
Domino Problem 

m-l E m 
EQ! E! 

ELi 
Em 

see UZSO FIBONACCI NUMBER, GOMORY'S THEOREM, 
HEXOMINO, PENTOMINO, POLYOMINO, TETROMINO, 

TRIOMINO 
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Domino Problem 

see WANG~S CONJECTURE 

Donaldson Invariants 
Distinguish between smooth MANIFOLDS in 4-D. 

Donkin’s Theorem 
The product of three translations along the directed 
sides of a TRIANGLE through twice the lengths of these 
sides is the identity. 

Donut 

see TORUS 

Doob’s Theorem 
A theorem proved by Doob (1942) which states that any 
random process which is both GAUSSIAN and MARKOV 
has the following forms for its correlation function, spec- 
tral density, and probability densities: 

Cy(7) = ay2e--‘lrr 

4T3T,2 
GY(f) = (242 +TT-2 

Pi(Y) = -!- 
Jay” 

e-CY-&12/2fl,2 

P2(YllY2,7-J = 
I 

J27r(l - e-2r/p+y2 

x exp 
{ 

[(y2 - y) - e-r/rr(yl - y)12 
- 

2(1 - e --2r/r, joy2 
> 

1 
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where g is the MEAN, gy the STANDARD DEVIATION, 
and TV the relaxation time. 

References 
Doob, J. L. “Topics in the Theory of Markov Chains.” Trans. 

Amer. Math. Sot. 52, 37-64, 1942. 

Dot 
The “dot” l  has several meanings in mathematics, in- 
cluding MULTIPLICATION (a l  b is pronounced “a times 
b”), computation of a DOT PRODUCT (a-b is pronounced 
“a dot b”), or computation of a time DERIVATIVE (h is 
pronounced “a dot”). 

see also DERIVATIVE, DOT PRODUCT, TIMES 

Dot Product 
The dot product can be defined by 

X*Y= 1XIIYIcose, (‘1) 

where 0 is the angle between the vectors. It follows 
immediately that X - Y = 0 if X is PERPENDICULAR to 
Y. The dot product is also called the INNER PRODUCT 
and written (n, b). By writing 

A, = ACOSBA l3, = BcosBg (2) 

A, = Asir& By = &in&, (3) 

it follows that (1) yields 

A l  B = AB COS(eA - eB) 

- 
- AB(cos 6~ cos 0~ + sin @A sin 0,) 

= A cm GAB cos 0~ + A sin 8AB sin & 

= A,& + A,B,. (4 

So, in general, 

X*Y =x1y1 +...+x,y,. (5) 

The dot product is COMMUTATIVE 

X*Y=Y.X, (6) 

ASSOCIATIVE 

(TX) - Y = T(X - Y), (7) 

and DISTRIBUTIVE 

x ' (Y + z) =X*Y+X.Z. (8) 

The DERIVATIVE of a dot product of VECTORS is 

~[rl(t)*=2(t)]=Tl(t).~+~*r2(~). (9) 
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The dot product is invariant under rotations 

where EINSTEIN SUMMATION has been used. 

The dot product is also defined for TENSORS A and B 

bY 
A l  l3 = A”B,. (11) 

see UZSO CROSS PRODUCT, INNER PRODUCT, OUTER 
PRODUCT,~EDGE PRODUCT 

References 
A&en, G. “Scalar or Dot Product.” 51.3 in Mathematical 
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Douady’s Rabbit Fkactal 

A JULIA SET with c = -0.123 + 0.745i, also known as 
the DRAGON FRACTAL. 

see also SAN MARCO FRACTAL,%EGEL DISK FRACTAL 

References 
Wagon, S. Mathematics in Action. New York: W. II. F’ree- 

man, p. 176, 1991. 

Double Bubble 
The planar double bubble (three circular arcs meeting 
in two points at equal 120” ANGLES) has the minimum 
PERIMETER for enclosing two equal areas (Foisy 1993, 
Morgan 1995). 

see also APPLE, BUBBLE, DOUBLE BUBBLE CONJEC- 
TURE,~PHERE-SPHERE INTERSECTION 
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Double Bubble Conjecture 
Two partial SPHERES with a separating boundary 
(which is planar for equal volumes) separate two vol- 
umes of air with less AREA than any other boundary. 
The planar case was proved true for equal volumes by 
J. Hass and R. Schlafy in 1995 by reducing the problem 
to a set of 200,260 integrals which they carried out on 
an ordinary PC. 

see also DOUBLE BUBBLE 

References 
Haas, J. and Schlafy, R. “Double Bubbles Minimize.” 

Preprint, 1995. 

Double Contraction Relation 
A TENSOR t is said to satisfy the double contraction 
relation when 

t;*t; = a,,. 

This equation is satisfied by 

where the hat denotes zero trace, symmetric unit TEN- 
SORS. These TENSORS areused todefinethes~~~rt~~~~ 
HARMONIC TENSOR. 

see UZSO SPHERICAL HARMONIC TENSOR,TENSOR 
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Double Cusp 

see DOUBLE POINT 

Double Exponential Distribution 

see FISHER-TIPPETT DISTRIBUTION, LAPLACE DISTRI- 
BUTION 

Double Exponential Integration 
An excellent NUMERICAL INTEGRATION technique used 
by MupZe V Rd@ (Waterloo Maple Inc.) for numerical 
computation of integrals. 

see also INTEGRAL, INTEGRATION, NUMERICAL INTE- 
GRATION 
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10,296-340, 1994. 

Mori, M. Developments in the Double Exponential Formula 
for Numerical Integration. Proceedings of the Interna- 
tional Cungress of Mathematicians, Kyoto 1990. New 
York: Springer-Verlag, pp. 1585-1594, 1991. 



Double Factorial 

Mori, M. and Ooura, T. “Double Exponential Formulas for 
Fourier Type Integrals with a Divergent Integrand.” In 
Contributions in Numerical Mathematics (Ed. R. P. Agar- 
wal) . World Scientific Series in Applicable Analysis, Vol. 2, 
pp. 301-308, 1993. 

Ooura, T. and Mori, M. “The Double Exponential Formula 
for Oscillatory Functions over the Half Infinite Interval.” 
J. Comput. Appl. Math. 38, 353-360, 1991. 

Takahasi, H, and Mori, M. “Double Exponential Formulas 
for Numerical Integration.” Pub. RIMS Kyoto Univ. 9, 
721-741, 1974. 

Toda, H. and Ono, I-I. “Some Remarks for Efficient Usage 
of the Double Exponential Formulas.” Kokyuroku RIMS 
Kyoto Univ. 339, 74-109, 1978. 

Double Factorial 
The double factorial is a generalization of the usual FAC- 

TORIAL n! defined by 

i 

n - (n - 2) . , . 5.3.1 n odd 
n!! = 72' (n - 2)... 6 l  4 l  2 n even (1) 

1 n= -l,o. 

For n = 0, 1, 2, . . . . the first few values are 1, 1, 2, 3, 8, 
15, 48, 105, 384, l  . . (Sloane’s AO06882). 

There are many identities relating double factorials to 
FACTORIALS. Since 

(2n + 1)!!2”n! 

= [(2n + 1)(2n - 1)***1][2n][2(n - 1)][2(n - 2)1*-*2(l) 

=[(2n+1)(2n-I)ed][2n(2n-2)(2n-4)..*2] 

= (2n + 1)(2n)(2n - 1)(2n - 2)(2n - 3)(2n - 4) ‘**2(l) 

= (2n + l)!, (2) 

it follows that (2n + l)!! = w. Since 

(2n)!! = (2n)(2n - 2) (2n - 4) . l  l  2 

= [2(n)][2(n - 1)][2(n - 2)J l  l  l  2 = 2”n!, (3) 

it follows that (h)!! = 2nn!. Since 

(2n - 1)!!2”n! 
- - [(Zn - 1)(2n - 3) .. .1][2n][2(n - 1)][2(n - 2)] l  9 ‘2(l) 

= (2n - l)(Zn - 3). . .1][2n(2n - 2)(2n - 4) l  l  l  21 

= 2n(2n - I)(2 n - 2)(2n - 3)(2n - 4) q q l  2(l) 
- - (2 > n !, 

it follows that 

(2 n- (2 ) n! l)!! = - 
2"n!' 

Similarly, for n = 0, 1, . . . , 

( 1) n 

- (-2n- l)!! = 
(-l)n2"n! 

(2n - I)!! = (2 > n ! ’ 

(4) 

(5) 

(6) 

Double Gamma Fhc tion 

For n ODD, 

n! 
Jj= 

n(n - l)(n - 2) l  l  l  (1) 

n(n - 2)(n - 4) 9 l  l  (1) 
= n- 

( l)( n - 3) l  l  l  (1) = (n - l)!! 

For n EVEN, 

n! n(n - l)(n - 2) l  l  l  (2) -- 
n!! - n(n - 2)(n - 4) q . - (2) 

. = (n - l)(n - 3) 944 (2) = (n - I)!! 

Therefore, for any n, 

n! 

n!! 
= n- ( l)!! 
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(7) 

(8) 

(9) 

(10) n! = n!!(n - I)!!. 

The FACTORIAL may be further generalized to the MUL- 
TIFACTORIAL 

. 

see also FACTORIAL, MULTIFACTORIAL 
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Double Folium 

see BIF~LIUM 

Double-Free Set 
A SET of POSITIVE integers is double-free if, for any 
integer LC, the SET {x, 22) < S (or equivalently, if II: E S 
IMPLIES 22 $ S). Define 

w = max{S : S c { 1,2, . , . , n} is double-free}. 

Then an asymptotic formula is 

44 - $n + 6(lnn) 

(Wang 1989). 

see also TRIPLE-FREE SET 

References 
Finch, S. “Favorite Mathematical Constants.” http: //wwu. 
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Wang, E. T. H. “On Double-Free Sets of Integers.” Ars Com- 

bin. 28, 97-100, 1989. 

Double Gamma Function 

see DIGAMMA FUNCTION 
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Double Point 
A point traced out twice as a closed curve is traversed. 
The maximum number of double points for a nondegen- 
erate QUARTIC CURVE is three. An ORDINARY DOUBLE 
PRINT is called a NODE. 

Arnold (1994) gives pictures of spherical and PLANE 
CURVES with up to five double points, as well as other 
curves* 

see also BIPLANAR DOUBLE POINT, CONIC DOUBLE 
POINT, CRUNODE, CUSP, ELLIPTIC CONE POINT, 
GAUSS’S DOUBLE POINT THEOREM, NODE (ALGE- 
BRAIC CURVE), ORDINARY DOUBLE POINT, QUADRU- 
PLE POINT RATIONAL DOUBLE POINT, SPINODE, TAC- 
NODE, TRIPLE POINT, UNIPLANAR DOUBLE POINT 

References 
Aicardi, F. Appendix to “Plane Curves, Their Invariants, 

Perest roikas, and Classifications .” In Singularities & Bi- 
furcations (V. I. Arnold). Providence, RI: Amer. Math. 
sot l , pp. 80-91, 1994. 

Fischer, G. (Ed.). Mathematical Models from the Collections 
of Universities and Museums. Braunschweig, Germany: 
Vieweg, pp, 12-13, 1986. 

Double Sixes 
Two sextuples of SKEW LICNES on the general CUBIC 
SURFACE such that each line of one is SKEW to one LINE 
in the other set. Discovered by Schkfli. 

see also BOXCARS, CUBIC SURFACE, SOLOMON’S SEAL 
LINES 

References 
Fischer, G. (Ed.). Mathematical Models from the Collections 

of Universities and Museums. Braunschweig, Germany: 
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Double Sum 
A nested sum over two variables. Identities involving 
double sums include the following: 

y>luq,,-, = x y-)k,, = x x G,T-23, (1) 

p=o q=o 

where 

m=O n=O T=o s=o 

is the FLOOR FUNCTION, and 

72 n 

x x (x2> ’ XiXj = ?t2 

i=l j=l 

Consider the sum 

S(a, b, c; s) = x ( am2 + bmn + cn2)-s 

bv4#~W) 

(2) 

(3) 

(4) 

over binary QUADRATIC FORMS. If S can be decom- 
posed into a linear sum of products of DIRICHLET L- 
SERIES, it is said to be solvable. The related sums 

S1 (a, b, c; s) = x (-l)“( am2 + bmn + cn2)-’ 

(md# m) 

(5) 
&(a, b, c; s) = x (-l)“(am2 + bmn + cn2)-’ 

(6) 

+(a, b, c; s) = IE ( 1) - m+n(am2 -f- bmn + cn2)-’ 

(7) 

can also be defined, which gives rise to such impressive 
FORMULAS as 

S1(l,O, 58; 1) = - 
7rln(27 + 5J29) 

m 
l  

(8) 

A complete table of the principal solutions of all solvable 
S(a, b, c; s) is given in Glasser and Zucker (1980, pp. 126- 
131)* 

see also EULER SUM 

References 
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Doublet F’unct ion 

y = 6’(x - a), 

where’d(x) is the DELTA FUNCTION. 

see also DELTA FUNCTION 

References 
von Seggern, D. CRC Standard Cuwes and Surfaces. Boca 

Raton, FL: CRC Press, p. 324, 1993. 

Doubly Even Number 
An even number N for which N E 0 (mod 4). The first 
few POSITIVE doubly even numbers are 4, 8, 12, 16, l  . . 
(Sloane’s AOO8586). 

see also EVEN FUNCTION, ODD NUMBER, SINGLY EVEN 
NUMBER 

References 
Sloane, N. 3. A. Sequence A008586 in CtAn On-Line Version 

of the Encyclopedia of Integer Sequences.” 

Doubly Magic Square 

see BIMACIC SQUARE 
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Dougall-Ramanujan Identity 
Discovered by Ramanujan around 1910. From Hardy 
(1959, pp. 102-103), 

X rI 
x:(n) 

(x + s + 1p 
x,y,=*u 

S - - 
r(s + 1)r(x + y + z + u + s + 1) 

X 
rI 

r(x + s + l)F(y + 2 + u + s + 1) 

r(x + u + s + 1) 
t (1) 

X,'II,Z,U 

where 
&d = - a(u + 1). v l  (a + n - 1) (2) 

a(,) G a(a - 1) . - - (a - n + 1) (3) 

(here, the P~WHAMMER SYMBOL has been written 

@I). This can be rewritten as 

F 7 0 

[ 

s,1+ is,--z - y,-25, -u,x-y++++++s+1 
~s,~+s+1,y+s+l,z+s+l,u+s+l, ;I 

-X-Y-%-U-S 1 * 
X 

X 

1 
= r(S + 1>qx + y + 2 + u + s + 1) 

rI 
r(x + s + i>r(y + z + u + s + 1) 

,t,=,u 
r(z+21+s+i) * (4) 

In a more symmetric form, if 7z = 2ul + 1 = u2 + a3 + 
424 + ~5, a6 = 1 + u1/2, u7 = -n, and bi = 1 + al - ui+l 
for i = 1, 2, . . . , 6, then 

7F6 
%a2,a3,a4,a5&6,a7 

h,b2,b&i,b5$6 
;l 1 

(a+ l>n(m- a2 - u3 3-l), 

(a1 - a2 + l)n(Ul - u3 +1), 

X 
(a1 - a2 - a4 -tl),(Ul - u3 - u4 +l), 

bl - a4 +1)&l - u2 - u3 - u4 +l>,' 
(5) 

where (a), is the P~CHHAMMER SYMBOL (Petkovgek et 
al. 1996) q 

The identity is a special case of JACKSON'S IDENTITY. 

see also DIXON'S THEOREM, DOUGALL? THEO- 

REM, GENERALIZED HYPERGEOMETRIC FUNCTION, 
HYPERGEOMETRIC FUNCTION, JACKSON'S IDENTITY, 
SAALSCH~~TZ'S THEOREM 
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Dougall’s Theorem 

SF4 
[ 

in + l,n, -2, -y, --x 
~n,a:+n+l,y+n+f,z+n.+l = 3 

r(x + n + l)r(y + n + l)r(z + n + qr(x + y + z + n + 1) 
r(n + l)r(x + Y + n. + l)r(y + 2: + n + l)r(x + 2 + n + I) ' 

where &(a,b,c, d,e; f,g, h, i;z) is a GENERALIZED HY- 
PERGEOMETRIC FUNCTION and r(z) is the GAMMA 
FUNCTION. 

see also DOWALL-RAMANUJAN IDENTITY, GENERAL- 
IZED HYPERGEOMETRIC FUNCTION 

Doughnut 

see TORUS 

Douglas-Neumann Theorem 
If the lines joining corresponding points of two directly 
similar figures are divided proportionally, then the LO- 
CUS of the points of the division will be a figure directly 
similar to the given figures. 

References 
Eves, H. “Solution to Problem E521.” Amer. Math. Monthly 
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Musselman, J. R. “Problem E52L” Amer. Math. MonthZy 

49, 335, 1942. 

Dovetailing Problem 

see CUBE DOVETAILING PROBLEM 

Dowker Notation 
A simple way to describe a knot projection. The advan- 
tage of this notation is that it enables a KNOT DIAGRAM 
to be drawn quickly. 

For an oriented ALTERNATING KNOT with n crossings, 
begin at an arbitrary crossing and label it 1. Now fol- 
low the undergoing strand to the next crossing, and de- 
note it 2. Continue around the knot following the same 
strand until each crossing has been numbered twice. 
Each crossing will have one even number and one odd 
number, with the numbers running from 1 to 2n. 

Now write out the ODD NUMBERS 1, 3, . l  . , 2n - 1 in 
a row, and underneath write the even crossing number 
corresponding to each number. The Dowker NOTATION 
is this bottom row of numbers. When the sequence of 
even numbers can be broken into two permutations of 
consecutive sequences (such as {4,6,2} {10,12,8}), the 
knot is composite and is not uniquely determined by the 
Dowker notation. Otherwise, the knot is prime and the 
NOTATION uniquely defines a single knot (for amphichi- 
ral knots) or corresponds to a single knot or its MIRROR 
IMAGE (for chiral knots). 

For general nonalternating knots, the procedure is mod- 
ified slightly by making the sign of the even numbers 
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POSITIVE if the crossing is on the top strand, and NEG- 
ATIVE if it is on the bottom strand. 

These data are available only for knots, but not for links, 
from Berkeley’s gopher site. 

References 
Adams, C. C. The Knot Book: An Elementary Introduction 
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Down Arrow Notation 
An inverse of the up ARROW NOTATION defined by 

eJn=lnn 

e $4 n = In* n 

e J.&J. n = In** n, 

where In’ n is the number of times the NATURAL LOG- 
ARITHM must be iterated to obtain a value < e. - 

see also ARROW NOTATION 

References 
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Dozen 
12. 

see also BAKER'S DOZEN, GROSS 

Dragon Curve 
Nonintersecting curves which can be iterated to yield 
more and more sinuosity. They can be constructed 
by taking a path around a set of dots, representing 
a left turn by 1 and a right turn by 0. The first- 
order curve is then denoted 1. For higher order curves, 
add a 1 to the end, then copy the string of digits 
preceding it to the end but switching its center digit. 
For example, the second-order curve is generated as 
follows: (1)l --+ (1)1(O) -+ 110, and the third as: 
(11O)l -+ (llO)l(lOO) + 1101100. Continuing gives 
110110011100100. l  . (Sloane’s A014577). The OCTAL 
representation sequence is 1, 6, 154, 66344, . . . (Sloane’s 
A003460). The dragon curves of orders 1 to 9 are illus- 
trated below. 

This procedure is equivalent to drawing a RIGHT ANGLE 
and subsequently replacing each RIGHT ANGLE with an- 
other smaller RIGHT ANGLE (Gardner 1978). In fact, 
the dragon curve can be written as a LINDENMAYER 
SYSTEM with initial string IIFXUf, STRING REWRITING 
rules +‘X++ -> “X+YF+“, “Y” -> ‘I-FX-Y”, andangle 90’. 

see also LINDENMAYER SYSTEM,PEANO CURVE 
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Dragon Fkactal 
see DOWADY'S RABBIT FRACTAL 

Draughts 
see CHECKERS 

Drinfeld’s Symmetric Space 
A set of points which do not lie on any of a certain class 
of HYPERPLANES. 

References 
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Droz-Farny Circles 
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Draw a CIRCLE with center H which cuts the lines 0203, 
0301, and 0102 (where Oi are the MIDPOINTS) at PI, 
Q1; P2, Q2; and P3, Q3 respectively, then 

A1PI = A2P2 = A3P3 = A1&; = Az&2 = A3Q3. 

Conversely, if equal CIRCLES are drawn about the VER- 
TICES of a TRIANGLE, they cut the lines joining the MID- 
POINTS of the corresponding sides in six points. These 
points lie on a CIRCLE whose center is the ORTHOCEN- 

TER. If T is the RADIUS of the equal CIRCLES centered 
on the vertices Al, AZ, and A3, and Ro is the RADIUS 

of the CIRCLE about H, then 

RI2 = 4R2 + r2 - +(a~” -t a22 •I az2)m 

/ 
‘- 

/ \ 
\ 
\ 
\ 
I 
I 
I 

/ 
/ / # / 

If the circles equal to the CIRC~MCIRCLE are drawn 
about the VERTICES of a triangle, they cut the lines 
joining midpoints of the adjacent sides in points of a 
CIRCLE R2 with center H and RADIUS 

R2 
2 = 5R2 - $(a” + az2 + ~3~)~ 

It is equivalent to the circle obtained by drawing cir- 
cles with centers at the feet of the altitudes and passing 
through the CIRCUMCENTER. These circles cut the cor- 
responding sides in six points on a circle Rb whose center 
is H. 

Furthermore, the circles about the midpoints of the sides 
and passing though H cut the sides in six points lying 
on another equivalent circle Ry whose center is 0. In 
summary, the second Droz-Farny circle passes through 
12 notable points, two on each of the sides and two on 
each of the lines joining midpoints of the sides. 

References 
Goormaghtigh, R. “Droz-Farny’s Theorem.” Scripta Math. 

18,268-271,195O. 
Johnson, R. A. Modern Geometry: An Elementary lkatise 

on the Geometry of the Triangle and the Circle. Boston, 
MA: Houghton Mifflin, pp. 256-258, 1929. 

Drum 

see ISOSPECTRAL MANIFOLDS 

Du Bois Raymond Constants 

0.6 

I  

2 4 6 8 10 

The constants Cn defined by 

which are difficult to compute numerically. The first few 
are 

Cl z 455 

c2 = 0.1945 

c3 = 0.028254 

c4 = 0.00524054. 

Rather surprisingly, the second Du Bois Raymond con- 
stant is given analytically by 

c2 = $(e2 - 7) = 0.1945280494 l  l  l  
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(Le Lionnais 1983). 

References 
Le Lionnais, F. Les nombres remarquables. Paris: Hermann, 

p. 23, 1983. 
Plouffe, S. “Dubois-Raymond 2nd Constant .” http: // 

lacim.uqam. ca/piDATA/dubois .txt. 

Dual Basis 
Given a C~NTRAVARIANT BASIS {&,...,&}, its dual 
C~VARIANT basis is given by 

where g is the METRIC and 6; is the mixed KRONECKER 
DELTA. In EUCLIDEAN SPACE with an ORTHONORMAL 
BASIS, 

-3 e = zj, 

so the BASIS and its dual are the same. 

Dual Bivector 
A dual BIVECTOR is defined by 

and a self-dual BIVECT~R by 

Dual Graph 
The dual graph G* of a POLYHEDRAL GRAPH G has 
VERTICES each of which corresponds to a face of G and 
each of whose faces corresponds to a VERTEX of G. Two 
nodes in G* are connected by an EDGE if the correspond- 
ing faces in G have a boundary EDGE in common. 

Dual Map 

see PULLBACK MAP 

Dual Polyhedron 
By the DUALITY PRINCIPLE, for every POLYHEDRON, 
there exists another POLYHEDRON in which faces and 
VERTICES occupy complementary locations. This POLY- 
HEDRCIIL' is known as the dual, or RECIPROCAL. The 
dual polyhedron of a PLATONIC SOLID or ARCHIMED- 
EAN SOLID can be drawn by constructing EDGES tangent 
to the RECIPROCATING SPHERE (a.k.a. MIDSPHERE and 
INTERSPHERE) which are PERPENDICULAR to the origi- 
nal EDGES. 

The dual of a general solid can be computed by connect- 
ing the midpoints of the sides surrounding each VER- 
TEX, and constructing the corresponding tangent POLY- 
GON. (The tangent polygon is the polygon which is tan- 
gent to the CIRCUMCIRCLE of the POLYGON produced 
by connecting the MIDPOINT on the sides surrounding 
the given VERTEX.) The process is illustrated below for 
the PLATONIC SOLIDS. The POLYHEDRON COMPOUNDS 

consisting of a POLYHEDRON and its dual are generally 
very attractive, and are also illustrated below for the 
PLATONIC SOLIDS. 

The ARCHIMEDEAN SOLIDS and their duals are illus- 
trated below. 

The following table gives a list of the duals of the PLA- 
TONIC SOLIDS and KEPLER-P• INSOT SOLIDS together 
with the names of the POLYHEDRON-dual COMPOUNDS. 

Polyhedron Dual 

Cs&&r polyhedron 
cube 
cuboctahedron 
dodecahedron 
great dodecahedron 
great icosahedron 
great stellated dodec. 
icosahedron 
octahedron 
small stellated dodec. 
Szilassi polyhedron 
tetrahedron 

Szilassi polyhedron 
octahedron 
rhombic dodecahedron 
icosahedron 
small stellated dodec. 
great stellated dodec. 
great icosahedron 
dodecahedron 
cube 
great dodecahedron 
Cs&&r polyhedron 
tetrahedron 

polyhedron compound 

cube 
dodecahedron 
great dodecahedron 

great icosahedron 

great stellated dodec. 

icosahedron 

octahedron 
small steflated dodec. 

tetrahedron 

cube-octahedron compound 

dodec.-icosahedron compound 

great dodecahedron-small 

stellated dodec. compound 

great icosahedron-great 
stellated dodec. compound 

great icosahedron-great 
stellated dodec. compound 

dodec.-icosahedron compound 

cube-octahedron compound 

great dodec.-small 
stellated dodec. compound 

stella octangula 
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see also DUALITY PRINCIPLE, POLYHEDRON COM- 
POUND,RECIPROCATING SPHERE 

References 
@I W&stein, E. W. “Polyhedron Duals.” http: //www. astro. 

virginia.edu/-eww6n/math/notebooks/Duals*m. 
Wenninger, M. Dual Models. Cambridge, England: Cam- 

bridge University Press, 1983. 

Dual Scalar 
Given a third RANK TENSOR, 

VijI, =det[A B C], 

where det is the DETERMINANT, the dual scalar is de- 
fined as 

V G ‘EijkVijk, 
3! 

where Eijk is the LEVI-CIVITA TENSOR. 

see UZSO DUAL TENSOR, LEVI-CIVITA TENSOR 

Dual Solid 

GRADUAL POLYHEDRON 

Dual Tensor 
Given an antisymmetric second RANK TENSOR Cij, a 
dual pseudotensor Ci is defined by 

c23 

ci = c31 [ 1 Cl2 

r 0 

Duality Principle 
All the propositions in PROJECTIVE GEOMETRY occur 
in dual pairs which have the property that, starting from 
either proposition of a pair, the other can be immedi- 
ately inferred by interchanging the parts played by the 
words “point” and “line.” A similar duality exists for 
RECIPROCATION (Casey 1893). 

see also BRIANCHON'S THEOREM, CONSERVATION OF 
NUMBER PRINCIPLE, DESARGUES' THEOREM, DUAL 
POLYHEDRON, PAPPUS'S HEXAGON THEOREM, PAS- 
CAL’S THEOREM, PERMANENCE OF MATHEMATICAL 
RELATIONS PRINCIPLE, PROJECTIVE GEOMETRY, RE- 
CIPROCATION 

References 
Casey, 3. “Theory of Duality and Reciprocal Polars.” Ch. 13 

in A Treatise on the Analytical Geometry of the Point, 
Line, Circle, and Conic Sections, Containing an Account 
of Its Most Recent Extensions, with Numerous Examples, 
2nd ed., rev. enl. Dublin: Hodges, Figgis, & Co., pp* 382- 
392, 1893. 

Ogilvy, C. S. Excursions in Geometry. New York: Dover, 
pp. 107-110, 1990. 

Duality Theorem 
Dual pairs of LINEAR PROGRAMS are in “strong duality” 
if both are possible. The theorem was first conceived by 
John von Neumann. The first written proof was an Air 
Force report by George Dantzig, but credit is usually 
given to Tucker, Kuhn, and Gale. 

see also LINEAR PROGRAMMING 

O 

-c23 

(3) 

Duffing Differential Equation 
The most general forced form of the Duffing equation is 

(2) 
2 + &i! + (@c” do wo2x) = Asin(wt + 4). (1) 

If there is no forcing, the right side vanishes, leaving 

2 + sib + @x3 It wo”x) = 0. (2) 
see also DUAL SCALAR 

References 
Arfken, G. “Pseudotensors, Dual Tensors.” $3.4 in Mathe- 

matical Methods for Physicists, 3rd ed. Orlando, FL: Aca- 
demic Press, pp. 128-137, 1985. 

Dual Voting 
A term in SOCIAL CHOICE THEORY meaning each alter- 
native receives equal weight for a single vote. 

see also ANONYMOUS, MONOTONIC VOTING 

If S = 0 and we take the plus sign, 

2 + wo2x + px3 = 0. (3) 

This equation can display chaotic behavior. For p > 0, 
the equation represents a “hard spring,” and for p < 0, 
it represents a “soft spring.” If p < 0, the phase portrait 
curves are closed. Returning to (I), take fl = 1, wg = 1, 
A = 0, and use the minus sign. Then the equation is 

ii + 62 + (x3 - x) = 0 (4) 

(Ott 1993, p. 3). Th is can be written as a system of 
first-order ordinary differential equations by writing 

2 = y, (5) 
+ x - x3 - dy. (6) 
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The fixed points of these differential 

c?=y=o, 

so Y = 0, and 

Equation Duodecillion 

equations d -(is” - 
dt 

ix2 + $x4) = 0, 

so we have an invariant of motion h, 

h E +k2 _ tx2 + ix4, 

Solving for k2 gives 

(21) 

(22) 

+x-x3 - 6y = x(1 - x2) - 0 

giving ~1: = 0, &l. Differentiating, 

~=y=x-x3--y 

y = (1 - 3x2)? - sjl 

55 [I [ 0 1 k 

;ii = l-3x2 -4 I[ 1 G l  

(7) 

(8) 

(9) 
(10) 

(11) 

Examine the stability of the point (0,O): 

o-x 1 

1 -6 - x 
= X(X+6) - 1 = X2+X6-1 = 0 (12) 

But d2 > 0, so X!o”’ - is real. Since Jm > ISI, there 
will always be one POSITIVE ROOT, so this fixed point 
is unstable. Now look at (fl, 0). 

O-A 1 

-2 
-smx =X(X+6)+2=x”+xs+2 = 0 (14) 

$-o) - 
q-s i J62-8). f -2 (15) 

For 6 > 0, !RIXyl’O)] < 0, so the point is asymptoti- 

cally stable. If S = 0, X!f”” = *ifi, so the point is 

linearly stable. If 6 e (-2&, 0), the radical gives an 
IMAGINARY PART and the REAL PART is > 0, so the 
point is unstable. If 6 = -2JZ, @‘O’ = a, which 
has a POSITIVE REAL ROOT, so the point is unstable. 
If 6 < -21/z, then 161 < dm, so both ROOTS are 
POSITIVE and the point is unstable. Summarizing, 

{ 

asymptotically stable s>o 
linearly stable (superstable) S = 0 (16) 
unstable s < 0. 

Now specialize to the case 6 = 0, which can be integrated 
by quadratures. In this case, the equations become 

5’Y (17) 
g= x-x3. (18) 

Differentiating (17) and plugging in (18) gives 

~=Ij=x-x3. (19) 

Multiplying both sides by 2 gives 

5% - 2x + 5x3 = 0 (20) 

02 dx 2 
x= - 

( > dt 
= 2h+x2 - ix4 

g+m: 

(23) 

(24) 

so 

t= dt- 
s SJ 

dx 

2h +x2 + $x2 l  

(25) 

Note that the invariant of motion h satisfies 

dh dh k=,--=- 
dk ay 

(26) 

dh -- 
ax - 

-x+x3 =-G, (27) 

so the equations of the Duffing oscillator are given by 
the HAMILTONIAN SYSTEM 

{ 

$=g 
8h 

Q=-B;F’ 
(28) 

References 
Ott, E. Chaos in. Dynamical Systems. New York: Cambridge 

University Press, 1993. 

Duhamel’s Convolution Principle 
Canbe usedtoinvert a LAPLACE TRANSFORM. 

Dumbbell Curve 

see also BUTTERFLY CURVE, EIGHT CURVE, PIRIFORM 

References 
Cundy, I-L and Rollett, A. Mathematical Models, 3rd ed. 

Stradbroke, England: Tarquin Pub., p. 72, 1989. 

Duodecillion 
In the American system, 103’. 

see also LARGE NUMBER 
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Diirer’s Conchoid Dupin’s Cyclide 

see CYCLIDE 

Dupin’s Indicatrix 
A pair of tonics obtained by expanding an equation in 
MONGE’S FORM z = F(z, y) in a MACLAURIN SERIES 

z = x(0,0)+ XIII: +zzy 

+ &IX2 +2x12xy+Z22y2)+*.. 

-- - ;(bllx2 + 2b12xy + b22y2). 

This gives the equation 

b11x2 + 2b12xy + b2zy2 = &I. 

Amazingly, the radius of the indicatrix in any direction 
is equal to the SQUARE ROOT of the RADIUS OF CUR- 
VATURE in that direction (Coxeter 1969). 

References 
Coxeter, H. S. M. “Dupin’s Indicatrix” $19.8 in Introduction. 

to Geometry, 2nd ed. New York: Wiley, pp. 363-365,1969. 

Dupin’s Theorem 
In three mutually orthogonal systems of the surfaces, the 
LINES OF CURVATURE on any surface -in one of the sys- 
tems are its intersections with the surfaces of the other 
two systems. 

Duplication of the Cube 

see CUBE DUPLICATION 

Duplication Formula 

see LEGENDRE DUPLICATION FORMULA 

Durand’s Rule 
The NEWTON-C• TES FORMULA 

s 

=?I 

f (4 dx 
Xl 

= h($ fi + E f2 + f3 + l  l  ’ + fn-2 + g)f?x-1 + $fn>* 

see also BODE'S RULE, HARDY'S RULE, NEWTON- 
COTES FORMULAS, SIMPSON'S 3/8 RULE, SIMPSON’S 
RULE,TRAPEZOIDAL RULE,~EDDLE'S RULE 

References 
Beyer, W. H. (Ed.) CRC Standard Mathematical Tables, 

28th ed. Boca Raton, FL: CRC Press, p. 127, 1987. 

These curves appear in Diirer’s work Instruction in Mea- 
surement with Compasses and Straight Edge (1525) and 
arose in investigations of perspective. Diirer constructed 
the curve by drawing lines QRP and P’QR of length 16 
units through Q(q, 0) and R(T, 0), where q+~ = 13. The 
locus of P and P’ is the curve, although Diirer found 
only one of the two branches of the curve. 

The ENVELOPE of the lines QRP and P'QR is a 
PARABOLA, and the curve is therefore a GLISSETTE of 
a point on a line segment sliding between a PARABOLA 
and one ofits TANGENTS. 

Diirer called the curve “Muschellini,” which means CON- 
CHOID. However, it is not a true CONCHOID and so is 
sometimes called D~~RER'S SHELL CURVE. The Carte- 
sian equation is 

2y2(22 + y2) - 2by2(x + y) + (b2 - 3a2)y2 - a2x2 

+ 2a2b(x + y) + a2(a2 - b2) = 0. 

The above curves are for (a$) = (3, l), (3,3), (3,5). 
There are a number of interesting special cases. If b = 0, 
the curve becomes two coincident straight lines x = 0. 
For a = 0, the curve becomes the line pair x = b/2, 
x= -b/2, together with the CIRCLE x + y = b. If 
a = b/2, the curve has a CUSP at (-2a,a). 

