DISTANCE 
can occur 5 n times. Furthermore, no DISTANCE can 
occur as often as 

n3i2 n 

times. No set of n > 6 points in the PLANE can deter- 
mine only ISOSCELES TRIANGLES. 

see also DISTANCE 
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Planar Graph 
A GRAPH is planar if it can be drawn in a PLANE 
without EDGES crossing (i.e., it has CROSSING NM- 
BER 0). Only planar graphs have DUALS. If G is pla- 
nar, then G has VERTEX DEGREE 5 5. COMPLETE 
GRAPHS are planar only for n < 4. The complete BI- 
~ARTITE GRAPH K(3,3) in no&anar. More generally, 
Kuratowski proved in 1930 that a graph is planar IFF it 
does not contain within it any graph which can be CON- 
TRACTED to the pentagonal graph K(5) or the hexago- 
nal graph K(3,3). K5 can be decomposed into a union of 
two planar graphs, giving it a C6D~~~~7' of E(Kg) = 2. 
Simple CRITERIA for determining the depth of graphs 
are not known. Beineke and Harary (1964, 1965) have 
shown that if n $4 (mod S), then 

E(G) = LS(n + 7)] , 

The DEPTHS of the graphs Kn for n = 4, 10, 22, 28, 34, 
and 40 are 1, 3, 4, 5, 6, and 7 (Meyer 1970). 

see also COMPLETE GRAPH,FABRY IMBEDDING, INTE- 
GRAL DRAWING,~LANAR STRAIGHT LINE GRAPH 

Planar Space 

Le Lionnais, F. Les nombres remarquabEes. Paris: Hermann, 
p, 56, 1983. 

Meyer, J. “L’Cpaisseur des graphes completes K34 et &.” 
J. Comp. Th. 9, 1970. 

Planar Point 
A point p on a REGULAR SURFACE M f Tw3 is said to 
be planar if the GAUSSIAN CURVATURE K(p) = 0 and 
S(p) = 0 (where S is the SHAPE OPERATOR), or equiv- 
alently, both of the PRINCIPAL CURVATURES ~1 and ~2 
are 0. 

see also ANTICLASTIC, ELLIPTIC POINT, GAUSSIAN 
CURVATURE, HYPERBOLIC POINT, PARABOLIC POINT, 
SYNCLASTIC 
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Planar Space 
Let (cl, 62) be a locally EUCLXDEAN coordinate system. 
Then 

Now plug in 

ds2 = dc12 + d<z2* 

to obtain 

ds2 = [(g)‘+ (E)2] ds12 

6 6 + ‘t2 ‘62 -- 
8x1 ax2 

dxl drr: 
ax, 8x2 I 

2 + [(a)“+ (E)2] dxz2m 

Reading off the COEFFICIENTS from 

ds2 = gll da2 -+ 2gn dxl dx2 + g22 (dz2)2 

gives 

g11= ($)2+($)2 

at1 Ql at2 at2 
g12=--+s-& 

ax1 ax2 

g22 = ($)2 + (g)2n 

(1) 

(2) 

(3) 

(4 

(5) 

(6) 

(7) 

(8) 



Planar Straight Line Graph 

Making a change of coordinates (~1, sz) -+ (xi, xk) gives 

Plane 

It has a MAXIMUM at x = 0.201405, where 

1371 

f’( > x = 
5x - e1/“(5x - 1) =r= o 

x7(e1/x - 1)2 ? 

and inflection points at x E 0.11842 and x E 0.283757, 
where 

f “(4 
el/” 

8x1 3x2 
Cl+ el’x) + 6x@“= - l)[d’“(5x - 2) - 5x] - 

- 
=. 

. 
+ 2912dz’dz’ + 922 (9) (A” - 1)3x9 

11 

a<1 ax1 at, ax2 ---- 

gi2 = ax1 ax; 3x2 ax; 

+ 862 ax1 at2 ax2 
---- 

dXl ax; ax2 ax; 

8x1 8x2 
-- 

= g12 ax; ax; 
(10) 

da 
2 

i&2 = 911 w ( > 
ax1 ax2 ax2 2 

1 
+ 2glzdr +g22 m . 

x2 X2 ( > 2 

(11) 

Planar Straight Line Graph 
A PLANAR GRAPH in which only straight line segments 
are used to connect the VERTICES, where the EDGES 
may intersect. 

see U~SO PLANAR GRAPH 

Plancherel’s Theorem 

s O” f (x)g*(x) dx = F(s)G*(s) ds, 
-w 

where F(s) E F[f(x)] and F denotes a FOURIER 
TRANSFORM. If f and g are real 

s O” f(x)g(-x) dx = F(s)G(s) ds. 
-w 

see also FOURIER TRANSFORM, PARSEVAL'S THEOREM 

Planck’s Radiation Function 
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Plane 
A plane is a 2-D SURFACE spanned by two linearly in- 
dependent vectors. The generalization of the plane to 
higher DIMENSIONS is called a HYPERPLANE. 

In intercept form, a plane passing through the points 

(a, 07 o>, (0, b, 0) and (0, 0, c) is given by 

is 

where 

(1) 

The equation of a plane PERPENDICULAR to the NON- 
ZERO VECTOR fi = (a, b, c) through the point (x0, 90, ZO) 

ax + by + cz + d = 0, (3) 

d E -ax0 - bya - cxo. (4 

The function 

f( > 2 = 
x5(e1/x - 1) ’ 



1372 Plane 

A plane specified in this form therefore has X-, y-, and 
n-intercepts at 

d 
x=-- 

: 

Y=-b 
d 2x----, 
C 

and lies at a DISTANCE m E $n(n - 1) - (2n - 3) = i(n - 2)(n - 3). (18) 

h= Idl 
Ju2 + b2 + c2 

from the ORIGIN. 

(7) 

(8) 

The plane through PI and parallel to (al, bl, cl) and 
(a24242) is 

2 -X1 y- y1 z - Zl 

a1 h Cl = 0. (9) 

a2 b2 c2 

The plane through points PI and P2 parallel to direction 
(a, b, c) is 

x - Xl 

x2 - Xl 

a 

The three-point form 

2 y z 1 

Xl y1 Zl 1 

22 y2 z2 1 = 

x3 y3 23 1 

y-y1 z-21 

Y2 - Yl x2 - 21 = 0. (10) 
b c 

x - Xl y-y1 z--1 

x2 - Xl y2 - y1 z2 - 21 = 0. 

x3 -x1 y3 - y1 z3 - Zl 

(11) 

Plane Cutting 

The remaining n - 2 points need two coordinates each. 
However, the total number of distances is 

&2 = ; = n! 0 2!(n - 2)! 
= +(n - l), (17) 

where (i) isa BIN~MXAL COEFFICIENT, sothedistances 
between points are subject to m relationships, where 

For n = 2 and n = 3, there are no relationships. How- 
ever, for a QUADRILATERAL (with n = 4), there is one 
(Weinberg 1972). 

It is impossible to pick random variables which are uni- 
formly distributed in the plane (Eisenberg and Sullivan 
1996). In 4-Q it is possible for four planes to intersect in 
exactly one point. For every set of n points in the plane, 
there exists a point 0 in the plane having the property 
such that every straight line through 0 has at least l/3 
of the points on each side of it (Honsberger 1985). 

Every RIGID motion of the plane is one of the following 
types (Singer 1995) : 

1. ROTATION about a fixed point P. 

2. TRANSLATION in the direction of a line 2. 

3. REFLECTION across a line 2. 

4. Glide-reflections along a line 2. 

Every RIGID motion of the hyperbolic plane is one of 
the previous types or a 

5. Horocycle rotation. 

see U~SUARGAND PLANE, COMPLEX PLANE,'DIHEDRAL 
ANGLE,ELLIPTIC PLANE,FANO PLANE, HYPERPLANE, 
M~UFANG PLANE, NIRENBERG'S CONJECTURE, NOR- 
MAL SECTION, POINT-PLANE DISTANCE, PROJECTIVE 
PLANE 

The DISTANCE from a point (x1, yr, zl) to a plane 

Ax+By+Cz+D=O (12) 
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d= 
Axl+Byl+Cxl+D 

fdA2+B2+C2 ’ 
(13) 

The DIHEDRAL ANGLE between the planes 

&x + &y + clz + D1 = o (14) 
Azx+Bzy+ Czz+ D7, =o (15) 

is 

Weinberg, S. Gravitation and Cosmology: Principles and 

Applications of the General Theory of Relativity. New 
York: Wiley, p* 7, 1972. 

cos e = 
AlA2 +&Ba +GC2 

dA12 +Bl’+ CI~~A~~+ Bz2+ C22' 
(16) 

In order to specify the relative distances of 12 > 1 points 
in the plane, 1 + 2(n - 2) = 2n - 3 coordinates are 
needed, since the first can always be placed at (0, 0) 
and the second at (x,0), where it defines the X-AXIS. 

Plane Curve 

see CURVE 

Plane Cutting 

see CIRCLE CUTTING 
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Plane Division Plane Geometry 
Consider 72 intersecting CIRCLES and ELLIPSES. The That portion of GEOMETRY dealing with figures in a 
maximal number of regions in which these divide the PLANE, as opposed to SOLID GEOMETRY. Plane geom- 
PLANE are etry deals with the CIRCLE, LINE, POLYGON, etc. 

see also CONSTRUCTIBLE POLYGON,GEOMETRIC CON- 
N 2 

circle = 72 - n+2 STRUCTION, GEOMETRY, SOLID GEOMETRY, SPHERI- 

N ellipse = 2n2 - 2n + 2. CAL GEOMETRY 

see also ARRANGEMENT, CIRCLE, CUTTING, ELLIPSE, 
SPACE DIVISION 

Plane-Filling Curve 

see PLANE-FILLING FUNCTION 

Plane-Filling Function 

A SPACE-FILLING FUNCTION which mapsa 1-D INTER- 
VAL into a 2-D area. Plane-filling functions were thought 
to be impossible until Hilbert discovered the HILBERT 
CURVE~~ 1891. 

Plane-filling functions are often (imprecisely) defined to 
be the “limit” of an infinite sequence of specified curves 
which YW the PLANE without “HOLES," hence the 
more popular term PLANE-FILLING CURVE. The term 
“plane-filling function” is preferable to “PLANE-FILLING 
CURVE" because “curve” informally connotes “GRAPH” 
(i.e., range) of some continuous function, but the GRAPH 
of a plane-filling function is a solid patch of 2-space with 
no evidence of the order in which it was traced (and, for 
a dense set, retraced). Actually, all that is needed to 
rigorously define a plane-filling function is an arbitrar- 
ily refinable correspondence between contiguous subin- 
tervals of the domain and contiguous subareas of the 
range. 
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Plane Partition 
A two-dimensional array of INTEGERS nonincreasing 

True plane-filling functions are not ONE-TO-ONE. In 

fact, because they map closed intervals onto closed ar- 
eas, they cannot help but overfill, revisiting at least 
twice a dense subset of the filled area. Thus, every point 
in the filled area has at least one inverse image. 

see also HILBERT CURVE, PEANO CURVE, PEANO- 
GOSPER CURVE, SIERPI~~SKI CURVE, SPACE-FILLING 
FUNCTION, SPACE-FILLING POLYHEDRON 
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both left to right and top to bottom which add up to a 
given number, i.e., nij 2 ni(j+l) and nij 2 n(i+l)+ For 
example, a planar partition of 2 is given by 

5 4 2 1 1 

3 2 
2 2. 

The GENERATING FUNCTION for the number PL(n) of 
planar partitions of n is 

Wagon, S. “A Space-Filling Curve.” 86.3 in Mathematics in 
Action. New York: W. H. Freeman, pp. 196-209, 1991. 

= 1 + it: + 3x2 + 6x3 + 13x4 + 24~~ + . l  . 
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(Sloane’s AOOO219, MacMahon 1912b, Beeler et al. 1972, 
Bender and Knuth 1972). The concept of planar parti- 
tions can also be generalized to cubic partitions. 

see also PARTITION, SOLID PARTITION 
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Plane Symmetry Groups 

see WALLPAPER GROUPS 

Planted Planar Tree 
A planted plane tree (V, E, II, cy) is defined as a vertex 
set V, edges set E, ROUT V, and order relation Q! on V 
which satisfies 

1. For II=, y E V if p(z) < p(y), then 51: ct y, where p(x) is 
the length of the path from v to 2, 

2. If {T, 4, (6 Y> E E, P(T) = P(4 = P(S)-1 = P(Y)-1 
and Tax:, then sary 

(Klarner 1969, Chorneyko and Mohanty 1975). The 
CATALAN NUMBERS give the number of planar trivalent 
planted trees. 

see UZSO CATALAN NUMBER,TREE 

References 
Chorneyko, I. 2. and Mohanty, S. G. “On the Enumeration 

of Certain Sets of Planted Plane Trees.” J. Combin. Th. 
Ser. B 18, 209-221, 1975. 

Harary, F.; Prins, G.; and Tutte, W. T. “The Number of 
Plane Trees .” Indag. Math. 26, 319-327, 1964. 

Klarner, D. A. “A Correspondence Between Sets of Trees.” 
Indag. Math. 31, 292-296, 1969. 

Plastic Constant 
The limiting ratio of the successive terms of the PADO- 
VAN SEQUENCE, P = 1.32471795.... 

see also PADOVAN SEQUENCE 

References 

Plateau Curves 

A curve studied by the Belgian physicist and mathe- 
matician Joseph Plateau. It has Cartesian equation 

X= 
asin[(m + n)i!] 
sin[(m - n)t] 

Y= 
2a sin(mt) sin(&) 

sin[(m - n)t] ’ 

If m = 2n, the Plateau curve degenerates to a CIRCLE 
with center (1,0) and radius 2. 

References 
MacTutor History of Mathematics Archive. “Plateau 

Curves .” http://uww-groups. dcs. St-and, ac. uk/ 
-history/Curves/Plateau.html. 

Plateau’s Laws 
BUBBLES can meet only at ANGLES of 120” (for two 
BUBBLES) and 109.5” (for three BUBBLES), where the 
exact value of 109.5” is the TETRAHEDRAL ANGLE. This 
was proved by Jean Taylor using MEASURE THEORY 
to study AREA minimization. The DOUBLE BUBBLE is 
AREA minimizing, but it is not known the triple BUBBLE 
is also AREA minimizing. It is also unknown if empty 
chambers trapped inside can minimize AREA for n 2 3 
BUBBLES. 

see UZSO BUBBLE, CALCULUS OF VARIATIONS, DOUBLE 
BUBBLE,PLATEAU'S PROBLEM 

References 
Morgan, F. “Mathematicians, including Undergraduates, 

Ldok at Soap Bubbles.” Amer. Math. Monthly 101, 343- 
351,1994. 

Taylor, J. E. “The Structure of Singularities in Soap-Bubble- 
Like and Soap-Film-Like Minimal Surfaces.” Ann. Math. 
103,489-539,1976. 

Plateau’s Problem 
The problem in CALCULUS OF VARIATIONS to find the 
MINIMAL SURFACE of a boundary with specified con- 
straints. In general, there may be one, multiple, or no 
MINIMAL SURFACES spanning a given closed curve in 
space. 

see UZSO CALCULUS OF VARIATIONS, MINIMAL SURFACE 
Stewart, I. “Tales of a Neglected Number.” Sci. Amer. 274, 

102-103, Jun. 1996. 

Plat 
A BRAID in which strands are intertwined in the center 
and are free in “handles” on either side of the diagram. 

References 
Cundy, H. and Rollett, A. lMuthsmatical Models, 3rd ed. 

Stradbroke, England: Tarquin Pub., pp. 48-49, 1989. 
Stuwe, M. Plateau’s Problem and the Calculus of Variations. 

Princeton, NJ: Princeton University Press, 1989. 
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Plato’s Number 
A number appearing in The Republic which involves 216 
and 12,960,OOO. 

References 
Plato. The Republic. New York: Oxford University Press, 

1994. 
Wells, D. G. The Penguin Dictionary of Curious and Inter- 

esting Numbers. London: Penguin, p. 144, 1986. 

Platonic Solid 

A solid with equivalent faces composedof congrxeg- 
ular convex POLYGONS. There are exactly five such 
solids: the CUBE, DODECAHEDRON, ICOSAHEDRON, 
OCTAHEDRON, and TETRAHEDRON, as was proved by 
Euclid in the last proposition of the Elements. 

The Platonic solids were known to the ancient Greeks, 
and were described by Plato in his Timaeus ca. 350 BC. 
In this work, Plato equated the TETRAHEDRON with the 
“element” fire, the CUBE with earth, the ICOSAHEDRON 
with water, the OCTAHEDRON with air, and the DODEC- 
AHEDRON with the stuff of which the constellations and 
heavens were made (Cromwell 1997). 

The Platonic solids are sometimes also known as the 
REGULAR POLYHEDRA of COSMIC FIGURES (Cromwell 
1997), although the former term is sometimes used to re- 
fer collectively to both the Platonic solids and KEPLER- 
POINSOT SOLIDS (Coxeter 1973). 

If P is a POLYHEDRON with congruent (convex) regular 
polygonal faces, then Cromwell (1997, pp. 77-78) shows 
that the following statements are equivalent. 

1. The vertices of P all lie on a SPHERE. 

2. All the DIHEDRAL ANGLES are equal. 

3. Allthe VERTEX FIGURES are REGULAR POLYGONS. 

4. All the SOLID ANGLES are equivalent. 

5. All the vertices are surrounded by the same number 
of FACES. 

Let w  (sometimes denoted No) be the number of VER- 
TICES, e (or Nl) the number of EDGES, and f (or Nz) 
the number of FACES. The following table gives the 
SCHL;~FLISYMBOL,WYTHOFFSYMBOL, andC&Rsym- 
bol, the number of vertices w, edges e, and faces f, and 
the POINT GROUPS for the Platonic solids (Wenninger 
1989). 

Solid SchMi Wyth. C&R w e f GrP 
cube {4,3} 3124 43 8 12 6 oh 
dodecahedron W) 3125 53 20 30 12 Ih 
icosahedron W) 5123 35 12 30 20 If& 
octahedron (3,4) 4123 34 6 12 8 oh 
tetrahedron (3,3} 3 I23 33 4 6 4 Td 

Let T be the INRADHJS, p the MIDRADIUS, and R the 
CIRCUMRADIUS. The following two tables give the ana- 
lytic and numerical values of these distances for Platonic 
solids with unit side length. 

Solid r P R 

cube 1. 2 1. 1/2 2 ifi 

dodecahedron ~J250+11oJs 53+J5) a<fi+fi, 

icosahedron &(3v5+ J15) i(1+J5) !&Gz 

octahedron 1. dz 1. 0 2 L 1/z 2 

tetrahedron 1 & 12 1 Jz 4 I 43 4 1 

Solid r P R 
cube 0.5 0.70711 0.86603 
dodecahedron 1.11352 1.30902 1.40126 
icosahedron 0.75576 0.80902 0.95106 
octahedron 0.40825 0.5 0.70711 
tetrahedron 0.20412 0.35355 0.61237 

Finally, let A be the AREA of a single FACE, V be the 
VOLUME of the solid, the EDGES be of unit length on 
a side, and QI be the DIHEDRAL ANGLE. The following 
table summarizes these quantities for the Platonic solids. 

Solid A V Q 

cube 1 1 f7r 

dodecahedron &/iGiz i(15+7fi) cos-l(-;&) 

icosahedron 1 
4 

43 &(3+&) cos-l(-pq 
octahedron 1 

4 
a 1 J2 

3 
co,-1(-i) 

tetrahedron 1 
4 

a 1 z/z 
12 

cos-l( $) 

The number of EDGES meeting at a VERTEX is 2e/v. 
The SCHL~FLI SYMBOL can be used to specify a Platonic 
solid. For the solid whose faces are p-gons (denoted {p}), 
with 4 touching at each VERTEX, the symbol is {p, q}. 
Given p and q, the number of VERTICES, EDGES, and 
faces are given by 

No = 4P 

4 - (P - Nq - 2) 

Nl = 2PC? 

4- (P-m-2) 

N2 4q = 4 - (p - 2)(q - 2) . 

MINIMAL SURFACES for Platonic solid frames are illus- 
trated in Isenberg (1992, pp. 82-83). 

see also ARCHIMEDEAN SOLID, CATALAN SOLID, JOHN- 
SON SOLID, KEPLER-P• INSOT SOLID, QUASIREGULAR 
POLYHEDRONJJNIFORM POLYHEDRON 
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Artmann, B. “Symmetry Through the Ages: Highlights from 
the History of Regular Polyhedra.” In In Eves’ Circles 
(Ed, J. M. Anthony). Washington, DC: Math. Assoc. 
Amer., pp. 139-148, 1994. 

References Plethysm 
A group theoretic operation which is useful in the study 
of complex atomic spectra. A plethysm takes a set, of 
functions of a given symmetry type {p} and forms from 
them symmetrized products of a given degree T and 
other symmetry type {v}. A plethysm 

Ball, W. W. R. and Coxeter, H. S. M. “Polyhedra.” Ch. 5 in 
Mathematical Recreations and Essays, 13th ed. New York: 
Dover, pp. 131-136, 1987. 

Behnke, H.; Bachman, F.; Fladt, K.; and Kunle, H. (Eds.). 
Fundamentals of Mathematics, Vol. 2. Cambridge, MA: 
MIT Press, p. 272, 1974. 

Beyer, W. H. (Ed.) CRC Standard Mathematical Tables, 
28th ed. Boca Raton, FL: CRC Press, pp. 128429, 1987. 

Bogomolny, A. “Regular Polyhedra.” http: //uww . cut-the- 
knot. corn/do-you_know/polyhedra. html. 

Coxeter, H. S. M. Regular Polytopes, 3rd ed. New York: 
Dover, pp. l-17, 93, and 107-112, 1973. 

Critchlow, K. Order in Space: A Design Source Book. New 
York: Viking Press, 1970. 

satisfies the rules 

A@(BC)=(A@B)(A@C)=A@BA@C, 

A@(B*C) =A@BztA@C 

Cromwell, P. R. Polyhedra. New York: Cambridge University 
Press, pp. 51-57, 66-70, and 77-78, 1997. 

Dunham, W. Journey Through Genius: The Great Theorems 
of Mathematics. New York: Wiley, pp. 78-81, 1990. 

Gardner, M. “The Five Platonic Solids.” Ch. 1 in The Second 
Scientific American Book of Mathematical Puzzles & Di- 
versions: A New Selection. New York: Simon and Schus- 
ter, pp. 13-23, 1961. 

(A@B)@C=A@(BmC) 

where I& is the coefficient of {A} in {P}(V), 

Heath, T. A History of Greek Mathematics, Vol. I. Oxford, 
England: Oxford University Press, pa 162, 1921. 

Isenberg, C. The Science of Soup Films and Soap Bubbles. 
New York: Dover, 1992. 

Kepler, J. Opera Omnia, Vol. 5. Frankfort, p. 121, 1864. 
Ogilvy, C. S. Excursions in Geometry. New York: Dover, 

pp. 129-131, 1990. 

(A - B) 8 {A} = X(-l)‘k(A 63 {P))(B @ W), 

where {V} is the partition of T conjugate to {v}, and 

Pappas, T. “The Five Platonic Solids.” The Joy of Muthe- 
matics. San Carlos, CA: Wide World Publ./Tetra, pp. 39 
and 110-111, 1989. 

Rawles, B. A. “Platonic and Archimedean Solids-Faces, 
Edges, Areas, Vertices, Angles, Volumes, Sphere Ratios.” 
http://www.intent.com/sg/polyhedra.html~ 

Steinhaus, H. “Platonic Solids, Crystals, Bees’ Heads, and 
Soap.” Ch. 8 in Mathematical Snapshots, 3rd American 
ed. New York: Oxford University Press, 1960. 

Waterhouse, W. “The Discovery of the Regular Solids.” 
Arch. Hist. Exact Sci. 9, 212-221, 1972-1973. 

Wenninger, M. J. Polyhedron Models. Cambridge, England: 
Cambridge University Press, 1971. 

where gPIIA is the coefficient of {X} in the inner product 
{CL} o {v} (Wybourne 1970). 

References 
Littlewood, D. E. “Polynomial Concomitants and Invariant 

Matrices.” J. London Math. Sot. 11, 49-55, 1936. 
Wybourne, B. G. ‘&The Plethysm of S-Functions” and 

“Plethysm and Restricted Groups.” Chs. 6-7 in Symme- 
try Principles and Atomic Spectroscopy. New York: Wiley, 
pp. 49-68, 1970. 

Plot 

see GRAPH (FUNCTION) 
Platykurtic 
A distribution with FISHER KWRTOSIS 72 < 0 (and 
therefore having a flattened shape). 

see also FISHER KURTOSIS 

Playfair’s Axiom 
Through any point in space, there is exactly one straight 
line PARALLEL to a given straight line. This AXIOM is 
equivalent to the PARALLEL AXIOM. 

see also PARALLEL AXIOM 

References 
Dunham, W. “Hippocrates’ Quadrature of the Lune.” Ch. 1 

in Journey Through Genius: The Great Theorems of 
Mathematics. New York: Wiley, p. 54, 1990. 

Plouffe’s Constant 
N.B. A detailed on-line essay by S. Finch was the start- 
ing point for this entry. 

Define the function 

1 for Ex: < 0 
‘@) E { 0 for 2 > 0. - 

Let 

(1) 

a, = sin(2”) = 
i sin 2a,--1(1 1 

2ao JW for n = 1 (2) 

- 2a,-z2) for for 72 n = 2 0 2, 

then 

O” Pbn) 1 
x 

- - -* 
2”+1 - 2X (3) 

n=O 
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For 

b, = cow7 = 
cos 1 for n = 0 
26 _ 2 

n1- 1 forn>l, 

and 

O” P(W 
x 

- = 0.4756260767.... p+l 
n=O 

Letting 

1 tan 1 for n = 0 
Cn = tan(2”) = ~CTI-1 

1-c,-12 for n > 1, - 

then O” P(4 1 c 2”+1= ;* 
n=O 

(4) 

(5) 

(6) 

(7) 

Plouffe asked if the above processes could be “inverted.” 
He considered 

O!n = sin(2” sin-l +) 
1 
5 for n = 0 

- 

i 

1 - 
z J3 for n = 1 (8) 
2a ,-I(1 - 2CIn-z2) for n > 2, 

giving 

O” dad 1 
>: 

-=- 
ptf 12' (9) 

n=O 

and 

P n= cos(2"cos-L +>= 1 1 
5 

for n = 0 
2Pn-12- 1 forn>l, - 

(10) 
giving 

n=O 

and 

{ 

1 
= tan(2n tan-l +) = 22y,_I 

for n = 0 
Yn for n > 1, (12) 

1--r,-12 
- 

giving 

IE 
O” PbJ Atany) - = 

n=o 2n+1 7r 
2 - (13) 

The latter is known as Plouffe’s constant (PlouEe 1997). 
The positions of the Is in the BINARY expansion of this 
constant are 3, 6, 8, 9, 10, 13, 21, 23, . . . (Sloane’s 
AO04715). 

Borwein and Girgensohn (1995) extended Plouffe’s Yn 
to arbitrary REAL X, showing that if 

X for n = 0 
&L-l 

1--Enm12 for n > l - 

c n = tan(2” tan-l 2) = and ICn-11 # 1 

then 

for n > 1 
and In-11 = 1, 

(14) 

O” P(m) x 1 
taI+ 2 - for 2 > 0 - = 

p+l 
n=O 

1 +k,l x 
- 

for x < 0. 
(15) 

Borwein and Girgensohn (1995) also give much more 
general recurrences and formulas. 

References 
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research. att . corn/-njas/sequences/JIS/compass ,html. 

Pliicker Characteristics 
The CLASS m, ORDER n, number of NODES & number of 
CUSPS )r;, number of STATIONARY TANGENTS (INFLEC- 
TION POINTS) L, number of BITANGENTS 7, and GENUS 

P* 
see UZSOALGEBRAIC CURVE,&TANGENT, CUSP, GENUS 
(SURFACE), INFLECTION POINT, NODE (ALGEBRAIC 
CURVE),~TATIONARY TANGENT 

Pliicker’s Conoid 

A RULED SURFACE somezso called the CYLIN- 
DROID. von Seggern (1993) gives the general functional 
form as 

ux2 + by2 - 2x2 - xy2 = 0, (1) 

whereas Fischer (1986) and Gray (1993) give 

2XY 
z  = (x2 + y”) l  

A polar parameterization therefore gives 

(2) 

x(T, 0) = rcosB 
y(Q) = rsin8 

4f-, 0) = 2cosOsin8. 

(3) 
(4) 
(5) 
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A generalization of Pliicker’s conoid to n folds is given 

bY 

x(c 0) = rcoso 
y(r, 0) = mint9 

+, 0) = sin(n0) 

(6) 
(7) 

(8) 

(Gray 1993). The cylindroid is the inversion of the 
CROSS-CAP (Pinkall 1986). 

see UZSO CROSS-CAP, RIGHT CONOID, RULED SURFACE 

fteterences 
Fischer, G. (Ed.). Mathematical Models from the Gollections 

of Universities and Museums. Braunschweig, Germany: 
Vieweg, pp. 4-5, 1986. 

Gray, A. Modern Differential Geometry of Curves and Sur- 
faces. Boca Raton, FL: CRC Press, pp. 337-339, 1993. 
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versities and Museums (Ed. G. Fischer). Braunschweig, 
Germany: Vieweg, p, 64, 1986. . 

von Seggern, D. CRC Standard Curves and Surfaces. Boca 
Raton, FL: CRC Press, p. 288, 1993. 

Pliicker’s Equations 
Relationships between the number of SINGULARITIES of 
plane algebraic curves. Given a PLANE CURVE, 

m = n(n - I) - 26 - 3~ (1) 

n =m(m-1)-27---L (2) 

L = 3n(n - 2) - 66 - 8~ (3) 

tG = 3m(m - 2) - 6r - SL, (4) 

where m is the CLASS, n the ORDER, S the number of 
NODES, K the number of CUSPS, L the number of STA- 
TIONARY TANGENTS (INFLECTION POINTS), and 7 the 
number of &TANGENTS. Only three of these equations 
are LINEARLY INDEPENDENT. 

see UZSO ALGEBRAIC CURVE, BIOCHE'S THEOREM, 
BITANGENT, CUSP, GENUS (SURFACE), INFLEC- 
TION POINT, KLEIN'S EQUATION, NODE (ALGEBRAIC 
CURVE), STATIONARY TANGENT 

References 
Boyer, C. B. A History of Mathematics. New York: Wiley, 

pp. 581-582, 1968. 
Coolidge, J. L. A Treatise on Algebraic Plane Curves. New 

York: Dover, pp. 99-118, 1959. 

Pliicker Relations 

see PL~CKER'S EQUATIONS 

Plumbing 
The plumbing of a psphere and a q-sphere is defined 
as the disjoint union of Sp x Sq and ID’ x Sg with their 
common Dp x Dq, identified via the identity homeomor- 
phism. 

see also HYPERSPHERE 

References 
Rolfsen, D. Knots and Links. Wilmington, DE: Publish or 
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Pluperfect Number 

see MULTIPLY PERFECT NUMBER 

Plurisubharmonic Function 
An upper semicontinuous function whose restrictions to 
all COMPLEX lines are subharmonic (where defined). 
These functions were introduced by P. Lelong and Oka 
in the early 1940s. Examples of such a function are the 
logarithms of moduli of holomorphic functions. 

References 
Range, R. M. and 

mermann, 1926- 
976, 1996. 

Anderson, R. W. “Hans-Joachim Brem- 
4996.” Not. Amer. Math. Sot. 43, 972- 

Plus 
The ADDITION of two quantities, i.e., a plus b. The 
operation is denoted a + b, and the symbol + is called 
the PLUS SIGN. Floating point ADDITION is sometimes 
denoted @. 

see also ADDITION, MINUS, PLUS OR MINUS, TIMES 

Plus or Minus 
The symbol & is used to denote a quantity which should 
be both added and subtracted, as in a l b. The symbol 
can be used to denote a range of uncertainty, or to de- 
note a pair of quantities, such as the roots given by the 
QUADRATIC FORMULA 

-b * db2 - 4ac 
X& = 

2a ’ 

When order is relevant, the symbol a F b is also used, 
so an expression of the form x + y F z is interpreted as 
z+y-z or x-y+z. In contrast, the expression zty*r 
is interpreted to mean the set of four quantities x+y+z, 
x-y+r,x+y-z,andz-y-x. 

see also MINUS, MINUS SIGN, PLUS, PLUS SIGN, SIGN 

Plus Perfect Number 

see ARMSTRONG NUMBER 

Plus Sign 
The symbol “+” which is used to denote a POSITIVE 

number or to indicate ADDITION. 

see also ADDITION, MINUS SIGN, SIGN 
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Plutarch Numbers 
In MoraEia, the Greek biographer and philosopher 
Plutarch states “Chrysippus says that the number of 
compound propositions that can be made from only ten 
simple propositions exceeds a million. (Hipparchus, to 
be sure, refuted this by showing that on the affirmative 
side there are 103,049 compound statements, and on the 
negative side 310,952.)” These numbers are known as 
the Plutarch numbers. 103,049 can be interpreted as 
the number slo of BRACKETLNGS on ten letters (Stan- 
ley 1997), Habsieger et al. 1998). Similarly, Plutarch’s 
second number is given by (slo+srl)/2 = 310,954 (Hab- 
sieger et al. 1998). 
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1981. 
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Pochhammer Symbol 
A.k.a. RISING FACTORIAL. For an INTEGER n > 0, 

( > 
- U,I 

r(a + k) 
- = + + 1). . . (a + n - l), 

r( > a (1) 

where r(z) is the GAMMA FUNCTIUN and 

(a)0 = 1. (2) 

The NOTATION conflicts with both that for Q-SERIES and 
that for GAUSSIAN COEFFICIENTS, SO context usually 
serves to distinguish the three. Additional identities are 

-$u)~ = (+[F(a + n - 1) - F(a - l)] (3) 

(&+k = (a+ n)k(& (4) 

where F is the DIGAMMA FUNCTION. The Pochhammer 
symbol arises in series expansions of HYPERGEOMET- 
RIG FUNCTIONS and GENERALIZED HYPERGEOMETRIC 
FUNCTIONS. 

see also FACTORIAL, GENERALIZED HYPERGEOMETRIC 
FUNCTION, HARMONIC LOGARITHM, HYPERGEOMET- 
RIC FUNCTION 
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Pocklington’s Criterion 
Let p be an ODD PRIME, JC be an INTEGER such that 
p]jk and 1 5 !z 5 2(p + l), and 

N E 2kp + 1. 

Then the following are equivalent 

1. Iv is PRIME. 

2. GCD(a” + 1,N) = 1. 

This is a modified version of the original theorem due to 
Lehmer. 

References 
Pocklington, H. C. “The Determination of the Prime or Com- 
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Pocklington-Lehmer Test 

see POCKLINGTON'S THEOREM 

Pocklington’s Theorem 
Let n-l = FR where F is the factored part of a number 

F xplal l .pTa’, (1) 

where (R, F) = 1, and R < @. If there exists a bi for 
i= 1, . . . . T such that 

bi n-l s 1 (mod n) (2) 

GCD(b.(“-l)lpi - 1 n> - 1 z 7 -? (3) 

then n is a PRIME. 

Poggendorff Illusion 

The illusion that the two ends of a straight LINE SEG- 
MENT passing behind an obscuring RECTANGLE are 06 
set when, in fact, they are aligned. 

see &O ILLUSION, MUELLER-LYER ILLUSION, PONZO'S 
ILLUSION, VERTICAL-HORIZONTAL ILLUSION 
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Pohlke’s Theorem 
The principal theorem of AX~NOMETRY. It states that 
three segments of arbitrary length a’x’, a’& and a’z’ 

which are drawn in a PLANE from a point a’ under arbi- 
trary ANGLES form a parallel projection of three equal 
segments ax, ay, and ax from the ORIGIN of three PER- 

PENDICULAR coordinate axes. However, only one of the 
segments or one of the ANGLES may vanish. 

see also AXONOMETRY 
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Poincarh Duality 
The BETTI NUMBERS of a compact orientable n- 
MANIFOLD satisfy the relation 

bi = b,Bi. 

see also BETTI NUMBER 

Poincar&Birkhoff Fixed Point Theorem 
For the rational curve of an unperturbed system with 
ROTATION NUMBER T/S under a map T (for which ev- 
ery point is a FIXED POINT of T”), only an even number 
of FIXED POINTS 2I~s (k = 1, 2, l  . l  ) will remain under 
perturbation. These FIXED POINTS are alternately sta- 
ble (ELLIPTIC) and unstable (HYPERBOLIC). Around 
each elliptic fixed point there is a simultaneous appli- 
cation of the Poincar&Birkhoff fixed point theorem and 
the KAM THEOREM, which leads to a self-similar struc- 
ture on all scales. 

The original formulation was: Given a CONFORMAL 
ONE-TO-ONE transformation from an ANNULUS to it- 
self that advances points on the outer edge positively 
and on the inrier edge negatively, then there are at least 
two fixed points. 

It was conjectured by Poincare from a consideration 
of the three-body problem in celestial mechanics and 
proved by Birkhoff. 

Pomcar6 Conjecture 
A SIMPLY CONNECTED ~-MANIFOLD is HOMEOMOR- 
PHIC to the S-SPHERE. The generalized Poincare con- 
jecture is that a COMPACT TX-MANIFOLD is HOMOTOPY 
equivalent to the n-sphere IFF it is HOMEOMORPHIC to 
the Y-A-SPHERE. This reduces to the original conjecture 
for n = 3. 

The n = 1 case of the generalized conjecture is trivial, 
the 72 = 2 case is classical, n = 3 remains open, n = 
4 was proved by Freedman (1982) (for which he was 
awarded the 1986 FIELDS MEDAL), r~ = 5 by Zeeman 
(1961), n = 6 by Stallings (1962), and 72 2 7 by Smale in 
1961 (Smale subsequently extended this proof to include 
n 2 5.) 

see also COMPACT MANIFOLD, HOMEOMORPHIC, Ho- 
MOTOPY , MANIFOLD, SIMPLY CONNECTED, SPHERE, 
THURSTON'S GEOMETRIZATION CONJECTURE 

Poincarh Formula 
The POLYHEDRAL FORMULA generalized to a surface of 
GENUS~. 

V-E+F=2-2p 

where V is the 
of EDGES, F is 

is the number number of VERTICES, E 
the number of faces, and 

x=2-2p 

is called the EULER CHARACTERISTIC. 

see also EULER CHARACTERISTIC, GENUS (SURFACE), 
POLYHEDRAL FORMULA 

References 
Eppstein, D. “Fourteen Proofs of Euler’s Formula: V - E + 

F = 2." http://uuu.ics.uci.edu/-eppstein/junkyard/ 
elder. 

PoincarbFuchs-Klein Automorphic Function 

f( > 
k az + b 

’ = (cz + d)’ a > 

where S(a) > 0. 