Heferences 
Lawrence, J. D. A Catalog of Special Plane Curves. New 

York: Dover, pp. 157459, 1972. 
Lockwood, E. H. A Book of Curves. Cambridge, England: 

Cambridge University Press, p. 163, 1967. 
MacTutor History of Mathematics Archive. “Diirer’s Shell 

Curves.” http://uuu-groups . dcs.st-and.ac .uk/ 
-history/Curves/Durers.html. 

Diirer’s Magic Square 

Diirer’s magic square is a MAGIC SQUARE with MAGIC 
CONSTANT 34 used in an engraving entitled lMeZencoZia 
I by Albrecht Diirer (The British Museum). The en- 
graving shows a disorganized jumble of scientific equip- 
ment lying unused while an intellectual sits absorbed in 
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thought. Diirer’s magic square is located in the upper 
left-hand corner of the engraving. The numbers 15 and 
14 appear in the middle of the bottom row, indicating 
the date of the engraving, 1514. 

Dyadic 
A linear POLYNOMIAL of DYADS AB + CD + . . . con- 
sisting of nine components Aij which transform as 

References 
Bayer, C. D. and Merzbach, U. C. A History of Mathematics. 

New York: Wiley, pp. 296-297, 1991. 
Hunter, J. A. H. and Madachy, J. S. Mathematical Diver- 

sions. New York: Dover, p. 24, 1975. 
Rivera, C. ‘LMelancholia.” http://www.sci.net.mx/ 

-crivera/melancholia. htm. 

Diirer’s Shell Curve 

(Aij)’ = x s%sAmn 
i m,n i j j 

- - 
E 

h;h; ax; ax; A ~-- 
hmh, aXm dXn mn 

m,n 

- --- - 
x 

h;hn ax; dx, A 

m,n 
hmhg dxm a~[, mn’ 

(1) 

(2) 

(3) 

SE D~~RER'S CONCHOID 
Dyadics are often represented by Gothic capital letters. 
The use of dyadics is nearly archaic since TENSORS per- 
form the same function but are notationally simpler. 

Durfee Polynomial 
Let F(n) be a family of PARTITIONS of n and let F(n, d) 
denote the set of PARTITIONS in F(n) with DURFEE 
SQUARE of size d. The Durfee polynomial of F(n) is 
then defined as the polynomial 

A unit dyadic is also called the IDEMFACTOR and is de- 
fined such that 

LA,A. (4) 

%n = x IF(n,d)IYd, 
In CARTESIAN COORDINATES, 

see also DURFEE SQUARE, PARTITION 
andin SPHERICAL COORDINATES 

References 
Canfield, E. R.; Corteel, S.; and Savage, C. D. “Durfee Poly- 

nomials." Electronic J. Combinatorics 5, No. 1, R32, 
I = Vr. (6) 

l-21, 1998. http://www.combinatorics.org/Voluma6/ 
v5iltoc .html#R32. see also DYAD, TETRADIC 

Durfee Square 
The length of the largest-sized SQUARE contained within 
the FERRERS DIAGRAM of a PARTITION. 

References 
Arfken, G. “Dyadics.” 53.5 in Mathematical Methods for 

Physicists, 3rd ed. Orlando, FL: Academic Press, pp. 137- 
140, 1985. 

see also DURFEE POLYNOMIAL,' FERRERS DIAGRAM, 
PARTITION 

Morse, P. M. and Feshbach, H. “Dyadics and Other Vector 
Operators.” 51.6 in Methods of Theoretical Physics, Part 
1. New York: McGraw-Hill, ppm 54-92,1953. 

Dvoretzky’s Theorem 
Each centered convex body of sufficiently high dimen- Dyck’s Theorem 

sion has an “almost spherical” k-dimensional central sec- seeing DYCK'S THEOREM 

tion. 

Dyad 
Dyads extend VECTORS to provide an alternative de- 
scription to second RANK TENSORS. A dyad D(A,B) 
of a pair of VECTORS A and B is defined by D(A, B) E 
AB. The DOT PRODUCT is defined by 

Dye’s Theorem 
For any two ergodic measure-preserving transformations 
on nonatomic PROBABILITY SPACES, there is an ISO- 
MORPHISM betweenthetwo PROBABILITY SPACES car- 
rying orbits onto orbits. 

A 9 BC E (A l  B)C 
Dymaxion 
Buckminster Fuller’s term for the CUBOCTAHEDRON. 

AB l  C E A(B l  C), 

andthe COLON PRODUCT by 

AB : CD E C - AB - D = (A - C)(B m D). 

see also CUBOCTAHEDRON,MECON 

Rererences 
Morse, P. M. and Feshbach, H. “Dyadics and Other Vector 

Operators.” $1.6 in Methods of Theoretical Physics, Part 
I. New York: McGraw-Hill, pp. 54-92, 1953* 
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Dynamical System 
A means of describing how one state develops into an- 
other state over the course of time. Technically, a dy- 
namical system is a smooth action of the reals or the IN- 
TEGERS on another object (usually a MANIFOLD). When 
the reals are acting, the system is called a continuous 
dynamical system, and when the INTEGERS are acting, 
the system is called a discrete dynamical system. If f 
is any CONTINUOUS FUNCTION, then the evolution of a 
variable II: can be given by the formula 

Xn+l = f (Xn)* (1) 

This equation can also be viewed as a difference equation 

x,+1 - xn = f(G) - G-L, (2) 

so defining 

g(x) = f (4 - x (3) 

gives 
X72+1-Xn = g(GJ * 1, (4) 

which can be read “as 72 changes by 1 unit, x changes by 
g(z).” This is the discrete analog of the DIFFERENTIAL 
EQUATION 

xw = dx(n>>- (5) 

see &O ANOSOV DIFFEOMORPHISM, ANOSOV FLOW, 
AXIOM A DIFFEOMORPHISM, AXIOM A FLOW,BIFUR- 
CATION THEORY, CHAOS, ERGODIC THEORY, GEO- 

DESIC FLOW 

References 
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Golubitsky, M, Introduction to Applied Nonlinear Dynamical 
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Dynamical Systems, and Bifurcations of Vector Fields, 3rd 
ed. New York: Springer-Verlag, 1997. 

Lichtenberg, A. and Lieberman, R/I. Regular and Stochastic 
Motion, 2nd ed. New York: Springer-Verlag, 1994. 

Ott, E. Chaos in Dynamical Systems. New York: Cambridge 
University Press, 1993. 

Rasband, S. N. Chaotic Dynamics of Nonlinear Systems. 
New York: Wiley, 1990. 

Strogatz, S. H. Nonlinear Dynamics and Chaos, with Appli- 
cations to Physics, Biology, Chemistry, and Engineering. 
1994. 

Tabor, M. Chaos and Integrability in Nonlinear Dynamics: 
An Introduction. New York: Wiley, 1989. 

Dynkin Diagram 
A diagram used to describe CHEVALLEY GROUPS. 

see also COXETER-DYNKIN DIAGRAM 

References 
Jacobson, N. Lie Algebras. New York: Dover, p. 128, 1979* 
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E 
e 

The base of the NATURAL LOGARITHM, named in honor 
of Euler. Tt appears in many mathematical contexts 
involving LIMITS and DERIVATIVES, and can be defined 

bY 

(1) 

or by the infinite sum 

k=O 

(2) 

The numerical value of e is 

e= 2.718281828459045235360287471352662497757... 

(3) 
(Sloane’s AOOlll3). 

Euler proved that e is IRRATIONAL, and Liouville proved 
in 1844 that e does not satisfy any QUADRATIC EQUA- 
TION with integral COEFFICIENTS. Hermite proved e to 
be TRANSCENDENTAL in 1873. It is not known if 7r + e 
or x/e is IRRATIONAL. However, it is known that x + e 
and r/e do not satisfy any POLYNOMIAL equation of de- 
gree _< 8 with INTEGER COEFFICIENTS of average size 
10’ (Bailey 1988, Borwein et al. 1989). 

The special case of the EULER FORMULA 

iX 
e = cosx+isinz (4) 

with EI: = r gives the beautiful identity 

eiT + 1 = 0, (5) 

an equation connecting the fundamental numbers i, PI, 
e, &and 0 (ZERO). 

Some CONTINUED FRACTION representations of e in- 
clude 

e=2+ 
1 

1 
1+ Aq 

2-t: 
3 

3+- 

=[2,1,2,1,1,4,1,1,6 ,... ] (7) 

(Sloane’s A003417) and 

e-l 
e+l = [2,6,10,14,. . l ] 
e- 1 = [1,1,2,1,1,4,1,1,6 ,... ] 

$(e-1)=[0,1,6,10,14 ,... ] 

Je = [I, 1, 1, 1,5,&l, 1,9,1, l  l  *I* 

(6) 

The first few convergents of the CONTINUED FRAC- 
TION are 3, 8/3, U/4, 19/7, 87/32, 106/39, 193/71, . . l  

(Sloane’s A007676 and A007677). 

Using the RECURRENCE RELATION 

G& = n(un--1 + 1) (12) 

with ar = a-“, compute 

00 

rI( 
1 + an-l). (13) 

n=l 

The result is e’? Gosper gives the unusual equation 
connecting 7r and e, 

O” 1 z ( 9 

7 cos n7r+&ZF3 > 

- -- - 
- -0.040948222 l  l  . . 

12e3 - 
(14) 

Rabinowitz and Wagon (1995) give an ALGORITHM for 
computing digits of e based on earlier DIGITS, but a 
much simpler SPIGOT ALGORITHM was found by Sales 
(1968). Around 1966, MIT hacker Eric Jensen wrote 
a very concise program (requiring less than a page of 
assembly language) that computed e by converting from 
factorial base to decimal. 

Let p(n) be the probability that a random ONE-TO-ONE 
function on the INTEGERS 1, . . . , n has at least one 
FIXED POINT. Then 

lim p(n) = T k!$Y = 1 - 1 = 0.6321205588 l  a. . 
n+m . e 

k=l 

STIRLING'S FORMULA gives 
(15) 

(n!>ljn 1 
lim - - - 

n+m n -e’ (16) 

Castellanos (1988) gives several curious approximations 
to e, 

z2+ 
542 + 412 

e 
802 (17) 

e (7T” + 7r5y (18) 
sr: 271801 

99990 (19) 

(20) 

~ 4 _ 300” - loo4 - 12912 + g2 

915 (21) 

555 + 3113 1’7 - 113 
685 

> 
9 (22) 
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which are good to 6, 7, 9, 10, 12, and 15 digits respec- 
t ively. 

Examples of e MNEMONICS (Gardner 1959, 1991) in- 
clude: 

“By omnibus I traveled to Brooklyn” (6 digits). 

“To disrupt a playroom is commonly a practice of 
children” (10 digits). 

“It enables a numsk 
numerals” ( 10 digits) 

ull to m .emor ,ize a quantity of 

“I’m forming a mnemonic to remember a function in 
analysis” (10 digits). 

“He repeats: I shouldn’t be tippling, I shouldn’t be 
toppling here!” (11 digits). 

“In showing a painting to probably a critical or ven- 
omous lady, anger dominates. 0 take guard, or she 
raves and shouts” (21 digits). Here, the word “0” 
stands for the number 0. 

A much more extensive mnemonic giving 40 digits is 

“We present a mnemonic to memorize a constant 
so exciting that Euler exclaimed: ‘!’ when first it 
was found, yes, loudly ‘!‘. My students perhaps will 
compute e, use power or Taylor series, an easy sum- 
mation formula, obvious, clear, elegant!” 

(Bare1 1995). In the latter, OS are represented with “!“. 
A list of e mnemonics in several languages is maintained 
by A. P. Hatzipolakis. 

Scanning the decimal expansion of e until all n-digit 
numbers have occurred, the last appearing is 6, 12, 548, 
1769, 92994, 513311,. . . (Sloane’s A03251 1). These end 
at positions 21, 372, 8092, 102128, 1061613, 12108841, 

see also CARLEMAN’S INEQUALITY, COMPOUND INTER- 
EST,DE MOIVRE'S IDENTITY, EULER FORMULA, EXPO- 
NENTIAL FUNCTION, HERMITE-LINDEMANN THEOREM, 
NATURAL LOGARITHM 
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e-Divisor 
dis called an e-divisor (or EXPONENTIAL DIVISOR) of 

n= p la lpza2 l  l  l  p,“’ 

if din and 
d = pl blp2b2 . . . pTbr 

where bjlaj with 1 5 j 5 T. 

see &o e-PERFECT NUMBER 
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E,-F’unction 
The En@) function is defined by the integral 

En(x) E - s O” eDxt dt 

1 tn (1) 

and is given by the Mathematics@ (Wolfram Research, 
Champaign, IL) function ExpIntegralE [n, xl. Defining 

t E 7-j-l so that dt = -qw2dv, 

s 

1 

J&(x) = t~-~‘~rj-~ dq 
0 

En(O) = 1 
n- 1’ 

(2) 

(3) 

The function satisfies the RECURRENCE RELATIONS 

E:(x) = - En-l(x) (4) 

n%+l(x) = eBx -X&&T). (5) 
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Equation (4) can be derived from 

En(x) = g & (6) 

s O” 6” -- - 
1 

tt” dt 

-- - $ dt = -En-~(x), (7 

and (5) using integrating by parts, letting 

(8 

du=--&dt 
-tx 

v-y 
X 

(9) 

En(x) = 
s 

udv=uv- 
s 

vdu 

e-tX n O" e-tX dx 

----- - 

s xt" x l 

= x En(x) = eBx - nEn+l(x). (10 

Solving (10) for n En(X) gives (5). An asymptotic ex- 
pansion gives 

( n - I)! En(x) 

=(-x)nW1El(x)+e”~-2(7L-~-2)!(-x)s, (11) 
s=o 

so 

-X 

En(x) = e 1- ’ + - 
nb + 1) + 

l  ** ’  X X x2  1 (12) 
The special case n = 1 gives 

O” 
El(x) = - ei (-2) = s eBtx dt O” eBu du 

- = 
1 t s u ’ (13) X 

where ei(x) is the EXPONENTIAL INTEGRAL, which is 
also equal to 

El(x) = -y-lnx- 2, O” ( 1) 
Ix n!n (14 

where y is the EULER-MASCHERONI CONSTANT. 

El(O) = 00 (15) 

E&x) = - ci(x) + isi( (16) 

where ci(x) and si(x) are the COSINE INTEGRAL and 
SINE INTEGRAL. 

see also COSINE INTEGRAL, &-FUNCTION, EXPONEN- 
TIAL INTEGRAL, GOMPERTZ CONSTANT, SINE INTE- 
GRAL 
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Et-Function 
A function which arises in FRACTIONAL CALCULUS. 

1 

s 

t 
Et@, a) = 

at U-l 
-e 
r( > 

x e 
Y 

-ax dx = tYeaty(z+ at), 
0 

(1) 
where y is the incomplete GAMMA FUNCTION and I? the 
complete GAMMA FUNCTION. The Et function satisfies 
the RECURRENCE RELATION 

Et (4 a> t” 
= aE& + 1,a) + ~ 

qv + 1)’ 
(2) 

A special value is 

Et(O,a) = eat. (3) 

see UZSO En-FUNCTION 
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e-Multiperfect Number 
A number n is called a k e-perfect number if u,(n) = kn, 
where oe(n) is the SUM of the e-DIVISORS of n. 

see U~SO e-DIVISOR, e-PERFECT NUMBER 
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e-Perfect Number Eban Number 

A number 72 is called an e-perfect number if oe (n) = 2n, 
where a&) is the SUM of the e-DIVISORS of n. If m 
is SQUAREFREE, then a,(m) = VX. As a result, if n is 
e-perfect and vz is SQUAREFREE with 772 1 b, then mn 
is e-perfect. There are no ODD e-perfect numbers. 

see also e-DIVISOR 

The sequence of numbers whose names (in English) do 
not contain the letter “e” (i.e., “e” is “banned”). The 
first few eban numbers are 2, 4, 6, 30, 32, 34, 36, 40, 42, 
44, 46, 50, 52, 54, 56, 60, 62, 64, 66, 2000, 2002, 2004, 
l  l  . (Sloane’s A006933); i.e., two, four, six, thirty, etc. 

References 
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Ear 
A PRINCIPAL VERTEX xi of a SIMPLE POLYGON P is 
called an ear if the diagonal [xi-l, xi+l] that bridges xi 
lies entirely in P. Two ears x:i and x:j are said to overlap 
if 

int[xi-1, xi, xi+11 fl int[xj-+ xj, xj+l] = 0. 

The TWO-EARS THEOREM states that, except for TRI- 
ANGLES, every SIMPLE POLYGON has at least two 
nonoverlapping ears. 

see UZSO ANTHROPOMORPHIC POLYGON, MOUTH, Two- 
EARS THEOREM 
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Early Elect ion Results 
Let Jones and Smith be the only two contestants in an 
election that will end in a deadlock when all votes for 
Jones (J) and Smith (S) are counted. What is the EX- 

PECTATION VALUE of & c IS - JI after k votes are 
counted? The solution is 

(X > 2N(;;;> (Lky2;:1) 
k = 2N 

( > 

w&-k;(;2)~ (2k”)-1 for k even 
- - 

k(2N-k+l) 
2N (&--J,2)2 (3 -I for k odd* 
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Eberhart’s Conjecture 
If qn is the nth prime such that I&, is a MERSENNE 
PRIME, then 

qn N (3/2)n* 

It was modified by Wagstaff (1983) to yield 

qn N (2e-y)n, 

where y is the EULER-MASCHERONI CONSTANT. 
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Eccentric 
Not CONCENTRIC. 

see also CONCENTRIC, CoNcYCLIC 

Eccentric Angle 
The angle 8 measured from the CENTER of an ELLIPSE 
to a point on the ELLIPSE. 

see UZSO ECCENTRICITY, ELLIPSE 

Eccentric Anomaly 

The ANGLE obtained by drawing the AUXILIARY CIR- 
CLE of an ELLIPSE with center 0 and FOCUS F, and 
drawing a LINE PERPENDICULAR to the SEMIMAJOR 
AXIS and intersecting it at A. The ANGLE E is then 
defined as illustrated above. Then for an ELLIPSE with 
ECCENTRICITY e, 

AF=OF-AO=ae-acosE. (1) 

But the distance AF is also given in terms of the dis- 
tance from the FOCUS T = FP and the SUPPLEMENT of 
the ANGLE from the SEMIMAJOR AXIS ‘u by 

AF = rcos(n - v)= -rcosv. (2) 
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e 1 Curve I Equating these two expressions gives 
circle 
ellipse 
parabola 
hyperbola 

r= 
a(cos E - e) 

1 (3) cos v 

which can be solved for cos v to obtain 
see UZSO CIRCLE, CoNIC SECTION, ECCEN- 
TRIC ANOMALY, ELLIPSE, FLATTENING, HYPERBOLA, 
OBLATENESS, PARABOLA, SEMIMAJOR AXIS, SEMIMI- 
NOR AXIS 

cosv = 
a(cos E - e) 

. (4 r 

To get E in terms of r, plug (4) into the equation of the 

Eccentricity (Graph) 
The length of the longest shortest path from a VERTEX 
ina GRAPH. 

ELLIPSE 

r= 
a(1 - e2) 

1+ ecosv 

~(l+ ecosv) = a(1 - e”) 

(5) 

(6) see ~2~0 DIAMETER (GRAPH) 

r 1+--- 
( 

ae cos E e2 

> 
=T+aecosE-e2=a( 

r r 
1 - e”) Echidnahedron 

r=a(l-e2)-eacosE+e2a=a(l-ecosE 

Differentiating gives 

+ = ael? sin E. (9) 
ICOSAHEDRON STELLATION #4. 

The eccentric anomaly is a very useful concept in or- 
bital mechanics, where it is related to the so-called mean 
anomaly M by KEPLER'S EQUATION 
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M = E - esinE. (10) Eckardt Point 
On the CLEBSCH DIAGONAL CUBIC, all 27 of the com- 
plex lines present on a general smooth CUBIC SURFACE 
are real. In addition, there are 10 points on the surface 
where three of the 27 lines meet. These points are called 
Eckardt points (Fischer 1986). 

see also CLEBSCH DIAGONAL CUBIC, CUBIC SURFACE 

M can also be interpreted as the AREA of the shaded 
region in the above figure (Finch). 

see also ECCENTRICITY, ELLIPSE, KEPLER'S EQUATION 
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Eccentricity 
A quantity defined for a CONIC SECTION which can be 
given in terms of SEMIMAJOR and SEMIMINOR AXES for 
an ELLIPSE. For an ELLIPSE with SEMIMAJOR AXIS a 
and SEMIMINOR AXIS b, 

Eckert IV Projection 

J 
b2 

e- l--. 
a2 

The eccentricity can be interpreted as the fraction of the 
distance to the semimajor axis at which the FOCUS lies, The equations are 

e=C 
a’ 

2 

x=&@G) 
(A - X0)(1 + cd) (1) 

where c is the distance from the center of the CONIC 
SECTION to the Focus. The table below gives the type 
of CONIC SECTION corresponding to various ranges of 
eccentricity e. 

Y = 2 
/ 

---k3inO, 
4+r 

(2) 
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where B is the solution to 

0 + sin 0 cos 8 + 2 sin 0 = (2 + $7~) sin q5. (3) 

This can be solved iteratively using NEWTON’S METHOD 
with 00 = 4/2 to obtain 

ne = - 
8+sinOcos8+2sinO-(2- +)sin4 

2cos8(1+ COSO) 
l  

(4) 

The inverse FORMULAS are 

$ = sin 
-1 O+sinBcos8+2sin8 

( 2+ $r > 
(5) 

rd4+7Tx 
x = xo + 1+ cos I9 ’ (6) 

where 

(7) 
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Eckert VI Projection 

The equa tions are 

X= 
(A - X0)(1 + COSO) 

dm 
28 

y= d2TT’ 

where 8 is the solution to 

(1) 

(2) 

O+sinO= (l+ +)sin+. (3) 

This can be solved iteratively using NEWTON'S METHOD 
with 00 = 4 to obtain 

ne = - 
8+sin& (l+ &)sin+ 

1 + cos 0 * 

The inverse FORMULAS are 

Economized Rat ional Approximation 
A PADI? APPROXIMATION perturbedwitha CHEIIYSHEV 
POLYNOMIAL OF THE FIRST KIND toreducetheleading 
COEFFICIENT in the ERROR. 

Eddington Number 

136 . 2256 sz: 1.575 x 107g. 

According to Eddington, the exact number of protons 
in the universe, where 136 was the RECIPROCAL of the 
fine structure constant as best as it could be measured 
in his time. 

see &O LARGE NUMBER 

Edge-Coloring 
An edge-coloring of a GRAPH G is a coloring of the 
edges of G such that adjacent edges (or the edges bound- 
ing different regions) receive different colors. BRELAZ'S 
HEURISTIC ALGORITHM can be used to find a good, but 
not necessarily minimal, edge-coloring. 

see also BRELAZ’S HEURISTIC ALGORITHM, CHRO- 

MATIC NUMBER, ~-COLORING 
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Edge Connectivity 
The minimum number of EDGES whose deletion from a 
GRAPH disconnects it. 

see also VERTEX CONNECTIVITY 

Edge (Graph) 
For an undirected GRAPH, an unordered pair of nodes 
which specify the line connecting them. For a DIRECTED 
GRAPH, the edge is an ordered pair of nodes. 

see also EDGE NUMBER, NULL GRAPH, TAIT COLOR- 

ING, TAIT CYCLE,~ERTEX (GRAPH) 

Edge Number 
The number of EDGES in a GRAPH, denoted [ISI. 

see also EDGE (GRAPH) 

4 
-1 O+sinB 

= sin - 
( > l+ $7r 

(5) 

x=x0+=, (6) 

(4) 
Edge (Polygon) 

vertex 

where 
e- +a?&. (7) 

References 
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A LINE SEGMENT on the boundary of a FACE, also called 
a SIDE. 

see UZSO EDGE (POLYHEDRON), VERTEX (POLYGON) 
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Edge (Polyhedron) 

A LINE SEGMENT where two FACES of a POLYHEDRON 

meet, also called a SIDE. 

see also EDGE (POLYGON), VERTEX (POLYHEDRON) 

Edge (Polytope) 
A 1-D LINE SEGMENT where two 2-D FACES of an n-D 
POLYTOPE meet, also called a SIDE. 

see UZS~ EDGE (POLYGON), EDGE (POLYHEDRON) 

Edgeworth Series 
Approximate a distribution in terms of a NORMAL DIS- 
TRIBUTION. Let 

w> 1 
= -G/2 
- -e 

6 
1 

7T 

then 

f(t) - +(t> + LwP(3)(t) - 
3! 

+ lp4’(t) + +yt) + . * l  l  

[ 

. . 1 
see UZSO CORNISH-FISHER ASYMPTOTIC EXPANSION, 
GRAM-CHARLIER SERIES 
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Edmonds’ Map 
A nonreflexible regular map of GENUS 7 with eight VER- 
TICES, 28 EDGES, and eight HEPTAGONAL faces. 

Efron’s Dice 
A B C D 

4 
rrFh 

4 4 0 0 

4 

3 

+ 

3 3 3 3 

3 

2 

+ 

6 6 2 2 

2 

1 

+ 

5 5 1 5 

1 

12 e 4 4 4 4 

12 

A set of four nontransitive DICE such that the proba- 
bilities of A winning against B, I3 against C, C against 
D, and D against A are all 2:l. A set in which ties may 
occur, in which case the DICE are rolled again, which 
gives ODDS of 11:6 is 

1 
a-i7 

10 2 9 3 

11 

5 
+b 

6 7 5 7 

6 

see dso DICE, SICHERMAN DICE 
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An OVAL with one end more pointed than the other. 

see also ELLIPSE, Moss’s EGG, OVAL, OVOID, THOM'S 
EGGS 

Egyptian Fraction 

see UNIT FRACTION 

Ehrhart Polynomial 
Let A denote an integral convex POLYTOPE of DIMEN- 
SION n in a lattice M, and let la(k) denote the number 
of LATTICE POINTS in A dilated by a factor of the inte- 

ger k, 
la(k) = #(kA n M) (1) 

for k E Z? Then IA is a polynomial function in k of 
degree 71 with rational coefficients 

called the Ehrhart polynomial (Ehrhart 1967, Pommer- 
sheim 1993). Specific coefficients have important geo- 
metric interpretations. 

1. a, is the CONTENT of A. 

2. a,-1 is half the sum of the CONTENTS of the (n- l)- 
D faces of A. 

3. a0 = 1. 

Let S,(A) denote the sum of the lattice lengths of the 
edges of A, then the case n = 2 corresponds to PICK'S 
THEOREM, 

la(k) = Vol(A)k2 + $,(A) + 1. (3) 

Let &(A) denote the sum of the lattice volumes of the 
2-D faces of A, then the case n = 3 gives 

la(k) = Vol(A)k3 + $@)k2 + alk + 1, (4 
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where a rather complicated expression is given by Pom- 
mersheim (1993), since al can unfortunately not be in- 
terpreted in terms of the edges of A. The Ehrhart poly- 
nomial of the tetrahedron with vertices at (0, 0, 0), (a, 

0, 01, (0, b, oh (0, 0, 4 is 

with eigenvalue X, then the corresponding EIGENVEC- 
TORS satisfy 

a11 

a21 

a12 

a22 + 

alk 

a2k 

l  

. 

l  

akk 1 
Xl 

52 

(3) 
la(k)= iabck3 + i(ab + ac + bc + d)k2 

akl xk 

which is equivalent to the homogeneous system 

A a12 l  ** alk 

a2244 l  *I a2k 

. . l  

. . l  

l  
. 

. 

ak2  m m  - akk - x I 

Xl 

x2 
. 
l  

l  

xk 1 . (4) I 
a11 - 

a21 
l  

. 

. 

akl 

where s(x,y) is a DEDEKIND SUM, A = gcd(b, c), B = 
gcd(a, c), C = gcd(a, b) (here, gcd is the GREATEST 
COMMON DENOMINATOR), and d = ABC (Pommer- 
sheim 1993). 

see also DEHN INVARIANT, PICK'S THEOREM 

Equation (4) can be written compact1 .y as 

(A - x1)x = o, (5) 

where I is the IDENTITY MATRIX. 
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As shown in CRAMER'S RULE, a system of linear equa- 
tions has nontrivial solutions only if the DETERMINANT 
vanishes,so we obtain the CHARACTERISTIC EQUATION 

IA - X11 = o. (6) 

If all k Xs are different, then plugging these back in 
gives k - 1 independent equations for the k components 
of each corresponding EIGENVECTOR. The EIGENVEC- 
TORS will then be orthogonal and the system is said to 
be nondegenerate. If the eigenvalues are n-fold DEGEN- 
ERATE, then the system is said to be degenerate and the 
EIGENVECTORS are not linearly independent. In such 
cases, the additional constraint that the EIGENVECTORS 
be orthogonal, 

Xi l  Xj = XiXjJi j ,  
(7) 

where 6ij is the KRONECKER DELTA, can be applied to 
yield n additional constraints, thus allowing solution for 
the EIGENVECTORS. 

Ei 

see EXPONENTIAL INTEGRAL,&-FUNCTION 

Eigenfunct ion 
IfLisalinear OPERATOR ona FUNCTION SPACE, thenf 
is an eigenfunction for Z and X is the associated EIGEN- 
VALUE whenever Lf = Xf* 

see &O EIGENVALWE, EIGENVECTOR 
Assume A has nondegenerate eigenvalues X1, X2,. l  . , X, 
and corresponding linearly independent EIGENVECTORS 

x1,x2,*-1 XI, which can be denoted 
Eigenvalue 
Let A be a linear transformation represented by a MA- 
TRIX A. If there is a VECTOR X f R” # 0 such that 

x11 

x12 [ 1 . 3 
l  

l  

xlk 

x21 

x22 I 1 . 
? . l  ’  

l  

. 

x2k 

xkl 

xk2 [ 1 . l  

. 

. 

xkk 

Ax=xx (1) (8) 

for some SCALAR X, then X is the eigenvalue of A with 
corresponding (right) EIGENVECTOR X. Letting A be a 
k x JG MATRIX, Define the matrices composed of eigenvectors 

x11 221 '*- xkl 

x12 522 l  l  * xk2 

. . 
l  

. 

l  . m  . 

. l  . . 

xlk x 2 k  l  -- xkk 1 (9) 
a11 a12 - alk 

a21 a22 -* ’ a2k 

l  . 
. 

l  

l  l  l  . 

m  . 
. 

l  

akl ak2  l  - akk 

(2) 

1 
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and eigenvalues Since D is a DIAGONAL MATRIX, 

where D is a DIAGONAL MATRIX. Then 

(10) 

c 00’ xki 

i=O i 

eD can be found using 

xlk 

xkl 

I[ 
Xl 

xk2 0 
l  1  

. . 

. 

xkk 0 

0 
x2 

. . l  

. . . 

0 
0 

x2k . . . 0 

. . 
l  

xk 

= PD, (11) 
Assume we know the eigenvalue for 

so 
A = PDP? 

Furthermore, 
Adding a constant times the IDENTITY MATRIX to A, 

A2 = (PDP-l)(PDP-l) = PD(P-lP)DP-’ 
= PD2P? (13) 

(A+cl)X=(X+c)XrX’X, (21) 

so the new eigenvalues equal the old plus c. Multiplying 
A by a constant c By induction, it follows that for n > 0, 

A n = pDnp-l. (14) (cA)x = c(m) E X’X, (22) 

The inverse of A is so the new eigenvalues are the old multiplied by c. 

A -’ = (pDp-l)-l = PD-lp-l, (15) NOW consider a SIMILARITY TRANSFORMATION of A. 
Let IAJ be the DETERMINANT of A, then 

where the inverse of the DIAGONAL MATRIX D is triv- 
ially given by ]Z-lAZ - xl1 = IZ-l(A - xl)21 

= IZl IA-XII 12-ll = IA - XII, (23) 

so the eigenvalues are the same as for A. 

see ah BRAUER'S THEOREM, CONDITION NUMBER, 
EIGENFUNCTION, EIGENVECTOR, FROBENIUS THEO- 
REM, GER~GORIN CIRCLE THEOREM, LYAPUNOV'S 
FIRST THEOREM,LYAPUNOV'S SECOND THEOREM,~S- 
TROWSKI'S THEOREM,PERRON'S THEOREM,~ERRON- 
FROBENIUS THEOREM, POINCAR~ SEPARATION THEO- 
REM,RANDOM MATRIX, SCHUR'S INEQUALITIES, STUR- 
MIAN SEPARATION THEOREM, SYLVESTER'S INERTIA 
LAW,~IELANDT'S THEOREM 

Equation (14) therefore holds for both POSITIVE and 
NEGATIVE n. 

A further remarkable result involving the matrices P and 
D follows from the definition 
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=P(CpD~)P-l=PeDP-‘. (17) 
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Given a 3 x 3 MATRIX A with eigenvectors x1, x2, and x3 
and corresponding EIGENVALUES X1, X2, and &, then 
an arbitrary VECTOR y can be written 

Eigenvector 

Y = bm + b2x2 + b3xs 

Applying the MATRIX A, 

Ay = blAxl + b2Ax2 + b3Ax3 

(11) 

A right eigenvector satisfies 

Ax = xx, (1) 

where X is a column VECTOR. The right EIGENVALUES 
therefore satisfy 

IA - xl/ = o. (2) 

A left eigenvector satisfies 

Any = x1” [blxl + (2)~blxz + ($)nb3x3]. (13) 

If X1 > X2, & it therefore follows that 

xA = xx, 

where X is a row VECTOR, so 

wvT = X&XT 

(3) 

(4) 

so repeated application of the matrix to an arbitrary vec- 
tor results in a vector proportional to the EIGENVECTOR 
having the largest EIGENVALUE. 

see also EIGENFUNCTION, EIGENVALUE 

ATxT = XLxT, (5) 

where XT is the transpose of X. The left, EIGENVALUES 
satisfy 

IA T - ALlI = IAT - XJTl = I(A - XLI)TI = I(A - ALI)/, 

(6) 
(since IA] = IATl) where IAf is the DETERMINANT of 
A. But this is the same equation satisfied by the right 
EIGENVALUES, so the left and right, EXGENVALUES are 
the same. Let XR be a MATRIX formed by the columns 
of the right eigenvectors and XL be a MATRIX formed 
by the rows of the left eigenvectors. Let 

DE 

Then 
AXR=X 
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Eight Curve 

(7) 

A curve 

1D &A = DxL (8) 

XLAXR = XLXRD XLAXR = DXLXR, (9) 

SO 

XLXRD = DXLXR, (10) 

But this equation is of the form CD = DC where D is a 
DIAGONAL MATRIX, so it must be true that C G XLXR 
is also diagonal. In particular, if A is a SYMMETRIC MA- 
TRIX, then the left and right eigenvectors are transposes 
of each other. If A is a SELF-ADJOINT MATRIX, then 
the left and right eigenvectors are conjugate HERMITIAN 
MATRICES. 

also known as 
CARTESIAN C 

the GERONO LEMNISCATE. It is 
OORDINATES 

x4 = a2(x2 - y"), 

POLAR COORDINATES, 

T2 = a2 sec4 0 cos(269, 

and parametric equations 

z = asint 

Y= a sin t cos t. 

(2) 

(3) 
(4) 
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The CURVATURE and TANGENTIAL ANGLE are 

Eight Surfat 

l%(t) = - 
3 sin t + sin(3t) 

2[cos2 t + cos2(2t)]3/2 (5) 

w - - tan-l[cos t sec(2t)l. - (6) 

SW UZSO BUTTERFLY CURVE, DUMBBELL CURVE, EIGHT 
SURFACE, PIRIFORM 
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Eight-Point Circle Theorem 

D 

A a C’ B 

Let ABCD be a QUADRILATERAL with PERPENDICU- 
LAR DIAGONALS. The MIDPOINTS of the sides (a, b, c, 
and d) determine a PARALLELOGRAM (the VARIGNON 
PARALLELOGRAM) with sides PARALLEL to the DIAG- 
ONALS. The eight-point circle passes through the four 
MIDPOINTS and the four feet of the PERPENDICULARS 
from the opposite sides a’, b’ , c’ , and d’. 

see UZSO FEUERBACH'S THEOREM 
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The SURFACE 
equations 

OF REVOLUTION given by the parametric 

x(7.4, w) = cos u sin(2v) (1) 

Y h 4 = sin u sin(2v) (2) 

z(u, w) = sinw (3) 

for u f [0,274 and ‘u E [-r/2, r/Z]. 

see ~2~0 EIGHT CURVE 
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Eikonal Equation 

&L a > 2 

- 1. 
axi - -- z- 1 

Eilenberg-Mac Lane Space 
Forany ABELIAN GROUP Gandany NATURALNUMBER 
n, there is a unique SPACE (up to HOMOTOPY type) 
such that all H~MOTOPY GROUPS except for the nth are 
trivial (including the 0th HOMOTOPY GROUPS, meaning 
the SPACE is path-connected), and the nth HOMOTOPY 
GROUP is ISOMORPHIC to the GROUP G. In the case 
where n = 1, the GROUP G can be non-ABELIAN as 
well. 

Eilenberg-Mac Lane spaces have many important appli- 
cations. One of them is that every TOPOLOGICAL SPACE 
has the HOMOTOPY type of an iterated FIBRATION of 
Eilenberg-Mac Lane spaces (called a POSTNIKOV SYS- 
TEM). In addition, there is a spectral sequence relating 
the COHOMOLOGY of Eilenberg-Mac Lane spaces to the 
H~MOTOPY GROUPS of SPHERES. 

Eilenberg-Mac Lane-Steenrod-Milnor 

Axioms 

see EILENBERG-STEENROD AXIOMS 
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Eilenberg-Steenrod Axioms 
A family of FUNCTORS H&) from the CATEGORY of 
pairs of TOPOLOGICAL SPACES and continuous maps, 
to the CATEGORY of ABELIAN GROUPS and group ho- 
momorphisms satisfies the Eilenberg-Steenrod axioms if 
the following conditions hold. 

LONG EXACT SEQUENCE OF A PAIR AXIOM. For 
every pair (X, A), there is a natural long exact se- 
quence 

. . . + &(A) + H,(X) + H,(X,A) 

+ H,-&A) + . . . , 

where the MAP &(A) + H,(X) is induced by the 
INCLUSION MAP A -+ X and Hn(X) + Hn(X, A) is 
induced by the INCLUSION MAP (X, 4) --+ (X,A). 
The MAP Hn(X,A) --+ &-l(A) is called the 
BOUNDARY MAP. 

HOMOTOPY AXIOM. If f : (X,A) + (Y,B) is ho- 
motopic to g : (X,A) + (YJ), then their IN- 
DUCED MAPS f* : Hn(X,A) + Hn(Y, B) and g, : 
Hn(X, A) + Hn(Y, B) are the same. 

EXCISION AXIOM. If X is a SPACE with SUB- 
SPACES A and U such that the CLOSURE of A is 
contained in the interior of U, then the INCLUSION 

MAP (X U, A U) -+ (X, A) induces an isomorphism 
Hn(X U,A U) + Hn(X,A). 

DIMENSION AXIOM. Let X be a single point space. 
Hn. (X) = 0 unless n = 0, in which case Ho(X) = G 
where G are some GROUPS. The HO are called the 
COEFFICIENTS of the HOMOLOGY theory H(*). 

These are the axioms for a generalized homology the- 
ory. For a cohomology theory, instead of requiring that 
H(a) be a FUNCTOR, it is required to be a co-functor 
(meaning the INDUCED MAP points in the opposite di- 
rection). With that modification, the axioms are essen- 
tially the same (except that all the induced maps point 
backwards). 

see also ALEKSANDROV-TECH COHOMOLOGY 

Ein Function 

s 

z 

Ein(z) = (1 - eBt) dt 

t 
=&(z)+lnr+y, 

0 

where y is the EULER-MASCHERONI CONSTANT and E1 
is the ~~~~~~~~~~~ with n = 1. 

see also En-Fu~c~lo~ 

Einstein F’unctions 

The functions z2e2/(ez - 1)2, z/(eZ - l), ln(l - eB2), 
and x/(ex - 1) - ln(1 - e-=). 
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Einstein Summat ion 
The implicit convention that repeated indices are 
summed over so that, for example, 

Eisenstein 
The numbers 

Integer 
a + bw, where 

is one of the ROOTS of z3 = 1, the others being 1 and 

u2 = $(-l- i&3). 

Eisenstein integers are members of the QUADRATIC 

FIELD Q(d2), andthe COMPLEXNUMBERS@]. EV- 
ery Eisenstein integer has a unique factorization. Specif- 
ically, any NONZERO Eisenstein integer is uniquely the 
product of POWERS of -1, w, and the “positive” EISEN- 
STEIN PRIMES (Conway and Guy 1996). Every Eisen- 
stein integer is within a distance Inl/fi of some multiple 
of a given Eisenstein integer n. 

Dijrrie (1965) uses the alternative notation 

J=$(l+id3) (1) 
0 = i(l - iJ3). (2) 



Eisenstein-Jacobi Integer Ekstica 

for -w2 and -0, and calls numbers of the form aJ + bO 
G-NUMBERS. 0 and J satisfy 

Let w  be the CUBE ROOT of unity (-1 +i&)/2. Then 
the Eisenstein primes are 

J+O=l (3) 

JO=1 (4) 

J2+O=0 (5) 

02+J=0 (6) 
J3 = -1 (7) 

o3 = -1. (8) 

The sum, difference, and products of G numbers are also 
G numbers. The norm of a G number is 

1. 

2. 

3. 

Ordinary PRIMES CONGRUENT to 2 (mod 3), 

1 - w  is prime in Z[w], 

Any ordinary PRIME CONGRUENT to 1 (mod 3) fac- 
tors as ~a*, where each of Q! and QI* are primes in 
Z[w] and QI and a* are not “associates” of each other 
(where associates are equivalent modulo multiplica- 
tion by an EISENSTEIN UNIT). 
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N(aJ+ b0) = a2 + b2 - ab. (9) 

The analog of FERMAT'S THEOREM for Eisenstein inte- 
gers is that a PRIME NUMBER p can be written in the 
form 

a2 - ab + b2 = (a + bw)(a + bw2) 

IFF 3fp + 1. These are precisely the PRIMES of the form 
3m2 + n2 (Conway and Guy 1996). 

see ah EKENSTEIN PRIME, EISENSTEIN UNIT, GATJS- 
SIAN INTEGER, INTEGER 
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Eisenstein Series 

1 
(& + 42r 3 

me 
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where the sum C’ excludes uz = n = 0, %[I!] > 0, and T 
is an INTEGER > 2. The Eisenstein series satisfies the 
remarkable property 

= (ct + d)2’E,(t). 
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1965. 
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Eisenstein Unit 
The Eisenstein units are the EISENSTEIN INTEGERS l , 
kw, fW2, where 

w= f(-1 +iJ3) 

w2 = $(-l- ifi). 

Eisenstein-Jacobi Integer 
see EISENSTEIN INTEGER 

see UZSO EISENSTEIN INTEGER, EBENSTEIN PRIME 
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Elast ica 
The elastica formed by bent rods and considered in phys- 
ics can be generalized to curves in a RIEMANNIAN MAN- 
IFOLD which are a CRITICAL POINT for 

F’(y) = (K~ +A), s 7 
where K is the 
NUMB ER, and 

GEODESIC C URVATURE ofy, A 
y is closed or satisfies some 

isa REAL 
specified 
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boundary condition. The curvature of an elastica must 
satisfy 

0 = ZK”(S) + /c3(s) + 2r;(s)G(s) - k(s), 

where K is the signed curvature of y, G(s) is the GAUS- 
SIAN CURVATURE of the oriented Riemannian surface A.4 
along y, K” is the second derivative of K with respect to 
s, and X is a constant. 
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Elation 
A perspective COLLINEATION in which the center and 
axis are incident. 

see also HOMOLOGY (GEOMETRY) 

Elder’s Theorem 
A generalization of STANLEY'S THEOREM. It states that 
the total number of occurrences of an INTEGER k among 
all unordered PARTITIONS of n is equal to the number 
of occasions that a part occurs k or more times in a 
PARTITION, where a PARTITION which contains T parts 
that each occur k or more times contributes T to the 
sum in question. 

see also STANLEY'S THEOREM 

References 
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Elect ion 

see EARLY ELECTION RESULTS,~OTING 

Electric Motor Curve 

see DEVIL’s CURVE 

Element 
If 2 is a member of a set A, then LC is said to be an 
element of A, written II: E A. If x is not an element of 
A, this is written II: $ A. The term element also refers to 
a particular member of a GROUP, or entry in a MATRIX. 

Elementary Symmetric Function 

Elementary Function 
A function built up of compositions of the EXPONENTIAL 
FUNCTION and the TRIGONOMETRIC FUNCTIONS and 
their inverses by ADDITION, MULTIPLICATION, DIVI- 
SION, root extractions (the ELEMENTARY OPERATIONS) 
under repeated compositions. Not all functions are’ el- 
ementary. For example, the NORMAL DISTRIBUTION 
FUNCTION 

a(x) E 1 
s 

X 

6 
ebt212 dt 

7T 0 

is a notorious example of a nonelementary function. 
Nonelementary functions are called TRANSCENDENTAL 
FUNCTIONS. 

see UZSO ALGEBRAIC FUNCTION, ELEMENTARY OPER- 
ATION, ELEMENTARY SYMMETRIC FUNCTION, TRANS- 
CENDENTAL FUNCTION 

References 
Sha&, D, Solved an #d Unsolved Proble ma in 
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Elementary Matrix 
The elementary MATRICES are the PERMUTATION MA- 

TRIX pij and the SHEAR MATRIX e&. 

Elementary Operation 
One of the operations of ADDITION, SUBTRACTION, 
MULTIPLICATION, DIVISION, and root extraction. 

see also ALGEBRAIC FUNCTION, ELEMENTARY FUNC- 

Elementary Symmetric Function 
The elementary symmetric functions II, on n variables 

{Xl,*.. , ICY} are defined by 

IIn = rI Xi. (5) 

ili<n 

Alternatively, IIj can be defined as the coefficient of 
2 n-j in the GENERATING FUNCTION 

In x + Xi). (6) 
l<i<n 
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The elementary symmetric functions satisfy the relation- 
ships 

n 

): 

2 
Xi = Ill2 - 2II2 

i=l 
n 

>: 

3 
Xi = III3 -3nln2+3n3 

(7) 

(8) 
i=l 

n 

c 

4 
Xi = n14 - 4n12& + 211z2 + 4nln3 - 4T-14 (9) 

i=l 

(Beeler et al. 1972, Item 6). 

see also FUNDAMENTAL THEOREM OF SYMMET- 
RIC FUNCTIONS, NEWTON'S RELATIONS, SYMMETRIC 
FUNCTION 
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Elements 
The classic treatise in geometry written by Euclid and 
used as a textbook for more than 1,000 years in western 
Europe. The Elements, which went through more than 
2,000 editions and consisted of 465 propositions, are di- 
vided into 13 “books” (an archaic word for “chapters”). 

Book 
1 
2 
3 
4 
5 
6 

7-10 
11 
12 

13 

Contents 
triangles 
rectangles 
Circles 
polygons 
proportion 
similarity 
number theory 
solid geometry 
pyramids 
Dlat onic solids 

The elements started with 23 definitions, five POSTu- 
LATES, and five “common notions,” and systematically 
built the rest of plane and solid geometry upon this foun- 
dation. The five EUCLID'S POSTULATES are 

1. It is possible to draw 
to another POINT. 

a straight LINE from any POINT 

2. It is possible to produce a fi 
tinuously in a straight LINE. 

.nite straight LINE con- 

3. It is possible to describe a CIRCLE with any CENTER 
and RADIUS. 

4. All RIGHT ANGLES are equal to one another. 

5. If a straight LINE falling on two straight LINES makes 
the interior ANGLES on the same side less than two 
RIGHT ANGLES, the straight LINES (if extended in- 
definitely) meet on the side on which the ANGLES 

which are less than two RIGHT ANGLES lie. 

(Dunham 1990). Euclid’s fifth postulate is known as the 
PARALLEL POSTULATE. After more than two millennia 
of study, this POSTULATE was found to be independent 
of the others. In fact, equally valid NON-EUCLIDEAN 
GEOMETRIES were found to be possible by changing the 
assumption of this POSTULATE. Unfortunately, Euclid’s 
postulates were not rigorously complete and left a large 
number of gaps. Hilbert needed a total of 20 postulates 
to construct a logically complete geometry. 

see also PARALLEL POSTULATE 
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Elevator Paradox 
A fact noticed by physicist G. Gamow when he had an 
office on the second floor and physicist M. Stern had 

stop on his floor was going down, whereas about the 
same fraction of time, the first elevator to stop on the 
sixth floor was going up. This actually makes perfect 
sense, since 5 of the 6 floors 1, 3, 4, 5, 6, 7 are above the 

second, and 5 of the 6 floors 1, 2, 3, 4, 5, 7 are below the 
sixth. However, the situation takes some unexpected 
turns if more than one elevator is involved, as discussed 
by Gardner (1986). 
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Elkies Point 
Given POSITIVE numbers sa, sb, and sc, the Elkies point 
is the unique point Y in the interior of a TRIANGLE 

AABC such that the respective INRADII rat Q, TV of 
the TRIANGLES ABYC, ACYA, and AAYB satisfy ra : 

Tb : rc = sa : Sb : SC. 

see also CONGRUENT INCIRCLES POINT, INRADIUS 
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Ellipse Square one final time to clear the remaining SQUARE 
Rook, 

2 

x2 - 2xc + 2 + y2 = a2 - 2cx + 3x2. (5) 

Grouping the 2 terms then gives 

-2a 

major axis 
2 a2 - c2 

X- 
a2 

+y2 =a2-c2, (6) 
A curve which is the LOCUS of all points in the PLANE 
the SUM of whose distances ~1 and ~2 from two fixed 
points F-1 and Fz (the FOCI) separated by a distance of 
2c is a given POSITIVE constant 2a (left figure). This re- 
sults in the two-center BIPOLAR COORDINATE equation 

which can be written in the simple form 

X2 

s+ 
Y2 

n = 1. (7) 

(8) 

Defining a new constant 7-1 + 7-2 = 2a, (1) 

b2 = a2 - c2 
where a is the SEMIMAJOR AXIS and the ORIGIN of the 
coordinate system is at one of the FOCI. The ellipse 
can also be defined as the LOCUS of points whose dis- 
tance from the FOCUS is proportional to the horizontal 
distance from a vertical line known as the DIRECTRIX 
(right figure). 

puts the equation in the particularly simple form 

(9) 

The parameter b is called the SEMIMINOR AXIS by anal- 
ogy with the parameter a, which is called the SEMIMA- 
JOR AXIS. The fact that b as defined above is actu- 
ally the SEMIMINOR AXIS is easily shown by letting ~1 
and ~2 be equal. Then two RIGHT TRIANGLES are pro- 
duced, each with HYPOTENUSE a, base c, and height 
b = &F-Z?. Since the largest distance along the MI- 
NOR AXIS will be achieved at this point, b is indeed the 
SEMIMINOR AXIS. 

The ellipse was first studied by Menaechmus, investi- 
gated by Euclid, and named by Apollonius. The FOCUS 
and DIRECTRIX of an ellipse were considered by Pap- 
pus. In 1602, Kepler believed that the orbit of Mars 
was OVAL; he later discovered that it was an ellipse with 
the Sun at one FOCUS. In fact, Kepler introduced the 
word ‘LF~~~~” and published his discovery in 1609. In 
1705 Halley showed that the comet which is now named 
after him moved in an elliptical orbit around the Sun 
(MacTutor Archive). 

If, instead of being centered at (0, 0), the CENTER of 
the ellipse is at (20, yo), equation (9) becomes A ray passing through a FOCUS will pass through the 

other focus after a single bounce. Reflections not passing 
through a FOCUS will be tangent to a confocal HYPER- 
BOLA or ELLIPSE, depending on whether the ray passes 
between the FOCI or not. Let an ellipse lie along the 
X-AXIS and find the equation of the figure (1) where ~1 
and 73 are at (-c, 0) and (c, 0). In CARTESIAN COOR- 
DINATES, 

( X- x0)2 

a2 
+ (Y - Yd2 = 1 

b2 . w 

As can be seen from the CARTESIAN EQUATION for the 
ellipse, the curve can also be given by a simple paramet- 
ric form analogous to that of a CIRCLE, but with the z 
and y coordinates having different scalings, 

x = acost 

y = b sin t. 

(11) 

(12) Bring the second term to the right side and square both 
sides, 

The unit TANGENT VECTOR of the ellipse so parame- 
terized is (x+c)2+y2 = 4a2-4aJ(x - c)2 + y2+(x-c)2+y2. (3) 

xl-(t) = - 
asint 

2 cos2 t + a2 sin2 t 
(13) 

YT(t) = 
bcost 

b2 cos2 t + a2 sin2 t 1 
(14) 

NOW solve for the SQUARE ROOT term and simplify 

&x - c)2 + y2 

- - -~(x2+2xc+c2+y2-4a2-x2+2xc-c2-y2) 

1 
- 
--4a 

(4xc - 4a2) = a - ?x. 
a (4) 

A sequence of NORMAL and TANGENT VECTORS are 
plotted below for the ellipse. 
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curve rotated by angle 8 

For an ellipse centered at the ORIGIN but inclined at 
an arbitrary ANGLE 8 to the X-AXIS, the parametric 
equations are 

X 

[I [ 

cos I9 sin 8 acost y = - sin0 cosB I[ 1 bsin t 

ctcos&os~+ bsinkint - - 
[ 1 -asidcost + bcoskint ’ (15) 

“et 

c3 
c a 

In POLAR COORDINATES, the ANGLE 8’ measured from 
the center of the ellipse is called the ECCENTRIC AN- 
GLE. Writing T’ for the distance of a point from the 
ellipse center, the equation in POLAR COORDINATES is 
just given by the usual 

X = r’ cos 8’ (16) 

y = T’sin0’. (17) 

Here, the coordinates 0’ and T’ are written with primes 
to distinguish them from the more common polar co- 
ordinates for an ellipse which are centered on a faczls. 
Plugging the polar equations into the Cartesian equa- 
tion (9) and solving for r” gives 

‘2 = b2u2 
T 

b2 cos2 8’ + a2 sin2 8’ ’ 
(18) 

Define a new constant 0 < e < 1 called the ECCENTRIC- 
ITY (where e = 0 is the-case of a CIRCLE) to replace 

b 

(19) 

frbm whidh’-it ialso\ follows from (8) that 

a2e2 = a2 - b2 = c2 

c = ae 

b2 = a2(1 - e”). 

Therefore (18) can be written as 

'2 
T = 

a2(1 k e’) 

1 - e2 kos2 6’ (23) 

T’ = a J 1 - e2 

1 - eq cos2 8’ l  

If e < 1, then 

T’ = a{l- ie2 sin2 8’ - $e4[5 + 3 cos(2e’>] sin2 0’ + . l  .}, 

(25) 
so 

AT’ ct-r’ - --- 
a- a 

E +e2 sin2 8’, (26) 

a C,-F ‘e a-c = a(1 -e) 
If T and 8 are measured from a FOCUS instead of from 
the center, as they commonly are in orbital mechanics, 
then the equations of the ellipse are 

X = c+rcoso (27) 

Y = rsin0, (28) 

and (9) becomes 

(c + T cos 0)” r2 sin2 0 
a2 +7 = 1. 

Clearing the DENOMINATORS gives 

(29) 

b2(C2 + 2crcos8 + r2 cos2 0) + a2r2 sin2 8 = a2b2 (30) 

b2c2+2mb2 cosB+b2r2 cos2 B+a2r2-a2r2 cos20 = a2b2. 

(31) 
Plugging in (21) and (22) to re-express b and c in terms 
of a and e, 

a2(1 - e2)a2e2 +2aea2(1 -e2)rcos8+a2(l-e2)r2cos2e 

+a2r2 - a2~2 cos2 0 = a2[a2(1 - e2)]. (32) 

Simplifying, 

-T2 + [er cos 0 - a( 1 - e2)12 = 0 (33) 

T= It[ercos8 - a(1 - e2)]. (34) 

The sign can be determined by requiring that T must be 
POSITIVE. When e = 0, (34) becomes T = &(-a), but 
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since a is always POSITIVE, we must take the NEGATIVE 
sign, so (34) becomes 

T = a(1 -e”) - ercos8 (35) 

~(l+ ecos0) = a(1 - e”) (36) 

a(1 - e2) 
Tz l+ecosO’ ( 7) 3 

The distance from a FOCUS to a point with horizontal 
coordinate II~ is found from 

Similarly, the unit TANGENT VECTOR is given by 

1 
(50) 

a2 sin2 t + b2 cos2 t ’ 

The ARC LENGTH of the ellipse can be computed using 

c+x case = - T - (38) (1 b2 
=a - sin2 t) + a2 sin2 t 0% 

Plugging this into (37) yields 

T + e(c + 2) = a(1 - e2) (39) 

T = a(1 - e2) - e(c + 2). (40) 

=$/l- (l-$)sin2tdt 

=a [&ZZFtdt=aE(t,e), (51) 

Summarizing relationships among the parameters char- 
acterizing an ellipsd, 

(41) 

(42) 

(43) 

The ECCENTRICITY can therefore be interpreted as the 
position of the FOCUS as a fraction of the SEMIMAJOR 
AXIS. 

In PEDAL COORDINATES with the PEDAL POINT at the 
FOCUS, the equation of the ellipse is 

b2 
2a 1 -=-- 

p2 T l  

(44 

To find the RADIUS OF CURVATURE, return to the para- 
metric coordinates centered at the center of the ellipse 
and compute the first and second derivatives, 

x’ = -a sin t 

y’ = bcost 

Therefore, 

xff = -a cos t 

y” E -bsin t. 

R _ (xJ2 + yf2)3i2 - 
xtY” - xffy’ 

(a2 sin’ t + b2 cos’ t)3/2 - - 
-asint(-bsint) - (acost)(bcost) 

(a2 sin2 t + b2 cos2 t)3/2 - - 
ab(sin2 t + cos2 t) 

- (a2 sin2 t + b2 cos2 t)3/2 - 
ab 

l  (49) 

where E is an incomplete ELLIPTIC INTEGRAL OF THE 
SECOND KIND. Again, note that t is a parameter which 
does not have a direct interpretation in terms of an AN- 
GLE. However, the relationship between the polar angle 
from the ellipse center 8 and the parameter t follows 
from 

0 = tan-l J! 0 X 

I 
1 2 3 4 5 6 

This function is illustrated above with 8 shown as the 
solid curve and t as the dashed, with b/a = 0.6. Care 
must be taken to make sure that the correct branch 
of the INVERSE TANGENT function is used. As can be 
seen, 0 weaves back and forth around t, with crossings 
occurring at multiples of 42. 

u 
z m 

t 
The CURVATURE 
are given by 

u 

-\A./ 

z 

L L 

and TANGENTIAL A NGLE of the ellipse 

ab 

(b2 cos2 t + a2 sin2 t)3/2 (53) 

4 b 
--tan-l -cost l  
- ( > a 

(54) 
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The entire PERIMETER p of the ellipse is given by setting 
t= 2~ (corresponding to 8 = 2n), which is equivalent to 
four times the length of one of the ellipse’s QUADRANTS, 

P = aE(2R, e) = 4aE(+,e) = 4aE(e), (55) 

where E(e) is a complete ELLIPTIC INTEGRAL OF THE 
SECOND KIND with MODULUS k. The PERIMETER 
can be computed numerically by the rapidly converg- 
ing GAUSS-KUMMER SERIES 

2 

P =n(a+b)ji: 6 h2” 
n=O 0 

= n(a + b)(l+ ah” + &h4 + Ah6 + . . l ), (56) 

where 
a-b 

he- 
a+b (57) 

and (I) is a BINOMIAL COEFFICIENT. Approximations 
to the PERIMETER include 

pwr&cF) (58) 
$=: r[3(a + b) - &a + 3b)(3a + b)l (59) 

where the last two are due to Ramanujan (1913-14), 

it= 
a-b 2 ( 1 a+b ’ (61) 

and (60) is accurate to within - 3 . 2-17t5. 

The maximum and minimum distances from the FOCUS 
are called the APOAPSIS and PERIAPSIS, and are given 

bY 

r+ = rapoapsis = a(1 + e) 

r- = periapsis = a(1 - e). 

(62) 

(63) 

The AREA of an ellipse may be found by direct INTE- 
GRATION 

a 

A= 
ss 

bda2 -X2/, 

dydx = 
- bd=/a s 

a ;dGdx 

- iii [z&CF+a2si~’ ($1>” -- 

x=-a 

- - ab[sin-’ 1 - sir?(-l)] = ab [i - (:)I =rab. 

(64) 

The AREA can also be computed more simply by making 
the change of coordinates z’ = (b/a)x and y’ G y from 

the elliptical region rZ to the new region R’. Then the 
equation becomes 

+yc 
‘2=1 

b2 ’ (65) 

or xl2 + y12 = b2, SO R' is a CIRCLE of RADIUS b. Since 

the JACOBIAN is 

a(%Y) g &’ - - = 
q&Y’) 

’ I 

dy’ 
% 

0 a 
ax ay-(-J I=&’ 

8’ Y  8Yf II I 

(67) 

The AREA is therefore 

a -- - 
b JJ 

dxtdy’ = ;( b) n 2 = rub, (68) 
R’ 

as before. The AREA of an arbitrary ellipse given by the 
QUADRATIC EQUATION 

ax2 + bxy + cy2 = 1 (69) 

2n 

A=&iin* 
(70) 

The AREA of an ELLIPSE with semiaxes a and b with 
respect to a PEDAL POINT P is 

A = ix(a2 + b2 + 10P)2). 

The ellipse INSCRIBED in a given TRIANGLE and tangent 
at its MIDPOINTS is called the MIDPOINT ELLIPSE. The 
LOCUS of the centers of the ellipses INSCRIBED in a TRI- 
ANGLE is the interior of the MEDIAL TRIANGLE. New- 
ton gave the solution to inscribing an ellipse in a convex 
QUADRILATERAL (Diirrie 1965, p. 217). The centers of 
the ellipses INSCRIBED in a QUADRILATERAL all lie on 
the straight line segment joining the MIDPOINTS of the 
DIAGONALS (Chakerian 1979, pp. 136-139) l  

The AREA of an ellipse with BARYCENTRIC COORDI- 
NATES (a&y) INSCRIBED in a TRIANGLE of unit AREA 
is 

A=n j/(1 - 24(1 - ZP)(l- 27). (72) 

(Chakerian 1979, pp. 142-145). 

The LOCUS of the apex of a variable CONE containing 
an ellipse fixed in 3-space is a HYPERBOLA through the 
FOCI of the ellipse. In addition, the LOCUS of the apex 
of a CONE containing that HYPERBOLA is the original 
ellipse. Furthermore, the ECCENTRICITIES of the ellipse 
and HYPERBOLA are reciprocals. The LOCUS of centers 
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of a PAPPUS CHAIN of CIRCLES is an ellipse. Surpris- 
ingly, the locus of the end of a garage door mounted 
on rollers along a vertical track but extending beyond 
the track is a quadrant of an ellipse (the envelopes of 

positions is an ASTROID). 

see also CIRCLE, CONIC SECTION, ECCENTRIC 
ANOMALY, ECCENTRICITY, ELLIPTIC CONE, ELLIP- 

TIC CURVE, ELLIPTIC CYLINDER, HYPERBOLA, MID- 

POINT ELLIPSE, PARABOLA, PARABOLOID, QUADRATIC 
CURVE, REFLECTION PROPERTY, SALMON’S THEOREM, 

STEINER’S ELLIPSE 
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Ellipse Caustic Curve 
For an ELLIPSE given by 

X = rcost (1) 

y = sint (2) 

with light source at (x, 0), the CAUSTIC is 

N;z: x=- 
D, (3) 

NY 
y=D’ (4) 

Y 

N, = 2rx(3 - 5r2) + (-6~~ + 6r4 - 3x2 + 9T2x2) cost 

+ 6rx(l - TV) cos(2t) 

+ (-2r2 + 2r4 - x2 - T2X2) cos(3t) (5) 
D, = 2r(l+ 2r2 + 4x2) + 3x(1 - 5r2) cost 

+ (6~ + 6r3) cos(2t) + x(1 - TV) cos(3t) (6) 

NY = 8~(--l + ~~ - x2) sin3 t (7) 

D, = 2r(-1 - T2 - 4x2) + 3(-x + 5r2) cost 

+ 6r(l - T2) cos(2t) + x(-1 + r2) cos(3t). (8) 

At (00, o), 

x= 
cos t[-1 + 5r2 - cos(2t)(l + r2>] 

4r 

y = sin3 t. 

Ellipse Envelope 

Consider the family of ELLIPSES 

X2 Y2 
2+(1-l-o (1) 

for c f [0, 11. The PARTIAL DERIVATIVE with respect to 
c is 

2x2 2Y2 -- 
C3 +(l-== (2) 

X2 Y2 
F-(1-==- (3) 

Combining (1) and (3) gives the set of equations 

(4) 

where the DISCRIMINANT is 

A=- ’ 1 1 
cy1 - c)3 - cy1 - c)2 = -cy1 - cy (6) 
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so (5) becomes 
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Ellipse Involute 

[ 

X2 1 [ C3 - 
Y2 - (1-c)3 

Eliminating c then gives 

X 
213 + y2/3 = 1, 

(7) 

(8) 
which is the equation of the ASTROID. If the curve is 
instead represented parametrically, then 

2 = ccost (9) 

y = (1 - c)sint. (10) 

Solving 

ax ay ax dy -- - -- 
at dc dc dt 

- - (-csint)(- sint) - (cosi!)[(l - c) cost] 
- - c(sin2 t + cos2 t) - co2 t = c - cos2 t = 0 (11) 

for c gives 
c = cos2 t, (12) 

so substituting this back into (9) and (10) gives 

x = (cos2 t) cos t = cos3 t (13) 

Y=O- - cos2 t) sin t = sin3 t, (14) 

the parametric equations of the ASTROID. 
see UZSO ASTROID, ELLIPSE, ENVELOPE 

Ellipse Evolute 

/ f \ t‘ 

’ A’ 4 
The EVOLUTE of an ELLIPSE is given by the parametric 
equations 

a2 - !I2 
xc- cos3 t 

a 

b2 - a2 
Y’b sin3 t, 

(1) 

(2) 
which can be combined and written 

(ax)2/3 + (by)2i3 

- - K u2 - b2) C0S3 t]2'3 + [(b2 - a”) sin3 t]2’3 

= a2-b2)2/3(sin2 t+cos2 t) = (a2 -b2)2/3 = c4j3, ( (3) 

which is a stretched ASTROID called the LAMP CURVE. 
From a point inside the EVOLUTE, four NORMALS can 
be drawn to the ellipse, but from a point outside, only 
two NORMALS can be drawn. 

see also ASTROID, ELLIPSE, EVOLUTE, LAMP CURVE 
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From ELLIPSE, the TANGENT VECTOR is 

T= 
---a sin t [ 1 bcost ’ 

and the ARC LENGTH is 

(1) 

S = a J1-,zsi,ztdt = aE(t,e), (2) 

where E(t, e) is an incomplete ELLIPTIC INTEGRAL OF 
THE SECOND KIND. Therefore, 

- a{cos t + aeE(t, e) sin t} - 
b{sin t - aeE(t, e) cost}. 1 

Ellipse Pedal Curve 
The pedal curve of an ellipse with a FOCUS as the PEDAL 
POINT is a CIRCLE. 

Ellipsoid 

A QUADRATIC SURFACE which is given in CARTESIAN 
COORDINATES by 

X2 
,2+$+$=1, (1) 

where the semi-axes are of lengths a, b, and c. In SPHER- 
ICAL COORDINATES, this becomes 

7-2 cos2 8 sin2 4 
+ 

r2 sin2 0 sin2 4 

a2 b2 
+ 
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The parametric equations are 

Ellipsoid Geodesic 

(Gray 1993). 

2 = acosBsin@ (3) 

Y = b sin 8 sin 4 (4) 

z = ccosqb. (5) 

The SUPPORT FUNCTION of the ellipsoid is 

h= 

The SURFACE AREA (Bowman 1961, pp. 31-32) is 
and the GAUSSIAN CURVATURE is 

s = kc2 + - c2)E(B) + c2B], (6) 

where E(B) isa COMPLETE ELLIPTIC INTEGRAL OF THE 
SECOND KIND, 

2 _ a2 - c2 
e1 =- 

a2 (7) 

(8) 

(9) 

and 8 is given by inverting the expression 

e1 = sn(0, k), (10) 

where sn(8, k) is a JACOBI ELLIPTIC FUNCTION. The 
VOLUME of an ellipsoid is 

V= $ nabc. (11) 

If two axes are the same, the figure is called a SPHEROID 
(depending on whether c < a or c > a, an OBLATE 
SPHEROID or PROLATE SPHEROID, respectively), and if 
all three are the same, it is a SPHERE. 

A different parameterization of the ellipsoid is the so- 
called stereographic ellipsoid, given by the parametric 
equations 

x(u, u) = 
a(1 - u2 - w”) 

1+ u2 + 2t2 (12) 

Y (UT 4 = 
2bu 

1 + u2 + v2 (13) 

z(u, u) = 
2cv 

1 + u2 + v2 - (14) 

A third parameterixation is the Mercator parameteriza- 
tion 

x(u, v) = a sech v cos u 

y(u,v) = bsechvsinu 

z(u,w) = ctanhv 

(15) 

(16) 

(17) 

L4 
K=: 

a2b2c2 (19) 

(Gray 1993, p* 296). 

see also CONVEX OPTIMIZATION THEORY, OBLATE 
SPHEROID,PROLATE SPHEROID,SPHERE,SPHEROID 
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Ellipsoid Geodesic 
An ELLIPSOID can be specified parametrically by 

x = acosusinv 

y = bsinusinw 

z = ccosv. 

The GEODESIC parameters are then 

P = sin2 v(b2 cos2 u + a2 sin2 u 

Q 1 2- E- 4 (b a2) sin(2u) sin(2w) 

(1) 
(2) 
(3) 

R = cos2 v( a2 cos2 u + b2 sin2 u) + c2 sin2 v. (6) 

When the coordinates of a point are on the QUADRIC 

and expressed in terms of the parameters p and Q of the 
confocal quadrics passing through that point (in other 
words, having a+p, b+p, c+p, and a+q, b+q, c+q for 
the squares of their semimajor axes), then the equation 
of a GEODESIC can be expressed in the form 

4&? 
dq(a + q)(b + q)(c + q)(@ + q) 

* PdP 

Jp(a + p)(b + P)(C + P)(* + P) 
= 0, (8) 
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A Lam6 function of degree n may be expressed as with 8 an arbitrary constant, and the ARC LENGTH el- 
ement ds is given by 

ds d?? (e + a2)IE1 (e + b2)“2(8 + c2y3 fi(e - e,>, (3) 
4- = 

Pq Jq(a + q)(b + q)(C + q)(* + q) 
p=l 

* 
dP 

(9) 
where pi = 0 or l/Z, & are REAL and unequal to each 

Jp(a + P)(b + P>(C + P)(@ + P) ’ other and to -u2, -b2, and -c2, and 

fn = m+m +~2+63. (4) where upper and lower signs are taken together. 

see also OBLATE SPHEROID GEODESIC, SPHERE GEO- 
DESIC 
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Byerly (1959) uses the RECURRENCE RELATIONS to ex- 
plicitly compute some ellipsoidal harmonics, which he 
denotes by K(z), L(z), M(z), and N(z), 

Forsyth, A. R. Calculus of Variations. New York: Dover, 
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Ellipsoidal Calculus 
Ellipsoidal calculus is a method for solving problems 
in control and estimation theory having unknown but 

References 

Ko(x) = 1 

L()(x) = 0 

MO(X) = 0 

No(x) = 0 

K1(x) = x 

Ll(X) = &T 

Ml(X) = dz7 

Nl(x) = 0 

bounded errors in terms of sets of approximating 
ellipsoidal-value functions. Ellipsoidal calculus has been 
especially useful in the study of LINEAR PROGRAMMING. 

Ellipsoidal Coordinates 

see CONFOCAL ELLIPSOIDAL COORDINATES 

Kurzhanski, A. B. and Vdyi, I. Ellipsoidal Calculus for Es- 
timation and Control. Boston, MA: Birkhguser, 1996. 