see also AUTOMORPHIC FUNCTION 

Poincarh Group 
~~~LORENTZ GROUP 

PoincaSs Holomorphic Lemma 
Solutions to H~LOMORPHIC differential equations are 
themselves HOLOMORPHIC FUNCTIONS of time, initial 
conditions, and parameters. 

Poinca&-Hopf Index Theorem 
The index of a VECTOR FIELD with finitely,many zeros 
on a compact, oriented MANIFOLD is the same as the 
EULER CHARACTERISTIC of the MANIFOLD. 

see also GAUSS-BONNET FORMULA 
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Poincark Hyperbolic Disk 
A 2-D space having HYPERBOLIC GEOMETRY defined 
as the ~-BALL {J: E R2 : 1x1 < l}, with HYPERBOLIC 

METRIC 
dx2 + dy2 

(1 -.2)2 ' 

The Poincarh disk is a model for HYPERBOLIC GEOME- 
TRY, and there is an isomorphism between the Poincark 
disk modelandthe KLEIN-BELTRAMI MODEL. 

see UZSO ELLIPTIC PLANE, HYPERBOLIC GEOMETRY, 
HYPERBOLIC METRIC, KLEIN-BELTRAMI MODEL 

PoincaG’s Lemma 
Let A denote the WEDGE PRODUCT and D the EXTE- 

RIOR DERIVATIVE. Then 

D2t = ~*(~*t)=(~*~)*t=o. 

see UZSO DIFFERENTIAL FORM, EXTERIOR DERIVATIVE, 
POINCAR& HOLOMORPHIC LEMMA, WEDGE PROD- 
UCT 

Poincarh Manifold 
A nonsimply connected 3-manifold also called a DODEC- 
AHEDRAL SPACE. 

References 
Rolfsen, D. Knots and Links. Wilmington, DE: Publish or 

Perish Press, pp. 245, 290, and 308, 1976. 

Poincarh Metric 
The METRIC 

ds2 = 
dx2 + dy2 

(1 - H212 

of the POINCAR~~ HYPERBOLIC DISK. 

see also POINCAR~ HYPERBOLIC DISK 

Poincarb Separation Theorem 
Let { 
2, l  *. 

Then 

y”} be a set of orthonormal vectors with k = 1, 
, K, such that the INNER PRODUCT (Y”l Y k, = 1. 

K 

X= 
x ukyk 

k=l 

(1) 

SO that for any SQUARE MATRIX A for which the product 
Ax is defined, the corresponding QUADRATIC FORM is 

(x,Ax) = F, UkZLl(yk,Ayl)- 

k,l=l 

(2) 

Then if 

Bk = (Y”, A$) (3) 

for Ic, 2 = 1, 2, . . . , K, it follows that 

Ai 5 h(A) (4) 

AK-j(BK) 2 AN-j(A) (5) 

for i = 1, 2, . . . , K and j = 0, 1, . . . , K - 1. 

References 
Gradshteyn, I. S. and Ryzhik, I. M. Tables of Integrals, Se- 

ries, and Products, 5th ed. San Diego, CA: Academic 
Press, p. 1120, 1979. 

Poinsot Solid 

see KEPLER-P• INSOT SOLID 

Poinsot’s Spirals 

rsinh(n0) = a. 

T csch(n0) = a. 

References 
Lawrence, J. D. A Catalog of Specid Plane Curves. New 

York: Dover, pp* 192 and 194, 1972. 

A O-DIMENSIONAL mathematical object which can be 
specified in n-D space using n coordinates. Although the 
notion of a point is intuitively rather clear, the mathe- 
matical machinery used to deal with points and point- 
like objects can be surprisingly slippery. This difficulty 
was encountered by none other than Euclid himself who, 
in his Elements, gave the vague definition of a point as 
“that which has no part.” 

The basic geometric structures of higher DIMEN- 
SIONAL geometry-the LINE, PLANE, SPACE, and 
HYPERSPACE-are all built up of infinite numbers of 
points arranged in particular ways. 

see UZSO ACCUMULATION POINT, ANTIGUNAL POINTS, 
ANTIHOMOLOGOUS POINTS, APOLLONIUS POINT, 
BOUNDARY POINT, BRANCH POINT, BRIANCHON 
POINT, BROCARD MIDPOINT, BROCARD POINTS, 
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CANTOR-DEDEKIND AXIOM, CENTER, CIRCLE LAT- 
TICE POINTS, CONCUR, CONCURRENT, CONGRU- 
ENT INCIRCLES POINT, CONGRUENT ISOSCELIZERS 
POINT, CONJUGATE POINTS, CRITICAL POINT, CRU- 
CIAL POINT, CUBE POINT PICKING, CUSP POINT, 
DE LONGCHAMPS POINT, DOUBLE POINT, ECKARDT 
POINT, ELKIES POINT, ELLIPTIC FIXED POINT (DIF- 
FERENTIAL EQUATIONS), ELLIPTIC FIXED POINT 
(MAP), ELLIPTIC POINT, EQUAL DETOUR POINT, 
EQUAL PARALLELIANS POINT, EQUICHORDAL POINT, 
EQUILIBRIUR~ POINT, EQUIPRODUCT POINT, EQUIRE- 
CIPROCAL POINT, EVANS POINT, EXETER POINT, Ex- 
MEDIAN POINT, FAGNANO’S POINT, FAR-OUT POINT, 
FEJES T~TH’S PROBLEM,FERMATPOINT,FEUERBACH 
POINT, FEYNMAN POINT, FIXED POINT, FLETCHER 
POINT, GERGONNE POINT, GREBE POINT, GRIFFITHS 
POINTS, HARMONIC CONJUGATE POINTS, HERMIT 
POINT, HOFSTADTER POINT, HOMOLOGOUS POINTS, 
HYPERBOLIC FIXED POINT (DIFFERENTIAL EQUA- 
TIONS), HYPERBOLIC FIXED POINT (MAP), HYPER- 
BOLIC POINT, IDEAL POINT, IMAGINARY POINT, 
INVARIANT POINT, INVERSE POINTS, ISODYNAMIC 
POINTS, ISOLATED POINT, ISOPERIMETRIC POINT, Iso- 
TOME CONJUGATE POINT, LATTICE ‘POINT, LEMOINE 
POINT, LIMIT POINT, MALFATTI POINTS, MEDIAN 
POINT, MID-ARC POINTS, MIDPOINT, MIQUEL POINT, 
NAGEL POINT, NAPOLEON POINTS, NOBBS POINTS, 
OLDKNOW POINTS, ONLY CRITICAL POINT IN TOWN 
TEST, ORDINARY POINT, PARABOLIC POINT, PARRY 
POINT, PEDAL POINT, PERIODIC POINT, PLANAR 
POINT, POINT AT INFINITY, POINT-LINE DISTANCE- 
2-D, POINT-LINE DISTANCE-~-D, POINT-QUADRATIC 
DISTANCE, POINT-PLANE DISTANCE, POINT-SET To- 
POLOGY, POINTWISE DIMENSION, POLICEMAN ON 
POINT DUTY CURVE, POWER POINT, RADIAL POINT, 
RADIANT POINT, RATIONAL POINT, RIGBY POINTS, 
SADDLE POINT (GAME), SADDLE POINT (FUNC- 
TION), SALIENT POINT, SCHIFFLER POINT, SELF- 
HOMOLOGOUS POINT, SIMILARITY POINT, SINGULAR 
POINT (ALGEBRAIC CURVE), SINGULAR POINT (FUNC- 
TION), SODDY POINTS, SPECIAL POINT, STATIONARY 
POINT, STEINER POINTS, SYLVESTER’S FOUR-POINT 
PROBLEM, SYMMEDIAN POINT, SYMMETRIC POINTS, 
TARRY POINT, TORRICELLI POINT, TRISECTED PER- 
IMETER POINT, UMBILIC POINT, UNIT POINT, VAN- 
ISHING POINT, VISIBLE POINT, WEIERSTRAJ~ POINT, 
WILD POINT, YFF POINTS 

References 
Casey, J. “The Point.” Ch. 1 in A Treatise on the AnaEyt- 

id Geometry of the Point, Line, Circle, and Conic Sec- 
tions, Containing an Account of Its Most Recent Exten- 
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Point Estimator 
An ESTIMATOR of the actual values of population. 

Point Groups 
The symmetry groups possible in a crystal lattice with- 
out the translation symmetry element. Although an iso- 
lated object may have an arbitrary SCH~NFLIES SYM- 
BOL, the requirement that symmetry be present in a lat- 
tice requires that only 1, 2, 3, and 6-fold symmetry axes 
are possible (the CRYSTALLOGRAPHY RESTRICTION), 
which restricts the number of possible point groups to 

3% ci, cs, cl, c2, c3, c4, c6, c2h, C3h, C4h, C6h, 

c 2v, c3v, c4v, c6v, D2, D3, D4, Ds (the DIHEDRAL 

GROUPS), D2h, D3h, D4h, D6h, D2d, D3d, 0, oh (the. 

OCTAHEDRAL GRouP),S4, &,T,Th,and Td (the TET- 
RAHEDRAL GROUP). 

see also CRYSTALLOGRAPHY RESTRICTION, DIHE- 
DRAL GROUP, GROUP, GROUP THEORY, HERMANN- 
MAUGUIN SYMBOL, LATTICE GROUPS, OCTAHEDRAL 
GROUP, SCH~NFLIES SYMBOL, SPACE GROUPS, TET- 
RAHEDRAL GROUP 

References 
A&en, G. “Crystallographic Point and Space Groups.” 

Mathematical Methods for Physicists, 3rd ed. Orlando, 
FL: Academic Press, pa 248-249, 1985. 

Cotton, F. A. Chemical Applications of Group Theory, 3rd 
ed. New York: Wiley, p. 379, 1990. 
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plications of Finite Groups. New York: Dover, pp. 132- 
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Point at Infinity 
P is the point on the line AB such that PA/PB = 1. 
It can also be thought of as the point of intersection of 
two PARALLEL lines. 

see also LINE AT INFINITY 

References 
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Point-Line Distance-Z-D 
Given a line aa: + by + c = 0 and a point (a, yo), in 
slope-intercept form, the equation of the line is 

a 
y = -x - f, (1) 

so the line has SLOPE --a/b. Points on the line have the 
vector coordinates 

[-gS] = [-g -;[j- 
Therefore, the VECTOR 

4 [ 1 a 
is PARALLEL to the line, and the VECTOR 

a 
V= [I b 

(2) 

(3) 

(4) 
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Therefore, 

Point Picking 1383 

is PERPENDICWLAR to it. NOW, a VECTOR from the 
point to the line is given by 

d = Irl _ Iv1 - (’ + bxl)l Jlsbz = IY1 - (a + bxl)l - 
1 + b2 x - x0 IT= 1 1 Y-Y0 l  

(5) 

This result can also be obtained much more simply by 
noting that the PERPENDICULAR distance is just co& 
times the vertical distance Iy1 - (a + &)I. But the 
SLOPE b is just tan@, so 

Projecting r onto v, 

1 
sin2 I9 + cos2 8 = 1 * tan2 8 + 1 = - 

~0~2 e 1 (16) 

(6) and 
1 1 

case = 
d1 +Itan2 I9 = &F 

(17) If the line is represented by the endpoints of a VECTOR 
(~~,y~)and(~~,y2),thenthe PERPENDICULARVECTOR 
iS 

v = [ -y;;.:l)] (7) 

The PERPENDICULAR distance is then 

d = Iyl - (~+bx~)~ 
m f 

(18) 

(8) the same result, as before. 

see dso LINE, POINT, POINT-LINE DISTANCE-~-D where 

s = Iv1 = d( x2 -x1)2 f(y2 - yl)2, (9) 

so the distance is 

Point-Line Distance-3-D 
A line in 3-D is given by the parametric VECTOR x0 + at v= [ 1 yo + bt - zo + ct d = 1; 9 11 = I(Y2 - Yl)(XO - 21) - (x2 - m)(yo - Yl)l 

. 
s 

(10) 
(1) 

The distance from a point (xl,y~) to the line y = a + bx 
can be computed using VECTOR algebra. Let L be a 

VECTOR in the same direction as the line 
The distance between a point on the line with parameter 
t and the point (~1, yl, ~1) is therefore 

(11) T2 = (Xl -x~-at)2+(y1-yo-bt)2+(zl-zo-Ct)2. (2) 

To minimize the distance, take (12) 

e2 > 
--z-- - -2u(x1 - x0 - at) - 2b(y1 - yo - bt) 

-2c(x1 - zo - ct) = 0 (3) 

A given point on the line is 

x= [zy:] - p] = [,,“.I > (13) 
~(~l-~o)+qyl-yo)+c(a-ao)-t(a2+b2+c2) = 0 (4) 

so the point-line distance is 

r = (X’ i)C - x 

=i&([yr..u]*[~])[~]-[yr--u] 

xl + b(yl - a) 1 - - 
1+b2 [b] - [y::u] 

t= +1 -x0)+ b(y1 - yo)+c(a - zo) 

a2 + b2 + c2 
1 (5) 

so the minimum dist ante is found by plugging (5) into 
(2) and taking the SQUARE ROOT. 

see also LINE, POINT, POINT-LINE DISTANCE-Z-D 

Point Picking 

- - 

yl + a - b2yl + ab2 see H-POINT PROBLEM, BALL TRIANGLE PICKING, 
CUBE POINT PICKING, CUBE TRIANGLE PICKING, DIS- 
CREPANCY THEOREM, ISOSCELES TRIANGLE, OBTUSE 
TRIANGLE, PLANAR DISTANCE, SYLVESTER'S FOUR- 
POINT PROBLEM 
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Point-Plane Distance 
Given a PLANE 

giving MOMENTS about 0 

ax + by + cz + d = 0 (1) 

and a point (xo,~o,zo), the NURMAL to the PLANE is 
given by 

(2) 

and a VECTOR from the plane to the point is given by 

Projecting w  onto v, 

Iproj,wl = w  

la(x - XO) + b(y - yo) + ~(2 - ~0) + dl - - 
da2 + b2 + c2 

lax + by + cz - ax0 - by0 - czg 1 - - 
da2 + b2 + c2 

Iax0 + by0 + czo + dl - - 
da2 + b2 + c2 l  

(3) 

(4) 

Point-Point Distance-l-D 
Given a unit LINE SEGMENT [0, I], pick two points at 
random on it. Call the first point x1 and the second 
point x2. Find the distribution of distances d between 
points. The probability of the points being a (P~sI- 
TIVE) distance d apart (i.e*, without regard to ordering) 
is given by 

P(d) 
- 

s; s; S(d - 1x2 - xll)dxl dxz 
- 

11 

ss 0 0 dxl dx2 

= (1 - d)[N(l - d) - H(d - 1) + H(d) - H(-d)] 

for 0 < d < 1 - - - 2(1 - d) - 
0 otherwise, (1) 

where S is the DIRAC DELTA FUNCTION and H is the 
HEAVISIDE STEP FUNCTION. The MOMENTS are then 

1 1 

Pin = 
s 

d”P(d) dd = 2 
s 

dm(l - d) dd 
0 0 

=2 --- ( 
1 1 

m+l m-t2 ) [ 

=2 (m+2)-(m+-1) 
(m + l)(m + 2) 1 

2 - - 
(m+ l)(m+2) 

(n+1);2n+l) for m = 2n 
- - 

(n+l) ;2n+3) for m = 2n + 1, (2) 

The MOMENTS can also be computed directly without 
explicit knowledge of the distribution 

pi = s; s, 1x2 - xlldxl dxz 

ss o1 o1 dxl dx2 

- - 1x2 - XI 1 da dxz 

1 1 
- ss 0 0 - 

z2-3q>o 
(x2 - xl) dxl dx2 

1 1 

+ ss 0 0 (Xl - xz)dxldxz 
x2 -x1 <o 

1 1 
- - 

ss 

(x2 - xl) da dxz 
0 Xl 

1 

ss 

Xl 

+ (x2 - xl) da dxz 
0 0 
1 

- - 
s 

[ $xz2 - x1x2 1 ’ dxl 
0 Xl 

s 

1 

+ [ x:1372 - +x2 “I,“’ dxl 
0 

s 

1 

[( 
1 - - z- xl) - (+x12 - x12)] dxl 

0 

s 

1 
+ K Xl2 - ;xl”) - (0 - 0)] dxl 

0 

s 

1 

( 
1 - - 2- xl -5 x12)dxl = [ix1 - ;xl” + +x13]; 

0 
- 1 - ( --i-t+>-(o-0+0)=$ 2 (7) 

1 1 

PL = 
ss 

(1x2 - x1l)~dx2dxl 
0 0 

1 1 
- - 

ss 
(x2 - ~1)~ dxl dx2 

0 0 
1 1 

- - 
ss 

(x2" - 2x1x2 + x12) dxl dxz 
0 0 

s 

1 
- - [ixz3 - ~1x2~ +xI~x~]&I 

0 
1 

1 - - 

s 
( 3- xl + x12) dxl = [$x1” - $x12 + $x1]; 

0 
-p++;. - (8) 
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The MOMENTS about the MEAN are therefore 

SO the MEAN, VARIANCE, SKEWNESS, and KURTOSIS are 

The probability distribution of the distance between two 
points randomly picked on a LINE SEGMENT is germane 
to the problem of determining the access time of com- 
puter hard drives. In fact, the average access time for a 
hard drive is precisely the time required to seek across 
l/3 of the tracks (Benedict 1995). 

see dso POINT-POINT DISTANCE-~-D, POINT-POINT 
DISTANCE-~-D, POINT-QUADRATIC DISTANCE, TET- 
RAHEDRON INSCRIBING, TRIANGLE INSCRIBING IN A 
CIRCLE 
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Point-Point Distance-Z-D 
Given two points in the PLANE, find the curve which 
minimizes the distance between them. The LINE ELE- 
MENT is given by 

ds = ddx2 + dy2, (1) 

so the ARC LENGTH between the points x1 and 52 is 

L- 
s s 

ds = x2 dmdx, (2) 
x1 

where y’ E dy/dx and the quantity we are minimizing 
1s 

f=dTTp. (3) 
Finding the derivatives gives 

w 
dy -0 

d w --- A[(1 + y’2)-1’2y’], 
dx dy’ - dx 

(4 

(5) 

sothe EULER-LAGRANGEDIFFERENTIAL EQUATION be- 
comes 

w  ddf d 

ay- 
---- 
dx dy’ - dx 

= 0. (6) 
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Integrating and rearranging, 

Y’ 

JiTp 
=C 

I2 
Y = c2(1+ y'") 

y'2(1 - c") = c2 

yf = & E a. 

The solution is therefore 

(7) 

(8) 

(9) 

(10) 

Y = ax + b, (11) 

which is a straight LINE. Now verify that the ARC 
LENGTH is indeed the straight-line distance between the 
points. a and b are determined from 

Writing 

Yl =a21 +b (12) 

Yz = ax2 + b. (13) 

(12) and (13) as a MATRIX EQUATION gives 

[ii] = [z :] [;I (14) 

[;I = [::, :I-‘[ii] 

= & [-i2 s,ll’[;;] 9 (15) 

so 

a= Yl - Y2 Y2 - Yl -=- 
Xl -x2 52 -x1 

(16) 

b= 
x1y2 -x2y1 

x1-x2 
(17) 

r - x2 1 
T  u= 

J d 
1+y’2dy=(x2-x1)2/1+a2 

x1 

= (x2 -a) 

- - &2 - x1)2 + (y2 - Yl)2, (18) 

as expected. 

The shortest distance between two points on a SPHERE 
is the so-called GREAT CIRCLE distance. 

see UZSO CALCULUS OF VARIATIONS, GREAT CIR- 
CLE, POINT-POINT DISTANCE-~-D, POINT-POINT 
DISTANCE-~-D, POINT-QUADRATIC DISTANCE, TET- 
RAHEDRON INSCRIBING, TRIANGLE INSCRIBING IN A 
CIRCLE 

References 
Arfken, G. Mathematical Methods for Physicists, 3rd ed. Or- 

lando, FL: Academic Press, ppm 930-931, 1985. 
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Point-Point Distance-3-D 
The LINE ELEMENT is 

ds = ddx2 + dy2 + dz2, (1) 

so the ARC LENGTH between the points ~1 and x2 is 

L= 
s s 

ds = x2 d-da: (2) 
Xl 

and the quantity we are minimizing is 

f = dl + y12 + zt2. 

Finding the derivatives gives 

(3) 

w 
By =0 (4) 

af 
dz 

=0 (5) 

and 

af -- 
dy’ - d& (6) 

af - - 
dz’ - &g (7) 

SO the EULER-LAGRANGE DIFFERENTIAL EQUATIONS 
become 

These give 

Taking the ratio, 

(8) 

(9) 

Y12=Cla [lfy)l+ (z)2yj =c12+y’2(C12+C22), 

(14) 
which gives 

Cl 
2 

12 
Y = 1 _ c 

1 
2 _ c22 = a2 (15) 

c22 

1 - Cl2 - cz2 
E b12. (16) 

Therefore, y’ = ul and z’ = bl, so the solution is 

(17) 

which is the parametric representation of a straight line 
with parameter II: E [XI, x2]. Verifying the ARC LENGTH 
gives 

L=J 1 + al2 + h2 (52 - XI) (18) 

where 

(19) 

(20) 

see UZSO POINT-POINT DBTANCE-l-D, POINT-POINT 
DISTANCE-2-D,POINT-QUADRATIC DISTANCE 

Point Probability 
The portion of the probability distribution which has a 
P-VALUE equal to the observed P-VALUE. 

see also TAJL PROBABILITY 

Point-Quadratic Distance 
Find the minimum distance between a point in the plane 
(xo,yo) and a quadratic PLANE CURVE 

y = a0 + a12 + u2x2* (1) 

The square of the distance is 

T2 = (x - 2o)2 + (y - yo)2 

= x- ( x0)" + (a0 + w+w2 - Yo)“. (2) 

Minimizing the distance squared is the equivalent to 
minimizing the distance (since r2 and Ir ] have minima 
at the same point), so take 

ah-“> 
dX 

= 2(x-x0)+2(uo+aI~+a222-yo)(al+2a22) = 0 

(3) 

X - X0 + aoa1 + U12 + w2x2 - qyo + 2aouzx 

+2u1a2x2 + 2Q2Z3 - 2u2yox = 0 (4) 

2a22X3+3ap22x2 +(u12 +2uoa2 -2U2yo+l)X 

+(aou1 - my0 -x0)= 0. (5) 

Minimizing the distance therefore requires solution of a 
CUBIC EQUATION. 

see UZSO POINT-POINT DISTANCE-~-D, POINT-POINT 
DISTANCE-%D,PoINT-POINT DISTANCE--3-D 
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Point-Set Topology Poisson Bracket 
Let F and G be infinitely differentiable functions of x 
and p. Then the Poisson bracket is defined by 

The low-level language of TOPOLOGY, which is not really 
considered a separate “branch” of TOPOLOGY. Point-set 
topology, also called set-theoretic topology or general 
topology, is the study of the general abstract nature of 
continuity or “closeness” on SPACES. Basic point-set 
topological notions are ones like CONTINUITY, DIMEN- 

SION, COMPACTNESS, and CONNECTEDNESS. The IN- 
TERMEDIATE VALUE THEOREM (which states that if a 
path in the real line connects two numbers, then it passes 
over every point between the two) is a basic topological 
result. Others are that EUCLIDEAN n-space is HOMEO- 
MORPHIC to EUCLIDEAN m-space IFF m = n, and that 
REAL valued functions achieve maxima and minima on 
COMPACT SETS. 

dF 

> ax, ’ 

If F and G are functions of x and p only, then the LA- 
GRANGE BRACKET [F,G] collapses the Poisson bracket 

(F, G)* 

see U&LAGRANGE BRACKET,LIE BRACKET 

References 
Iyanaga, S. and Kawada, Y. (Eds.). Encyclopedic Dictionary 

of Mathematics. Cambridge, MA: MIT Press, p. 1004, 
1980. 

Foundational point-set topological questions are ones 
like “when can a topology on a space be derived from 
a metric?” Point-set topology deals with differing no- 
tions of continuity and compares them, as well as deal- 
ing with their properties. Point-set topology is also the 
ground-level of inquiry into the geometrical properties 
of spaces and continuous functions between them, and 
in that sense, it is the foundation on which the remain- 
der oftopology (ALGEBRAIC, DIFFERENTIAL, and Low- 
DIMENSIONAL) stands. 

see ~1s~ ALGEBRAIC TOPOLOGY, DIFFERENTIAL To- 
POLOGY,LOW-DIMENSIONAL TOPOLOGY,TOPOLOGY 

Poisson-Charlier Function 

pn(v) = 
(l+ v - n), 

&2F 
IFI 

where (a), is a POCHHAMMER S 

-n; 1 + u - n; x), 

~MBOL and $1 (a; b; x) 
isa CONFLUENT HYPERGEOMETRIC FUNCTION. 

see also POISSON~HARLIER POLYNOMIAL 

Poisson-Charlier Polynomial 
Polynomials p&) which belong to the distribution 
da(x) where a(x) is a STEP FUNCTION with JUMP References 

Sutherland, W. A. An Introduction to Metric & Topological 
Spaces. New York: Oxford University Press, 1975. . 

J( > X = e-$(x!)--l 
(1) 

Points Problem at 5 = 0, 1, . l  . for a > 0. 
NONSHARING PROBLEM 

p&c) = an12(n!)-1/2 pJ1)n-u (;p (;) (2) Pointwise Dimension 

Dp(x) E lim b-@&)) 
E30 lnc ’ 

= an’2(n!)-1’2(-l)n[j(x)]-1Anj(z - n) (3) 

=a -“l”AL:-“(a), (4) where BE(x) is an n-D BALL of RADIUS E centered at x 
and pis the PROBABILITY MEASURE. 
see dso BALL, PROBABILITY MEASURE 

where (i) is a BINOMIAL COEFFICIENT, L:(X) is an 
associated LAGUERRE POLYNOMIAL, and 

References 
Nayfeh, A. H. and Balachandran, B. Applied Nonlinear 

Dynamics: Analytical, Computational, and Experimental 
Methods. New York: Wiley, pp. 541-545, 1995. 

4f(x) = f(x + 1) - f(x) (5) 
Pf(x) = A[rlf(x)] 

= f(x+n) - 0 y f(x+n-I)+...+(-l)nf(x)a (6) Poisson’s Bessel Function Formula 
For !R[v] > -l/2, 

J&) = [$V J;;rt+ ‘) ~~‘2cos(zcost)sin2Vtdt, 
2 0 

see also POISSON-CHARLIER FUNCTION 

References 
Szegij, G. Orthogonat Polynomials, 4th ed. Providence, RI: 

Amer. Math. Sot., pp. 34-35, 1975. where J&z) is a BESSEL FUNCTION OF THE FIRST 
KIND, and r(z) is the GAMMA FUNCTION. 

References 
Iyanaga, S. and Kawada, Y. (Eds.). Encyclopedic Dictionary 

of Mathematics. Cambridge, MA: MIT Press, p. 1472, 
1980. 
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Poisson Distribution 

Poisson Distribution 

SO 

A Poisson distribution is a distribut#ion with the follow- 
ing properties: 

1. The number of changes in nonoverlapping intervals 
are independent for all intervals. 

2. The probability of exactly one change in a sufficiently 
small interval h G l/n is P = vh z u/n, where u is 
the probability of one change and n is the number of 
TRIALS. 

3. The probability of two or more changes in a suffi- 
ciently small interval h is essentially 0. 

The probability of k changes in a given interval is then 
given by the limit of the BINOMIAL DISTRIBUTION 

P(k) - - 

as the number of trials becomes very large, 

lim P(k) = 
n--PO0 

lim 
n(n - 1). =. (n - k - I) vk 

n--f00 nk 
-lc!(l-;)n(l-X)h 

I 
- - (1) 

This should be normalized so that the sum of probabil- 
ities equals 1. Indeed, 

00 *  h 

x P(k) = ey x 5 = e”esu = 1, (3) 
l  

k=O k=O 

as required. The ratio of probabilities is given by 
yi+le-v 

P(k=i+l) I (is1)! u --- 
P(k = i) i! , - i+1’ 

e -VyZ 

(4) 

The MOMENT-GENERATING FUNCTION ofthis distribu- 
tion is 

M(t) = 2 etk uki,” = e-u F (“i:)k 
. l  

k-0 k=O 

-u UC t 
=e e =e #-1) 

M'(t) = yeteuCetwl) 

M"(t) = (uet)2ev(et-1) + ueteY("t-l) 

R(t) E In M(t) = v(et - 1) 

R’ (t) = uet 

R”(t) = vet, 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

p= R’(O) =u (11) 
o2 = R” (0) = u. (12) 

The MOMENTS about zero can also be computed directly 

PIZ = up+ y> (13) 
A4 = u(1 + 3v + u”) (14 

d = ~(1 + 7v + 62 + u3), (15) 

as can the MOMENTS about the MEAN. 

p1 = u 06) 
p2 = u (17) 

p3 = u (18) 

p4 = u(l+ 34, (19) 

SO the MEANJARIANCE, SKEWNESS, and KURTOSIS are 

p=L-J (20) 
o2 = Y (21) 

P3 
y1 = a3 = -& c y-1/2 

(22) 

P4 vu+ 34 _ 3 
y2-7-3= u 

u + 3u2 - 3u2 -1 - - 
U2 

=u l  
(23) 

The CHARACTERISTIC FUNCTION is 

4(t) = e ?7qeit -1) 
(24) 

and the CUMULANT-GENERATING FUNCTION is 

K(h) = v(eh - 1) = v(h+ $h2 + sh3 + . . .), (25) 

so 

6 = u. (26) 

The Poisson distribution can also be expressed in terms 
1 

Of 

A& 

2’ 

the rate of changes, so that 

(27) 

k -Ax 

P(k) = (xx)k; -. 
. (28) 

The MOMENT-GENERATING FUNCTION ofaPoissondis- 
tribution in two variables is given by 
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If the independent variables xl, ~2, . l  l  , 2~ have Poisson 
distributions with parameters ~1, ~2, . . . , pi, then 

x=5 xj (30) 
j=l 

has a Poisson distribution with parameter 

j=l 

This can be seen since the CUMULANT-GENERATING 
FUNCTION is 

Kj(h) = pj(eh - l), (32) 

. K E x Kj(h) = (e” - 1) xpj = p(eh - I)* (33) 

j j 

References 
Beyer, W. H. CRC Standard Mathematical Tables, 28th ed. 

Boca Raton, FL: CRC Press, p. 532, 1987. 
Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vet- 

terling, W* T. “Incomplete Gamma Function, Error Func- 
tion, Chi-Square Probability Function, Cumulative Poisson 
Function.” 56.2 in Numerical Recipes in FORTRAN: The 
Art of Scientific Computing, 2nd ed. Cambridge, England: 
Cambridge University Press, pp. 209-214, 1992. 

Spiegel, M. R. Theory and Problems of Probability and 
Statistics. New York: McGraw-Hill, p. 111-112, 1992. 

Poisson’s Equation 
A second-order PARTIAL DIFFERENTIAL EQUATION 
arising in physics: 

v”* = -4np. 

If P = 0, it reduces LAPLACE'S EQUATION. It is also 
relatedtothe HELMHOLTZ DIFFERENTIAL EQUATION 

V2q -+ k2$ = 0. 

see also HELMHOLTZ DIFFERENTIAL EQUATION, LA- 

PLACE'S EQUATION 

References 
Arfken, G. “Gauss’s Law, Poisson’s Equation” 51.14 in 

lMathematica1 Methods for Physicists, 3rd ed. Orlando, 
FL: Academic Press, pp. 74-78, 1985. 

Poisson’s Harmonic finct ion Formula 
Let 4(z) be a HARMONIC FUNCTION. Then 

27r K(r, O)#(ZO + de) de, (1) 

where R = lzol and K(r, 0) is the POISSON KERNEL. 
For a CIRCLE, 

.1 2* 

U(XYY> = G 
s 

u(a cos 4, a sin 4) 
0 

a2 - R2 

a2 + R2 - 2ar cos(0 - 4) d$* (2) 

For a SPHERE, 

1 
U(X,Y,4 = 4na 

ss 

a2 - R2 
s u (a2 + R2 - 2aRcos 8)3/2 dS’ 

(3) 
where 

cOse=~a(. (4 

see UZSO CIRCLE, HARMONIC FUNCTION, POISSON KER- 

NEL, SPHERE 

References 
Morse, P. M. and Feshbach, H. Methods of Theoretical Phys- 

ics, Part I. New York: McGraw-Hill, pp. 373-374, 1953. 

Poisson Integral 
A.k.a. BESSEL'S SECOND INTEGRAL. 

In ( > 
s 

7r 

CL&) = z 

wJ+ +N+l 

COS(Z cos 8) sinan 0 d0, 
0 

where J&Z) isa BESSEL FUNCTION OF THE FIRST KIND 
and r(z) is a GAMMA FUNCTION. It can be derived from 
SONINE'S INTEGRAL. With n = 0, the integral becomes 
PARSEVAL'S INTEGRAL. 

see also BESSEL FUNCTION OF THE FIRST KIND, PAR- 
SEVAL'S INTEGRAL, SONINE’S INTEGRAL 

Poisson Integral Representation 

s 7r 
cos( g cos S) sin2nf1 8 de, 

0 

where jn(z) is a SPHERICAL BESSEL FUNCTION OF THE 
FIRST KIND. 

Poisson Kernel 
In 2-Q 

(R i- reie)(R - reBie) 

(R - re’*)(R - re-ie) 

1 
R2 + ZirRsin8 - r2 

- 2Rrcos8+r2 

R2 - r2 

= R2 - 2Rrcos 8 + r2 ’ 

In 3-D, 

(1) 

R(R2 - a2) 
U(Y) = 4n 

2?r -7r 

X SJ f (0, 4) sin 8 de dt$ 

0 
o (R2 + a2 - 2aRc0sy)~/~ ’ (2) 
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where a = lyl and 

Rcos8sin~ 
cosy=y* [ 1 Rsin8sinq5 . (3) 

Rcosqb 

The Poisson kernel for the ~-BALL is 

P(x, 2) = &Pnv)(zL (4 

where D, is the outward normal derivative at point z 
on a unit ~-SPHERE and 

I I 
2-n 

v(z) = Iz - Xj2-n - IXl2-n 3 

I I 

. (5) 

see also POISSON’S HARMONIC FUNCTION FORMULA 

References 
Gradshteyn, I. S. and Ryzhik, I. M. Tables of Integrals, Se- 

ries, and Products, 5th ed. San Diego, CA: Academic 
Press, p* 1090, 1979. 

Poisson Manifold 
A smooth MANIFOLD with a POISSON BRACKET defined 
on its FUNCTION SPACE. 

Poisson Sum Formula 
A special case of the general result 

m 00 

x f(x + n) = x e2nikx O” f(xl)e-2*ikx dxl 
s 

?I.=--00 k=-m --oo 

(1) 

with x = 0, yielding 

2 f(n) = 2 [- f (x1)e-2Tikx dxl. (2) 

n=--00 k=--ooJ-m 

An alternate form is 

Another formula called the Poisson summation 
is 

where 

e(x) = /z hm q(t) cos(xt) dt 

ap = 2n. 

. (3) 

formula 

-17 (4) 

(5) 

(6) 

Poisson Trials 
A number s TRIALS in which the probability of success 
pi varies from trial to trial. Let x be the number of 
successes, then 

var(x) = spq - sop2, (1) 

where up2 is the VARIANCE of pi and q E (1 - p). Us- 
pensky has shown that 

P(s,x) = /3%, 
. (2) 

where 

p = [l - Bg(x)]2(“) (3) 
(23 - x)m3 

dx) = 3( 
X3 

s- m)3 + 2S(S - x) (4) 

h( > 
mx m2 x(x - 1) 

x x--+$-x)-- 

=p~;(::;)-i$n2;l (5) 

and 8 E (0,l). The probability that the number of suc- 
cesses is at least x is given by 

Q&x) = F Fe 

r=x 

(6) 

Uspensky gives the true probability that there are at 
least 2 successes in s trials as 

where 

- 1)&r& + 1) for Qm(x + 1) > i 
(ex - I)[1 - Qm(x + l)] for Qm(x + 1) L $ 

(8) 
m+++$ 

‘= 2(s-m) ’ (9) 

Poke Move 

ii’ c I 
> 

poke 
unpoke 

The REIDEMEISTER MOVE of type II. 

see also REIDEMEISTER MOVES 

References 
Morse, P. M. and Feshbach, H. Methods of Theoretical Phys- 

ics, Part I. New York: McGraw-Hill, pp. 466-467, 1953. 



Poker Polar Circle 1391 

Poker 
Poker is a CARD game played with a normal deck of 
52 CARDS. Sometimes, additional cards called “jokers” 
are also used. In straight or draw poker, each player is 
normally dealt a hand of five cards. Depending on the 
variant, players then discard and redraw CARDS, trying 
to improve their hands. Bets are placed at each discard 
step. The number of possible distinct five-card hands is 

N- 
52 

o 5 
= 2,598,960, 

where 0 L is a BINOMIAL COEFFICIENT. 

There are special names for specific types of hands. A 
royal flush is an ace, king, queen, jack, and 10, all of 
one suit. A straight flush is five consecutive cards all of 
the same suit (but not a royal flush), where an ace may 
count as either high or low. A full house is three-of-a- 
kind and a pair. A flush is five cards of the same suit 
(but not a royal flush or straight flush). A straight is 
five consecutive cards (but not a royal flush or straight 
flush), where an ace may again count as either high or 
low. 

The probabilities of being dealt five-card poker hands of 
a given type (before discarding and with no jokers) on 
the initial deal are given below (Packel 1981). As usual, 
for a hand with probability P, the ODDS against being 
dealt it are (l/r) - 1 : 1. 

Hand Exact Probability 

royal Aush 4- 1 
N- 649,740 

straight flush WO)--4 = 3 
N 216,580 

four of a kind 13(48) 1. - - ~ 

full house 

- 
4,165 

13b(:) 6 -=- 
N 4.165 

flush 

straight 

4(i3)-36-4 ’ 1,277 
N = 649,740 

10(4’)-36-4 _ 5 

three of a kind 
13(Z) E8;i44) 

- 
1,274 

88 

two pair 

one pair 

13(:):(:)44 I “I:“, 
2! 

- 4,165 
13(4) ~8)(191)(lO~ 

_ 352 
N 

-- 
833 

Hand Probability 

royal flush 1.54 x 1K6 

straight flush 1.39 x 1tr5 
four of a kind 2.40 x 1O-4 
full house 1.44 x 1o-3 
flush 1.97 x 1o-3 
straight 3.92 x 1o-3 

three of a kind 0.0211 
two pair 0.0475 
one pair 0.423 

Odds 

649,739.O:l 
72,192.3:1 

4,164.O:l 
69321 
507.8:l 
253.&l 

46.3:1 
2O.O:l 

1.366:1 

Gadbois (1996) gives probabilities for hands if two jokers 
are included, and points out that it is impossible to rank 

hands in any single way which is consistent with the 
relative frequency of the hands. 

see UZSO BRIDGE CARD GAME, CARDS 

References 
Cheung, Y. L. “Why Poker is Played with Five Cards.” 

Math. Gax. 73, 313-315, 1989. 
Conway, J. H. and Guy, R. K. “Choice Numbers with Rep- 

etitions.” In The Book of Numbers. New York: Springer- 
Verlag, pp. 70-71, 1996. 

Gadbois, S. “Poker with Wild Cards-A Paradox?” Math. 
Mug. 69, 283-285, 1996. 

Jacoby, 0. Oswald Jacoby 012 Poker. New York: Doubleday, 
1981. 

Packel, E. W. The Mathematics of Games and Gambling. 
Washington, DC: Math. Assoc. Amer., 1981. 

Polar 

polar 

\ 

Pole l 
A “A, 

If two points A and A’ are INVERSE with respect to a 
CIRCLE (the INVERSION CIRCLE), then the straight line 
through A’ which is PERPENDICULAR to the line of the 
points AA’ is called the polar of A with respect to the 
CIRCLE, and A is called the POLE of the polar. 

see ah APOLLONIUS' PROBLEM, INVERSE POINTS, IN- 
VERSION CIRCLE,~OLARITY, POLE, TRILINEAR POLAR 

References 
Diirrie, H. 100 Great Problems of Elementary Mathematics: 

Their History and Solutions. New York: Dover, p. 157, 
1965. 

Johnson, R. A. Modern Geometry: An Elementary Treatise 
on the Geometry of the Triangle and the Circle. Boston, 
MA: Houghton Mifflin, pp. 100-106, 1929. 

Polar Angle 
The ANGLE a point makes from the ORIGIN as measured 
from the ~-AXIS. 

see also POLAR COORDINATES 

Polar Circle 
Given a TRIANGLE, the polar circle has center at the 
ORTHOCENTER H. Call Hi the FEET ofthe ALTITUDE. 
Then the RADIUS is 

T2 = HA1. HHl = HA2. HH2 = HA2 9 HH2 (1) 

= -4R2 cos a1 cos a2 cos a3 (2) 

= ~(~1” + az2 + a3’) - 4R2, (3) 

where R is the CIRCUMRADIUS, Eli the VERTEX angles, 
and ai the corresponding side lengths. 
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A TRIANGLE is self-conjugate with respect to its polar 
circle. Also, the RADICAL AXIS of any two polar circles 
is the ALTITUDE from the third VERTEX. Any two po- 
lar circles of an ORTHOCENTRIC SYSTEM are orthogonal. 
The polar circles of the triangles of a COMPLETE QUAD- 
RILATERAL constitute a COAXAL SYSTEM conjugate to 
that of the circles on the diagonals. 

A polar curve is symmetric abou t the z-axis if replacing 
0 by -8 in its equation produces an equivalent equation, 
symmetric about the y-axis if replacing 8 by x - 8 in its 
equation produces an equivalent equation, and symmet- 
ric about the origin if replacing T by --T in its equation 
produces an equivalent equation. 

In Cartesian coordinates, 
derivatives are 

POSITION VECTOR and its 
see also COAXAL SYSTEM, ORTHOCENTRIC SYSTEM, 
POLAR, POLE, RADICAL AXIS 

Z&G-& (11) 
+ = P@q+i(x2 +y2)-(xk+y~) (12) 

e = Z2+;f2 (13) 

; = z2+;E2 

- $(x2 + y2)-3/“(2)(xk + y?j)(xji: + yf) 

References 
Coxeter, H. S. M. and Greitzer, S. L. Geometry Revisited. 

Washington, DC: Math. Assoc. Amer., ppm 136-138, 1967. 
Johnson, R. A. Modern Geometry: An Elementary Treatise 

on the Geometry of the Triangle and the Circle. Boston, 
MA: Houghton Mifflin, pp. 176481, 1929. 

Polar Coordinates 
The polar coordinates T and 0 are defined by 

_ (xii - YW9 - Y3 - 
(x2 --I- y y 2  l  

x = rcose (1) 
y = T sin 0. (2) 

(14) 

In terms of x and y, In polar coordinates, the UNIT VECTORS and their 
derivatives are 

T=@g 

0 = tan-l g . 
0 X 

(3) 

(4 

T cos e 
r- - I I T sin 8 (15) 

dr - 
ez dr _ -- - dr 

I I dr 
(16) The ARC LENGTH of a polar curve given by T = T(e) is 

de A 
e - -SF - - - - 

- sin e 
cos 8 1 (17) (5) 

. - 
FE sin ed [ 1 cos eb 

ES6 . p= -;y-;; = -& [ 1 - 
The LINE ELEMENT is given by (18) 

ds2 = T2 dB2, (6) 
(1% 

and the AREA element by 

fix 
[ 

--T sin eb + cos 87: 
7-c0sO8 + sine+ 1 = 

T-d++F (20) 
dA = rdrde. (7) 

The AREA enclosed by a polar curve T = y(e) is 

The SLOPE of a polar function T = T(e) at the point 
(r, 0) is given by see also CARDIOID, CIRCLE, CISSOID, CONCHOID, 

CURVILINEAR COORDINATES, CYLINDRICAL COORDI- 
NATES,EQUIANGULAR SPIRAL,LEMNISCATE,LIMACON, 
ROSE (9) 

Polar Line The ANGLE between the tangent and radial line at the 
point (r, e) is see POLAR 
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Policeman on Point Duty Curve 

see CRUCIFORM 

Polarity 
A projective CORRELATION of period two. In a polarity, 
a is called the POLAR of A, and A the POLE a. 

see also CHASLES'S THEOREM, CORRELATION, POLAR, 
POLE (GEOMETRY) 

Polignac’s Conjecture 

see DE POLIGNAC'S CONJECTURE 

The HOMEOMORPHIC image of a so-called “complete 
Polish Space 

separable” METRIC SPACE. The continuous image of 
a Polish space is called a SOUSLIN SET. 

see also DESCRIPTWE SET THEORY, STANDARD SPACE 

Pole 
A COMPLEX function f has a pole of order 7n at zo if, in 
the LAURENT SERIES, a, = 0 for n < -m and a, # 0. 
Equivalently, f has a pole of order n at zo if n is the 
smallest POSITIVE INTEGER for which (Z - x”)“f(~) is 
differentiable at x0. If f(foo) # &oo, there is no pole 
at &oo. Otherwise, the order of the pole is the greatest 
POSITWE COEFFICIENT in the LAURENT SERIES. 

Pollaczek Polynomial 
Let a > (b(, and write 

This is equivalent to finding the smallest n such that w acos@+b - - 
2sinO ' (1) 

( x- Toy 
Then define I'n(x; a, b) by the GENERATING FUNCTION 

f( 1 z 

f (x, W) = f (cos8, w) = >1 Pn(x; a, b)wn is differentiable at 0. 
n=O 

- 
(1 - - ureie)-1/2+ih(e)(l-weie)-l/2-ih(e), 

(2) 

see UZSO LAURENT SERIES, RESIDUE (COMPLEX ANAL- 
YSIS) 

The GENERATING FUNCTION may also be written Heferences 
A&en, G. Jk!hemakal 2Methods for Physicists, 3rd ed. Or- 

lando, FL: Academic Press, pp. 396-397, 1985. f(v4 = Cl- 2xw + w2)-1’2 

(ax + b) F C.Jm-I(X) , 
m 

W-b=1 1 (3) Pole (Geometry) 

where Urn (EC) 
SECOND KIND 
TION 

is a CHEBYSHEV POLYNOMIAL OF 
l  They satisfy the RECURRENCE R 

THE 
.ELA- 

polar 

\ 

Pole l 
A nP,(x; a, b) = [(2n - 1+ 2a)x + 2b]K-1(x; a, b) 

- n - l)P,-&;a, b) ( (4) 

forn=2,3, . ..with 

PO =1 

PI = (2a + 1)x + 2b. 

(5) 

(6) If two points A and A’ are INVERSE with respect to a 
CIRCLE (the INVERSION CIRCLE), then the straight line 
through A’ which is PERPENDICULAR to the line of the 
points AA’ is called the POLAR of the A with respect to 
the CIRCLE, and A is called the pole of the POLAR. 

see also INVERSE POINTS, INVERSION CIRCLE, POLAR, 
POLARITY, TRILINEAR POLAR 

In terms of the HYPERGEOMETRIC FUNCTION 
A(a, b; c; x), 

Pn(cosB;a; b) = ein82Fl(-~, i+ih(B); 1; l-~-~~~). (7) 

They obey the orthogonality relation 

Pn(x; a, b)P,(x; a, b)w(x; a,b) dx 
Reierences 
Errie, H. 100 Great Problems of Elementary Mathematics: 

Their History and Solutions. New York: Dover, p. 157, 
1965. 

Johnson, R. A. Modern Geometry: An Elementary Treatise 
on the Geometry of the Triangle and the Circle. Boston, 
MA: Houghton Miffl in, pp. 100-l 06, 1929. 

J-1 

= [n + $(a + l)]-‘km, (8) 

where S,, is the KRONECKER DELTA, for n,m = 0, 1, 

’  l  l  7  
with the WEIGHT FUNCTION 

w(cos 0; a, b) = e(2e-?r)h(8){cosh[~h(B)]}-1. (9) Pole (Origin) 

see ORIGIN 
References 
Szegij, G. Orthogonal Polynomials, 4th ed. Providence, RI: 

Amer. Math. SOL, pp. 393-400, 1975. 
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Pollard Monte Carlo Factorization Method 

~~~P~LLARD p FACTORIZATION METHOD 

Pollard p - 1 Factorization Method 
A PRIME FACTORIZATION ALGORITHM which can be 
implemented in a single-step or double-step form. In 
the single-step version, PRIMES p are found if p - 1 is a 
product of small PRIMES by finding an ~rz such that 

m E cq (mod n) , 

where p - l/q, with q a large number and (c,n) = 1. 
Then since p - llq, TTC E 1 (mod p), so plm - 1. There 
is therefore a good chance that n{nz - 1, in which case 
GCD(m- 1,n) (where GCD is the GREATEST COMMON 
DIVISOR) will be a nontrivial divisor of n. 

In the double-step version, a PRIMES p can be factored 
if p - 1 is a product of small PRIMES and a single larger 
PRIME. 

see also PRIME FACTORIZATION ALGORITHMS, WIL- 
LIAMS p + 1 FACTORIZATION METHOD 

References 
Bressoud, D. M. Factorization and Prime Testing. New 

York: Springer-Verlag, pp. 67-69, 1989. 
Pollard, J. M. “Theorems on Factorization and Primality 

Testing.” Proc. Cambridge Phil. Sot. 76, 521-528, 1974. 

Pollard p Factorization Method 
A PRIME FACTORIZATION ALGORITHM also known as 
POLLARD MONTE CARLO FACTORIZATION METHOD. 

Let ~0 = 2, then compute 

xi+1 = xi2 - xi+1 (modn). 

If GCD(x2i - xi,n) > 1, then n is COMPOSITE and its 
factors are found. In modified form, it becomes BRENT’S 
FACTORIZATION METHOD. In practice, almost any un- 
factorable POLYNOMIAL can be used for the iteration 

( X2 - 2, however, cannot). Under worst conditions, the 
ALGORITHM can be very slow. 

see also BRENT’S FACTORIZATION METHOD, PRIME 
FACTORIZATION ALGORITHMS 

- a. 
Hekrences 
Brent, R. P. “Some Integer Factorization Algorithms Using 

Elliptic Curves.” Au&al. Camp. Sci. Comm. 8, 149-163, 

1986. 
Bressoud, D. M. Factorization and Prime Testing. New 

York: Springer-Verlag, pp. 61-67, 1989. 
Eldershaw, C. and Brent, R. P. “Factorization of Large 

Integers on Some Vector and Parallel Computers.” 
ftp://nimbus.anu.edu.au/pub/Brent/l56tr.dvi.Z. 

Montgomery, P. L. “Speeding the Pollard and Elliptic Curve 
Methods of Factorization.” Math. Comput. 48, 243-264, 
1987. 

Pollard, J. M. “A Monte Carlo Method for Factorization.” 
Nordisk Tidskrift for Informationsbehandlung (BIT) 15, 
331-334,1975. 

Vardi, I. Computational Recreations in Mathematics. Read- 
ing, MA: Addison-Wesley, pp. 83 and 102-103, 1991. 

Poloidal Field 
A VECTOR FIELD resembling a magnetic multipole 
which has a component along the Z-AXIS of a SPHERE 
and continues along lines of LONGITUDE. 

see UZSO DIVERGENCELESS FIELD, TOROIDAL FIELD 

References 
Stacey, F. D. Physics of the Earth, 2nd ed. New York: Wiley, 

p. 239, 1977. 

P6lya-Burnside Lemma 

see P~LYA ENUMERATION THEOREM 

P6lya Conjecture 
Let n be a POSITIVE INTEGER and r(n) the number of 
(not necessarily distinct) PRIME FACTORS of n (with 
~(1) = 0). Let 0(m) be the number of POSITIVE INTE- 
GERS 5 m with an ODD number of PRIME factors, and 
E(m) the number of POSITIVE INTEGERS 5 m with an 
EVEN number of PRIME factors. Pblya conjectured that 

L(m) = E(m) - 0(m) = F A(n) 
n=l 

is 5 0, where A(n) is the LIOUVILLE FUNCTION. 

The conjecture was made in 1919, and disproven by 
FIaselgrove (1958) using a method due to Ingham (1942). 
Lehman (1960) f ound the first explicit counterexample, 
L(906,180,359) = 1, and the smallest counterexample 
m = 906,150,257 was found by Tanaka (1980). The first 
n for which L(n) = 0 are n = 2, 4, 6, 10, 16, 26, 40, 96, 
586,906150256, . . . (Tanaka 1980, Sloane’s A028488). It 
is unknown if L(x) changes sign infinitely often (Tanaka 
1980). 

see UZSO ANDRICA’S CONJECTURE, LIOUVILLE FUNC- 
TION, PRIME FACTORS 

References 
Hsselgrove, C. B. “A Disproof of a Conjecture of P6lya.” 

Mathematika 5, 141-145, 1958. 
Ingham, A. E. "On T wo Conjectures in the Theory of Num- 

bers.” Amer. J. IMath. 64, 313-319, 1942. 
Lehman, R. S. “On Liouville’s Function.” Math. Comput. 

14, 311-320, 1960. 
Sloane, N. J. A. Sequence A028488 in “An On-Line Version 

of the Encyclopedia of Integer Sequences.” 
Tanaka, M. “A Numerical Investigation on Cumulative Sum 

of the Liouville Function” [sic]. Tokyo J. Math. 3, 187- 

189, 1980. 

P6lya Distribution 

see NEGATIVE BINOMIAL DISTRIBUTION 
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P6lya Enumeration Theorem 
A very general theorem which allows the number of dis- 
crete combinatorial objects of a given type to be enu- 
merated (counted) as a function of their “order.” The 
most common application is in the counting of the num- 
ber of GRAPHS of n nodes, TREES and ROOTED TREES 
with 72 branches, GROUPS of order n, etc. The theorem 
is an extension of BURNSIDE'S LEMMA and is sometimes 
also called the P~LYA-BURNSIDE LEMMA. 

see also BURNSIDE% LEMMA, GRAPH (GRAPH THE- 
ORY),GROUP,ROOTED TREE, TREE 

where K(k) is a complete ELLIPTIC INTEGRAL OF THE 
FIRST KIND and r(z) is the GAMMA FUNCTION. Closed 
forms for d > 3 are not known, but Montroll (1956) 
showed that 

P(d) = 1 - [‘1L(W, (9) 

where 

-1 

u(d) = 

k=l 

d 

References x dxl dx2 l  l  9 da 
Harary, F. “The Number of Linear, Directed, Rooted, and 

Connected Graphs.” Trans. Amer. Math. Sot. 78, 445- 
463, 1955. 

=l* (10 (i)]de-“dt, (10) 

P6lya, G. “Kombinatorische Anzahlbestimmungen fiir Grup- 
pen, Graphen, und chemische Verbindungen.” Acta Math. 
68, 145-254, 1937. 

P6lya Polynomial 
The POLYNOMIAL giving the number of colorings, with 
m colors, of a structure defined by a PERMUTATION 
GROUP. 

see also PERMUTATION GROUP, P~LYA ENUMERATION 
THEOREM 

and lo(x) is a MODIFIED BESSEL FUNCTION OF THE 
FIRST KIND. Numerical values from Montroll (1956) 
and Flajolet (Finch) are 

d P(d) 

4 0.20 
5 0.136 
6 0.105 
7 0.0858 
8 0.0729 

P6lya’s Random Walk Constants 
N.B, A detailed on-line essay by S. Finch was the start- 

ing point for this entry. 

see also RANDOM WALK 

References 

Let p(d) be the probability that a RANDOM WALK on 
a d-D lattice returns to the origin. P61ya (1921) proved 
that 

P(l) = P(2) = 1, (1) 

but 

P(d) < 1 (2) 

for d > 2. Watson (1939), McCrea and Whipple (1940), 
Domb (1954), and Glasser and Zucker (1977) showed 
that 

P(3) 
1 

=l-xi = 0.3405373296. . . , (3) 

Finch, S. “Favorite Mathematical Constants.” http: //www . 
mathsoft.com/asolve/constant/polya/polya.html. 

Domb, C. “On Multiple Returns in the Random-Walk Prob- 
lem.” Proc. Cambridge Philos. Sm. 50, 586-591, 1954. 

Glasser, M. L. and Zucker, I. J. “Extended Watson Integrals 
for the Cubic Lattices.” Proc. Nat. Acad. Sci. U.S.A. 74, 

1800-1801, 1977. 
McCrea, W. H. and Whipple, F. J. W. “Random Paths in 

Two and Three Dimensions.” Proc. Roy. Sot. Edinburgh 
60, 281-298, 1940. 

Montroll, E. W. “Random Walks in Multidimensional Spaces, 
Especially on Periodic Lattices.” J. SIAIM 4, 241-260, 
1956. 

Watson, G. N. “Three Triple Integrals.” Quart. J. Math., 
Oxford Ser. 2 10, 266-276, 1939. 

where 

3 7r7r7r 
43) = -p 

sss 

dx dy dz 

(2 > --R --?r -7r 3 - cosx - cosy - cosz 

(4 

=$(18+12&-lo&-7&) 

x {K[(2 - J3)(& - h>1)” (5 
- - 3(18 + 12J2 - lo& - 7J6) 

I  

1+2~exp(k24) 
k=l 

= 1.5163860592 l  l  . , 

4 

(6) 

(7) 
(8) 

Pblya-Vinogradov Inequality 
Let x be a nonprincipal character (mod q). Then 

M+N 
n=M+l 

where << indicates MUCH LESS than. 

fteierences 
Davenport, H. “The P6lya-Vinogradov Inequality.” Ch. 23 

in Multiplicative Number Theory, 2nd ed. New York: 
Springer-@lag, pp. 135-138, 1980. 

P6lya, G. “Uber die Verteilung der quadratischen Reste 
und Nichtreste.” Nacho. K6nigE. Gesell. Wissensch. 
Gottingen, Math.-Phys. Klasse, 21-29, 1918. 
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Polyabolo 
An analog of the POLY~MINO composed of n ISOSCE- 
LES RIGHT TRIANGLES joined along edges of the same 
length. The number of polyaboloes composed of n trian- 
gles are 1, 3, 4, 14, 30, 107, 318, 1106, 3671, . . l  (Sloane’s 
A006074). 

see also DIABOLO, HEXABOLO, PENTABOLO, TETRA- 

BOLO, TRIABOLO 

References 
Sloane, N. .I. A. Sequence A006074/M2379 in “An On-Line 

* Version of the Encyclopedia of Integer Sequences.” 

Polyconi .c Projection 

.’ 

I 

X = cot $sinE 

y = (4- 40) +cot$(l- COSE), 

where 
E=(A-Xa)sin+. 

The inverse FORMULAS are 

A= 
sin-l(x tan 4) + 

sin q5 

x 
0, 

and 4 is determined from 

(1) 
(2) 

(3) 

(4) 

A$=- 
A(qStan$+1)-+~($2+B)tanqb 

4-A 1 t (5) - - 
tan S$ 

where $0 = A and 

A=~o+Y (6) 
4 

B=x2+A2. (7) 

References 
Snyder, J. P. Map Projections-A Working Manual. U. S. 

Geological Survey Professional Paper 1395. Washington, 
DC: U. S. Government Printing Office, pp. 124-137, 1987. 

Polycube 

3-D generalization of the POLYOMINOES to n-D. The 
number of polycubes N(n) composed of n CUBES are 1, 
1, 2, 8, 29, 166, 1023, . . l  (Sloane’s A000162, Ball and 
Coxeter 1987). 

see also CONWAY PUZZLE, CUBE DISSECTION, DIABOL- 
ICAL CUBE, SLOTHOUBER~RAATSMA PUZZLE, SOMA 

CUBE 

References 
Ball, W. W. R. and Coxeter, H. S. M. Mathematical Recre- 

ations and Essays, 13th ed. New York: Dover, pp. 11% 
113, 1987. 

Gardner, M. The Second Scientific American Book of Math- 
ematical Puzzles & Diversions: A New Selection. New 
York: Simon and Schuster, pp. 76-77, 1961. 

Gardner, M. “Polycubes.” Ch. 3 in Knotted Doughnuts and 
Other Mathematical Entertainments. New York: W. H. 
Preeman, 1986. 

Sloane, N. J. A. Sequence A000162/M1845 in “An On-Line 
Version of the Encyclopedia of Integer Sequences.” 

Polydisk 
Let c = (cl,..., cn) be a point in F, then the open 
polydisk is defined by 

s = {z : IZj - Cjl < 1z; - Cjl} 
for j = 1, l  . . , 72. 

see also DISK, OPEN DISK 

References 
Iyanaga, S. and Kawada, Y. (Eds.). Encyclopedic Dictionary 

of Mathematics. Cambridge, MA: MIT Press, p. 100, 1980. 

Polygamma Fhct ion 
The polygamma function is sometimes denoted Fm(x), 
and sometimes I&,&). In F,(r) notation, 

m+l 
Fm(z) = &lnz! (1) 

00 

( 1) 
m+l m! 

x 
1 - - - 

n=O (z + n)“+l 
(2) 

- I- ( 1) “+lm!<(m + 1, X>, (3) 
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where [(a, r) is the HURWITZ ZETA FUNCTION. 
In the tirn NOTATION (the form returned by the 
PolyGamma [m, 21 function in &i%ematic@; Wolfram 
Research, Champaign, IL), 

d” I+(z) dm - ---- - 
dx” I’(z) - ii~~~(~)’ (4) 

where r(z) is the GAMMA FUNCTION and Q’(z) is the 
DIGAMMA FUNCTION. @m(z) is therefore related to 

Fm(X) bY 
$m(z) = Fm(z - 1). (5) 

The function +0(z) is equivalent to the DIGAMMA FUNC- 
TION 9(r). Note that Morse and Feshbach (1953) adopt 
a notation no longer in standard use in which Morse and 
Feshbach’s @m(x) is equal to the above @m-l(z). 

The polygamma function obeys the RECURRENCE RE- 
LATION 

q/J& + 1) = @n(z) + (-Qnn!Z-Y (6) 

the reflection FORMULA 

&(l - z) + (-l)“+‘&(z) = (-l)-,& cot(7=), (7 

and the multiplication FORMULA, 

k=l 

where Sm, is the KRONECKER DELTA. 

In general, special values for integral indices are given 

&4> = (-1) “%C(n + 1) (9) 
&($) = (-l)n+172!(2n+1 - l)C(n + l), (10) 

giving 

*1($) = in2 (11) 
q/Q(l) = C(2) = ;7r2 (12) 

$2(l) = -25(3>, (13) 

Q3($) = n4 (14) 

and so on. 

R. 
can 

Manzoni has 
be expressed 

shown that 
in terms of 

the polygamma function 
CLAUSEN FUNCTIONS for 

RATIONAL arguments and integer index. Special cases 
are given by 

*1<$> = ;r2 + ;fi[cl,($n) - Cl@) (15) 

*l(i) = ;7r” - $qCl2($T) - Cl,($n) (16) 

$I(+) = n2 +4[&(+) - Cl,(;n)] (17) 

*l(z) = n2 - 4[ch(+) - c1,(3)]. (18) 
$2(i) = - 8[Cl3(0) - Cl,(r)]m w 

l4w+> = -$ - 18C13(0) + S[Cl+) + cl,($~)] 

(20) 

$2(g) = $ - 18 Cl3(0) + S[Cl#) + C13( fr)] 

(21) 
*2# = -2x3 - 32[cl3(0) - Cl,(r)] (22) 

p!Q(;) = 2n3 - 32[c13(0) - cl,(r)] (23) 
+3(i) = +T” + Sl&[Cl~( 3~) - Cl,($)] (24) 

l/3(;) = ;7r” - 81&[C14($n) - cr,($n)] (25) 

$3(a) = 8n4 + 384[C14&) - Cl&)] (26) 

$3(;) = 8~~ - 384[Cl4($$ - Cl,($r)]. (27) 

see also 
GAMMA 

CLAUSEN 
FUNCTION 

FUNCTION, 

, STIRLING'S 
DIGAMM 
SERIES 

A FUNCTION, 
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Polygenic Function 
A function which has infinitely many DERIVATIVES at a 
point. If a function is not polygenic, it is MONOGENIC. 

see &O MONOGENIC FUNCTION 

References 
Newman, J. R. The World of Mathematics, Vol. 3. New 

York: Simon & Schuster, p. 2003, 1956. 

Polygon 
A closed plane figure with n sides. If all sides and angles 
are equivalent, the polygon is called regular. Regular 
polygons can be CONVEX or STAR. The word derives 
from the Greek poly (many) and gonu (knee). 
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The AREA of a polygon with VERTICES (21, PI), . . . , 

(xn, yn) is 

which can be written 

A= $(XlyZ + X2$/1 + - n  l  + Xn-lyn + Xnyl - $/1X2 

-$/2x3 - l  l  l  - ‘&x+lxn - ynxl)y (21 

where the signs can be found from the following diagram. 

+ + + + + + 

The AREA of a polygon is defined to be POSITIVE if 
the points are arranged in a counterclockwise order, and 
NEGATIVE if they are in clockwise order (Beyer 1987). 

The sum 1 of internal angles in the above diagram of a 
dissected PENTAGON is 

But 
n 

x 
Yi = 360” (4) 

i=l 

and the sum of ANGLES of the n TRIANGLES is 

$2, + pi + Ti) = f)eo”) = 72(1800). (5) 
i=l z- '-1 

Therefore, 

I = n(l80”) - 360” = (n - 2)lBO”. 0 

Let n be the number of sides. The regular n-gon is then 
denoted {n}. 

n n { I 

2 digon 
3 equilateral triangle (trigon) 
4 square (quadrilateral, tetragon) 
5 pentagon 
6 hexagon 
7 heptagon 
8 octagon 
9 nonagon (enneagon) 

10 decagon 
11 undecagon (hendecagon) 
12 dodecagon 
13 tridecagon (triskaidecagon) 
14 tetradecagon (tetrakaidecagon) 
15 pentadecagon (pentakaidecagon) 
16 hexadecagon (hexakaidecagon) 
17 hept adecagon (hept akaidecagon) 
18 octadecagon (octakaidecagon) 
19 enneadecagon (enneakaidecagon) 
20 icosagon 
30 triacont agon 
40 tetracontagon 
50 pentacontagon 
60 hexacontagon 
70 heptacontagon 
80 octacontagon 
90 enneacontagon 

100 hectogon 
10000 mvriagon 

R 

4 

-0 

1 
r 

s 

+ 

lZ=5 

Let s be the side length, T be the INRADIUS, and R the 
CIRCUMRADIUS. Then 

7T 
s-22rtan - ( > = 2Rsin rr 

n 0 n 

R= +scsc x ( > n 

A= 

(7) 

(8) 

(9) 

(10) 

(12) 

If the number of sides is doubled, then 

s2n.z 
J 2R2 - RJm (13) 

A2n = 
4rA, 

2rf&Fqz’ 
(14) 
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Furthermore, if pk and Pk are the PERIMETERS of the 
regular polygons inscribed in and circumscribed around 
a given CIRCLE and ak and Ak their areas, then 

3%&h 
P&3 = - 

Pn+Pn 
(15) 

p2n = 2/pnP2n 9 (16) 

azn = d~nAn 
A _ 2a2An 

2n - 
a2n + An 

(17) 

(18) 

(Beyer 1987, p. 125). 

COMPASS and STRAIGHTEDGE constructions dating 
back to Euclid were capable of inscribing regular poly- 
gons of 3, 4, 5, 6, 8, 10, 12, 16, 20, 24, 32, 40, 48, 64, . . . , 
sides. However, this listing is not a complete enumera- 
tion of “constructible” polygons. In fact, a regular n-gon 
is constructible only if 4(n) is a POWER of 2, where 4 
is the TOTIENT FUNCTION (this is a NECESSARY but 
not SUFFICIENT condition). More specifically, a regular 
n-gon (n 2 3) can be constructed by STRAIGHTEDGE 
and COMPASS (Le., can have trigonometric functions of 
its ANGLES expressed in terms of finite SQUARE ROOT 
extractions) IFF 

n- 2kplp2 ’  l  ’ ps, (19) 

where k is in INTEGER > 0 and the pi are distinct FER- - 
MAT PRIMES. FERMAT NUMBERS are ofthe form 

Fm = 22m +I, (20) 

where VJ is an INTEGER 2 0. The only known PRIMES 
of this form are 3, 5, 17, 257, and 65537. 

The fact that this condition was SUFFICIENT was first 
proved by Gauss in 1796 when he was 19 years old, and 
it relies on the property of IRREDUCIBLE POLYNOMIALS 
that ROOTS composed of a finite number of SQUARE 
ROOT extractions exist only if the order of the equation 
is of the form 2h. That this condition was also NECES- 
SARY was not explicitly proven by Gauss, and the first 
proof of this fact is credited to Wantzel (1836). 

Constructible values of n for n < 300 were given by 
Gauss (Smith 1994), and the first few are 2, 3, 4, 5, 6, 
8, 10, 12, 15, 16, 17, 20, 24, 30, 32, 34, 40, 48, 51, 60, 

64, 68, 80, 85, 96, 102, 120, 128, 136, 160, 170, 192, 
(Sloane’s A003401). Gardner (1977) and indepen- 

dently Watkins (Conway and Guy 1996) noticed that 
the number of sides for constructible polygons with an 
ODD number of sides is given by the first 32 rows of PAS- 
CAL'S TRIANGLE (mod 2) interpreted as BINARY num- 
bers, giving 1, 3, 5, 15, 17, 51, 85, 255, . . . (Sloane’s 
AOO4729, Conway and Guy 1996, p. 140). 
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1 1 1 
1 1 1 1 3 

12 1 101 5 
13 3 I 1 1 1 1 15 

14641 10001 17 
1 5 10 10 5 1 110011 51 

1 6 15 20 1s 6 1 1010101 85 
1 7 21 35 35 21 7 1 11111111 255 

1 8 28 56 70 56 28 8 1 1 0 0 0 0 0 0 0 1 257 

Although constructions for the regular TRIANGLE, 
SQUARE, PENTAGON, and their derivatives had been 
given by Euclid, constructions based on the FERMAT 
PRIMES > 17 were unknown to the ancients. The 
first explicit construction of a HEPTADE~AGON (17-gon) 
was given by Erchinger in about 1800. Richelot and 
Schwendenwein found constructions for the 257-GON in 
1832, and Hermes spent 10 years on the construction 
of the 65537-GON at Gettingen around 1900 (Coxeter 
1969). Constructions for the EQUILATERAL TRIANGLE 
and SQUARE are trivial (top figures below). Elegant con- 
structions for the PENTAGON and HEPTADECAGON are 
due to Richmond (1893) (bottom figures below). 

Equilateral Triangle 

B 
4 

B- 

D 

PO ti N, yO N5F OE 

Pentagon f7-gon 

Given a point, a CIRCLE may be constructed of 
desired RADIUS, and a DIAMETER drawn through 
center. Call the center 0, and the right end of the 
AMETER PO. The DIAMETER PERPENDICULAR to 
original DIAMETER may be constructed by finding 

any 
the 
DI- 
the 
the 

PERPENDICULAR BISECTOR. Call the upper endpoint 
of this PERPENDICULAR DIAMETER B. For the PEN- 

TAGON, find the MIDPOINT of OB and call it D. Draw 
DPo, and BISECT LODPo, calling the intersection point 
with OPo Nl. Draw NIPI PARALLEL to OB, and the 
first two points of the PENTAGON are PO and PI. The 
construction for the HEPTADECAGON is more compli- 
cated, but can be accomplished in 17 relatively simple 
steps. The construction problem has now been auto- 
mated (Bishop 1978). 

see do 257-GON, 65537-CON, ANTHROPOMORPHIC 
POLYGON, BICENTRIC POLYGON, CARNOT'S POLY- 
GON THEOREM, CHAOS GAME, CONVEX POLYGON, 
CYCLIC POLYGON, DE MOIVRE NUMBER, DIAGONAL 
(POLYGON),EQUILATERAL TRIANGLE, EULER'S POLY- 

GON DIVISION PROBLEM,HEPTADECAGON,HEXAGON, 
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HEXAGRAM, ILLUMINATION PROBLEM, JORDAN POLY- 

GON, LOZENGE, OCTAGON, PARALLELOGRAM, PAS- 
CAL'S THEOREM, PENTAGON, PENTAGRAM, PETRIE 

POLYGON, POLYGON CIRCUMSCRIBING CONSTANT, 
POLYGON INSCRIBING CONSTANT, POLYGONAL KNOT, 
POLYGONAL NUMBER,POLYGONAL SPIRAL,POLYGON 
TRIANGULATION,POLYGRAM,POLYHEDRAL FORMULA, 
POLYHEDRON, POLYTOPE, QUADRANGLE, QUADRI- 
LATERAL, REGULAR POLYGON, REWLEAUX POLY- 
GON, RHOMBUS, ROTOR, SIMPLE POLYGON, SIMPLE- 
ITY, SQUARE, STAR POLYGON, TRAPEZIUM, TRAPE- 

ZOID, TRIANGLE, VISIBILITY, VORONOI POLYGON, 
WALLACE-B• LYAI-GERWEIN THEOREM 
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Polygon Circumscribing Constant 

Ifa TRIANGLE is CIRCUMSCRIBED about a CIRCLE, an- 
other CIRCLE around the TRIANGLE, a SQUARE outside 
the CIRCLE, another CIRCLE outside the SQUARE, and 
soon. From POLYGONS, the CIRCUMRADIUS and INRA- 
DIUS for an n-gon are 

R= +sc E ( > n (1) 
T 

r= iscot - , 
( > n (2) 

where s is the side length. Therefore, 

R 1 7r --- 
?- - cos IL ( > 

= set - , 
0 n 

n 

(3) 

and an infinitely nested set of circumscribed polygons 
and circles has 

K= Tfind circle 
- = set 

Cnitial circle 
(g) set (:) set (i) -7 (4) 

Kasner and Newman (1989) and Haber (1964) state that 
K = 12, but this is incorrect. Write 

K=fi 1 

n- -3 
cos ; 

( > 

(5) 

In K = - F ln(cosx). (6) 
n=3 

Define 

ye(x) E - ln(cosx) = $2” + &x4 + &X6 + &x8 +. . . . 

(7) 
Now define 

Yl(X) = +x2, (8) 

Yd;) = Yo(;> (9) 

= ln2, (10) 

so 

( > 3 21n2 a=2 - 1 7T (11) 
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and 

y2(x) = yx2. (12) 

But yz(x) > Yl(X) for : E (o&3), so 

TY2 (;) > -Fin [cos(;)] (13) 
n=3 n=3 

Bouwkamp (1965) produced the following INFINITE 
PRODUCT formulas 

00 00 

J&2 

N 

l- 
7l- 

m=l n=l 

1 

m2(n -j- i>” 1 (23) 
O” [X(2/c) - 1]22”[[(21c) - 1 - 2-2k] 

k 3 

(24) 

n=3 n=3 n=3 

= 9ln2[c(2) - i] 

where <(x)isthe RIEMANN ZETA FUNCTION andX(x)is 
the DIRICHLET LAMBDA FUNCTION. Bouwkamp (1965) 
also produced the formula with accelerated convergence 

K < e2m4637 = 11.75. 

If the next term is included, 

(15) 
where 

yz(x) = a(ix” + &x4). (16) 

As before, 

Yz(%) = Yo(;> (17) 

972 In 2 
tZ= 

7+(54 + G)’ (18) 

so 

Yz(X) = 
972 In 2 

7r2(54 + +> 
(ix2 + &x4) (19) 

BGfi 1-S+& 
( > (1 

set IL 
n (26) 

n=3 

(cited in Pickover 1995). 

see also POLYGON INSCRIBING CONSTANT 
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1nK < 
972 In 2 

79 (54 + ;rr2) 
fy [; (;)” +A (;)4’ 

n=3 

972 In 2 - - 
n2(54 --I- n2) (a [cw-;] +g [:(I 

- - 
9(877 - 45n2 - 5400) In 2 = 2 255 

80(7r2 + 54) 
. 7 

> 

and 
K < e2-255 = 9.535. 

1 
-1-s 

I> 

1 
-1-s )I 

(20) 
(21) 

The process can be automated using computer algebra, 
and the first few bounds are 11.7485, 9.53528, 8.98034, 
8.8016, 8.73832, 8.71483, 8.70585, 8.70235, 8.70097, and 
8.70042. In order to obtain this accuracy by direct mul- 
tiplication of the terms, more than 10,000 terms are 
needed. The limit is 
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Polygon Construction 

see GEOMETRIC CONSTRUCTION, GE~METROGRAPHY, 
POLYGON, SIMPLICITY 

Polygon Division Problem 

see EULER'S POLYGON DIVISION PROBLEM 

Polygon Fkactal 

see CHAOS GAME 
K = 8.700036625 m  . l  l  

(22) 
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Polygon Inscribing Constant 
If a TRIANGLE is inscribed in a CIRCLE, another CIR- 
CLE inside the TRIANGLE, a SQUARE inside the CIRCLE, 
another CIRCLE inside the SQUARE, and so on, 

K’ z 
Tfinal circle 

= cos 
Tinitial circle 

(;) cos (;) cos (a) -**. 

Numerically, 

1 

8.7000366252.. . 
=0.1149420448..., 

where K is the POLYGON CIRCUMSCRIBING CONSTANT. 
Kasner and Newman’s (1989) assertion that K = l/12 
is incorrect. 

Let a convex POLYGON be inscribed in a CIRCLE and 
divided into TRIANGLES from diagonals from one VER- 
TEX. The sum of the RADII of the CIRCLES inscribed in 
these TRIANGLES is the same independent of the VER- 
TEX chosen (Johnson 1929, p. 193). 

see &O POLYGON CIRCUMSCRIBING CONSTANT 
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Polygon Triangulation 

see EULER’S POLYGON DIVISION PROBLEM 

Polygonal Knot 
A KNOT equivalent to a POLYGON in R3, also called 
a TAME KNOT. For a polygonal knot K, there exists 
a PLANE such that the orthogonal projection 7r on it 
satisfies the following conditions: 

1. The image n(K) has no multiple points other than 
a FINITE number of double points. 

2. The projections of the vertices of K are not double 
points of r(K). 

Such a projection r(K) is called 
tion. 

a regular knot projec- 
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Polygonal Number 

A type of FIGURATE NUMBER which is a generalization 
of TRIANGULAR, SQUARE, etc., numbers to an arbitrary 
n-gonal number. The above diagrams graphically illus- 
trate the process by which the polygonal numbers are 
built up. Starting with the nth TRIANGULAR NUMBER 
T,, then 

n + Tn.w1 = Tn. (1) 

Now note that 

n + 2T,-1 = n2 = Sn (2) 

gives the nth SQUARE NUMBER, 

n-l- 3T,-1 = $(3n - 1) = Pn, (3) 

gives the nth PENTAGONAL NUMBER, and so on. The 
general polygonal number can be written in the form 

PT” = $[(T-l)n-2(r-2)] = $r[(n.-2)r- (n-4)], (4) 

where p: is the rth n-gonal number. For example, tak- 
ing n = 3 in (4) gives a TRIANGULAR NUMBER, n = 4 
gives a SQUARE NUMBER, etc. 

Fermat proposed that every number is expressible as at 
most k k-gonalnumbers (FERMAT'S POLYGONAL NUM- 
BER THEOREM). Fermat claimed to have a proof of this 
result, although this proof has never been found. Ja- 
cobi, Lagrange (1772), and Euler all proved the square 
case, and Gauss proved the triangular case in 1796. In 
1813, Cauchy proved the proposition in its entirety. 

An arbi trary number Iv can be checked to see 
n-gonal number as follows. Note the identity 

if it is a 

8(n - 2)~: + (n - 4)2 = 4r(n - 2)[(r - 1)n - 2(r - 2)] 

+(n - 4)2 = 4r(r - l)n2 + T[--8(~ - 1) - 8(r - 2)]n 

+16r(r - 2) + (n2 - 872 + 16) 
- - (4 T2 - 4r + l)n2 + (-16~~ + 24r - 8)n 

+( 16r2 - 32~ + 16) 
- - (2 T - 1)2n2 - 8(2r2 - 3r + 1)n + 16(r2 - 2r + 1) 

- - (2 rn - 4r - n + 4)2, (5) 

so 8(n - 2)N + (n - 4)2 = S2 must be a PERFECT 
SQUARE. Therefore, if it is not, the number cannot be 
n-gonal. If it is a PERFECT SQUARE, then solving 

S=2rn-4T-?I+4 (6) 
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for the rank T gives 

S+n-4 
T= 2(n-2) - (7) 

An n-gonal number is equal to the sum of the (n - l)- 

gonal number of the same RANK and the TRIANGULAR 
NUMBER of the previous RANK. 

~~~UESOCENTEREDP~LYG~NALNUMBER,DECAGONAL 
NUMBER, FERMAT'S POLYGONAL NUMBER THEOREM, 
FIGURATE NUMBER, HEPTAGONAL NUMBER, HEXAG- 
ONAL NUMBER, NONAGONAL NUMBER, OCTAGONAL 
NUMBER, PENTAGONAL NUMBER, PYRAMIDAL NUM- 
BER,SQUARE NUMBER,TRIANGULAR NUMBER 

References 
Beiler, A. H. “Ball Games.” Ch. 18 in Recreations in the The- 

ory of Numbers: The Queen of Mathematics Entertains. 
New York: Dover, pp. 184-199, 1966. 

Dickson, 1;. E. History of the Theory of Numbers, Vol. I: 
Divisibility and’ Primality. New York: Chelsea, pp. 3-33, 
1952. 

Guy, K. “Every Number is Expressible as a Sum of How 
Many Polygonal Numbers?” Amer. Math. Monthly 101, 
169-172, 1994. 

Pappas, T. “Wangular, Square & Pentagonal Numbers.” 
The Joy of Mathematics. San Carlog, CA: Wide World 
Publ./Tetra, p. 214, 1989. 

Sloane, N. J. A. Sequences A000217/M2535 in “An On-Line 
Version of the Encyclopedia of Integer Sequences.” 

Sloane, N. J. A. and Plouffe, S. Extended entry in The Ency- 
clopedia of Integer Sequences. San Diego: Academic Press, 
1995. 

Polygonal Spiral 

The length of the polygonal spiral is found by noting 
that the ratio of INRADIUS to CIRCUMRADIUS of a regu- 
lar POLYGON of n sides is 

r cot (a) 7T 
x  = csc(“) = c o s  ; l  ( 1 

72 

(1) 

The total length of the spiral for an n-gon with side 
length s is therefore 

L= +osk (‘> = 
n 

k=O 

\ A 

Consider the solid region obtained by filling in subse- 
quent triangles which the spiral encloses. The AREA of 
this region, illustrated above for n-gons of side length S, 
is 

A= 
77 

+s2cot - . 
( > n (3) 
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Polygram 
A self-intersecting STAR FIGURE such as the PENTA- 
GRAM or HEXAGRAM. 

n symbol polygram 

5 {5/2} pentagram 

6 WI hexagram 

7 w21 heptagram 

8 WI octagram 

WI star of Lakshmi 
10 {10/3} decagram 

Polyhedral Formula 
A formula relating the number of VERTICES, FACES, and 
EDGES ofa POLYHEDRON (or POLYGON). It wasdiscov- 
ered independently by Euler and Descartes, so it is also 
known as the DESCARTES-EULER POLYHEDRAL FOR- 
MULA. The polyhedron need not be CONVEX, but the 
FORMULA does not hold for STELLATED POLYHEDRA. 

V+F-E=2, (1) 
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where V = No is the number of VERTICES, E = Nl is 
the number of EDGES, and F = NZ is the number of 
FACES. For a proof, see Courant and Robbins (1978, 
pp. 239240). The FORMULA can be generalized to n-D 
POLYTOPES. 

A CONVEX POLYHEDRON can be defined as the set of 
solutions to a system of linear inequalities 

mx < b, - 

II,:No=Z (2) 

II2 : No - Nl = 0 (3) 
IIg : No - Nl + N2 = 2 

l-I4 : No - Nl + Nz - N3 = 0 

(4) 

(5) 

where m is a real s x 3 MATRIX and b is a real S-VECTOR. 
An example is illustrated above. The more simple DO- 
DECAHEDRON is given by a system with s = 12. In gen- 
eral, given the MATRICES, the VERTICES (and FACES) 
can be found using VERTEX ENUMERATION. 

II, : No - Nl+ N2 -. . . + (-1)=-‘&i = l- (-1)“. 

(6) 

For a proof of this, see Coxeter (1973, pp. 166-171). 

see ~2~0 DEHN INVARIANT, DESCARTES TOTAL ANGU- 
LAR DEFECT 
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A polyhedron is said to be regular if its FACES and 
VERTEX FIGURES are REGULAR (not necessarily CON- 
VEX) polygons (Coxeter 1973, pa 16). Using this defi- 
nition, there are a total of nine REGULAR POLYHEDRA, 
five being the CONVEX PLATONIC SOLIDS and four be- 
ingthe CONCAVE (stellated) KEPLER-P• INSOT SOLIDS. 
However, the term “regular polyhedra” is sometimes 
also used to refer exclusively to the PLATONIC SOLIDS 
(Cromwell 1997, p* 53). The DUAL POLYHEDRA of the 
PLATONIC SOLIDS are not new polyhedra, but are them- 
selves PLATONIC SOLIDS. 

A CONVEX polyhedron is called SEMI REGULAR if its 
FACES have a similar arrangement of nonintersecting 

Polyhedral Graph 
II 

regular plane CONVEX polygons of two or more dif- 
ferent types about each VERTEX (Holden 1991, p. 41). 
These solids are more commonly called the ARCHIMED- 
EAN SOLIDS, and there are 13 of them. The DUAL 
POLYHEDRA of the ARCHXMEDEAN SOLIDS are 13 new 
(and beautiful) solids, sometimes called the CATALAN 
SOLIDS. 

A QUASIREGULAR POLYHEDRON isthesolidregioninte- 
riortotwo DUAL REGULAR POLYHEDRA (Coxeter1973, 
pp 17-20). There are only two CONVEX QUASIREGU- 

The graphs corresponding to the skeletons of PLATONIC 
SOLIDS. They are special cases of SCHLEGEL GRAPHS. 

see also CUBICAL GRAPH, DODECAHEDRAL GRAPH, 
IC~SAHEDRAL GRAPH, OCTAHEDRAL GRAPH, Scum- 
GEL GRAPH,TETRAHEDRAL GRAPH 

Polyhedron 
A 3-D solid which consists of a collection of POLYGONS, 
usually joined at their EDGES. The word derives from 
the Greek poly (many) plus the Indo-European he&on 
(seat). A polyhedron is the 3-D version of the more 
general POLYTOPE, which can be defined on arbitrary 
dimensions. 

LAR POLYHEDRA: the CUBOCTAHEDRON and ICOSIDO- 
DECAHEDRON. There are also infinite families of PRISMS 
and ANTIPRISMS. 

Thereexistexactly 92 CONVEX POLYHEDRA with REG- 
ULAR POLYGONAL faces (and not necessary equivalent 
vertices). They are known as the JOHNSON SOLIDS. 
Polyhedra with identical VERTICES related by a sym- 
metry operation are known as UNIFORM POLYHEDRA. 
There are 75 such polyhedra in which only two faces 
maymeetat an EDGE, and 76inwhich any EVEN num- 
ber of faces may meet. Of these, 37 were discovered 
by Badoureau in 1881 and 12 by Coxeter and Miller 
ca. 1930. 

Polyhedra can be superposed on each other (with the 
sides allowed to pass through each other) to yield ad- 
ditional POLYHEDRON COMPOUNDS. Those made from 
REGULAR POLYHEDRA have symmetries which are espe- 
cially aesthetically pleasing. The graphs corresponding 
to polyhedra skeletons are called SCHLEGEL GRAPHS. 

Behnke et al. (1974) have determined the symmetry 
groups of all polyhedra symmetric with respect to their 
VERTICES. 
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see ah AC~PTIC POLYHEDRON, APEIROGON, ARCHI- 

MEDEAN SOLID, CANONICAL POLYHEDRON, CATALAN 
SOLID, CUBE, DICE, DIGON, DODECAHEDRON, DUAL 

POLY- POLYHEDRON, ECHIDNAHEDRON, FLEXIBLE 
HEDRON, HEXAHEDRON, HYPERBOLIC POLYHEDRON, 
ICOSAHEDRON,~SOHEDRON, JOHNSON SOLID,KEPLER- 
POINSOT SOLID, NOLID, OCTAHEDRON, PETRIE POLY- 

COLORING, GON, PLATONIC SOLID, POLYHEDRON 
POLYHEDRONCOMPOUND,PRISMATOID,QUADRICORN, 
QUASIREGULAR POLYHEDRON, RIGIDITY THEOREM, 
SEMIREGULAR POLYHEDRON, SKELETON, TETRAHE- 
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Polyhedron Coloring 
Define a valid “coloring” to occur when no two faces 
with a common EDGE share the same color. Given two 
colors, there is a single way to color an OCTAHEDRON. 
Given three colors, there is one way to color a CUBE and 
144 ways to color an IC~~AHEDRON. Given four-colors, 
there are two distinct ways to color a TETRAHEDRON 
and 4 ways to color a DODECAHEDRON. Given five col- 
ors, there are four ways to color an ICOSAHEDRON. 

see also COLORING, POLYHEDRON 
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Polyhedron Compound 

dodec. +icos, 

two cubes 

both 

three cubes 
four cubes 
five cubes dodecahedron 2c5, ww, 311 
five octahedra 
five tetrahedra 
two dodecahedra 
great dodecahedron- 

small stellated dodec. 

great icosahedron- 

icosidodeca. 
dodecahedron 

both 

both 

[5(3, WC3,5) 
c5, ww 3112{3,51 

great stellated dodec. 

stella octangula cube Cd, w2c3, wc3,41 
ten tetrahedra dodecahedron 2C5,3}[1W3,3P{3,5) 

The above table gives some common polyhedron com- 
pounds. In Coxeter’s NOTATION, d distinct VERTICES 
of {m,n} taken c times are denoted 

or faces of {s, t} e times 

The five TETRAHEDRA can be arranged in a laevo or 
dextro configuration. 

see aho CUBE-OCTAHEDRON COMPOUND, DODECA- 
HEDRON-ICOSAHEDRON COMPOUND, OCTAHEDRON 5- 
COMPOUND, STELLA OCTANGULA, TETRAHEDRON 5- 
COMPOUND 
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Polyhedron Dissection 
A DISSECTION of one or more polyhedra into other 
shapes. 

see &SO CUBE DISSECTION, DIABOLIG~L CUBE, POLY- 
CUBE, SOMA CUBE, WALLACE-B• LYAI-GERWEIN THE- 
OREM 

References 
Bulatov, V.v “Compounds of Uniform Polyhedra.” http : // 

www . physics. orst . edu/-bulatov/polyhedra/uniform- 
compounds/. 

Coffin, S. T. The Puzzling World of Polyhedral Dissections. 
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Polyhedron Dual 

see DUAL POLYHEDRON 

Polyhedron Hinging 

see RIGIDITY THEOREM 

Polyhedron Packing 

see KELVIN'S CONJECTURE, SPACE-FILLING POLYHE- 

DRON 

Polyhex 

3 

4 J 
An analog of the PULYOMINOES and POLYIAMONDS in 
which collections of regular hexagons are arranged with 
adjacent sides. They are also called HEXES and HEXAS. 

The number of polyhexes of n hexagons are 1, 1, 2, 
7, 22, 82, 333, 1448, 6572, 30490, 143552, 683101, . . . 
(Sloane’s A014558). For the 4-hexes (tetrahexes), the 
possible arrangements are known as the BEE, BAR, PIS- 
TOL, PROPELLER, WORM, ARCH, and WAVE. 

References 
Gardner, M. “Polyhexes and Polyaboloes.” Ch. 11 in M&e- 

matical Magic Show: More Puzzles, Games, Diversions, 

Illusions and Other Mathematical Sleight-of-Mind from 
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Sloane, N. J. A. Sequence A014558 in “An On-Line Version 
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Raton, FL: CRC Press, pp. 342-343, 1993. 

Polyiamond 

1 A 

2 Lv 

A generalization of the POLYOMINOES using a collec- 
tion of equal-sized EQUILATERAL TRIANGLES (instead of 
SQUARES) arranged with coincident sides. Polyiamonds 
are sometimes simply known as IAMONDS. 

The number of two-sided (i.e., can be picked up and 
flipped, so MIRROR IMAGE pieces are considered iden- 
tical) polyiamonds made up of n triangles are 1, 1, 1, 
3, 4, 12, 24, 66, 160, 448, . . . (Sloane’s A000577). The 
number of one-sided polyiamonds composed of n trian- 
gles are 1, 1, 1, 4, 6, 19, 43, 121, . . . (Sloane’s A006534). 
No HOLES are possible with fewer than seven triangles. 

The top row of 6-polyiamonds in the above figure are 
known as the BAR, CROOK, CROWN, SPHINX, SNAKE, 
and YACHT. The bottom row of 6-polyiamonds are 
known as the CHEVRON, SIGNPOST, LOBSTER, HOOK, 
HEXAGON, and BUTTERFLY. 

see UZSO POLYABOLO, POLYHEX, POLYOMINO 
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Polyking 

see POLYPLET 
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Polylogarit hm 
The function 

k=l 

Also known as JONQUI~RE'S FUNCTION. (Note that the 
NOTATION Li(z) is also used for the LOGARITHMIC IN- 
TEGRAL.) The polylogarithm arises in Feynman Dia- 
gram integrals, and the special case n = 2 is called the 
DILOGARITHM. The polylogarithm of NEGATIVE INTE- 
GER order arises in sums of the form 

00 n 

IE knrk = L&(r) = 
n n--i 

r n+l u > i 
T  1 (2) 

k=l Cl-? i=l 

where ( y) is an EULERIAN NUMBER. 

The polylogarithm satisfies the fundamental identities 

- ln( 1 - 2-“) = Lil(2-“) (3) 

Li,(-1) = -(l - 21-3)<(s), (4) 

where c(s) is the RIEMANN ZETA FUNCTION. The de- 
rivative is therefore given by 

$ Li,(-1) = -2’-‘c(s) In 2 - (1 - 2l-“)[‘(s), (5) 

or in the special case s = 0, by 

[ 
$ Lis(-l)] = In2 + C’(0) = In2 - + ln(27r) 

s=o 

=ln 2 

(0 
7T ’ (6) 

This latter fact provides a remarkable proof of the WAL- 
MS FORMULA. 

The polylogarithm identities lead to remarkable expres- 
sions. Ramanujan gave the polylogarithm identities 

Liz(+) - i Liz(i) = An2 - i(ln3)2 (7) 

Li+i) + $ Liz(i) 

- -Am” +ln2ln3 - +(ln2)2 - +(ln3)2 - (8) 

Liz($)+ 5 Liz($) = ~,2+21n21n3-2(ln2)2 - $(ln3)2 

(9) 
Li&-+) - iLiz = -An2 + i(ln3)2 (10) 

Liz(+) + Liz(i) = -+(ln i)” 

(Berndt 1994)) and Bailey et al. show that 

T2 = 36Li2($)-36Li&)-12Li&)+6Li2(&) (12 

12Li& = 7~~ - 6(ln2)2 (13 
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35 
2 - C(3) 7r2 In2 

= 36Li&) - 18Li&) - 4Li&) +Lia(&) (14) 

2(ln 2)3 - K(3) 

= -24Li&) + 18Lis(a> +4Li&) - Li3(&) (15) 

lO(ln 2)3 - 2r2 In2 = -48Li&) + 54Li&) 

+lZLi&) - 3LiS(&), (16) 

and 

Lim(&) Li,(i) 2Lim($) 4Li,(+) 5(-ln2)” ---- -+-- 
em-1 3m-1 2m-1 9 9m! 

+7F2( - In 2),-’ 7r4(- In 2)m-4 403C(5)(-ln2)m-5 

54(m - 2)! - 486(m - 4)! - 1296(m - 5)! 

= 0. (17) 

No general ALGORITHM is know for the integration of 
polylogarithms of functions. 

see also DILOGARITHM, EULERIAN NUMBER, LEG- 

ENDRE'S CHI-FUNCTION, LOGARITHMIC INTEGRAL, 
NIELSEN-RAMANUJAN CUNSTANTS 
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Nielsen, N. Der Euler’sche Dilogarithms. Leipzig, Germany: 
Halle, 1909. 

Polymorph 
An INTEGER which is expressible in more than one way 
in the form z2+Dy2 Or z2 -Dy2 where x2 is RELATIVELY 
PRIMERS Dy2. If the INTEGER is expressible in only one 
way,it is called a MONOMORPH. 

see &OANTIMORPH,IDONEAL NUMBER,MONOMORPH 

Polynomial 
A POLYNOMIAL is a mathematical expression involving 
a series of POWERS in one or more variables multiplied 
by COEFFICIENTS. A POLYNOMIAL in one variable with 
constant COEFFICIENTS is given by 

UnXn + . l  l  + a222 + al2 + ~0. (1) 

The highest POWER in a one-variable POLYNOMIAL is 
called its ORDER. A POLYNOMIAL in two variables with 
constant C~EFFTCIENTS is given by 

GtmXnym + a22X2y2 + a21X2y + a12xy2 

+mzy+ aloa:+~oly+~oo* (2) 
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Exchanging the COEFFICIENTS of a one-variable 
NOMIAL end-to-end produces a POLYNOMIAL 

whose ROOTS 
ROOTS X:i. 

POLY, 

a()xn + a12 
n-l 

+... + an-12 + an = 0 (3) 

The following table gives 
nomials of low orders. 

are RECIPROCALS l/xi of the original 

special names given to poly- 

Order Polynomial Name 

1 linear equation 
2 quadratic equation 
3 cubic equation 
4 quartic equation 
5 quintic equation 
6 sextic equation 

Polynomials of fourth degree may be computed using 
three multiplications and five additions if a few quanti- 
ties are calculated first (Press et al. 1989): 

a0 + ala: + a2x2 + a3x3 + a4x4 

= [(Ax + B)2 + Ax + C][(Ax + B)2 + D] + E, (4) 

where 

A E (ad) 114 
(5) 

a3 - A3 
Bs- 

4A3 (6) 

D E 3B2 + 8B3 + 
alA - 2aJ3 

A2 (7) 

2B - 6B2 - D (8) 

E=ao-B4-B2(C+D)-CD. (9) 

Similarly, a POLYNOMIAL of fifth degree may be com- 
puted with four multiplications and five additions, and 
a POLYNOMIAL of sixth degree may be computed with 
four multiplications and seven additions. 

Polynomials of orders 1 to 4 are solvable using only 
algebraic functions and finite square root extraction. 
A first-order equation is trivially solvable. A second- 
order equation is soluble using the QUADRATIC EQUA- 
TION. A third-order equation is solvable using the CU- 
BIC EQUATION. A fourth-order equation is solvable us- 
ing the QUARTIC EQUATION. It was proved by Abel 
using GROUP THEORY that higher order equations can- 
not be solved by finite root extraction. 

However, the general QUINTIC EQUATION may be given 
in terms of the THETA FUNCTIONS, or HYPERGEOMET- 
RIG FUNCTIONS in one variable. IIermite and Kronecker 
proved that higher order POLYNOMIALS are not soluble 
in the same manner. Klein showed that the work of 
Hermite was implicit in the GROUP properties of the 
I~OSAHEDRON. Klein’s method of solving the quintic 

in terms of HYPERGEOMETRIC FUNCTIONS in one vari- 
able can be extended to the sextic, but for higher order 
POLYNOMIALS, either HYPERGEOMETRIC FUNCTIONS in 
several variables or “Siegel functions” must be used. In 
the 188Os, Poincare created functions which give the so- 
lution to the nth order POLYNOMIAL equation in finite 
form. These functions turned out to be “natural” gen- 
eralizations of the ELLIPTIC FUNCTIONS. 

Given an nth degree POLYNOMIAL, the ROOTS can be 
found by finding the EIGENVALUES of the MATRIX 

1 -a0/a, 0 0 1 . . . --a& 0 0 1 . . -a2/an 0 0 0 1 gv* . . . ‘.* l  . . . l  . -1 0 0 0 0 1 . (10) 

This method can be computationally expensive 
fairly robust at finding close and multiple roots. 

, but is 

Polynomial identities involving sums and differences of 
like POWERS include 

X2 - Y2 = (x - Y>(X + Y> (11) 
x3-y3= (x - y>(x” + XY + Y”> (12) 

x3+y3=(x+y)(x2-xy+y2) (13) 

X4 -y”=(x-y)(x+y)(x2+y2) (14) 

x4 + 4y4 = (x2 + 2xy + 2y2)(x2 - 2xy + 2Y2) (15) 
x5 -y5 = (x - y)(x" + x3y + X2Y2 + XY3 + Y”) (16) 

x5 +y5 = (x+ y)(x” - x3y+x2y2 - xy3 +y4) (17) 

x6 - y6 = (x - y)(x + y)(x2 + XY + Y2)(X2 - XY + Y”) 

(18) 

x6 + y6 = (x2 + y2)(x4 - x2y2 + y”). 

(19) 

Further identities include 

x4 + x2y2 + y4 = (x2 + xy + y2)(x2 - xy + Y2) (20) 

(21 2 - D~l~)(x2~ - DYES) 

= (21x2 + Dy1y2)~ - D(ay2 + ~2~1)~ (21) 

(xl2 + DYI~)(ICZ~ + DYES) 

= (21x2 * Dy1y2)’ + D(xly2 =F ~2~1)~. (22) 

The identity 

(X+Y+q7-(x7+Y7+z7) = 7(X+Y)(X+Z)(Y+Z) 

x[(X2+Y2+z2+XY+XZ+YZ)2+XYZ(X+Y+Z)] 

(23) 

was used by Lam6 in his proof that FERMAT'S LAST 
THEOREM was true for n = 7. 
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see also APPELL POLYNOMIAL, BERNSTEIN POLY- 
NOMIAL, BESSEL POLYNOMIAL, BEZOUT'S THEO- 
REM, BINOMIAL, BOMBIERI INNER PRODUCT, BOM- 
BIER1 NORM, CHEBYSHEV POLYNOMIAL OF THE 
FIRST KIND, CHEBYSHEV POLYNOMIAL OF THE SEC- 
OND KIND, CHRISTOFFEL-DARBOUX FORMULA, CHRIS- 
TOFFEL NUMBER, COMPLEX NUMBER, CYCLOTOMIC 
POLYNOMIAL, DESCARTES' SIGN RULE, DISCRIMI- 
NANT (POLYNOMIAL), DURFEE POLYNOMIAL, EHR- 
HART POLYNOMIAL, EULER FOUR-SQUARE IDENTITY, 
FIBONACCI IDENTITY, FUNDAMENTAL THEOREM OF 
ALGEBRA, FUNDAMENTAL THEOREM OF SYMMETRIC 
FUNCTIONS, GAUSS-JACOBI MECHANICAL QUADRA- 
TURE, GEGENBAUER POLYNOMIAL, GRAM-SCHMIDT 
ORTHONORMALIZATION, GREATEST LOWER BOUND, 
HERMITE POLYNOMIAL, HILBERT POLYNOMIAL, IRRE- 
DUCIBLE POLYNOMIAL, ISOBARIC POLYNOMIAL, Iso- 
GRAPH, JENSEN POLYNOMIAL, KERNEL POLYNOMIAL, 
KRAWTCHOUKPOLYNOMIAL,LAGUERREPOLYNOMIAL, 
LEAST UPPERBOUND,LEGENDREPOLYNOMIAL,LIOU- 
VILLE POLYNOMIAL IDENTITY, LOMMEL POLYNOM- 
IAL, LUK~CS THEOREM, MONOMIAL, ORTHOGONAL 
POLYNOMIALS, PERIMETER POLYNOMIAL, POISSON- 
CHARLIER POLYNOMIAL, POLLACZEK POLYNOMIAL, 
POLYNOMIAL BAR NORM, QUARTER SQUARES RULE, 
RAMANUJAN 6-10-8 IDENTITY, ROOT, RUNGE-WALSH 
THEOREM,~CHL~FLI POLYNOMIAL,~EPARATION THE- 
OREM, STIELTJES-WIGERT POLYNOMIAL, TRINOMIAL, 
TRINOMIAL IDENTITY, WEIERSTRA~~'S POLYNOMIAL 
THEOREM,~ERNIKE POLYNOMIAL 
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Polynomial Bar Norm 
For p = c aj .j, define 

0 
27T 

lIPI 2= IP(eTe)[2g PI 2 = xlaj12 

0 i 
j 

where the l[Pll i norms are functions on the UNIT CIRCLE 

and the IPI i norms refer to the COEFFICIENTS a~, . . . , 

ana 

see also BOMBIERI NORM, NORM, UNIT CIRCLE 
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Polynomial Bracket Norm 

see BOMBIERI NORM 

Polynomial Curve 

L--l l w. qJ 
A curve okained by fitting POLYNOMIALS to each ordi- 
nate of an ordered sequence of points. The above plots 
show POLYNOMIAL curves where the order of the fitting 
POLYNOMIAL varies from p - 3 to p - 1, where p is the 
number of points. 

Polynomial curves have several undesirable features, in- 
cluding a nonintuitive variation of fitting curve with 
varying COEFFICIENTS, and numerical instability for 
high orders. SPLINES such as the B~ZIER CURVE are 
therefore used more commonly. 

see also B~ZIER CURVE, POLYNOMIAL, SPLINE 

Polynomial Fact or 
A FACTOR ofa POLYN~MIALP(X) ofdegree n isa POLY- 
NOMIAL Q(z) of degree less than n which can be multi- 
plied by another POLYNOMIAL R(x) of degree less than 
n to yield P(X), i.e., a POLYNOMIAL Q(X) such that 

For example, since 

X2 - 1 = (x + 1)(x - l), 

both x - 1 and x + 1 are FACTORS of x2 - 1, The COEF- 
FICIENTS of factor POLYNOMIALS are often required to 
be REAL NUMBERS or INTEGERS but could, in general, 
be COMPLEX NWMBERS. 

see aho FACTOR, FACTORIZATION, 
TION 

PRIME FACTORIZA- 

Polynomial Norm 

see BOMBIERI NORM, MATRIX NORM, POLYNOMIAL 
BAR NORMJECTORNORM 

I PI loo = maw=1 PC4 I lPloo = TnaXjIUjl, 



1410 Polynomial Remainder Theorem Polynomial Root 

Polynomial Remainder Theorem 
If the COEFFICIENTS of the POLYNOMIAL 

These can be derived by writing 

( x--)(x-b) =o (6) 
dnxn + dn-lxnwl + v n l  + do = 0 (1) 

are specified to be INTEGERS, then integral ROOTS must 
have a NUMERATOR which is a factor of do and a DE- 
NOMINATOR which is a factor of d, (with either sign 
possible). This follows since a POLYNOMIAL of ORDER 
12 with k integral ROOTS can be expressed as 

(ala: + h)(azx + b2) l  l  l  (ax + bk)(cn-kxn-k + . l  . + co) 

= 0, (2) 

where the ROOTS are ~1 = -b&l, 22 = -b&z, . l  l  , 
and xk = - bk/ak. Factoring out the a& 

a1a2”‘uk (x- f-3 (x- $) n  -v (x- $) 

x(cn-kx 

n-k 
+ l  - l  -f- CO) = 0. (3) 

Now, multiplying through, 

UlU2 ’  l  l  ukCn-kxn + v  l  m + blb2 l  l  l  bkco = 0, (4) 

where we have not bothered with the other terms. Since 
the first and last COEFFICIENTS are d, and do, all the in- 
tegral roots of (1) are of the form [factors of do]/[factors 
of dn]. 

Polynomial Ring 
The RING R[x] of POLYNOMIALS in a variable x. 

see also POLYNOMIAL, RING 

Polynomial Root 
If the COEFFICIENTS of the POLYNOMIAL 

dnxn + dn-lxnB1 + n l  l  + do = 0 (1) 

are specified to be INTEGERS, then integral roots must 
have a NUMERATOR which is a factor of do and a DE- 
NOMINATOR which is a factor of d, (with either sign 
possible). This is known as the POLYNOMIAL REMAIN- 
DERTHEOREM. 

Let the ROOTS of the polynomial 

P(x) E UnXn + Un-lXnml + . . . + ala: + UO 
(2) 

be denoted ~1, ~2, . . . , Tn. Then NEWTON'S RELATIONS 
are 

x 

h-1 
ri=-- 

(3) 
&a 

c 

an-2 
TiTj = 

an 
(4) 

x+1=0* 

(7) 

(8) 

Similarly, 

($4) ($1) =o (9) 

-&-x2(-$+$)+1=0. (10) 

Any POLYNOMIAL can be numerically factored, al- 
though different ALGORITHMS have different strengths 
and weaknesses. 

Ifthere are no NEGATIVE ROOTS ofa POLYNOMMIAL (as 
can be determined by DESCARTES' SIGN RULE), then 
the GREATEST LOWER BOUND is 0. Otherwise, write 
out the COEFFICIENTS, let n = -1, and compute the 
next line. Now, if any COEFFICIENTS are 0, set them to 
minus the sign of the next higher COEFFICIENT, starting 
with the second highest order COEFFICIENT. If all the 
signs alternate, n is the greatest lower bound. If not, 
then subtract 1 from n, and compute another line. For 
example, consider the POLYNOMIAL 

Y x 2x4 + 2x3 - 7x2 -I- x - 7. (11) 

Performing the above ALGORITHM then gives 

0 I2 2 -7 1 -7 
-1 2 0 -7 8 -15 
- 2 -1 -7 8 -15 
-2 2 -2 -3 7 -21 
-3 2 -4 5 -14 35 

so the greatest lower bound is -3. 

If there are no POSITIVE ROOTS of a POLYNOMIAL (as 
can be determined by DESCARTES' SXGN RULE), the 
LEAST UPPER BOUND is 0. Otherwise, write out the 
COEFFICIENTS of the POLYNOMIALS, including zeros as 
necessary. Let n = 1. On the line below, write the 
highest order COEFFICIENT. Starting with the second- 
highest COEFFICIENT, add n-times the number just writ- 
ten to the original second COEFFICIENT, and write it be- 
low the second COEFFICIENT. Continue through order 
zero. If all the COEFFICIENTS are NONNEGATIVE, the 
least upper bound is n. If not, add one to x and repeat 
the process again. For example, take the POLYNOMIAL 

Y = 2x4 - x3 - 7x2 + x - 7. (12) 

Performing the above ALGORITHM gives 

c 

k Un-k Tlr2 l  “?-k = (-1) - . 

an 

(5) 



Polynomial Series 

SO the LEAST UPPER BOUND is 3. 

see also BAIRSTOW’S METHOD, DI~~CARTI~~’ 
SIGN RULE, JENKINS-TRAUB METHOD, LAGUERRE'S 
METHOD, LEHMER-SCHUR METHOD, MAEHLY’S PRO- 
CEDURE, MULLER'S METHOD, ROOT, ZASSENHAWS- 
BERLEKAMP ALGORITHM 

Polynomial Series 

see MULTINOMIAL SERIES 

Polyomino 
A generalization of the DOMINO. An n-omino is defined 
as a collection of 72 squares of equal size arranged with 
coincident sides. FREE polyominoes can be picked up 

and flipped, so mirror image pieces are considered iden- 
tical, whereas FIXED polyominoes are distinct if they 
have different chirality or orientation. FIXED polyomi- 
noes are also called LATTICE ANIMALS. 

Redelmeier (1981) computed the number of FREE and 
FIXED polyominoes for n 5 24, and Mertens (1990) gives 
a simple computer program. The sequence giving the 
number of FREE polyominoes of each order (Sloane’s 
AOO0105, Ball and Coxeter 1987) is shown in the second 
column below, and that for FIXED polyominoes in the 
third column (Sloane’s AOl4559). 

n 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

Free Fixed 
1 1 
1 2 
2 6 
5 19 

12 63 
35 216 

108 760 
369 2725 

1285 9910 
4655 39446 

17073 135268 
63600 505861 

238591 1903890 
901971 7204874 

3426576 27394666 
13079255 104592937 
50107909 400795844 

192622052 1540820542 
742624232 5940738676 

2870671950 22964779660 
11123060678 88983512783 
43191857688 345532572678 

168047007728 1344372335524 
654999700403 5239988770268 

Pos. Holes 
0 
0 
0 
0 
0 
0 
1 
6 

37 
384 
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The best currently known bounds on the number of w  
polyominoes are 

3.72” < P(n) < 4.65” 

(Eden 1961, Klarner 1967, Klarner and Rivest 1973, Ball 
and Coxeter 1987). For n = 4, the quartominoes are 
called STRAIGHT,L,T,SQUARE, and SKEW. For n = 5, 
the pentominoes are called f, I, L, N, P, T, U, V, W, 
X, y, and 2 (Golomb 1995). 

1 0 

see &O DOMINO, HEXOMINO, MONOMINO, PEN- 
TOMINO, POLYABOLO, POLYCUBE, POLYHEX, POLYIA- 
MOND, POLYKING,POLYPLET, TETROMINO,TRIOMINO 
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Polyomino Tiling 
A TILING of the PLANE by specified types of POLYOMI- 
NOES. Interestingly,the FIBONACCI NWMBERF,+~ gives 
the number of ways for 2 x 1 dominoes to cover a 2 x n 
checkerboard. 

see also FIBONACCI NUMBER 
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Polyplet 

0 

- UP w d # 
A POLYOMINO-like object made by attaching squares 
joined either at sides or corners. Because neighboring 
squares can be in relation to one another as KINGS may 
move on a CHESSBOARD, polyplets are sometimes also 
called POLYKINGS. The number of n-polyplets (with 
holes allowed) are 1, 2, 5, 22, 94, 524, 3031, . . . (Sloane’s 
A030222). The number of n-polyplets having bilateral 
symmetry are 1, 2, 4, 10, 22, 57, 131, . . . (Sloane’s 
A030234). The number of n-polyplets not having bilat- 
eral symmetry are 0, 0, 1, 12, 72, 467, 2900, . . . (Sloane’s 
A030235). The number of fixed n-polyplets are 1, 4, 20, 
110, 638, 3832, . . . (Sloane’s A030232). The number 
of one-sided n-polyplets are 1, 2, 6, 34, 166, 991, l  l  l  

(Sloane’s A030233) l  

see aho POLYIAMOND, POLYOMINO 

References 
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Polytope 
A convex polytope may be defined as the CONVEX HULL 
of a finite set of points (which are always bounded), or as 
the intersection of a finite set of half-spaces. Explicitly, 
a d-dimensional polytope may be specified as the set, of 
solutions to a system of linear inequalities 

mx < b, - 

where m is a real s x d MATRIX and b is a real S-VECTOR. 
The positions of the vertices given by the above equa- 
tions may be found using a process called VERTEX ENU- 
MERATION. 

A regular polytope is a generalization of the PLATONIC 
SOLIDS to an arbitrary DIMENSION. The NECESSARY 
condition for the figure with SCHL~FLI SYMBOL {p, q, r} 
to be a finite polytope is 

cos($ <sin(E)s 

SUFFICIENCY can be established by consideration of the 
six figures satisfying this condition. The table below 
enumerates the six regular polytopes in 4-D (Coxeter 
1969, p. 414). 

Name 

regular simplex 
hypercube 

16-cell 
24-cell 

120-cell 
600-cell 

Schlgfli 
Symbol 

{%% 3) 
i&3,3) 
PI% 41 
13,431 
{k&3) 
{3,3,5) 

No 

5 10 10 5 
16 32 24 8 

8 24 32 16 
24 96 96 24 

600 1200 720 120 
120 720 1200 600 

N2 N3 

Here, No is the number of VERTICES, Nl the number of 
EDGES, N2 the number of FACES, and N3 the number 
of cells. These quantities satisfy the identity 

NO -Nr+Nz-N3=0, 

which is a version ofthe POLYHEDRAL FORMULA. 

For n-D with n > 5, there are only three regular poly- - 
topes, the MEASURE POLYTOPE, CROSS POLYTOPE, 
and regular SIMPLEX (which are analogs of the CUBE, 
OCTAHEDRON, and TETRAHEDRON). 

see also 16-CELL, 24-CELL, 120-CELL, 600-CELL, 
CROSS POLYTOPE, EDGE (POLYTOPE), FACE, FACET, 
HYPERCUBE, INCIDENCE MATRIX, MEASURE POLY- 
TOPE, RIDGE, SIMPLEX, TESSERACT, VERTEX (POLY- 
HEDRON) 
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Poncelet ‘s Closure Theorem 

Pond&% Closure Theorem 
If an n-sided PONCELET TRANSVERSE constructed for 
two given CONIC SECTIONS is closed for one point of 
origin, it is closed for ‘any position of the point of origin. 
Specifically, given one ELLIPSE inside another, if there 
exists one CIRCUMINSCRRIBED (simultaneously inscribed 
in the outer and circumscribed on the inner) n-gon, then 
any point on the boundary of the outer ELLIPSE is the 
VERTEX of some CIRCUMINSCRIBED n-gon. 

References 
Diirrie, H. 100 Great Problems of Elementary Mathematics: 

Their History and Solutions. New York: Dover, p. 193, 
1965. 

Poncelet’s Continuity Principle 

see PERMANENCE OF MATHEMATICAL RELATIONS 

PRINCIPLE 

Poncelet-Steiner Theorem 
AllEuclidean GEOMETRIC CONSTRUCTIONS canbecar- 
ried out with a STRAIGHTEDGE alone if, in addition, 
one is given the RADIUS of a single CIRCLE and its cen- 
ter. The theorem was suggested by Poncelet in 1822 
and proved by Steiner in 1833. A construction using 
STRAIGHTEDGE alone is called a STEINER CONSTRUC- 
TION. 

see UZSU GEOMETRIC CONSTRUCTION, STEINER CON- 
STRUCTION 
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DSrrie, H. “Steiner’s Straight-Edge Problem.” 534 in 100 
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tory and Solutions. New York: Dover, pp. 165-170, 1965. 
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Poncelet’s Theorem 

~~~PONCELET'S CLOSURE THEOREM 

Poncelet Transform 

see PONCELET TRANSVERSE 

Poncelet Transverse 
Let a CIRCLE Cl lie inside another CIRCLE Cz. From 
any point on C2, draw a tangent to Cl and extend it 
to Cz. From the point, draw another tangent, etc. For 
n tangents, the result is called an n-sided PONCELET 
TRANSFORM. 

References 
Dijrrie, H. 100 Great Problems of Elementary Mathematics: 

Their History and Solutions. New York: Dover, p. 192, 
1965. 
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Pong Hau K’i 
A Chinese TIC-TAc-TOE-like game, 

see also TIC-TAGTOE 

References 
Evans, R. “Pang Hau K’i.” Games and Puzzles 53, 19, 1976. 

Straffik, P. D. jr. “Position Graphs for Pong Hau K’i and 

Mu Torere.” Math. Mug. 68, 382-386, 1995. 

Pons Asinorum 
An elementary theorem in geometry whose name means 
“ass’s bridge.” The theorem states that the ANGLES 
at the base of an ISOSCELES TRIANGLE (defined as a 
TRIANGLE with two legs of equal length) are equal. 

see also ISOSCELES TRIANGLE, PYTHAGOREAN THEO- 
REM 

References 
Dunham, W. Journey Through Genius: The Great Theorems 

of Mathematics. New York: Wiley, p. 38, 1990. 

Pontryagin Class 
The ith Pontryagin class of a VECTOR BUNDLE is ( -l)i 
times the ith CHERN CLASS of the complexification of 
the VECTOR BUNDLE. It is also in the 4ith cohomology 
group of the base SPACE involved. 

see also CHERN CLASS, STIEFEL-WHITNEY CLASS 

Pontryagin Duality 
Let G be a locally compact ABELIAN GROUP. Let G* 
be the group of all homeomorphisms G + R/Z, in the 
compact open topology. Then G” is also a locally com- 
pact ABELIAN GROUP, where the asterisk defines a con- 
travariant equivalence of the category of locally com- 
pact Abelian groups with itself. The natural mapping 
G + (G*)*, sending g to G, where G(f) = f(g), is 
an isomorphism and a HOMEOMORPHISM. Under this 
equivalence, compact groups are sent to discrete groups 
and vice versa. 

see also ABELIAN GROUP, HOMEOMORPHISM 

Pontryagin Maximum Principle 
A result is CONTROL THEORY. Define 

Then in order for a control u(t) and a trajectory x(t) 
to be optimal, it is NECESSARY that there exist NON- 
ZERO absolutely continuous vector function Q(t) = 

b/w), Tw>, ” l  , Qba(t)) 
corresponding to the functions 

u(t) and x(t) such that 

1. The function H($(t), x(t), u) attains its maximum at 
the point u = u(t) almost everywhere in the interval 

to <t<t1, 

W(tL x(t)3 u(t)> = max H($(t), x(t), u). uEU 
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2. At the terminal time tl, the relations Q&l) 5 0 and 
H($(tl), x(tl), u(tl)) = 0 are satisfied. 

where 
c- = Jm. PI-@2 - 

The STANDARD ERROR is 

(4) 

References 
Iyanaga, S. and Kawada, Y. (Eds.). “Pontrjagin’s Maximum 

Principle.” 588C in Encyclopedic Dictionary of Mafhemat- 
its. Cambridge, MA: MIT Press, p. 295-296, 1980. 