Ellipsoidal Harmonic 

see ELLIPSOIDAL HARMONIC OF THE FIRST KIND, EL- 
LIPSOIDAL HARMONIC OF THE SECOND KIND 

K;l(x) = x2 - $[b2 + c2 - J(b2 +c~)~ - 3b2c2] 

K,P2 (x) = x2 - i[b2 + c2 + J(b” + c2)2 - 3Pc2] 

L2(x)=x&=F 

A&(x) = x&=7 

N2(4 = (x2 - b2)(x2 - c2) 

K3p’(x) = x3 - ;x[2(b2 + c2) 

- J4(b" + c2)2 - 15b2c2] 

Ellipsoidal Harmonic of the First Kind 
The first solution to LAM& DIFFERENTIAL EQUATION, 
denoted IS:(x) for m = 1, . . . , 2n + 1. They are also 
called LAMI? FUNCTIONS. The product of two ellipsoidal 
harmonics of the first kind is a SPHERICAL HARMONIC. 
Whittaker and Watson (1990, pp. 536-537) write 

K12(x) = x3 - ;x[2(b2 + c2) 

4(b2 + c2)2 - 15b2C2] 

L3Ql(x) = @qx2 - $(b2 + 2c2 

(b2 + 2~~)~ - 5b2c2)] 

Lz2(x) = dz[x2 - ;(b2 + 2c2 

~,=+2+yz+.zz_1 
(b2 + 2~~)~ - 5b2c2 )] 

a2 + 8, b2 + 8, c2 + 8, (1) M;’ (x) = dG[x” - ;(2b2 + c2 

- &2b2 + c2)2 - 5b2c2 )] 

and give various types of ellipsoidal harmonics and their 
highest degree terms as 

1. II(O) : 2m 

2. XII(O), yII(O),zII(O) : 2m + 1 

3. yzII(O), zxII(O), xyII(0) : 2m + 2 

4. xyzII(0) : 2m + 3. 

M3Q2 (x) = dz[x” - 5 (2b2 + c2 

(2b2 + c2)2 - 5b2c2)] 

M13(x) = x&x2 - b2)(x2 - c2) 

see also ELLIPSOIDAL HARMONIC OF THE SECOND 
KIND, STIELTJES' THEOREM 

References 
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Whittaker, E. T. and Watson, G. N. A Course in Modern 
Analysis, 4th ed. Cambridge, England: Cambridge Uni- 
versity Press, 1990. 

Ellipsoidal Harmonic of the Second Kind 
Given by 

F&(x) = (an + l)I3;(2) 

dx 

( x2 - b2)(x2 - c2) [E&(x)]2 l  

Elliptic Alpha Function 
Elliptic alpha functions relate the complete ELLIPTIC 
INTEGRALS OF THE FIRST K(k,) and SECOND KINDS 

E(&) at ELLIPTIC INTEGRAL SINGULAR VALUES k, ac- 
cording to 

(1) 

- EWfi - 

4w;k )I 2+&-K(k) (2) 
r r 

(3) 

where &(q) is a THETA FUNCTION and 

k, = A* (4 (4) 

q = e-=fi, (5) 

and A*(r) is the ELLIPTIC LAMBDA FUNCTION. The 
elliptic alpha function is related to the ELLIPTIC DELTA 
FUNCTION by 

It satisfies 

a(r) = $[fi - S(r)]. (6) 

a(4r) = (1 + kr)2a(r) - 2fik,, 

and has the limit 

(7) 

(Borwein et al. 1989). A few specific values (Borwein 
and Borwein 1987, p. 172) are 

a(1) = i 

a(2) = a- 1 

a(3) = fc&- 1) 

a(4) = a(&- 1)" 

a(5) = $(&- d2&-2) 

a(6)=5&+6&-8&-11 

a(7) = $(A- 2) 

a(8) = 2(10 + 7Jz)(l - dfi - 2)" 

a(9) = g3 - 3"'"h(dz- l)] 

a(lO)= -103+72d%46J5+33fi 

a(l2) = 264+X4&-188fi- 108d 

(x(13)= $(J13- d74J13-258) 

a(lS)= $(dz- h-1) 

4(J8- 1) 
a(16) = @l/4 + 1)” 

~~(18) = -3057+2163J2+1764J3-1248& 

a(22)= -12479 - 88242/2+3762fi+2661m 

a(25) = ;[l- 251'4(7- 3&)] 

a(27) = 3[$(4+ 1) - 21'3] 

430) = i{fi- (2-t &)"(3+ da)" 

x(-6-5d%3&-2fi+&~57+4Ofi) 

x [56+38fi+d%(2+&)(3+fi)]) 

a(37)= ;[fi-(171-25v%)&%6] 

a(49) = g 

- d7[fi73/4(33011+12477fi) - 21(9567+3616&)] 

a(46)= $[J46+ (18+13fi+ da)2 

x (18+132/2- 3\/2~~+&ziiz) 

x (200+14fi+26J23+18J46+J462/661+468h)] 

a(58) = [$(a+ 5)]*(99m-- 444)(99&- 70 - 136) 

1 3(-40768961f 28828008&i- 7570606d% 

+5353227d%) 

a(64) 8[2(fi 1) (21'4 l)"] 

- - - 

= (&TyY+ 2594 * 

J. Borwein has written an ALGORITHM which uses lat- 

tice basis reduction to provide algebraic values for a(n). 

see also ELLIPTIC INTEGRAL OF THE FIRST KIND, EL- 

LIPTIC INTEGRAL OF THE SECOND KIND, ELLIPTIC IN- 
TEGRAL SINGULAR VALUE, ELLIPTIC LAMBDA FUNC- 
TION 
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Elliptic Cone 

(the x2 term cannot be eliminated). If EL’ has CHAR- 
ACTERISTIC two, then the situation is even worse. A 
general form into which an elliptic curve over any K 
can be transformed is called the WEIERSTRAJ~ FORM, 
and is given by 

y2 + ay = x3 + bx2 + cxy + dx + e, (4 

where a, b, c, d, and e are elements of K. Luckily, Q, 
R, and ([: all have CHARACTERISTIC zero. 

A CONE with ELLIPTICAL CROSS-SECTION. The para- 
metric equations for an elliptic cone of height h, SEMI- 
MAJOR AXIS a, and SEMIMINOR AXIS b are 

Whereas CONIC SECTIONS can be parameterized by the 
rational functions, elliptic curves cannot. The simplest 
parameterization functions are ELLIPTIC FUNCTIONS. 
ABELIAN VARIETIES can be viewed as generalizations 
of elliptic curves. 

x = (h - z)acos8 

y = (h - z)bsinB 

z = z, 

where 0 E [O, 27~) and z E [0, h]. 

see also CONE, ELLIPTIC CYLINDER, ELLIPTIC 
PARABOLOID, HYPERBOLIC PARABOLOID 
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Fischer, G. (Ed.). Plate 68 in Mathematische Mod- 

elle/MathematicaE Models, Bildband/Photograph Volume. 
Braunschweig, Germany: Vieweg, p. 63, 1986. 

Elliptic Cone Point 

see ISOLATED SINGULARITY 

Elliptic Curve 
Informally, an elliptic curve is a type of CUBIC CURVE 
whose solutions are confined to a region of space which 
is topologically equivalent to a TORUS. Formally, an 
elliptic curve over a FIELD K is a nonsingular CUBIC 
CURVE in two variables, f(X, Y) = 0, with a K-rational 
point (which may be a point at infinity). The FIELD 
Kc is usually taken to be the COMPLEX NUMBERS c, 
REALS Iw, RATIONALS Q, algebraic extensions of Q, p- 
ADIC NUMBERS &, or a FINITE FIELD. 

l3y an appropriate change of variables, a general elliptic 
curve over a FIELD of CHARACTERISTIC # 2,3 

Ax3 + Bx2y + Cxy’ + Ry3 + Ex2 

+Fxy+Gy2+Hx+Iy+J=0, (1) 

where A, B, . . . , are elements of K, can be written in 
the form 

y2 = x3 + ux + b, (2) 

where the right side of (2) has no repeated factors. If K 
has CHARACTERISTIC three, then the best that can be 
done is to transform the curve into 

y2 = x3 + ax2 + bx + c (3) 
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If the underlying FIELD of an elliptic curve is algebraic- 
ally closed, then a straight line cuts an elliptic curve at 
three points (counting multiple roots at points of tan- 
gency). If two are known, it is possible to compute the 
third. If two of the intersection points are K-RATIONAL, 
then so is the third. Let (xl, ~1) and (22, yz) be two 
points on an elliptic curve E with DISCRXMXNANT 

AE = -16(4a3 + 27b’) (5) 

satisfying 

A related quantity 
defined as 

Now define 

AE#~. (6) 

known as the ~-INVARIANT of E is 

E) s 
2s33a3 

4a3 + 27b2 ’ (7) 

i 

- 
A= XI-X2 

for 51 # x2 
3q2+a - for x1 = x2. 

231 

(8) 

Then the coordinates of the third point are 

x3 =x2 -x1 -x2 (9) 

y3 = X(x3 - a)+y1. (10) 

For elliptic curves over Q, Mordell proved that there are 
a finite number of integral solutions. The MORDELL- 
WEIL THEOREM says that the GROUP of RATIONAL 
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POINTS of an elliptic curve over Q is finiteIy generated. 
Let the ROOTS of y2 be ~1, ~2, and ~3~ The discriminant 
is then 

The amazing TANIYAMA-SHIMURA CONJECTURE states 
that all rational elliptic curves are also modular. This 
fact is far from obvious, and despite the fact that the 
conjecture was proposed in 1955, it was not proved until 
1995. Even so, Wiles’ proof surprised most mathemati- 
cians, who had believed the conjecture unassailable. As 
a side benefit, Wiles’ proof of the TANIYAMA-SHIMURA 
CONJECTURE also laid to rest the famous and thorny 
problem which had baffled mathematicians for hundreds 
of years, FERMAT’S LAST THEOREM. 

Swinnerton-Dyer, H. P. F. “Correction to: ‘On l-adic Rep- 
resentations and Congruences for Coefficients of Modu- 
lar Forms.“’ In Modular Functions of One Variable, 

Vol. 4, Proc. Internat. Summer School for Theoret. Phys., 
Univ. Antwerp, Antwerp, RUCA, July-Aug. 1972. Berlin: 
Springer-Verlag, 1975. 

Elliptic Curve Factorization Method 
A factorization method, abbreviated ECM, which com- 
putes a large multiple of a point on a random ELLIPTIC 
CURVE modulo the number to be factored IV. It tends 
to be faster than the POLLARD p FACTORIZATION and 
POLLARD p - 1 FACTORIZATION METHOD. 

see also ATKIN-GOLDWASSER-KILIAN-MORAIN CER- 
TIFICATE, ELLIPTIC CURVE PRIMALITY PROVING, EL- 
LIPTIC PSEUDOPRIME 
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Elliptic Curve Group Law 
The GROUP of an ELLIPTIC CURVE which has been 
transformed to the form 

y2 = x3 + ax + b 

is the set of K-RATIONAL POINTS, including the single 
POINT AT INFINITY. The group law (addition) is de- 
fined as follows: Take 2 &RATIONAL POINTS P and Q. 
Now ‘draw’ a straight line through them and compute 
the third point of intersection R (also a K-RATIONAL 

POINT). Then 
P+Q+R=O 

gives the identity point at infinity. Now find the inverse 
of R, which can be done by setting R = (a, b) giving 
-R = (a, 4). 

This remarkable result is only a special case of a more 
general procedure. Essentially, the reason is that this 
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type of ELLIPTIC CURVE has a single point at infinity 
which is an inflection point (the line at infinity meets 
the curve at a single point at infinity, so it must be an 
intersection of multiplicity three). 

Elliptic Curve Primality Proving 
A class of algorithm, abbreviated ECPP, which provides 
certificates of primality using sophisticated results from 
the theory of ELLIPTIC CURVES. A detailed description 
and list of references are given by Atkin and Morain 
(1990, 1993). 

Adleman and Huang (1987) designed an independent 
algorithm using elliptic curves of genus two. 

see also ATKIN-GOLDWASSER-KILIAN-MORAIN CER- 
TIFICATE, ELLIPTIC CURVE FACTORIZATION METHOD, 
ELLIPTIC PSEUDOPRIME 
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Elliptic Cylinder 

A CYLINDER with ELLIPTICAL CROSS-SECTION. The 
parametric equations for an elliptic cylinder of height h, 
SEMIMAJOR AXIS a, and SEMIMINOR AXIS b are 

y = 6sinW 

Elliptic Cylindrical Coordinates 529 

where B E [0,27r) and z E [0, h]. 

SW UZSO CONE, CYLINDER, ELLIPTIC CONE, ELLIPTIC 
PARABOLOID 

Elliptic Cylindrical Coordinates 

The ‘u coordinates are the asymptotic angle of confocal 
PARABOLA segments symmetrical about the x axis. The 
u coordinates are confocal ELLIPSES centered on the ori- 
gin. 

x = acoshucosv 

y = asinhusinw 

z = z, 

(1) 

(2) 

(3) 

where u f [O,oo), 21 E [0,21& and x E (--oo,co). They 
are related to CARTESIAN COORDINATES by 

XL 

a2 cosh2 ‘1~ 
+ yL 

a2 sinh2 u 
-1 

X2 Y2 --- 
a2 cos2 v a2 sin2 v 

= 1. 

The SCALE FACTORS are 

=a d sinh2 u + sin2 ‘u 

hz=ad sinh2 u sin’ zt + sinh2 u cos2 ‘u 

=a 
cosh(2u) - cos(2w) 

2 

=a d sinh2 u + sin2 ‘u 

hs = 1. 

The LAPLACIAN is 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 
(12) 

x = z, v2 = l (&+-g)+&. (13) 
a2 (sinh2 u + sin2 w) 
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Let 

cl1 = coshu 

m = cos’u 

43 = z. 

Then the new SCALE FACTORS are 

(14) 

(15) 

(16) 

The H 
BLE. 

ELMIXOLTZ DIFFERENTIAL EQUATION~S SEPARA- 

hql  = a 

-J 

a2 - CD2 

412 - 1  

(17) 

h,, =a q12 --22 

J  
l-q12 

(18) 

h 93 = 1. (19) 

see &&YLINDRICAL COORDINATES,HELMHOLTZ DIF- 
FERENTIAL EQUATION- ELLIPTIC CYLINDRICAL Co- 
ORDINATES 
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Elliptic Delta Function 

6(r) = fi - 2a(r), 

where ~lr is the ELLIPTIC ALPHA FUNCTION. 

see also ELLIPTI c ALPH 
GRAL SINGULAR VALUE 

A FUNCTION, ELLIPTIC INTE- 
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Elliptic Exponent ial Function 
The inverse of the ELLIPTIC LOGARITHM 

eln (2) = 
dt 

t3 + at2 + bt’ 

It is doubly periodic in the COMPLEX PLANE. 

Elliptic Fixed Point (Differential Equations) 
A FIXED POINT for which the STABILITY MATRIX is 
purely IMAGINARY, & = &iw (for w > 0). 

see also DIFFERENTIAL EQUATION, FIXED POINT, HY- 
PERBOLIC FIXED POINT (DIFFERENTIAL EQUATIONS), 
PARABOLIC FIXEI) POINT, STABLE IMPROPER NODE, 
STABLE NODE, STABLE SPIRAL POINT, STABLE STAR, 
UNSTABLEIMPROPERNODE,UNSTABLENODE,UNSTA- 
BLE SPIRAL POINT,~NSTABLE STAR 

References 
Tabor, M. “Cl assification of Fixed Points.” sL4.b in Chaos 

and Integrability in Nonlinear Dynamics: An ktroduc- 
tion. New York: Wiley, pp. 22-25, 1989. 

Elliptic Fixed Point (Map) 
A FIXED POINT of a LINEAR TRANSFORMATION (MAP) 
for which the resealed variables satisfy 

(6 - a)2 + 4py < 0. 

see also HYPERBOLIC FIXED POINT (MAP), LINEAR 
TRANSFORMATION, PARABOLIC FIXED POINT 

Elliptic Function 
A doubly periodic function with periods 2wl and 2~2 
such that 

f(r +- 2Wl) = f(z + 2w2) = f(z)7 (1) 

which is ANALYTIC and has no singularities except for 
POLES in the finite part of the COMPLEX PLANE. The 
ratio wl/wz must not be purely real. If this ratio is real, 
the function reduces to a singly periodic function if it is 
rational and a constant if the ratio is irrational (Jacobi, 
1835). ~1 and w2 are labeled such that Q(w~/w~) > 0. A 
“cell” of an elliptic function is defined as a parallelogram 
region in the COMPLEX PLANE in which the function is 
not multi-valued. Properties obeyed by elliptic functions 
Include 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

The number of POLES in a cell is finite. 

The number of ROOTS in a cell is finite. 

The sum of RESIDUES in any cell is 0. 

LIOUVILLE'S ELLIPTIC FUNCTION THEOREM: Anel- 
liptic function with no POLES in a cell is a constant. 

The number of zeros of f(z) - c (the “order”) equals 
the number of POLES of f(z). 
The simplest elliptic function has order two, since a 
function of order one would have a simple irreducible 

POLE, which would need to have a NONZERO residue. 
By property (3), this is impossible. 

Elliptic functions with a single POLE of order 2 with 
RESIDUE 0 are called WEIERSTRAB ELLIPTIC FUNC- 
TIONS. Elliptic functions with two simple POLES 
having residues a0 and --a0 are called JACOBI EL- 
LIPTIC FUNCTIONS. 
Any elliptic function is expressible in terms of ei- 
ther WEIERSTRAB ELLIPTIC FUNCTION or JACOBI 
ELLIPTIC FUNCTIONS. 

The sum of the AFFIXES of ROOTS equals the sum 
of the AFFIXES of the POLES. 

An algebraic relationship exists between any two el- 
liptic functions with the same periods. 

The elliptic functions are inversions of the ELLIPTIC IN- 
TEGRALS. The two standard forms of these functions 
are known as JACOBI ELLIPTIC FUNCTIONS and WEIER- 
STRAB ELLIPTIC FUNCTIONS. JACOBI ELLIPTIC FUNC- 
TIONS arise as solutions to differential equations of the 
form 

d2x 

dt2 
=A+Bx+Cx2+Dx3, (2) 
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and WEIERSTRA~ ELLIPTIC Fv 
tions to differential equations of 

NCTIONS 
the form 

d2x 
dt2 

=A+Bx+Cx2. 

arise as solu- 

see also ELLIPTIC CuwE, ELLIPTIC INTEGRAL, JACOBI 
ELLIPTIC FUNCTIONS, LI~UVILLE'S ELLIPTIC FUNC- 
TION THEOREM, MODULAR FORM, MODULAR FUNC- 
TION, NEVILLE THETA FUNCTION, THETA FUNCTION, 
WEIERSTRAJ~ ELLIPTIC FUNCTIONS 
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Elliptic tinct ional 

see COERCIVE FUNCTIONAL 

Elliptic Geometry 
A constant curvature NON-EUCLIDEAN GEOMETRY 
which replaces the PARALLEL POSTULATE with the 
statement “through any point in the plane, there exist 
no lines PARALLEL to a given line.” Elliptic geometry is 
sometimes also called RIEMANNIAN GEOMETRY. It can 
be visualized as the surface of a SPHERE on which %nes” 
are taken as GREAT CIRCLES. In elliptic geometry, the 
sum of angles of a TRIANGLE is > 180”. 

see also EUCLIDEAN GE OMETRY, HY 
ETRY,N ON-EUCLIDEAN GEOMETRY 

'PERBOLIC GERM- 

Elliptic Group Modulo p 
@a, b)/p denotes the elliptic GROUP modulo p whose el- 
ements are 1 and 00 together with the pairs of INTEGERS 
(x, y) with 0 5 x, y < p satisfying 

Y ‘=x3+ax+b (modp) (1) 

with u and b INTEGERS such that 

4a3 + 27b2 $0 (mod p). (2) 

Given (x1, yl), define 

(Xi,Yi) = (a,yJ (mod P)’ 

The ORDER h of E(a, b)/p is given by 

(3) 

h=l+g(““‘;“‘“) +l], (4) 

where (x3 + ax -t b/p) is the LEGENDRE SYMBOL, 
although this FORMULA quickly becomes impractical. 
However, it has been proven that 

P+1-2fiLh(E(a,b)/P) <p+l+2& (5) 

Furthermore, for p a PRIME > 3 and and INTEGER n in 
the above interval, there exists a and b such that 

h(E(a, WP) = n, 

and the orders of elliptic GROUPS mod p are nearly uni- 
formly distributed in the interval. 

Elliptic Helicoid 
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A generalization 
equations 

of the HELICOID to the parametric and parametric equations 

2 = a cash u cash 21 

y = bsinhucoshv 

z = csinhw. 

(16) 

(17) 

(18) 

x(u, u) = au cos u 

Y (u, 4 = bvsinu 

z(u,u) = cu. 

see also HYPERBOLOID, RULED SURFACE 
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Elliptic Integral 
Elliptic Hyperboloid An elliptic integral is an INTEGRAL of the form 
The elliptic hyperboloid is the generalization of the HY- 
PERBOLOID to three distinct semimajor axes. The ellip- 
tic hyperboloid of one sheet is a RULED SURFACE and 
has Cartesian equation 

(1) 

(1) (2) 

and parametric equations 
where A, B, C, and D are 
~POLYNOM~AL of degree 3 

POLYNOMIALS 

or 4. Another 
in II: and S is 
form is 

x(u,v) = a& + u2 cos 21 (2) 
y(u, u) = b& + u2 sin v (3) 
z(u, v) = cu (4) 

(3) 

where R is a RATIONAL FUNCTION of x and y, w2 is a 
function of x CUBIC or QUADRATIC in x, R(w, z) con- 
tains at least one ODD POWER of w, and w2 has no 
repeated factors. 

for 21 E [0,27r), or 

x(26, v) = a(cosu F v sinu) 

Ybl 4 = b( sinufvcosu) 

z(u,v) = *cv, 

(5) 

(6) 

(7) 
Elliptic integrals can be viewed as generalizations of the 
TRIGONOMETRIC FUNCTIONS and provide solutions to 
a wider class of problems. For instance, while the ARC 
LENGTH of a CIRCLE is given as a simple function of the 
parameter, computing the ARC LENGTH of an ELLIPSE 
requires an elliptic integral. Similarly, the position of a 
pendulum is given by a TRIGONOMETRIC FUNCTION as 
a function of time for small angle oscillations, but the 
full solution for arbitrarily large displacements requires 
the use of elliptic integrals. Many other problems in 
electromagnetism and gravitation are solved by elliptic 
integrals. 

x(u, w) = a coshv cosu 

Y b-4 4 = bcoshwsinu 

4% 4 = csinhv. 

(8) 

(9) 

(10) 

The two-sheeted elliptic hyperb 
Z-AXIS has Cartesian equation 

oloid oriented along the 

(11) A very useful class of functions known as ELLIPTIC 
FUNCTIONS is obtained by inverting elliptic integrals (by 
analogy with the inverse trigonometric functions). EL- 
LIPTIC FUNCTIONS (among which the JACOBI ELLIPTIC 
FUNCTIONS and WEIERSTRASS ELLIPTIC FUNCTION are 
the two most common forms) provide a powerful tool for 
analyzing many deep problems in NUMBER THEORY, as 
well as other areas of mathematics. 

= -1, 

and parametric equations 

x = asinhucosv 

y = bsinhusinv 

z =cztcoshu. 

All elliptic integrals can be written in terms of three 
“standard” types. To see this, write 

The two-sheeted elliptic hyperboloid oriented along the 
X-AXIS has Cartesian equation 

X2 Y2 iz2 = 1 ----- 
a2 u2 c2 05) 

p(w, x> wP(w x)Q(-w, x> 
R(w7x) = m = wQ(w,x)Q(-w,x)’ (4) 
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But since w2 = f(z), 

Q(w, x)$(-w, x) = QI(w, 2) = Q&,x), (5) 

then 

wP(w, x)Q(-w, x) = A + Bx + Cw + Dx2 + Ewx 

+Fw2 + Gw2x + Hw3x 

= (A + Bx + Da2 + Fw2 + Gw2x) 

+w(c + Ex + Hw2x + . . .) 

= PI(X) + wP2(x), (6) 

R(w,x) = 
R(x)+ wP2(4 Rl(X) 

w&l(w) = w  
+ R2(x). (7) 

But any function J R:!(x) dx can be evaluated in terms 
of elementary functions, so the only portion that need 
be considered is 

- dx. 
W 

Now, any quartic can be expressed as S& where 

s1 = a1x2 + 2blX +c1 (9) 

s2 = @X2 + 282X + 43. (10) 

The COEFFICIENTS here are real, since pairs of COM- 
PLEX ROOTS are COMPLEX CONJUGATES 

[x - (R + Ii)] [x - (R - Ii)] 

- x2 + x(-R+ Ii - R - Ii) + (R2 - I’i) - 

= x2 - 2Rx + (R2 + I”). (11) 

If all four ROOTS are real, they must be arranged so as 
not to interleave (Whittaker and Watson 1990, p. 514). 
Now define a quantity X such that S1 + AS2 

(al - Aa2)x2 - (2b1 - 2b2X)x + (cl - X4 

isa SQUARE NUMBER and 

22/c al - Xaz)(cl - X2) = 2(bl - b2A) 

(al - Aa,)(cl - Xc2) - (bl - Xbz)’ = 0. 

Call the ROOTS of this equation X1 and X2, then 

2 

Sl - A& = 
[J 

(al - ka2)x + &FX 
I 

= (al -haa) (x+ Jz) 

E (al - Xlaz)(x - a)2 

Sl - A& = pm+ &q2 

= (al -Xla2) (X+Jz) 

G (al - Xzaz)(x - p)“. 

(12) 

(13) 

(14) 

(15) 

(16) 

Elliptic htegral 

Taking (15)-( 16) and X,(l) - X,(Z) gives 

S2(X2 - Al) = (al - Alaz)(x - a)” 

- (al - A2a2)(x - 0)” 

&(X2 - Al) = &(a1 - Xla2)(x - Q)2 

- &(a1 - A2a2)(x - P”) 

Solving gives 

s1 = a; -;“’ (x - a)2 - 
2 1 

a;2-sA;a2 (x - p)” 
1 

Z - A( 1 x - a)" + &(a: - p)" 

533 ’ 

(17) 

(18) 

(19) 
S2 = y1 I ;la,) (x _ cy>2 _ y I :,ad (x _ py 

2 1 1 

s Az(x - a)” + Bz(x - fl)“, (20) 

so we have 

W2 = SlS2 
- - [A ( 1 x - CY)~ + Bl(x - P>“][A2(x - 0)” + B2(x - P)“]. 

(21) 

Now let 

t=K2 
X-P 

(22) 

dy = [(a: -p)-’ - (x - a)(x - p)-“1 dx 

I cx - 8 - cx - a) dx - 
(x - PI2 

- - (23) 

so 

w2 =(x-p)” [Al (z)2+H’] 

x [A2 (s)+Ba] 

= (x - P)4(Alt2 + &)(Azt2 + Bz), (24) 

and 

w  = (x - P)2&Jlt2 + B1)(Azt2 + B2) (25) 

$ = [k-d&] ’ 
(x - P)2&ht2 + B&&t2 + B2) 

dt - - 
(a - P)&ht2 + Bl)(Azt2 + B2) ’ 

(26) 

Now let 

R (t) R1(x) 3 z- 
a-p' 

(27) 

so 

s RI (a) da: R3(t) dt 
~ - - 

W (AIt + BI)(Azt2 + B2) l  

(28) 
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Rewriting the EVEN and ODD parts can be computed analytically (Whittaker and Watson 
1990, p. 453) in terms of the WEIERSTRAJ~ ELLIPTIC 
FUNCTION with invariants Rs(t) + R3(-t) = 2R4(t2) (29) 

Rs(t) - R3(-t) = 2tRs(t2), (30) 
g2 = uou4 - 4~21~3 + 3az2 (39) 

Q3 =aoa2a4 - 2ala2a3 -a4a12 - ua2uo. (40) gives 

R3@) = $Lven - %dd) = &(ta) + tR5(t2), (31) If a E 20 is a root of f(z) = 0, then the solution is 

II: = x0 + +f'(xo)[p(x;g2,93) - $f"txdl 
-1 

' (41) so we have 

s RI(X) da: R4(t2) dt - - - 
W 

(Ad2 + B&&t2 + B2) 

For an arbitrary lower bound, 

2 = a+ Rs(t2)t dt 

(AIt2 + Bl)(&t2 + B2) ’ (32) Jmg’(r) + +f’(a)[&) - &f”b>l + &f(a)f’W 
q&4 - &f”@)12 - &fWf%> 

9 

(42) Letting 

u E t2 (33) where p(z) s p(z; g2, 93) is a WEIERSTRA~~ ELLIPTIC 

du = 2tdt (34) FUNCTION. 

A generalized elliptic integral can be defined by the func- 
tion 

reduces the second integral to 

Rs (u) du 

(Am + &)(&u + B2) 

I T(a, b) = 2 
42 

s J 
d0 

7r 
(43) 

0 u2 cos2 8 + b2 sin2 8 

(35) 

2 42 d0 
- -- 

7r 
J (44) 

0 
J 

cosB&z2 + b2 tan2 0 

which can be evaluated using elementary functions. 
The first integral can then be reduced by INTEGRA- 
TION BY PARTS to one of the three Legendre elliptic 
integrals (also called Legendre-Jacobi ELLIPTIC INTE- 
GRALS), known as incomplete elliptic integrals of the 
first, second, and third kind, denoted F(@), E&k), 
and II@; 4, k),’ respectively (von K&rmhn and Biot 1940, 
Whittaker and Watson 1990, p. 515). If 4 = r/2, then 
the integrals are called complete elliptic integrals and 
are denoted K(k), E(k), II(n;k). 

(Borwein and Borwein 1987). Now let 

t = btan8 (45) 

dt = b sec2 0 d0. (46) 

But 
sect9 = &FGz, (47) 

Incomplete elliptic integrals are denoted using a MOD- 
ULUS k, PARAMETER m E k2, or MODULAR ANGLE 
a s sin-l k. An elliptic integral is written 1($lm) when 
the PARAMETER is used, I(@) when the MODULUS is 
used, and I(~\QI) when the MODULAR ANGLE is used. 
Complete elliptic integrals are defined when 4 = n/2 
and can be expressed using the expansion 

so 

b 
dt = - 

cos 8 
se&d0 = --&d-d0 

b - - - 
cos 8 

do 

(48) 00 

(1 - k2 sin2 t?)-li2 = x 
(2n - l)!! 

(2n)!! 
k2n sinan 8. (36) 

r&=0 and 
d0 dt 

cos=-qp=p w  An elliptic integral in standard form 

and the equation becomes 

dt 

(a2 + t2)(b2 + t”) 
where 

1 O” J dt - -- 
7r --oo J(u” + t2)(b2 + t”>’ 

(50) f(x) = u4x4 +u3x3 +u2x2 +a1a:+ao, (38) 
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Now we make the further substitution u E i(t - ab/t). 
The differential becomes 

But 

2ut = t2 - ab 

t2 - 2ut - ab = 0 

t=+(2uf&qzi)=ufJu2+ab, 

(64) 

(65) 

(66) 

du = $(I + ab/t2) dt, (51) 

but 2u = t - ab/t, so 

so 

t-u=fJu2Sab, 

and (63) becomes 

(67) 2u/t = 1 - abIt (52) 

and 

abIt = 1 - 221/t 

1-t abIt = 2 - 2u/t = 2(1 - u/t). 

(53) 

(54) 

T(a, b) = 
J 

du 

7T -m J[4u2 + (at- b)2](~2 + ab) 

However, the left side is always positive, so (68) 

1 + abIt = 2 - 2u/t = 211 - u/t1 (55) 

We have therefore demonstrated that 
and the differential is 

T(a, b) = T( +(a + b), Jab). (69) 

dt=f+* (56) We can thus iterate 

ai+ = i(ai + bi) (70) We need to take some care with the limits of integration. 
Write (50) as b. a+1 = d aA, (71) 

as many times as we wish, without changing the value of 
the integral. E3ut this iteration is the same as and there- 
fore converges to the ARITHMETIC-GEOMETRIC MEAN, 
so the iteration terminates at a; = bi = M(ao, bo), and 
we have 

Jrn J 
o- 

f(t) dt = f 0) dt + f(t) dt- (57) -m -m 
Now change the limits to those appropriate for the u 
integration 

Tbo, bo) = T(M(ao, bo), M(ao, bo)) 

1 O” J dt - -- 
7r --oo M2(ao,bo) + t2 

’ 
- - 

xM(ao, bo) Fan-’ (M(:, bo))] ;= 

- - 

so we have picked up a factor of 2 which must be in- 
cluded. Using this fact and plugging (56) in (50) there- 
fore gives 

T(a, b) = 2 
n 

du 

a2b2 + (a2 + b2)t2 + t4’ 
(72) 

Now note that 
(59) 

Complete elliptic integrals arise in finding the arc length 
of an ELLIPSE and the period of a pendulum. They also 
arise in a natural way from the theory of THETA FUNC- 

TIONS. Complete elliptic integrals can be computed us- 
ing a procedure involving the ARITHMETIC-GEOMETRIC 

MEAN. Note that 

u2 = 
t4 - 2abt2 + a2b2 

4t2 

4u2t2 = t4 - 2abt2 + 2abt2 

a2 b2 + t4 = 4u2t2 + 2abt2. 

(60) 

(61) 

(62) 

a2 cos2 0 + b2 sin’ 8 
Plug (62) into (59) to obtain 

dB 
T(a, b) = 2 

n- 

du 

11 - :I d4u2t2 + 2abt2 + (a2 + b2)t2 r Jo a 
d 

cos20+ (i)2sin28 
2 O” 

s 

du - -- 
7T --oo It-uIJ4u2+(a+b)2’ 

(63) 



536 Elliptic Integral 

So we have 

(74) 

whereK(k)isthecomplete ELLIPTIC INTEGRAL OF THE 
FIRST KIND. We are free to let a G a0 E 1 and b z bo E 
.  I  

k’, so 

&(dz) = zK(k) = 1 
T T M(l, k,) ’ (75) 

since k E JCF, SO 

K(k) = 
2ik$L, k’) ’ (76) 

But the ARITHMETIC-GEOMETRIC MEAN is defined by 

ai = 5 l (e-1 + b-1) (77) 

where 

i>o 
i = 0, 

d-@ 2 Ln 
cn-1 = +, - b, = - < 

4a - 4M;:o, bo) ’ (80) 
n-t1 

(79) 

so we have 

K(k) = &, (81) 
N 

where aN is the value to which a, converges. Similarly, 
taking instead ah = 1 and bh = k gives 

K’(k) = $. 
N 

(82) 

Borwein and Borwein (1987) also show that defining 

a2 cos2 +b2 sin2 0 d0 = aE’ 
b 

0 
- 
a 

(83) 
leads to 

2U(an+1,bn+l)-U(an,b,)=anbnT(an,bn), (84) 

so 

K(k) - E(k) 
K(k) 

= $(~0~+2~1~+2~~2~+* l  -+Zncn2) (85) 

for a0 ~landbo~k’,and 

K’(k) - E’(k) 

K’(k) 
= $(cb” + 2ci2 + 22c;2 + l  l  , + 2nc;2)* 

(86) 

Elrip tic Integral 

The elliptic integrals satisfy a large number of identities. 
The complementary functions and moduli are defined by 

K’(k) = K(& - k2 ) = K(k)). (87) 

Use the identity of generalized elliptic integrals 

T(a,b) =T(+(a+b)&b) (88) 

to write 

Define 
k’ z b 

a’ 

and use 
k E & - kt2, 

so 

K(k) = &,K e . ( > 
Now letting 2 s (1 - k’)/(l+ k’) gives 

1(1 + k’) = 1 - k’ + k’(Z + 1) = 1 - 2 

and 

(91) 

(92) 

(93) 

(94) 

(95) 

(96) 

$(l+ k’) = 

Writing k instead of I, 
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E(k) 
l+k - - 
YE (99) 

E(k) = (1 + k’)E - k/K(k). W) 

Expressions in terms of the complementary function can 
be derived from interchanging the moduli and their com- 
plements in (93), (98), (99), and (100). 

k) = K(k’) = &K (e) 

=&K/(/m) 

K’(k) = &,K 

and Elliptic Integral of the First Kind 
Let the MODULUS k satisfy 0 < k2 < 1. (This may 
also be written in terms of the PARAMETER TTZ G k2 or 
MODULAR ANGLE Q = sin-’ k.) The incomplete elliptic 
integral of the first kind is then defined as 

E’(k) = (1+ k)E’ (103 

E’(k) = (+) Et (s) + $K’(k). (104) 
(1) 

(2) 

(3) 

(4 

(5) 
(6) 

Taking the ratios 
Let 

t G sin 8 (1o5) 
dt = cos8dB = d 1 - t2 d0 

s 

sin 4 

FM k) = 

1 dt 

0 di=FFdcT 

gives the MODULAR EQUATION of degree 2. It is also 
true that 

sin 4 s J dt - - 
0 (1 - k2t2)(1 - t”) K(x) = (1+ &7)2 

4 K( [;;z12) - (106) 
Let 

see also ABELIAN INTEGRAL, AMPLITUDE, ARGUMENT 
(ELLIPTIC INTEGRAL), CHARACTERISTIC (ELLIPTIC 
INTEGRAL), DELTA AMPLITUDE, ELLIPTIC FUNCTION, 
ELLIPTIC INTEGRAL OF THE FIRST KINQELLIPTIC IN- 
TEGRAL OF THE SECOND KIND, ELLIPTIC INTEGRAL 
OF THE THIRD KIND, ELLIPTIC INTEGRAL SINGULAR 
VALUE, HEUMAN LAMBDA FUNCTION, JACOBI ZETA 
FUNCTION, MODULAR ANGLE, MODULUS (ELLIPTIC 
INTEGRAL),NOME,PARAMETER 

21 G tan0 

dv = sec2 0 d0 = (1 + u2) d0, 

so the integral can also be written as 

du 

1+ v2 

s 

tan # 
dv - - 

0 dmJ(l + ~2) - J&2 (7) 
References 
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tan 4 

- - s J dv 

(1 + v2)(1 + k’v2) ’ 
(8) 

0 



538 Elliptic Integral of the First Kind 

where ICI’ E 1 - k2 is the complementary MODULUS. 