+ h(l-az> 
n2 

(5) 

(6) 

2 
Spool = 

(nl - l)s12 + (n2 - l)S2' 

n1 + n2 - 2 
l  

(7) 

Pontryagin Number 
The Pontryagin number is defined in terms of the PON- 
TRYAGIN CLASS of a MANIFOLD as follows. For any 
collection of P~NTRYAGIN CLASSES suchthattheir cup 

product has the same DIMENSION as the MANIFOLD, 
this cup product can be evaluated on the MANIFOLD'S 
FUNDAMENTAL CLASS. The resulting number is called 
the Pontryagin number for that combination of Pontrya- 
gin classes. The most important aspect of Pontryagin 

see also z-TRANSFORM 

Population Growth 
The differential equation describing exponential growth 
is 

dN N -=- 
dt r’ (1) 

This can be integrated directly 

numbers is that they are COBORDISM invariant. To- 

gether, Pontryagin and STIEFEL-WHITNEY NUMBERS 
determine an oriented manifold’s oriented COBORDISM 

see also CHERN NUMBER, STIEFEL-WHITNEY NUMBER 

( > 2 

(3) 

Ponxo’s Illusion 

A lnN t 
( > 

- -- - 
No 7’ 

Exponentiating, 

w  = Noet/‘. (4) 
The upper HORIZONTAL line segment in the above figure 
appears to be longer than the lower line segment despite 
the fact that both are the same length. 

see also ILLUSION, MUELLER-LYER ILLUSION, POGGEN- 
DORFF ILLUSION, VERTICAL-HORIZONTAL ILLUSION 

Defining N(t = 1) = IV& gives 7 = l/cr in (4), SO 

at 
N(t) = Noe . (5) 

The quantity a in this equation 
the MALTHUSSAN PARAMETER. 

is sometimes known 
References 
Fineman, M. The Nature 

Dover, p. 153, 1996, 
of Visual Illusion. New York: 

Consider a more complicated growth law 

POP 
An action which removes a single element from the top 
of a QUEUE or STACK, turning the LIST (al, ~2, . l  . , a,) 
into (a~, l ... a,) and yielding the element al. 

see also PUSH, STACK 

(6) 

where a > 1 is a constant. This can also be integrated 
directlv 

"  

dN -- 
N- ( > 

a-1 dt 
t  

(7) 
Population Comparison lnN=at-lnt+C (8) 
Let 21 and X2 be the number of successes 

taken from two populations. Define 
in variates 

N(t) 
Ceat 

= 
t l  

(9) 

Note that this expression blows up at t = 0. We are 
given the INITIAL CONDITION that N(t = 1) = Noe*, 
so C = No. 

N(t) = No:. (10) The ESTIMATOR of the difference is then $1 - &. Doing 
a Z-TRANSFORM, 

The t in the DENOMINATOR of (10) greatly suppresses 
the growth in the long run compared to the simple 
growth law. 

z _ ($1 -321 - (PI - P2) - > (3) 
=ih -P2 



I 

Porism Positive Definite Matrix 1415 

The LOGISTIC GROWTH CURVE, defined by Poset Dimension 

dN 
-= 

r(K - N) 

dt N (11) 

is another growth law which frequently arises in biology. 
It has a rather complicated solution for N(t). 

see also GOMPERTZ CURVE,LIFE EXPECTANCY, L~GIS- 
TIC GROWTH CURVE, LOTKA-VOLTERRA EQUATIONS, 
MAKEHAM CURVE, MALTHUSIAN PARAMETER, SUR- 
VIVORSHIP CURVE 

Porism 
An archaic type of mathematical proposition whose pur- 
pose is not entirely known. 

see also AXIOM, LEMMA, POSTULATE, PRINCIPLE, 
STEINER'S PORISM, THEOREM 

Porter’s Constant 
N.B. A detailed on-line essay by S. Finch was the start- 

ing point for this entry. 

The constant appearing in FORMULAS for the 
ofthe EUCLIDEAN ALGORITHM, 

efficiency 

c- 6ln2 
- 

IT2 
[3ln2+4y- $ct(2)-21 -i 

= 1.4670780794.. l  , 

where 7 isthe EULER-MASCHERONI CONSTANT and[(z) 
is the RIEMANN ZETA FUNCTION. 

see also EUCLIDEAN ALGORITHM 

References 
Finch, S. “Favorite 
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Mathematical Constants.” http: //WV. 
olve/constant/porter/porter.html. 
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P&a’s Theorem 
Let G be a SIMPLE GRAPH with n VERTICES. 

1. If, for every JC in 1 5 k < (n - 1)/2, the number of 
VERTICES of VALENCY not exceeding /C is less than 
k, and 

2. If, for n ODD, the number of VERTICES with VA- 
LENCY not exceeding (n - 1)/2 is less than or equal 
to (n - 1)/2, 

then G contains a HAMILTONIAN CIRCUIT. 

see also HAMILTONIAN CIRCUIT 

Pos& 

see PARTIALLY ORDERED SET 

The DIMENSION of a POSET P = (X, 5) is the size of the 
smallest REALIZER of P. Equivalently, it is the smallest 
INTEGER d suchthat p is ISOMORPHIC~~ a DOMINANCE 
order in IP. 

see also DIMENSION, DOMINANCE, ISOMORPHIC 
POSETS, REALIZER 

References 
Dushnik, B. and Miller, E. W. “Partially Ordered Sets.” 

Amer. J. 1Muth. 63, 600-610, 1941. 
Trotter, W. T. Combinatorics and Partially Ordered Sets: 
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Position Four-Vector 
The CONTRAVARIANT FOUR-VECTOR arising in special 
and general relativity, 

where 
of two 

see 
QU 

c is the speed 

X0 ct xP- x 1 [I [I X2 
= x - - 

Y ’ 
X3 z 

four-vectors 
of light and t is time. Multiplication 

gives the spacetime interval 

I = gp”xpxv = (2o)2 - (xl)” - (x2)” - (x3)2 

= (ct)” - (xy2 - (x2)2 - (x3)2 

U~SO FOUR- 
ATERNION 

VE ICTOR, LORENTZ TRANSFORMATION, 

Position Vector 

see RADIUS VECTOR 

Positive 
A quantity x > 0, which may be written with an explicit 
PLUS SIGN for emphasis, +x. 

see also NEGATIVE, NONNEGATIVE, PLUS SIGN, ZERO 

Positive Definite Function 
A POSITIVE definite FUNCTION f on a GROUP G is a 
FUNCTION for which the MATRIX {f(xixj-I)} is always 
POSITIVE SEMIDEFINITE HERMITIAN. 

References 
Knapp, A. W. “Group Representations and Harmonic Anal- 

ysis, Part II.” Not. Amer. Math. Sot. 43, 537-549, 1996. 

Positive Definite Matrix 
A MATRIX A is positive definite if 

(Av) l  v > 0 (1) 

for all VECTORS v # 0. All EIGENVALUES of a posi- 
tive definite matrix are POSITIVE (or, equivalently, the 
DETERMINANTS associated with all upper-left SUBMA- . 
TRICES are POSITIVE). 
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The DETERMINANT of a positive definite matrix is Pos- 
ITIVE, but the converse is not necessarily true (i.e., a 
matrix with a POSITIVE DETERMINANT is not necessar- 
ily positive definite). 

positive definite if all the principal minors in the top- 
left corner of A are POSITIVE, in other words 

A REAL SYMMETRIC MATRIX A is positive definite IFF 
there exists a REAL nonsingular MATRIX M such that 

A = MMT. (2) 

A 2 x 2 SYMMETRIC MATRIX 

(4) 

(5) 

(6) 

a b [ 1 b c (3) 
is positive definite if 

aq2 + 2bUlV2 + cvz2 > 0 

for all v = (WI, ~2) # 0. 

A HERMITIAN MATRIX A is positive definite if 

1. aii > 0 for all i, 

(4) 

see also INDEFINITE QUADRATIC FORM, POSITIVE 
SEMIDEFINITE QUADRATIC FORM 

References 
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Press, p. 1106, 1979. 

Le Lionnais, F. Les nombres remarquables. Paris: Hermann, 
p. 38, 1983. 

Positive Definite Tensor 
A TENSOR g whose discriminant satisfies 

2. t&i&j > l&j/’ for i # j, 

3. The element of largest modulus must lie on the lead- 
ing diagonal, 

4. IAl > o. 

g = 911922 - g122 > 0. 

see also DETERMINANT, EIGENVALUE, HERMITIAN MA- 
TRIX, MATRIX, POSITIVE SEMIDEFINITE MATRIX 

Positive Integer 

see Z+ 
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Gradshteyn, I. S. and Ryzhik, I. M. Tables of Integrals, Se- 
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Positive Semidefinite Matrix 
A MATRIX A is positive semidefinite if 

(Av) . v 2 o 

Positive Definite Quadratic Form 
A QUADRATICFORMQ( x is said to be positive definite ) 
if&(x) > 0 for x# 0. A REAL QUADRATIC FORM in n 

variables is positive definite IFF its canonical form is 

for all v # 0. 

see also POSITIVE DEFINITE MATRIX 

Positive Semidefinite Quadratic Form 
A QUADRATIC FORM Q(x) is positive semidefinite if it 
is never < 0, but is 0 for some x # 0. The QUADRATIC 
FORM, written in the form (x, Ax), is positive semidefi- 
nite IFF every EIGENVALUE of A is NONNEGATIVE. 

see ~~INDEFINITE QUADRATIC FORM,POSITIVEDEF- 
INITE QUADRATIC FORM 

Q( > 2 = Z12 + zz2 + . . . + zn2* 

A BINARY QUADRATIC FORM 

F(x, Y> = am2 + 2al2xy + a22y2 (2 

of two REAL variables is positive definite if it is > 0 fo 

any (x7 Y) # (O>O>, th ere f ore if all > 0 and the DISCRIM- 

INANT a = alla22 - a12’ > 0. A BINARY QUADRATIC 
FORM is positive definite if there exist NONZERO x and 
y such that 

(ax’ + 2bxy + cy’)’ < $1~ - b21 (3) 

(Le Lionnais 1983). 

A QUADRATIC FORM (x,Ax) is positive definite IFF 
every EIGENVALUE of A is POSITIVE. A QUADRATIC 
FORM Q = (x,Ax) with A a HERMITIAN MATRIX is 

References 
Gradshteyn, I. S. and Ryzhik, I. M. Tables of Integrals, Se- 

ries, and Products, 5th ed. San Diego, CA: Academic 
Press, p. 1106, 1979. 

Postage Stamp Problem 
Consider a SET AI, = {al, a2, . . . , ak} of INTEGER de- 
nomination postage stamps with 1 = al < a2 < l  . . < 
ak. Suppose they are to be used on an envelope with 
room for no more than h stamps. The postage stamp 
problem then consists of determining the smallest INTE- 
GER N(h, &) which cannot be represented by a linear 

combination c,“=, xiai with xi 2 0 and c,“=, xi < h. 
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Exact solutions exist for arbitrary AI, for k = 2 and 3. 
The k; = 2 solution is 

n(h, AZ) = (h + 3 - a2)az - 2 

for h > a2 - - 2. The general problem consists of finding 

n(h, k> = maxn(h, Ak). 
Ak 

It is known that 

n(h, 2) = [$(h2 + 6h + I)] 1 

(Stijhr 1955, Guy 1994), where 1x1 is the FLOOR FUNC- 
TION, the first few values of which are 2, 4, 7, 10, 14, 18, 
23, 28, 34, 40, . . . (Sloane’s A014616). 

see &O HARMONIOUS GRAPH, STAMP FOLDING 
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Posterior Distribution 
see I~AYESTAN ANALYSIS 

Postnikov System 
An iterated FIBRATION of EILENBERG-MAC LANE 
SPACES. Every TOPOLOGICAL SPACE has this HUMO- 
TOPY type. 

see also EILENBERG-MAC LANE 
HOM~T~ PY 

SPACE, FIBRATION, 

Postulate 
A statement, also known as an AXIOM, which is taken 
to be true without PROOF. Postulates are the basic 
structure from which LEMMAS and THEOREMS are de- 
rived. The whole of EUCLIDEAN GEOMETRY, for ex- 
ample, is based on five postulates known as EUCLID'S 
POSTULATES. 
see also ARCHIMEDES' POSTULATE, AXIOM, BER- 
TRAND'S POSTULATE, CONJECTURE, EQUIDISTANCE 
POSTULATE, EUCLID'S FIFTH POSTULATE, EUCLID'S 
POSTULATES,LEMMA,PARALLELPUSTULATE,PORISM, 
PROOF,THEOREM,TRIANGLE POSTULATE 

Potato Paradox 
You buy 100 pounds of potatoes and are told that they 
are 99% water. After leaving them outside, you discover 
that they are now 98% water. The weight of the dehy- 
drated potatoes is then a surprising 50 pounds! 

References 
Paulos, J. A. A Mathematician Reads the Newspaper. New 

York: BasicBooks, p. 81, 1995. 

Potential Function 
The term used in physics and engineering for a HAR- 

MONIC FUNCTION. Potential functions are extremely 
useful, for example, in electromagnetism, where they re- 
duce the study of a 3-component VECTUR FIELD to a 
l-component SCALAR FUNCTION. 

see also HARMONIC FUNCTION, LAPLACE'S EQUATION, 
SCALAR POTENTIAL,VECTORPOTENTIAL 

Potential Theory 
The study of HARMONIC FUNCTIONS (also called Po- 
TENTIAL FUNCTIONS). 

see also HARMONIC FUNCTION, SCALAR POTENTIAL, 
VECTORPOTENTIAL 

References 
Kellogg, 0. D. Foundations of Potential Theory. New York: 

Dover, 1953. 
MacMillan, W. D. The Theory of the Potential. New York: 

Dover, 1958. 

Pothenot Problem 

see SNELLIUS-POTHENOT PROBLEM 

Poulet Number 
A FERMAT PSEUDOPRIME to base 2, denoted psp(2), 
i.e., a COMPOSITE ODD INTEGER such that 

y-1 E 1 (mod n). 

The first few Poulet numbers are 341, 561, 645, 1105, 
1387, . . . (Sloane’s A001567). Pomerance et al. (1980) 
computed all 21,853 Poulet numbers less than 25 x 10’. 

Pomerance has shown that the number of Poulet 
bers less than z for sufficiently large 2 satisfy 

num- 

exp[(ln2)5’14] < pZ(2) < rr:exp 
( 

-ln~~~~~~X) 

(Guy 1994). 

A Poulet number all of whose DIVISORS d satisfy c1]2’-2 
is called a SUPER-P• ULET NUMBER. There are an in- 
finite number of Poulet numbers which are not SUPER- 
POULET NUMBERS. Shanks (1993) calls any integer sat- 
isfying 2”-l G 1 (mod n) (i.e., not limited to ODD com- 
posite numbers) a FERMATIAN. 

see also FERMAT PSEUDOPRIME, PSEUDOPRIME, Su- 
PER-PUULET NUMBER 
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Power 

Power 

The exponent to which a given quantity is raised is 
known as its POWER. The expression z:a is therefore 
known as “51: to the ath POWER.” The rules for com- 
bining quantities containing powers are called the EX- 
PONENT LAWS. 

Special names given to various powers are listed in the 
following table. 

Power Name 

l/2 square root 

113 cube root 
2 squared 
3 cubed 

The SUM ofpth POWERS of the first n POSITIVE INTE- 
GERS is givenby FAULHABER'S FORMULA, 

n 

IE 
kP - & &6x’ (p; l)B,,,.n*, - 

k-1 k=l 

where &p is the KRONECKER DELTA, (L) is a BINOMIAL 
COEFFICIENT, and BI, is a BERNOULLI NUMBER. 

Let sn be the largest INTEGER that is not the SUM of 
distinct nth powers of POSITIVE INTEGERS (Guy 1994). 
The first few values for n = 2, 3, . q l  are 128, 12758, 
5134240, 67898771,  l  . . (Sloane’s A001661). 

CATALAN's CONJECTURE states that 8 and 9 (Z3 and 
32) are the only consecutive POWERS (excluding 0 and 
l), i.e., the only solution to CATALAN'S DIOPHANTINE 
PROBLEM. This CONJECTURE has not yet been proved 
or refuted, although R. Tijdeman has proved that there 
can be only a finite number of exceptions should the 
CONJECTURE not hold. It is also known that 8 and 9 are 
the only consecutive CUBIC and SQUARE NUMBERS (in 
either order). Hyyrij and Mgkowski proved that there do 
not exist three consecutive POWERS (Ribenboim 1996). 

. Very few numbers of the form np * 1 are PRIME (where 
composite powers p = I& need not be considered, since 
dkb) * 1 = (nk)b * l)* The only PRIME NUMBERS of 
the form np - 1 for n 2 100 and PRIME 2 5 p < 10 
correspond to n = 2, i.e., 22 - I = 3, 23 - 1 = 7, 
25 - 1 = 31, . . . . The only PRIME NUMBERS of the form 

np + 1 for n 5 100 and PRIME 2 2 p 5 10 correspond 
to P = 2 with n = 1, 2, 4, 6, 10, 14, 16, 20, 24, 26, . . . 
(Sloane’s AOO5574). 

There are no nontrivial solutions to the equation 

In + 2n + . . l  + mn = (m + 1)” 

for m < 10 2,000,000 - (Guy 1994, p. 153). 

see &O APOCALYPTIC NUMBER, BIQUADRATIC NUM- 
BER, CATALAN'S CONJECTURE, CATALAN'S DIOPHAN- 
TINE PROBLEM, CUBE ROOT, CUBED, CUBIC NUM- 
BER,EXPONENT, EXPONENTLAWS, FAULHABER'S FOR- 
MULA, FIGURATE NUMBER, MOESSNER'S THEOREM, 
NARCISSISTIC NUMBER, POWER RULE, SQUARE NUM- 
BER,SQUAREROOT,SQUARED,SUM,WARING'S PROB- 
LEM 
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Power Center 

see RADICAL CENTER 

Power (Circle) 

The POWER of the two points P and Q with respect to 
a CIRCLE is defined by 

p=OPxPQ. 

Let R be the RADIUS of a CIRCLE and d be the distance 
between a point P and the circle’s center. Then the 
POWER of the point P relative to the circle is 

p=d2-R2. 



Power Curve 

If P is outside the CIRCLE, its POWER is POSITIVE and 
equal to the square of the length of the segment from P 
to the tangent to the CIRCLE through P. If P is inside 
the CIRCLE, then the POWER is NEGATIVE and equal to 
the product of the DIAMETERS through P. 

The LOCUS of points having POWER k with regard to a 
fixed CIRCLE of RADIUS r is a CONCENTRIC CIRCLE of 
RADIUS dm. The CHORDAL THEOREM states that 
the LOCUS of points having equal POWER with respect 
to two given nonconcentric CIRCLES is a line called the 
RADICAL LINE (or CHORDAL; Dijrrie 1965). 

see also CHORDAL THEOREM, COAXAL CIRCLES, IN- 
VERSE POINTS, INVERSION CIRCLE, INVERSION RA- 
DIUS, INVERSIVE DISTANCE, RADICAL LINE 
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Power Curve 
Thecurvewith TRILINEAR COORDINATES at :bt : ct for 
a given POWER t. 

see also POWER 

References 
Kimberling, C. “Major Centers of Triangles.” Amer. Math. 
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Power Line 

see RADICAL AXIS 

Power Point 
TRIANGLE centers with TRIANGLE CENTER FUNCTIONS 

of the form a = 8 are called nth POWER points. The 
0th power point is the INCENTER, 
TERFUNCTION a = 1. 

with TRIANGLE CEN- 

see also INCENTER, TRIANGLE CENTER FWNCTION 
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Power Series 

Power Rule 
The DERIVATIVE of the POWER X~ is given by 

d 1 dll: xn = nx . ( 1 
n- 

1419 

see UZSO CHAIN RULE, DERIVATIVE, EXPONENT LAWS, 

PRODUCT RULE 
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Power Series 
A power series in 
form 

a variable z is an infinite SUM of the 

OQ 

): * a&, 

n 

(1) 

where 72 2 0 and ai are INTEGERS, REAL NUMBERS, 
COMPLEX NUMBERS, or any other quantities of a given 

type. 

A CONJECTURE ofP6lya is that if a FUNCTION has a 
POWER series with INTEGER COEFFICIENTS and RA- 
DIUS OF CONVERGENCE 1,then either the FUNCTION is 
RATIONAL or the UNIT CIRCLE is a natural boundary. 

A generalized POWER sum a(h) for h = 0, 1, . . l  is given 

bY 

a(h) = FAi(h)aih, 
i=l 

(a> 

with distinct NONZERO ROOTS ai, COEFFICIENTS A#i) 
which are POLYNOMIALS of degree ni - 1 for POSITIVE 

INTEGERS ni, 
sum has order 

and i E [l,m]. The generalized POWER 

m 

nE 
x 
*- z-m 

ni. (3) 

For any power series, one of the following is true: 

1. The series converges only for x = 0. 

2. The series converges absolutely for all x. 

3. The series converges absolutely for all x in some finite 
open interval (-R, R) and diverges if 5 < -4 or 
2 > R. At the points 2 = R and z = -R, the series 
may converge absolutely, converge conditionally, or 
diverge. 

To determine the interval of convergence, apply the RA- 
TIO TEST for ABSOLUTE CONVERGENCE and solve for 
x. A POWER series may be differentiated or integrated 

of convergence. Convergent power 
plied and divided (if there is no di- 

00 
x k-P l  

k=l 

(4) 

CONVERGES if p > 1 and DIVERGES if 0 < p < 1, - 
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see also BINOMIAL SERIES, CONVERGENCE TESTS, 
LAURENT SERIES, MACLAURIN SERIES, MULTINO- 
MIAL SERIES, ~-SERIES, POLYNOMIAL, POWER SET, 
QUOTIENT-DIFFERENCE ALGORITHM, RECURRENCE 
SEQUENCE, SERIES, SERIES REVERSION, TAYLOR SE- 
RIES 

see also ACKERMANN FUNCTION, FERMAT NUMBER, 
MILLS' CONSTANT 
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Power (Triangle) 
The total POWER of a TRIANGLE is defined by 

(1) 

where ai are the side lengths, and the “partial power” 
is defined by 

Power Set 
Given a SET S, the POWER SET of S is the SET of all 
SUBSETS of S. The order of a POWER set of a SET 
of order n is 2Y Power sets are larger than the SETS 
associated with them. 

(2) 

a34 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

Then 
Pl = a2a3 cos QII 

see also SET, SUBSET 
p = p1 + p2 + p3 

P2 +p12 +~2~ +ps2 = aI4 +az4 

- - 

PI = AH2 l  AA 

- = alazas = 4AR 
cos a1 

Power Spectrum 
For a given signal, the power spectrum gives a plot of the 
portion of a signal’s power (energy per unit time) falling 
within given frequency bins. The most common way 
of generating a power spectrum is by using a FOURIER 
TRANSFORM, but other techniques such as the MAXI- 
MUM ENTROPY METHOD can also be used. 

+ 

PI tan ~1 = p2 tana = p3 tanas, (9) References 
Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetter- 

ling, W. T. “Power Spectra Estimation Using the FFT” 
and “Power Spectrum Estimation by the Maximum En- 
tropy (All Poles) Method.” 513.4 and 13.7 in Numerical 
Recipes in FORTRAN: The Art of Scientific Computing, 
2nd ed. Cambridge, England: Cambridge University Press, 
pp. 542-551 and 565-569, 1992. 

where n is the AREA of the TRIANGLE and Hi are the 
FEET ofthe ALTITUDES. Finally,ifaside ofthe TRIAN- 
GLE and the value of any partial power are given, then 
the LOCUS of the third VERTEX is a CIRCLE or straight 
1. 

see also ALTITUDE, FOOT, TRIANGLE 

Power (Statistics) 
The probability of getting a positive result for a given 
test which should produce a positive result. 

References 
Johnson, R. A. Modern Geometry: An Elementary Treatise 

on the Geometry of the Triangle and the Circle. Boston, 
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see also PREDICTIVE VALUE, 
FICITY, STATISTICAL TEST 

SENSITIVITY, SPECI- 

Powerfree 

see BIQUADRATEFREE, CUBEFREE, PRIME NUMBER, 
SQUAREFREE 

Power Tower 

Powerful Number 
An INTEGER VI such that if pfm, then p2jm, is called a 
powerful number. The first few are 1, 4, 8, 9, 16, 25, 27, 
32, 36, 49, . . . (Sloane’s A001694). Powerful numbers 
are always of the form a2b3 for a, b > 1. 

where T is Knuth’s (1976) ARROW NOTATION. 

a f” n = a t”-’ [a tk (71 - I)]. 

Not every NATURAL NUMBER is t,he sum of two powerful 
numbers, but Heath-Brown (1988) has shown that every 
sufficiently large NATURAL NUMBER is the sum of at 
most three powerful numbers. There are infinitely many 
pairs of consecutive powerful numbers, but ErdGs has 

The infinite power tower x TT 00 = x2' converges IFF 
e -’ 2 x < el/” (0.0659 < x < 1.4446). - - - 
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conjectured that there do not exist three consecutive "WITNESS") such that zn-’ =_ 1 (mod n) but xe $ 1 
powerful numbers. The C~NJECTWRE that there are no (mod n) whenever e is one of (n - 1)/p+ Then FER- 

powerful number triples implies that there are infinitely MAT'S LITTLE THEOREM CONVERSE states that n is 
many Wieferich primes (Granville 1986, Vardi 1991). PRIME (Wagon 1991, pp. 278-279). 

By applying FERMAT'S LITTLE THEUREM CONVERSE 
to n and recursively to each purported factor of n-l, a 
certificate for a given PRIME NUMBER can be generated. 

A separate usage of the term powerful number is for 
numbers which are the sums of the positive powers of 
their digits. The first few are 1, 2, 3, 4, 5, 6, .7, 8, 9, 24, 
43, 63, 89, . . . (Sloane’s A007532). 

References 
Granville, A. ‘LPowerful Numbers and Fermat’s Last Theo- 

rem.” C. R. Math. Rep. Acad. Sci. Canada 8, 215-218, 
1986. 

Guy, R. K. “Powerful Numbers.” §B16 in Unsolved Problems 
in Number Theory, 2nd ed. New York: Springer-Verlag, 
pp+ 67-73, 1994. 

Heath-Brown, D. R. ‘&Ternary Quadratic Forms and Sums of 
Three Square-Full Numbers.” In Se’minaire de Theorie des 
Nombres, Paris 1986-87 (Ed. C. Goldstein). Boston, MA: 
Birkhguser, pp. 137-163, 1988. 

Ribenboim, P. “Cat alan’s Conjecture.” Amer. Math. 

MonthEy 103, 529-538, 1996. 
Sloane, N. J. A. Sequences AOO1694/M3325 and A007532/ 

MO487 in “An On-Line Version of the Encyclopedia of In- 
teger Sequences.” 

Vardi, I. Computational Recreations in Mathematics. Read- 
ing, MA: Addison-Wesley, pp+ 59-62, 1991. 

Practical Number 
A number n is practical if for all k < n, k is the sum 
of distinct proper divisors of n. Defined in 1948 by 
A. K. Srinivasen. All even PERFECT NUMBERS are prac- 
tical. The number 

m = 2n-1(2n - 1) 

Stated another way, the Pratt certificate gives a proof 
that a number a is a PRIMITIVE ROOT of the multiplica- 
tive GRoUP (mod p) which, along with the fact that a 
has order p - 1, proves that p is a PRIME. 

7919 -7 

107- 2 

13 -2 
2 
3 -2 

2 
The figure above gives a certificate for the primality of 
n = 7919. The numbers to the right of the dashes are 
WITNESES to the numbers to left. The set {pi} for 
n-l = 7918 is given by {2,37,107}. Since 77g18 = 
1 (mod 7919) but 77g18/2, 77g18/37, 77gf8/107 $ 1 (mod 
7919), 7 is a WITNESS for 7919. The PRIME divisors of 
7918 = 7919 - 1 are 2, 37, and 107. 2 is a so-called 
%~~-WITNESS~’ (i.e., it is recognized as a PRIME with- 
outfurther,ado), and the remainder of the witnesses are 
shown as a nested tree. Together, they certify that 7919 

is practical for all n = 2, 3, . l  . . The first few practical is indeed.P~r~~. Because it requires the FACTORIZA- 
numbers are 1, 2, 4, 6, 8, 12, 16, 18, 20, 24, 28, 30, 32, TION of n - 1, the METHOD of Pratt certificates is best 
36, 40, 42, 48, 54, 56, . . . (Sloane’s A005153). G. Melfi applied to small numbers (or those numbers n known to 

has computed twins, triplets, and 5-tuples of practical have easily ,factorable n - 1). 

numbers. The first few 5-tuples are 12, 18, 30, 198, 306, 
462, 1482, 2550, 4422, . . . . 

A ‘#Pratt-r c er 1 ca e t’fi t is quicker to generate for small 
numbers than are other types of primality certificates. 

References The MaUzematic@ (Wolfram Research, Champaign, IL) 
Melfi, G. “On Two Conjectures About Practical Numbers.” task ProvablePrime Cn] therefore generates an ATKIN- 

J. Number Th. 56, 205-210, 1996. 
Melfi, G. “Practical Numbers.” http: //uww.dm.unipi. it/ 

gauss-pagedmdf i/publichtml/pratica.html. 
Sloane, N. J. A. Sequence A005153/MO991 in “AA On-Line 

G~LDWASSER-KILIAN-MORAIN CERTIFICATE only for 
numbers above a certain limit (lOlo by default), and 
a Pratt certificate for smaller numbers. 

Version of the Encyclopedia of Integer Sequences.” 

Pratt Certificate 
A primality certificate based on FERMAT'S LITTLE THE- 
OREM CONVERSE. Although the general idea had been 
well-established for some time, Pratt became the first to 
prove that the certificate tree was of polynomial size and 
could also be verified in polynomial time. He was also 
the first to observe that the tree implies that PRIMES 
are in the complexity class NP. 

see UZSO ATKIN-GOLDWASSER-KILIAN-MORAIN CER- 

TIFICATE, FERMAT'S LITTLE THEOREM CONVERSE, 
PRIMALITY CERTIFICATE, WITNESS 
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To generate a Pratt certificate, assume that n is a POS- Pratt-Kasapi Theorem - 
ITIVE INTEGER and {pi} is the set of PRIME FACTORS 
of n - 1. Suppose there exists an INTEGER x (called a 

see HOEHN’S THEOREM 
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Precedes 
The relationship 2 precedes y is written 11: 4 y. The 
relation =L: precedes or is equal to y is written x 5 y. 

see also SUCCEEDS 

Precession 

see CURVE OF CONSTANT PRECESSION 

Precisely Unless 
If A is true precisely unless B‘, then B implies not-A and 
not-B implies A. 5. H. Conway has suggested the term 
VNLESSS” for this state of affairs, by analogy with IFF. 

see also IFF, UNLESS 

Predicate 
A function whose value is either TRUE or FALSE. 

see also AND, FALSE, OR, PREDICATE CALCULUS, 
TRUE, XOR 

Predicate Calculus 
The branch of formal LOGIC dealing with representing 
the logical connections between statements as well as 
the statements themselves. 

see also G~DEL'S INCOMPLETENESS THEOREM, LOGIC, 
PREDICATE 

Predictability Pretzel Knot 
Predictability at a time 7 in the future is defined by 

R(x(t), 4t + 4) 
HW) ’ 

and linear predictability by 

L(x(t), x@ + 4) 
HW) ’ 

where R and L are the REDUNDANCY and LINEAR RE- 
DUNDANCY, and H is the ENTROPY. 

Prediction Paradox 

~~~UNEXPECTED HANGING PARADOX 

Predictive Value 
The POSITIVE predictive value is the probability that a 
test gives a true result for a true statistic. The negative 
predictive value is the probability that a test gives a 
false result for a false statistic. 

see &O POWER (STATISTICS), SENSITIVITY, SPECI- 
FICITY, STATISTICAL TEST 

Predictor-Corrector Methods 
A general method of integrating ORDINARY DIFFEREN- 
TIAL EQUATIONS. Tt proceeds by extrapolating a poly- 
nomial fit to the derivative from the previous points to 
the new point (the predictor step), then using this to 
interpolate the derivative (the corrector step). Press 
et al. (1992) opine that predictor-corrector methods 
have been largely supplanted by the BULIRSCH-STOER 
and RUNG E-KUTTA METHOD S, but predictor-corrector 
schemes are still in common use. 

see also ADAMS' METHOD, GILL'S METHOD, MILNE'S 
METHOD,RUNGE-KUTTA METHOD 
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Pretzel Curve 

see KNOT CURVE 

Q \ 
A KNOT obtained from a TANGLE which can be repre- 
sented by a FINITE sequence of INTEGERS. 

see also TANGLE 

Reierences 
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Primality Certificate 
A short set of data that proves the primality of a num- 
ber. A certificate can, in general, be checked much 
more quickly than the time required to generate the 
certificate. Varieties of primality certificates include 
the PRATT CERTIFICATE and ATKIN-GOF,DWASSER- 
KIL~AN-MORAIN CERTIFICATE. 

see also ATKIN-GOLDWASSER-KILIAN-MORAIN CER- 
TIFICATE, COMPOSITENESS CERTIFICATE, PRATT CER- 
TIFICATE 
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Primality Test 
A test to determine whether or not a given number is 
PRIME. The RABIN-MILLER STRONG PSEUDOPRIME 

TEST is a particularly efficient ALGORITHM used by 
Muthematica@ version 2.2 (Wolfram Research, Cham- 
paign, IL). Like many such algorithms, it is a proba- 
bilistic test using PSEUDOPRIMES, and can potentially 
(although with very small probability) falsely identify 
a COMPOSITE NUMBER as PRIME (although not vice 
versa). Unlike PRIME FACTORIZATION, primality test- 
ing is believed to be a P-PROBLEM (Wagon 1991). In 
order to guarantee primality, an almost certainly slower 
algorithm capable of generating a PRIMALITY CERTIFI- 
CATE must be used. 

see &O ADLEMAN-POMERANCE-RUMELY PRIMALITY 
TEST, FERMAT'S LITTLE THEOREM CONVERSE, FER- 
MAT'S PRIMALITY TEST,FERMAT'S THEOREM,LUCAS- 
LEHMER TEST, MILLER'S PRIMALITY TEST, PI?PIN'S 
TEST,POCKLINGTON'STHEOREM, PROTH’S THEOREM, 
PSEUDOPRIME,RABIN-MILLER STRONG PSEUDOPRIME 
TEST,~ARD'S PRIMAL~TY TEST, WILSON'S THEOREM 
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Primary 
Each factor piai in an INTEGER’S PRIME DECOMPOSI- 

TION is called a primary. 

Primary Representation 
Let 7r be a unitary REPRESENTATION of a GROUP G on 
a separable HEBERT SPACE, and let R(n) be the small- 
est weakly closed algebra of bounded linear operators 
containing all r(g) for g E G. Then 7r is primary if the 
center of R(n) consists of only scalar operations. 
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Prime 
A symbol used to distinguish one quantity z’ (“x 
prime”) from another related x. Primes are most com- 
monly used to denote transformed coordinates, conju- 
gate points, and DERIVATIVES. 

see also PRIME ALGEBRAIC NUMBER, PRIME NUMBER 

Prime Algebraic Number 
An irreducible ALGEBRAIC INTEGER which has the 
property that, if it divides the product of two algebraic 
INTEGERS, then it DIVIDES at least one of the factors. 
1 and -1 are the only INTEGERS which DIVIDE every 
INTEGER. They are therefore called the PRIME UNITS. 

see also ALGEBRAIC INTEGER, PRIME UNIT 

Prime Arithmetic Progression 
Let the number of PRIMES of the form nzk +n less than 
x be denoted r,,,(z). Then 

lim ~u,b(x) 1 - = 
5+00 Li(x) 4( 1 a ’ 

where Li(z)isthe LOGARITHMIC INTEGRAL and 4(x)is 
the TOTIENT FUNCTION. 

Let P be an increasing arithmetic progression of n 
PRIMES with minimal difference d > 0. If a PRIME 
p 5 n does not divide d, then the elements of P must 
assume all residues modulo p, specifically, some element 
of P must be divisible by p. Whereas P contains only 
primes, this element must be equal to p. 

If d < n# (where n# is the PRIMORIAL of n), then some 
prime p 2 n does not divide d, and that prime p is in P. 
Thus, in order to determine if P has d < n#, we need 
only check a finite number of possible P (those with d < 
n# and containing prime p 2 n) to see if they contain 
only primes. If not, then d > n#. If d = n#, then - 
the elements of P cannot be made to cover all residues 
of any prime p. The PRIME PATTERNS CONJECTURE 
then asserts that there are infinitely many arithmetic 
progressions of primes with difference d. 

A computation shows that the smallest possible common 
difference for a set of n or more PRIMES in arithmetic 
progression for n = 1, 2, 3, l  . l  is 0, 1, 2, 6, 6, 30, 150, 
210, 210, 210, 2310, 2310, 30030, 510510, . . l  (Sloane’s 
A033188, Ribenboim 1989, Dubner and Nelson 1997, 
Wilson). The values up to n = 13 are rigorous, while the 
remainder are lower bounds which assume the validity 
of the PRIME PATTERNS CONJECTURE and are simply 
given by pn-7#, where pi is the ith PRIME. The smallest 
first terms of arithmetic progressions of n primes with 
minimal differences are 2, 2, 3, 5, 5, 7, 7, 199, 199, 
199, 60858179, 147692845283, 14933623, . . . (Sloane’s 
A033189; Wilson). 

Smaller first terms are possible for nonminimal n-term 
progressions. Examples include the g-term progression 
I1 + 121023Ok for k = 0, 1, . . . , 7, the 12-term pro- 
gression 23143 + 3003032 for /c = 0, 1, . . . , 11 (Golubev 
1969, Guy 1994), and the 13-term arithmetic progres- 
sion 766439 + 51051Ok for k: = 0, 1, . . . , 12 (Guy 1994). 

The largest known set of primes in ARITHMETIC SE- 
QUENCE is 22, 

11,410,337,850,553 + 4,609,098,694,2OOk 
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for k = 0, 1, l  . . , 21 (Pritchard et al. 1995, UTS School PRIME CONSTELLATION, PRIME-GENERATING POLY- 
of Mathematical Sciences). NOMIAL,PRIME NUMBERTHEOREM,PRIME PATTERNS 

CONJECTURE,~RIME QUADRUPLET 
The largest known sequence of consecutive PRIMES in 
ARITHMETIC PROGRESSION (i.e., all the numbers be- 
tween the first and last term in the progression, except 
for the members themselves, are composite) is ten, given 

bY 

100,996,972,469,714,247,637,786,655,587,969, 

840,329,509,324,689,190,041,803,603,417,758, 

904,341,703,348,882,159,067,229,719 + 210k 

for k = 0, 1, . . . , 9, discovered by Harvey Dubner, Tony 
Forbes, Manfred Toplic, et al. on March 2, 1998. This 
beats the record of nine set on January 15, 1998 by the 
same investigators, 

99,679,432,066,701,086,484,490,653,695,853, 

561,638,982,364,080,991,618,395,774,048,585, 

529,071,475,461,114,799,677,694,651+ 210k 

for k = 0, 1, . . . . 8 (two sequences of nine are now 
known), the progression of eight consecutive primes 
given by 

43,804,034,644,029,893,325,717,710,709,965, 

599,930,101,479,007,432,825,862,362,446,333, 

961,919,524,977,985,103,251,510,661+ 210k 

for k = 0, 1, l  . l  , 7, discovered by Harvey Dubner, Tony 
Forbes, et al. on November 7, 1997 (several are now 
known), and the progression of seven given by 

1,089,533,431,247,059,310,875,780,378,922,957,732, 

908,036,492,993,138,195,385,213,105,561,742,150, 

447,308,967,213,141,717,486,151+ 210k, 

for k = 0, 1, l  . . , 6, discovered by H. Dubner and 
H. K. Nelson on Aug. 29, 1995 (Peterson 1995, Dubner 
and Nelson 1997). The smallest sequence of six consec- 
utive PRIMES in arithmetic progression is 

121,174,811+ 3ok 

for k = 0, 1, l  . . , 5 (Lander and Parkin 1967, Dubner and 
Nelson 1997). According to Dubner et al., a trillion-fold 
increase in computer speed is needed before the search 
for a sequence of 11 consecutive primes is practical, so 
they expect the ten-primes record to stand for a long 
time to come. 

It is conjectured that there are arbitrarily long sequences 
of PRIMES in ARITHMETIC PROGRESSION (Guy 1994). 

see also ARITHMETIC PROGRESSION, CUNNINGHAM 
CHAIN, DIRICHLET'S THEOREM, LINNIK'S THEOREM, 
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Prime Array 
Find the m. x n ARRAY of single digits which contains 
the maximum possible number of PRIMES, where allow- 
able PRIMES may lie along any horizontal, vertical, or 
diagonal line. For KQ = n = 2, 11 PRIMES are maximal 
and are contained in the two distinct arrays 

A(2,2) = 
[: ;]j: ;I? 
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giving the PRIMES (3, 7, 13, 17, 31, 37, 41, 43, 47, 71, 73) 
and (3, 7, 13, 17, 19, 31, 37, 71, 73, 79, 97), respectively. 
For the 3 x 2 array, 18 PRIMES are maximal and are 
contained in the arrays 

The best 3 x 3, 4 x 4, and 5 x 5 prime arrays known were 
found by C. Rivera and J. Ayala in 1998. They are 

1 1 3 
A(3,3) = [ 7 5 4 1 , 

9 3 7 

which contains 30 PRIMES, 

ri i 3 91 

A(4,4) = 

which contains 63 PRIMES, and 

A(5,5) = 

1 1 9 3 3 
9 9 5 6 3 
8 9 4 1 7 
3 3 7 3 1 
3 2 9 3 9 

which contains 116 PRIMES. S. C. Root found the a 6 x 6 
array cant aining 187 primes: 

317333 
995639 1 

In 1998, M. Oswald found five new 6 x 6 arrays with 187 
primes: 

139199 
317234 
994793 
915713 
983617 
917333 

317333 
995639 
118142 
136373 
349199 
379939 

-3 1 7 3 3 3 
995639 
118145 

139199 
917234 
694793 
715713 
983617 
917333 

317333 
995639 
118142 
136373 
349199 
979379 

Rivera and Ayala conjecture that the 30-prime solution 
for A( 3,3) is maximal and unique. The following in- 
tervals have been completely searched without finding 
another 30-prime or better 3 x 3 array: [l, 67 x lo”], 
[lo0 x lo”, 133 x 106], [200 x 106, 228 x 106], [300 x 106, 
325 x 106], and [400 x 106, 418 x 106]. 

Heuristic arguments by Rivera and Ayala suggest that 
the maximum possible number of primes in 4 x 4, 5 x 
5, and 6 x 6 arrays are 58-63, 112-121, and 205-218, 
respectively. 

see also ARRAY, PRIME ARITHMETIC PROGRESSION, 
PRIME CONSTELLATION, PRIME STRING 
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Prime Circle 
A prime circle of order 2m is a CIRCULAR PERMUTA- 

TION of the numbers from 1 to 2nz with adjacent PAIRS 
summing to a PRIME. The number of prime circles for 
m = 1, 2, . . . . are 1, 1, 1, 2, 48, , , . , 
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Prime Cluster 

see PRIME CONSTELLATION 

Prime Constellation 
A prime constellation, also called a PRIME ~TUPLE or 
PRIME ~TUPLET, is a sequence of Iz consecutive num- 
bers such that the difference between the first and last 
is, in some sense, the least possible. More precisely, 
a prime k-tuplet is a sequence of consecutive PRIMES 
(pl, ~2, . . . , pk) with pk - pl = s(k), where s(k) is 
the smallest number s for which there exist k integers 
bl < bz < ..- < bk, bk -bl = s and, for every PRIME q, 

not all the residues modulo Q are represented by bl, b2, 
bl, (Forbes). For each k, this definition excludes a 

i&e number of clusters at the beginning of the prime 
number sequence. For example, (97, 101, 103, 107, 109) 
satisfies the conditions of the definition of a prime 5- 
tuplet, but (3, 5, 7, 11, 13) does not because all three 
residues modulo 3 are represented (Forbes). 

A prime double with s(2) = 2 is of the form (p, p + 2) 
and is called a pair of TWIN PRIMES. Prime doubles of 
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the form (p, p + 6) are called SEXY PRIMES. A prime 
triplet has s(3) = 6. H owever, the constellation (p, p+Z, 
p + 4) cannot exist, since both p + 2 and p + 4 cannot 
be PRIME. However, there are several types of prime 
triplets which can exist: (p, P + 2, p + 6), (p, p + 4, 
p + S), (p, p + 6, p + 12). A PRIME QUADRUPLET is 
a constellation of four successive PRIMES with minimal 
distance s(4) = 8, and is of the form (p, p + 2, p + 6, 
p + 8). The sequence s(n) therefore begins 2, 6, 8, and 
continues 12, 16, 20, 26, 30, . . l  (Sloane’s A008407). 
Another quadruplet constellation is (p, p + 6, p + 12, 
p+ 18). 

The first FIRST HARDY-LITTLEWOOD CONJECTURE 
states that the number of constellations _< x are asymp- 
totically given by 

Px(P,PW - 

= 1.320323632 
J 

x dx’ 

2(ln2’)2 

Px(P,P +4) - 2n 
p(p - 2) x dx’ 

p>3 (P 2 (In s - 

= 1.320323632 
J 

x dx’ 

2(ln2’)2 

Px(P,PN - 

= 2.640647264 
s 

x dx’ 

2(ln2’)2 

= 2.858248596 J x dx’ 

2(ln2’)3 

p”(p - 3) 

(P - u3 2 (In J 

x dx’ 

(1) 

(2) 

(3) 

(4) 

(5) 

1 I 

= 2.858248596 
s 

x dx’ 
2(lns’)3 

p3(p - 4) x ax 

(P - 1)” 2 (In s 

= 4.151180864 
J 

x dx’ 

2(ln2’)4 (6) 

px(P,P+4,P+6,P+~q - 27 
rI 

p3(p - 4) x dx’ 

p>5 (P - 1)” 2 04 s 

= 8.302361728 
J 

x dxt 

2 (In. (7) 

These numbers are sometimes called the HARDY- 
LITTLEWOOD CONSTANTS. (1) is sometimes called the 
extended TWIN PRIME CONJECTURE, and 

c p,p+2 = 2n2, (8) 

Prime Constellation 

where II2 is the TWIN PRIMES CONSTANT. Riesel(1994) 
remarksthatthe HARDY-LITTLEWOOD CONSTANTS can 
be computed to arbitrary accuracy without needing the 
infinite sequence of primes. 

The integrals above have the analytic forms 

s 

x dx’ 2 n --- 
2 (In ELi(x)+ In2 Inn (9) 

s 

x dx’ 
2 (In = $ LW - 

x(l+lnx) 1 1 
(Inx)2 + In + (In 

(10) 
2[2 + In 2 + (ln2)2] 

(In 2)3 

n[2 + In n + (In n)2] - 
(In n)3 1 

, (11) 

where Li(x) is the LOGARITHMIC INTEGRAL. 

The following table gives the number of prime constel- 
lations < UP, and the second table gives the values pre- 
dicted by the Hardy-Littlewood formulas. 

Count I lo5 10” 10’ lo8 

(PyP+2) 1224 8169 58980 440312 
(PlP-t-4) 1216 8144 58622 440258 

(P,P+q 2447 16386 117207 879908 

(PYP+%P+q 259 1393 8543 55600 
(PTP+%P+Q 248 1444 8677 55556 
cPYp+2,P+6,P+8) 38 166 899 4768 
(P,P+%P+ WP+ 18) 75 325 1695 9330 

Hardy-Littlewood 

CP7 P + 21 
CP,P+q 

(PyP+6) 
cPYP+TP+q 
(P,P+4P+q 

cP,P+2,P+%P+8) 
(P,P+f%P+ wP+ 18) 

105 10" 10’ 108 
1249 8248 58754 440368 
1249 8248 58754 440368 
2497 16496 117508 880736 

279 1446 8591 55491 
279 1446 8591 55491 

53 184 863 4735 

Consider prime constellations in which each term is of 
the form n2 + 1. Hardy and Littlewood showed that the 
number of prime constellations of this form < x is given 

bY 
P(x) - C&(lnx)-r, (12) 

where 

c= l- 
(-1)(“-w 

P 1 - 1.3727.. . 
-1 - (13) 

\ p prime 

(Le Lionnais 1983). 

Forbes gives a list of the “top ten” prime Jc-tuples for 
2 < rZ 1 17. The largest known 14-constellations are 
(11319107721272355839 + 0, 2, 8, 14, 18, 20, 24, 30, 
32, 38, 42, 44, 48, SO), (10756418345074847279 + 0, 
2, 8, 14, 18, 20, 24, 30, 32, 38, 42, 44, 48, 50), 
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(6808488664768715759 + 0, 2, 8, 14, 18, 20, 24, 30, 2, 2, 3, 3, 4, 4, 4, 4, 5, 5, 6, 6, 6, . . . (Sloane’s A000720). 

32, 38, 42, 44, 48, 50), (6120794469172998449 + 0, The following table gives the values of r(n) for powers 

2, 8, 14, 18, 20, 24, 30, 32, 38, 42, 44, 48, 50), of 10 (Sloane’s A006880; Hardy and Wright 1979, pa 4; 
(5009128141636113611 + 0, 2, 6, 8, 12, 18, 20, 26, 30, Shanks 1993, pp. 242-243; Ribenboim 1996, p* 237). 

32, 36, 42, 48, 50). Deleglise and Rivat (1996) have computed ~(10”). 

The largest known prime 15-constellations are 
(84244343639633356306067+0, 2, 6, 12, 14, 20, 24, 26, 

30,36,42,44, 50,54, 56), (8985208997951457604337+0, 
2, 6, 12, 14, 20, 26, 30, 32, 36, 42, 44, 50, 54, 56), 

(3594585413466972694697+0, 2, 6, 12, 14, 20, 26, 30, 
32,36,42,44,50, 54, 56), (3514383375461541232577+0, 
2, 6, 12, 14, 20, 26, 30, 32, 36, 42, 44, 50, 54, 56), 

(3493864509985912609487 + 0, 2, 6, 12, 14, 20, 24, 26, 
30, 36, 42, 44, 50, 54, 56). 

The largest known prime 16-constellations are 
(3259125690557440336637+0,2,6,12,14,20,26,30,32, 
36,42,44,50,54,56, SO), (1522014304823128379267+0, 
2, 6, 12, 14, 20, 26, 30, 32, 36, 42, 44, 50, 54, 56, 60), 
(47710850533373130107 + 0, 2, 6, 12, 14, 20, 26, 30, 32, 
36, 42, 44, 50, 54, 56, SO), (13, 17, 19, 23, 29, 31, 37, 41, 
43, 47, 53, 59, 61, 67, 71, 73). 

The largest known prime 17-constellations are 
(3259125690557440336631+ 0, 6, 8, 12, 18, 20, 26, 32, 
36, 38, 42, 48, 50, 56, 60, 62, SS), (17, 19, 23, 29, 31, 37, 
41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83) (13, 17, 19, 23, 
29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79). 

see UZSO COMPOSITE RUNS, PRIME ARITHMETIC PRO- 
GRESSION, ~TUPLE CONJECTURE, PRIME k-TWPLES 
CONJECTURE, PRIME QWADRUPLET, SEXY PRIMES, 

TWIN PRIMES 
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Prime Counting Function 

0 50 100 150 200 
The function n(n) giving the number of PRIMES less 
than n (Shanks 1993, p. 15). The first few values are 0, 1, 
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r(103) = 168 

x(10*) = 1,229 

T( 105) = 9,592 

T( 106) = 78,498 

~(10~) = 664,579 

T( lo*) = 5,761,455 

r( 109) = 50,847,534 

~(10~‘) = 455,052,511 

n( loll) = 4,118,054,813 

n(1012) = 37,607,912,018 

r( 1o13) = 346,065,536,839 

7T( 1o14) = 3,204,941,750,802 

n(1U15) = 29,844,570,422,669 

7T( lo=) = 279,238,341,033,925 

x( 1o17) = 2,623,557,157,654,233 

n( 1o18) = 24,739,954,287,740,860 

r( 1o19) = 234,057,667,276,344,607, 

~(10~) is incorrectly given as 50,847,478 in Hardy and 
Wright (1979). The prime counting function can be 
expressed by LEGENDRE'S FORMULA, LEHMER'S FOR- 
MULA, MAPES' METHOD, or MEISSEL'S FORMULA. A 
brief history of attempts to calculate r(n) is given by 
Berndt (1994). The following table is taken from Riesel 
(1994). 

Method Time Storage 

Legendre Wx) w  Xl/“) 

Meissel O(x/(ln x)3) 0(x1/2/ In 2) 
Lehmer 6(x/@ x)4) 6(x113/ lnx) 
MapesT O(xQm7) o(xoa7) 
Lagarias-Miller-Odlyzko O(X~/~+~) 0(xli3+‘) 
Lagarias-Odlyzko 1 0(x > 

3/5+e 
Wx') 

Lagarias-Odlyzko 2 0(x 1/2+e ) o(x1’4+E) 

A modified version of the prime counting function is 
given by 

d4 = 
{ 

T(P) for p composite 
n(p) _ & 2 for p prime 

O” P(X>f w/“> 
ro(P)=X ~ 1 

n=l 

where p(n) is the MOBIUS FUNCTION and f(x) is the 
RIEMANN-MANGOLDT FWNCTION. 

The notation za,b is also used to denote the number of 
PRIMES of the form & + b (Shanks 1993, pp. 21-22). 
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Groups of EQUINUMEROUS values of rTa,b include (K~J, 

r3,2), (r4,1, n4,3), (%,l, r&2, x5,3, r5,4), (7F6,1, r6,5), 

(r7,1, r?,2, r7,3, r7,41 n7,5, r7,6), (r8,1, x8,3, r&5, Kg,?), 

( r9,1, r9,2, r9,4, r9,5, q,7, ;rrg,a), and so on. The values 
of r,,k for small n are given in the following table for 
the first few powers of ten (Shanks 1993). 

n r3,1 (n) r3,2 (n) r4,l (n) x4,3 (n) 

1O1 1 2 1 2 
lo2 11 13 11 13 
lo3 80 87 30 87 
lo4 611 617 609 619 
lo5 4784 4807 4783 4808 
10” 39231 39266 39175 39322 
107 332194 332384 332180 332398 

n r5,l(n) n5,2(n) %,3(n) r5,4(71) 

lo1 0 2 1 0 

102 5 7 7 5 
lo3 40 47 42 38 
lo4 306 309 310 303 
105 2387 2412 2402 2390 
lo6 19617 19622 19665 19593 
lo7 166104 166212 166230 166032 

n n6,l(n) n6,5(n) 

n x7,1 n7,2 x7,3 n7,4 r7,5 n7,6 

101 0 1 1 0 1 0 
102 3 4 5 3 5 4 
lo3 28 27 30 26 29 27 

lo4 203 203 209 202 211 200 
lo5 1593 1584 1613 1601 1604 1596 
106 13063 13065 13105 13069 13105 13090 

n 

101 
102 
103 
lo4 
lo5 
LO6 
107 

I n8,l (n) r8,3 (n) r0,5 (n) n&7(n) 

0 1 1 1 

5 7 6 6 
37 44 43 43 

295 311 314 308 
2384 2409 2399 2399 

19552 19653 19623 19669 
165976 166161 166204 166237 

Note that since m,l(n), m,s(n), m,g(n), and rs,T(n) are 
EQUINUMEROUS, 

r4,l(n) = x8,1(n) + %,5 

r4,3(71) = 7%3(n) + r8,7 

Prime Cut 

The smallest LC such that x > nr(x) for n = 2, 3, . . . 
are 2, 27, 96, 330, 1008, . . . (Goan& A038625), and the 
corresponding n(x) are 1, 9, 24, 24, 66, 168, . . . (Sloane’s 
A038626). The number of solutions of 61: > nr(x) for 
n = 2, 3, . . . are 4, 3, 3, 6, 7, 6, . . . (Sloane’s A038627). 

see UZSO BERTELSEN'S NUMBER, EQUINUMEROUS, 
PRIME ARITHMETIC PROGRESSION, PRIME NUM- 
BER THEOREM, RIEMANN WEIGHTED PRIME-POWER 
COUNTING FUNCTION 

References 
Berndt, 13. C. Ramanujan’s Notebooks, Part IV. New York: 

Springer-Verlag, pp. 134-135, 1994. 
Brent, R. P. “Irregularities in the Distribution of Primes and 

Twin Primes.” Math. Corn&. 29, 43-56, 1975. 
Deleglise, M. and Rivat, J. “Computing 7r (s) : The Meissel, 

Lehmer, Lagarias, Miller, Odlyako Method.” Math. Com- 
put. 65, 235-245, 1996. 

Finch, S. “‘Favorite Mathematical Constants.” http: //www . 
mathsoft~com/asolvs/constant/hrdyltl/hrdyltl.html. 

Forbes, T. “Prime Jc-tuplets." http://www.ltkz.demon.co. 
uk/ktuplets.htm. 

Guiasu, S. “Is There Any Regularity in the Distribution of 
Prime Numbers at the Beginning of the Sequence of Posi- 
tive Integers. 7” Math. Msg. 68, 110-121, 1995. 

Hardy, G. H. and Wright, E. M. An Introduction to the The- 
ory of Numbers, 5th ed. Oxford, England: Clarendon 
Press, 1979. 

Lagarias, J .; Miller, V. S.; and Odlyzko, A. “Computing X(Z): 
The Meissel-Lehmer Method.” Math. Comput. 44, 537- 
560, 1985. 

Lagarias, J. and Odlyzko, A. “Computing r(x) : An Analytic 
Method.” J. Algorithms 8, 173-191, 1987. 

Mapes, D. C. “Fast Method for Computing the Number of 
Primes Less than a Given Limit.” Math. Comput. 17, 
179-185, 1963. 

Meissel, E. 0. F. “Uber die Bestimmung der Primzahlmenge 
innerhalb gegebener Grenaen.” Math. Ann. 2, 636-642, 
1870. 

Ribenboim, P. The New Book of Prime Number Records, 3rd 
ed. New York: Springer-Verlag, 1996. 

Riesel, H. “The Number of Primes Below 2.” Prime Numbers 

and Computer Methods for Factorization, 2nd ed. Boston, 
MA: Birkhauser, pp. 10-12, 1994. 

Shanks, D. Solved and Unsolved Problems in Number Theory, 
4th ed. New York: Chelsea, 1993. 

Sloane, N. J. A. Sequences A038625, A038626, A038627, 
A000720/M2056, and A006880/M3608 in ‘<An On-Line 
Version of the Encyclopedia of Integer Sequences.” 

Vardi, I. Computational Recreations in Mathematics. Read- 
ing, MA: Addison-Wesley, pp. 74-76, 1991. 

Wolf, M. “Unexpected Regularities in the Distribution of 
Prime Numbers.” http://www.ift.uni.wroc.pl/-mwolf. 

Prime Cut 
Find two numbers such that x2 E y2 (mod n). If you 
know the GREATEST COMMON DIVISOR of n and 51: - y, 
there exists a high probability of determining a PRIME 
factor. Taking small numbers z which additionally give 
small PRIMES x2 = p (mod n) further increases the 
chances of finding a PRIME factor. 

are also equinumerous. 

Erd& proved that there exist at least one PRIME of the 
form 4!~ + 1 and at least one PRIME of the form 4Jz + 3 
between 72 and 2n for all n > 6. 



Prime Decomposition 

Prime Decomposition 
Given an INTEGER n, the prime decomposition is written 

n= p1"lp2"2 f . .p,-, 

where pi are the n PRIME factors, each of order ai. Each 
factor piai is called a PRIMARY. 

see also PRIMARY, PRIME FACTORIZATION ALGO- 
RITHMS, PRIME NUMBER 

Prime Difference Function 

100 200 300 400 500 

d, = pm+1 - Pn. 

The first few values are 1, 2, 2, 4, 2, 4, 2, 4, 6, 2, 6, 4, 2, 
4, 6, 6, . . . (Sloane’s A001223). Rankin has shown that 

dn > 
clnnlnlnnlnlnlnlnn 

(lnlnlnn)2 

for infinitely many n and for some constant c (Guy 
1994). 

An integer n is called a JUMPING CHAMPION if n is the 
most frequently occurring difference between consecu- 
tive primes n 2 N for some Iv (Odlyzko et al. )* 

see UZSO ANDRICA'S CONJECTURE, GOOD PRIME, JUMP- 
ING CHAMPION, P~LYA CONJECTURE, PRIME GAPS, 
SHANKS' CONJECTURE,TWIN PEAKS 
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Prime Diophantine Equations 
k+ 2 is PRIME IFF the 14 DIOPHANTINE EQUATIONS in 
26 variables 

wz+h+j-q=O (1) 

(gk + 2g + k + l)(h -t-j) + h - z = 0 (2) 

lS(k + l)3(k + 2)(n + 1)2 + 1 - f” = 0 (3) 

2n+p+q+z--q=O (4) 

e3(e + 2)(a + 1)2 + 1 - o2 = 0 (5) 

( a2 - l)y2 + 1 - x2 = 0 (6) 

16r2y4(a2 - 1) + 1 - u2 = 0 (7) 

n+l+v-y-0 (8) 

( a2 - 1)12 + 1 - m2 = 0 (9) 

ai+k+l-Z-i=0 (10) 

{[a + u”(TL” - a)12 - l}(n + 4dy)2 + 1 - (x + CIL)~ = 0 

(11) 
p + Z(u - n - 1) + b(2an + 2a - n2 - 2n - 2) - m = 0 

(12) 

q + y(u - p - 1) + s(2ap + 2a - p2 - 2p - 2) - x = 0 

(13) 

z-+-pl(a-p)+t(2ap-p2-l)-pm=0 (14) 

have a POSITIVE integral solution. 
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Prime Factorization 

see FACTORIZATION, PRIME DECOMPOSITION, PRIME 
FACTORIZATION ALGORITHMS,~RIME FACTORS 

Prime Factorization Algorithms 
Many ALGORITHMS have been devised for determining 
the PRIME factors of a given number. They vary quite a 
bit in sophistication and complexity. It is very difficult 
to build a general-purpose algorithm for this computa- 
tionally “hard” problem, so any additional information 
which is known about the number in question or its fac- 
tors can often be used to save a large amount of time. 

The simplest method of finding factors is so-called “DI- 
RECT SEARCH FACTORIZATION" (a.k.a. TRIAL DIVI- 
SION). In this method, all possible factors are system- 
atically tested using trial division to see if they actually 
DIVIDE the given number. It is practical only for very 
small numbers. 

see also BRENT'S FACTORIZATION METHOD, CON- 
TINUED FRACTION FACTORIZATION ALGORITHM, DI- 
RECT SEARCH FACTORIZATION, DIXON'S FACTOR- 
IZATION METHOD, ELLIPTIC CURVE FACTORIZATION 
METHOD, EULER'S FACTORIZATION METHOD, Ex- 
CLUDENT FACTORIZATION METHOD, FERMAT'S FAC- 
TORIZATION METHOD, LEGENDRE'S FACTORIZATION 
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METHOD, LENSTRA ELLIPTIC CURVE METHOD, NUM- 
BER FIELD SIEVE FACTORIZATION METHOD,~OLLARD 
P- 1 FACTORIZATION METHOD, POLLARD p FACTOR- 

IZATION ALGORITHM, QUADRATIC SIEVE FACTORIZA- 
TION METHOD, TRIAL DIVISIQN, WILLIAMS p+l FAC- 
TORIZATION METHOD 
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Prime Factors 
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The number of DISTINCT PRIME FACTORS ofa number 
n is denoted w(n) l  The first few values for n = 1, 2, 
l  . . are 0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 
1, 2, . . l  (Sloane’s AOO1221; top figure). The number of 
not necessarily distinct prime factors of a number n is 
denoted r(n). The first few values for n = 1, 2, . . . are 
0, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 1, 2, 2, 4, 1, 3, 1, 3, . . . 
(Sloane’s A001222; bottom figure). 

see also DISTINCT PRIME FACTORS, DIVISOR FUNC- 
TION, GREATEST PRIME FACTOR, LEAST PRIME FAC- 
TOR, LI~UVILLE FUNCTION, P~LYA CONJECTURE, 
PRIME FACTORIZATION ALGORITHMS 
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Prime Field 
A GAL~IS FIELD GF(p) where p is PRIME. 

Prime Gaps 
Letting 

dn E pn+l - pn 

be the PRIME DIFFERENCE FUNCTION, Rankin has 
showed that 

dn > 
clnnlnlnnlnlnlnlnn 

(In In In n)2 

for infinitely many n are for some constant c (Guy 1994). 

Let p(d) be the smallest PRIME following d or more con- 
secutive COMPOSITE NUMBERS. The largest known is 

P(8W = 90,874,329,412,297. 

The largest known prime gap is of length 4247, occur- 
ring following 10314 - 1929 (Baugh and O’Hara 1992), 
although this gap is almost certainly not maximal (i.e., 
there probably exists a smaller number having a gap of 
the same length following it). 

Let c(n) be the smallest starting INTEGER c(n) for a 
run of n consecutive COMPOSITE NUMBERS, also called 
a COMPOSITE RUN. No general method other than ex- 
haustive searching is known for determining the first oc- 
currence for a maximal gap, although arbitrarily large 
gaps exist (Nicely 1998). Cram& (1937) and Shanks 
(1964) conjectured that a maximal gap of length n ap- 
pears at approximately exp( fi). Wolf conjectures that 
the maximal gap of length n appears approximately at 

7r(n)[2Irm(n) -Jnn + ln(2C$)]’ 

where r(n) is the PRIME COUNTING FUNCTION and CZ 
is the TWIN PRIMES CONSTANT. 

The first few c(n) for n = 1, 2, , . . are 4, 8, 8, 24, 
24, 90, 90, 114, . . . (Sloane’s A030296). The following 
table gives the same sequence omitting degenerate runs 
which are part of a run with greater n, and is a complete 
list of smallest maximal runs up to 1015. c(n) in this 
table is given by Sloane’s AOO8950, and n by Sloane’s 
A008996. The ending integers for the run corresponding 
to c(n) are given by Sloane’s AOO8995. Young and Potler 
(1989) determined the first occurrences of prime gaps up 
to 72,635,119,999,997, with all first occurrences found 



1 4 
3 8 
5 24 
7 90 

13 114 
17 524 
19 888 
21 1,130 
33 1,328 
35 9,552 
43 15,684 
51 19,610 
71 31,398 
85 155,922 
95 360,654 

111 370,262 
113 492,114 
117 1,349,534 
131 1,357,202 
147 2,010,734 
153 4,652,354 
179 17,051,708 
209 20,831,324 
219 47,326,694 
221 122,164,748 
233 189,695,660 
247 191,912,784 
249 387,096,134 
281 436,273,010 
287 1,294,268,492 
291 1,453,168,142 

319 2,300,942,550 
335 3,842,610,774 
353 4,302,407,360 
381 10,726,904,660 
383 20,678,048,298 
393 22,367,084,960 
455 25,056,082,088 
463 42,652,618,344 
467 127,976,334,672 
473 182,226,896,240 
485 241,160,024,144 
489 297,501,075,800 
499 303,371,455,242 
513 304,599,508,538 
515 416,608,695,822 
531 461,690,510,012 
533 614,487,453,424 
539 738,832,927,928 
581 1,346,294,310,750 
587 l-,408,695,493,610 
601 1,968,188,556,461 
651 2,614,941,710,599 
673 7,177,162,611,713 
715 13,828,048,559,701 
765 19,581,334,192,423 
777 42,842,283,925,352 
803 90,874,329,411,493 
805 171,231,342,420,521 
905 218,209,405,436,543 
915 1,189,459,969,825,483 
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between 1 and 673. Nicely (1998) extended the list of 
maximal prime gaps to a length of 915, denoting gap 
lengths by the difference of bounding PRIMES, c(n) - 1. 

math/nicely/gaps/gaps. htm. To Appear in Math. Com- 
put* 

Shanks, D. “On Maximal Gaps Between Successive Primes.” 
Math. Comput. 18, 646-651, 1964. 

Sloane,N. J. A. Sequences A008950,A008995,A008996, and 
A030296 in “An On-Line Version of the Encyclopedia of 
Integer Sequences.” 

Wolf, M. “First, Occurrence of a Given Gap Between Consec- 
utive Primes.” http://www.ift.uni.wroc.pl/-muolf. 

Young, J. and Potler, A. “First Occurrence Prime Gaps.” 
Math. Comput. 52, 221-224, 1989. 

Prime-Generating Polynomial 
Legendre showed that there is no RATIONAL algebraic 
function which always gives PRIMES. In 1752, Goldbach 
showed that no POLYNOMIAL with INTEGER COEFFI- 
CIENTS can give a PRIME for all integral values. How- 
ever, there exists a POLYNOMIAL in 10 variables with 
INTEGER COEFFICIENTS such that the set of PRIMES 
equals the set of POSITIVE values of this POLYNOMIAL 
obtained as the variables run through all NONNEGATIVE 
INTEGERS, although it is really a set of DIOPHANTINE 
EQUATIONS in disguise (Ribenboim 1991). 

see also JUMPING CHAMPION, P 'RIME CONSTELLATION, 
PRIMEDIFFERENCEFUNCTION, SHANKS'CONJECT~RE 
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36n2 -8lOn+2753 Lo, 441 
47n2 - 1701n + 10181 Lo, 421 
n2 - n+ 41 P, 391 
2n2 j-29 lo, 281 
n2 +n+ 17 [o, 151 
2n2 + 11 lo, 101 
n3 + n2 + 17 10, 101 

Range # 
45 
43 
40 
29 
16 
11 
11 

Reference 
fing and Ruby 
F’ung and Ruby 
Euler 
Legendre 
Legendre 

The above table gives some low-order polynomials which 
generate only PRIMES for the first few NONNEGATIVE 
values (Mollin and Williams 1990). The best-known of 
these formulas is that due to Euler (Euler 1772, Ball 
and Coxeter 1987). Le Lionnais (1983) has christened 
numbers p such that the Euler-like polynomial 

n2 -n+p (1) 

is PRIME for p = 0, 1, . . . . p - 2 as LUCKY NUMBERS 
OF EULER (where the case p = 41 corresponds to Eu- 
ler ‘s formula) l  Rabinovitch (1913) showed that for a 
PRIME p > 0, Euler’s polynomial represents a PRIME 
for n E [O,p - 21 (excluding the trivial case p = 3) IFF 
the FIELDQ(~~) has CLASS NUMBER h=l(Rabi- 
nowitz 1913, Le Lionnais 1983, Conway and Guy 1996). 
As established by Stark (1967), there are only nine num- 
bers -d such that h(-d) = 1 (the HEEGNER NUMBERS 
-2, -3, -7, -11, -19, -43, -67, and -163), and of 
these, only 7, 11, 19, 43, 67, and 163 are of the re- 
quired form. Therefore, the only LUCKY NUMBERS OF 
EULER are 2, 3, 5, 11, 17, and 41 (Le Lionnais 1983, 
Sloane’s A014556), and there does not exist a better 
prime-generating polynomial of Euler’s form. 

Euler also considered quadratics of the form 

2x2 +p (2) 
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and showed this gives PRIMES for Al: E [O,p-1] for PRIME 
p > 0 IFF Q(J?$) has CLASS NUMBER 2, which per- 
mits only p = 3, 5, 11, and 29. Baker (1971) and Stark 
(1971) showed that there are so such FIELDS for p > 29. 
Similar results have been found for POLYNOMIALS of the 
form 

px2-+px+n (3) 

(Hendy 1974). 

see also CLASS NUMBER, HEEGNER NUMBER, LUCKY 
NUMBER OF EULER, PRIME ARITHMETIC PROGRES- 
SION, PRIME DIOPHANTINE EQUATIONS, SCHINZEL’S 
HYPOTHESIS 
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Prime Group 
When the ORDER h of a finite GROUP is a PRIME num- 

ber, there is only one possible GROUP of ORDER h. Fur- 
thermore, the GROUP is CYCLIC. 

see also p-GROUP 

Prime Ideal 
An IDEAL I such that if ab E 1, then either a E 1 or 
b E I. 

see also DEDEKIND RING, IDEAL, KRULL DIMENSION, 

MAXIMAL IDEAL, STICKELBERGER RELATION, STONE 
SPACE 

Prime Knot 
A KNOT other than the UNKNOT which cannot be ex- 
pressed as a sum of two other KNOTS, neither of which 
is unknotted. A KNOT which is not prime is called a 
COMPOSITE KNOT. It is often possible to combine two 
prime knots to create two different COMPOSITE KNOTS, 

depending on the orientation of the two. 

There is no known FORMULA for giving the number of 
distinct prime knots as a functions of number of cross- 
ings. For the first few 72 crossings, the numbers of prime 
knots are 0, 0, 1, 2, 3, 7, 21, 49, 165, 552, 2176, 9988, 
. . . (Sloane’s A002863). 

see also COMPOSITE KNOT, KNOT 
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Prime k-Tuple 

see PRIME CONSTELLATION 

Prime k-Tuples Conjecture 

see also /+TUPLE CONJECTURE 

Prime k-Tuplet 

see PRIME CONSTELLATION 

Prime Manifold 
An ~-MANIFOLD which cannot be “nontrivially” decom- 
posed into other n-MANIFOLDS. 

Prime Number 
A prime number is a POSITIVE INTEGER p which has 
no DIVISORS other than 1 and p itself. Although the 
number 1 used to be considered a prime, it requires spe- 
cial treatment in so many definitions and applications 
involving primes greater than or equal to 2 that it is 
usually placed into a class of its own. Since 2 is the 
only EVEN prime, it is also somewhat special, so the set 
of all primes excluding 2 is called the “ODD PRIMES.” 
The first few primes are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 
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31, 37, . . . (Sloane’s AO00040, Hardy and Wright 1979, 
p. 3). POSITIVE INTEGERS other than 1 which are not 
prime are called COMPOSITE. 

The function which gives the number of primes less than 
a number n is denoted r(n) and is called the PRIME 
COUNTING FUNCTION. The theorem giving an asymp- 
totic form for r(n) is called the PRIME NUMBER THE- 
OREM. 

number of primes. However, it is not known if there are 
an infinite number of primes of the form x2 + 1, whether 
there are an INFINITE number of TWIN PRIMES, or if a 
prime can always be found between n2 and (n + 1)2. 

Prime numbers satisfy many strange and wonderful 
properties. For example, there exists a CONSTANT 
0 z 1.3064 known as MILLS' CONSTANT such that 

Prime numbers can be generated by sieving processes 
(suchasthe ERATOSTHENES SIEVE), and LUCKY NUM- 
BERS, which are also generated by sieving, appear to 
share some interesting asymptotic properties with the 
primes. 

L J e3n , 
where 1x1 is the FLOOR FUNCTION, is prime for all n 2 
1. However, it is not known if 0 is IRRATIONAL. There 
also exists a CONSTANT w  ==: 1.9287800 such that 

Many PRIME FACTORIZATION ALGORITHMS have been 
devised for determining the prime factors of a given IN- 
TEGER. They vary quite a bit in sophistication and com- 
plexity. It is very difficult to build a general-purpose 
algorithm for this computationally “hard” problem, so 
any additional information which is known about the 
number in question or its factors can often be used to 
save a large amount of time. The simplest method of 
finding factors is so-called “DIRECT SEARCH FACTOR- 
IZATION" (a.k.a. TRIAL DIVISION). In this method, all 
possible factors are systematically tested using trial di- 
vision to see if they actually DIVIDE the given number. 
It is practical only for very small numbers. 

Hecause of their importance in encryption algorithms 
such as RSA ENCRYPTION, prime numbers can be 
important commercial commodities. In fact, Roger 
Schlafly has obtained U.S. Patent 5,373,560 (12/13/94) 
on the following two primes (expressed in hexadecimal 
notation): 

(Ribenboim 1996, p. 186) is prime for every n 2 1. 

Explicit FORMULAS exist for the nth prime both as a 
function of n and in terms of the primes 2, , , . , ~~-1 
(Hardy and Wright 1979, pp. 5-6; Guy 1994, pp. 36- 
41). Let 

L L J 
for integral j > 1, and define F( 1) = 
again the FLOOR FUNCTION. Then 

1, where 1 J x is 

98A3DF52AEAE9799325CB258D767EBDlF463OE9B 

gE21732A4AFB1624BA6DF911466AD8DA960586F4 

AOD5E3C36AFQ99660BDDCl577E54A9F402334433 

ACBl4BCB 

where n(m) is the PRIME COUNTING FUNCTION. It is 
also true that 

and 

pn+l=l+pn+F(p,+l) 

+F(Pn + l)F(Pn -t 2) + fT F(pn + j) (6) 
j=l 

(Ribenboim 1996, pp. 180-182). Note that the number 
of terms in the summation to obtain the nth prime is 
2”, so these formulas turn out not to be practical in 
the study of primes. An interesting INFINITE PRODUCT 
formula due to Euler which relates 7 and the nth PRIME 

pn is 

7r= 
2 

The FUNDAMENTAL THEOREM OF ARITHMETIC states 
that any POSITIVE INTEGER can be represented in ex- 
actly one way as a PRODUCT of primes. ETJCLID'S SEC- 
OND THEOREM demonstrated that there are an infinite 

00 n 1 sin{ + 7rpn) 

i=n l+pn 1 
- - m 

n [ i=n 

l + (-1)&L--1)/2 
Pn 1 

1433 

(2) 

(3) 

(4) 

(5) 

(7) 

(8) 
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y! is the FACTORIAL, and 1x1 is the FLOOR FUNCTION, 
generates only prime numbers for POSITIVE integral ar- 
guments. It not only generates every prime number, but 
generates ODD primes exactly once each, with all other 
values being 2 (Honsberger 1976, p. 33). For example, 

(Blatner 1997). Conway (Guy 1983, Conway and Guy 
1996, p. 147) gives an algorithm for generating primes 
based on 14 fractions, but it is actually just a concealed 
version of a SIEVE. 

Some curious identities satisfied by primes p are 

(9) 

f(l, 2) = 3 (18) 
f(W) = 5 w 

f(103,6) = 7, (20) 

CP - UP - %P + 1) 
4 

(P-1) (P-2) 

k=l 

3P - WP - 2)(P - 1) (10) 
with no new primes generated for 2, y < 1000. 

For n an INTEGER > 2, n is prime IFF - 

(Doster 1993), 
E (-1)” (mod n) (21) 

rI p2+1 5 --- 

p prime 
p2-1-2 for k = 0, 1, . . . , n - 1 (Deutsch 1996). 

Cheng (1979) showed that for x sufficiently large, there 
always exist at least two prime factors between (z - sa) 
and z for Q! 2 0.477.. . (Le Lionnais 1983, p. 26). Let 
f(n) be the number of decompositions of n into two or 
more consecutive primes. Then 

(Le Lionnais 1983, p. 46), 

00 
x AnIc = 

xpk 
1 - ZP’F ’ 

(12) 

k=l p prime k=l 

and 

)(-l)“-le-“” Ink 
(Moser 1963, Le Lionnais 1983, p. 30). Euler showed 
that the sum of the inverses of primes is infinite 

k=l 

- -1n2): - &+ lE lnpc* 
k=l P an k=l 

odd prime 

(13) 
Ix 

1 

i 
=m 

p prime 

(23) 

(Berndt 1994, p* 114). 

It has been proven that the set of prime numbers is 
a DIOPHANTINE SET (Ribenboim 1991, pp. 106-107). 
Ramanujan also showed that 

(Hardy and Wright 1979, p. 17), although it diverges 
very slowly. The sum exceeds 1, 2, 3, l  . + after 3, 59, 
361139, l  . . (Sloane’s A046024) primes, and its asymp- 
totic equation is 

h(x) 1 
da:- x In x IE 

* PCn> xl/n 
1 

n 
n=l 

2 

>: 

1 

i 
= lnlnx + BI + o(l), (24) 

p=2 
p prime 

where T(X) is the PRIME COUNTING FUNCTION and 
p(n) is the M~~BIUS FUNCTION (Berndt 1994, p. 117). 
B. M. Bredihin proved that 

where B1 is MERTENS CONSTANT (Hardy and Wright 
1979, p. 351). D irichlet showed the even stronger result 
that -a 

1 

i 
=oO (25) 

prime p=b (mod a) 
(a,b)=l 

f (XI Y) = x2 + y2 + 1 (15) 

takes prime values for infinitely many integral pairs 
(zc, y) (Honsberger 1976, p. 30). In addition, the func- 
tion 

(Davenport 1980, p. 34). 

Despite the fact that c l/p diverges, Brun showed that 

f (x7 Y) = gy - 1) p2(x,y) - 11 - (B2(2,Y) - 111 +‘27 

(16) 
where 

B(x,y) = x(y + 1) - (Y! + l), (17) 

x 1 
=B<oo, 

P 
i 

p+2 prime 

(26) 
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where B is BRUN’S CONSTANT. The function defined by 

P(n) - - - 
1 

P” 
(27) 

taken over the primes converges for n > 1 and is a gen- 
eralization of the RIEMANN ZETA FUNCTION known as 
the PRIME ZETA FUNCTION. 

The probability that the largest prime factor of a RAN- 
DOM NUMBER x is less than fi is In 2 (Beeler et al. 
1972, Item 29). The probability that two INTEGERS 
picked at random are RELATIVELY PRIME is [5(2)1-l = 

G/n2 7 where C(z) is the RIEMANN ZETA FUNCTION (Ce- 
saro and Sylvester 1883). G iven three INTEGERS chosen 
at random, the probability that no common factor will 
divide them all is 

Ir(w” z 1.202-l = 0.832.. . , (28) 

where c(3) is AP~RY'S CONSTANT. In general, the prob- 
ability that n random numbers lack a pth POWER com- 
mon divisor is [C(q+]-l (Beeler et al. 1972, Item 53). 

Large primes include the large MERSENNE PRIMES, 
FERRIER'S PRIME, and 391581(22161g3m-1) (Cipra 1989). 
The largest known prime as of 1998, is the MERSENNE 
PRIME 23021377 - 1. 

Primes consisting of consecutive DIGITS (counting 0 as 
coming after 9) include 2, 3, 5, 7, 23, 67, 89, 4567, 78901, 
l  l  l  (Sloane’s A006510). 

see also ADLEMAN-POMERANCE-RUMELY PRIMAL- 
ITY TEST, ALMOST PRIME, ANDRICA'S CONJEC- 
TURE,BERTRAND'S POSTULATE, BROCARD’S CONJEC- 
TURE, BRUN’S CONSTANT, CARMICHAEL’S CONJEC- 
TURE, CARMICHAEL FUNCTION, CARMICHAEL NUM- 

BER, CHEBYSHEV FUNCTION, CHEBYSHEV-SYLVESTER 
CONSTANT, CHEN'S THEOREM, CHINESE HYPOTHESIS, 
COMPOSITE NUMBER, COMPOSITE RUNS, COPELAND- 
ERD~S CONSTANT, CRAMER CONJECTURE, CUNNING- 
HAM CHAIN, CYCLOTOMIC POLYNOMIAL, DE POLIG- 
NAG'S CONJECTURE, DIRICHLET'S THEOREM, DIVI- 
SOR, ERD~S-KAC THEOREM, EUCLID'S THEOREMS, 
FEIT-THOMPSON CONJECTURE, FERMAT NUMBER, 
FERMAT QUOTIENT, FERRIER'S PRIME, FORTUNATE 
PRIME, FUNDAMENTAL THEOREM OF ARITHMETIC, 
GIGANTIC PRIME, GIUGA'S CONJECTURE, GOLDBACH 
CONJECTURE, GOOD PRIME, GRIMM'S CONJECTURE, 
HARDY-RAMANUJAN THEOREM, IRREGULAR PRIME, 
KUMMER'S CONJECTURE, LEHMER'S PROBLEM, LIN- 
NIK'S THEOREM, LONG PRIME, MERSENNE NUMBER, 
MERTENS FUNCTION, MILLER'S PRIMALITY TEST, MI- 
RIMANOFF'S CONGRUENCE,M~~BIUS FUNCTION,~ALIN- 
DROMIC NUMBER, PI?PIN'S TEST, PILLAI'S CONJEC- 
TURE, POULET NUMBER, PRIMARY, PRIME ARRAY, 
PRIME CIRCLE, PRIME FACTORIZATION ALGORITHMS, 
PRIME NUMBER OF MEASUREMENT, PRIME NUMBER 
THEOREM, PRIME POWER SYMBOL, PRIME STRING, 
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PRIME TRIANGLE, PRIME ZETA FUNCTION, PRTMI- 
TIVE PRIME FACTOR, PRIMORIAL, PROBABLE PRIME, 
PSEUDOPRIME,REGULARPRIME, RIEMANNFUNCTION, 
ROTKIEWICZ THEOREM, SCHNIRELMANN'S THEOREM, 
SELFRIDGE'S CONJECTURE,SEMIPRIME,SHAH-WILSON 
CONSTANT, SIERPI~~SKI'S COMPOSITE NUMBER THE- 
OREM, SIERPI~~SKI'S PRIME SEQUENCE THEOREM, 
SMOOTH NUMBER, SOLDNER'S CONSTANT, SOPHIE 
GERMAIN PRIME, TITANIC PRIME, TOTIENT FUNC- 
TION, TOTIENT VALENCE FUNCTION, TWIN PRIMES, 
TWIN PRIMES CONSTANT, VINOGRADOV'S THEOREM, 
VON MANGOLDT FUNCTION, WARING’S CONJECTURE, 
WIEFERICH PRIME, WILSON PRIME, WILSON Quo- 
TIENT, WILSON'S THEOREM, WITNESS, WOLSTEN- 
HOLME'S THEOREMJSIGMONDY THEOREM 
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Prime Number of Measurement 
The set of numbers generated by excluding the SUMS of 
two or more consecutive earlier members is called the 
prime numbers of measurement, or sometimes the SEG- 
MENTED NUMBERS. The first few terms are 1, 2, 4, 5, 
8, 10, 14, 15, 16, 21, . . . (Sloane’s A002048). Excluding 
two and three terms gives the sequence 1, 2, 4, 5, 8, 10, 
24, 15, 16, 19, 20, 21, . . . (Sloane’s A005242). 
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Prime Number Theorem 
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The theorem giving an asymptotic form for the PRIME 
C~VNTING FUNCTION r(n) for number of PRIMES less 
than some INTEGER n. Legendre (1808) suggested that, 
for large n, 

7+x> - n 
Alnn+B’ (1) 

with A = 1 and B = -1.08366 (where B is sometimes 
called LEGENDRE’S CONSTANT), a formula which is cor- 
rect in the leading term only (Wagon 1991, pp. 28-29). 

In 1791, Gauss became the first to suggest instead 

Prime Number Theorem 

Gauss later refined his estimate to 

44 - Li(n), (3) 

where Li(n) is the LOGARITHMIC INTEGRAL. This func- 
tion has n/ In n as the leading term and has been shown 
to be a better estimate than n/Inn alone. The state- 
ment (3) is often known as “the” prime number theorem 
and was proved independently by Hadamard and Vallke 
Poussin in 1896. A plot of r(n) (lower curve) and Li(n) 
is shown above for n 5 1000. 

For small n, it has been checked and always found that 
r(n) < Li(n). However, Skewes proved that the first 

crossing of r(n) - Li(n) = 0 occurs before 10101’ 
34 

(th e 
SKEWES NUMBER). The upper bound for the crossing 
has subsequently been reduced to 10371. Littlewood 
(1914) proved that the INEQUALITY reverses infinitely 
often for sufficiently large n (Ball and Coxeter 1987). 
Lehman (1966) p roved that at least 10500 reversals oc- 
cur for numbers with 1166 or 1167 DECIMAL DIGITS. 

Chebyshev (Rubinstein and Sarnak 1994) put limits on 
the RATIO 

7 44 9 
s<- In”, 

< g’ (4 

and showed that if the LIMIT 

lim I 
n+m Inn, 

(5) 

existed, then it would be 1. This is, in fact, the prime 
number theorem. 

Hadamard and Vallee Poussin proved the prime number 
theorem by showing that the RIEMANN ZETA FUNCTION 
C(Z) has no zeros of the form l+it (Smith 1994, p. 128). 
In particular, Vallke Poussin showed that 

x(x) = Li(z) + 0 
( 

&PG) (6) 

for some constant a. A simplified proof was found by 
Selberg and Erdes (1949) (Ball and Coxeter 1987, p. 63). 

Riemann estimated the PRIME COUNTING FUNCTION 
with 

r(n) - Li(n) - + Li(n1’2), (7) 

which is a better approximation than Li(n) for n < 107. 
Riemann (1859) also suggested the RIEMANN FUNCTION 

R(x) = x T Li(x’/“), (8) 
n=l 

where p is the MOBIUS FUNCTION (Wagon 1991, pa 29). 
An even better approximation for small n (by a factor 
of 10 for n < 10’) is the GRAM SERIES. 

44 - &* (2) 
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The prime number theorem is equivalent to 

lim 2 = 1, tic > 
x--+m 2 (9) 

where @J(X) is the SUMMATORY MANGOLDT FUNCTION. 

The RIEMANN HYPOTHESIS is equivalent to the asser- 
tion that 

1 Li(x) - n(z)] 5 cfi In x (10) 

for some value of c (fngham 1932, Ball and Coxeter 
1987). Some limits obtained without assuming the RIE- 
MANN HYPOTHESIS are 

T(X) = Li(x) + O[ze-(1n”J1’2’15] (11) 
r(x) = Li(x) + ~[xe-0*00g(1nx)3’5/(1n1n~~1’5], (12) 

Ramanujan showed that for sufficiently large x, 

The largest known PRIME for which the inequality fails is 
38,358,837,677 (B erndt 1994, pp. 112-113). The related 
inequality 

Li2(x) < ZLi E 
0 e (14) 

is true for x 2 2418 (Berndt 1994, p. 114). 

see als o BERTRAND ‘s PO STULATE, DIRICHLET’S THE- 

OREM, GRAM SERI ES, P RIME CO lU~~~~~ FUNCTION, 

RIEMANN’S 
MANN-MANG 

FORM 

OLDT 
ULA, 
FUN 

RIEM 

CTIoN, 

ANN FUNC 

RIEMANN 
TION, 
WEIG 

RIE- 
HTED 

PRIME-POWER COUNTING FUNCTION, 

BER 

SKEWES NUM- 
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Prime Pairs 

see TWIN PRIMES 

Prime Patterns Conjecture 

see k-TUPLE CONJECTURE 

Prime Polynomial 

see PRIME-GENERATING POLYNOMIAL 

Prime Power Conjecture 
An Abelian planar DIFFERENCE SET of order TZ exists 
only for n a PRIME POWER. Gordon (1994) has verified 
it to be true for n < 2,000,OOO. 

see also DIFFERENCE SET 
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Prime Power Symbol 
The symbol pe 11 n means, for p a PRIME, that pe]n, but 

=+I 
P ‘mm 

Prime Quadratic Effect 
Let ~~,~(x) denote th e number of PRIMES 5 II= which 
are congruent to n modulo nz. Then one might expect 
that 

A(x) E T&3(2) - ?T4,1(x) - +“(x1/2) > 0 

(Berndt 1994). Although this is true for small numbers, 
Hardy and Littlewood showed that n(x) changes sign 
infinitely often. (The first number for which it is false is 
26861.) The effect was first noted by Chebyshev in 1853, 
and is sometimes called the CHEBYSHEV PHENOMENON. 

It was subsequently studied by Shanks (1959), Hudson 
(1980), and Bays and Hudson (1977, 1978, 1979). The 
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effect was also noted by Ramanujan, who incorkectly 
claimed that lims+oo a(x) = 00 (Berndt 1994). 
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Prime Quadruplet 
A PRIME CONSTELLATION of four successive PRIMES 
with minimal distance (p, p + 2, p + 6, p + 8). The quad- 
ruplet (2, 3, 5, 7) has smaller minimal distance, but it 
is an exceptional special case. With the exception of 
(5, 7, 11, 13), a prime quadruple must be of the form 
(30n + 11, 30n + 13, 30n + 17, 30n + 19). The first few 
values of n which give prime quadruples are n = 0, 3, 6, 
27, 49, 62, 69, 108, 115, . . . (Sloane’s A014561), and the 
first few values of p are 5 (the exceptional case), 11, 101, 
191, 821, 1481, 1871, 2081, 3251, 3461, . . . , The asymp- 
totic FORMULA for the frequency of prime quadruples is 
analogous to that for other PRIME CONSTELLATIONS, 

s 

x dx 
2(ln2)4 

= 4.151180864 
s 

x dx 
2 (In' 

where c = 4.15118. l  . is the Hardy-Littlewood con- 
stant for prime quadruplets. Roonguthai found the large 
prime quadruplets with 

p =lOgg +349781731 
p = lolgg + 21156403891 

p = lozgg + 140159459341 

P = lo3gg + 34993836001 

P c 1o4gg + 883750143961 

p = 1o5gg + 1394283756151 

P = l(pgg + 547634621251 

(Roonguthai). Prime Ring 

see also PRIME ARITHMETIC PROGRESSION, PRIME 
CONSTELLATION, PRIME ~TUPLES CONJECTURE, 
SEXY PRIMES, TWIN PRIMES 

A RING for which the product of any pair of IDEALS is 
zero only if one of the two IDEALS is zero. All SIMPLE 
RINGS are prime. 

see also IDEAL, RING, SEMIPRIME RING, SIMPLE RING 
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Prime Representation 
Let a # b, A, and B denote POSITIVE INTEGERS satis- 
fying 

(a, b) = 1 (AS) = 17 

( i.e., both pairs are RELATIVELY PRIME), and suppose 
every PRIME p G B (mod A) with (p, 2ab) = 1 is expres- 
sible if the form ax2 - by2 for some INTEGERS z and y. 
Then every PRIME Q such that Q G -B (mod A) and 

(a 24 = 1 is expressible in the form bX2 - aY2 for 
some INTEGERS X and Y (Halter-Koch 1993, Williams 
1991). 

Prime Form Representation 

4n+ 1 
8n+1,8n+3 
8n&l 
6n+I 
12n + 1 
2On+ 1,20n+9 
lOn+l, lOn+9 
14n+l, 14n+9,14n+25 
28n+ 1,28n+9,28n+25 
3On+ l,3On+49 
60n + 1,6On + 49 
30n- 7,30n+17 
60n- 7,6On+ 17 
24n+1,24n+7 
24n+ 1,24n+ 19 
24n+5,24n+ 11 
24n+5,24n- 1 

2 2 
x +Y 
x2 + 2y2 
X2 - 2y2 
x2 + 3y2 
X2 - 3y2 
x2 + 5y2 
X2 - 5y2 
x2 + 7y2 
X2 - 7y2 
x2 + 15y2 
X2 - 15y2 
5x2 + 3y2 
5x2 - 3y2 
x2 + 6y2 
X2 - 6y2 
2x2 + 3y2 
2x2 - aI2 
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Prime Sequence 

see PRIME ARITHMETIC PROGRESSION, PRIME AR- 
RAY, PRIME-GENERATING POLYNOMIAL, SIERPI~~SKI’S 
PRIME SEQUENCE THEOREM 

Prime Spiral 

The numbers arranged in a SPIRAL 

5 4 3 
6 1 2 
7 8 9 

with PRIMES indicated in black, as first arawn my 
S. Ulam. Unexpected patterns of diagonal lines are ap- 
parent in such a plot, as illustrated in the above 199x 199 
grid. 
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Prime String 
Call a number n a prime string from the left if n and all 
numbers obtained by successively removing the right- 
most DIGIT are PRIME. There are 83 left prime strings 
in base 10. The first few are 2, 3, 5, 7, 23, 29, 31, 37, 
53, 59, 71, 73, 79, 233, 239, 293, 311, 313, 317, 373, 
379, 593, 599, . . l  (Sloane’s A024770), the largest being 
73,939,133. Similarly, call a number n a prime string 
from the right if n and all numbers obtained by suc- 
cessively removing the left-most DIGIT are PRIME. The 
first few are 2, 3, 5, 7, 13, 17, 23, 37, 43, 47, 53, 67, 
73, 83, 97, 103, 107, 113, 137, 167, 173, . . . (Sloane’s 
A033664). A large right prime string is 933,739,397. 

see also PRIME ARRAY, PRIME NUMBER 
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Prime Sum 
Let 

be the sum of the first n PRIMES. The first few’ terms 
are 2, 5, 10, 17, 28, 41, 58, 77, . . , (Sloane’s A007504). 
Bach and Shallit (1996) show that 

and provide a general technique for estimating such 
sums. 

see also PRIMORIAL 
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Prime Theta Function 
The prime theta function is defined as 

O(n) E jl_;lnpi, 
i=l 

where pi is the ith PRIME. As shown by Bach and Shallit 

(1996) 1 
@( > n N 12. 

References 
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Prime Triangle 

* 

1 2 

1 2 3 

1 2 3 4 

1 4 3 2 5 

143256 

This triangle has rows beginning with 1 and ending with 
n, with the SUM of each two consecutive entries being a 
PRIME. 

see also PASCAL’S TRIANGLE 
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Prime Unit 
1 and -1 are the only INTEGERS which divide every 
INTEGER. They are therefore called the prime units. 

see also INTEGER, PRIME NUMBER, UNIT 

Prime Zeta Function 
The prime zeta function 

(1) 

where the sum is taken over PRIMES is a generalization 
ofthe RIEMANN ZETA FUNCTION 

k=l 

where the sum is over all integers. The prime zeta func- 
tion can be expressed 
FUNCTION by 

in of the RIEMANN ZETA 

lnc(n) = - Xln(l -p-n> = yT;p; 

PZ2 p>2 k=l 

(3) 
k=l PXJ k=l 

Inverting then gives 

y ln<(kn), (4) 
k=l 

where p(k) is the M~~BIUS FUNCTION. The values for 
the first few integers starting with two are 

P(2) ==: 0.452247 (5) 
P(3) $=: 0.174763 (6) 
P(4) ==: 0.0769931 (7) 
P(5) $=: 0.035755. (8) 

see also MOBIUS FUNCTION, 
TION, ZETA FUNCTION 
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sity Press, pp. 355-356, 1979. 

Primequad 

see PRIME QUADRUPLET 

RIEMANN 

.n Introduc tion to the The- 

? England: Oxford Univer- 

ZETA FUNC- 

Primitive Recursive Function 

Primitive Abundant Number 
An ABUNDANT NUMBER for which all PROPER DI- 