The integral 

I=’ 00 s J d8 

fi 0 cos8 - COSBO 

which arises in computing the period of a pendulum, is 
also an elliptic integral of the first kind. Use 

cos 0 = 1- 2sin2(+0) (10) 

1- cos0 
sin@?) = p 

J- 2 (11) 

to write 

cod - cos80 = J l- 2sin2(@) - cos80 

=~izxJ~ 

= JZsin( $+j) 4 l- csc2($?o)sin2($9), 

(12) 

so 

s 

00 d0 

0 sin($9o)Jl- csc2($+Jsin2($)’ 
(13) 

Now let 
sin( $9) = sin( J$?o) sin 4, (14) 

so the angle 0 is transformed to 

4 sin 0 
= sin-l - , ( > $0 

w 

which ranges from 0 to 7r/2 as 6 varies from 0 to 00~ 
Taking the differential gives 

+ cos($) d0 = sin($o)cos4d& w  

or 

1 2 1-sin2($&)sin2+dB=sin($o)cos4d+. 
J (17) 

Plugging this in gives 

1 sin( $00) cos 4 d# 

1 - sin2( $0) sin’ 4 sin( $@o)Jm$ 

r/2 

s J 
d4 - - = K(sin($%)), (18) 

0 1 - sin2($) sin2 4 

so 

I=1 

00 

J2 s J d0 
= K(sin( $00)). (19) 

0 cos 8 - cos 80 

Elliptic Integral of the First Kind 

Making the slightly different substitution 4 = e/2, so 
d0 = 2 d$ leads to an equivalent, but more complicated 
expression involving an incomplete elliptic function of 
the first kind, 

1 1 00 

I = 2zz csc(33) o 
s J 

d4 

1 - csc2($0) sin2 UJ 

= csc( $o)F( 300, csc( ;oo>>. 

Therefore, we have proven the identity 

csc zF(z, csc 2) = K(sin EC). 

(20) 

(21) 
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1. B 0 -"o 0 9 0 
0 

[zl - (21 - 121 

The complete elliptic integral of the first kind, illus- 
trated above as a function of nz = k2, is defined by 

K(k) F F($, k) (22) 

n- - - ‘)!+” 

n=O 
s (2n)!! o 

2rr &n 8 do 
(23) 

= +9~2(q) (24) 

n- - - 
l)!!k2~7r (2n - l)!! 

n !! 
n=O (2 > 2 (2n)!! 

7r - -- 
2 

(2n - l)!! 2 k2n 

(2 > n !! 1 (25) 
- +F& $,l;k”) - (26) 

7r - - 
2&T? 

(27) 

where 

is the NOME (for IqI < l), 2F&, b; C; 2) is the HYPERGE- 
OMETRIC FUNCTION, and I+&) is a LECENDRE POLY- 
NOMIAL. K(k) satisfies the LEGENDRE RELATION 

E(k)K’(k) + E’(k)K(k) - K(k)K’(k) = $T, (29) 
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where E(k) and K(k) are complete elliptic integrals of 
the first and SECOND KINDS, and E’(k) and K’(k) are 
the complementary integrals. The modulus IC is often 
suppressed for conciseness, so that E(k) and K(k) are 
often simply written E and K, respectively. 

The DERIVATWE ofK(k) is 

dt E(k) 
(1 - p)(l _ ki2t2) = k(1 - k2) - 

K(k) 
k 

(30) 
$ (kkt2$) = kK, 

. 
(31) 

SO 

dK K 
E=k(l-k2)(dk+k) = 

dK 
k=+k) (32) 

(Whittaker and Watson 1990, pp. 499 and 521). 

see also AMPLITUDE, CHARACTERISTIC (ELLIPTIC 
INTEGRAL), ELLIPTIC INTEGRAL SINGULAR VALUE, 
GAUSS'S TRANSFORMATION, LANDEN’S TRANSFORMA- 
TION,LEGENDRE RELATION,MODULAR ANGLE, MOD- 
ULUS (ELLIPTIC INTEGRAL), PARAMETER 
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Elliptic Integral of the Second Kind 
Let the MODULUS k satisfy 0 < k2 < 1. (This may 
also be written in terms of the PARAMETER vz E k2 or 
MODULAR ANGLE Q! G sin-’ k.) The incomplete elliptic 
integral of the second kind is then defined as 

WA = J ’ d-do. (1) 
0 

A generalization replacing sin 0 with sinh 0 gives 

4 
-iE(i4, -k) = SJ 1 - k2 sinh2 $ de. (2) 

0 

To place the elliptic integral of the second kind in a 
slightly different form, let 

t G sin 0 (3) 

dt=cosOdO= dl-t2d$, (4) 

539 

so the elliptic integral can also be written as 

(5) 

-10 -8 -6 -4 -2 

Re[EllipticE zl Im[EllipticE zl IEllipticE zI 

0 0 0 

[zl - [zl - 121 

The complete elliptic integral of the second kind, illus- 
trated above as a function of the PARAMETER'~, is de- 
fined by 

E(k) = E(+, k) (6) 

=; {l-z [‘;,!:/q2&} (7) 
- $r2F++, +, 1; k2) - 

-- 
(8) 

J 
fi - - dn2 u du, (9) 

0 

where 2FI (a,b;c;x) is the HYPERGEOMETRIC FUNC- 
TION and dnu is a JACOBI ELLIPTIC FUNCTION. The 
complete elliptic integral of the second kind satisfies the 
LEGENDRE RELATION 

E(k)K’(k) + E’(k)K(k) - K(k)K’(k) = $q (10) 

where E and K are complete ELLIPTIC INTEGRALS OF 
THE FIRST and second kinds, and E’ and K’ are the 
complementary integrals. The DERIVATIVE is 

dE - - E(k) - K(k) 

dk - k (11) 

(Whittaker and Watson 1990, p. 521). If k, is a singular 
value (i.e., 

k, = A* CT), (12) 
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where X* is the ELLIPTIC LAMBDA FUNCTION), and 
K(k,) and the ELLIPTIC ALPHA FUNCTION a(r) are 
also known, then 

- Q(T) + K(k)- 1 (13) 
see also ELLIPTIC INTEGRAL OF THE FIRST KIND, EL- 
LIPTIC INTEGRAL OF THE THIRD KIND, ELLIPTIC IN- 
TEGRAL SINGULAR VALUE 
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Elliptic Integral of the Third Kind 
Let 0 < k2 < 1. The incomplete elliptic integral of the 
third kind is then defined as 

I 
4 

n(n; 4, k) = de 

0 (l- n sin2 e)&%ZZ 
(1) 

sin # 
dt - - 

I 
(2) 

0 (1 - nt2)&1 - t2)(1 - k2t2j 

where n is a constant known as the CHARACTERISTIC. 

The complete elliptic integral of the second kind 

II(nlm) = II(n; &lrn) (3) 

is illustrated above. 

see also ELLIPTIC INTEGRAL OF THE FIRST KIND, EL- 
LIPTIC INTEGRAL OF THE SECOND KIND, ELLIPTIC IN- 

TEGRAL SINGULAR VALUE 
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Elliptic Integral Singular Value 
When the MODULUS Jz has a singular value, the complete 
elliptic integrals may be computed in analytic form in 
terms of GAMMA FUNCTIONS. Abel (quoted in Whit-. 
taker and Watson 1990, p. 525) proved that whenever 

(1) 

where a, b, c, d, and n are INTEGERS, K(k) is a com- 
plete ELLIPTIC INTEGRAL OF THE FIRST KIND, and 
K’(k) = K(q’i=i?) is the complementary complete 
ELLIPTIC INTEGRAL OF THE FIRST KIND, then the 
MODULUS k is the ROOT of an algebraic equation with 
INTEGER COEFFICIENTS. 

A MODULUS k, such that 

(2) 

is called a singular value of the elliptic integral. The 
ELLIPTIC LAMBDA FUNCTION A*(T) gives the value of 
k,. Selberg and Chowla (1967) showed that K@*(r)) 
and E(X* (T)) are expressible in terms of a finite number 
of GAMMA FUNCTIONS. The complete ELLIPTIC INTE- 
GRALS OF THE SECOND KIND E(k,) and E’(k,+) canbe 
expressed in terms of K(kT) and K’(k,) with the aid of 
the ELLIPTIC ALPHA FUNCTION a(r). 

The following table gives the values of K(k,) for small 
integral T in terms of GAMMA FUNCTIONS. 

K(b) = 
dJz+ lr($>r(q) 

213/4 1/;; 

3l’4lY3( 9 
K(k3) = p 

27/37r 

K(b) = (h + 2) 

K(b) = 
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K(k1o) = &2 +3&+ Jl4) 

X 
r(~)r(~)r(~)r(~)r(~)r(~)r(~)r(~) 

2560~~ 

K(k11) = 12 + (17 + 3dEy3 - (3&z - 17y312 

Jqb2) = 
3""(J2+ 1)(d3+&)&- fir"($) 

213/3 x 

K(h3) = 
(18 + Sfi)"" 

&Giw 

X l/r(~)r(~)r(~)r(~)r(~)r(~) 

where r(z) is the GAMMA FUNCTIO I and Cl is an alge- 
braic number (Borwein and Borwein 1987, p. 298). 

Borwein and Zucker (1992) give amazing expressions for 
singular values of complete elliptic integrals in terms of 
CENTRAL BETA FUNCTIONS 

P(P) = BCP7 PI* (3) 

Furthermore, they show that K&J is always expressible 
in terms of these functions for n E 1,2 (mod 4). In such 
cases, the I? functions appearing in the expression are of 
the form I’(t/4n) where 1 2 t 5 (2n- 1) and (t, 4n) = 1. 
The terms in the numerator depend on the sign of the 
KRONECKER SYMBOL {t/4n}. Values for the first few n 
are 

K(kl) = 2-“p(a) 

K(k2) = 2-13’4p(;) 

K(k3) = 2-4/33-1/4p(+) = 2-5/33-3/4p(i) 

K(ks) = 2 -33/205-5/S (11 + 5&>‘/” sin( +j7+( $) 

= 2-29/2O5-3/8 
(l-t- dS)""sin(&7+(&) 

K(k6) = 2-47/123-3/4 
(J2 - l>(h + l)p(&> 

= 2-43/123-1/4 
(h - l)P($> 

K&7) 
= 2 .7-3/4 sin($7r)sin&r)B($, 5) 

K(&) = 2-61’2o5-1’4(& - 2)‘l”(Jl0 + 3) P(:)P(&> 
PC +40) 

= 2-15/45-3/4 (J5 - 2y2 
P(~)P(~4Q) 

P(“> 8 

K(h) = R. 217’11 sin( AT) sin( +)B( A, &) 

K(h) = 2-313-5/8(5a + 18)1’4 

K(k14) = JAZZ + fi + dx l  2-13/47-3i8 

[ 

tan( +) tan( $r) 1’4 
X 

I J 

P(&>p(~)P(~> 
tan( $$7r) P($) 

K(&) = 2-13-3’45-7’12B( &, &) 

- 2-23-3’45-3’4(& - l)p(&>P(&) 
- 

1 
PC,) 

where R is the REAL Rook of 

x3 -4x=4=0 (4) 

and C2 is an algebraic number (Borwein and Zucker 
1992). Note that K(kll) is the only value in the above 
list which cannot be expressed in terms of CENTRAL 
BETA FUNCTIONS. 

Using the ELLIPTIC ALPHA FUNCTION, the ELLIPTIC 
INTEGRALS OF THE SECOND KIND can also be found 
from 

E= 

E’ = 

7r 
-+ l- 
4&K [ 

(5) 

(6) 

and by definition, 

K’ = K&i. (7) 

see also CENTRAL BETA FUNCTION, ELLIPTIC ALPHA 
FUNCTION, ELLIPTIC DELTA FUNCTION, ELLIPTIC IN- 
TEGRAL OF THE FIRST KIND, ELLIPTIC INTEGRAL 
OF THE SECOND KIND, ELLIPTIC LAMBDA FUNCTION, 
GAMMA FUNCTION, MODULUS (ELLIPTIC INTEGRAL) 
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Elliptic Integral Singular Value-k1 
The first SINGULAR VALUE kl, corresponding to 

K’(h) = K(h), 

is given by 

1 
kl = - 

Jz 

k;=L, 
1/z 

AS shown in LEMNISCATE FUNCTION, 

I 
1 

J2 dt - - 
0 di=F 

Let 

u E t4 

du = 4t3 dt = 4u314 dt 

dt = ;u-3i4 du, 

then 

+) = $~1u-3/4(1-u)-1~2du 

(1) 

(2) 

(3) 

(4) 

(5) 
(6) 
(7) 

(8) 

where B(a, b) is the BETA FUNCTION and r(a) is the 
GAMMA FUNCTION. NOW use 

r(i) = JG (9) 

and 

(10) 

so 

1 1 sin ( 2 ) 1 - - 
r( > 

- 3 
4 r P 

-g= r(z) 
- - 

T  

Therefore, 

r”(+)fifi r”(a) 
4nJz =4J;;- 

Now consider 

E(A)-I’J 
Let 

l- it” 

1 - t2 
dt. 

so 

t2 E 1 - u2 

2tdt = -2udu 

dt = 
1 

-?udu = u(l - u2)-‘j2 du, 

(12) 

(13) 

(14) 
(15) 

(16) 

_ - 
I 

’ -,(I _ u2)--1/2 du 

0 U 

Now note that 

Now let 

t E u4 

dt = 4u3 du, 
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SO 

But 

so 

t 
-3/4(1 - t)-'12 & 

1 
-1 -- 

4 
s 

t-1/4(1 - t)-li2 & 

0 

- $(3 1. = r(%>r(3> - 
412 > 4r(3 l  

[r(i)]-’ = [$(;)]-’ 

r(z) = 7d[r($)]-1 
r($) = fi, 

Summarizing (12) and (27) gives 

Elliptic Integral Singular Value-k2 
The second SINGULAR VALUE k2, corresponding to 

K’(kz) = hK(kz), 

is given by 

=x2-1, 

k; = h(h- 1). 

For this modulus, 

r( > g 1 I 

w  
8 ’ . 

(22) 

(23) 
(24) 
(25) 

(26) 

(27) 

(1) 

(2) 

(3) 

(4 

Elliptic Integral Singular Value-43 
The third SINGULAR VALUE k3, corresponding to 

is given by 

K’(h) = hK(ka), 

= a(&- Jz). 

As shown by Legendre, 

fi r(i.1 K(k3) = -- 
2 l 33/4 r(Z) 

(Whittaker and Watson 1990, p. 525). In addit 

and 

7ra 1 
E’(k3) = -p - &- ‘K’(k3) 

4 K'(k3) + 2fi ’ 

Summarizing, 

E ‘[ 

E 

(6) 

(7) 

(8) 

(1) 

(2) 

(3) 

‘% 

t (4) 

(5) 

(Whittaker and Watson 1990). 

see also THETA FUNCTION 
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Elliptic Lambda Function 
The X GROUP is the SUBGROUP ofthe GAMMA GROUP 
with a and d ODD; b and c EVEN. The function 

X(t) = A(q) E k2(q) = $$ [ 1 
4 , 

3 

where 
q = ei=t 

(2) 

is a X-MODULAR FUNCTION and & are THETA FUNC- 
TIONS. 

X*(T) gives the value of the MODULUS k, for which the 
complementary and normal complete ELLIPTIC INTE- 

GRALS OF THE FIRST KIND are related by 

(3) 

It can be computed from 

x*(T) E k(q) = 3, 
3 

where 
q E e-+, 

and & is a THETA FUNCTION. 

(4) 

(5) 

From the definition of the lambda function, 

x*(rI) = x* (i) = x*‘(r). (6) 
For all rational T, K@*(T)) and E&A*(r)) are expressi- 
ble in terms of a finite number of GAMMA FUNCTIONS 
(Selberg and Chowla 1967). X*(T) is related to the RA- 
MANUJAN g- AND G-FUNCTIONS by 

A*(n) = +(Js- dz) (7) 

x*(n) = gFi(dgX2 + gil2 - 9:). (8) 
Special values are 

X4(&) = (13&z - 99)(&+ 1)" 

x*(g) = (a - 3)(Jz+ 1)” 

A’($) = (2 - h)(Jz+ d5) 

x*(i)= (J3- J2)2(&+l)2 

x*(l)= 5 

A*(2) = J2 - 1 

x*(3) = +62(&-l) 

X”(4) = 3 - 2J2 

x*(5) = + (dzz- &z) 

X*(6) = (2 - &)(&3- h) 

x*(7) = ;h(3-J?) 

X’(8) = (fi+ 1 - dz)’ 

x*(9) = f(h - 3’/“)(J3 - 1) 

x*(10) = (Jlo- 3)(J2 - 1)" 

x*(11) = & 
W 

l+ 2x11 - 4211-l 

ll+ 2x11 - 4211-l 
> 

x*(12) = (A- 1/2>2(ti- 1)” 
- - 15-10&+8&-6& 

x*(13) = gJ5J13-17- &GTE) 

x*(14) = -ll-Sfi-2(&+2)~/5+4& 

+-\/11+8Jz(2 + 2J2+ Jzdizz) 

x*(15) = @(3 - J5)(& - c3)(2 - J3) 

- -38 - lo&? + 13dqdm 

+3vw~Js+J17) 

X*(18) = (h- 1)3(2 - &)2 

x*(22) = (3dE - 7J2)(10 - 3fi) 

x*(30) = (h - J2)2(2 - &)(A- J5)(4 - di5) 

A’(34) = (Jz - 1)“(3J2 - J17) 

x(J297 + 72di? - J296 + 72fl) 

X*(42) = (-\/z - 1)2(2 - h>“(fi - &)(8 - 3fi) 

X*(58) = (13& - 99)(& - 1)” 

X*(210) = (& - 1)2(2 - &)(J;i - &)2(8 - 3fi) 

x(m - 3)2(4 - d%)2(& - a)(6 - a), 

where 
x11 s (17+ 3&)li3. 

In addition, 

x*(1’) = Y$ 

x*(2’) = d2fi - 2 

x*(3’) = iJz(ti+ 1) 

x*(4’) = 21j4(2Jz - 2) 

x*(5’) = + (GT+ AmE) 

x*(7’) = i&(3+&) 

x*(9’) = $(h+ 3’l”)(J?; - 1) 

X*(12’) = 2&208 + 1472/2 - 120&+ 85&. 

see UZSO ELLIPTIC ALPHA FUNCTION, ELLIPTIC INTE- 
GRAL OF THE FIRST KIND, MODULUS (ELLIPTIC IN- 
TEGRAL), RAMANUJAN g- AND G-FUNCTIONS, THETA 
FUNCTION 
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Elliptic Logarithm 
A generalization of integrals of the form 

s 

X 
dt 

mm’ 

which can be expressed in terms of logarithmic and in- 
verse trigonometric functions to 

eln (2) G 
dt 

t3 + at2 + bt ’ 

The inverse of the elliptic logarithm is the ELLIPTIC EX- 
PONENTIAL FUNCTION. 

Elliptic Modular Function 

4 > 
&“(O, 4 l/8 

z = 634(o,z) ’ [ 1 
where 6 is a THETA FUNCTION. A special case is 

4-e -,fi) z (4& - 7)‘/8. 

see also MODULAR FUNCTION iv 

Elliptic Paraboloid 

A QUADRATIC SURFACE which has ELLIPTICAL CROSS- 
SECTION. The elliptic paraboloid of height h, SEMIMA- 

JOR AXIS a, and SEMIMINOR AXIS b can be specified 
parametrically by 

for zt E [0,27r) and u E [0, h]. 

see &O ELLIPTIC CONE, ELLIPTIC CYLINDER, 
PARABOLOID 
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Elliptic Partial Differential Equation 
A second-order PARTIAL DIFFERENTIAL EQUATION, i.e., 

one of the form 

Auxx + 2Bu,, + Cuyy + Du, + Eu, + F = 0, (1) 

is called elliptic if the MATRIX 

(2) 

is POSITIVE DEFINITE. LAPLACE’S EQUATION and 
POISSON’S EQUATION are examples of elliptic partial 
differential equations. For an elliptic partial differen- 
tial equation, BOUNDARY CONDITIONS are used to give 

the constraint u(x, y) = g(x, y) on dSt, where 

uxx +uyy = f(%%,%X,Y) (3) 

holds in CL 

see U~SO HYPERBOLIC PARTIAL DIFFERENTIAL EQUA- 

TION, PARABOLIC PARTIAL DIFFERENTIAL EQUATION, 
PARTIAL DIFFERENTIAL EQUATION 

Elliptic Plane 

The REAL PROJECTIVE PLANE with elliptic METRIC 
where the distance between two points P and Q is de- 
fined as the RADIAN ANGLE between the projection of 
the points on the surface of a SPHERE (which is tangent 
to the plane at a point S) from the ANTIPODE IV of the 
tangent point. 

References 
Coxeter, H. S. M. Introduction to Geometry, 2nd ed. New 

York: Wiley, p. 94, 1969. 

x = a& cosv 

y = bfi sin 21 

z = u. 
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Elliptic Point 
A point p on a REGULAR SURFACE A,I E Iw3 is said 

to be elliptic if the GAUSSIAN CURVATURE K(p) > 0 
or equivalently, the PRINCIPAL CURVATURES ~1 and ~2 
have the same sign. 

see also ANTICLASTIC, ELLIPTIC FIXED POINT (DIF- 
FERENTIAL EQUATIONS), ELLIPTIC FIXED POINT 
(MAP), GAUSSIAN CURVATURE, HYPERBOLIC POINT, 
PARABOLIC POINT, PLANAR POINT, SYNCLASTIC 

References 
Gray, A. Modern Differential Geometry of Curves and Sur- 

faces. Boca Raton, FL: CRC Press, p. 280, 1993. 

Elliptical Projection 

see MOLLWEIDE PROJECTION 

Elliptic Pseudoprime 
Let E be an ELLIPTIC CURVE defined over the FIELD of 
RATIONAL NUMBERS Q( dq) having equation 

y2 = x3 + ax + b 

with a and b INTEGERS. Let p be a point on E with inte- 
ger coordinates and having infinite order in the additive 
group of rational points of E, and let n be a COMPOS- 
ITE NATURAL NUMBER such that (-d/n) = -1, where 
(-d/n) is the JACOBI SYMBOL. Then if 

(n + 1)P = 0 (mod n) , 

n is called an elliptic pseudoprime for (E, P). 

see also ATKIN-GOLDWASSER-KILIAN-MORAIN CER- 
TIFICATE, ELLIPTIC CURVE PRIMALITY PROVING, 
STRONG ELLIPTIC PSEUDOPRIME 

References 
Balasubramanian, R. and Murty, M. R. “Elliptic Pseudo- 

primes. II.” Submitted. 
Gordon, D. M. “The Number of Elliptic Pseudoprimes.” 

Math. Compt. 52, 231-245, 1989. 
Gordon, D. M. “Pseudoprimes on Elliptic Curves.” In 

The’orie des nombres (Ed. J. M. DeKoninck and 
C. Levesque). Berlin: de Gruyter, pp. 290-305, 1989. 

Miyamoto, I. and Murty, M. R. “Elliptic Pseudoprimes.” 
Math. Comput. 53, 415-430, 1989. 

Ribenboim, P. The New Book of Prime Number Records, 3rd 
ed. New York: Springer-Verlag, pp. 132-134, 1996. 

Elliptic Rotation 
Leaves the CIRCLE 

x2 + y2 = 1 

invariant, 

x’ = xcos0 - ysin8 

y’ = xsin0+ ysin0. 

see also EQUIAFFINITY 

Ellison-Men&s-fiance Constant 

Elliptic Theta Function 

see NEVILLE THETA FUNCTION, THETA FUNCTION 

Elliptic Torus 

A generalization of the ring TORUS produced by stretch- 
ing or compressing in the z direction. It is given by the 

parametric equations 

x(u, v) = (a + bcosv) cosu 

y(u,v) = (a + bcosv)sinu 

~(7.4,~) = csinv. 

see also TORUS 

References 
Gray, A. “Tori.” 511.4 in Modern Differential Geometry 

of Curves and Surfaces. Boca Raton, FL: CRC Press, 
pp. 218-220, 1993. 

Elliptic Umbilic Catastrophe 
A CATASTROPHE which can occur for three control fac- 
tors and two behavior axes. 

see also HYPERBOLIC UMBILIC CATASTROPHE 

Ellipticity 
Given a SPHEROID with equatorial radius a and polar 
radius c, 

1 

U2-C2 

6 a 
a > c (oblate spheroid) 

eI 
c2-a2 

J- 
7. a < c (prolate spheroid) 

see also FLATTENING, ABLATE SPHEROID, PROLATE 
SPHEROID, SPHEROID 

Ellison-Mend&s-fiance Constant 

x&n(E) = +(lnx)2 +ylnx 

nix 

where y is the EULER-MASCHERONI 

D = 2.723.. . 

t D + s(x-1), 

CONSTANT, and 

is the Ellision-Mend&s-France constant. 

References 
Ellison, W. J. and Mend&-France, M. Les nombres premiers. 

Paris: Hermann, 1975. 
Le Lionnais, F. Les nombres remarquables. Paris: Hermann, 

p. 47, 1983, 



Elongated Cupola 

Elongated Cupola 
A n-gonal CUPOLA adjoined to a Zn-gonal PRISM. 

see also ELONGATED PENTAGONAL CUPOLA, ELON- 
GATED SQUARE CUPOLA, ELONGATED TRIANGULAR 
CUPOLA 

Elongated Dipyramid 

see ~2~0 ELONGAT ED PENTAGONAL DIPYRAMID, FLON- 
GATEDSQUARED IPY 'RAMID,ELONGATEDTRIAN GULAR 
IXPYRAMID 

Elongated Dodecahedron 

A SPACE-FILLING POLYHEDRO 
DRON. 

N and PARALLELOHE- 

References 
Coxeter, H. S. M. Regular Polytopes, 3rd ed. New York: 

Dover, pp. 29-30 and 257, 1973. 

Elongated Gyrobicupola 

~~~ELONGATED PENTAGONAL GYROBICUPOLA,ELON- 
GATED SQUARE GYROBICUPOLA, ELONGATED TRIAN- 
GULAR GYROBICUPOLA 

Elongated Gyrocupolarot unda 

~~~ELONGATED PENTAGONAL GYROC UPOLAROTUNDA 

Elongated Orthobicupola 

see ELONGATED PENTAGONAL ORTHOBICUPOLA, 
ELONGATED TRIANGULAR ORTHOBICUPOLA 

Elongated Orthobirotunda 

~~~ELONGATED PENTAGONAL ORTHOBIROTUNDA 

Elongated Orthocupolarotunda 

see ELONGATED PENTAGONAL ORTHOCUPOLAROTUN- 
DA 

Elongated Pentagonal Cupola 

see JOHNSON SOLID 

Elongated Pentagonal Dipyramid 

see JOHNSON SOLID 

Elongated Square Dipyramid 547 

Elongated Pentagonal Gyrobirotunda 

see JOHNSON SOLID 

Elongated Pentagonal Gyrocupolarotunda 

see JOHNSON SOLID 

Elongated Pentagonal Orthobicupola 

see JOHNSON SOLID 

Elongated Pentagonal Orthobirotunda 

see JOHNSON SOLID 

Elongated Pentagonal Orthocupolarotunda 

see JOHNSON SOLID 

Elongated Pentagonal Pyramid 

see JOHNSON SOLID 

Elongated Pentagonal Rotunda 

A PENTAGONAL ROTUNDA adjoined to a decagonal 
PRISM which is JOHNSON SOLID &I. 

Elongated Pyramid 
An n-gonal PYRAMID adjoined to an n-gonal PRISM. 

see also ELONGATED PENTAGONAL PYRAMID, ELON- 
GATED SQUARE PYRAMID, ELONGATED TRIANGULAR 
PYRAMID,GYROELONGATED PYRAMID 

Elongated Rotunda 

~~~ELONGATED PENTAGONAL ROTUNDA 

Elongated Square Cupola 

see JOHNSON SOLID 

Elongated Square 

see JOHNSON SOLID 

Dipyramid 

Elongated Pentagonal Gyrobicupola 

see JOHNSON SOLID 
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Elongated Square Gyrobicupola 

A nonuniform POLYHEDRON obtaiZ?by rotating the 
bottom third of a SMALL RHOMBICUBOCTAHEDRON 
(Ball and Coxeter 1987, p. 137). It is also called 
MILLER’S SOLID, the MILLER-A~KINWZE SOLID, or 

the PSE~DORHOMBICWBOCTAHEDRON, and is JOHNSON 
SOLID J37. 

see also SMALL RHOMBICUBOCTAHEDRON 

References 
Agkinuze, V. G. “0 Eisle polupravil’nyh mnogogrannikov.” 

Math. Prosves’c’. 1, 107-118, 1957. 
Ball, W. W. FL and Coxeter, H. S. M. Mathematical Recre- 

ations and Essays, 13th ed. New York: Dover, pp. 137- 
138, 1987. 

Cromwell, P. R. Polyhedra. New York: Cambridge University 
Press, pp* 91-92, 1997. 

Elongated Square Pyramid 

see JOHNSON SOLID 

Elongated Triangular Cupola 

see JOHNSON SOLID 

Elongated Triangular Dipyramid 

see JOHNSON Soem 

Elongated Triangular Gyrobicupola 

see JOHNSON SOLID 

Elongated Triangular Orthobicupola 

see JOHNSON SOLID 

Elongated Triangular Pyramid 

see JOHNSON SOLID 

Elsasser Function 

s 

l/2 
WY, 4 = =P 

-l/2 

r IZnyu sinh(2ny) - 
1 cosh( 2rr y) - cos( 2rx) 1 dx. 

Encoding 

Embeddable Knot 
A KNOT K is an n-embeddable knot if it can be placed 
on a GENUS n standard embedded surface without 
crossings, but K cannot be placed on any standardly 
embedded surface of lower GENUS without crossings. 
Any KNOT is an n-embeddable knot for some n., The 
FIGURE-OF-EIGHT KNOT is a 2-EMBEDDABLE KNOT. A 
knot with BRIDGE NUMBER b is an n-embeddable knot 
where n < b. 

see aho TUNNEL NUMBER 

Embedding 

see EXTRINSIC CURVATURE, HYPERBOLOID EMBED- 
DING, INJECTION, SPHERE EMBEDDING 

Empty Set 
The SET containing no elements, denoted a. Strangely, 
the empty set is both OPEN and CLOSED for any SET X 
and TOPOLOGY. A GROUPOID, SEMIGROUP, QUASI- 

GROUP, RINGOID, and SEMIRING can be empty. A 
MONOID, GROUP, and RINGS must have at least one 
element, while DIVIS~:ON RINGS and FIELDS must have 
at least two elements. 

References 
Conway, J. l3. and Guy, R. K. The Book of Numbers. New 

York: Springer-Verlag, p. 266, 1996. 

Enantiomer 
Two objects which are MIRROR IMAGES of each other 
are called enantiomers. The term enantiomer is synony- 
mous with ENANTIOMORPH. 

see &O AMPHICHIRAL KNOT, CHIRAL, DISYMMETRIC, 
HANDEDNESS, MIRROR IMAGE, REFLEXIBLE 

References 
Ball, W. W. R. and Coxeter, H. S. M. “Polyhedra.” Ch. 5 in 

Mathematical Recreations and Essays, 13th ed. New York: 
Dover, pp. 130-161, 1987. 

Enantiomorph 

see ENANTIOMER 

Encoding 
An encoding is a way of representing a number or expres- 
sion in terms of another (usually simpler) one. However, 
multiple expressions can also be encoded as a single ex- 
pression, as in, for example, 

(l&b) = $[(u + q2 + 3a + b] 

which encodes a and b uniquely as a single number. 

see UZSO CODE, CODING THEORY 
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Endogenous Variable 
An economic variable which is independent of the 
relationships determining the fequilibrium levels, but 
nonetheless affects the equilibrium. 

see also EXOGENOUS VARIABLE 

References 
Iyanaga, S. and Kawada, Y. (Eds.). Encyclopedic Dictionary 

of Mathematics. Cambridge, MA: MIT Press, p. 458, 1980. 

Endomorphism 
A SURJECTIVE MORPHISM from an object to itself. In 
ERGODIC THEORY, let X be a SET, F a SIGMA ALGE- 
BRA on X and no a PROBABILITY MEASURE. A MAP 
T : X -+ X is called an endomorphism or MEASURE- 
PRESERVING TRANSFORMATION if 

1. T is SURJECTIVE, 

2. T is MEASURABLE, 

3. m(T-lA) = m(A) for all A E F. 

An endomorphism is called ERGODIC if it is true that 
T-lA = A IMPLIES m(A) = 0 or 1, where T-lA = {z E 
X : T(x) E A}. 

see also MEASURABLE FUNCTION, MEASURE-PRESERV- 
ING TRANSFORMATION, MORPHISM, SIGMA ALGEBRA, 
SURJECTWE 

Endraf3 Octic 

EndraB surfaces are a pair of OCTIC SURFACES which 
have168 ORDINARY DOUBLE POINTS. Thisisthe max- 
imum number known to exist for an OCTIC SURFACE, 
although the rigorous upper bound is 174. The equa- 
tions of the surfaces Xg are 

64(x2 - w2)(y2 - W")[(X + y>" - 2w2] 

Kx - Y>” - 2w2] - C-4(1* J2)(x2 + y2)2 

+[8(2 k &)z2 + 2(2 III 7&)w2](x2 + y”) 

-16~~ + 8(1 q= 2&‘)t2w2 - (1 + lZ&)w*}” = 0, 

where w  is a parameter taken as w  = 1 in the above 
plots. All ORDINARY DOUBLE POINTS of Xz are real, 
while 24 of those in XL are complex. The surfaces were 
discovered in a 5-D family of octics with 112 nodes, and 
are invariant under the GROUP Dg @ 22. 

see also OCTIC SURFACE 

References 
EndraB, S. “Octics with 168 Nodes.” http:// www . 

mathematik .uni-mainz.de/AlgebraischeGeometrie/docs 
/Eendrassoctic.shtml, 

EndraB, S. “Flgchen mit vielen Doppelpunkten.” DMV- 
Mitteilungen 4, 17-20, 4/1995. 