VISORS are DEFICIENT is called a primitive abundant 
number (Guy 1994, p. 46). The first few ODD primi- 
tive abundant numbers are 945, 1575, 2205, 3465, . . . 
(Sloane’s A006038) l  

see also ABUNDANT NUMBER, DEFICIENT NUMBER, 
HIGHLY ABUNDANT NUMBER,~UPERABUNDANT NUM- 
BER,WEIRD NUMBER 

References 
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New York: Springer-Verlag, p. 46, 1994. 
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Version of the Encyclopedia of Integer Sequences.” 

Primitive Function 

see INTEGRAL 

Primitive Irreducible Polynomial 
An IRREDUCIBLE POLYNOMIAL which generates all ele- 
ments of an extension field from a base field. For any 
PRIME or PRIME POWER qand any POSITIVEINTEGER 
n, there exists a primitive irreducible POLYNOMIAL of 
degree n over GF(q). 

see also GAL~IS FIELD, IRREDUCIBLE POLYNOMIAL 

Primitive Polynomial Modulo 2 
A special type of POLYNOMIAL of which a subclass has 
COEFFICIENTS ofonly or 1. Such POLYNOMIALS define 
a RECURRENCE RELATION which can be used to obtain 
a new RANDOM bit from the n preceding ones. 

Primitive Prime Factor 
If n > 1 is the smallest INTEGER such that pIan - bn (or - 
an + b”), then p is a primitive prime factor. 

Primitive Pseudoperfect Number 

see PRIMITIVE SEMIPERFECT NUMBER 

Primitive Recursive Function 
For-loops (which have a fixed iteration limit) are a spe- 
cial case of while-loops. A function which can be imple- 
mented using only for-loops is called primitive recursive. 
(In contrast, a COMPUTABLE FUNCTION can be coded 
using a combination of for- and while-loops, or while- 
loops only.) 

The ACKERMANN FUNCTION is the simplest example of 
awe&defined TOTAL FUNCTION whichis COMPUTABLE 
but not primitive recursive, providing a counterexample 
to the belief in the early 1900s that every COMPUTABLE 
FUNCTION was also primitive recursive (D&e1 1991). 

see also ACKERMANN FUNCTION, COMPUTABLE F~Nc- 
TION, TOTAL FUNCTION 
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Primitive Root 
A number g is a primitive root of m if 

gk $1 (mod m) (1) 

for 1 < k < vz and - 

gm E 1 (mod m) . (2) 

Only m, = 2, 4, pa, and 2~” have primitive roots (where 
p > 2 and a is an INTEGER). For composite nz, there 
may be more than one primitive root (both 3 and 7 
are primitive roots mod lo), but for prime p, there is 
only one primitive root. It is the INTEGER g satisfying 
1 <g <p- 1 such that g (modp) has ORDERI,- 1. 

The primitive root of m. can also be defined as a cyclic 
generator of the multiplicative group (mod m) when m 
is a prime POWER or twice a PRIME POWER. Let p be 
any ODD PRIME k 2 1, and let 

P--l 

SE 
E 

.k 
J . (3) 

j=l 

Then 

S= 
-1 (mod p) for p - Ilk 

0 (mod P) for p - l#. (4) 

For numbers m with primitive 

(PI Y> = 1 are represent able as 
roots, all y satisfying 

y G gt (mod m) , (5) 

where t = 0, 1,. . . , 4(m)--1, t is known as the index, and 
y is an INTEGER. Kearnes showed that for any POSITIVE 
INTEGER m, there exist infinitely many PRIMES p such 
that 

m<g,<p-mm. (6) 

Call the least primitive root gp. Burgess (1962) proved 
that 

for C and E PUS~TIVE constants and p sufficiently large. 

The table below gives the primitive roots (for prime 
m = p; Sloane’s AOO1918) and least primitive roots (for 
composite m) for the first few INTEGERS 

m9 

2 1 
3 2 
4 3 
5 2 
6 5 
7 3 
9 2 

10 3 
11 2 
13 2 
14 3 
17 3 
18 5 
19 2 
22 7 
23 5 
25 2 
26 7 
27 2 
29 2 
31 3 
34 3 
37 2 
38 3 
41 6 
43 3 
46 5 
47 5 
49 3 
50 3 

m 9 

53 2 134 7 
54 5 137 3 
58 3 139 2 
59 2 142 7 
61 2 146 5 
62 3 149 2 
67 2 151 6 
71 7 157 5 
73 5 158 3 
74 5 162 5 
79 3 163 2 
81 2 166 5 
82 7 167 5 
83 2 169 2 
86 3 173 2 
89 3 178 3 
94 5 179 2 
97 5 181 2 
98 3 191 19 

101 2 193 5 
103 5 194 5 
106 3 197 2 
107 2 199 3 
109 6 202 3 
113 3 206 5 
118 11 211 2 
121 2 214 5 
122 7 218 11 
125 2 223 3 
127 3 226 3 
131 2 227 2 

m9 

Abramowitz, M. and Stegun, C. A. (Eds.). “Primitive 
Roots.” 524.3.4 in Handbook of Mathematical Functions 
with Formulas, Graphs, and Mathematical Tables, 9th 
printing. New York: Dover, p. 827, 1972. 

Guy, R. K. “Primitive Roots.” §I?9 in Unsolved Problems 
in Number Theory, 2nd ed. New York: Springer-Verlag, 
pp. 248-249, 1994. 

Sloane, N. 3. A. Sequence AOOf918/M0242 in “An On-Line 
Version of the Encyclopedia of Integer Sequences.” 

Primitive Root of Unity 
A number T is an nth ROOT OF UNITY if rn = 1 and 
a primitive nth root of unity if, in addition, Y-J is the 
smallest INTEGER of k = 1, . . . , n for which ~~ = 1. 

see also ROOT OF UNITY 

Primitive Semiperfect Number 
A SEMIPERFECT NUMBER forwhichnoneofits PROPER 
DIVISORS are pseudoperfect (Guy 1994, p* 46). The first 
few are 6, 20, 28, 88, 104, 272 . . . (Sloane’s A006036). 
Primitive pseudoperfect numbers are also called IRRE- 
DUCIBLE SEMIPERFECT NUMBERS. There are infinitely 
many primitive pseudoperfect numbers which are not 
HARMONIC DIVISOR NUMBERS, and infinitely many 
ODD primitive semiperfect numbers. 



Primitive Sequence Principal Curvatures 

see ~ZSO HARMONIC IDIVISOR NUMBER, SEMIPERFECT 
NUMBER 
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Primitive Sequence 
A SEQUENCE in which no term DIVIDES any other. 
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Primorial 
For a PRIME p, 

primorial(pi) = pi# G hpj, 

j=l 

where pi is the ith PRIME. The first few values for pi#, 
are 2, 6, 30, 210, 2310, 30030, 510510, . . . (Sloane’s 
AOO2110). 

P# - 1 is PRIME for PRIMES p = 3, 5, 11, 41, 89, 317, 
337, 991, 1873, 2053, 2377, 4093, 4297, . . . (Sloane’s 
A014563; Guy 19942, or pn for n = 2, 3, 5, 13, 24, 66, 
68, 167, 287, 310, 352, 564, 590, . . . , p# + 1 is known 
to be PRIME for the PRIMES p = 2, 3, 5, 7, II, 31, 379, 
1019, 1021, 2657, 3229, 4547, 4787, 11549, . . . (Sloane’s 
A005234; Guy 1994, Mudge 1997), or p, for n = 1, 2, 3, 
4, 5, 11, 75, 171, 172, 384, 457, 616, 643, 1391, l  . . . Both 
forms have been tested top = 25000 (Caldwell 1995). It 

is not known if there are an infinite number of PRIMES 
for which p# + 1 is PRIME or COMPOSITE (Ribenboim 
1989). 

see UZSO FACTORIAL, FORTUNATE PRIME, PRIME 
SUM SMARANDACHE NEAR-TO-PRIMORIAL FUNCTION, 
TWIN PEAKS 
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Prince Rupert’s Cube 
The largest CUBE which can be made to pass through 
a given CUBE. (In other words, the CUBE having 
a side length equal to the side length of the largest 
HOLE of a SQUARE CROSS-SECTION which can be cut 
through a unit CUBE without splitting it into two 
pieces.) The Prince Rupert’s cube has side length 
3fi/4 = 1.06065.. ., and any CUBE this size or smaller 
can be made to pass through the original CUBE. 

see also CUBE, SQUARE 
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Principal 
The original amount borrowed or lent on which INTER- 
EST is then paid or given. 

see also INTEREST 

Principal Curvatures 
The MAXIMUM and MINIMUM of the NORMAL CURVA- 
TURE ~1 and ~2 at a given point on a surface are called 
the principal curvatures. The principal curvatures mea- 
sure the MAXIMUM and MINIMUM bending of a REG- 

ULAR SURFACE at each point. The GAUSSIAN CURVA- 
TURE K and MEAN CURVATURE H are related to ~~ and 

~2 by 

K = rclltc2 (1) 

H = +(Q + IEZ). (2) 

This can be written as a QUADRATIC EQUATION 

2 -2Hfi+K=O, (3) 

which has solutions 

see also GAUSSIAN C URVATURE, MEAN CURVATURE, 

NORMAL CURVATURE, NORMAL SECTTON, PRINCIPAL 

DIRECTION, PRINCIPAL RADIUS OF CURVATURE, Ro- 
DRIGUES'S CWRVATURE FORMULA 

K~=H+.\/H~-K (4 

62 - -H-dH2-K. (5) 
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Principal Curve 
A curve a on a REGULAR SURFACE iW is a principal 
curve IFF the velocity cl~’ always points in a PRINCIPAL 
DIRECTION, i.e., 

S(d) = Kid, 

where S is the SHAPE OPERATOR and pi is a PRINCI- 
PAL CURVATURE. Ifa SURFACE OF REVOLUTION gener- 
ated by a plane curve is a REGULAR SURFACE, then the 
MERIDIANS and PARALLELS are principal curves. 
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Principal Direction 
Thedirectionsinwhichthe PRINCIPAL CURVATURES oc- 
cur. 

see also PRINCIPAL DIRECTION 
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Principal Ideal 
An IDEAL I of a RING R is called principal if there is an 
element a of R such that 

In other words, the IDEAL is generated by the element 
a. For example, the IDEALS d of the RING of INTE- 
GERS z are all principal, and in fact all IDEALS of z are 
principal. 

see also IDEAL, RING 

Principal Normal Vector 

see NORMAL VECTOR 

Principal Quintic Form 
A general QUINTIC EQUATION 

@X5 + uqx4 + u3x3 + @X2 + UlX + ao = 0 

can be reduced to one of the form 

y5 +b2y2 + hy+ bo = 0, 

called the principal quintic form. 

(1) 

(2) 

the ROOTS and the sums of the SQUARES of the ROOTS 
vanish, so 

Sl(yj) = 0 (3) 

SZ(yj) = 0. (4) 

Assume that the ROOTS yj of the new quintic are related 
to the ROOTS zj of the original quintic by 

Yj = Xj2 + O!Xj + pm (5) 

Substituting this into (1) then yields two equations for 
a and fi which can be multiplied out, simplified by us- 
ing NEWTON'S RELATIONS for the POWER sumsin the 
~:j, and finally solved. Therefore, a and p can be ex- 
pressed using RADICALS in terms of the COEFFICIENTS 
a+ Again by substitution into (4), we can calculate 

SdYj)r s4(Yj) and SdYj) in terms of or and /3 and the 
zcj. By the previous solution for a! and 0 and again by 
using NEWTON'S RELATIONS for the POWER sums in 
the xj, we can ultimately express these POWER sums in 
terms of the aj. 

see ah BRING QUINTIC FORM, NEWTON’S RELATIONS, 
QUINTTC EQUATION 

Principal Radius of Curvature 
Given a 2-D SURFACE, there are two “principal” RADII 
OF CURVATURE. The larger is denoted RI, and the 
smaller R2. These are PERPENDICULAR to each other, 
and both PERPENDICULAR to the tangent PLANE of the 
surface. 

see also GAUSSIAN CURVATURE, MEAN CURVATURE, 
RADIUS OF CURVATURE 

Principal Value 

see CAUCHY PRINCIPAL VALUE 

Principal Vector 
A tangent vector vP = ZIIX~ + w2xV is a principal vector 
IFF 

212 
2 -v1v2 VI2 

det E F G =0, 
[ e f 9 I 

where e, f, and g are coefficients of the first FUNDAMEN- 
TAL FORM and E, F, G of the second FUNDAMENTAL 
FORM. 

see UZSO FUNDAMENTAL FORMS, PRINCIPAL CURVE 

References 
Gray, A. Modern Differential Geometry of Curves and Sur- 

faces. Boca Raton, FL: CRC Press, p. 410, 1993. 

NEWTON'S RELATIONS for the ROOTS yj in terms of 
the bjs is a linear system in the bj , and solving for the 
bjs expresses them in terms of the POWER sums Sn(yj)* 
These POWER sums can be expressed in terms of the 
ajs, SO the bjs can be expressed in terms of the ajs. For 
a quintic to have no quartic or cubic term, the sums of 
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Principal Vertex 
A VERTEX zi of a SIMPLE POLYGON P is a princi- 
pal VERTEX if the diagonal [z+~, “ci+l] intersects the 
boundary of P only at xi-1 and zi+l. 

see also EAR, MOUTH 

Heierences 
Meisters, G. H. “Polygons Have Ears.” Amer. kfath. Monthly 

82, 648-751, 1975e 
Meisters, G. H. “Principal Vertices, Exposed Points, and 

Ears.” Amer. Math. Monthly 87, 284-285, 1980. 
Toussaint, G. “Anthropomorphic Polygons.” Amer. Math. 

Monthly 98, 31-35, 1991. 

Principle 
A loose term for a true statement which may be a POS- 
TULATE, THEOREM, etc. 

see also AREA PRINCIPLE, ARGUMENT PRINCIPLE, Ax- 
IOM, CAVALIERI% PRINCIPLE, CONJECTURE, CONTI- 
NUITY PRINCIPLE, COUNTING GENERALIZED PRINCI- 
PLE, DIRICHLET'S Box PRINCIPLE, DVALITY PRIN- 
CIPLE, DUHAMEL'S CONVOLUTION PRINCIPLE, Eu- 
CLID'S PRINCIPLE, FUBINI PRINCIPLE, HASSE PRIN- 
CIPLE, INCLUSION-EXCLUSION PRINCIPLE, INDIFFER- 
ENCE PRINCIPLE, TNDUCTION PRINCIPLE, INSUFFI- 
CIENT REASON PRINCIPLE, LEMMA, LOCAL-GLOBAL 
PRINCIPLE, MULTIPLICATION PRINCIPLE, PERMA- 
NENCE OF MATHEMATICAL RELATIONS PRINCIPLE, 
PONCELET'S CONTINUITY PRINCIPLE, PONTRYAGIN 
MAXIMUM PRINCIPLE,PORISM,POSTWLATE,SCHWARZ 
REFLECTION PRINCIPLE, SUPERPOSITION PRINCI- 
PLE, SYMMETRY PRINCIPLE, THEOREM, THOMSON'S 
PRINCIPLE, TRIANGLE TRANSFORMATION PRINCIPLE, 
WELL-ORDERING PRINCIPLE 

Pringsheim’s Theorem 
Let P(I) be the set of real ANALYTIC FUNCTIONS on I. 
ThenC”(I)is a SUBALGEBRA ofC”(I). A NECESSARY 
and SUFFICIENT condition for a function f E C”(I) to 
belong to P(I) is that 

lf’“‘(x)I < k”n’ . - 

for n = 0, 1, . . . for a suitable constant k. 

see UZSO ANALYTIC FUNCTION, SUBALGEBRA 

References 
Iyanaga, S. and Kawada, Y. (Eds.). Encyclopedic Dictionary 

of Mathematics. Cambridge, MA: MIT Press, p. 207, 1980. 

Printer’s Errors 
Typesetting “errors” in which exponents or multiplica- 
tion signs are omitted but the resulting expression is 
equivalent to the original one. Examples include 

2592 = 2592 

25. $$ = 25?& 

where a whole number followed by a fraction is inter- 
preted as addition (e.g., l$ = 1 + $ = i). 

see also ANOMALOUS CANCELLATION 

References 
Dudeney, H. E. Amusements in Mathematics. 

Dover, 1970. 
Madachy, J. S. Madachy’s Mathematical Recrea 

York: Dover, pp. 174-175, 1979. 

Prior Distribution 

see BAYESIAN ANALYSIS 

New York: 

tions. New 

Prism 

A POLYHEDRON with two congruent POLYGONAL faces 
and all remaining faces PARALLELOGRAMS. The 3- 
prism is simply the CUBE. The simple prisms and an- 
tiprisms include: decagonal antiprism, decagonal prism, 
hexagonal antiprism, hexagonal prism, octagonal anti- 
prism, octagonal prism, pentagonal antiprism, pentago- 
nal prism, square antiprism, and triangular prism. The 
DUAL POLYHEDRON of a simple (Archimedean) prism is 
a BIPYRAMID. 

The triangular prism, square prism (cube), and hexag- 
onalprism are all SPACE-FILLING POLYHEDRA. 
see also ANTIPRISM, AUGMENTED HEXAGONAL PRISM, 
AUGMENTED PENTAGONAL PRISM, AUGMENTED TRI- 
ANGULAR PRISM,BIAUGMENTED PENTAGONAL PRISM, 
BIAUGMENTED TRIANGULAR PRISM, CUBE, METABI- 
AUGMENTED HEXAGONAL PRISM, PARABIAUGMENTED 
HEXAGONAL PRISM, PRISMATOID, PRISMOID, TRAPE- 
ZOHEDRON,TRIAUGMENTED HEXAGONAL PRISM, TRI- 
AUGMENTED TRIANGULAR PRISM 

References 
Beyer, W. H. (Ed.) CRC Standard Mathematical Tables, 

28th ed. Boca Raton, FL: CRC Press, p. 127, 1987. 
Cromwell, P. R. Polyhedra. New York: Cambridge University 

Press, pp* 85-86, 1997. 
@j Weisstein, E. W. “Prisms and Antiprisms.” http: //wuw, 

astro.virginia.edu/-eww6n/math/notebooks/Prism.~. 

Prismatic Ring 
A MOBIUS STRIP with finite width. 

see also M~~BIUS STRIP 

References 

34425 = 34425 

312325 = 312325 

Gardner, M. “Twisted Prismatic Rings.” Ch. 5 in Fractal 
Music, Hypercards, and More Mathematical Recreations 
from Scientific American Magazine. New York: W. H. 
Freeman, 1992. 
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Prismatoid 
A POLYHEDRON having two POLYGONS in PARALLEL 
planes as bases and TRIANGULAR or TRAPEZOIDAL lat- 
eral faces with one side lying in one base and the oppo- 
site VERTEX or side lying in the other base. Examples 
include the CUBE, PYRAMIDAL FRUSTUM, RECTANGU- 
LAR PARALLELEPIPED, PRISM, and PYRAMID. Let Al 
be the AREA of the lower base, Aa the AREA of the 
upper base, M the AREA of the midsection, and h the 
ALTITUDE. Then 

V = ;h(A1 + 4M + AZ). 

see UZSO GENERAL PRISMATOID, PRISMOID 

References 
Beyer, W. H. CRC Standard Mathematical Tables, 28th ed. 

Boca Raton, FL: CRC Press, pp. 128 and 132, 1987. 

Prismoid 
A PRISMATOID having planar sides and the same num- 
ber of vertices in both of its parallel planes. The faces 
of a prismoid are therefore either TRAPEZOIDS or PAR- 
ALLELOGRAMS. Ball and Coxeter (1987) use the term 
to describe an ANTIPRISM. 

see also ANTIPRISM, PRISM, PRISMATOID 

References 
Ball, W. W* R. and Coxeter, H. S. M. Mathematical Recre- 

ations and Essays, 13th ed. New York: Dover, p. 130, 
1987. 

Prisoner’s Dilemma 
A problem in GAME THEORY first discussed by 
A. Tucker. Suppose each of two prisoners A and B, 
who are not allowed to communicate with each other, 
is offered to be set free if he implicates the other. If 
neither implicates the other, both will receive the usual 
sentence. However, if the prisoners implicate each other, 
then both are presumed guilty and granted harsh sen- 
tences. 

A DILEMMA arises in deciding the best course of action 
in the absence of knowledge of the other prisoner’s deci- 
sion. Eaih prisoner’s best strategy would appear to be 
to turn the other in (since if A makes the worst-case as- 
sumption that B will turn him in, then B will walk free 
and A will be stuck in jail if he remains silent). How- 
ever, if the prisoners turn each other in, they obtain the 
worst possible outcome for both. 

see also DILEMMA, TIT-FOR-TAT 

References 
Axelrod, R. The Evolution of Cooperation New York: Basic- 

Books, 1985. 
Goetz, P. “Phil’s Good Enough Complexity Diet ionary.” 

http://www.cs.buffalo.edu/-goetz/dict.html. 

Prizes 

see MATHEMATICS PRIZES 

Probability 1445 

Probability 
Probability is the branch of mathematics which studies 
the possible outcomes of given events together with their 
relative likelihoods and distributions. In common usage, 
the word “probability” is used to mean the chance that 
a particular event (or set of events) will occur expressed 
on a linear scale from 0 (impossibility) to 1 (certainty), 
also expressed as a PERCENTAGE between 0 and 100%. 
The analysis of events governed by probability is called 
STATISTICS. 

There are several competing interpretations of the ac- 
tual “meaning” of probabilities. FYrequentists view prob- 
ability simply as a measure of the frequency of out- 
comes (the more conventional interpretation), while 
BAYESIANS treat probability more subjectively as a sta- 
tistical procedure which endeavors to estimate parame- 
ters of an underlying distribution based on the observed 
distribution. 

A properly normalized function which assigns a proba- 
bility “density” to each possible outcome within some 
interval is called a PROBABILITY FUNCTION, and its cu- 
mulative value (integral for a continuous distribution or 
sum for a discrete distribution) is called a DISTRIBUTION 
FUNCTION. 

Probabilities are defined to obey certain assumptions, 
called the PROBABILITY AXIOMS. Let a SAMPLE SPACE 
contain the UNION (U) of all possible events Ei, so 

(1) 

and let E and F denote subsets of S. Further, let F’ = 
not-F be the complement of F, so 

F u F’ = S. 

Then the set E can be written as 

that 

(2) 

E=EnS=En(FUF’)=(EnF)U(EnF’), (3) 

where n denotes the intersection. Then 

P(E) = P(E n F) + P(E n F’) - P[(E n F) n (En F’)] 

=P(EnF)+P(EnF’)-P[(FnF’)n(EnE)] 
= P(E n F) + P(E n F’) - P(O n E) 

= P(E n F) + P(E n F’) - P(0) 

= P(E n F) + P(E n F’), (4) 

where 0 is the EMPTY SET. 
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Let P(EIF) d enote the CONDITIONAL PROBABILITY of 
E given that F has already occurred, then 

P(E) = P(EIF)P(F) + P(EIF’)P(F’) (5) 

= P(EIF)P(F) + P(EIF’)[l - P(F)] (6) 
P(An B) = P(A)P(BIA) 

= P(B)P(AIB) 

P(A’ n B) = P(A’)P(BIA’) 

P(E]F) = p(;(;)F) 

A very important result states that 

P(E u F) = P(E) + P(F) - P(E n F), 

which can be generalized to 

=xP(Ai)-xtP(AiUAj) 

i ij 

(12) 

see &O BAYES' FORMULA, CONDITIONAL PROBABIL- 
ITY, DISTRIBUTION, DISTRIBUTION FUNCTION, LIKE- 
LIHOOD, PROBABILITY AXIOMS, PROBABILITY FUNC- 
TION, PROBABILITY INEQUALITY, STATISTICS 

Probability Axioms 
Given an event E in a SAMPLE SPACE S which is either 
finite with N elements or countably infinite with N = 00 
elements, then we can write 

SE 6, , 

( 1 
*- z- 1 

and a quantity P(E& called the PROBABILITY of event 
Ei, is defined such that 

1. 0 < P(Ei> < 1. - 

2. P(S) = 1. 

3. Additivity: P(EI U Ez) = P(E1) + P(Ez), where El 
and Ea are mutually exclusive. 

4. Countable additivity: P (U~-,E~) = ~~XI P(Ei) for 
n = 1, 2, . . . , N where El, Ez, . . . are mutually 
exclusive (i.e., El n Ea = 0). 

see also SAMPLE SPACE, UNION 

Probability Density Function 

see PROBABILITY FUNCTION 

Probability Function 

Probability F’unction 
The probability density function P(x) (also called the 
PROBABILITY DENSITY FUNCTION) ofa continuous dis- 
tribution is defined as the derivative of the (cumulative) 
DISTRIBUTION FUNCTION D(z), 

D’(x) = [p(x)]tco = P(x) - P(-00) = P(x), (1) 

so 

s 

2 

D(x) = P(X 2 x) G P(Y) dY* (2) 
--oo 

A probability density function satisfies 

P(x f B) = 
s 

P(x) dx 
B 

(3) 

and is constrained by the normalization condition, 

P(-00 <x < 00) = P(x) dx E 1. (4) 

Special cases are 

s b 

P(a 2 x < b) = P(x) dx (5) 
a 

a+da 

P(a 2 x < a+ da) = - P(x) dx z P(a) da (6) 
Ja 

s a 

P(X 
c a) = P(x) dx = 0. 

a 

If u = u(x, y) and ZI = ~(2, y), then 

(7) 

(8) 

Given the MOMENTS of a distribution (p, 0, and the 
GAMMA STATISTICS yr), the asymptotic probability 
function is given by 

P(x) = Z(x) 

-[~~~z’3’(x)] + [&y22(4)(x) + &y12zyx)] 

-[ ' 7 zO(x)+ 4-47172z'7'(x)+ $967132'g)(2)] 1203 

+[&4zyx) + ( &3Y22 + ~YlY3WYX) 

+~y12y2z~10)(x)+ &y14z(12)(x)]+ "'1 (9) 

is the NORMAL DISTRIBUTION, and 

Probability Distribution Function 

see PROBABILITY FUNCTION 

& 
yr = - @-+2 (11) 
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for T > 1 (with fir CUMULANTS and - 
DEVIATION; Abramowitz and Stegun 

0 the STANDARD 
1972, p. 935). 

see also CONTINUOUS DISTRIBUTION, CORNISH-FISHER 
ASYMPTOTIC EXPANSION, DISCRETE DISTRIBUTION, 
DISTRIBUTION FUNCTION, JOINT DISTRIBUTION FUNC- 
TION 

References 
Abramowitz, M. and Stegun, C. A. (Eds.). “Probability 
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Probability Inequality 
If B 1 A (B is a superset of A), then P(A) 5 P(B). 

Probability Integral 

2 4 

RefProbabilityIntegral z] Im[ProbabiGtyIntegral z] lProbabilitvIntesra1 zI 

e -t2/2 & 

-t2/2 & 
(2) 

(4) 

where f&(x) is the NORMAL DISTRIBUTION FUNCTION 
and ERF is the error function. 

see also ERF, NORMAL DISTRIBUTION FUNCTION 

Probability Measure 
Consider a PROBABILITY SPACE (S, s, P) where (S, s) 
is a MEASURABLE SPACE and P is a MEASURE on s 
with P(S) = 1. Then the MEASURE P is said to be 
a probability measure. Equivalently, P is said to be 
normalized. 

see ~~~~MEASURABLE SPACE,MEASURE,PROBABILITY, 
PROBABILITY SPACE,STATE SPACE 

Probability Space 
A triple (S, s, P), where (S, F$ is a measurable space 
and P is a MEASURE on s with P(S) = 1. 

see ~ZSOMEASURABLE SPACE,MEASURE,PROBABILITY, 
PROBABILITY MEASURE, RANDOM VARIABLE, STATE 
SPACE 

Probable Error 
The first QUARTILE of a standard NORMAL DISTRIBU- 
TION occurs when 

The solution is t = 0.6745. , . . The value of I! giving 
l/4 is known as the probable error of a NORMALLY DIS- 
TRIBUTED variate. However, the number S correspond- 
ingtothe 50% CONFIDENCE INTERVAL, 

s 

ISI 
P(6) E 1 - 2 @(t)dt = +, 

0 

is sometimes also called the probable error. 

see also SIGNIFICANCE 

Probable Prime 
A number satisfying FERMAT'S LITTLE THEOREM (or 
some other primality test) for some nontrivial base. A 
probable prime which is shown to be COMPOSITE is 
called a PSEUDOPRIME (otherwise, of course, it is a 
PRIME). 

see also PRIME NUMBER, PSEUDOPRIME 

Problem 
An exercise whose solution is desired. 

see also ALHAZEN'S BILLIARD PROBLEM, ALHAZEN'S 
PROBLEM, ANDRI?S PROBLEM, APOLLONIUS' PROB- 
LEM, APOLLONIUS PURSUIT PROBLEM, ARCHIMEDES' 
CATTLE PROBLEM, ARCHIMEDES' PROBLEM, BALLOT 
PROBLEM, BASLER PROBLEM, BERTRAND'S PROB- 
LEM, BILLIARD TABLE PROBLEM, BIRTHDAY PROB- 
LEM, BISHOPS PROBLEM, BOLZA PROBLEM, BOOK 
STACKING PROBLEM, BOUNDARY VALUE PROBLEM, 
BOVINUM PROBLEMA, BRACHISTOCHRONE PROBLEM, 
BRAHMAGUPTA'S PROBLEM, BROCARD'S PROBLEM, 
BUFFON-LAPLACE NEEDLE PROBLEM,BUFFON'S NEE- 
DLE PROBLEM, BURNSIDE PROBLEM, BUSEMANN- 
PETTY PROBLEM, CANNONBALL PROBLEM, CASTIL- 
LON'S PROBLEM, CATALAN'S DIOPHANTINE PROB- 
LEM, CATALAN'S PROBLEM, CATTLE PROBLEM OF 
ARCHIMEDES, CAUCHY PROBLEM, CHECKER-JUMPING 
PROBLEM, CLOSED CURVE PROBLEM, COIN PROB- 
LEM, COLLATZ PROBLEM, CONDOM PROBLEM, CON- 
GRUUM PROBLEM, CONSTANT PROBLEM, COUPON 
COLLECTOR'S PROBLEM, CROSSED LADDERS PROB- 
LEM, CUBE DOVETAILING PROBLEM, DECISION PROB- 
LEM, DEDEKIND'S PROBLEM, DELIAN PROBLEM, DE 



1448 Problem Problem 

MERE'S PROBLEM, DIAGONALS PROBLEM, DIDO'S 
PROBLEM, DILEMMA, DINITZ PROBLEM, DIRICHLET 
DIVISOR PROBLEM, DISK COVERING PROBLEM,EQUI- 
CHORDAL PROBLEM, EXTENSION PROBLEM, FAG- 

NANO'S PROBLEM, FEJ& T~TH'S PROBLEM, FER- 
MAT'S PROBLEM, FERMAT'S SIGMA PROBLEM,FISHER- 
BEHRENS PROBLEM, FIVE DISKS PROBLEM, FOUR 
COINS PROBLEM,FOUR TRAVELERS PROBLEM, FUSS’S 
PROBLEM,GAUSS,S CIRCLE PROBLEM,GAUSS,S CLASS 
NUMBER PROBLEM, GLUVE PROBLEM, GUTHRIE'S 
PROBLEM, HABERDASHER'S PROBLEM, HADWIGER 
PROBLEM, HALTING PROBLEM, HANSEN'S PROBLEM, 
HEESCH,SPROBLEM,HEILBRONNTRIANGLEPROBLEM, 
HILBERT'S PROBLEMS,~LLUMINATION PROBLEM,~NDE- 
TERMINATE PROBLEMS, INITIAL VALUE PROBLEM, IN- 
TERNAL BISECTORS PROBLEM,~SOPERIMETRIC PROB- 
LEM,ISOVOLUMEPROBLEM, JEEPPROBLEM,JOSEPHUS 
PROBLEM, KAKEYA NEEDLE PROBLEM, KAKUTANI'S 
PROBLEM, KATONA'S PROBLEM, KEPLER PROBLEM, 
KINGS PROBLEM, KIRKMAN'S SCHOOLGIRL PROB- 
LEM, KISSING CIRCLES PROBLEM, KNAPSACK PROB- 
LEM, KNOT PROBLEM, K~NZGSBERG BRIDGE PROB- 
LEM, KURATOWSKI'S CLOSURE-CQMPONENT PROB- 
LEM,LAM'SPR~BLEM,LANGFORD'SPROBLEM,LEBES- 
GUE MEASURABILITY PROBLEM, LEBESGUE MINIMAL 
PROBLEM, LEHMER'S PROBLEM, LEMOINE'S PROB- 
LEM, LIFTING PROBLEM, LUCAS, MARRIED COUPLES 
PROBLEM, MALFATTI'S RIGHT TRIANGLE PROBLEM, 
MALFATTI'S TANGENT TRIANGLE PROBLEM, MAR- 
RIED COUPLES PROBLEM, MATCH PROBLEM, MAX- 
IMUM CLIQUE PROBLEM, MENAGE PROBLEM, MET- 
RIC EQUIVALENCE PROBLEM, MICE PROBLEM, MI- 
KUS~SKI'S PROBLEM, MOBIUS PROBLEM, MONEY- 
CHANGING PROBLEM, MONKEY AND COCONUT PROB- 
LEM, MONTY HALL PROBLEM, MORTALITY PROB- 
LEM, MOSER'S CIRCLE PROBLEM, NAPOLEON'S PROB- 
LEM, NAVIGATION PROBLEM, NEAREST NEIGHBOR 
PROBLEM, NP-COMPLETE PROBLEM, NP-PROBLEM, 
ORCHARD-PLANTING PROBLEM, ORCHARD VISIBIL- 
ITY PROBLEM, P-PROBLEM, PARTY PROBLEM, PI- 

ANO MOVER'S PROBLEM, PLANAR BUBBLE PROBLEM, 
PLATEAU'S PROBLEM, POINTS PROBLEM, POSTAGE 
STAMP PROBLEM, POTHENOT PROBLEM, PROUHET'S 
PROBLEM, QUEENS PROBLEM, RAILROAD TRACK 
PROBLEM, RIEMANN'S MODULE PROBLEM, SATISFI- 
ABILITY PROBLEM, SCHOOLGIRL PROBLEM, SCHUR'S 
PROBLEM, SCHWARZ'S TRIANGLE PROBLEM, SHAR- 
ING PROBLEM, SHEPHARD'S PROBLEM, SINCLAIR'S 
SOAP FILM PROBLEM, SMALL WORLD PROBLEM, 
SNELLIUS-POTHENOT PROBLEM, STEENROD'S REAL- 
IZATION PROBLEM, STEINER'S PROBLEM, STEINER'S 
SEGMENT PROBLEM, SURVEYING PROBLEMS, SYL- 
VESTER'S FOUR-POINT PROBLEM, SYLVESTER'S LINE 
PROBLEM, SYLVESTER'S TRIANGLE PROBLEM, SYRA- 
CUSE PROBLEM, SYZYGIES PROBLEM, TARRY-ESCOTT 
PROBLEM,TAUT~CHRONEPROBLEM,THOMSONPROB- 
LEM, THREE JUG PROBLEM, TRAVELING SALESMAN 
PROBLEM, TRAWLER PROBLEM, ULAM'S PROBLEM, 

UTILITY PROBLEM, VIBRATION PROBLEM, WALLIS,S 
PROBLEM,~ARING'S PROBLEM 
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Procedure 
A specific prescription for carrying out a task or solving 
a problem. Also called an ALGORITHM, METHOD, or 
TECHNIQUE 

see also BISECTION PROCEDURE, MAEHLY'S PROCE- 
DURE 

Proclus’ Axiom 
If a line intersects one of two parallel lines, it must in- 
tersect the other also. This AXIOM is equivalent to the 
PARALLEL AXIOM. 

References 
Dunham, W. “Hippocrates’ Quadrature of the Lune.” Ch. 1 

in Journey Through Genius: The Great Theorems of 
Mathematics. New York: Wiley, p. 54, 1990. 

Procrustian Stretch 

see HYPERBOLIC ROTATION 

Product 
The term “product” refers to the result of one or more 
MULTIPLICATIONS. For example, the mathematical 
statement a x b = c would be read “a TIMES b EQUALS 
c,j' where c is the product. 

The product symbol is defined by 

Useful product identities include 

00 

rI f i = exp 

cm 1 
x 

In fi . 
*- z- 1 i=l 

For 0 < ai < 1, then the products n&(1 + a;) and 
fliw=, (C- ai) converge and diverge as ni=, ai. 

see also CROSS PRODUCT, DOT PRODUCT, INNER 
PRODUCT, MATRIX PRODUCT, MULTIPLICATION, NAN- 
ASSOCIATIVE PRODUCT,~UTER PRODUCT,SUM,TEN- 
SOR PRODUCT,TIMES,VECTOR TRIPLE PRODUCT 

Heierences 
Guy, R. K. ‘<Products Taken over Primes.” §B87 in Unsolved 
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Product Formula Program 
Let a be a N~NZERO RATIONAL NUMBER a = 
fpl”l~~“~ l  l  •JL~~, where pl, . . . , pi are distinct 
PRIMES, art E z and a~ # 0. Then 

A precise sequence of instructions designed to accom- 
plish a given task. The implementation of an ALGO- 
RITHM on a computer using a programming language is 
an example of a program. 

see also ALGORITHM Ial n Ialp =pla1pZa2 l **pLaL 

p prime 

XPl -a1p2-a2 . . .pL-aL = 1. 

References 
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Product-Moment Coefficient of Correlation 

see CORRELATION COEFFICIENT 

Product Neighborhood 

see TUBULAR NEIGHBORHOOD 

Product Rule 
The DERIVATIVE identity 

f (x + h)g(x + h) - f (Mx> 
h 

= lim f (3 + h)dx + h) - f (x + h)9(x) 
h+O h 

+ f (x + h)9(x) - f (49(x> 
h 1 

- lim f (x + h) s(x + h) - g(x) - 
h-0 h 

+g(x) f (2 + h) - f (4 
h 1 = f (+m + dxV’(4* 

see ~2s~ CHAIN RULE, EXPONENT LAWS, QUOTIENT 
RULE 
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Product Space 
A Cartesian product equipped with a “product topol- 
ogy” is called a product space (or product topological 
space, or direct product). 
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Iyanaga, S. and Kawada, Y. (Eds.). “Product Spaces.” 

5408L Encyclopedic Dictionary of Mathematics. Cam- 
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Projection Operator 

Projection 

A projection is the transformation of POINTS and LINES 
in one PLANE onto another PLANE by connecting corre- 
sponding points on the two planes with PARALLEL lines. 
This can be visualized as shining a (point) light source 
(located at infinity) through a translucent sheet of paper 
and making an image of whatever is drawn on it on a 
second sheet of paper. The branch of geometry dealing 
with the properties and invariants of geometric figures 
under projection is called PROJECTIVE GEOMETRY. 

The projection of a VECTOR a onto a VECTOR u is given 

bY 
8.u 

proj,a = mu, 
I I 

and the length of this projection is 

Iproj,al = v. 

General projections are considered by Foley and Van- 
Dam (1983). 

see also MAP PROJECTION, POINT-PLANE DISTANCE, 
PROJECTIVE GEOMETRY,REFLECTION 
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Projection Operator 

1?&d~j(t)) = Gl#i(X)) 
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see also BRA, KET 

Projective Collineation 
A C~LLINEATION which transforms every 1-D form pro- 
jectively. Any COLLINEATION which transforms one 
range into a projectively related range is a projective 
collineation. Every PERSPECTIVE COLLINEATI~N is a 
projective collineation. 

see also COLLINEATION, ELATION, HOMOLOG 
ETRY), PERSPECTIVE C OLLINEATION 

Y(GEOM- 

References 
Coxeter, H. S. M. Introduction to Geometry, 2nd ed. New 

York: Wiley, pp. 247-248, 1969. 

Projective General Linear Group 
The projective general linear group PGL,(q) is the 
GROUP obtained from the GENERAL LINEAR GROUP 
GLn(q) on factoring the scalar MATRICES contained in 
that group. 

see also GENERAL LINEAR GROUP, PROJECTIVE GEN- 
ERAL ORTHOGONAL GROUP, PROJECTIVE GENERAL 
UNITARY GROUP 

References 3. 
Conway, J. R.; Curtis, R. T.; Norton, S. P.; Parker, R. A.; 

and Wilson, R. A. “The Groups GLn(q), SL,(q), PGL,(q), 
and PSL,(q) = L,(q).” 52.1 in Atlas of Finite Groups: 
Maximal Subgroups and Ordinary Characters for Simple 
Groups. Oxford, England: Clarendon Press, p, x, 1985. 

4. 

5. 

Projective General Orthogonal Group 
The projective general orthogonal group PGO,(q) is 
the GROUP obtained from the GENERAL ORTHOGONAL 

GROUP GO,(q) on factoring the scalar MATRICES con- 
tained in that group. 

see also GENERAL ORTHOGONAL GROUP, PROJECTIVE 
GENERAL LINEAR GROUP, PROJECTIVE GENERAL UNI- 
TARY GROUP 

References 
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R. A.; and Wilson, R. A. “The Groups G&(q), S&(q), 
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Projective General Unitary Group 
The projective general unitary group PGU,(q) is the 
GROUP obtained from the GENERAL UNITARY GROUP 
GU,(q) on factoring the scalar MATRICES contained in 
that group. 

see also GENERAL UNITARY GROUP, PROJECTIVE GEN- 
ERAI, LINEAR GROUP, PROJECTIVE GENERAL OR- 
THOGONAL GROUP, PROJECTIVE GENERAL UNITARY 
GROUP 
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Projective Geometry 
The branch of geometry dealing with the properties and 
invariants of geometric figures under PROJECTION. The 
most amazing result arising in projective geometry 
the DUALITY PRINCIPLE, which states that a duali 

is 

tY 
exists between theorems such as PASCAL'S THEOREM 
and B RIANCHO l~1~ THEOREM which allows one to be in- 
stantly transformed into the other. More generally, all 
the propositions in projective geometry occur in dual 
pairs, which have the property that, starting from ei- 
ther proposition of a pair, the other can be immediately 
inferred by interchanging the parts played by the words 
“POINT" and LCL~~~." 

The AXIOMS of projective geometry are: 

1. 

2. 

6. 

If A and B are distinct points on a PLANE, there is 
at least one LINE containing both A and 23. 

If A and B are distinct points on a PLANE, there is 
not more than one LINE containing both A and B. 

Any two LINES on a PLANE have at least one point 
of the PLANE in common. 

There is at least one LINE on a PLANE. 

Every LINE contains at least three points of the 
PLANE. 

All the points of the PLANE do not belong to the 
same LINE 

(Veblin and Young 1910-18, Kasner and Newman 1989). 

see also COLLINEATION, DESARGUES' THEOREM, FUN- 
DAMENTAL THEOREM OF PROJECTIVE GEOMETRY, IN- 
VOLUTION (LINE), PENCIL, PERSPECTIVITY, PROJEC- 
TIVITY, RANGE (LINE SEGMENT), SECTION (PENCIL) 
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Projective Plane 
A projective plane is derived from a usual PLANE by 
addition of a LINE AT INFINITY. A projective plane of 
order. n is a set of n2 + n + 1 POINTS with the properties 
that: 

1. Any two POINTS determine a LINE, 

2. Any two LINES determine a POINT, 

3. Every POINT has n + 1 LINES on it, and 

4. Every LINE contains n + 1 POINTS. 

(Note that some of these properties are redundant*) A 
projective plane is therefore a SYMMETRIC (n2 + n + 1, 
n + 1, 1) BLOCK DESIGN. An AFFINE PLANE of order 
n exists TFF a projective plane of order n exists. 

A finite projective plane exists when the order n is a 
POWER of a PRIME, i.e., n = p” for a 2 1. It is conjec- 
tured that these are the only possible projective planes, 
but proving this remains one of the most important un- 
solved problems in COMBINATORICS. The first few or- 
ders which are not of this form are 6, 10, 12, 14, 15, 

It has been proven analytically that there are no pro- 
jective planes of order 6. By answering LAM'S PROB- 
LEM in the negative using massive computer calculations 
on top of some mathematics, it has been proved that 
there are no finite projective planes of order 10 (Lam 
1991). The status of the order 12 projective plane re- 
mains open. The remarkable BRUCK-RYSER-CHOWLA 
THEOREM says that if a projective plane of order n ex- 
ists, and n = 1 or 2 (mod 4), then n is the sum of two 
SQUARES. This rules out n = 6. 

The projective plane of order 2, also known as the FANO 
PLANE, is denoted PG(2, 2). Tt has TNCIDENCE MATRIX 

Every row and column cant ains 3 Is, an 
rows/columns h .as a single 1 in common. 

-1 1 10 0 0 0 
1001100 

1000011 
0101010 
0100101 
0011001 

,o 0 10 1 10 

The projective plane 
and the HEAWOOD C 

has EULER CHARACTERISTIC 1, 

.d any pair of 

ONJECTURE therefore shows that 

any set of regions on it can be colored using six colors 
only (Saaty 1986). 

see ~ZSOAFFINE PLANE, BRUCK-RYSER-CHOWLA THE- 
OREM, FANO PLANE, LAM'S PROBLEM, MAP COL- 
ORING, MOUFANG PLANE, PROJECTIVE PLANE PK2, 
REAL PROJECTIVE PLANE 
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Projective Plane PK2 
The 2-D SPACE consisting of the set of TRIPLES 

{(a, b, c) : a, 6, c E K, not all zero}, 

where triples which are SCALAR multiples of each other 
are identified. 

Projective Space 
A SPACE which is invariant under the GROUP G of 
all general LINEAR homogeneous transformation in the 
SPACE concerned, but not 
of any GROUP containing 

under 
G as a 

all the transform 
SUBGROUP. 

.ations 

A projective space is the space of 1-D VECTOR SUB- 
SPACES of a given VECTOR SPACE. For REAL VECTOR 

SPACES, the NOTATION I8IP” or P” denotes the REAL 
projective space of dimension n (i.e., the SPACE of l- 
D VECTOR SUBSPACES of I%,+‘) and cPn denotes the 
COMPLEX projective space of COMPLEX dimension n 

( i.e., the space of 1-D COMPLEX VECTOR SUBSPACES 
of (IIn+‘>. IV can also be viewed as the set consisting of 
R” together withits POINTS AT INFINITY. 

Projective Special Linear Group 
The projective special linear group PSL, (q) is the 
GROUP obtained from the SPECIAL LINEAR GROUP 
SL, (q) on factoring by the SCALAR MATRICES contained 
in that GROUP. It is SIMPLE for n 2 2 except for 

PSL2(2) = s3 

P%(3) = A+ 

and is therefore also denoted Ln(Q). 

see also PROJECTIVE SPECIAL ORTHOGONAL GROUP, 
PROJECTIVE SPECIAL UNITARY GROUP, SPECIAL LIN- 
EAR GROUP 
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Groups. Oxford, England: Clarendon Press, p, x, 1985. 

Projective Special Orthogonal Group 
The projective special orthogonal group HO,(q) is 
the GROUP obtained from the SPECIAL ORTHOGONAL 
GROUP SO,(q) on factoring by the SCALAR MATRICES 
contained in that GROUP. In general, this GROUP is not 
SIMPLE. 

see also PROJECTIVE SPECIAL LINEAR GROUP, PRO- 
JECTIVE SPECIAL UNITARY GROUP,~PECIAL ORTHOG- 
ONAL GROUP 
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Press, pp. xi-xii, 1985. 

Projective Special Unitary Group 
The projective special unitary group PSU,(q) is the 
GROUP obtained from the SPECIAL UNITARY GROUP 
SU,&) on factoring by the SCALAR MATRICES con- 
tained in that GROUP. PSU,(q) is SIMPLE except for 

PSUz(2) = s3 

PSUz(3) = Ad 

PSU3(2) = 32 : Qg, 

so it is given the simpler name Un(q), with Uz(q) = 

L&l)* 

see UZSO PROJECTIVE SPECIAL LINEAR GROUP, PRO- 
JECTIVE SPECIAL ORTHOGONAL GROUP,SPECIAL UNI- 

TARY GROUP 

References 
Conway, J. H.; Curtis, R. T.; Norton, S. P.; Parker, 
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Projective Symplectic Group 
The projective symplectic group PSp,(q) is the GROUP 
obtained from the SYMPLECTIC GROUP Sp,(q) on fac- 
toring by the SCALAR MATRICES contained in that 
GROUP. P@,,(q) is SIMPLE except for 

psp&q = s3 

psP,(3) = A4 

psp4(2) = SS, 

so it is given the simpler name S,,(q), with Sa(q) = 

L2 (Q) l  
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Projectivity 
The product of any number of PERSPECTIVITIES. 

see UZSO INVOLUTION (TRANSFORMATION), PERSPEC- 
TIVITY 

Prolate Cycloid 

The path traced out by a fixed point at a RADIUS b > a, 
where a is the RADIUS of a rolling CIRCLE, also some- 
times called an EXTENDED CYCLOID. The prolate cy- 
cloid contains loops, and has parametric equations 

X =a#-bsin4 (1) 

Y = a - bcost$. (2) 

The ARC LENGTH from 4 = 0 is 

s = 2(a + b)E(u), (3) 

where 
sin(# = snu (4 

15) 

see also CURTATE CYCLOID, CYCLOID 
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Prolate Cycloid Evolute 

The EV~LUTE of the PROLATE CYCLOID is given by 

x _ 4-24 + 24~0~4 - 2asin4 + bsin(2$)] 
- 

2(a cos (b - b) 

Y= 
a(a - bcos 4)” 

b(acosq5 - 6) l  

Prolate Spheroid 

A SPHEROID which is “pointy” instead of “squashed,” 
i.e., one for which the polar radius c is greater than the 
equatorial radius a, so c > a. A prolate spheroid has 
Cartesian equations 

x2 + y2 
a2 (1) 

The ELLIPTICITY of the prolate spheroid is defined by 

e, J 
c2 - a2 
c2 

a2 

/- 
l--p (2) 

so that 

(3) 

The SURFACE AREA and VOLUME are 

S = 2na2 + 2~~ sin-l e 
e 

V= $m2c. 

(5) 

(6) 

see also DARWIN-DE SITTER SPHEROID, ELLIPSOID, 
OBLATE SPHEROID, PROLATE SPHEROIDAL COORDI- 
NATES,SPHERE,SPHEROID 
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Prolate Spheroidal Coordinates 

A system of CURVILINEAR COORDINATES in which two 
sets of coordinate surfaces are obtained by revolving 
the curves of the ELLIPTIC CYLINDRICAL COORDI- 
NATES about the X-AXIS, which is relabeled the Z-AXIS. 
The third set of coordinates consists of planes passing 
through this axis. 

x = asinhcsinvcos4 

Y = asinhcsinqsin@ 

z = acoshecosq, 

(1) 

(2) 

(3) 

where < E [0, m), 7 E [O,n), and # E [0,2n). Arf- 
ken (1970) uses (IL, w, ‘p) instead of (&q, z). The SCALE 
FACTORS are 

hE =a sinh2 c + sin2 7 (4) 

(5) 
b = a sinh c sin 7. (6) 

The LAPLACIAN is 

0”f = l 
a2 (sinh2 < + sin2 7) 

{ && (swg) 

+ L& (sivgf) +$} (7) 
1 - - 

a2 ( sin2 q + sinh2 S) 
(csc2 17 + cd2 t) & 

d a2 
-+cothJ-++ . (8) 

at at 1 
An alternate form useful for “two-center” problems is 
defined by 
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where & E [l,~], CZ E [-I, I], and 53 E [OJr) 
(Abramowitz and Stegun 1972). In these coordinates, 

z = 41~2 

x=a J(E 1 2 - l)(l- Cz2) cost3 

Y = dK12 - 1)(1 - J2') sin&. 

In terms of the distances from the two FOCI, 

Tl + T2 
Cl = 7 

Tl - r2 
<2 = - 

2a 
2a = T12. 

The SCALE FACTORS are 

hcz = a 

and the LAPLACIAN is 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

1 
+ 

a2f 
m (6 

(21) 
1 2 - l)(l- Jz2) a[32 > 

The HELMHOLTZ DIFFERENTIAL EQUATION is separable 
in prolate spheroidal coordinates. 

see also HELMHOLTZ DIFFERENTIAL EQUATION- 
PROLATESPHEROIDAL COORDINATES,LATITUDE,LON- 
GITUDE, OBLATE SPHEROIDAL COORDINATES, SPHERI- 
CAL COORDINATES 
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of Prolate Spheroidal Coordinates.” s21.2 in Handbook 
of Mathematical Functions with Formulas, Graphs, and 
kfathematical Tables, 9th printing. New York: Dover, 
p. 752, 1972. 

A&en, G. “Prolate Spheroidal Coordinates (u, w, #)? 52.10 
in i’kfathematical Methods for Physicists, 2nd ed. Orlando, 
FL: Academic Press, pp. 103-107, 1970. 

Morse, P. M. and Feshbach, H. Methods of Theoretical Phys- 
ics, Part I. New York: McGraw-Hill, p. 661, 1953. 

Prolate Spheroidal Wave Function 
The WAVE EQUATION in PROLATE SPHEROIDAL COOR- 
DINATES is 

Cl2 - cz2 d2@ 
+ 

CC 

- + C2(<12 - s22)@ = 0, (1) 
1 2 - l)(l- 4 a#2 

1455 

where 
c E +rc. (2) 

Substitute in a trial solution 

- 1) $R,,(c, cl> 
1 1 

m2 - A,, - c”(1” + - 
Cl2 -1 > 

Rmn(&) = 0. (4) 

The radial differential equation is 

- 1) 1 
m2 

- A,, - c”~2” + - 
<z2 - 1 

&r&,t2) = 0, (5) 

and the angular differential equation is 

$ [(I - <22)$Smn(C’EZ) 
2 2 1 

m2 
- Am, - C2cz2 + - 

1 -E2” > 

Rrn, (CT (2 ) = 0. (6) 

Note that these are identical (except for a sign change). 
The prolate angular function of the first kind is given 
. 
bY 

s(l) = 

C” r=1,3,... 
dr(c)Pz+,+(r]) for 12 - m odd 

mn 
c 

m  

r=o,2,... 
d,(c)P,“,,(q) for n - m even, 

(7) 
where P;(v) is an associated LEGENDRE POLYNOMIAL. 
The prolate angular function of the second kind is given 

bY 

c d,(c)QE+,(q) for n - m odd 
SW = r=...,-1,1,3,... 

mn 
c 

d,(c)Qg+,(q) for n - m even, 
T= ,“, -2,0,2 ,... 

(8) 
where QP (4 is an associated LEGENDRE FUNCTION OF 
THE SECOND KIND and the COEFFICIENTS d, satisfy 
the RECURRENCE RELATION 

akdk+2 + (pk - Xmn)dk + Ykdk-2 = 0, (9) 

with 

(2m + k + 2)(2m + k + 1)c2 

Qlk = (2m + 2k + 3)(2m + 2k + 5) 

pk = (m + k)(m + k i- 1) 

(10) 

+2(m+k)(m+k+l)-2m2-1 2 

(2m+2k- 1)(2m+2k+3) ’ (“) 

k(k - 1)~’ 
” = (2m + 2k - 3)(2m + 2k-- 1)’ (12) 
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Various normalization schemes are used for the ds 
(Abramowitz and Stegun 1972, pa 758). Meixner and 
Sch%ke (1954) use 

s 1 

[S-r&, v)12 dq = &w- 03) - 
-1 

. 

Stratton et al. (1956) use 

(n + m>! 
- = 

Cz,,,,.., wd, for n - m odd 

( n- m)! C” r=o,2 1"' 
k++! d, for n - m even. 

(14) 

Flammer (1957) uses 

Smn(C,O) = 
1 g;)(O) ;; ; - m Odd (15) 7-b - m even. 

see also ABLATE SPHEROIDAL WAVE FUNCTION 

References 
Abramowitz, M. and Stegun, C. A. (Eds.). “Spheroidal Wave 

Functions ?’ Ch. 21 in Handbook of Mathematical Func- 
tions with Formulas, Graphs, and Mathematical Tables, 
9th printing. New York: Dover, pp. 751-759, 1972. 

Flammer, C. Spheroidal Wave Functions. Stanford, CA: 
Stanford University Press, 1957. 

Meixner, J. and Schgfke, F.>W. Mathieusche Funktionen und 
Sph6roidfunktionen. Berlin: Springer-Verlag, 1954. 

Stratton, J. A.; Morse, P. M.; Chu, L. J.; Little, J. D. C.; 
and Corbat6, F. J. Spheroidal Wave Functions. New York: 
Wiley, 1956. 

Pronic Number 
A FIGURATE NUMBER of the form P, = 2T, = n(n+l), 
where T, is the nth TRIANGULAR NUMBER. The first 
few are 2, 6, 12, 20, 30, 42, 56, 72, 90, 110, . . . (Sloane’s 
A002378). The GENERATING FUNCTION of the pronic 
numbers is 

2x 

(1 
= 2x + 6x2 + 12x3 + 20x4 + . . l  . 

The first few n for which Pn are PALINDROMIC are 1, 2, 
16, 77, 538, 1621, . . . (Sloane’s A028336), and the first 
few PALINDROMIC NUMBERS which are pronic are 2, 6, 
272, 6006, 289982, . . . (Sloane’s A028337). 

References 
De Geest, P. “Palindromic Products of Two Consecutive In- 

tegers.” http://www.ping.be/-ping6758/consec,htm. 
Sloane, N. J. A. Sequences A028336, A028337, and A002378/ 

Ml581 in “An On-Line Version of the Encyclopedia of In- 
teger Sequences .” 

Proof 
A rigorous mathematical argument which unequivocally 
demonstrates the truth of a given PROPOSITION. A 
mathematical statement which has been proven is called 
a THEOREM. 

There is some debate among mathematicians as to just 
what constitutes a proof. The FOUR-COLOR THEOREM 
is an example of this debate, since its “proof” relies on 
an exhaustive computer testing of many individual cases 
which cannot be verified “by hand.” While many mathe- 
maticians regard computer-assisted proofs as valid, some 
purists do not. 

see also PARADOX, PROPOSITION, THEOREM 

References 
Garnier, R. and Taylor, J. lUO% Mathematical Proof. New 

York: Wiley, 1996. 
Solow, D. How to Read and Do Proofs: An Introduction to 

Mathematical Thought Process. New York: Wiley, 1982. 

Proofreading Mistakes 
If proofreader A finds a mistakes and proofreader B 
finds b mistakes, c of which were also found by A, how 
many mistakes were missed by both A and B? Assume 
there are a total of m mistakes, so proofreader A finds a 
FRACTION a/m of all mistakes, and also a FRACTION c/b 
of the mistakes found by B. Assuming these fractions 
are the same, then solving for m gives 

ab 
m= -. 

C 

The number of mistakes missed by both is therefore ap- 
proximately 

N=m-a-b+c= 
(u-c)(b-c) 

l  

c  

References 
Polya, G. “Probabilities in Proofreading.” Amer. Math. 

Monthly, 83, 42, 1976. 

Propeller 

A 4-POLYHEX. 

References 
Gardner, M. Mathematical Magic Show: More Puzzles, 

Games, Diversions, Illusions and Other Mathematical 

Sleight-of-Mind from Scientijic American. New York: 
Vintage, p* 147, 1978. 
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Proper Divisor 

Proper Divisor 
A DIVISOR of a number 72 excluding 72 itself. 

see also 
SOR 

ALIQUANT 

Proper Fraction 
A FRACTION p/q < 
see UZSO FRACTION, 

DIVISOR, ALIQUOT DIVISOR, D~vr- 

1. 

REDUCED FRACTION 

Proper Integral 
An INTEGRAL which has neither limit INFINITE and from 
which the INTEGRAND does not approach INFINITY at 
any point in the range of integration. 

see also IMPROPER INTEGRALJNTEGRAL 

Proper k-Coloring 

see ~-COLORING 

Proper Subset 
A SUBSET which is not the entire SET. For example, 
consider a SET {l, 2, 3, 4, 5). Then (1, 2, 4) and (1) 
are proper subsets, while (1, 2, 6) and {I, 2, 3, 4, 5) 
are not. 

see also SET, SUBSET 

Proper Superset 
A SUPERSET which i .s not the entire SET. 

see also SET, SUPERSET 

Proportional 
If a is proportional to b, then a/b is a constant. The 
relationship is written a oc b, which implies 

a = cb, 

for some constant c. 

Proposition 
A statement which is to be proved. 

Propositional Calculus 
The formal basis of LOGIC dealing with the notion and 
usage ofwords such as “NOT," WR," “AND," and ‘TM- 
PLIES." Many systems of propositional calculus have 
been devised which attempt to achieve consistency, com- 
pleteness, and independence of AXIOMS. 

see also LOGIC, P-SYMBOL 

References 
Cundy, H. and Rollett, A. lMathematica2 Models, 3rd ed. 

Stradbroke, England: Tarquin Pub., pp, 254-255, 1989. 
Nidditch, P. H. Propositional Calculus. New York: Free 

Press of Glencoe, 1962. 

Prosthaphaeresis Formulas 
TRIGONOMETRY formulas which convert a product of 
functions into a sum or difference. 

Pseudocrosscap 1457 

Prot h’s Theorem 
For N = h l  2n + 1 with ODD h and 2n > h, if there 
exists an INTEGER a such that 

a(N-1)/2 = -1 (mod N) - I 

then N is PRIME. 

Protractor 
A ruled SEMICIRCLE used for measuring and drawing 
ANGLES. 

Prouhet’s Problem 
A generalization of the TARRY-ESCOTT PROBLEM to 
three or more sets of INTEGERS. 
see UZSO TARRY-ESCOTT PROBLEM 

References 
Wright, E. M. “Prouhet’s 1851 Solution of the Tarry-Escott 

Problem of 1910.” Amer. Math. Monthly 102, 199-210, 
1959. 

Priifer Ring 
A metric space 2 in which the closure of a congruence 
class B(j, m) is the corresponding congruence class {z E 
h 
ZI x E j (mod m)}. 

References 
Fried, M. D. and Jarden, M. Field Arithmetic. New York: 

Springer-Verlag, pp. 7-l 1, 1986. 
Postnikov, A. G. Introduction to Analytic Number Theory. 

Providence, RI: Amer. Math. SOL, 1988. 

Prussian Hat _ 
A device used in the Cornwell smoothness stabilized 
modification of the CLEAN ALGORITHM. 
see also CLEAN ALGORITHM 

Pseudoanalytic Function 
A pseudoanalytic function is a function defined using 
generalized CAUCHY-RIEMANN EQUATIONS. Pseudo- 
analytic functions come as close as possible to having 
COMPLEX derivatives and are nonsingular “quasiregu- 
lar” functions. 

see also ANALYTIC FUNCTION, SEMIANALYTIC, SUBAN- 
ALYTIC 

Pseudocrosscap 
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A surface constructed by placing a family of figure-eight 

curves into Iw3 such that the first and last curves reduce 
to points. The surface has parametric equations 

Pseudoprime 
A pseudoprime is a COMPOSITE number which passes a 
test or sequence of tests which fail for most COMPOSITE 
numbers. Unfortunately, some authors drop the “CAM- 
POSITE" requirement, calling any number which passes 
the specified tests a pseudoprime even if it is PRIME. 
Pomerance, Selfridge, and Wagstaff (1980) restrict their 
use of “pseudoprime” to ODD COMPOSITE numbers. 
“Pseudopr ime” used without qualification means FER- 

x(u, v) = (1 - u”) sinw 

y(u, w) = (1 - 2~~) sin(2u) 

z(u, v) = u. 

References MAT PSEUDOPRIME. 

Gray, A. Modern Differential Geometry of Curves and Sur- 
faces. Boca Raton, FL: CRC Press, pp. 247-248, 1993. CARMICHAEL NUMBERS are ODD COMPOSITE numbers 

which are pseudoprimes to every base; they are some- 

Pseudocylindrical Projection 
A projection in which latitude lines are parallel but 
meridians are curves. 

see also CYLINDRICAL PROJECTION, ECKERT IV PRO- 

JECTION, ECKERT VI PROJECTION, MOLLWEIDE PRO- 
JECTION, ROBINSON PROJECTION, SINUSOIDAL PRO- 
JECTION 

References 
Dana, P. I-I. “Map Projections.” http: //www .utexas, edu/ 

depts/grg/gcraft/notes/mapproj/tnapproj .html. 

Pseudogroup 
An algebraic structure whose elements consist of se- 
lected HOMEOMORPHISMS between open subsets of a 
SPACE, with the composition of two transformations de- 
fined on the largest possible domain. The “germs” of the 
elements of a pseudogroup form a GROUPOID (Weinstein 
1996). 

see also GROUP, GROUPOID, INVERSE SEMIGROUP 

References 
Weinstein, A. “Groupoids: Unifying Internal and External 

Symmetry.” Not. Amer, Math. Sot. 43, 744-752, 1996. 

Pseudolemniscate Case 
The case of the WEIERSTRAB ELLIPTIC FUNCTION with 
invariants g2 = -1 and g3 = 0. 

see also EQUIANHARMONIC CASE, LEMNISCATE CASE 

References 
Abramowitz, M. and Stegun, C. A. (Eds.). “Pseudo- 

Lemniscate Case (g2 = -1, g3 = O).” 518.15 in Hand- 
book of Mathematical Functions with Formulas, Graphs, 
and Mathematical Tables, 9th printing. New York: Dover, 
pp. 662-663, 1972. 

Pseudoperfect Number 

see SEMIPERFECT NUMBER 

times called ABSOLUTE PSEUDOPRIMES. The follow- 
ing table gives the number of FERMAT PSEUDOPRIMES 
psp, EULER PSEUDOPRIMES epsp, and STRONG PSEU- 
DOPRIMES spsp to the base 2, as well as CARMICHAEL 
NUMBERS CN which are less the first few powers of 10 
(Guy 1994) l  

103 104 105 IO6 lo7 lo8 lo9 10fO 

PSP(2) 3 22 78 245 750 2057 5597 14884 
epsp(2) 1 12 36 114 375 1071 2939 7706 
spsp(2) 0 5 16 46 162 488 1282 3291 
CN 1 7 16 43 105 255 646 1547 

see UZSO CARMICHAEL NUMBER, ELLIPTIC PSEUDO- 
PRIME, EULER PSEUDOPRIME, EULER-JACOBI PSEU- 
DOPRIME, EXTRA STRONG LUCAS PSEUDOPRIME, 
FERMAT PSEUDOPRIME, FIBONACCI PSEUDOPRIME, 
FR~BENIUS PSEUDOPRIME, LUCAS PSEUDOPRIME, 
PERRIN PSEUDOPRIME, PROBABLE PRIME, SOMER- 
LUCAS PSEUDO 

PRIME, STRONG 
P 'RIME, STRONG ELLIPTIC PSEWDO- 

FROBENIUS PSEUDOPRIME, STRONG 
LUCAS PSEUDOPRIME,~TRONG PSEUDOPRIME 

References 
Grantham, J. “F’robenius Pseudoprimes.” http://wvu. 

clark.net/pub/grantham/pseudo/pseudo.ps 
Grantham, J. “Pseudoprimes/Probable Primes.” http : // 

wuu. Clark. net/pub/grantham/pseudo. 
Guy, R. K. “Pseudoprimes. Euler Pseudoprimes. Strong 

Pseudoprimes.” §A12 in Unsolved Problems in Number 

Theory, 2nd ed. New York: Springer-Verlag, pp* 27-30, 
1994. 

Pomerance, C.; Selfridge, J. L.; and Wagstaff, S. S. “The 
Pseudoprimes to 25 l  lo’.” Math. Comput. 35, 1003-1026, 
1980. Available electronically from f tp; //sable. ox. ac , 
uk/pub/math/primes/psZ.Z. 

Pseudorandom Number 
A slightly archaic term for a computer-generated RAN- 
DOM NUMBER. Theprefix pseudo- is used to distinguish 
this type of number from a “truly” RANDOM NUMBER 

generated by a random physical process such as radioac- 
tive decay. 

see UZSO RANDOM NUMBER 

References 
Luby, M. Pseudorandomness and Cryptographic Applica- 

tions. Princeton, NJ: Princeton University Press, 1996. 
Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetter- 

ling, W. T. Numerical Recipes in FORTRAN: The Art of 
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Scientific Computing, 2nd ed. Cambridge, England: 
bridge University Press, p. 266, 1992. 

Cam- 
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for u > 0. - 

Pseudorhombicuboctahedron 