EndraB, S. “A Proctive Surface of Degree Eight with 168 
Nodes.” J. Algebraic Geom. 6, 325-334, 1997. 

Energy 

The term energy has an important physical meaning in 
physics and is an extremely useful concept. A much 
more abstract mathematical generalization is defined as 
follows. Let f2 be a SPACE with MEASURE p > 0 and - 
let G(P, Q) b e a real function on the PRODUCT SPACE 
fl x n. When 

(w4 = W’, Q> &(Q) WP) 

= 
s 

Q(P, CL) WP) 

exists for measures p, v 2 0, (cl, Y) is called the MUTUAL 
ENERGY and (p, p) is called the ENERGY. 

see also DIRICHLET ENERGY, MUTUAL ENERGY 

References 
Iyanaga, S. and Kawada, Y. (Eds.). ‘General Potential.” 

5335.B in Encyclopedic Dictionary of Mathematics. Cam- 
bridge, MA: MIT Press, p. 1038, 1980. 

Engel’s Theorem 
A finite-dimensional LIE ALGEBRA all of whose elements 
are ad-NILPOTENT is itself a NILPOTENT LIE ALGEBRA. 

Enneacontagon 
A go-sided POLYGON. 

Enneacontahedron 
A ZONOHEDRON constructed from the 10 diameters of 
the DODECAHEDR~N which has 90 faces, 30 of which 
are RHOMBS of one type and the other 60 of which are 
RHOMBS of another. The enneacontahedron somewhat 
resembles a figure of Sharp. 

see &ODODECAHEDRON,RHOMB, ZONOHEDRON 

References 
Ball, W. W. R. and Coxeter, H. S. M. Mathematical Recre- 

ations and Essays, 13th ed. New York: Dover, pp. 142- 
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Sharp, A. Geometry Improv’d. London, p. 87, 1717. 

Enneadecagon 

A 19-sided POLYGON, sometimes also called the EN- 

NEAKAIDECAGON. 
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Enneagon 

see NONAGON 

Enneagonal Number 

~~~NONAGONAL NUMBER 

Enneakaidecagon 

~~~ENNEADECAGON 

Enneper’s Surfaces 

The Enneper surfaces are a three-parameter family of 
surfaces with constant curvature. In general, they are 
described by elliptic functions. However, special cases 
which can be specified parametrically using ELEMEN- 

TARY FUNCTION include the KUEN SURFACE, REMBS’ 
SURFACES, and SIEVERT'S SURFACE. The surfaces 
shown above can be generated using the ENNEPER-WEI- 
ERSTRAB PARAMETERIZATION with 

f(5) = 1 (1) 
g(C) = c* (2) 

Letting z = rei$ and taking the REAL PART give 

where T E [O,l] and 4 E [-n, n). Letting x = u + iv 
instead gives the figure on the right, 

(do Carmo 1986, Gray 1993, Nordstrand). This surface 
has a HOLE in its middle. Nordstrand gives the implicit 
form 

( 

y2 - x2 
3 

22 
+$z”+$ 

> 

x2> 
2 

- :(x2 + y2 + :x2) + ; 1 = 0. (9) 
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Wolfram Research “Mat hemat ica Version 2.0 Graphics 
Gallery.” http: //uuw . mathsource . corn/ cgi -bin / Math 
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Enneper-Weierstral3 Parameterization 
Gives a parameterization of a MINIMAL SURFACE. 

References 
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Enormous Theorem 

see CLASSIFICATION THEOREM 

Enriques Surfaces 
An Enriques surface X is a smooth compact complex 
surface having irregularity q(X) = 0 and nontrivial 
canonical sheaf Kx such that K: = 0~ (EndraB). 
Such surfaces cannot be embedded in projective 3-space, 
but there nonetheless exist transformations onto singu- 
lar surfaces in projective 3-space. There exists a family 
of such transformed surfaces of degree six which passes 
through each edge of a TETRAHEDRON twice. A sub- 
family with tetrahedral symmetry is given by the two- 
parameter (T, c) family of surfaces 

frX~X1X2X3 + c(xo2x12x22 + xo2xl2x32 
+Xo2X22X32 + 21~x2~23~ = 0 

and the polynomial f,+ is a sphere with radius r, 

fr = (3-r&o2 +x12 +x22 +x32) 

41 +~)(~O~l+~O~Z +x0x3 +x1x2 +X1X3 +x223) 



Entil;e Function 

(EndraB). Eritropy 

Envelope 551 
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Entire finction 
If a function is ANALYTIC on @*, where C* denotes the 
extended COMPLEX PLANE, then it is said to be entire. 

see also ANALYTIC F 
TION, M EROMORPHIC 

UNCTION, HOLOMORPHIC FUNC- 

Entringer Number 
The Entringer numbers E(n, k) are the number of PER- 
MUTATIONS of {&2,... ,n + l}, starting with k + 1, 
which, after initially falling, alternately fall then rise. 
The Entringer numbers are given by 

E(O,O) = 1 

E(n,O) = 0 

together with the RECURRENCE RELATION 

E(n, k) = E(n, k + 1) + E(n - 1, n - k). 

The numbers E(n) = E(n,n) are the SECANT and TAN- 
GENT NUMBERS given by the MACLAURIN SERIES 

secx + tanx 

X2 X3 X4 X5 
=A~+A~x+A~~+A~~+A~~+A~~+.... 

l  l  . l  

see UZSO ALTERNATING PERMUTATION, BOUSTROPHE- 
DON TRANSFORM,EULER ZIGZAG NUMBER,~ERMUTA- 
TION, SECANT NUMBER, SEIDEL-ENTRINGER-ARNOLD 
TRIANGLE, TANGENT NUMBER, ZAG NUMBER, ZIG 
NUMRER 
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Poupard, C. “De nouvelles significations enumeratives des 
nombres d’Entringer.” Disc. Math. 38, 265-271, 1982. 

In-physics, the word entropy has important physical im- 
pl&tions as the amount of “disorder” of a system. In 
mathematics, a more abstract definition is used. The 
(Shannon) entropy of a variable X is defined as 

H.(X) = - x P(X) uP(41~ 
X 

where p(x) is the probability that X is in the state x, 
and plnp,is defined as 0 if p = 0. The joint entropy of 
variables X1, . . . , X, is then defined by 

H(&,...,X,) 

= -))~**~P(xl,...,xn)ln[p(xl,...,x,)]. 

X1 Xn 

see &OKOLMOGOROVENTROPY,KOLMOGOROV-SINAI 
ENTROPY,MAXIMUMENTROPYMETHOD,METRIC EN- 
TROPY, ORNSTEIN'S THEOREM, REDUNDANCY, SHAN- 
NON ENTROPY,TOPOLOGICAL ENTROPY 
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Entscheidungsproblem 

see DECISION PROBLEM 

Enumerative Geometry 
Schubert’s application of the C~MSERVATION o 
BER PRINCIPLE. 

F NUM- 

see ~~SOCONSERVATION OF NUMBERPRINCIPLE 
ITY PRINCIPLE, HILBERT'S PROBLEMS, PERM 
OF MATHEMATICAL RELATIONS'PRINCIPLE 

,DUAL- 
ANENCE 

References 
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Envelope 
The envelope of a one-parameter family of curves given 
implicitly by 

U(X,Y,C) = 0, (1) 

or in parametric form by (f (t, c), g(t, c)), is a curve 
which touches every member of the family. For a curve 
represented by (f(t, c), g(t, c)), the envelope is found by 
solving 

w  09 w 89 o=-------* 
at dc de dt 

(2) 

For a curve represented implicitly, the e 
by simultaneously solving 

au 

ac 
=0 

e is given 

(3) 

u(x, y, c) = 0. (4) 



552 Envelope Theorem Epicycloid 

see also ASTROID, CARDIOID, CATACAUSTIC, CAUSTIC, 
CAYLEYIAN CURVE, D~~RER'S CONCHOID, ELLIPSE EN- 
VELOPE, ENVELOPE THEOREM, EVOLUTE, GLISSETTE, 
HEDGEHOG, KIEPERT’S PARABOLA, LINDELOF'S THE- 
OREM, NEGATIVE PEDAL CURVE 

s 
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Envelope Theorem 
Relates EVOLUTES to single paths in the CALCULUS OF 
VARIATIONS. Proved in the general case by Darboux and 
Zermelo (1894) and Kneser (1898). It states: “When a 
single parameter family of external paths from a fixed 
point 0 has an ENVELOPE, the integral from the fixed 
point to any point A on the ENVELOPE equals the inte- 
gral from the fixed point to any second point B on the 
ENVELOPE plus the integral along the envelope to the 
first point on the ENVELOPE, JOA = JOB + JBA.” 

References 
Kimball, W. S. Calculus of Variations by Parallel Displace- 

ment. London: Butterworth, p. 292; 1952. 

Envyfree 
An agreement in which all parties feel as if they have 
received the best deal. 

Epicycloid 

P 

b 

-@ 

a 

The path traced out by a point P on the EDGE of a 
CIRCLE of RADIUS b rolling on the outside of a CIRCLE 
of RADIUS a. 

It is given by the equations 

x=(a+b)cos+-bcos - 
(a+b > 

4 

y= (a+b)sin+- bsin[a:b ) - 4 

x2 = (a + b)2 cos2 q5 - 2b(a + b) cos 4 cos 

+ b2 cos2 
(a+b > 

- 
b 

4 

y2 = (a+b)2sin24-2b(a+b)sin4sin 

+ b2 sin2 
(a+b > 

- 
b 4 

r2 = x2 + y2 = (a + b)2 + b2 

- 2b(a + b) { cos [ (; + 1) i#j cos+ 

+sin[(i+l)d]sind). (5) 

But 
coscL:cosp + sinasinP= cos(a - p), (6) 

so 

~~ = (a + b)2 + b2 - 2b(a + b) cos [(;++-41 

= (a + b)2 + b2 - 2b(a + b) cos (7) 

Note that $ is the parameter here, not the polar angle. 
The polar angle from the center is 

tan0 = g = 
(a+b)sin+bsin(y4) 

x (a+b)cos+bcos(~& 
($1 

To get n CUSPS in the epicycloid, b = a/n, because then 
n rotations of b bring the point on the edge back to its 
starting position. 

~2=~2[(1+32+(32-2(~)(1+3cos(nq3)] 

=a2 [ 2 1 1 
1+-+G+G 

n 
- (i) (%) cow,] 

= a2 
[ 

n2+2n+2 2(n + 1) 
- - 

n2 n2 cos(nqh) 1 
a2 - - 2 [(n2 + 27-t -I- 2) - 2(n + 1) cos(n$)] t (9) 

so 

tan0 = 
a (F) sin 4 - z sin[(n + l)&] 

a (T) cos 4 - z cos[(n + l)+] 

- (n + 1) sin+ - sin[(n + 1)4] 
- 

(n + 1) cos$ - cos[(n + I)qh] l  

(10) 



Epicycloid -l-Cusped Epicycloid Involute 553 

An epicycloid with one cusp is called a CARDIOID, one 
with two cusps is called a NEPHROID, and one with five 
cusps is called a RANUNCULOID. 

n-epicycloids can also be constructed by beginning with 
the DIAMETER of a CIRCLE, offsetting one end by a se- 
ries of steps while at the same time offsetting the other 
end by steps n times as large. After traveling around 
the CIRCLE once, an n-cusped epicycloid is produced, 
as illustrated above (Madachy 1979). 

Epicycloids have TORSION 

and satisfy 

where p is the RADIUS OF CURVATURE (I/K). 

see UZSO CARDIOID, CYCLIDE, CYCLOID, EPICYCLOID- 
LCUSPED, HYPOCYCLOID, NEPHROID, RANUNCULOID 
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man, pp. 50-52, 1991. 

Yates, R. C. “Epi- and Hypo-Cycloid0 A Handbook on 
Curves and Their Properties. Ann Arbor, MI: J. W. Ed- 
wards, pp. 81-85, 1952. 

A l-cusped epicycloid has b = a, so n = 1. The radius 
measured from the center of the large circle for a l- 
cusped epicycloid is given by EPICYCLOID equation (9) 
with n = 1 so 

2 r2 = a n2 [(n’ +- 2n + 2) - 2(n + 1) cos(n@] 
= a2[(12 + 2 ’ 1+ 2) - 2(1+ 1) cos(1 - qq] 

= a2(5 - 4cos$) (1) 

and 

tan0 = 
2 sin q5 - sin(2q5) 

2 cos (Is - cos(24) l  

(3) 

The 1-cusped epicycloid is just an offset CARDIOID. 

Epicycloid -2-Cusped 

see NEPHR~ID 

Epicycloid Evolute 

The EVOLUTE of the EPICYCLOID 

x=(a+b)cost- bcos [(F) t] 

y- (a+b)sint-bsin vF> 4 
is another EPICYCLOID given by 

X- -&{(a+h)cost+bcos [(gt]} 

Y= &{(,+h)sint+bcos[(F)t]}V 

Epicycloid Involute 
Epicycloid --I-Cusped 
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The INVOLUTE of the EPICYCLOID 

x= (a+b)cost-bcos KT) 4 
y = (a + b) sin t - b sin K3 4 

is another EPICYCLOID given by 

x= e {(a+b)cost+bcos [(F) t]} 

Y= a * {(,+b)sint+bcos[(F)t]}. 

Epicycloid Pedal Curve 

The PEDAL CURVE of an EPICYCLOID with PEDAL 
POINT at the center, shown for an epicycloid with four 
cusps, is not a ROSE as claimed by Lawrence (1972). 

References 
Lawrence, J. D. A Catalog of Special Plane Curves. New 

York: Dover, p. 204, 1972. 

Epicycloid Radial Curve 
R-1 -- 0 / 

/ 
‘A, 

I \ 

The RADIAL CURVE of an EPICYCLOID is shown above 
for an epicycloid with four cusps. It is not a ROSE, as 
claimed by Lawrence (1972). 

References 
Lawrence, J. D. A Catalog of Special Plane Curves. New 

York: Dover, p. 202, 1972. 

Epimenides Paradox 
A PARADOX, also called the LIAR'S PARADOX, at- 
tributed to the philosopher Epimenides in the sixth cen- 
tury BC. “All Cretans are hers.. . One of their own po- 
ets has said so.” A sharper version of the paradox is the 
EUBULIDES PARADOX, “This statement is false.” 

see also EUBULIDES PARADOX, SOCRATES' PARADOX 

References 
Hofstadter, D. R. Gdel, Escher, Bach: An Eternal Golden 

&aid. New York: Vintage Books, p. 17, 1989. 

Epimorphism 
A SURJECTIVE MORPHISM. 

Epispiral 

A plane curve with polar equation 

a 

’ = cos(n6) l  

There are n sections if n is ODD and 2n if n is EVEN. 

References 
Lawrence, J. D. A Catalog of Special Plane Curves. New 

York: Dover, pp. 192-193, 1972. 

Episp 

The IN VERSE 

iral Inverse Curve 
\ / \ / 

\ / / 

/ \ 

W&E of the EPI~PIR\AL 

T = asec(nt) 

with INVERSION CENTER at the origin and inversion ra- 
dius k is the ROSE 

k cos(nt) 
TZ- 

a l  

Epitrochoid 

The ROULETTE traced by a point P attached to a CIR- 

CLE of radius b rolling around the outside of a fixed 
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CIRCLE of radius a. These curves were studied by 
Diirer (1525), Desargues (1640), Huygens (1679), Leib- 
niz, Newton (1686), L’Hospital (1690), Jakob Bernoulli 
(1690)) la Hire (1694), Johann Bernoulli (1695), Daniel 
Bernoulli (1725), Euler (1745, 1781). An epitrochoid ap- 
pears in Diirer’s work Instruction in Measurement with 
Compasses and Straight Edge (1525). He called epitro- 
choids SPIDER LINES because the lines he used to con- 
struct the curves looked like a spider. 

The parametric equations for an epitrochoid are 

EL: = mcost - hcos ( > 
yt 

Y= msint - hsin 

where m E a + b and h is the distance from P to the 
center of the rolling CIRCLE. Special cases include the 
LIMA~ON with a = b, the CIRCLE with a = 0, and the 
EPICYCLOID with h = b. 

see also EPICYCLOID, HYPOTROCHOID, SPIROGRAPH 

References 
Lawrence, J. D. A Catalog of Special Plane Curves. New 

York: Dover, pp. 168470, 1972. 
Lee, X. “Epitrochoid.” http://www.best.com/-xah/Special 

PlaneCurves_dir/Epitrochoid_dir/epitrochoi&html. 
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Epitrochoid Evolute 

Epsilon 
In mathematics, a small POSITIVE INFINITESIMAL quan- 
tity whose LIMIT is usually taken to be 0. The late 
mathematician P. Erd& also used the term “epsilons” 
to refer to children. 

Epsilon-Neighborhood 

see NEIGHBORHOOD 

Epstein Zeta Function 

where g and h are arbitrary VECTORS, the SUM runs 
over a d-dimensional LATTICE, and 1 = -g is omitted if 
g is a lattice VECTOR. 

see also ZETA FUNCTION 

References 
Glasser, M. L. and Zucker, I. J. “Lattice Sums in Theoretical 
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Equal 
Two quantities are said to be equal if they are, in some 
well-defined sense, equivalent. Equality of quantities a 
and b is written a = b. 

A symbol with three horizontal line segments (E) re- 
sembling the equals sign is used to denote both equality 
by definition (e.g., A = B means A is DEFINED to be 
equal to B) and CONGRUENCE (e.g., 13 E 12 (mod 1) 
means 13 divided by 12 leaves a REMAINDER of l-a 
fact known to all readers of analog clocks). 

see also CONGRUENCE, DEFINED, DIFFERENT, EQUAL 
BY DEFINITION, EQUALITY, EQUIVALENT, ISOMOR- 
PHISM 

Equa! by Definition 

see DEFINED 

Equal Detour Point 
Thecenterofanouter SODDY CIRCLE. It has TRIANGLE 
CENTER FUNCTION 

=1+ 
2A 

a 
a(b + c - a) 

= sec(iA) cos($) cos($) + 1. 

Given a point Y not between A and B, a detour of length 

is made walking from A to B via Y, the point is of equal 
detour if the three detours from one side to another via 
Y are equal. If ABC has no ANGLE > 2 sin-l (4/5), 
then the point given by the above TRILINEAR COORDI- 
NATES is the unique equal detour point. Otherwise, the 
ISOPERIMETRIC POINT is also equal detour. 

References 
Kimberling, C. “Central Points and Central Lines in the 

Plane of a Triangle.” Math. Mug. 67, 163-187, 1994. 
Kimb erling , C. “Isoperimetric Point and Equal Detour 

Point .” http://waw.evansville.edu/-ck6/tcenters/ 
recent/isoper.html. 

Veldkamp, G. R. “The Isoperimetric Point and the Point(s) of 
Equal Detour.” Amer. Math. Monthly 92, 546-558, 1985. 
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Equal Parallelians Point 
The point of intersection of the three LINE SEGMENTS, 

each parallel to one side of a TRIANGLE and touching 
the other two, such that all three segments are of the 
same length. The TRILINEAR COORDINATES are 

bc(ca + ab - bc) : ca(ab + bc - ca) : ab(bc + ca - ab). 

References 
Kimberling, C. “Equal Parallelians Point.” http : //www . 

evansville.edu/-ck6/tcenters/recent/eqpaal,html. 

Equality 
A mathematical statement of the equivalence of two 
quantities. The equality “A is equal to B” is written 
A = B. 

see also EQUAL, INEQUALITY 

Equally Likely Outcomes Distribution 
Let there be a set S with N elements, each of them 
having the same probability. Then 

P(S)=P fiEi 

( 1 

= F P(Ei) 
i=l i=l 

N 

= P(Ei) x 1 = NP(Ei). 
-- z- 1 

Using P(S) = 1 gives 

P(Ei) = $ 

see also UNIFORM DISTRIBUTION 

Equi-Brocard Center 
The point Y for which the TRIANGLES BYC, CYA, and 
AYB have equal BROCARD ANGLES. 

References 
Kimberling, C. “Central Points and Central Lines in the 

Plane of a Triangle .” Math. Msg. 67, 163-187, 1994. 

Equiaffinity References 
An AREA-preserving AFFINITY. Equiaffinities include 
the ELLIPTIC ROTATION, HYPERBOLIC ROTATION, HY- 
PERBOLIC ROTATION (CROSSED) ,and PARABOLIC Ro- 
TATION. 

Dunham, W. “Hippocrates’ Quadrature of the Lune.” Ch. 1 
in Journey Through Genius: The Great Theorems of 
Mathematics. New York: Wiley, p. 54, 1990. 

Equidistant Cylindrical Projection 

see CYLINDRICAL EQUIDISTANT PROJECTION 

Equidistant Cylindrical Projection 

Equianharmonic Case 
The case ofthe WEIERSTRAB ELLIPTIC FTJNCTION with 
invariants g2 = 0 and g3 = 1. 

see &~LEMNISCATE CASE,PSEWDOLEMNISCATE CASE 

References 
Abramowite, M. and Stegun, C. A. (Eds.). “Equianharmonic 

Case (gz = 0, g3 = l).” $18.13 in Handbook of Muthemat- 
ical Functions with Formulas, Graphs, and Mathematical 
Tables, 9th printing. New York: Dover, p. 652, 1972. 

Equichordal Point 
A point P for which all the CHORDS passing through P 
are of the same length. It satisfies 

px + py = [co& 

where p is the CHORD length. It is an open question 
whether a plane convex region can have two equichordal 
points. 

see UZSO EQUICHORDAL PROBLEM, EQUIPRODUCT 
POINT, EQUIRECIPROCAL POINT 

Equichordal Problem 
Is there a planar body bounded by a simple closed curve 
and star-shaped with respect to two interior points p 

and Q whose point X-rays at p and Q are both constant? 
Rychlik (1997) h as answered the question in the nega- 
tive. 

see UZSO EQUICH~RDAL POINT 

References 
Rychlik, M. “The Equichordal Point Problem.” Elec. Res. 

Announcements Amer. Math. Sot. 2, 108-123, 1996. 
Rychlik, M. “A Complete Solution to the Equichordal Prob- 

lem of Fujiwara, Blaschke, Rothe, and WeitzenbSck.” In- 
vent. Math. 129, 141-212, 1997. 

Equidecomposable 
The ability of two plane or space regions to be I%- 
SECTED into each other. 

Equidistance Postulate 
PARALLEL lines are everywhere equidistant. This PoS- 
TULATE is equivalent to the PARALLEL AXIOM. 

Equiangular Spiral 

see LOGARITHMIC SPIRAL 



Equidistributed Sequence Equilateral Wangle 557 

Equidistributed Sequence 
A sequence of REAL NUMBERS {xn} is equidistributed 
if the probability of finding xn in any subinterval is pro- 
portional to the subinterval length. 

see also WEYL’S CRITERION 

kkferences 
Kuipers, L. and Niederreiter, EL Uniform Distribution of Se- 

quences. New York: Wiley, 1974. 
P6lya, G. and Szegii, G. Problems and Theorems in Analysis 

I. New York: Springer-Verlag, p. 88, 1972. 
Vardi, T. Computational Ret reations in Mathematics. Read- 

ing, M A: Addison- Wesley, pp. 155456, 1991. 