~~~EL~NGATED SQUARE GYROBICUPOLA 

Pseudoscalar 
A SCALAR which reverses sign under inversion is called 
a pseudoscalar. The SCALAR TRIPLE PRODUCT 

A 9 (B x C) 

is a pseudoscalar. Given a transformation MATRIX A, 

S’ = det [AIS, 

where det is the DETERMINANT. 

see also PSEUDOTENSOR,PSEUDOVECTOR, SCALAR 

References 
A&en, G. “Pseudotensors, Dual Tensors.” $3.4 in M&e- 

mat&al Methods for Physicists, 3rd ed. Orlando, FL: Aca- 
demic Press, pp. 128-137, 1985. 

Pseudosmarandache Function 
The pseudosmarandache function Z(n) is the smallest 
integer such that 

Z(n) 

x k = $yn)[Z(n) + l] 
k=l 

is divisible by n. The values for n = 1, 2, . . . are 1, 3, 
2, 7, 4, 3, 6, 15, 8, 4, . . . (Sloane’s A011772). 

see also SMARANDACHE FUNCTION 

References 
Ashbacher, C. “Problem 514." Pentagon 57, 36, 1997. 
Kashihara, K. “Comments and Topics on Smarandache No- 

tions and Problems.” Vail: Erhus University Press, 1996. 
Sloane, N. J. A. Sequence A011772 in “An On-Line Version 

of the Encyclopedia of Integer Sequences.” 

Pseudosphere 

Half the SURFACE OF REVOLUTION generated by a is a pseudovector, whereas the VECTOR TRIPLE PROD- 
TRACTRIX about its ASYMPTOTE to form a TRAC- UCT 
TROID. The Cartesian parametric equations are A x (B x C) (2) 

II: = sechucosv 

y = sechusinw 

x-u-tanhu 

It has constant NEGATIVE CURVATURE, and so is called 
a pseudosphere by analogy with the SPHERE, which has 
constant POSITIVE curvature. An equation for the GEO- 
DESICS is 

cosh2 u + (w + c)” = k2. (4) 

see also FUNNEL, GABRIEL'S HORN, TRACTRIX 

References 
Fischer, G. (Ed.). Plate 82 in Mathematische Mod- 

elle/Mathematical Models, Bildband/Photograph Volume. 
Braunschweig, Germany: Vieweg, p. 77, 1986. 

Geometry Center. ‘&The Pseudosphere.” http://uww.geom. 
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Gray, A. Modern Differential Geometry of Curves and Sur- 
faces. Boca Raton, FL: CRC Press, pp. 383-384, 1993. 

Pseudosquare 
Given an ODD PRIME p, a SQUARE NUMBER n satisfies 
(n/p) = 0 or 1 for all p < n, where (n/p) is the LEG- 
ENDRE SYMBOL. A number r~ > 2 which satisfies this 
relationship but is not a SQUARE NUMBER is called a 
pseudosquare. The only pseudoprimes less than 10’ are 
3 and 6. 

see UZSO SQUARE NUMBER 

Pseudotensor 
A TENSOR-like object which reverses sign under inver- 
sion. Given a transformation MATRIX A, 

Aij’ = det 1 AlUikajlAkl, 

where det is the DETERMINANT. A pseud 
sometimes also called a TENSOR D 'ENSITY. 

.otensor iS 

see also PSEUDOSCALAR, PSEUDOVECTOR, SCALAR, 
TENSOR DENSITY 

References 
Arfken, G. ‘LPseudotensors, Dual Tensors.” 53.4 in IMuthe- 

matical Methods for Physicists, 3rd ed. Orlando, FL: Aca- 
demic Press, pp. 128-137, 1985. 

Pseudovector 
A typical VECTOR is transformed to its NEGATIVE un- 
der inversion. A VECTOR which is invariant under in- 
version is called a pseudovector, also called an AXIAL 
VECTOR in older literature (Morse and Feshbach 1953). 
The CROSS PRODUCT 

AxB (1) 

is a VECTOR. 

[pseudovector] x [pseudovector] = [pseudovector] (3) 
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[vector] x [pseudovector] = [vector]. 

Given a transformation MATRIX A, 

(5) 

see also PSEUDOSCALAR, TENSOR, VECTOR 

Referenc’es 
Arfken, G. “Pseudotensors, Dual Tensors.” $3.4 in IMathe- 

matical Methods for Physicists, 3rd ed. Orlando, FL: Aca- 
demic Press, pp. 128-137, 1985. 

Morse, P. M. and Feshbach, H. Methods of Theoretical Phys- 
ics, Part I. New York: McGraw-Hill, pp. 46-47, 1953. 

Psi Function 

00 
\k(z,s,v) E >: - 

n=O (v :” n3 > 

for 121 < 1 and v # 0, -1, l  . . (Gradshteyn and Ryzhik 
1980, pp. 1075-1076). 

see also HURWITZ ZETA FUNCTION, RAMANUJAN PSI 
SUM,THETA FUNCTION 

References 
Gradshteyn, I. S. and Ryzhik, I. M. Tables of Integrals, Se- 

ries, and Products, 5th ed. San Diego, CA: Academic 
Press, 1979. 

PSLQ Algorithm 
An ALGORITHM which finds INTEGER RELATIONS be- 
tween real numbers 21, . . . , zn such that 

a121 + a2x:2 + . l  . + anxn = 0, 

with not all ai = 0. This algorithm terminates after 
a number of iterations bounded by a polynomial in n 
and uses a numerically stable matrix reduction proce- 
dure (Ferguson and Bailey 1992), thus improving upon 
the FERGUSON-FORCADE ALGORITHM. It is based on 
a partial sum of squares scheme (like the PSOS ALGO- 
RITHM) implemented using LQ decomposition. A much 
simplified version of the algorithm was developed by Fer- 
guson et al. and extended to complex numbers. 

see also F 
RELATION, 

References 

ERGUSON-FORCADE 

LLL ALGORITHM, 

ALGORITHM, INTEGER 
PSOS ALGORITHM 

Bailey, D. H.; Borwein, J. M.; and Girgensohn, R. “Experi- 
mental Evaluation of Euler Sums.” Exper. Math. 3, 17-30, 
1994. 

Bailey, D. and Plouffe, S. “Recognizing Numerical 
Constants.” http://uww.cecm.sfu.ca/organics/papers/ 
bailey. 

Ferguson, H. R. P. and Bailey, D. H. “A Polynomial Time, 
Numerically Stable Integer Relation Algorithm.” RNR 
Techn. Rept. RNR-91-032, Jul. 14, 1992. 

Ferguson, H. R. P.; Bailey, D. H.; and Arno, S. “Analysis of 
PSLQ, An Integer Relation Finding Algorithm.” Unpub- 
lished manuscript, 

PSOS Algorithm 
An INTEGER-RELATION algorithm which is based on a 

approach, from which the algo- partial sum of squares 
rithm takes its name. 

see &O FERGUSON-FORCADE ALGORITHM, HJLS AL- 
GORITHM, INTEGER RELATION, LLL ALGORITHM, 

PSLQ ALGORITHM 

References 
Bailey, D. H. and Ferguson, H. R. P. “Numerical Results 

on Relations Between Numerical Constants Using a New 
Algarithm.” Math. Comput. 53, 649-656, 1989. 

Ptolemy Inequality 
For a QUADRILATERAL which is not CYCLIC, PTOL- 
EMY’S THEOREM becomes an INEQUALITY: 

ABxCD+BCxDA>ACxBD. 

see also PTOLEMY’S THEOREM, QUADRILATERAL 

Ptolemy’s Theorem 

If a QUADRILATERAL is inscribed in a circle (i.e., for - 
a cyclic quadrilateral), the sum of the products of the 
two pairs of opposite sides equals the product of the 
diagonals 

ABxCD+BCxDA=ACxBD. 

This fact can be 
dition formulas. 

used to derive the TRIGONOMETRY 

see also FUHRMANN’S THEOREM, 
ITY 

PTOLEMY INEQUAL- 

References 
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Public-Key Cryptography 
A type of CRYPTOGRAPHY in which the encoding key 
is revealed without compromising the encoded message. 
The two best-known methods are the KNAPSACK PROB- 

LEM and RSA ENCRYPTION. 

see also KNAPSACK PROBLEM, RSA ENCRYPTION 
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Obtaining Digital Signatures and Public-Key Cryptosys- 
terns.” MIT Memo MIT/LCS/TM-82, 1982. 
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Puiseaux’s Theorem Puzzle 1461 

Puiseaux’s Theorem 
The whole neighborhood of any point yi of an alge- 
braic PLANE CURVE may be uniformly represented by 
a certain finite number of convergent developments in 
PUWER SERIES, 

References 
Coolidge, J. L. A Treatise on Algebraic Plane Curves. New 

York: Dover, p. 207, 1959. 

Pullback Map 
A pullback is a general CATEGORICAL operation appear- 
ing in a number of mathematical contexts, sometimes 
going under a different name. If T : V + W is a 
linear transformation between VECTOR SPACES, then 
T* : W* + V* (usually called TRANSPOSE MAP or 
DUAL MAP because its associated matrix is the MATRIX 
TRANSPOSE of T) is an example of a pullback map. 

Inthecaseofa DIFFEOMORPHISM and DIFFERENTIABLE 
MANIFOLD, a very explicit definition can be formu- 
lated. Given an r-form a on a MANIFOLD A&, de- 
fine the r-form T*(a) on Ml by its action on an T- 
tuple of tangent vectors (Xl, l  l  . ,X,) as the number 
T*(cw)(Xl,. . . ,X,+) = a(T,Xl,. . . ,T,X,). This defines 
a map on r-forms and is the pullback map. 

see ~2~0 CATEGORY 

Pulse Function 

see RECTANGLE FUNCTION 

Purser’s Theorem 

Let t, u, and w  be the lengths of the tangents to a CIRCLE 
C from the vertices of a TRIANGLE with sides of lengths 
a, b, and c. Then the condition that C is tangent to the 
CIRCUMCIRCLE of the TRIANGLE is that 

*at 41 bu * cv = 0. 

The theorem was discovered by Casey prior to Purser’s 
independent discovery. 

see &o CASEY’S THEOREM, CIRCUMCIRCLE 

Pursuit Curve 

If A moves along a known curve, then P describes a pur- 
suit curve if P is always directed toward A and A and P 
move with uniform velocities. These were considered in 
general by the French scientist Pierre Bouguer in 1732. 
The case restricting A to a straight line was studied by 
Arthur Bernhart (MacTutor Archive). It has CARTE- 
SIAN COORDINATES equation 

Y = cx - In 2. 

see also APOLLONIUS PURSUIT 
LEM 

PROBLEM, MICE PROB- 
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Bernhart, A. “Curves of Pursuit .” Scripta Math. 20, 125- 

141, 1954. 
Bernhart, A. “Curves of Pursuit-II.” Scripta Math. 23, 49- 

65, 1957. 
Bernhart, A. “Polygons of Pursuit.” Scripta Math. 24, 23- 

50, 1959. 
Bernhart, A. “Curves of General Pursuit.” Scripta Math. 
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171,1952. 

Push 
An action which adds a single element to the top of a 
STACK, turning the STACK (al, a2, . . . , a,) into (ao, al, 
a2, . . . 7 a,). 

see also PUKE MOVE, POP, STACK 

Puzzle 
A mathematical PROBLEM, usually not requiring ad- 
vanced mathematics, to which a solution is desired. 
Puzzles frequently require the rearrangement of exist- 
ing pieces (e.g., 15 PUZZLE) or the filling in of blanks 
(e.g., crossword puzzle) m 

see also 15 PUZZLE, BAGUENAUDIER, CALIBAN PUZZLE, 
CONWAY PUZZLE, CRYPTARITHMETIC, DISSECTION 

PUZZLES, 1cos1~~ GAME, PYTHAGOREAN SQUARE 
PUZZLE, RUBIK'S CUBE, SLOTHOUBER-GRAATSMA 
PUZZLE,T-PUZZLE 

References 
Bogomolny, A. “Interactive Mathematics Miscellany and 

PuzzIes.” http://www.cut-the-knot.com/. 
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Dudeney, I-L E. Amusements in Mathematics. New York: Pyramidal F’rustum 
Dover, 1917. 

Dudeney, E-I. E. The Canterbury Puzzles and Other Curious 
Problems, 7th ed. London: Thomas Nelson and Sons, 1949. 

Dudeney, H. E. 536 Puzzles & Curious Problems. New York: 
Scribner, 1967. ti 

F’ujii, J. N. Puzzles and Graphs. Washington, DC: National 
Council of Teachers, 1966. Let s be the slant height, pi the top and bottom base 

PERIMETERS, and Ai the top and bottom AREAS. Then 
the SURFACE AREA and VOLUME of the pyramidal frus- 
turn are given by 

Pyramid 
A POLYHEDRON with one face a POLYGON and all the 
other faces TRIANGLES with a common VERTEX. An n- 
gonal regular pyramid (denoted Yn) has EQUILATERAL 
TRIANGLES, and is possible only for n = 3, 4, 5. These 

S- i(Pl + Pzb 

V- $(4-t A2 + d&&j. 
correspond to the TETRAHEDRON, SQUARE PYRAMID, 
and PENTAGONAL PYRAMID, respectively. A pyramid 
therefore has a single cross-sectional shape in which the 

see ~2s~ CONICAL FRUSTUM, FRUSTUM, PYRAMID, 

length scale of the CROSS-SECTION scales linearly with 
SPHERICAL SEGMENT,TRUNCATED SQUARE PYRAMID 

height. The AREA at a height z is given by References 
Beyer, W. H. (Ed.) CRC Standard Mathematical Tables, 

A(z) = Ab $ , 
( > 

(1) 

28th ed. Boca Raton, FL: CRC Press, p. 128, 1987. 
Dunham, W. Journey Through Genius: The Great Theorems 

of Mathematics. New York: Wiley, pp. 3-4, 1990. 

where Ab is the base AREA and h is the pyramid height. Pyramidal Number 
The VOLUME is therefore given by A FIGURATE NUMBER corresponding to a configuration 

of points which form a pyramid with r-sided REGULAR 

s 

h 

V= A(r) dz = Ab 
0 s 

h x2 
-dz= - $:h3) = $Abh. 

POLYGON bases can be thought of as a generalized pyra- 

0 h2 
midal number, and has the form 

(2) 
These results also hold for the CONE, TETRAHEDRON p: = i(n+1)(2& +n) = $(n+l)[(r -2)n+ (5- dl- 
(triangular pyramid), SQUARE PYRAMID, etc. 

The first few cases are therefore 
The CENTROID is the same as for the CONE, given by 

(3) 
P,” = +(n + l)(n + 2) 

P,” = +(n + 1)(2n + 1) 

(2) 
(3) 

The SURFACE AREA,~~ a pyramid is P,5 = $n2(n + I), (4) 

s = $ps, (4 

where s is the SLANT HEIGHT and p is the base PERI- 
METER. Joining two PYRAMIDS together at their bases 
gives a BIPYRAMID, also called a DIPYRAMID. 

see also BIPYRAMID, ELONGATED PYRAMID, GYRO- 
ELONGATED PYRAMID,~ENTAGONAL PYRAMID,PYRA- 
MID, PYRAMIDAL FRUSTUM, SQUARE PYRAMID, TET- 
RAHEDRON,TRUNCATED SQUARE PYRAMID 

References 
Beyer, W. H. (Ed.) CRC Standard Mathematical Tables, 

28th ed. Boca Raton, FL: CRC Press, p. 128, 1987. 
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dra.” http://wuw.li.net/-george/virtual-polyhe~a/ 
pyramids-info.html. 

SO T  = 3 corresponds to a TETRAHEDRAL NUMBERT~,, 
and T = 4to a SQUARE PYRAMIDAL NUMBER P,. 

The pyramidal numbers can also be generalized to 4-D 
and higher dimensions (Sloane and Plouffe 1995). 

see &~HEPTAGONAL PYRAMIDAL NUMBER,HEXAGO- 
NAL PYRAMIDAL NUMBER, PENTAGONAL PYRAMIDAL 
NUMBER, SQUARE PYRAMIDAL NUMBER, TETRAHE- 
DRAL NUMBER 
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Pyritohedron 

l 
An irregular D~DECAHEDRON 
regular PENTAGONS. 

see also DODECAHEDRON, RH 
TRIGON *AL DODECAHEDRON 

composed of identical ir- 

OMBIC DUDECAHEDRON, 

References 
Cotton, F. A. Chemical Applications of Group Theory, 3rd 

ed. New York: Wiley, p. 63, 1990. 

Pythagoras% Constant 
The number 

& = 1.4142135623.. . , 

which the Pythagoreans proved to be IRRATIONA 
Babylonians gave the impressive approximation 

.L. The 

1/2 = 1 + g + $ + $ = 1.41421296296296.. . 

(Guy 1990, Conway and Guy 1996, pp. 181-182). 

see also IRRATIONAL NUMBER, OCTAGON, PYTHAGO- 
RAS’S THEOREM, SQUARE 
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Pythagoras% Theorem 
Proves that the DIAGONAL d of a SQUARE with sides of 
integral length s cannot be RATIONAL. Assume d/s is 
rational and equal to p/q where 
with no common factors. Then 

p and q are INTEGERS 

d2 = s2 + 5’ = 2521 

and p2 = 2q2, so p2 is even. But if p2 is EVEN, then p 
is EVEN. Since p/q is defined to be expressed in lowest 
terms, q must be ODD; otherwise p and q would have the 
common factor 2. Since p is EVEN, we can let p G 2r, 
then 4r2 = 2q2. Therefore, q2 = 2r2, and q2, so q must 
be EVEN. But q cannot be both EVEN and ODD, so 
there are no d and s such that d/s is RATIONAL, and 
d/s must be IRRATIONAL. 

and asymmetric 

forms. 

References 
Lauwerier, H. Fructals: Endlessly Repeated Geometric Fig- 
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edu/-eww6n/math/notebooks/Fractal.m. 

Pythagorean Fraction 
Given a PYTHAGOREAN TRIPLE (a, b, c), the fractions 
a/b and b/a are called Pythagorean fractions. Diophan- 
tus showed that the Pythagorean fractions consist pre- 
cisely of fractions of the form (p” - q2)/(2pq). 

References 
Conway, J. H. and Guy, R. K. “Pythagorean F’ractions.” 

In The Book of Numbers. New York: Springer-Verlag, 
pp. 171473, 1996. 
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Pythagorean Quadruple 
POSITIVE INTEGERS a, b, C, and d which satisfy 

a2 + b2 +c2 = d2. (1) 

For PmOSITIVE EVEN a and b, there exist such INTEGERS 

c and d; for POSITIVE ODD a and b, no such INTEGERS 

exist (Oliverio 1996). Oliverio (1996) gives the following 
generalization of this result. Let S = (al, . . . , an-z), 
where ai are INTEGERS, and let T be the number of 
ODD INTEGERS in S. Then IFF T $ 2 (mod 4), there 
exist INTEGERS a,_1 and a, such that 

al2 + c&z2 + l  . . + a,-12 = an2. 

A set of Pythagorean quadruples is given by 

(2) 

a=2mp 

b = 2np 

c = p2 - (m2 + n2) 

d = p2 -I- (m” -I- n2), 

where m, n, and p are INTEGERS, 

(3) 

(4) 

(5) 

(6) 

m+n+psl (mod2), (7) 

and 

@-w,P> = 1 (8) 

(Mordell 1969). This does not, however, generate all so- 
lutions. For instance, it excludes (36, 8, 3, 37). Another 
set of solutions can be obtained from 

a=2mp+2nq 

b=2np-2mq 

c=p2+q2 - (m2+n2) 

d =p2 +q2 + (m2 +-n2) 

(Carmichael 1915). 

(9) 

w  

(11) 

(12) 

see also EULER BRICK, PYTHAGOREAN TRIPLE 
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Pythagorean Square Puzzle 

vll 
0 

Combine the two above squares on the left into the single 
large square on the right. 

see also DISSECTION, T-PUZZLE 

Pythagorean Theorem 

Pythagorean Theorem 
For a RIGHT TRIANGLE with legs a and b and HY- 
POTENUSE c, 

a2+b2 =c2. (1) 

Many different proofs exist for this most fundamental of 
all geometric theorems. 

A clever proof by DISSECTION which reassembles two 
small squares into one larger one was given by the Ara- 
bian mathematician Thabit Ibn Qurra (Ogilvy 1994, 
F’rederickson 1997). 

2 11 1 

1 

2 

Another proof by DISSECTION is due to Perigal (Pergial 
1873, Dudeney 1970, Madachy 1979, Ball and Coxeter 
1987). 

The Indian mathematician Bhaskara constructed a 
proof using the following figure. 

c 

b 
c 

a 

&& 

b-u a 

C b b 

a C 

a b-a a 

Several similar proofs are shown below. 

a b b 

c2 + 4( iab) = (a + b)2 (2) 
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c2 + 2ab = a2 + 2ab + b2 (3) 

c2 =a2+b2. (4) 

In the above figure, the AREA of the large SQUARE is 
four times the AREA of one of the TRIANGLES plus the 
AREA of the interior SQUARE. From the figure, d = b-a, 

so 

A = 4($ab) + d2 = 2ab + (b - a)” = 2ab + b2 - 2ab + a2 

=a2+b2=C2* (5) 

Perhaps the most famous proof of all times is Euclid’s 
geometric proof. Euclid’s proof used the figure below, 
which is sometimes known variously as the BRIDE'S 
CHAIR, PEACOCK’S TAIL, or WINDMILL. 

H 

D L E 

Let AABC be a RIGHT TRIANGLE, q CAFG, 
q CBKH, and mABED be squares, and CLllBD. The 
TRIANGLES AFAB and AC..4D are equivalent except 
for rotation, so 

2AFAB = 2ACAD. (6) 

Shearing these TRIANGLES gives two more equivalent 
TRIANGLES 

2ACAD = DADLM. (7) 

Therefore, 
q ACGF = IADLM. (8) 

Similarly, 

L?1BC = 2AABK = 2aBCE = DBL (9) 

so 
a2 + b2 = cx + c(c - x) = c2. (10) 

Heron proved that AK, CL, and BF intersect in a point 
(Dunham 1990, pp. 48-53). 

HERON'S FORMULA for the AREA of the TRIANGLE, con- 
tains the Pythagorean theorem implicitly. Using the 
form 

K = ad2a2b2 + 2a2c2 + ab2c2 - (a4 + b4 + c4) (11) 

and equating to the AREA 

K=iab (12) 

gives 

aa2b2 = 2a2b2 + 2a2c2 + ab2c2 - (a4 + b4 + c”). (13) 

Rearranging and simplifying gives 

a2+b2=c2, 

the Pythagorean theorem, where K is the AREA of 
a TRIANGLE with sides a, b, and c (Dunham 1990, 
pp. 128-129). 

A novel proof using a TRAPEZOID was discovered by 
James Garfield (1876), later president of the United 
States, while serving in the House of Representatives 
(Pappas 1989, pp. 200-201; Bogomolny). 

A trapezoid = f >1 [bases] l  [altitude] 

= i(a+b)(a+b) 

- iab + iab + $“. - (15) 

Rearranging, 

+(a” +2ab+ b2) = ab+ $c2 (16) 

a2 + 2ab + b2 = 2ab + c2 

- a2 + b2 = c2. 

(17) 

(18) 
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An algebraic proof (which would not have been accepted 
by the Greeks) uses the EULER FORMULA. Let the sides 
of a TRIANGLE be a, b, and c, and the PERPENDICULAR 
legs of RIGHT TRIANGLE be aligned along the real and 
imaginary axes. Then 

a+bi=c& (19) 

Taking the COMPLEX CONJUGATE gives 

(20) 

Multiplying (19) by (20) gives 

a2+b2 =c2. (21) 

Another algebraic proof proceeds by similarity. 

‘q dkxy, 
b Y d 

It is a property of RIGHT TRIANGLES, such as the one 
shown in the above left figure, that the RIGHT TRIAN- 

GLE with sides 2, a, and d (small triangle in the left 
figure; reproduced in the right figure) is similar to the 
RIGHT TRIANGLE with sides d, b, and y (large trian- 
gle in the left figure; reproduced in the middle figure), 
giving 

x a --- - Y=! 
a c b c (22) 

a2 b2 
x=- 

c 
Y=;’ (23) 

so 
b2 a2 + b2 

Cf x+y= “‘+-=- 
c C C 

(24) 

c2 = a2 + b2. (25) 

Because this proof depends on proportions of poten- 
tially IRRATIONAL NUMBERS and cannot be translated 
directly into a GEOMETRIC CONSTRUCTION, it was not 
considered valid by Euclid. 

see also BRIDE'S CHAIR, COSINES LAW, PEACOCK'S 
TAIL, PYTHAGORAS'S THEOREM, WINDMILL 
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Pythagorean Triad 

~~~PYTHAGOREAN TRIPLE 

Pythagorean Triangle 

see PYTHAGOREAN TRIPLE, RIGHT TRIANGLE 

Pythagorean Triple 
A Pythagorean tripIe is a TRIPLE of POSITIVE INTE- 
GERS a, b, and c such that a RIGHT TRIANGLE exists 
with legs a,b and HYPOTENUSE C. By the PYTHAGO- 
REAN THEOREM, this is equivalent to finding POSITIVE 
INTEGERS a, b, and c satisfying 

a2+b2=c2. 

The smallest and best-known Pythagorean triple is 

(a, b, c) = (37 4 5). 

It is usual to consider only “reduced” (or “primitive”) 
solutions in which a and b are RELATIVELY PRIME, since 
other solutions can be generated trivially from the prim- 
itive ones. For primitive solutions, one of a or b must be 
EVEN, and the other ODD (Shanks 1993, p. 141)) with 
c always ODD. In addition, in every primitive Pythag- 
orean triple, one side is always DIVMBLE by 3 and one 
by 5. 
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Given a primitive triple (a~, bo, co), three new primitive 
triples are obtained from 

(%bl,Cl) = (ao,bo,co)U (2) 
(~2, b2, ~2) = (~0, bo, co)A (3) 

(a3, b3, ~3) = (~0, bo, co)D, (4) 

where 

(5) 

(6) 

(7) 

Roberts (1977) proves that (a, b, c) is a primitive Py- 
thagorean triple IFF 

W,c) = (%4,W, (8) 

where M is a FINITE PRODUCT of the MATRICES U, A, 
D. It therefore follows that every primitive Pythagorean 
triple must be a member of the INFINITE array 

( 7 24 25) 
( 5, 12, 13) ( 55: 48, 73) 

( 45 1 28, 53) 

( 39 80’ 89) 
(3, 4, 5) (21, 20, 29) (119; 120, 169) q (9) 

( 77 ’ 36, 85) 

( 33 56, 65) 
(15 1 8, 17) ( 65: 72, 97) 

( 35 1 1% 37) 

For any Pythagorean triple, the PRODUCT of the two 
nonhypotenuse LEGS (i.e., the two smaller numbers) is 
always DIVISIBLE by 12, and the PRODUCT of all three 
sides is DIVISIBLE by 60. It is not known if there are 
two distinct triples having the same PRODUCT. The 
existence of two such triples corresponds to a NONZERO 

solution to the DIOPHANTINE EQUATION 

2y(x4 - y”) = zw(z4 - w4) (10) 

(Guy 1994, p. 188). 

Pythagoras and the Babylonians gave a formula for gen- 
erating (not necessarily primitive) triples: 

(2m, (m2 - 1)’ (m2 + 1))’ (11) 

A general reduced solution (known to the early Greeks) 
1s 

( Y2 - u2 ,2uu, u2 -I- v2), (13) 

where u and w  are RELATIVELY PRIME (Shanks 1993, 
p. 141). Let F, be a FIBONACCI NUMBER. Then 

(FnFn+3,2Fn+lFn+2, Fn+12 -i- Fn+z2) (14) 

is also a Pythagorean triple. 

For a Pythagorean triple (a, b, c), 

P3(4 + P3(b) = P3(c), (15) 

where P3 is the PARTITION FUNCTION P (Garfunkel 
1981, Honsberger 1985). Every three-term progression 
of SQUARES r2, s2, t2 can be associated with a Pythag- 
orean triple (X, Y, 2) by 

r-X-Y (16) 

s =Z (17) 

t =X+Y (18) 

(Robertson 1996). 

The AREA of a TRIANGLE corresponding to the Pythag- 
orean triple (u2 - u2, 22/w, u2 + v2) is 

Fermat proved that 
a SQUA .RE NUMBER 

A = $<u” - v”)(zuv) = uv(u” - v2). (19) 

a number of this form can never be 

To find the number Lp(s) of possible primitive TRI- 
ANGLES which may have a LEG (other than the HY- 

POTENUSE) of length s, factor s into the form 

The number of such TRIANGLES is then 

LP(4 = { ;n-1 for s E 2 (mod 4) 
otherwise, (21) 

i.e., 0 for SINGLY EVEN s and 2 to the power one less 
than the number of distinct prime factors of s otherwise 
(Beiler 1966, pp. 115-116). The first few numbers for 
s = 1, 2, . . . , are 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 2, ‘I, 0, 
2, ..* (Sloane’s A024361). To find the number of ways 
L(s) in which a number s can be the LEG (other than 
the HYPOTENUSE) of a primitive OT nonprimitive RIGHT 
TRIANGLE, write the factorization of s as 

s = zaQplal . . .p,“n, (22) 

and Plato gave Then 

(2m2, (m2 - l)“, (m” + l)“)- (12) 
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3(2Ul + 1)(2az + 1) l  l  l  (ha + 1) - l] 
qs) 0 = for a0 = 1 

5 [Quo - 1)(2Ul + 1)(2az + 1) l  ’  l  (2&L + 1) - 11 
for a0 > 2 

(23) 
(Beiler 1966, p. 116). The first few numbers for s = I, 
2, l  . . are 0, 0, 1, 1, 1, 1, 1, 2, 2, 1, 1, 4, 1, . . l  (Sloane’s 
A046079). 

To find the number of ways HP(s) in which. a number s 
can be the HYPOTENUSE of a primitive RIGHT TRIAN- 
GLE, write its factorization as 

S = 2”0(p/l . . .pnyqlbl . l  l  q/r), (24) 

where the ps are of the form 4a: - 1 and the qs are of the 
form 4~ + 1. The number of possible primitive RIGHT 
TRIANGLES is then 

Hp(s) = ir-’ zh,“,,,“,““” ao = ’ , (25) 
1 

The first few PRIMES of the form 4~ + 1 are 5, 13, 17, 
29, 37, 41, 53, 61, 73, 89, 97, 101, 109, 113, 137, . . . 
(Sloane’s A002144), so the smallest side lengths which 
are the hypotenuses of 1, 2, 4, 8, 16, . . . primitive right 
triangles are 5, 65, 1105, 32045, 1185665, 48612265, . . . 
(Sloane’s A006278). The number of possible primitive 
or nonprimitive RIGHT TRIANGLES having s as a HY- 
POTENUSE k 

H(s) = -+ [(2h + 1)(2bz + l)-(2b, + 1) - l] (26) 

(Beiler 1966, p. 117). The first few numbers for s = 1, 
2, l  . . are 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 
0, . . . (Sloane’s A046080). 

Therefore, the total number of ways in which s may be 
either a LEG or HYPOTENUSE of a RIGHT TRIANGLE is 
given by 

T(s) = L(s) + H(s). (27) 

The values fur s = 1, 2, . . . are 0, 0, 1, 1, 2, 1, 1, 2, 2, 
2, 1, 4, 2, 1, 5, 3, ..* (Sloane’s A046081). The smallest 
numbers s which may be the sides of T general RIGHT 
TRIANGLES for T = 1, 2, l  . l  are 3, 5, 16, 12, 15, 125, 
24, 40, . . . (Sloane’s A006593; Beiler 1966, p. 114). 

There are 50 Pythagorean triples with HYPOTENUSE 
less than 100, the first few of which, sorted 
by increasing c, are (37% q, (6,8,10>, (5,12,13), 
(9,12,15), (8,15,17), (12,16,20), (15,20,25), (7,24,25), 
(10,24,26), (20,21,29), (18,24,30), (16,30,34), 
(21,28,35), . . . (Sloane’s A046083, A046084, and 
A046085). Of these, only 16 are primitive triplets~ 
with HYPOTENUSE less than 100: (3,4,5), (5,12,13), 
(8,15,17),(7,24,25),(20,21,29), (12,35,37),(9,40,41), 
(28,45,53), (11,60,61), (33,56,65), (16,63,65), 
(48,55,73), (36,77, SS), (13,84,85), (39,80,89), and 

(65,72,97) (Sl oane’s A046086, A046087, and A046088). 
Of these 16 primitive triplets, seven are twin triplets (de- 
fined as triplets for which two members are consecutive 
integers). The first few twin triplets, sorted by increas- 
ing c, are (3,4,5), (5,12,13), (7,24,25), (20,21,29), 
(9,40,41), (11,60,61), (13,84,85), (15,112,113), l  l  l  l  

Let the number of triples with HYPOTENUSE less than N 
be denoted A(N), and the number of twin triplets with 
HYPOTENUSE less than N be denoted A,(N). Then, as 
the following table suggests and Lehmer (1900) proved, 
the number of primitive solutions with HYPOTENUSE 
less than N satisfies 

lim A(N) ’ ~ - -- 
N-t- N 2n 

= 0.159155.. l  . (28) 

N Am) 
7 

17 
24 

100 16 0.1600 
500 80 0.1600 

1000 158 0.1580 
2000 319 0.1595 
3000 477 0.1590 41 
4000 639 0.1598 
5000 792 0.1584 52 

10000 1593 0.1593 74 

34 

47 

Considering twin triplets in which the LEGS are consecu- 
tive, a closed form is available for the rth such pair. Con- 
sider the general reduced solution (u2 - w2, 2212r, u2 +u2), 
then the requirement that the LEGS be consecutive in- 
tegers is 

u2 - u2 = 2uv*1. 

Rearranging gives 

( u- 4” - 2v2 = l 1. 

Defining 

u=x+y 

v=y 

then gives the PELL EQUATION 

X2 - 2y2 = 1. 

Solutions to the PELL EQUATION are given by 

X= 
(1+ 1/z>’ + (1 - A)’ 

2 

Y= 
(I+ J2)’ - (I- 1/z)’ 

21/z 
1 

(29) 

(30) 

(31) 
(32) 

(33) 

(34) 

(35) 
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so the lengths of the legs X, and YT and the HY- 
POTENUSE & are 

x, = u2 - v2 = x2 + 2xy 

- fi + 1)2r+1 - (fi - 1)2r+1 + “( 1)’ (36) - 
4 2- 

K = 2uv = 2xy + 2y2 

- - 1/z + 1)2r+1 - (1/z - l)2r+1 _ ;( l)’ (37) - 
4 

= u2 + v2 = x2 + 2xy + 2y2 

_ (J2 + 1)2r+1 + (J2 - 1)2r+1 
- 

2Jz 4 l  

(38) 

Denoting the length of the shortest LEG by A, then gives 

(fi + 
- - 

A, 1)2’+1 
1 

= 1)2’+1 (1/z -- 4 2 (39 

zr = 
(1/2 + 1)2T+1 + (a - 1)2T+1 

21/2 (40 

(Beiler 1966, pp. 124-125 and 256-257), which cannot be 
solved exactly to give T as a function of &. However, the 
approximate number of leg-leg twin triplets Ai = T 
less than a given value of ZT = N can be found by noting 
that the second term in the DENOMINATOR of & is a 
small number to the power 1 + 2r and can therefore be 
dropped, leaving 

N = zr > (a;+$1+2’ (41) 

N > (1 + 2~) ln(& + 1) - ln(2&). (42) 

Solving for r = fIk (n) gives 

Ak(N) < In N + ln(2J2) - ln(fi + 1) 

2ln(l/Z+ 1) 

(43) 

R 0.5671n N. (44) 

The first few LEG-LEG triplets are (3, 4, 5), (20, 21, 29), 
(119, 120, 169), (696, 697, 985), l  . . (Sloane’s A046089, 
A046090, and A046091). 

LEG-HYPOTENUSE twin triples (u, b, c) = (v” - 
u2, 2212t, u2 + v”) occur whenever 

( U- v>” = 1, (46) 

that is to say when v = u + 1, in which case the HY- 
POTENUSE exceeds the EVEN LEG by unity and the twin 
triplet is given by (1+2u,2u(I+u), 1+2u(l+u)). The 

number of leg-hypotenuse triplets with hypotenuse less 
than N is therefore given by 

A;(N) = [+(d=- l)] , (47) 

where 1x1 is the FLOOR FUNCTION. The first few LEG- 
HYPOTENUSE triples are (3, 4, 5), (5, 12, 13), (7, 24, 
25), (9, 40, 41), (11, 60, 61), (13, 84, 85), . . . (Sloane’s 
A005408, A046092, and A046093). 

The total number of twin triples As(N) less than N is 
therefore approximately given by 

A2(N) = A:(N) + A:(N) - 1 (48) 
z lidm + 0.567lnN - 1.5J , (49) 

where one has been subtracted to avoid double counting 
of the leg-leg-hypotenuse double-twin (3,4,5) l  

There is a general method for obtaining triplets of Py- 
thagorean triangles with equal AREAS. Take the three 

m2 = r2 + 7-s + s2 

n2 = 2rs + s2 

m3 = T2 + 2rs 

n3 =T2+TS+S2. 

Then the RIGHT TRIANGLE generated by each 

( mi 
2 - ni2, Zrngai, mi2 + ni2) has common AREA 

A = rs(2r +- S)(T + 2s)(r + S)(T - s)(r2 + TS + s2 > 

(50) 
(51) 

(52) 
(53) 

(54) 
(55) 

triple 

(56) 

(Beiler 1966, pp. 126-127). The only EXTREMUM of this 
function occurs at (T, s) = (0,O). Since A(T, s) = 0 for 
1” = 5, the smallest AREA shared by three nonprimitive 
RIGHT TRIANGLES is given by (T, s) = (1,2), which re- 
sults in an area of 840 and corresponds to the triplets 
(24, 70, 74), (40, 42, 58), and (15, 112, 113) (Beiler 1966, 
p. 126). The smallest AREA shared by three primitive 
RIGHT TRIANGLES is 13123110, corresponding to the 
triples (4485, 5852, 7373), (1380, 19019, 19069), and 
(3059, 8580, 9109) (Beiler 1966, p. 127). 

One can also find quartets of RIGHT TRIANGLES with 
the same AREA. The QUARTET having smallest known 
area is (111, 6160, 6161), (231, 2960, 2969), (518, 1320, 
1418), (280, 2442, 2458), with AREA 341,880 (Beiler 
1966, p* 127). Guy (1994) gives additional information. 

It is also possible to find sets of three and four Pythago- 
rean triplets having the same PERIMETER (Beiler 1966, 
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pp* 131-132). Lehmer (1900) showed that the number 
of primitive triples N(p) with PERIMETER less than p is 

lim N(p) = ‘5 = 0.070230. . . . (57) 
P-m 

In 1643, Fermat challenged Mersenne to find a Pythag- 
orean triplet whose HYPOTENUSE and SUM of the LEGS 
were SQUARES. Fermat found the smallest such solu- 
t ion: 

X = 4565486027761 (58) 

Y = 1061652293520 (59) 

Z = 4687298610289, (60) 

with 

2 = 21650172 (61) 

X+Y = 237215g2. (62) 

A related problem is to determine if a specified INTEGER 
IV can bethe AREA ofa RIGHT TRIANGLE with rational 
sides. 1, 2,3, and 4 are not the AREAS of any RATIONAL- 
sided RIGHT TRIANGLES, but 5 is (3/2, 20/3, 41/6), as 
is 6 (3, 4, 5). The solution to the problem involves the 
ELLIPTIC CURVE 

y2 = x3 - N2x. (63) 

A solution (a, b, c) exists if (63) has a RATIONAL solu- 
tion, in which case 

IL:= ic" (64) 

y = i(u" - b2)C (65) 

(Koblitz 1993). Th ere is no known general method for 
determining if there is a solution for arbitrary N, but a 
technique devised by J. Tunnel1 in 1983 allows certain 
values to be ruled out (Cipra 1996). 

see also HERONIAN TRIANG 
RUPLE, RIGHT TRIANGLE 

LE,~YTHAGOREAN QUAD- 
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Q 
Q 
The FIELD of RATIONAL NUMBERS. 

see also C, CT", II, IV, R, Z 

q-Analog 
A q-analog, also called it q-EXTENSION or q- 

GENERALIZATION, is a mathematical expression param- 
eterized by a quantity q which generalizes a known ex- 
pression and reduces to the known expression in the 
limit q -+ 1. There are q-analogs of the FACTORIAL, 
BINOMIAL COEFFICIENT, DERIVATIVE, INTEGRAL, Fr- 
IONACCI NUMBERS, and so on. Koornwinder, Suslov, 
and Bustoz, have even managed some kind of q-Fourier 
analysis. I 

The q-analog of a mathematical object is generally called 
the “q-object” , hence q-BINOMIAL COEFFICIENT, q- 
FACTORIAL, etc. There are generally several q-analogs 
if there is one, and there is sometimes even a multibasic 
analog with independent 41, ~2, l  . . l  

see also ~-ANALOG, ~-BETA FUNCTION, q-BrNoMrAL 
COEFFICIENT, q-BINOMIAL THEOREM, Q-COSINE, q- 
DERIVATIVE, ~-FACTORIAL, q-GAMMA FUNCTION, Q- 

SERIES, q-SINE, q-VANDERMONDE SUM 
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q-Beta Function 
A q-ANALOG ofthe BETA FUNCTION 

s 1 

B(a, b) = 
0 

ta-‘(l - t)q-l & = ?$!&, 
a 

where r(z) is a GAMMA FUNCTION, is given by 

s 1 

B4(a,b) z 
0 

P(qt; q)a-l d(a, t) = !,$:b”,‘, 
cla 

where r,(a) is a q-GAMMA FUNCTION and (a; q)fl is a 
q-SERIES coefficient (Andrews 1986, pp. 11-12). 

see dso q-FACTORIAL, q-GAMMA FUNCTION 
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q-Binomial Coefficient 
A q-ANALOG for the BINOMIAL COEFFICIENT, also 
called the GAUSSIAN COEFFICIENT. It is given by 

(1) 

where 00 
(cd k’- rI 

1 - qm 
1 - qk+m ’ 0 

m=l 

For example, the first few q-binomial coefficients are 

2 0 1 - q2 
--1+q 

1 = l-q - 
4 

(3, 
3 1 - q3 - - 

( > 2 =l-q= 1+q+q2 
9 

(3) 

(4) 

0, 4 - - ( > 1 - q4 

3 = l-q 
=1+q+q2+q3 (5) 

9 
4 0 2 

Cl - “‘(l - ‘“I = (I+ q)(l + q + q2). (6) 
q = (1 - m - s2> 

From the definition, it follows that 

@),= (n:l)q=p* (7) 

In the LIMIT q --+ 1, the q-binomial coefficient collapses 
to the usual BINOMIAL COEFFICIENT. 

see also CAUCHY BINOMIAL THEOREM, GAUSSIAN 
POLYNOMIAL 

q-Binomial Theorem 
The q-ANALOG of the BINOMIAL THEOREM 

(1 -ign n(n - 1) 2 
= l-nx+----- 

l-2 z- 
n(n - l)(n - 2) r3+ 

1.2*3 
. . l  

is given by 

(1-g) (1+)...(1-;) 
l-qn z 1 - qn 1 - qn-1 22 

=I--- --- 
1-q qn 

+ 1 - q l- q2 q”‘(“-11 

- . . . * Zn q=(n+1)/2 * 

Written as a ~-SERIES, the identity becomes 

O” Cai C7)n n _ (az; q)oo IE 
~ (Q;Q)nZ - (z;’ 
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where 

q-cosine q-Dimension 

For example, 

Ca; Cl>n = 
O” (l-aq”) 
rI m=O Cl- aQm+n) 

(Weine 1847, p. 303; Andrews 1986). The CAUCHY BI- 
NOMIAL THEOREM is a special case of this general the- 
orem. 

see also BINOMIAL SERIES, BINOMIAL THEOREM, CAU- 

CHY BINOMIAL THEOREM, HEINE HYPERGEOMETRIC 
SERIES,RAMANWJAN PSI SUM 

d 
(-) lnx= 

In 2 - ln(qx) ln( > 
1 

- Q 

dx 9 x-qx - (I-q)x 

- q2x2 

- 4x 
= (1+ q)x 

- q3x3 

- P 
= (1+ q + q2)x2* 
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In the LIMIT Q -+ 1, the q-derivative reduces to the usual 
DERIVATIVE. 

see ~2~0 DERIVATIVE 

Heine, E. “Untersuchungen tiber die Reihe 1 + (~IV-‘$j:(ll_~q~‘j) l  q-Dimension 
rc+ (l-q")(l-q"+~)(l-qq(1-*~+1) 

(1-s)(l-g2)(1-Qr)(l-qr+1) 
.x2 + l  l  2 ’  J. reine angew. 

Math. 34, 285-328, 1847. 

q-Cosine 
The Q-ANALOG of the COSINE function, as advocated by 
R. W. Gosper, is defined by 

m, PI 
cosq(r,q) = - 

W&P)’ 

where &(z,p) is a THETA FUNCTION and p is defined 
via 

(lnp)(lng) = 7r2. 

This is a period 275 EVEN FUNCTION of unit ampli- 
tude with double and triple angle formulas and addition 
formulas which are analogous to ordinary SINE and CO- 
SINE. For example, 

cos,(2z, 4) = cosq2(z, q”) - sing2(x, q2), 

where sin&z, a) is the ~-SINE, and rTTQ is ~-PI. The g- 
cosine also satisfies 

cosq(7m) = 
c ~~-m(-l)nq~n+a)2 

c 
m 
,~~,(_vT2 l  

see also q-FACTORIAL, q-SINE 
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q-Derivative 
The ~-ANALOG of the DERIVATIVE, defined by 

f(x) f(x) -f(P) 
4 = x-qx ’ 

sin 2 - sin(qx) 

x - qx 

(1) 

where 

I(w) = >lPiP, 
i=l 

(2) 

E is the box size, and pi is the NATURAL MEASURE. If 

q1 > 42, then 

41 I Ql2- (3) 

The CAPACITY DIMENSION (a.k.a. Box COUNTING DI- 

MENSION) is given by 4 = 0, 

1 
Do = - lim In (‘~~’ ‘> = _ lirn In[N(E)l 

1 - 0 E-0 - lnc E-0 1nE ’ 
(4) 

If all pis are equal, then the CAPACITY DIMENSION is 
obtained for any q. The INFORMATION DIMENSION is 

defined by 

In 

lim E+O 
[C 

N(c) 4 
i=l Pi 1 

D1 = lim Dq = lim - lne 

9-l 9-l 1-q 

= lim lim 
E-b0 q-1 In+ - 1) ’ 

But 

SO use L’HOSPITAL’S RWLE 

Dl = lim ( 1 
- lim 

c qpiq-1 
~0 lne q-+1 

> 
&Q l  

Therefore, 

(5) 

(6) 

(7) 

(8) 
D2 is called the CORRELATION DIMENSION. The Q- 
dimensions satisfy 

D q+1 I D,* (9) 

see also FRACTAL DIMENSION 



Q.E.D. Q-Matrix 

Q.E.D. 
An abbreviation for the Latin phrase “quod erat demon- 
strandurn” (“that which was to be demonstrated”), a 
NOTATION which is often placed at the end of a mathe- 
matical proof to indicate its completion. 

q-Extension 

see Q-ANALOG 

q-Factorial 
The Q-ANALOG of the FACTORIAL (by analogy with the 
~-GAMMA FUNCTION). For a an integer, the q-factorial 
is defined by 

faq(a, q) = I(1 + q)(l + 4 + $) l  ’ l  (I+ 4 + 4 l  l  + C’)* 

A reflection formula analogous to the GAMMA FUNC- 
TION reflection formula is given by 

cosq(7m) = sin&( + - a)] 

,qq(a-1/2)(“+l/2) 
- - 

faq(u - +, q2) faq(-(a + $4”) ’ 

where cos,(x) is the Q-COSINE, sin,(z) is the Q-SINE, and 
7rq is q-PI. 

see &O @ETA FUNCTION, Q-COSINE, Q-GAMMA 
FUNCTION, ~-PI, Q-SINE 
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Q-Function 
Let 

q--e -rK’/K --iTrr 
=e ? (1) 

then 

Q. E fi(l - q2n) (2) 

Ql = j--& + q"") (3) 
n=l 

00 

Q2 = n(l +q2+l) (4) 

Q3 s n(l - q2n-1). (5) 

The Q-functions are sometimes written using a lower- 
case q instead of a capital Q. The Q-functions also sat- 
isfy the identities 

QoQz = Qo(q2) 

QoQ3 = Qo(~‘~ 

QzQ3 = Q&‘) 
QlQz = Q1(q1’2 
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see &O JACOBI IDENTITIES, q-Sums 
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q-Gamma Function 
A ~-ANALOG ofthe GAMMA FUNCTION defined by 

r&? d = (qx; & 
(w7>= (1 - q)l-x, 

(1) 

where (z,& is a Q-SERIES. The g-gamma function 
satisfies 

lim I?&) = r(z) (2) 
q+1- 

(Andrews 1986). 

A curious identity for the functional equation 

f( a- w  a-c)f(a-d)f(a- 4 - f @)f (c)f w (4 
= qbf (0 b - b - c)f (a - b - d)f(a - b - e), (3) 

where 

b+c+d+e=2a (4 

is given by 

f( 1 a= 
{ 

sin(k) for q = 1 
1 for 0 < g < 1, (5) 

LJ(WqP-4 

for any k. 

see also Q-BETA FUNCTION, Q-FACTORIAL 
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q-Generalization 

see q-ANALOG 

q-Hypergeometric Series 

see HEXNE HYPERGEOMETRIC SERIES 

Q-Matrix 

see FIBONACCI Q-MATRIX 
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Q-Number 

see HOFSTADTER’S Q-SEQUENCE 

q-Pi 
The Q-ANALOG of PI rq can be defined by taking a = 0 
in the ~-FACTORIAL 

faq(a,q) = 1(1+~)(l+~+~2)**‘(l+~+~~~+~a-1)~ 

givmg 

1 = sin&x) = %I 
faq2(-+,q2)q1j4’ 

where sin,(x) is the q-SINE. Gosper has developed an 
iterative algorithm for computing 7r based on the alee- ” 
braic RECURRENCE RELATION 

4nq4 
- - (a” + Q2Kq2 _ (q4 + 1)rqz2 

q4 + 1 - 7Tq2 %14 

Q-Polynomial 

see BLM/Ho POLYNOMIAL 

q-Product 

see Q-FUNCTION 
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q-Series Q-Signature 

A SERIES involving coefficients of the form see SIGNATURE (RECURRENCE RELATION) 

(a), = (a; q)n = 
O” (l-aq”) 

rI k=O (1 - %I”+“) 

n-l 

q-Sine 
The q-ANALOG of the, SINE function, as advocated by 
R. W. Gosper, is defined by 

- - 
rI( 

l-aq”) 
k=O 

(1) 

(2) 

(Andrews 1986). The symbols 

[n] s 1+ q + q2 + . . . + qn-l 

[n]! E [?%][?I - I] l  l  ’  [ l] 

1  - 1 1 1 f’ .  .  

(3) 
(4) 

where &(x,p) is a THETA FUNCTION xnd p is defined 
via 

(Inp)(lnq) = r2. 

This is a period Zn, ODD FUNCTION of unit amplitude 
with double and triple angle formulas and addition for- 
mulas which are analogous to ordinary SINE and CO- 
SINE. For example, 

are sometimes also usea waen aiscussmg q-series. 

There are a great many beautiful identities involving 
q-series, some of which follow directly by taking the q- 

identities, e.g., the ANALOG of standard combinatorial 
q-BINOMIAL THEOREM 

O” (“;Q)nrn (az;q), x n=O --Gr = (z; (5) 

(1~1 < 1, jql < 1; Andrews 1986, pa 10) and q- 

VANDERMONDE SUM 

2~1(%q-n;wwl) = 
an (clay Cl>n 

cc; !?>n ' 
(6) 

where 2&(a,b;c; q, z) is a HEINE HYPERGEOMETRIC SE- 
RIES. Other q-series identities, e.g., the JACOBI IDEN- 
TITIES, ROGERS-RAMANUJAN IDENTITIES, and HEINE 
HYPERGEOMETRIC IDENTITY 

241(4;c;q,4 = 
(b; & (a? & 
(5 Q)& q>oo 

2h(clhww,b), 

(7) 
seem to arise out of the blue. 

see also BORWEIN CONJECTURES, FINE'S EQUATION, 
GAUSSIAN COEFFICIENT, HEINE HYPERGEOMETRK 
SERIES, JACKSON'S IDENTITY, JACOBI IDENTITIES, 
MOCK THETA FUNCTION, q-ANALOG, Q-BINOMIAL 
THEOREM, q-COSINE, q-FACTORIAL, Q-FUNCTION, q- 
GAMMAFUNCTION,Q-SINE,RAMANUJAN PSI SUM,RA- 
MANUJAN THETA FUNCTIONS, ROGERS-RAMANUJAN 
IDENTITIES 

sin,&, q) = (q + I+- cosq(z, q2) sin,@, q2), 
pq2 

where cos&z,a) is the q-COSINE, and 7rq is q-PI. 

see also q-COSINE, q-FACTORIAL 

References 
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Quadrant 

2h(wl-n;w,4) = 
an (c/a, q>n 

(C; C7)n ' 

where &(a, b;c;q,z) isa HEINE HYPERGEOMETRIC SE- 
RIES. 

see UZSO CHU-VANDERMONDE IDENTITY, HEINE HYPER- 
GEOMETRIC SERIES 

References 
Andrews, G. E. q-Series: Their Development and Applica- 
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ics, and Computer Algebra. Providence, RI: Amer. Math. 
SOL, pp. 15-16, 1986. 

QR Decomposition 
Given a MATRIX A, its Q&decomposition is of the form 

A=QR, 

where R is an upper TRIANGULAR MATRIX and Q is an 
ORTHOGONAL MATRIX, i.e., one satisfying 

Q’Q = I, 

where 1 is the IDENTITY MATRIX. This matrix decom- 
position can be used to solve linear systems of equations. 

see UZSO CHOLESKY DECOMPOSITION, LU DECOMPOSI- 
TION, SINGULAR VALUE DECOMPOSITION 
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Linear Algebra and Function Minimisation, 2nd ed. Bris- 
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Quadrable 
A plane figure for which QUADRATURE is possible is said 
to be quadrable. 

Quadrangle 

0.g G 

A plane figure consisting of four points, each of which is 
joined to two other points by a LINE SEGMENT (where 
the line segments may intersect). A quadrangle may 
therefore be CONCAVE or CONVEX; ifit is CONVEX, it 
is called a QUADRILATERAL. 
see UZSO COMPLETE QUADRANGLE, 
GLE, QUADRILATERAL 

CYCLIC QUADRAN- 

x<o,y>o 

Quadrant 2 

x>o,y>o 

Quadrant 1 

Quadrant 3 Quadrant 4 

x<o,y<o x>o,y<o 

One of the four regions of the PLANE defined by the four 
possible combinations of SIGNS (+,+), (+,-), (-,+), 
and (-, -> for (X,Y)* 

see also UCTANT, X-AXIS, ~-AXIS 

Heierences 
Courant, R. and Robbins, H. What is Mathematics?: An El- 

ementary Approach to Ideas and Methods, 2nd ed. Oxford, 
England: Oxford University Press, p. 73, 1996. 

Quadratfrei 

see SQUAREFREE 

Quadratic Co ngruence 
A CONGRUENCE of the form 

ax2 + bx + c G 0 (mod m) , 

where a, b, and c are INTEGERS. A general quadratic 
congruence can be reduced to the congruence 

x2 E q (mod p) 

and can be solved using EXCLUDENTS, although solution 
of the general polynomial congruence 

amxm + . . l  + a2z2 + alj: + a0 E 0 (mod n> 

is intractable. 

see UZSO CONGRUENCE,EXCLUDENT,LINEAR CONGRU- 
ENCE 

Quadratic Curve 
The general Z-variable quadratic equation can be writ- 
ten 

ax2 + 2bxy + cy2 + 2dx + 2fy + g = 0. (1) 

Define the following quantities: 

A= (2) 

J= ; ; 
I I 

(3) 

I=a+c (4) 

(5) 
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Then the quadratics are classified into the types sum- 
marized in the following table (Beyer 1987) The real 
(nondegenerate) quadratics (the ELLIPSE, HYPERBOLA, 
and PARABOLA) correspond to the curves which can be 
created by the intersection of a PLANE with a (two- 
NAPPES) CONE, and are therefore known as CONIC SEC- 
TIONS. 

Curve A J A/I K 

coincident lines 0 0 0 
ellipse (imaginary) #O >o >o 
ellipse (real) #O >o <o 
hyperbola #O <o 
intersecting lines (imaginary) 0 > 0 
intersecting lines (real) 0 <o 
parabola #O 0 
parallel lines (imaginary) 0 0 >O 
parallel lines (real) 0 0 <o 

It is always possible to eliminate the xy cross term by a 
suitable ROTATION of the axes. To see this, consider ro- 
tation by an arbitrary angle 8. The ROTATION MATRIX 
is 

X [I [ cos 8 sin8 2’ 
y = - I[ 1 sin8 cos 8 y’ 

[ 

x’ cos 8 + y’ sin 8 Z 
-x’ sin 8 + y’ cos 8 1 ’ (6) 

so 

x = x’ cos 8 + y’ sin 8 (7) 

y = -x’ sin 8 + y’ cos 8 (8) 
xy = -x’~ cos 8 sin 8 + x’y’ (cos2 8 - sin2 8) 

+ y/2 cos 8 sin 8 (9) 

X2 = x’~ cos2 8 + 2x’y’ cos 8 sin 8 + y/2 sin2 8 (10) 
y2 c -xt2 sin2 8 - 2x’yfsin8cos8 + Y’~ cos28. (11) 

Plugging these into (1) gives 

~(2’~ ~0s~ 8 + ~X'Y'COS~ + y” sin2 e) 
+2b(x’ cos 8 + y’ sin 8)(-x’ sin 8 + y’ cos 8) 

+c(x’~ sin2 8 - 22'94' cos 8 sin e + Y’~ ~05~ 8) 

+2d(x’ cos 8 + y’ sin 8) 

+2f (-x’sin8 + y’cos8) + g = 0. (12) 

Rewriting, 

~(2’~ COST 8 + 22'~' cos 8 + y12 sin2 8) 

+2b(-x2 cos2 8sin8-xysin2 8+xycos2 8+y2 cos8sin8) 

+c(xt2 sin2 e - 2 x’y’ cos 8 sin e + y/2 c0s2 8) 

+2d(x’ cos 8 + y’ sin 8) 

+2f(-x’sinB+ y’cos8) +g = 0. (13) 

Grouping terms, 

x’~ (a cos2 8 + c sin2 8 - 26 cos 8 sin 8) 

+x’y’ [2a cos 8 sin 8 - 2c sin 8 cos 8 + 2b(cos2 8 - sin2 8)] 

+Y’~ (a sin2 8 + c cos2 8 + 2b cos 0 sin 8) 

+x’(2d cos 8 - 2fsin8) + y’(-2dsin8 + 2f c0se) 

+9 = 0. (14 

Comparing the COEFFICIENTS with (1) gives an equa- 
tion of the form 

u’xf2 + 2b’x’y’ + c’yf2 + 2d’x’ + 2f’y’ + g’ = 0, (15) 

where the new COEFFICIENTS are 

U’ = am2 8 - 2bcos8sin8 + csin2 8 (16) 
b’ = b(cos2 8 - sin2 8) + (a - c) sin8cos8 (17) - 

C’ = asin28+2bsin8cos8+ccos28 (18) 

d’ = dcos8 - f sin8 (19) 

f 
I 

- -dsin8+ f cos8 - (20) 
gl = g* (21) 

The cross term 2b’x’y’ can therefore be made to vanish 
by setting 

b’ = b(cos2 8 - sin2 8) - (c - a) sin 8 cos 8 

= bcos(2e) - +(c - U) sin(20) = 0. (22) 

For b’ to be zero, it must be true that 

cot(28) = y = K. (23) 

The other components are then given with the aid of the 
identity cos[cot-l(x)] = - de X2 

(24) 

by defining 

LE K 
JiTF’ 

(25) 

so 

sin8 = J 1-L 
~ 

2 (26) 

c0se = J 
l+L - 

2 l  

(27) 

Rotating by an angle 

e- 

therefore transforms (1) into 

(28) 

a’xf2 + cfyt2 + 2d’x’ + 2 f’y’ + g’ = 0 . (29) 
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COMPLETING THE SQUARE, 

a’ (x”+ %x) +c’ (P+ g) +d =o (30) 

a’ (xt+ g2+2 (yt+ $)‘= -,t+$+$. (31) 

Defining x1’ z x1 + d’/a’, y” E y’ + f/c’, and g” E 
-9’ + dr2/at + f2/ct gives 

atxft2 + Ctytt2 = g, 
(32) 

If g” # 0, then divide both sides by g”. Defining art E 
at/g” and cl’ E crlgtt then gives 

attxtt2 + &#ff2 = 1. 
(33) 

Therefore, in an appropriate coordinate system, the 
general CONIC SECTION can be written (dropping the 
primes) as 

1 ax2 + cy2 = 1 ad3 # 0 
ax2 + cy2 = 0 a,c # 0, g = 0. (34) 

Consider an equation of the form ax2 + Zbxy + cy2 = 1 
where b # 0. Re-express this using t1 and t2 in the form 

ax2 + Zbxy + cy2 = t1xt2 + t2yt2. (35) 

Therefore, rotate the COORDINATE SYSTEM 

Xl [I [ cos 8 sin 0 x y’ = - sin0 co& I[ I y ’ (36) 
so 

ax2 + 2bxy + cy2 = t1xt2 + t2 yf2 

= tl (x2 cos2 8 + 2xy cos 0 sin B + y2 sin2 0) 

+ t2 (x2 sin2 0 - 2xy sin 0 cos 0 + y2 cos2 0) 

= x2(tl cos2 0 + t2 sin2 0) + 2xy cos 0 sin O(tl - t2) 

+ y2(tl sin2 8 + t2 cos2 0) (37) 

and 

a = tl cos2 8 + t2 sin2 8 (38) 

b = (t1 - t2) cos8sin8 = i(tl - t2) sin(20) (39) 

C = tl sin2 0 + t2 cos2 0. (40) 

Therefore, 

a+c= (tl cos2 8 + t2 sin2 0) + (tl sin2 8 + t2 cos2 0) 

= t1 + t2 (41 

a-c = t1 cos2 0 + it2 sin2 8 - tl sin2 0 + t2 cos2 0 

= (tl - t2)(cos2 8 - sin2 0) = (tl - t2) cos(20). 

(42 

From (41) and (42), 

a-c @ 1 - t2) cos(20) - - 
b - +(tl - t2) sin(28) 

= 2 cot(20), (43) 

the same angle as before. But 

cos(28) = cos cot [ -l Fal 
= cos [tan-l (-$)I 

=&& 
(44) 

so 
- t2 

a-c= 

J& 

l  

2b 2 
(45) 

u-c 

Rewriting and copying (41), 

tl - t2 = (a - c) 
/-ET 

1 + 

- - (a - c)~ + 4b2 

t1 + t2 = a + c. 

Adding (46) and (47) gives 

(46) 

(47) 

t1 = 3[a+c+J(a-c)2+4b2] 

t2 =a+c-tl=+[a$c- 

Note that these ROOTS can also be found from 

(t - t1)(t - t2) = t2 - t(t1 + t2) + t1t2 = 0 (50) 

t2-t(a + c) + :{(a + c)~ - [(a - c)~ + 4b2]} 

= t2 - t(a + c) 

+a[a2+2ac+c2-a2+2ac-c2-4b2] 

= t2 - t(a + c) + ( ac - b2) = (a - t)(c - t) - b2 

= lait crti =(a-t)(c-t)-b2=0. (51) 

The original problem is therefore equivalent to looking 
for a solution to 

’ [b” :] [;I =t[;] 

[;; :;I [j =t[;“] 1 

which gives the simultaneous equations 

ax2 + bxy = tx2 
bxy + cy2 = ty2. 

(52) 

(53) 

(54) 
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Let X be any point (z, y) with old coordinates and 
(z’, y’) be its new coordinates. Then 

ax2 + 2bxy + cy2 = t+xt2 + t- yr2 = 1 (55) 

and 

x1=*+. 2 [I Y (56) 
y’=L* ; , [I (57) 

If t+ and t- are both > 0, the curve is an ELLIPSE. If 
t+ and t- are both < 0, the curve is empty. If t+ and 
t- have opposite SIGNS, the curve is a HYPERBOLA. If 
either is 0, the curve is a PARABOLA. 

To find the general form of a quadratic curve in POLAR 
COORDINATES (as given, for example, in Moulton 1970), 

Plug 2 = rcos8 and y = T sin 0 into (1) to obtain 

ar2 cos2 8 + 2br2 cos 0 sin 8 + CT2 sin2 8 

+2& cos 0 + 2fr sin 0 + g = 0 (58) 

(a cos2 0 + 2b cos 8 sin 0 + c sin2 0) 
2 

+-(dcos8 + fsin8) + $ = 0. 
r 

(59) 

Define u z l/y. For g # 0,we can divide through by 29, 

$u” + i(dcosB+ fsinO)u 

+f-(acos2 8 + 2bcos8sin8 + csin2 0) = 0. (60) 

Applying the QUADRATIC FORMULA gives 

d f u=-- CosB- -sin&t&, (61) 
9 9 

R= 
(d cos 8 + f sin8)2 

g2 

-4 
1 

(N 
1 

5 29 
> (a cos2 0 + 2b cos 8 sin 8 + c sin2 0) 

d2 2 

- - - 

g2 
cos2 8 + 

wf f 
- - 
g2 

cos8sin8 + 
g2 

sin2 8 

1 -- (~0s~ 8 + 2bcosQsinB + csin2 0). 
9 

(62) 

Using the trigonometric identities 

sin2 0 = 1 - cos2 0 (63) 

sin(28) = 2 sin 8 cos 8, (64) 

it follows that 

= i[l + cos(20)] 
d2 - ag - f 2 + cg 

g2 

d2 df - hl - - - ag - f2 + cg cos(20) + 
a2 

- sin(20) 
g2 

+ 
d2 - ag - f2 + cg + 2f2 - 2cg 

2g2 
l  

(65) 

Defining 

f A=-- 

9 
(66) 

d 
BE-- 

9 

c _ df - bg 
g2 

D _ d2 - f 2 + cg - ag - - 
2g2 

E= 
d2 + f 2 - ag - cg 

aI2 
then gives the equation 

(67) 

(68) 

(6% 

(70) 

1 
UE- 

T 
= A sin 8+ B cos 841 &sin(28) + D cos(2B) + E 

(71) 
(Moulton 1970). If g = 0, then (59) becomes instead 

1 acos2 8 + 2bcos8sin0 + csin’0 u--c- 
2(dcosO+ f sin@) ’ (72) T 

Therefore, the general form of a quadratic curve in polar 
coordinates is given by 

Asin + Bcos8 for g # 0 

u= &JC sin(20) + D cos(26) + E 
a cos2 0+2b cos 0 sin B+c sin’ 8 - 

2(d cos d+f sin 8) 
for g = 0. 

(73) 
see also CONIC SECTION, DISCRIMINANT (QUADRATIC 
CURVE), ELLIPTIC CURVE 
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Quadratic Effect 

~~~PRIME QUADRATIC EFFECT 

SO 

Q 4 - db2 - 4ac 
x1=-= 

2a (15) a Quadratic Equation 
A quadratic equation is a second-order POLYNOMIAL x2=:= 4 + db2 - 4ac 

Q 
2a l  

(16) 

ax2 + bx + c = 0, (1) 
Similarly, if b < 0, then 

with a # 0. The roots x can be found by COMPLETING 
THE SQUARE: q = -$(b- Jb2-4ac) = ;(-b+ Jb2-4ac) (17) 

x2 + 
b -x=-c 
a a (2) 

1 2 b+Jb- 2(b+ d=) - - 
ii- -b + dm b + da - -b2 + cb2 - 4ac) 

2 
- - (3) 

b+@?& -b-d- - - 
-2ac = 2ac 

T b 
x+-= 

+db2 - 4ac 

2a 2a . (4) 

Solving for x then gives so 

4 -b+d- 
x1=-= 

a 2a 
-b*d= 

2= 
2a l  

(19) 

(20) 

(5) 

x2&= 
-b-d- 

4 2a ’ 
Thisisthe QUADRATIC FORMULA. 

An alternate form is given by dividing (1) through by 
x2: 

b 
a+-+? 

X2 
=0 

2 
(6) 

Therefore, the ROOTS are always given by x1 = q/a and 
x2 = c/q. 

see also CARLYLE CIRCLE, CONIC SECTION, CUBIC 
EQUATION, QUARTK EQUATION, QUINTIC EQUATION, 
SEXTIC EQUATION 

c(-$+$)+a=O (7) 

Therefore, 
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1987. 

1 -+~=*Jb22;4ac 
X 

1 -b&d= -- - 
X 2c 

(10) 

2c 
x= -bfdm’ (11) 

This form is helpful if b2 > 4ac, in which case the usual 
form of the QUADRATIC FORMULA can give inaccurate 
numerical results for one of the ROOTS. This can be 
avoided by defining 

q= -i b+sgn(b)dG 02) 

so that b and the term under the SQUARE ROOT sign 
always have the same sign. Now, if b > 0, then 

Quadratic Field 
An ALGEBRAIC INTEGER of the form a + bm where D 
is SQUAREFREE forms a quadratic field and is denoted 
Q(m). If D > 0, the field is called a REAL QUAD- 
RATIC FIELD, and if D < 0, it is called an IMAGINARY 
QUADRATIC FIELD. The integers in Q(a) are sim- 
ply called “the” INTEGERS. The integers in Q(J-1) 
are called GAUSSIAN INTEGERS, and the integers in 
Q(d2) are called EISENSTEIN INTEGERS. The AL- 
GEBRAIC INTEGERS in an arbitrary quadratic field do 

. 

(13) 

1 -2 b-d- -2(b - d=) - - 

ii- b + dm b - d= - b2 - cb2 - 4ac) 

-2(b - d=) -b+d- - - 
4ac = 2ac 1 (14) 
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not necessarily have unique factorizations. For exam- 
ple, the fields Q( JT ) and Q( dq ) are not uniquely 
factorable, since 

21= 3 - 7 = (1+ 2J-5)(1- 2J-5) (1) 

6=-&(d3)=2*3, (2) 

although the above factors are all primes within these 
fields. All other quadratic fields Q(m) with IDI < 7 - 
are uniquely factorable. 

Quadratic fields obey the identities 

(a + b1.6) 5 (c + da) = (a k c) + (b * d)&, (3) 

It is always possible to express an arbitrary quadratic 
form 

Q(X) = aijxixj (5) 

in the form 

Q(x) = (x1 Ax), (6) 

where A = aii is a SYMMETRIC MATRIX given by 

Any REAL quadratic 
to the diagonal form 

form in n variables may be reduced 

(7) 

Q(x) = Xlx12 + X2x22 +. . . + x,xn2 (8) 
(a + bfi)(c + da) = (ac + bdD) + (ad + bc)*, (4) 

a-+bdB ac - bdD bc - ad ~ - 
c+dl/D-c2-d2D 

+ 
c2 - d2D 

a 
’ (5) 

The INTEGERS in the real field Q(JD> are of the form 
T + sp, where 

P- 
JD for D E 2 or D E 3 (mod 4) 
i(-l+ Jo) for D =: I (mod 4). (6) 

There exist 22 quadratic fields in which there is a EU- 
CLIDEAN ALGORITHM (Inkeri1947). 

see also ALGEBRAIC INTEGER, EISENSTEIN INTEGER, 
GAUSSIAN INTEGER, IMAGINARY QUADRATIC FIELD, 
INTEGER,NUMBER FIELD, REAL QUADRATIC FIELD 
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Quadratic Form 
A quadratic form involving n REAL variables xl, x2, . . . , 
X~ associated with the n x n MATRIX A = aij is given 

bY 

Q(xI~x~,-..~x~) =~jxixj, (1) 

where EINSTEIN SUMMATION has been used. Letting 
x be a VECTOR made up of xi, . . . , xn and xT the 
TRANSPOSE, then 

with Xr 2 X2 2 . . . 2 X, by a suitable orthogonal 
point-transformation. Also, two real quadratic forms 
are equivalent under the group of linear transformations 
IFF they have the same RANK and SIGNATURE. 

see also DISCONNECTED FORM, INDEFINITE QUAD- 
RATIC FORM, INNER PRODUCT, INTEGER-MATRIX 
FORM, POSITIVE DEFINITE QUADRATIC FORM, POSI- 
TIVE SEMIDEFINITE QUADRATIC FORM, RANK (QUAD- 
RATIC FORM), SIGNATURE (QUADRATIC FORM), SYL- 
VESTER'S INERTIA LAW 
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Quadratic Formula 
The formula giving the ROOTS ofa QUADRATIC EQUA- 
TION 

ax2 + bx + c = 0 (1) 

4 It l/b2 - 4ac 
x= 

2a ’ 

An alternate form is given by 

(2) 

Q(x) = xTAx, (2) 
see also QUADRATIC EQUATION 

equivalent to 

Q(x) = (x, Ax) (3) 

in INN ER PRODUCT notation. 
FORM has the form 

A BINARY QUADRATIC 

(3) 

Q(x,Y> = am2 + 2al2xy + a22y2- (4) 
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Quadratic Integral 
To compute integral of the form 

Quadratic Invariant 
Given the BINARY QUADRATIC FORM 

s dx 

a + bx + cx2 ’ (1) 
ax2 + 2bxy + cy2 (1) 

with DISCRIMINANT b2 - UC, let 
COMPLETE THE SQUARE in the DENOMINATOR to ob- 
tain x=pX+qY (2) 

s dx 1 dx - - 
a + bx + cx2 - c s ( 

b2 
x+&)“+(;- )’ 4ca 

y = 7-X + SY. (3) 
(2) 

Then 

Let u E x + b/2c. Then define 

b2 
-A2 E 2 - 4c2 = &4ac - b2) = &q, (3) c 

where 

= AX2 + 2BXY + CY2, (4) 

where 
q E 4ac - b2 (4) 

is the NEGATIVE of the DISCRIMINANT. If q < 0,then 

A = ap2 + 2bpr + cr2 

B = apq + b(ps + qr) + crs 

C = aq2 + 2bqs + cs2, 

(5) 

(6) 

(7) 

A=+* (5) SO 

NOW use PARTIAL FRACTION DECOMPOSITION, B2 - AC = [a2p2q2 + b2(ps + ~r)~ + c2r2s2 

1 s du 1 Al A2 

+ 2abpq(ps + qr) + 2acpqrs -t ~~C~S(PS + qr>] 

- 

c (u + A)(u - A) = c S( -+- 
u+A u-A > 

du - (up2 + 2bpr + cr2)(aq2 + 2bqs + cs2) 

(6) 
- - a2p2q2 + b2p2s2 + 2b2pqrs + b2q2r2 + c2r2s2 

+ 2abp2qs + 2abpq2r + 2acpqrs + 2bcprs’ + 2bcqr2s 
Al -+ A2 

- = 

u+A u-A > 

A& - A) + Az(u + A) 

u2 - A2 

(AI + ~42)~ + A(& - A) I 
= 

u2 - A2 
? (7) 

2 2 2 -apq - 2abp2qs - acp2 s2 - 2abpq2r - 4b’pqrs 

- 2bcprs2 2 2 2 - acq2r2 - 2bcqr2s -CTS 

z b2p2s2 - 2b2pqrs + b2q2r2 + 2acpqrs - acp2s2 

so A2 + A1 = O + A2 = -Al and A(A2 - Al) = 

-2AA1 = 1 z Al = -1&A). Plugging these in, 

- acq2r2 

= p2s2(b2 - ac) + q2r2(b2 - ac) - 2pqrs(b2 - ac) 
2 - - (b 

- ac)(p2s2 - 2pqrs + q2r2) 

1 11 11 - 
c 

---+2Au. 
2Au+A - 

- - & [- ln(u + A) + ln(u - A)] 

- - 

- - 

- - (8) 

for q < 0. Note that this integral is also tabulated in 
Gradshteyn and Ryzhik (1979, equation 2.172), where 
it is given with a sign flipped. 

References 
Gradshteyn, I. S. and Ryzhik, I, M. Tables of Integrals, Se- 

ries, and Products, 5th ed. San Diego, CA: Academic 

- - (P s - rq)2(b2 - UC). (8) 

Surprisingly, this is the same discriminant as before, but 
multiplied by the factor (ps - rq)2. The quantity ps - rq 
is called the MODULUS. 

see also ALGEBRAIC INVARIANT 

Quadratic Irrational Number 
An IRRATIONAL NUMBER ofthe form 

Pffl 
Q 

1 

where P and Q are INTEGERS and D is a SQUARE- 
FREE INTEGER. Quadratic irrational numbers are some- 
times also called QUADRATIC SURDS. In 1770, Lagrange 
proved that that any quadratic irrational has a CONTIN- 
UED FRACTION which is periodic after some point. 

Press, 1979. see also CONTINUED FRACTION, QUADRATIC SURD 
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Quadratic Map 
A 1-D MAP often called “the” quadratic map is defined 

bY 
Xn+l = xn2 + c. (1) 

This is the real version of the complex map defining 
the MANDELBROT SET. The quadratic map is called 
attracting if the JACOBIAN J < 1, and repelling if J > 1. 
FIXED PRINTS occur when 

X (11 = [xul]2 + c 

(xy2 - x(l) + c = 0 

x!" = $&&Xc). 

Period two FIXED PRINTS occur when 

(2) 

(3) 

(4 

5%+2 =G-b+1 2 + c = (xn2 + c)2 + c 

=xn4+2cx722 +(c2 +c)=xn (5) 

x4 +2x2 -x+(cx2+c) = (x2 -a:+c)(22+x+1+C)=0 
(6) 

xy = f[l& &=qiq]= +(lf.J-3--4c). (7) 

Period three FIXED PRINTS occur-when 

x6 + x5 + (3c + 1)x4 + (2c + 1)x3 + (c” + 3c + 1)x2 

+(c+ 1)2x+ (c3 +2c2 +c+ 1) = 0. (8) 

The most general second-order 2-D MAP with an elliptic 
fixed point at the origin has the form 

2’ = xcosa -ysina+a20x2 +a11xy+a02y~ (9) 

y’ = x sin cl: + y cos QI + b20x2 + bllxy + bo2y2. (10) 

The map must have a DETERMINANT of 1 in order to be 
AREA preserving, reducing the number of independent 
parameters from seven to three. The map can then be 
put in a standard form by scaling and rotating to obtain 

x1 = xcosa - ysina + x2 sina 

y’=xsina+ycosa-x2cos~. 

The inverse map is 

x = x’ cos a + y’ sin QI (13) 

y = -x’ sin Q + y’ cos a + (x’ cos QI + yt sin a)2. (14) 

The FIXED PRINTS are given by 

xi2 sina + 2xi cosct - xi-1 - xi+1 = 0 

for i = 0, l  . l  , 71- 1. 

(15) 

see also BOGDANOV MAP, H~NON MAP, LOGISTIC 
MAP, Lozr MAP, MANDELBROT SET 

Quadratic Reciprocity Theorem 

Quadratic Mean 

see ROOT-MEAN-SQUARE 

Quadratic Reciprocity Law 

see QUADRATIC RECIPROCITY THEOREM 

Quadratic Reciprocity Relations 

-1 ( > - 

P - 
(+P-W2 

2 0 - 
i - 

(-~)~PW8 

(1) 

(2) 

(;) = (;) (_~)[(p-1)/21[(q--1)/21, (3) 

where (F) is the LEGENDRE SYMBOL. 
see also QUADRATIC RECIPROCITY THEOREM 

Quadratic Reciprocity Theorem 
Also called the AUREUM THEOREMA (GOLDEN THEO- 
REM) by Gauss. If p and Q are distinct ODD PRIMES, 
then the CONGRUENCES 

x2 E q (mod p) 

x2 E p (mod q) 

both unsolvable 
3 when divided 

are both solvable or unless both p and Q 
leave the remainder by 4 (in which case 
one of the CONGRUENCES is solvable and the other is 
not). Written symbolically, 

p q- 
00 i i- 

(-l)(P-ww 1 

where 

for x2 E p (mod q) solvable for x 
for x2 = p (mod q) not solvable fur x 

is known as a LEGENDRE SYMBOL. Legendre was the 
first to publish a proof, but it was fallacious. Gauss 
was the first to publish a correct proof. The quadratic 
reciprocity theorem was Gauss’s favorite theorem from 
NUMBER THEORY, and he devised many proofs of it over 
his lifetime. 

see also JACOBI SYMBOL, KRONECKER SYMBOL, LEG- 
ENDRE SYMBOL, QUADRATIC RESIDUE, RECIPROCITY 
THEOREM 
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Quadratic Recurrence 
N.B. A detailed on-line essay by S. Finch was the start- 
ing point for this entry. 

A quadratic recurrence is a RECURRENCE RELATION on 
a SEQUENCE of numbers {zn} expressing xn as a second 
degree polynomial in zk with k < n. For example, 

is a quadratic recurrence. Another simple example is 

x:n = (Xn-1)2 (2) 

with x0 = 2, which has solution zn = 22”. Another ex- 
ample is the number of “strongly” binary trees of height 
5 n, given by 

yn = (y,-1)2 + 1 (3) 

with yo = 1. This has solution 

where 

c = exp 

Lm 
IE 

2-j-l ln(1 + yj-“> 1 = 1.502836801.. . 

j=O (5) 
and [s] is the FLIER FUNCTION (Aho and Sloane 1973). 
A third example is the closest strict underapproximation 
of the number 1, 

!n 

where 1 < z1 < . . . < xn are integers. The solution is 
given by the recurrence 

Xn = (&-1)2 - &h--l + 1, (7) 

with 21 = 2. This has a closed solution as 

zn = [d2n + t] (8) 

where 

d = i& exp 22-j-l In[l + (2zj - 1)-2] 
j=l 

= 1.2640847353.. . (9) 

(Aho and Sloane 1973). A final example is the well- Given an ODD PRIME p and an INTEGER a, then the 
known recurrence LEGENDRE SYMBOL is given by 

Ga = (Cn-1)2 - P (10) 

with CO = 0 used to generate the MANDELBROT SET. 

see also MANDELBROT SET, RECURRENCE RELATION 
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Quadratic Residue 
If there is an INTEGER x such that 

x2 E 4 (mod PI 9 (1) 

then Q is said to be a quadratic residue of x mod p. If 
not, Q is said to be a quadratic nonresidue of x mod 
p. For example, 42 E 6 (mod lo), so 6 is a quadratic 
residue (mod 10). The entire set of quadratic residues 
(mod 10) are given by 1, 4, 5, 6, and 9, since 

1’ E 1 (mod 10) Z2 E 4 (mod 10) 32 E 9 (mod 10) 

d2 G 6 (mod 10) 52 E 5 (mod 10) 62 E 6 (mod 10) 

72 E 9 (mod 10) g2 s 4 (mod 10) g2 E 1 (mod 10) 

making the numbers 2, 3, 7, and 8 the quadratic non- 
residues (mod 10). 

A list of quadratic residues for p < 29 is given below - 
(Sloane’s A046071), with those numbers < p not in the 
list being quadratic nonresidues of p. 

p Quadratic Residues 

1 (none) 
2 1 
3 1 
4 1 
5 1,4 
6 1, 3, 4 
7 1, 2, 4 
8 1,4 
9 1, 4, 7 

10 1, 4, 5, 6, 9 
11 1, 3, 4, 5, 9 
12 1, 4, 9 
13 1, 3, 4, 9, 10, 12 
14 1, 2, 4, 7, 8, 9, 11 
15 1, 4, 6, 9, 10 
16 1, 4, 9 
17 1, 2, 4, 8, 9, 13, 15, 16 
18 1, 4, 7, 9, 10, 13, 16 
19 1, 4, 5, 6, 7, 9, 11, 16, 17 
20 1, 4, 5, 9, 16 

The UNITS in the integers (mod n), zn 9 which are 
SQUARES are the quadratic residues. 

a 

0 { 

1 - if a is a quadratic residue mod p 

P - - 1 otherwise. (2) 

If 
r(pf1)/2 = 4~1 (mod p) , - (3) 
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then T is a quadratic residue (+) or nonresidue (-). This 
can be seen since if T is a quadratic residue of p, then 
there exists a square x2 such that T s z2 (mod p), so 

rb--1v2 = 
- ( 1 

z2 (p--1)/2 - xP--l 
= (mod PI7 (4 

and xp-’ is congruent to 1 (modp) by FEE~MAT'S LITTLE 
THEOREM. x is given by 

qkfl (mod p) 
for p =4k+3 

q”+l (mod p) 
for p = 8k + 5 and q2’+’ z 1 (mod p) (5) 

(4q)“+’ (q) (mod p) 
for p = 8k + 5 and q2k+1 E -1 (mod p) . 

More generally, let Q be a quadratic residue moduio an 
ODD PRIME p. Choose h such that the LEGENDRE SYM- 
BOL (h2 - 4qlp) = -1. Then defining 

vi =h 

v2 = h2 - 2q 

K = hVi-, - qViB2 

(6) 

(7) 

for i > 3, - (8) 

gives 

vii z vi2 - 2qi 

V2i+l = V;Vi+1 - hni, 

(9) 

(10) 

and a solution to the quadratic CONGRUENCE is 

The following table gives the PRIMES which have a given 
number d as a quadratic residue. 

d Primes 

-6 24k + 1,5,7,11 
-5 2Ok + 1,3,7,9 
-3 6k + 1 
-2 8k+1,3 
-1 4k + 1 

2 8k do 1 
3 12k * 1 
5 1Ok 411 
6 24k AI 1,5 

Finding the CONTINUED FRACTION of a SQUARE ROOT 
n and using the relationship 

Q 
D - Pn2 

n=- 
Q n- 1 

02) 

for the nth CONVERGENT Pn/Qn gives 

Pn2 E -QnQn-l (mod D). (13) 

Therefore, -QnQn- 1 is a quadratic residue of D. But 
since Q1 = 1, -Qz is a quadratic residue, as must be 
-QsQs* But since - Q2 is a quadratic residue, so is Q3, 
and we see that (-l)n-lQn are all quadratic residues 
of D. This method is not guaranteed to produce all 
quadratic residues, but can often produce several small 
ones in the case of large D, enabling D to be factored. 

The number of SQUARES s(n) in & is related to the 
number q(n) of quadratic residues in Z, by 

dP”> = s(p”) - S(P”l”> (14) 

for n > 3 (Stangl 1996). Both Q and s are MULTIPLICA- - 
TIVE FUNCTIONS. 

see also EULER’S CRITERION, MULTIPLICATIVE FUNC- 
TION, QUADRATIC RECIPROCITY THEOREM, RIEMANN 
HYPOTHESIS 
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Quadratic Sieve Factorization Method 
A proced .ure used in conjunction with DIXON 's FACTOR- 
IZATION METHOD to factor large numbers. The TS are 
chosen as 

14 n -t-k, (1) 

where k = 1, 2, . l  . and 1x1 is the FLOOR FUNCTION. 
We are then looking for factors p such that 

n E r2 (mod p) , (2) 

which means that only numbers with LEGENDRE SYM- 

BOL (n/p) = 1 (less than IV = r(d) for trial divisor d) 
need be considered. The set of PRIMES for which this 
is true is known as the FACTOR BASE. Next, the CON- 
GRUENCES 

x2 G n (mod P) (3) 

must be solved for each p in the FACTOR BASE. Fi- 
nally, a sieve is applied to find values of f (r) = r2 - n 
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which can be factored completely using only the FAC- 
TOR BASE. GAUSSIAN ELIMINATION is then used as in 
DIXON’S FACTORIZATION METHOD in order to find a 
product of the f(r)s, yielding a PERFECT SQUARE. 

The method requires about exp( l/log rz log log n ) steps, 
improving on the CONTINWED FRACTION FACTORIZA- 
TION ALGORITHM by removing the 2 under the SQUARE 
ROOT (Pomerance 1996). The use of multiple P~LYNO- 
MIALS gives a better chance of factorization, requires a 
shorter sieve interval, and is well-suited to parallel pro- 
cessing. 

see also PRIME 

NUMBER 
FACTORIZATION ALGORITHMS, SMOOTH 
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Quadratic Surd 

see QUADRATIC IRRATIONAL NUMBER 

Quadratic Surface 
There are 17 standard-form quadratic surfaces. The 
general quadratic is written 

ax2 + by2 + a2 + 2fyx + 2gxx + 2hxy 

+2px + 2qy + 27-x + d = 0. (1) 

Define 

a h 9 
e= 

[ I 
h b f 
9 f c 

and kl, kz, as !Q are the roots of 

U-X h 9 

h b-x f = 0. 
9 f C-X 

Also define 

(7) 

k= 1 if the signs of nonzero ks are the same 
0 otherwise. (8) 

Surface Equation 
SW 

P3 P4 (A> k 

coincident planes 
ellipsoid (S) 

ellipsoid (!R) 
elliptic cone (%) 

elliptic cone (92) 

elliptic cylinder (%> 

elliptic cylinder (R) 

elliptic paraboloid 

hyperbolic cylinder 

hyperbolic paraboloid 

hyperboloid of one sheet 

hyperboloid of two sheets 
intersecting planes (S) 
intersecting planes (32) 

parabolic cylinder 

parallel planes (S) 
parallel planes ($2) 

x2 = 0 1 1 
22 
3 +S+f =-13 4 + 1 
,a 
,3 +$+$=1 3 4 - 1 
g+g-=+o 3 3 1 
x2 = $t$ 3 3 0 
$+$x-1 2 3 I 
$+$=I 2 3 1 

x++g 24- 1 
2 a aa- p = -1 2 3 0 
x=+-g 24+ 0 
$+$-L1 34+ 0 
f+++ -13 4 - 0 
$+$=o 2 2 1 
ra 2 0 7 --= 

ba 
2 2 0 

x2 + 2rz = 0 13 
x2 = -aa 12 
x2 = a2 12 

see UZSO CUBIC SURFACE, ELLIPSOID, ELLIPTIC CONE, 
ELLIPTIC CYLINDER, ELLIPTIC PARABOLOID, HYPER- 
BOLIC CYLINDER, HYPERBOLIC PARABOLOID, HYPER- 
BOLOID,PLANE, QUARTIC SURFACE, SURFACE 
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Quadratrix of Hippias 

The quadratrix was discovered by Hippias of Elias in 430 
BC, and later studied by Dinostratus in 350 BC (Mac- 
Tutor Archive). It can be used for ANGLE TRISECTION 
or, more generally, division of an ANGLE into any inte- 
gral number of equal parts, and CIRCLE SQUARING. In 
POLAR COORDINATES, 

7Tp = 2T@ CSC 6, 

p3 = rank e 

P4 = rank E 

A = det E, 

(4) 

(5) 

(6) 
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which iS proportional to the The zeroth order orthonormal function can always be 
taken as po (x) = 1, so (7) becomes 

References 
Lawrence, J. D. A Catalog of Special Plane Curves. New 

York: Dover, ppm 195 and 198, 1972. 
Lee, X. ‘CQUadratrix of Hippias.” http://www.best . com/- 

xah/SpecialPlaneCurvesdir/quadratrixOfHippias-dir/ 
quadratrixOfHippias.html. 

MacTutor History of Mathematics Archive. “Quadratrix of 
Hippias." http://www-groups . dcs.st-and.ac.uk/ 
-history/Curves/Quadratrix.html. 

Quadrature 
The word quadrature has (at least) three incompati- 
ble meanings. Integration by quadrature either means 
solving an INTEGRAL analytically (i.e., symbolically in 
terms of known functions), or solving of an integral 
numerically (e.g*, GAUSSIAN QUADRATURE, QUADRA- 

TURE FORMULAS). The word quadrature is also used 
to mean SQUARING: the construction of a square using 
only COMPASS and STRAIGHTEDGE which has the same 
AREA as a given geometric figure. If quadrature is pos- 
sible for a PLANE figure, it is said to be QUADRABLE. 

For a function tabulated at given values LC:~ (so the AB- 

SCISSAS cannot be chosen at will), write the function 4 
as a sum of ORTHONORMAL FUNCTIONS pj satisfying 

s b 

pi(x)pj(x)W(x) dx = 6ij 

a 

4(X> = gajPjCx)7 
j=O 

(1) 

and plug into 

dxf (Xd 

(2) 

E cWjf(xj)7 (3) 
j=l 

giving 

ajpj(x)W(x) dx = 

But we wish this to hold for all degrees of approximation, 
so 

b 

9 pj(x)W(x) dx = aj 2 Wipj (Xi) (5) 

s b 

Pj(x)w(x) 
a 

i=l 

(6) Quadricorn 

Setting i = 0 in (1) gives 

b 

po(x)pj(x)W(x)dx = 6oj. (7) 

s b 

pj(x)W(x) dx = 6oj (8) 
a 

= 2 Wipj(Xi), 

i=l 

(9) 

where (6) has been used in the last step. We therefore 
have the MATRIX equation 

1 
po(x1) l  -* POW 
P&l) l  ** Pl (4 

. . . 
l  . . 

P,_;(z,, l  l  : P,;(r,) 

*201 

w2 

. 

. 
l  

W72 

1 

0 
- 1 [I - 

l  
1  (10) 

. 

0  

which can be inverted to solve for the wis (Press et al. 
1992). 

see also CALCULUS,CHEBYSHEV-GAUSS QUADRATURE, 
CHEBYSHEV QUADRATURE, DERIVATIVE, FUNDAMEN- 
TAL THEOREM OF GAUSSIAN QUADRATURE, GAUSS- 
JACOBI MECHANICAL QUADRATWRE$AUSSIAN QUAD- 
RATURE, HERMITE-GAUSS QUADRATURE, HERMITE 
QUADRATURE, JACOBI-GAUSS QUADRATURE, JACOBI 
QUADRATURE, LAGUERRE-GAUSS QUADRATURE, LA- 

GUERRE QUADRATURE, LEGENDRE-GAUSS QUADRA- 
TURE, LEGENDRE QUADRATURE, LOBATTO QUADRA- 
TURE,MECHANICAL QUADRATWRE,MEHLERQUADRA- 
TURE,NEWTON-COTES FORMULAS,NUMERICAL INTE- 
GRATION, RADAU QUADRATURE, RECURSIVE MONO- 
TONE STABLE QUADRATURE 
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Quadrature Formulas 

see NEWTON-C• TES FORMULAS 

Quadric 
An equation of the form 

X2 

a2 + 6) 
Y2 + z2 

+b2+t9 
- = 1, 
c2 +8 

where 0 is said to be the parameter of the quadric. 

A FLEXIBLE POLYHEDRON due to C. Schwabe (with the 
appearance of having four horns) which flexes from one 
totally flat configuration to another, passing through in- 
termediate configurations of positive VOLUME. 

see also FLEXIBLE POLYHEDRON 



Quadrifolium Quadriplanar Coordinates 

Quadrifolium 

The ROSE with n = 2. It has polar equation 

r = asin(20), 

and Cartesian form 

(x2 + y2)3 = 4a222y2. 

see also BIFOLIUM, FOLIUM, ROSE, TRIFOLIUM 

Quadrilateral 
A 

D 

A four-sided POLYGON sometimes (but not very often) 
also known as a TETRAGON. If not explicitly stated, all 
four VERTICES are generally taken to lie in a PLANE. If 
the points do not lie in a PLANE, the quadrilateral is 
called a SKEW QUADRILATERAL. 

For a planar convex quadrilateral (left figure above), 
let the lengths of the sides be a, b, c, and d, the 
SEMIPERIMETER s, and the DIAGONALS p and g. The 
DIAGONALS are PERPENDICULAR IFF a2 +c2 = b2 +d2. 
An equation for the sum of the squares of side lengths 
is 

a2+b2+c2+d2 =p2+q2+4x2, (1) 

where x is the length of the line joining the MIDPOINTS 
of the DIAGONALS. The AREA of a quadrilateral is given 

bY 

K = +pqsinB (2) 

= $I” + d2 - a2 - c”> tan0 (3) 

- &/4p2q2 - (b2 -+- d2 - a2 _ ,212 - 

- - d (s - a)(s - b)( s - c)(s - d) - abcdcos2[;(A + B)], 

(5) 
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where (4) is known as BRETSCHNEIDER'S FORMULA 
(Beyer 1987). 

A special type of quadrilateral is the CYCLIC QUADRI- 
LATERAL, for which a CIRCLE can be circumscribed so 
that it touches each VERTEX. For BICENTRIC quadri- 
laterals, the CIRCUMCIRCLE and INCIRCLE satisfy 

2r2(R2 - s”) = (R2 - s”>” - 4r2s2, (6) 

where R is the CIRCUMRADIUS, T in the INRADIUS, and 
s is the separation of centers. A quadrilateral with two 
sides PARALLEL is called a TRAPEZOID. 

There is a relationship between the six distances d12, 
d13, d14, d23, d24, and d34 between the four points of a 
quadrilateral (Weinberg 1972): 

0 = dn4d3ca2 + dn4d242 + dw4d2a2 + d2s4d1d2 

+ d%4d:3 + d:,& 

(7) 

see also BIMEDIAN, BRAHMAGUPTA'S FORMULA,BRET- 
SCHNEIDER'S FORMULA, COMPLETE QUADRILATERAL, 
CYCLIC-IN~~RIPTABLE QUADRILATERAL, CYCLIC 
QUADRILATERAL, DIAMOND, EIGHT-POINT CIRCLE 
THEOREM, EQWILIC QUADRILATERAL, FANO'S AXIOM, 
LI?ON ANNE'S THEOREM, LOZENGE, ORTH~CENTRIC 
QUADRILATERAL,PARALLELOGRAM,PTOLEMY'S THE- 
OREM, RATIONAL QUADRILATERAL, RHOMBUS, SKEW 
QUADRILATERAL,TRAPEZ~ID,VARIGNON'S THEOREM, 
VON AUBEL’S THEOREM, WITTENBAUER'S PARALLEL- 
OGRAM 
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Quadrillion 
In the American system, 1015. 

see also LARGE NUMBER 

Quadriplanar Coordinates 
The analog of TRILINEAR COORDINATES for TETRAHE- 
DRA. 

see also TETRAHEDRON, TRILINEAR COORDINATES 



Quadruple 
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Quadruple 
A group of four elements, also called a QUADRUPLET or 
TETRAD. 

see also AMICABLE QUADRUPLE, DI~PHANTINE QUAD- 
RUPLE, MONAD, PAIR, PRIME QUADRUPLET, PY- 
THAGOREANQUADRUPLE,QUADRUPLET,QUINTUPLET, 
TETRAD, TRIAD, TRIPLE, TWINS, VECTOR Q~AD~u- 
PLE PRODUCT 

Quadruple Point 

A point where a curve intersects itself along four arcs. 
The above plot shows the quadruple point at the ORIGIN 
of the QUADRIFOLIUM (x2 + IJ~)~ - 4x2y2 = 0. 

see also DOUBLE POINT, TRIPLE POINT 
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Quadruplet 

see QUADRUPLE 

Quadtree 
A TREE having four branches at each node. Quadtrees 
are used in the construction of some multidimensional 
databases (e.g., cartography, computer graphics, and 
image processing). For a d-D tree, the expected num- 
ber of comparisons over all pairs of integers for success- 
ful and unsuccessful searches are given analytically for 
d = 2 and numerically for d > 3 by Finch. - 

References 
Finch, S. “Favorite Mathematical Constants.” http: //wuw. 

mathsoft. com/asolve/constant/qdt/qdt .html. 
Flajolet, P.; Gonnet, G.; Puech, C.; and Robson, J. M. “Ana- 

lytic Variations on Quadtrees.” Algorithmica 10, 473-500, 
1993. 

Lauwerier, H. Fructals: Endlessly Repeated Geometric Fig- 
ures. Princeton, NJ: Princeton University Press, pp. ll- 
13, 1991. 

Quant ic 

Quarter 

An nz-ary n-ic polynomial (i.e., a HOMOGENEOUS POLY- 
NOMIAL with constant COEFFICIENTS of degree n in m 
independent variables). 

see also ALGEBRAIC INVARIANT, FUNDAMENTAL SYS- 
TEM, p-ADIC NUMBER, SYZYGIES PROBLEM 

Quantifier 
One of the operations EXISTS 3 or FOR ALL V. 

see also BOUND, EXISTS, FOR ALL, FREE 

Quantization Efficiency 
Quantization is a nonlinear process which generates ad- 
ditional frequency components (Thompson et al. 1986). 
This means that the signal is no longer band-limited, so 
the SAMPLING THEOREM no longer holds. If a signal is 
sampled at the NYQUIST FREQUENCY, information will 
be lost. Therefore, sampling faster than the NYQUIST 
FREQUENCY results in detection of more of the signal 
and a lower signal-to-noise ratio [SNR]. Let /3 be the 
OVERSAMPLING ratio and define 

SNR,uant 
r/9 = SNRunquant l  

Then the following table gives values of ?jQ for a number 
of parameters. 

The Very Large Array of 27 radio telescopes in Socorro, 
New Mexico uses three-level quantization at p = 1, so 
VQ = 0.81. 
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Quantum Chaos 
The study of the implications of CHAOS for a system 
in the semiclassical (i.e., between classical and quantum 
mechanical) regime. 

References 
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Quarter 
The UNIT FRACTION l/4, also called one-fourth. It is 
the value of KOEBE'S CONSTANT. 

see also HALF, QUARTILE 