Equilateral Hyperbola 

~~~RECTAN~ULAR HYPERBOLA 

Equilateral Triangle 

An equilateral triangle is a TRIANGLE with all three 
sides of equal length s. An equilateral triangle also has 
three equal 60’ ANGLES. 

An equilateral triangle can be constructed by TRISECT- 
ING all three ANGLES of any TRIANGLE (MORLEY'S 
THEOREM). NAPOLEON'S THEOREM states that ifthree 
equilateral triangles are drawn on the LEGS of any TRI- 

ANGLE (either all drawn inwards or outwards) and the 
centers of these triangles are connected, the result is an- 
other equilateral triangle. 

Given the distances of a point from the three corners of 
an equilateral triangle, a, b, and c, the length of a side 
s is given by 

3(a4 + b4 + c4 + s4) = (2 + b2 + c2 + s2)2 (1) 

(Gardner 1977, pp. 56-57 and 63). There are infinitely 
many solutions for which a, b, and c are INTEGERS. In 
these cases, one of a, 6, c, and s is DIVISIBLE by 3, one 
by 5, one by 7, and one by 8 (Guy 1994, p. 183). 

The ALTITUDE h of an equilateral triangle is 

h = +&, (2) 

where s is the side length, so the AREA is 

A- ;sh = (3) 

@ 

*p : 

1 
2s 

The INRADIUS r, CIRCUMRADXUS R, and AREA A can 
be computed directly from the formulas for a general 
regular POLYGON with side length s and n = 3 sides, 

The AREAS ofthe INCIRCLE and CIRCUMCIRCLE are 

Let any RECTANGLE be circumscribed about an EQUI- 
LATERAL TRIANGLE. Then 

X+Y=Z, (9) 

where X, Y, and 2 are the AREAS of the triangles in 
the figure (Honsberger 1985). 

Begin with an arbitrary TRIANGLE and find the EXCEN- 
TRAL TRIANGLE. Then fmdthe EXCENTRAL TRIANGLE 
of that triangle, and so on. Then the resulting triangle 
approaches an equilateral triangle. The only RATIONAL 
TRIANGLE is the equilateral triangle (Conway and Guy 
1996). A POLYHEDRON composed of only eauilateral 
triangles is known as a DELTAHEDRON. 

The larges t equilateral t riangle w  *hich can be inscribed 
in a UNIT SQUARE (left) has side length and area 

S=l (10) 

A=+&. (11) 

The smallest equilateral triangle which can be inscribed 
(right) is oriented at an angle of 15” and has side length 
and area 

s = sec(l5”) = & - 1/z 

A=2&-3 

(12) 

(13) 
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(Madachy 1979). 

see also ACUTE TRIANGLE, DELTAHEDRON, EQUILIC 
QUADRILATERAL, FERMAT POINT, GYROELONGATED 
SQUARE DIPYRAMID, ICOSAHEDRON, ISOGONIC CEN- 
TERS, ISOSCELES TRIANGLE, MORLEY'S THEOREM, 
OCTAHEDRON, PENTAGONAL DIPYRAMID,RIGHT TRI- 
ANGLE, SCALENE TRIANGLE,~NUB DISPHENOID,TET- 
RAHEDRON,TRIANGLE,TRIANGULAR DIPYRAMID, TRI- 

AUGMENTED TRIANGULARPRISM,VIVIANI'S THEOREM 
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Equilibrium Point 
An equilibrium point in GAME THEORY is a set of strate- 
gies{&,... , &} such that the ith payoff function I!&(x) 
is larger or equal for any other ith strategy, i.e., 

KC i &,*. .,&) > Ki(& ,..., ~i-l,xi,~i+l,..*,~n). 

see NASH EQUILIBRIUM 

Equilic Quadrilateral 
A QUADRILATERAL in which a pair of opposite sides 
have the same length and are inclined at 60” to each 
other (or equivalently, satisfy (A) + (B) = lZO”). Some 
interesting theorems hold for such quadrilaterals. Let 
ABCD be an equilic quadrilateral with AD = BC and 
(A) + (B) = 120’. Then 

1. The MIDPOINTS P, Q, and R of the diagonals and 
the side CD always determine an EQUILATERAL 
TRIANGLE. 

2. If EQUILATERAL TRIANGLE PCD is drawn out- 
wardly on CD, then APAB is also an EQUILATERAL 
TRIANGLE. 

3. If EQUILATERAL TRIANGLES are drawn on AC,DC, 
and DB away from AB, then the three new VER- 
TICES P, Q, and Rare COLLINEAR. 

See Honsberger (1985) for additional theorems. . 

References 
Garfunkel, J. ‘CThe Equilic Quadrilateral,” Pi MU Epdon 

J., 317-329, Fall 1981. 
Honsberger, R. Mathematical Gems III. Washington, DC: 

Math. Assoc. Amer., pp. 32-35, 1985. 

Equinumerous 
Let A and B be two classes of POSITIVE integers. Let 
A(n) be the number of integers in A which are less than 
or equal to n, and let B(n) be the number of integers in 
B which are less than or equal to n. Then if 

A(n) - B(n), 

A and B are said to be equinumerous. 

The four classes of PRIMES 8k + 1, 8k + 3, 8k + 5, 8k + 7 
are equinumerous. Similarly, since 8k + 1 and 8k + 5 are 
both of the form 41c+l, and 8k+3 and 8k+? are both of 
the form ~JG + 3, 4k; + 1 and 4k + 3 are also equinumerous. 

see also BERTRAND'S POSTULATE, CHOQUET THEORY, 
PRIME COUNTING FUNCTION 

References 
Shanks, D. Solved and Unsolved Problems in Number Theory, 

4th ed. New York: Chelsea, pp. 21-22 and 31-32, 1993. 

Equipollent 
Two statements in LOGIC are said to be equipollent if 
they are deducible from each other. Two SETS with the 
same CARDINAL NUMBER are also said to be equipol- 
lent. The term EQUIPOTENT is sometimes used instead 
of equipollent. 

Equipotent 

see EQUIPOLLENT 

Equipotential Curve 
A curve in 2-D on which the value of a function f(x, y) 
is a constant. Other synonymous terms are ISARITHM 
and ISOPLETH. 

see also LEMNISCATE 

Equiproduct Point 
A point, such as interior points of a disk, such that 

(PI by> = b-t1 t 

where p is the CHORD length. 

see also EQUICH~RDAL POINT, EQUIRECIPROCAL 
POINT 

Equireciprocal Point 
A point, such as the FOCI of an ELLIPSE, which satisfies 

where p is the CHORD length. 

see also EQUICHORDAL POINT, 

1 1 
- + - = [const], 
PX PY 

EQUIPRODUCT POINT 



Equirectangular Projection Eratosthenes Sieve 559 

Equirectangular Projection 

A MAP PROJECTION, alsocaleda RECTANGULAR PRO- 
JECTION, in which the horizontal coordinate is the lon- 
gitude and the vertical coordinate is the latitude. 

Equir ipple 
A distribution of ERROR such that the ERROR remaining 
is always given approximately by the last term dropped. 

Equitangential Curve 

see TRACTRIX 

Equivalence Class 
An equivalence class is defined as a SUBSET of the form 
{z E X : sRa}, where a is an element of X and the NO- 
TATION “xRy” is used to mean that there is an EQUIV- 
ALENCE RELATION between x and y. It can be shown 
that any two equivalence classes are either equal or dis- 
joint, hence the collection of equivalence classes forms a 
partition of X. For all a, b E X, we have aRb IFF a and 
b belong to the same equivalence class. 

A set of CLASS REPRESENTATIVES is a SUBSET of X 
which contains EXACTLY ONE element from each equiv- 
alence class. 

For n a POSITIVE INTEGER, and ~$INTEGERS, consider 
the CONGRUENCE a E b (mod n), then the equivalence 
classes are the sets {. l  . , -2n, -n, 0, n, 2n, . . . }, {. l  . , 
1 - 2n, 1 - n, 1, 1 + n, 1 + 2n, . . l  } etc. The standard 
CLASS REPRESENTATIVES are taken to be 0, 1, 2, . . . . 

n- 1. 

see also CONGRUENCE, C~SET 

References 
Shanks, D. Solved and Unsolved Problems in Number Theory, 

4th ed. New York: Chelsea, pp. 56-57, 1993. 

Equivalence Problem 

see METRIC EQUIVALENCE 

Equivalence Relation 
An equivalence relation on 

PROBLEM 

a set X is a SUBSET of X x 
X, i.e., a collection R of ordered pairs of elements of 
X, satisfying certain properties. Write %cRy” to mean 
(z, y) is an element of R, and we say “z is related to y,” 
then the properties are 

1 l  Reflexive: &a for all a E X, 

2. Symmetric: uRb IMPLIES bRu for all a, b E X 

3. nansitive: uRb and bRc imply uRc for all a, b, c E X, 

where these three properties are completely indepen- 
dent. Other notations are often used to indicate a rela- 
tion, e.g., a E b or a N b. 

see also EQUIVALENCE CLASS, TEICHM~~LLER SPACE 

References 
Stewart, I. and Tall, D. The Foundations of Mathematics. 
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Equivalent 
If A + B and B + A (i.e, A I BAB II A, where q de- 
notes IMPLIES), then A and B are said to be equivalent, 
a relationship which is written symbolically as A M B 
or A + B. However, if A and B are “equivalent by 
definition” (i.e., A is DEFINED to be B), this is writ- 
ten A c B, a notation which conflicts with that for a 
CONGRUENCE. 

see ~2~0 DEFINED, IFF, IMPLIES 

Equivalent Matrig 
An m x n MATRIX A is said to be equivalent to another 
KQ x n MATRIX B IFF 

B=PAQ 

for P and Q any mxn and nxn MATRICES, respectively. 

References 
Gradshteyn, I. S. and Ryzhik, I. M. Tables of Integrals, Se- 

ries, and Products, 5th ed. San Diego, CA: Academic 
Press, p. 1103, 1979. 

Eratosthenes Sieve 
1: ; 13 3 f $ 

lk 

15 5 $7 17 j's 19 11 12 13 3 f 517 17 

If lk 'I" g $4 lf If j$ 
19 fljl 

240 

21 212 23 244 25 2f 27 2k 29 '1" "1' 2k 23 14 25 2k 2p "I" 29 1s 

31 3p 33 3k 35 346 37 348 39 "I" 31 4 3p 344 35 1s 37 'I" '3" $I 

41 "1" 43 "1" 45 "4" 47 "4" 49 $3 41 pj 43 $4 4' "I" 47 4i 49 54!I 

l 2 3 i 5 4 7 I f 14 l 2 3 f 5 8 7 4i $f9 

l1 44 l3 lk 19 9 l7 9 l9 19 l1 1! l3 14 $9 ';I" l7 1! l9 44 
2p 2.42 23 Z& 2F 246 f 2p 29 411 # 242 23 if 2k Q 2J7 11 29 )!I 

31 342 'I' 344 'I" 44 37 348 3p 44 31 9 3p 3k g g 37 348 3p 14 

41 i! 43 9 44 "i" 47 4! 4g i! !  41 14 43 "41 44 P 47 4$ 9 ! I !  

An ALGORITHM for making tables of PRIMES. Sequen- 
tially write down the INTEGERS from 2 to the highest 
number n you wish to include in the table. Cross out 
all numbers > 2 which are divisible by 2 (every second 
number). Find the smallest remaining number > 2. It 
is 3. So cross out all numbers > 3 which are divisible 
by 3 (every third number) l  Find the smallest remaining 
number > 3. It is 5. So cross out all numbers > 5 which 
are divisible by 5 (every fifth number). 

Continue until you have crossed out all numbers divisi- 

ble bY pq 1 h w ere 1x1 is the FLOUR FUNCTION. The 
numbers remaining are PRIME. This procedure is illus- 
trated in the above diagram which sieves up to 50, and 
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therefore crosses out PRIMES up to L&6] = 7. If the 
procedure is then continued up to n, then the number 
of cross-outs gives the number of distinct PRIME factors 
of each number. 
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ErdBs-Anning Theorem 
If an infinite number of points in the PLANE are all sep- 
arated by INTEGER distances, then all the points lie on 
a straight LINE. 

Erdk-Kac Theorem 
A deeper result than the HARDY-RAMANUJAN THEO- 
REM. Let N(z, a, b) be the number of INTEGERS in [3, z] 
such that inequality 

a< w(n)-lnlnn <b 

- &iG - 

holds, where w(n) is the number of different PRIME fac- 
tors of n. Then 

lim N(x, a, b) = (x+4x>> ee-t2/2& 
J2 s 

. 
2-m 7r a 

The theorem is discussed in Kac (1959). 
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Mordell, L. J. and Barrow, D. F. “Solution to Problem 3740.” 
Amer. Math. Monthly 44, 252-254, 1937. 

Oppenheim, A. “The Erd6s Inequality and Other Inequalities 
for a Triangle.” Amer. Math. Monthly 68, 226-230 and 
349, 1961. 

Veldkamp, G. R. “The Erd&-Mordell Inequality.” Nieuw 
Tijdschr. Wisk. 45, 193-196, 1957/1958. 

Erd6s Number 
An author’s Erdss number is 1 if he has co-authored a 
paper with Erdos, 2 if he has co-authored a paper with 
someone who has co-authored a paper with ErdGs, etc. 

References 
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Erdds Reciprocal Sum Constants 

see A-SEQUENCE, B2-SEQUENCE, NONAVERAGING SE- 
QUENCE 

ErdGs-Selfridge Function 
The Erdijs-Selfridge function g(lc) is defined as the least 
integer bigger than k + 1 such that all prime factors of 
(“r’) exceed k: (Ecklund et al. 1974). The best lower 
bound known is 

g(k) 2 exp (c$‘z) 

Analysis and 

Numbers and 
ed. Boston, 

Erdk-Mordell Theorem 
If 0 is any point inside a TRIANGLE AABC, and P, Q, 
and R are the feet of the perpendiculars from 0 upon 
the respective sides BC, CA, and AB, then 

OA+OB+OC>2(OP+OQ+OR). 

Oppenheim (1961) and Mordell (1962) also showed that 

OA x OB x OC 2 (OQ + OR)(OR + OP)(OP + OQ). 
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(Granville and Ramare 1996). Scheidler and Williams 
(1992) tabulated g(k) up to k = 140, and Lukes et al. 
(1997) tabulated g(k) for 135 < k < 200. The values for - - 
n = 2, 3, . . . are 4, 7, 7, 23, 62, 143, 44, 159, 46, 47, 
174, 2239, . l  . (Sloane’s A046105). 

see also BINOMIAL COEFFICIENT, LEAST PRIME FAC- 
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Erd6s Squarefree Conjecture 
The CENTRAL BINOMIAL COEFFICIENT (c) is never 
SQUAREFREE for n > 4. This was proved true for all suf- 
ficiently large 12 by S~RK~ZY’S THEOREM. Goetgheluck 
(1988) proved the CONJECTURE true for 4 < n 5 
242205184 and Vardi (1991) for 4 < n < 2774s40g78. The 
conjecture was proved true in its entirely by Granville 
and Ramare (1996). 

see also CENTRAL BINOMIAL COEFFICIENT 
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ErdBs-Szekeres Theorem 
Suppose a, b f N, n = ab + 1, and ~1, . . . , zn is a 
sequence of n REAL NUMBERS. Then this sequence con- 
tains a MONOTONIC increasing (decreasing) subsequence 
of a + 1 terms or a MONOTONIC decreasing (increasing) 
subsequence of b + 1 terms. DILWORTH'S LEMMA is a 
generalization of this theorem. 

see ~2~0 COMBINATORICS Erf is bounded by 

Erf 

2 4 

Re[Erf z] Im[Erf z] IErf zI 

The “error function” encountered in integrating the 
GAUSSIAN DISTRIBUTION. 

2 z 
erf(z) E - 

J s 
edt2 dt 

7T 0 
(1) 

= 1 - erfc(r) 

= &Y($, x2), 

(2) 

(3) 

where ERFC is the complementary error function and 
~@,a) is the incomplete GAMMA FUNCTION. It can 
also be defined as a MACLAURIN SERIES 

2 O” (q-p- 
erf(r) = - 

d- 7r lx 
?X=O 

n!(2n + 1) ’ (4) 

Erf has the values 

erf(0) = 0 

erf(oo) = 1. 

(5) 

(6) 

It is an ODD FUNCTION 

erf(-z) = -erf(z), (7) 

and satisfies 
erf(r) + erfc(z) = 1. (8) 

Erf may be expressed in terms of a CONFLUENT HYPER- 
GEOMETRIC FUNCTION OF THE FIRST KIND A-4 as 

erf(z) = 25&q;, & -r2) = ze-z2M(1, &.z”). (9) 
d- 7T J r 

1 x2 

s 

O” e-t2 
dt < 

1 

x+ex 
<e (10) 

X -x+&q’ 

Its DERIVATIVE is 

-& erf(x) = (-l)+l 2 JH,(z)e-“Z, (11) 
7T 

where H, is a HERMITE POLYNOMIAL. The first DE- 
RIVATIVE is 

and the integral is 

s 

-22 

erf(z) dz = rerf(z) + C-- 
d- n’ 

(13) 
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For x << 1, erf may be computed from 

2 x 
erf (2) = - 

J s 
Ct2 dt 

7r 0 
(14) 

see also DAWSON'S INTEGRAL, ERFC, ERFI, GAUSSIAN 
INTEGRAL, NORMAL DISTRIBUTION FUNCTION, PROB- 
ABILITY INTEGRAL 

References 

- - 

- 2 - p+l(-l)k - d- 7r c k’(2k + 1) 
k=O ’ 

2 - - -(x - +x3 + &x5 - &x7 + Ax” d- x 
- i&X I1 + . . .) 

2 -,2 2x2 (2 > X2 - - -e 
d- 1+ 

~ +... 
7T l  1.305 1 

(Acton 1990). For x >> 1, 

erf(x) = - & (~meB’2dt-~mem’2dt) 

2 - 
=I- - 

d- s 

e-t2&, 
7T 2 

(15) 

(16) 

(17) 

(18) 

Abramowitz, M. and Stegun, C. A. (Eds.). “Error Function” 
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Erfc 
The “complementary error function” 

2 - 
erfc(x) G - 

d- s 
eDt2 & 

7T 2 
= 1 - erf(x) (2) 

= fiY(& t2), (3) 

where y is the incomplete GAMMA FUNCTION. It has 
the values 

Using INTEGRATION BY PARTS gives 

s- 
e 

X 

erfc(0) = 1 

erfc(m) = 0 

erfc(-x) = 2 - erfc(x) 

(4) 

(5) 

(6) 

Sm 
1 

erfc(x) dx = - 
0 J 7T (7) 

2 2 
e 

-X 
e 

-X 

- ---- - 
2x 4x3 "" 

2-Jz 
erfc2 (x) dx = ~ 

d- 7r ’ (8) 

so 
-X 

2 

erf(x) = 1 - Z--- 
1 

d- 7TX 
l- 222 - ..* 

(19) 

(20) 
A generalization is obtained from the differential equa- 
tion 

d2Y dY 
2 + 2”~ - 2ny = 0. (9) 

and continuing the procedure gives the ASYMPTOTIC 
SERIES 

erf(x) = 1 - "-(x-l - j&C3 
J 7r 

+$y5 - Fx-7 + gx-” + l  . Jm (21) 

A COMPLEX generalization of erf is defined as 

w(z) E eDz2 erfc(-iz) (22) 

i 

s 

- e -t2 dt 2iz - -- --- 
7r 

--oo s 

O” eBt2 dt 

z  - t - 7r o  z=  - t2 l  

(24) 

The general solution is then 

Y = A erfci, (x) + I3 erfci, (-z), (10) 

where erfci,(z) is the erfc integral. For integral n 2 1, 

erfci, (2) = . v g 
[J 

erfc(z) dz (11) 

n 

2 - - 
d- s 

- (t - z>= -p dt 
Te ’ (12) ’ 

7r 0 
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The definition can be extended to n = -1 and 0 using (e.g., ergodic theory being applied to ergodic theory) 
which are interesting. 

2 -g 
erfci&) = -e 

d- 7r 

erfcio (z) = erfc(z). 

(13) 

(14) 

see also ERF, ERFI 
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Erfi 

e&(z) G -i erf (iz). 

see also ERF, ERFC 

Ergodic Measure 
An ENDUMORPHISM is called ergodic if it is true that 
TalA = A IMPLIES m(A) = 0 or 1, where PA = {zc E 
X : T(z) f A}. Examples of ergodic endomorphisms 
include the MAP X -+ 2rr: mod 1 on the unit interval 
with LEBESGUE MEASURE, certain AUTOMORPHISMS of 
the TORUS, and “Bernoulli shifts” (and more generally 
“Markov shifts”). 

Given a MAP T and a SIGMA ALGEBRA, there may be 
many ergodic measures. If there is only one ergodic 
measure, then T is called uniquely ergodic. An example 
of a uniquely ergodic transformation is the MAP EL: H z+ 

a mod 1 on the uni t interval when a is irrational. Here, 

the un .ique ergodic measure is LEBESGUE MEASU RE. 

Ergodic Theory 
Ergodic theory can be described as the statistical and 
qualitative behavior of measurable group and semigroup 
actionson MEASURE SPACES. The GROUP is mostcom- 
monly N, Iw, IV, and Z. 

Ergodic theory had its origins in the work of Boltzmann 
in statistical mechanics. Its mathematical origins are 
due to von Neumann, Birkhoff, and Koopman in the 
1930s. It has since grown to be a huge subject and 
has applications not only to statistical mechanics, but 
also to number theory, differential geometry, functional 
analysis, etc. There are also many internal problems 

see also AMBROSE-KAKUTANI THEOREM, BIRKHOFF'S 
ERGODIC THEOREM, DYE'S THEOREM, DYNAMICAL 
SYSTEM,HOPF'S THEOREM, ORNSTEIN'S THEOREM 
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Ergodic Transformat ion 
A transformation which has only trivial invariant SUB- 
SETS is said to be invariant. 

Erlanger Program 
A program initiated by F. Klein in an 1872 lecture to 
describe geometric structures in terms of their group 
AUTOMORPHISMS. 
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Ermakoff’s Test 
The series c f(n) f or a monotonic nonincreasing f(z) 
is convergent if 

li,eXf(eX) < 1 
2-00 

f( > 
X 

and divergent if 

lim 
X300 
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eXf (eX> -> 
f( > X 
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Error 
The difference between a quantity and its estimated or 
measured quantity. 

see UZSOABSOL 
ATIVE ERROR 

UTE ERROR, PERCENTAGEERROR, REL- 
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Error-Correcting Code 
An error-correcting code is an algorithm for expressing 
a sequence of numbers such that any errors which are 
introduced can be detected and corrected (within cer- 
tain limitations) based on the remaining numbers. The 

The MEAN, VARIANCE, SKEWNESS, and KWRT~SIS are 

P =o (3) 
1 

g2 = - 
2h2 (4) 

study of error-correcting codes and the associated math- 
ematics is known as CODING THEORY. 

71 =o (5) 

72 = 0. (6) 
Error detection is much simpler than error correction, 
and one or more “check” digits are commonly embedded The CUMULANTS are 

in credit card numbers in order to detect mistakes. Early 
space probes like Mariner used a type of error-correcting Kl = 0 (7) 
code called a block code, and more recent space probes 
use convolution codes. Error-correcting codes are also 
used in CD players, high speed modems, and cellular 
phones. Modems use error detection when they compute 
CHECKSUMS, which are sums of the digits in a given 
transmission modulo some number. The ISBN used to 
identify books also incorporates a check DIGIT. 

A powerful check for 13 DIGIT numbers consists of the 
following. Write the number as a string of DIGITS 
UlU2a3-..Ul3. Take al+as+.. . + a13 and double. Now 
add the number of DIGITS in ODD positions which are 
> 4 to this number. Now add a2 + a4 + . . . + a12. The 
check number is then the number required to bring the 
last DIGIT to 0. This scheme detects all single DIGIT 
errors and all TRANSPOSITIONS of adject DIGITS except 
0 and 9. 

1 
K2 = 2h2 (8) 

b-b =0 (9) 

for n > 3. - 

Error Propagation 
Givena FORMULA y= f(z)withan ABSOLUTE ERROR 
in x of dz, the ABSOLUTE ERROR is dy. The RELATIVE 
ERROR is dy/y. If 61: = f (u, v), then 

arr: da: 
xi - iit = (I& - q&-pi-2))~+...’ (1) 

so 

2, 1 N 
see also CHECKSUM, CODING THEORY, GALOIS FIELD, ua: =- 

N-l In xi - 2)" 
HADAMARD MATRIX, ISBN i 
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Error Curve 

see GAUSSIAN FUNCTION 
2, uv = (4) 

Error Function 

see ERF, ERFC 

Error Function Distribution 
A NORMAL DISTRIBUTION with MEAN 0. 

p(x) = +e-h2z2, 
7T 

The CHARACTERISTIC FUNCTION is 

w> 
= p2/P2) 

l  

2- 
uuv = & F(Ui - U)(Vi - a), 

i=l 

(5) 

so 

(1) 

ux2 = uu2 ($)2 +ffv2 Q2 

+2&&v (g) (E) +*- (6) 

If u and w  are uncorrelated, then cUV = 0 so 

(2) 
2 ax 2 

OX =uu2 - 
( > au 

+uv2* (7) 
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Now consider addition of quantities with errors. For 
X = au & bu, 8x/& = a and Bx/dv = H, so 

2 
US = u2uu2 + b2av2 k 2abgUv2. (8) 

For division of quantities with x = &au/v, dx/du = 
&a/u and dx/6v = 7au/v2, so 

OX (3 
2 

a2 
2 

- 
--uu 

2 $- u2u2 

X 
-L-2(‘) (F)uuv2 

I $+ (f)‘- ;T+) (+), (10) 

For exponentiation of quantities with Estimate 

so 

X==U 
&bU = (elnyibu = e*W-Wu, 

dX 
z = fb(lna)e*b’n”” = fb(lna)x, 

(11) 

(12) 

OX = u,b(ln a)x (13) 
OX 
- = blnao,. 

X 
(14) 

If a = e, then 
OX 
- = bu,. 
X 

(15) 

An estimate is an educated guess for an unknown quan- 
tity or outcome based on known information. The mak- 
ing of estimates is an important part of statistics, since 
care is needed to provide as accurate an estimate as 
possible using as little input data as possible. Often, an 
estimate for the uncertainty AE of an estimate E can 
also be determined statistically. A rule that tells how to 
calculate an estimate based on the measurements con- 
tained in a sample is called an ESTIMATOR. 

see also BIAS (ESTIMATOR), ERROR, ESTIMATOR 

For LOGARITHMS of quantities with x = aln(fbu), 
ax/au = a(fb)/(fbu) = a/u, so 

2 
= uu2 

u2 
62 

( > 
u2 

(16) 

For multiplication with x = &zuv, dx/du = &XV and 
ax/au = *uu, so 

2 
OX = u2112uu2 + u2u2uv2 + 2a2uva,v2 (18) 

c-1 OX 2 2 2 a2u2 2a2uu 2 
-OIL 

x - u2u2v2 
2+- 2+ - ~uv 

l($+ ($;;;g;v;r;), (19) 

For POWERS, with x = db, ax/&~ = fub~*~-~ = 

&bx/u, so 

2 2 b2x2 
OX =uu - 

u2 (20) 

-=bs. 
OX 

X U 

~~~UZS~ABSOLUTE ERROR,~ERCENTAGE ERROR,REL- 

ATIVE ERROR 
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Escher’s Map 

f(4 * x (l+cos /3+i sinp)/2 
l  

Escribed Circle 

see EXCIRCLE 

Essential Singularity 
A SINGULARITY a for which f(~)(z- u)~ is not DIFFER- 
ENTIABLE for any INTEGER n > 0. 

see do PICARD'S THEOREM, WEIERSTRA%CASORATI 
THEOREM 
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MA: MIT Press, pp. 1486-1489, 1980. 

Estimator 
An estimator is a rule that tells how to calculate an 
ESTIMATE based on the measurements contained in a 
sample. For example, the “sample MEAN" AVERAGE a: 
is an estimator for the population MEAN p. 

The mean square error of an estimator 8 is defined by 

MSE = ((8 - 0)“). 

Let B be the BIAS, then 

MSE = ([(s - (8)) + B@)12) 

= ((8 - (8))2) + B2(8) = v(e) + B2(8), 

where V is the estimator VARIANCE. 

see ah BIAS (ESTIMATOR), ERROR, ESTIMATE, k- 
STATISTIC 

Eta Function 

see DEDEKIND ETA FUNCTION, DIRICHLET ETA FUNC- 
TION, THETA FUNCTION 

Ethiopian Multiplication 

see RUSSIAN MULTIPLICATION 
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Etruscan Venus Surface 
A 3-D shadow of a 4-D KLEIN BOTTLE. 

see also IDA SURFACE 

References 
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Cruise. New York: W. H. F’reeman, pp. 42-44, 1990. 

Eubulides Paradox 
The PARADOX “This statement is false,” stated in the 
fourth century BC. It is a sharper version of the EPI- 
MENIDES PARADOX, “All Cretans are liers. . . One of 
their own poets has said so.” 

see UZSO EPIMENIDES PARADOX, SOCRATES' PARADOX 

References 
Hofstadter, D. R. Gdel, Escher, Bach; An Eternal Golden 

Braid. New York: Vintage Books, pm 17, 1989. 

Euclid’s Axioms 

see EUCLTD'S POSTULATES 

Euclid’s Elements 

see ELEMENTS 

Euclid’s Fifth Postulate 

see EUCLID'S POSTULATES 

Euclid Number 
The nth Euclid number is defined by 

En=l+fipi, 
i=l 

where pi is the ith PRIME. The first few E, are 3, 
7, 31, 211, 2311, 30031, 510511, 9699691, 223092871, 
6469693231, . . . (Sloane’s A006862). The largest fac- 
tor of E, are 3, 7, 31, 211, 2311, 509, 277, 27953, . l  , 
(Sloane’s A002585). The n. of the first few PRIME Euclid 
numbers E, are 1, 2, 3, 4, 5, 11, 75, 171, 172, 384, 457, 
616, 643, . . . (Sloane’s A014545) up to a search limit of 
700. It is not known if there are an INFINITE number of 
PRIME Euclid numbers (Guy 1994, Ribenboim 1996). 

see UZSOSMARANDACHE SEQUENCES 

References 
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New York: Springer-Verlag, 1996. 
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Euclid’s Theorems 

Euclid’s Postulates 

1. 

2. 

3. 

4. 

5. 

A straight LINE SEGMENT can be drawn joining any 
two points. 

Any straight LINE SEGMENT can be extended indef- 
initely in a straight LINE. 

Given any straight LINE SEGMENT, a CIRCLE can 
be drawn having the segment as RADIUS and one 
endpoint as center. 

All RIGHT ANGLES are congruent. 

If two lines are drawn which intersect a third in such 
a way that the sum of the inner angles on one side 
is less than two RIGHT ANGLES, then the two lines 
inevitably must intersect each other on that side if 
extended far enough. This postulate is equivalent to 
what is known as the PARALLEL POSTULATE. 

Euclid’s fifth postulate cannot be proven as a theorem, 
although this was attempted by many people. Euclid 
himself used only the first four postulates (“ABSOLUTE 
GEOMETRY") for the first 28 propositions of the Ele- 
ments, but was forced to invoke the PARALLEL POSTU- 
LATE on the 29th. In 1823, Janos Bolyai and Nicolai 
Lobachevsky independently realized that entirely self- 
consistent WON-EUCLIDEAN GEOMETRIES" could be 
created in which the parallel postulate did not hold. 
(Gauss had also discovered but suppressed the existence 
of non-Euclidean geometries.) 

see also ABSOLUTE GEOMETRY, CIRCLE, Elements, 
LINE SEGMENT,NON-EUCLIDEAN GEOMETRY,~ARAL- 
LEL POSTULATE,PASCH'S THEOREM,RIGHT ANGLE 

References 
Hofstadter, D. R. Gdel, Escher, Bach: An Eternal Golden 

Braid. New York: Vintage Books, pp, 88-92, 1989. 

Euclid’s Principle 

see EUCLID'S THEOREMS 

Euclid’s Theorems 
A theorem sometimes called “Euclid’s First Theorem” 
or EUCLID'S PRINCIPLE states that if p is a PRIME 
and pjab, then p/a or pjb (where 1 means DIVIDES). A 
COROLLARY is that pIan I p/a (Conway and Guy 1996). 
The FUNDAMENTAL THEOREM OF ARITHMETIC is an- 
other COROLLARY (Hardy and Wright 1979). 

Euclid’s Second Theorem states that the number of 
PRIMES is INFINITE. This theorem, also called the IN- 

FINITUDE OF PRIMES theorem, was proved by Euclid in 
Proposition IX.20 of the Elements. Ribenboim (1989) 
gives nine (and a half) proofs of this theorem. Eu- 
clid’s elegant proof proceeds as follows. Given a finite 
sequence of consecutive PRIMES 2, 3, 5, . . . , p, the num- 
ber 

N=2.3.5g**p+l, (1) 

known as the ith EUCL IDNUMBE R when p = pi is the ith 
PRIME , is either a new PRIMERS the pro duct of PRIMES. 
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If 1v is a PRIME, then it must be greater than the pre- 
vious PRIMES, since one plus the product of PRIMES 
must be greater than each PRIME composing the prod- 
uct. Now, if N is a product of PRIMES, then at least 
one of the PRIMES must be greater than p. This can be 
shown as follows. If nT is COMPOSITE and not greater 
than p, then one of its factors (say F) must be one of 
the PRIMES in the sequence, 2, 3, 5, . . l  , p. It therefore 
DIVIDES the product 2 l  3 l  5 l  l  9~. However, since it is 
a factor of N, it also DIVIDES N. But a number which 
DIVIDES two numbers a and b < a also DIVIDES their 
difference a - b, so F must also divide 

N-(2&5* 9 .p) = (2-3-S l  l mp+1)-(2*3.5. . ‘p) = 1. (2) 

However, in order to divide 1, F must be 1, which is 
contrary to the assumption that it is a PRIME in the 
sequence 2, 3, 5, . . . . It therefore follows that if N 
is composite, it has at least one factor greater than p. 
Since N is either a PRIME greater than p or contains a 
factor greater than p, a PRIME larger than the largest 
in the finite sequence can always be found, so there are 
an infinite number of PRIMES. Hardy (1967) remarks 
that this proof is “as fresh and significant as when it 
was discovered” so that “two thousand years have not 
written a wrinkle” on it. 

A similar argument shows that p! & 1 is PRIME, and 

must be either PRIME or be divisible by a PRIME > p. 
Kummer used a variation of this proof, which is also a 
proof by contradiction. It assumes that there exist only 
a finite number of PRIMES N = pl, 132, . . . , pT. Now 
consider N - 1. It must be a product of PRIMES, so it 
has a PRIME divisor p; in common with N. Therefore, 
piIN-(N-1) = 1 which is nonsense, so we have proved 
the initial assumption is wrong by contradiction. 

It is also true that there are runs of COMPOSITE NUM- 
BERS which are arbitrarily long. This can be seen by 
defining 

where j! is a FACTORIAL. Then the j - 1 consecutive 
numbers n + 2, n + 3, . . . , n +j are COMPOSITE, since 

J 

n E j! = 
rI 

i, 
-- z- 1 

(4) 

n+2=(1~2mmmj)+2=2(1~3~4m~~n+l) (5) 

n+3=(1.2...j)+3=3(1-2*4*5*han+l) (6) 

n+j=(1*2* l *j)+j=j[b2***(j-1)+1]. (7) 

Guy (1981, 1988) points out that while plp2 + l  yn + 1 is 
not necessarily PRIME, letting q be the next PRIME after 

plp2 ’ ’ l  pn + 1, the number Q - plp2 . v l  p, + 1 is almost 
always a PRIME, although it has not been proven that 
this must alurays be the case. 

see UZSO DIVIDE, EUCLID NUMBER, PRIME NUMBER 
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Euclidean Algorithm 
An ALGORITHM for finding the GREATEST COMMUN DI- 
VISOR of two numbers a and b, also called Euclid’s al- 
gorithm. It is an example of a P-PROBLEM whose time 
complexity is bounded by a quadratic function of the 
length of the input values (Banach and Shallit). Let 
a = bq + T, then find a number u which DIVIDES both a 
and b (so that a = su and b = tu), then u also DIVIDES 
T since 

r=a - bq = su - qtu = (s - q+. (1) 

Similarly, find a number w  which DIVIDES b and T (so 
that b = s’v and T = t’v), then ‘u DIVIDES a since 

a = bq + r = s’zlq + t’v = (s’q + t’)v. (2) 

Therefore, every common DIVISOR of a and b is a com- 
mon DIVISOR of b and T, so the procedure can be iterated 
as follows 

a = bql + TI (3) 

b = q2m + r2 (4) 

n = q3r2 + T3 

Tn-2 = Qnrn-l+rn 

Tn-1 = Qn+lrn, 

(5) 

(6) 

(7) 

where rn is GCD(a, b) = (u, b). Lam6 showed that the 
number of steps needed to arrive at the GREATEST COM- 
MON DIVISOR for two numbers less than N is 

log,, N + 10&o d steps < - - 
10&o 4 10&o 4 

(8) 
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where 4 is the GOLDEN MEAN, or 2 5 times the number 
of digits in the smaller number. Numerically, Lame’s 
expression evaluates to 

steps 5 4.785 log,, IV + 1.6723. (9) +C - 3 + O(N-++‘). (16) 

AS shown by LAM& THEOREM, the worst case occurs 

when the ALGORITHM is applied to two consecutive Fr- 
BONACCI NUMBERS. Heilbronn showed that the aver- 
age number of steps is 12 In 2/7r2 logI n = 0.843 log,, n 

for all pairs (n, b) with b < n. Kronecker showed that 
the shortest application of the ALGORITHM uses least 
absolute remainders. The QUOTIENTS obtained are dis- 
tributed as shown in the following table (Wagon 1991). 

Quotient % 

1 41.5 
2 17.0 
3 9.3 

For details, see Uspensky and Heaslet (1939) or Knuth 
(1973). Let T( m,, n) be the number of divisions required 
to compute GCD( m, n) using the Euclidean algorithm, 
and define T(m, 0) = 0 if nz 2 0. Then 

T(m,n) = 
l+T(n,mmodn) form>71 
1 + T(n, m) for m < n. (10) 

Define the functions 

T(n) = k 7, T(m,n) 

O<m<n 

1 
r(n) = - 

4( > c T(m,n) (12) n 
O<m<n 

GCD(m,n)=l 

A(N) = & x WV-d, (13) 

where 4 is the TOTIENT FUNCTION, T(n) is the average 
number of divisions when n is fixed and m chosen at 
random, T(n) is the average number of divisions when 
n is fixed and m is a random number coprime to n, and 
A(N) is the average number of divisions when m and 
n are both chosen at random in [l, N]. Norton (1990) 
showed that 

T( > n= 
12ln2 

7T2 

+c + ~~,4(d)O(d-‘l”+‘>, 
n (14) References 

where A is the VON MANGOLDT FUNCTION and C is 
PORTER’S CONSTANT. Porter (1975) showed that 

12ln2 
T(n) = 7 Inn -I- C + O(n-1’6 -I- E), (15) 

and Norton (1990) proved that 

A(N) = y [InN - i -I- -$‘(z)] 

There exist 22 QUADRATIC FIELDS in which there is a 
Euclidean algorithm (Inkeri 1947). 

see U~SO FERGWSON-FORCADE ALGORITHM 
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Euclidean Construction 

see GEOMETRIC CONSTRUCTION 

Euclidean Geometry 
A GEOMETRY in which EUCLID'S FIFTH POSTULATE 
holds, sometimes also called PARABOLIC GEOMETRY. 
2-D Euclidean geometry is called PLANE GEOMETRY, 
and 3-D Euclidean geometry is called SOLID GEOME- 
TRY. Hilbert proved the CONSISTENCY of Euclidean ge- 
ometry. 

see also ELLIPTIC GEOMETRY, GEOMETRIC CONSTRUC- 
TION, GEOMETRY, HYPERBOLIC GEOMETRY, NON- 
EUCLIDEAN GEOMETRY,~LANE GEOMETRY 
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Euclidean Group 
The GROUP of ROTATIONS and TRANSLATIONS. 

see also ROTATION, TRANSLATION 
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Euclidean Metric 
The FUNCTION f : R” x Ik” + Iw. that assigns to any 
two VECTORS (ICI, . . . , xn) and (yl, . . . , yn) the number 

&Xl - y1)2 +...+(xn - y71J2, 

and so gives the “standard” distance between any two 
VECTORS inR”. 

Euclidean Mot ion 
A Euclidean motion of R" is an AFFINE TRANSFORMA- 
TION whose linear part is an ORTHOGONAL TRANSFOR- 
MATION. 

see also RIGID MOTION 

References 
Gray, A. Modern Differential Geometry of Curves and Sur- 

faces. Boca Raton, FL: CRC Press, p. 105, 1993. 

Euclidean Norm 

see &NORM 

Euclidean Number 
A Euclidean number is a number which can be obtained 
by repeatedly solving the QUADRATIC EQUATION. Eu- 
clidean numbers, together with the RATIONAL NUM- 
BERS, can be constructed using classical GEOMETRIC 
CONSTRUCTIONS. I-Iowever, the cases for which the val- 
ues of the TRIGONOMETRIC FUNCTIONS SINE, COSINE, 
TANGENT, etc., can be written in closed form involv- 
ing square roots of REAL NUMBERS are much more re- 
stricted. 

see also ALGEBRAIC INTEGER, 
CONSTRUCTIBLE NUMBER, RAD 

ALG EBRAIC N 

INTEGER 
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Euclidean Plane 
The 2-D EUCLIDEAN SPACE denoted @. 

see also COMPLEX PLANE, EUCU~EAN SPACE 

Euclidean Space 
Euclidean n-space is the SPACE of all n-tuples of REAL 
NUMBERS, (xl, 22, . . . , 2,) and is denoted Ik”. Iw” is a 
VECTOR SPACE andhas LEBESGUE COVERING DIMEN- 
SION 72. Elements of Ik” are called ~-VECTORS. @ = R 
is the set of REAL NUMBERS (i.e., the REAL LINE), and 
R2 is called the EUCLIDEAN PLANE. In Euclidean space, 
COVARIANT and CONTRAVARIANT quantities are equiv- 
alent SO Zi = Zj. 

see also EUCLIDEAN PLANE, REAL LINE, VECTOR 
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Eudoxus% Kampyle 

see KAMPYLE OF EUDOXUS 

Euler’s 6n + 1 Theorem 
Every PRIME of the form 6n + I can be written in the 
form x2 + 3~‘. 

Euler’s Addit ion Theorem 
Let g(x) = (1 - x2)(1 - k2x2). Then 

where 

CE 
bJso+a$m 

l- k2a2b2 ' 
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Euler Angles 

According to EULER'S ROTATION THEOREM, any Ro- 
TATION may be described using three ANGLES. If the 
ROTATIONS are written in terms of ROTATION MATRI- 
CES B, C, and D, then a general ROTATION A can be 
written as 

A = BCD. 

The three angles giving the three rotation matrices are 
called Euler angles. There are several conventions for 
Euler angles, depending on the axes about which the 
rotations are carried out. Write the MATRIX A as 

In the so-called “z-convention,” illustrated above, 

DZ 

C - - - 

BE 

cos g5 sin+ 0 
-sin@ cosq5 0 

0 0 1 

-1 
0 case sin 8 

-0 0 0 I - sin8 cos0 

- COSTfb sir@ 0’ 
- sin$ cosq!~ 0 

0 0 _ 1. 1 1 
all = cos$cosq5 - cosBsinq5sin$ 

a12 = cos$sinq5+cos6cos+sin$ 

a13 = sin $ sin 8 

a21 = -sinQcos+ cos&k@cosqQ 

a22 = -sin$3in4+ cos8cos~cos~ 

a23 = cos$sin@ 

a31 = sin 0 sin q5 

a32 = - sin 0 cos 4 

(3) 

(4) 

Now, wz corresponds to rotation about the 4 axis, so 
look at the wz component of Aw, 

sin q!~ sin 8 

04 =Alwz = [ 1 cos $J sin 8 4. (9) 
cos 8 

The line of nodes corresponds to a rotation by 8 about 
the J-axis, so look at the wt component of Bw, cos q w = Blw~ = Bib = -sin+ & [ 1 PO> 

0 

Similarly, to find rotation by $.J about the remaining axis, 
look at the w+ component of Bu, 

w = B3w+ = B34 = (11) 

Combining the pieces gives 

sin $J sin 06 + cos $4 
w= cos $J sin 84 - sin + cos 06 + 4, 1 (12) 

For more details, see Goldstein (1980, p. 176) and Lan- 
dau and Lifschitz (1976, p. 111). 

The z-convention Euler angles are given in terms of the 

a33 = case In the “y-convention,” 

To obtain the components of the ANGULAR VELOCITY 
w in the body axes, note that for a MATRIX 

CAYLEY-KLEIN PARAMETERS by 
(5) 

A=[& A2 A3], 

it is true that 

= Alwz + A2wB-+A3wz. (8) 

+ = -2i1n 
( 

,wyv 
*p/4(1+&)1/4 

> 
' 

- 2i1n *p/,(1 +pyy4 
( 

~awyv4 

> 

G - 
- -2i1n *y/4(1 +py)1/4 ' 

( 

&/2 l/4 
P 

> 

- 2i1n 
( 

&I2 l/4 
P 

'ty'/4(1+py)1/4 
> 

8 = *2 cos-1(f~iT3). 

Therefore, 

sin $, = - cos & 

cos *a: = sin *y 

(13) 

(14 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 
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- sin 4 

DE -cos+ -sin4 0 
0 cosqb 0 1 0 1 1 0 

C 3 [ 0 case 
0 

0 -sin8 sin 8 1 co4 

BE [ 
sin+ -COST+ 0 
cos q sin@ 0 

0 0 1 1 
and A is given by 

all = -sin$sin~+cosBcos~cos~ 

a12 = sin$cos~+cos8sin$cos$ 

a13 = - cos + sin 8 

a21 = - cos$sin+ - cos&os$sin$ 

a22 = cos$cos4 - cos&in+sin$ 

U23 = sin Q sin 8 

a31 = sinOcosq5 

a32 = sin&in+ 

a33 = cos 8. 

(22) 

In the “syx” (pitch-roll-yaw) convention, 8 is pitch, q!~ 
is roll, and 4 is yaw. 

(23) 

= eo2 + el 
2 

Ull - ez2 - ea2 

a12 = z(ele2 + e0e3) 

U13 = Z(ele3 - eoe2) 

(24) a21 = Z(ele2 - eoe3) 

a22 = e0 
2 

- e12 + ep2 - es2 

a23 = 2(e2e3 feOe1) 

a31 = 2(eie3 + eoe2) 

a32 = 2(e2e3 - wl) 

a33 = eo2 - e12 - e22 + e32 

(Goldstein 1960, p. 153). 

If the coordinates of two pairs of n points xi and xi are 
known, one rotated with respect to the other, then the 
Euler rotation matrix can be obtained in a straightfor- 
ward manner using LEAST SQUARES FITTING. Write 
the points as arrays of vectors, so 

cos $25 sin@ 0 

D - - - - sin+ (25) 
0 

cos$ 0 1 
0 1 

cod 0 -sin8 

C - - - [ 0 1 0 1 (26) 
sin0 0 cos8 

1 (27) 
and A is given by 

a11 = cos 8 cos t$ 
a12 = cos 0 sin q5 

a13 = - sin 8 

a21 = sin$sin&osq& cos$sin$ 

U22 = sin$sin8sin#+cos$cos$ 

a23 = cos&in$ 

a31 = cos$sin&os4 + sin$sin@ 

U32 = cos+sin&in@ - sin*cos@ 

a33 = cosecos~. 

Using EULER PARAMETERS (whichare QUATERNI ONS), 
an arbitrary ROTATION MATRIX can be described bY 

A set of paratieters sometimes used instead of angles 
are the EULER PARAMETERS eo, el, e2 and e3, defined 

bY 

e0 
4 

e cos - ( > 2 

el 
e= e2 

[ 1 

4 = fisin - . 
( > 2 

e3 

(28) 

Writing the arrays of vectors as matrices gives 

X’ = AX (31) 

X/XT = AXXT, (32) 

and solving for A gives 

A = X’X’(XX’)-‘. (33) 

However, we want the angles 8, 4, and @, not their com- 
binations contained in the MATRIX A. Therefore, write 
the 3 x 3 MATRIX 

as a 1 X~VECTOR 

Now set up the matrices 

Using NONLINEAR LEAST S QUARES FITTING then gives 
solutions which converge to (6 $3 30 

(35) 
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see UZSO CAYLEY-KLEIN PARAMETERS,EULER PARAM- 
ETERS, EULER'S ROTATION THEOREM, INFINITESIMAL 
ROTATION, QUATERNI~N, ROTATION, ROTATION MA- 
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Euler-Bernoulli Triangle 

see SEIDEL-ENTRINGER-ARNOLD TRIANGLE 

Euler Brick 

a 

A RECTANGULAR PARALLELEPIPED (“BRICK") within- 
tegral edges a > b > c and face diagonals dij given by 

d ab = &z2 + b2 (1) 

d ac = J a2 + c2 (2) 

dbc = db2 + c2. (3) 

The problem is also called the BRICK, DIAGONALS 
PROBLEM, PERFECT Box, PERFECT CUBOID, or RA- 
TIONAL CUBOID problem. 

Euler found the smallest solution, which has sides a = 
240, b = 117, and c = 44 and face DIAGONALS dab = 

267, da, = 244, and dbc = 125. Kraitchik gave 257 
cuboids with the ODD edge less than 1 million (Guy 
1994, p. 174). F. Helenius has compiled a list of the 5003 
smallest (measured by the longest edge) Euler bricks. 
The first few are (240, 117, 44), (275, 252, 240), (693, 
480, 140), (720, 132, SS), (792, 231, 160), . l  l  (Sloane’s 
A031173, AO31174, and AO31175). Parametric solutions 
for Euler bricks are also known. 

No solution is known in which the oblique SPACE DIAG- 
ONAL 

dabc = Ja2+b2+c2 (4) 

is also an INTEGER. If such a brick exists, the smallest 
side must be at least 1,281,000,000 (R. Rathbun 1996). 
Such a solution is equivalent 40 solving the DIOPHAN- 
TINE EQUATIONS 

A2 + B2 = C2 (5) 

A2 + D2 = E2 (6) 
B2+D2=F2 (7) 
B2+E2=G2. (8) 

A solution with integral SPACE DIAGONAL and two out 
of three face diagonals is a = 672, b = 153, and c = 104, 
giving dab = 3d%???, da, = 680, dbc = 185, and dabc = 
697. A solution giving integral space and face diagonals 
with only a single nonintegral EDGE is a = 18720, B = 
d211773121, and c = 7800, giving dab = 23711, da, = 
20280, dbc = 16511, and dab= = 24961. 

see also CUBOID, CYCLIC QUADRILATERAL, DIAG- 
ONAL (POLYHEDRON), PARALLELEPIPED, PYTHAGO- 
REAN QUADRUPLE 
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Euler Chain 
A CHAIN (GRAPH) whose EDGES consist of all graph 
EDGES. 

Euler Characteristic 
Let a closed surface have GENUS g. Then the POLYHE- 
DRAL FORMULA becomes the POINCARI? FORMULA 

X=V-E+F=2-29, (1) 

where x is the Euler characteristic, sometimes also 
known as the EULER-P• INCARI? CHARACTERISTIC. In 
terms of the INTEGRAL CURVATURE of the surface K, 

ss K da = 2xx. (2) 

The Euler characteristic is sometimes also called the EU- 
LER NUMBER. It can also be expressed as 

x=po-p1+pz, 

where pi is the ith BETTI NUMBER of the space. 

see also CHROMATIC NUMBER, MAP COLORING 

Euler’s Circle 

see NINE-POINT CIRCLE 

(3) 
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Now attempt to convert the equation from Euler’s Conjecture 

ytt + P(4Yt + dX)Y = 0 (4 
g(k) 

3 Ic 
= 2” + i 

I( ,1 
- 2, 

to one with constant COEFFICIENTS 

d2Y dY 
dt2+Az+By=0 where g(k) is the quantity appearing in WARING'S 

PROBLEM, and 1x1 is the FLOOR FUNCTION. 

see also WARING’S PROBLEM 

(5) 

by using the standard transformation for linear SECOND- 

ORDER ORDINARY DIFFERENTIAL EQUATIONS. Com- 
paring (3) and (5), the functions p(x) and a(x) are 

Euler Constant 
p(x) = E = ax-l 

X 
(6) see e, EULER-MASCHERONI CONSTANT, MACLAURIN- 

CAUCHY THEOREM 
4 1 

P -2 x=-+x . 
X2 

(7) 

Euler’s Criterion 
Let p = 277~ +1 be an ODD PRIME and a a POSITIVE 
INTEGER with &z. Then 

Let B = p and define 

am E 1 (mod P) (1) - - J 2-l da: = lnx. (8) 
IFF there exists an INTEGER t such that 

Then A is given by 

p = t2 (mod p). (2) A E dx> + 2P(x)dx) B1/2 
2[4(x)13’2 

-2px-3 + 2(ax-1)(px-2) - P 
l/2 

- 
2(PX -21312 

In other words, 

&W E 44 (mod p), (3) 
P 

=a--, (9) 

which is a constant. Therefore, the equation becomes a 
second-order ODE with constant COEFFICIENTS where (a/p) is the LEGENDRE SYMBOL. 

see also QUADRATIC RESIDUE d2Y 
p+@ 

dY 
-1)-&+Py=O. (10) 
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Define 

rl~~(-A+~~) 

r24-A423 

(a - 1)” - 4p 1 (12) 
Euler Curvature Formula 

kc = hl ~0s~ e + fi2 sin2 8, 

and 
where K is the normal CURVATURE in a direction making 
an ANGLE 8 with the first principle direction. 

bE ;2/4p-(a:-l)? (14) 
Euler Differential Equation 
The general nonhomogeneous equation is The solutions are 

clerlr + c2er2’ ( a - 1)” > 4p 
y = (cl + c2z)ea” ( a - 1)” = 4p 

eat[cl cos(bz) + c2 sin(bz)] (a - 1)’ < 4p. 
2d2Y dY 

x &?+axdx - +py= S(x). (1) 

(15) 
variable x, 

(a -1)" > 4p 
(a - 1)' = 4p 

+ c2 sin(bln 1x1)] (cw - 1)” < 4p. 

(16) 

The homogeneous equation is 

x2ytt + axy’ + py = 0 (2) 

In terms of the original 

Cl lzlrl + c2 12y2 

y = (~1 + c2 ln ~~~)~~~a 

Iz~*[c~ cos(bln 1x1) 
P 

Y” + q + py = 0. 
X 

(3) 
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Euler’s Displacement Theorem 
The general displacement of a rigid body (or coordinate 
frame) with one point fixed is a ROTATION about some 
axis. Furthermore, a ROTATION may be described in 
any basis using three ANGLES. 

see &O EUCLIDEAN MOTION, EULER ANGLES, RIGID 
MOTION, ROTATION 

Euler’s Finite Difference Transformation 
A transformation for the acceleration of the convergence 
of slowly converging ALTERNATING SERIES, 

Euler’s Distribution Theorem References 
For signe 

since 

(b - 4 

d distances, 
-- -- 

AB-CD+ACaDB+AD.BC=o, 

(d - c) + (c - a)@ - d) + (d - a)(c - b) = 0. 

References 
Johnson, R. A. Modern Geometry: An Elementary Treatise 

on the Geometry of the Triangle and the Circle. Boston, 
MA: Houghton Mifflin, p. 3, 1929. 

Euler Equation 

see als oEuLERIXFFERI~NTIAL EQUATION, EULERFOR- 
MULA, EULER-LAGRANGE DIFFERENTIAL EQUATION 

Euler’s Factorization Method 
Works by expressing IV as a QUADRATIC FORM in two 
different ways l  Then 

N = u2 +b2 = c2 +d2, (1) 

so 
a2 - c2 = d2 - b2 

( a - c)(a + c) = (d - b)(d + b). 

(2) 

(3) 

Let k be the GREATEST COMMON DIVISOR of a - c and 
d-bso 

(where (I, m) denotes 
of 2 and m), and 

a- c = k2 

d-b-km 

(4 4 = 1, 

(4) 

(5) 

(6) 

the GREATEST COMMON DIWSOR 

l(u + c) = m(d + b). 

But since (I, m) = 1, mla + c and 

a+c=mn, (8) 
which gives 

b -I- d = In, (9) 

so we have 

[(ik)2 + ($)‘](Z’ + m2) = $(k2 + n2)(12 + m2) 

= a[(kn)2 + (kE)2 + (nm)2 + (nl)2] 

= i[(d - b)2 + ( a - c)” + (a + c)” + (d + b)2] 

= +(2u2 + 2b2 + 2c2 + 2d2) 

= $(2N+2N) = N. (10) 

see also PRIME FACTORIZATION ALGORITHMS 

Iyanaga, S. and Kawada, Y. (Eds.). Encyclopedic Dictionary 
of Mathematics. Cambridge, MA: MIT Press, p. 1163, 
1980. 

Euler Formula 
The Euler formula states 

iX 
e = cos x + i sin 5, (1) 

where i is the IMAGINARY NUMBER. Note that the Eu- 
LER POLYHEDRAL FORMULA is sometimes also called 
the Euler formula, as is the EULER CURVATURE FOR- 
MULA. The equivalent expression 

ix = ln(cos x + i sinx) (2) 

had previously been published by Cotes (1714). The 
special case of the formula with x = x gives the beautiful 
identity 

eiT + 1 = 0, (3) 

an equation connecting the fundamental numbers i, PI, 
e, 1, and 0 (ZERO). 

The Euler formula can be demonstrated using a series 
expansion 

iX 7 > 

z 

ix n 
e= - 

n! 
n=O 

O” ( n 2n 

E 
- 1) 

12n; 
( 1) 

n-lx2n-1 
- - 

. +ifl -(an - 111 . 
n=O ’ ’ n=l 

\ I 

= cosx + isinx. (4 

It can also be proven using a COMPLEX integral. Let 

z E cost9 + isin (5 

dx= (-sinB+icosO)dO=i(cos8+isin8)de=izdB 

(6) 
(7) 

In z = i8, (8) 

so 

2=-e ” = cod + kin@. (9) 

see also DE MOIVRE’S IDENTITY, EULER POLYHEDRAL 
FORMULA 
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Euler’s Homogeneous finction Theorem 
Let f(z,g) be a HOMOGENEOUS FUNCTION of order 72 
so that 

f (tx, tY> = qx, Y)* (1) 

Mag. 

Rela- 
erlag, 

Then define x’ E zt and y’ E yt. Then 

ntn-lf(x,y) = gg + gg 

w  =x- w af w -==- - ax:’ + ydy’ w4 + Ya(yt)m (2) 

Lau- 

Euler Four-Square Identity 
The amazing polynomial identity 

Let t = 1, then 
(aI2 + m2 + a2 + ad2)(b12 + bz2 + bs2 + bd2) 

- - (ah - aA - asbs - a4b4)2 

+(ah + a2bl + ah - u4b3)2 

-t-(&s - ah -t a& + a4b2)2 

+(a&4 + ah - ad2 + a4b1)2, 

af w 
XT& +yay = nf(x,y). (3) 

This can be generalized to an arbitrary number of vari- 
ables 

af 
X:i- 

dXi 
= nf (4, (4) 

communicated by Euler in a letter to Goldbach on April 
15, 1705. The identity also follows from the fact that the 
norm of the product of two QUATERNIONS is the product 
of the norms (Conway and Guy 1996). 

where EINSTEIN SUMMATION has been used. 

Euler’s Hypergeometric Transformations 
see also FIBONACCI 
SQUARE THEOREM 

IDENTITY, LAGRANGE'S FOUR- 

S 
l 

2FI(u, b; c; z) = 
p-1(1 - p-1 dt 

(l-tz)” ’ (1) 
0 
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where 2Fl(a, b;c; Z) is a HYPERGEOMETRIC FUNCTION. 
The solution can be written using the Euler’s transfor- 
mations 

Euler’s Graeco-Roman Squares Conjecture 
Euler conjectured that there do not exist GRAECO- 
ROMAN SQUARES ( now known as EULER SQUARES) of 
order 72 = 4k 
found to exist 

+ 2 for k = 1, 2, 
in 1959, refuting 

Such squares 
CONJE CTURE. 

were 
tik’ 

see also EULER SQUARE, LATIN SQUARE 
in the equivalent forms 

Euler Graph 
A GRAPH containing an EULERIAN CIRCUIT. An undi- 
rected GRAPH is Eulerian IFF every VERTEX has EVEN 
DEGREE. A DIRECTED GRAPH is Eulerian IFF ev- 
ery VERTEX has equal INDEGREE and OUTDEGREE. A 
planar BIPARTITE GRAPH is DUAL to a planar Euler 
graph and vice versa. The number of Euler graphs with 
n, nodes are 1, 1, 2, 3, 7, 16, 54, 243, . . . (Sloane’s 
AO02854). 

zFl(u,b;c;z) = (1 Ix)-” &(a, c - b; c; z/(z - 1)) (6) 
= (1 -z)-b2FI(c-u,b;c;z/(z- 1)) (7) 

= (1 - z)~+’ 2FI(c - u,c - b; c;z). (8) 

see UZSO HYPERGEOMETRIC FUNCTION 

References 
Morse, P. M. and Feshbach, H. Methods of Theoretical Phys- 

its, Part I. New York: McG raw-Hill, pp. 585-591, 1953. 
References 
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Version of the Encyclopedia of Integer Sequences.” Euler Identity 
For lzl < 1, 

fi(1+ 2”) = fi(l - z2q-1)-1. 
p=l q=l 

see also JACOBI TRIPLE PRODUCT, Q-SERIES 
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Euler’s Idoneal Number Euler-Lagrange Differential Equation 

~~~ID~NEAL NUMBER 

Euler Integral 
Euler integration was defined by Schanuel and subse- 
quently explored by Rota, Chen, and Klain. The Euler 
integral of a FUNCTION f : Iw + IIB (assumed to be 
piecewise-constant with finitely many discontinuities) is 
the sum of 

f(z) - +If(x+> + m-)1 
over the finitely many discontinuities of f* The n-D 

A fundamental equation of CALCULUS OF VARIATIONS 
which states that if J is defined by an INTEGRAL of the 
form 

J = 
s 

f(W,iw~ (1) 

where 
dY 

3iy’ (2) 

then J has a STATIONARY VALUE if the Euler-Lagrange 
differential equation 

Euler integral can be defined for classes of functions 
Rn -+ Iw. Euler integration is additive, so the Euler 

w  d af =o 

integral of f + g equals the sum of the Euler integrals of 
dy- dt ajl ( > 

(3) 

f and g. 
is satisfied. If time DERIVATIVE NOTATION is replaced 

see &o EULER MEASURE instead by space variable notation, the equation be- 

Euler-Jacobi Pseudoprime 
An Euler-Jacobi pseudoprime is a number n such that 

comes 

(4) 

In many physical problems, & (the PARTIAL DERIVA- 
p-w G 2 (mod n). TIVE of f with respect to x) turns out to be 0, in which 

n 

The first few are 561, 1105, 1729, 1905, -2047, 2465, . . . 
(Sloane’s A006971). 

case a manipulation of the Euler-Lagrange differential 
equation reduces to the greatly simplified and partially 
integrated form known as the BELTRAMI IDENTITY, 

see aho PSEUDOPRIME 

References 
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Euler L-Function 

(5) f -y,-$ =c. 
2 

For three independent variables (A&en 1985, pp. 924- 
944), the equation generalizes to 

A special case ofthe ARTIN L-FUNCTION for the POLY- 
NOMIAL z2 + 1. It is given by 

af 8 af d Sf 
du- 

-------- 
ax au, dY au, 

d af =o 
dz au, ’ (6) 

L( > s = III 
I Problems in the CALCULUS OF VARIATIONS often can 

p odd prime 
1 - x-(P>P-s ’ be solved by solution of the appropriate Euler-Lagrange 

equation. 

where 

x-(PI = 
1 for p E I (mod 4) 
-1 for p E 3 (mod 4) 

-1 - - (-1 P ’ 

where (-l/p) isa LEGENDRE SYMBOL. 

To derive the Euler-Lagrange differential equation, ex- 
amine 

SJ G 6 
s 

L(q,& t) dt = 

dL - - dL d&) & @q+-- 
ai dt 1 ’ (7) 

References 
Knapp, A. W. “Group Representations and Harmonic Anal- 

ysis, Part II.” Not. Amer. Math. Sot. 43, 537-549, 1996. 

since Si = d@q)/dt. Now, integrate the second term by 
PARTS using 

dL 
dv = d(6q) (8) 

du = - it (g) dt v=6q, (9) 
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so so 

s 2 

I2 + [v”x]; = [v2(f,, + A) + 2vti(fyG + A) + G2 ftiG] dt. 
1 

(22) 
But 

[ 4 1 
v2 2 = 0. (23) 

Combining (7) and (10) then gives Now choose X such that 

SJ= [$q]::+lr (z-i%) Irqdt. (11) 
fdfw + A) = (fYjc + 4" (24) 

and z such that 

But we are varying the path only, not the endpoints, so 
sq(t,) = Sq(ta) = 0 and (11) becomes 

tSJ=lr (g - ;g) 6qdt. (12) 

We are finding the STATIONARY VALUES such that SJ = 
0. These must vanish for any small change 64, which 
gives from (12), 

so that z satisfies 

fjryZ + fiiL2 - (fyy - fy3i)z = 0. 

It then follows that 

8L d dL =o --- - 
&l ( > dt ad ’ (13) 

This is the Euler-Lagrange differential equation. 
see also BELTRAMI IDENTITY, BRACHISTOCHRONE 
PROBLEM, CALCULUS OF VARIATIONS, EULER-LA- 
GRANGE DERIVATIVE 

The variation in J can also be written in ter 
parameter fi as 

where 

21 = 6y 

ti = 6jr 

and the first, second, etc., variations are 

II = 
s 

(vfv + Cfi) dt 

~~ = 
s 

(v2 fyy + 2vtif,+ + G”f+G) dt 

r 

ns of the 

dt 

’ > (14) 

(15) 

(16) 

(17) 

(18) 

I3 = 
I 

(u"f,,, + 3v2tifvvG + 3vti2fgzij, + ti"f& dt 

(19) 

14 = 
s 

('u4fyyYY +4v3Gf,,,j, +6v2~2fyvlijr 

+4vti3fYtitizj +ti4fG& dt. (20) 

The second variation can be re-expressed using 

-g( A> V2 =v2X+2vtiA, (21) 
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(25) 

(26) 
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Euler-Lagrange Derivative 
The derivative 

SL aL - --- 
t5q = aq 

appearing in the EULER-LAGRANGE DIFFERENTIAL 
EQUATION. 

Euler Line 
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The line onwhichthe ORTHOCENTERH,CENTROIDA~, 
CIRCWMCENTER 0, DE LONGCHAMPS POINT L, NINE- 
POINT CENTER F, and the TANGENTIAL TRIANGLE 
CIRCUMCIRCLE 0~ of a TRIANGLE lie. The INCENTER 
lies on the Euler line only if the TRIANGLE is an ISOS- 

CELES TRIANGLE. The Euler line consists of all points 
with TRILINEAR COORDINATES a : p : y which satisfy 

a P Y 
cos A cus B cos c = 0, (1) 

IcosBcosC cosCcosA cosAcosB 

which simplifies to 

a cos A(cos2 B - cos2 C) + 0 cos B(cos2 C - cos2 A) 

+y cos C(cos2 A - cos2 B) = 0. (2) 

This can also be written 

asin(2A) sin@ - C) + psin(2B) sin(C - A) 

+y sin(2C) sin(A - B) = 0. (3) 

The Euler line may also be given parametrically by 

P(A) = 0 + XH (4) 

(Oldknow 1996). 

x Center 

-2 point at infinity 
-1 de Longchamps point; L 
0 circumcenter 0 
1 centroid G 
2 nine-point center F 
00 orthocenter H 

The ORTHOCENTER is twice as far from the CENTROID 
as is the CIRCUMCENTER. The CIRCUMCENTER 0, 

NINE-POINT CENTERF,CENTROID G,and ORTHOCEN- 
TER H form a HARMONIC RANGE. 

The Euler line intersects the SODDY LINE in the DE 
LONGCHAMPS POINT, and the GERGONNE LINE in the 
EVANS POINT. The ISOTOMIC CONJUGATE of the Eu- 
ler line is called JERABEK'S HYPERBOLA (Casey 1893, 
Vandeghen 1965). 

see also CENTROID (TRIANGLE), CIRCUMCENTER, 
EVANS POINT, GERGONNE LINE, JERABEK'S HYPER- 

BOLA,DE LONGCHAMPS POINT, NINE-POINT CENTER, 
ORTHOCENTER, S~DDY LINE, TANGENTIAL TRIANGLE 
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Euler-Lucas Pseudoprime 
Let U(P, Q) and V(P, Q) be LUCAS SEQUENCES gener- 
ated by P and Q, and define 

D E P2 - 4Q. 

Then 

u(n-P/4)/2 z 0 (mod n) when (Q/n) = 1 

V&--(D/+/2 = D (mod n) when (Q/n) = -1, 

where (Q/n) isthe LEGENDRE~YMBOL. An ODDCOM- 
POSITE NUMBER n such that (n,QD) = 1 (i.e., n and 
QD are RELATIVELY PRIME) is called an Euler-Lucas 
pseudoprime with parameters (P, Q). 

see ah PSEUDOPRIME, STRONG LWCAS PSEUDOPRIME 
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Euler’s Machin-Like Formula 
The MACHIN-LIKE FORMULA 

+r = tan -l(f) + tan-l(+). 

The other 2-term MACHIN-LIKE FORMULAS are 
HERMANN’S FORMULA, HUTTON’S FORMULA, and 
MACHIN'S FORMULA. 

see &O INVERSE TANGENT 

Euler-Maclaurin Integration Formulas 
The first Euler-Maclaurin integration formula is 

s 
1 

f(x) dx = $[fP> + foal 
0 

Q 
- c &B2#2p-11(l) - f’2p-1’(0)] 

l  

p=l 

1 +7 l cw w s f (“h (4 dx, (1) 
l  

0  

where 
verted 
tain 

Bn are BERNOULLI NUMBERS. SUMS maybe con- 
t0 INT EGRALS by i nverting the FORMULA to ob- 

2 f(m) = In f (4 dx + i[f(l) + f(n>l 
m=l 

1 

+$[f’(n) - f’(l)] -tg4** (2) . 



Euler-Mascheroni Constant Euler-Mmcheroni Constant 

For a more general case when f(x) is tabulated at n 

values fi, f2, . l .I fn, 

s 

Xn 

f (2) da: = h&f1 + f2 + f3 + . . . + fn-1 + $fn] 
Xl 

O” B2kh2k - 
x w 

[f W--1) _ fpq 
! n 

. (3) 

k=l 

It is not known if this constant is IRRATIONAL, let alone 
TRANSCENDENTAL. However, Conway and Guy (1996) 
are “prepared to bet that it is transcendental,” although 
they do not expect a proof to be achieved within their 
lifetimes. 

The Euler-Mascheroni constant arises in many integrals 

The Euler-Maclaurin formula is implemented in 
Muthematic@ (Wolfram Research, Champaign, IL) as 
the function NSum with option Method-Xntegrate. 

y= - 
SW 

e-%x&a: (2) 
0 

- - 

The second Euler-Maclaurin integration formula is used 
when f(x) is tabulated at n values f312, f5p, . . . , 
f n-1/2: and sums 

s 

Xn 

f(x) dx = h[f3/2 + f5/2 + f7/2 + ” * + fn--312 

Xl 

O” &kh2’” 
+fn-l/2] - x ~(1-2-2k+1)[fn’2k-1’- fi(2k-1)]* 

k=l 

(4 

see UZSO SUM, WYNN'S EPSILON METHOD 

=J7tJ&n7n) (6) 

= y-(-1)ny (7) 
n=2 
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1 /4 O” (-I)“@ + 1) 

> x 
- 

2fi(n + 1) 
=ln - 

L 7T 

= lim 
n-k00 

n=l 
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n 

k-l 

,k=l 

where C(Z) is the RIEMANN ZETA FUNCTION and Bn 
are the BERNOULLI NUMBERS. It is also given by the 
EULERPRODUCT 

Euler-Mascheroni Constant 
The Euler-Mascheroni constant is denoted y (or some- 
times C) and has the numerical value 

cry - lim I I ~ - 
+-+oo Inn rI 1-k’ 

(10) 
i=l 

ydl.577215664901532860606512090082402431042... 

(1) 
(Sloane’s A001620). The CONTINUED FRACTION of 
the Euler-Mascheroni constant is [O, 1, 1, 2, 1, 2, 1, 
4, 3, 13, 5, 1, 1, 8, 1, 2, 4, 1, 1, 40, . . . ] (Sloane’s 
A002852). The first few CONVERGENTS are 1, l/2, 3/5, 
4/7,11/19,15/26, 71/123,228/395, 3035/5258,15403/ 
26685, . . . (Sloane’s A046114 and A046115). The po- 
sitions at which the digits 1, 2, . . . first occur in the 
CONTINUED FRACTION are 2, 4, 9, 8, 11, 69, 24, 14, 
139, 52, 22, . . . (Sloane’s AO33149). The sequence of 
largest terms in the CONTINUED FRACTION is 1, 2, 4, 
13, 40, 49, 65, 399, 2076, . . l  (Sloane’s AO33091), which 
occur at positions 2, 4, 8, 10, 20, 31, 34, 40, 529, l  . l  

(Sloane’s A033092). 

where the product is over PRIMES p. Another connection 
with the PRIMES was provided by Dirichlet’s 1838 proof 
that the average number of DIVISORS of all numbers 
from 1 to n is asymptotic to 

c yzl go(i) 
wlnn+2y--1 (11) 

n 

(Conway and Guy 1996). de la Vallke Poussin (1898) 
proved that, if a large number n is divided by all PRIMES 
5 n, then the average amount by which the QUOTIENT 
is less than the next whole number is y. 

579 

(3) 

(4) 

(5) 

(8) 

(9) 
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INFINITE PRODUCTS involving y also arise from the G- 
FUNCTION with POSITIVE INTEGER 72. The cases G(2) 
and G( 3) give 

00 
rI e --1+ww 1 n 

( > 
$+rP 

1+ _ = 
n 6 

(12) 
T 

n=l 

00 

rI 

2 n 

( > 

e3+27 
e-2+2/n 1+ - = - 

n 2rr l  

(13) 

n=l 

The Euler-Mascheroni constant is also given by the lim- 
. 
1ts 

S(s) - 1 
7 = F+y 7 (14) 

= -r’(1) (15) 

=Jk& [x-r(k)] (16) 

(Le Lionnais 1983). 

The difference between the nth convergent in (6) and y 
is given by 

k=l 

dx, (17) 

where 1x1 is the FLOOR FUNCTION, and satisfies the 
INEQUALITY 

n 1 1 1 

2(n + 1) ar, --Inn-y< 2n. (18) 
k=l 

(Young 1991). A series with accelerated convergence is 

y = % - In2 - &-l)mv[[(m) - l] (19) 
m-2 

(Flajolet and Vardi 1996). Another series is 

y = 2(-l)‘“, lk 4 (20) 
n=l 

(Vacca 1910, Gerst 1969), where LG is the LOGARITHM 
to base 2. The convergence of this series can be greatly 
improved using Euler’s CONVERGENCE IMPROVEMENT 
transformation to 

k-l 

7= 2-@+11 

k=l 

(21) 

where (z) is a BINOMIAL COEFFICIENT ( Beeler et al. 
1972, Item 120, with k - j replacing the undefined i). 
Bailey (1988) gives 

+-yl~ l _ 1 

m=o(m+l)! t=O i-t-1 n1n2+cJ p ’ ( > 
(22) 

which is an improvement over Sweeney (1963). 

The symbol y is sometimes also used for 

y’ s er z 1.781072 (23) 

(Gradshteyn and Ryzhik 1979, p. xxvii). 

Odena (1982-1983) gave the strange approximation 

(o.11111111)1’4 = 0.577350.. l  , (24) 

and Castellanos (1988) gave 

? 2/9 
( > 83 = 0.57721521.. . (25) 

(520;;22)i’6 =0.5772156634... (26) 

= 0.57721566457.. . (27) 

9903 - 553 - 7g2 - 42 
= 

705 
0.5772156649015295.. . . 

(28) 

No quadratically converging algorithm for computing y 
is known (Bailey 1988). 7,000,OOO digits of y have been 
computed as of Feb. 1998 (Plouffe). 

see also EULER PRODUCT, MERTENS THEOREM, 
ST~ELTJES CONSTANTS 
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Euler-Mascheroni Integrals 
Define 

In = (-1)” 
s 

mu > nz ne-zdz, 
0 

then 

I() = 
SW 

e -= dz = [-e-y = (0 + 1) = 1 
0 

II = - 
s 

w(l > nz em* dz = y 
0 

I2 = y2 + ix” 

-r3 = y3 + $7~~ + 2<(3) 

Id = y4 -f- y27T2 - &r4 + 8YC(3), 

where y is the EULER-M 
is API&Y s CONSTANT. 

(1) 

(2) 

(3) 

(4 
(5) 
(6) 

CHERONI CONSTANT andc(3) 

Euler Measure 
Define the Euler measure of a polyhedral set as the EU- 

LER INTEGRAL of its indicator function. It is easy to 
show by induction that the Euler measure of a closed 
bounded convex POLYHEDRON is always 1 (independent 
of dimension), while the Euler measure of a d-D relative- 
open bounded convex POLYHEDRON is (-1)‘. 

Euler Number 
The Euler numbers, also called the SECANT NUMBERS 
or ZIG NUMBERS, are defined for 1x1 < 7r/2 by 

E;x2 E;x4 
sechx - 1 = -- 

E;x6 
2! +T- (3 +**- (1) 

E;x2 E;x4 E;x6 
sect-lE- - - 

2! + 4! + 6! +‘*” (2) 

where sech is the HYPERBOLIC SECANT and set is the 
SECANT. Euler numbers give the number of ODD AL- 
TERNATING PERMUTATIONS and are related to GENOC- 
CHINUMBERS. Thebaseeofthe NATURAL LOGARITHM 
is sometimes known as Euler’s number. 

Some values of the Euler numbers are 

E; = 1 

E; = 5 

E3+ = 61 

E4+ = 1,385 

G = 50,521 

E; = 2,702,765 

G = 199,360,981 

E,* = 19,391,512,145 

E,” = 2,404,879,675,441 

E* 10 = 370,371,188,237,525 

E;, = 69,348,874,393,137,901 

ET2 = 15,514,534,163,557,086,905 

(Sloane’s A000364). The first few PRIME Euler num- 
bers En occur for n = 2, 3, 19, 227, 255, . . . (Sloane’s 
A014547) up to a search limit of n = 1415. 

The slightly different convention defined by 

E2n = (-1)“E; (3) 

E2n+1 = 0 (4) 

is frequently used. These are, for example, the Euler 
numbers computed by the M&hematica@ (Wolfram Re- 
search, Champaign, IL) function EulerE [n] . This defi- 
nition has the particularly simple series definition 

sechx - 1 = 

W 

x 

k=O 

EI,x” 

k! (5) 

and is equivalent to 

E, = 2nE,(+), (6) 

where En(x) is an EULER POLYNOMIAL. 

To confuse matters further, the EULER CHARACTERIS- 
TIC is sometimes also called the “Euler number.” 

see also BERNOULLI: NUMBER,EULERIAN NUMBER, Eu- 
ZIGZAGNUMBER,GENOCCHI LERPOLYNOMIAL,EULER 

NUMBER 
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Euler Parameters 
The four parameters eo, el, e2, and e3 describing a finite 
rotation about an arbitrary axis. The Euler parameters 
are defined by 

(1) 

(2) 

and are a QUATERNION in scalar-vector representation 

(eo, e) = e0 + elz + e2j + e3k. (3) 

Because EULER'S ROTATION THEOREM states that an 
arbitrary rotation may be described by only three pa- 
rameters, a relationship must exist between these four 
quantities 

e02+eae= eo2 + e12 + e22 + es2 = 1 (4) 

(Goldstein 1980, p. 153). The rotation angle is then 
related to the Euler parameters by 

cosg5=2e02-1=eo2 -e.e = eo2 2 
- el -ez2 -ea2 (5) 

kin4 = 2eeo. (6) 

The Euler 
LERANGL 

may be given in terms of the EIJ- parameters 
ES by 

eo = cos[ i&5 + $)] COS( @) 

el = sin[$(4 - $)I sin( $0) 

e2 = cos[ $(qb - T/J)] sin( $0) 

e3 = sin[ $ (4 + $)] cos( $0) 

(7) 

(8) 

(9) 

w  

(Goldstein 1980, pa 155). 

Using the Euler parameters, the ROTATION FORMULA 

becomes 

SYMBOL. Written out explicitly, the matrix elements 
are 

all = eo2 + e12 - ez2 - ea2 (14 

a12 = 2(ele2 + e0e3) 

a3 = 2(ele3 - eoe2) 

a21 = 2(ele2 - e0e3) 

(15) 

(16) 

(17) 

a22 = eo2 - e12 + ez2 
2 

- 453 (18) 

a23 = 2(e2e3 + e0el) 

a31 = 2(ele3 + e0e2) 

a32 = Z(e2e3 - eoel) 

2 
a33 = eo2 - el - ez2 + es'. 

(19) 

(2Q) 

(21) 

(22) 

see ~SUEULER ANGLES, QUATERNION, ROTATION MA- 
TRIX 
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Euler’s Pentagonal Number Theorem 

00 

rI (1 - xn) = 2 (-l)nZn(3n+y (1) 
n=l n=--00 

where n(3n + 1)/2 are generalized PENTAGONAL NUM- 
BERS. Related equalities are 

see als 
BER 

k=l 

00 00 

rI 0 
tn - x”t)-l = >1 

n=* rIL1<l-xk)' 
(3) 

k=l 

o PARTITION FUNCTION P, PENTAGONAL NUM- 

Euler’s Phi Function 
see TOTIENT FUNCTION 

r’ = r(eo2-e12-ez2 -es2)+2e(e-r)+(rxA) sin& (11) 

and the ROTATION MATRIX becomes 
Euler-Poincad Characteristic 
see EULER CHARACTERISTIC 

where the elements of the matrix are 

&j = t5ij(eo2 - ekek) + 2eiej + 2cijkeOek. (13) 

Here, EI NSTEIN SUMM 
KRONEC KER D ELTA, 

ATION has been 
and eijk is the 

used, 6ij is the 
PERMUTATION 

Euler’s Polygon Division Problem 
The problem of finding in how many ways E, a PLANE 
convex POLYGON of n sides can be divided into TRI- 
ANGLES by diagonals. Euler first proposed it to Chris- 
tian Goldbach in 1751, and the solution is the CATALAN 
NUMBER E, = Cn+ 

see also CATALAN NUMBER,~ATALAN'S PROBLEM 
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Euler Polyhedral Formula 

see POLYHEDRAL FORMULA 
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Euler Polynomial 

2 

1.5 

1 

0.5 

Euler Polynomial Identity 

see EULER FOUR-SQUARE IDENTITY 

Euler Power Conjecture 

see EULER’S SUM OF POWERS CONJECTURE 

Euler Product 
For 0 > 1, 

A POLYNOMIAL En(x) given by the sum 

((a) = F $ = n 
7L= 1 P 

1 (1) 
l-1’ 

P 

Euler polynomials are related to the BERNOULLI NUM- 
BERS by where c(z) is the RIEMANN ZETA FUNCTION. 

ln 1 
e’ - lim - 

rI 
p - 

n+~ Inn -- z- 1 
1-k’ 

En-~(x) = - ‘,” [Bn (F) -Bn (;)I 

- 2 p,,(z) - 2”& (;)I -- 
n 

(2) 

(3) where the product is over PRIMES p, where y is the 
EULER-MASCHERONI CONSTANT. 

En-z(x) = 2@) -‘z (3 [[2n-k - 1>&-1cB&)], see also DEDEKIND FUNCTION 

(4) Euler Pseudoprime 
Euler pseudoprimes to a base a are ODD COMPOSETE 
numbers such that (a, n) = 1 and the JACOBI SYMBOL 
satisfies 

where (;) ~~~BINOMIAL COEFFICIENT. Settingx = l/2 

and normalizing by 2n gives the EULER NUMBER 
a 

0 
(n-W2 - =a 

n 
(mod n). 

No ODD COMPOSITE number is an Euler pseudoprime 
for all bases a RELATIVELY PRIME to it. This class in- 
cludes some CARMICHAEL NUMBERS and all STRONG 
PSEUDOPRIMES to base a. An Euler pseudoprime is 
pseudoprime to at most l/2 of all possible bases less 
than itself. The first few Euler pseudoprimes are 341, 
561, 1105, 1729, 1905, 2047, . . . (Sloane’s A006970). 

see also PSEUDOPRIME, STRONG PSEUDOPRIME 

Call EL = En(O), then the first few terms are -l/2, 0, 
l/4, -l/2, 0, 17/8, 0, 31/2, 0, . . l  . The terms are the 
same but with the SIGNS reversed if x = 1. These values 
can be computed using the double sum 
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The BERNOULLI NUMBERS B, for n x 1 can be ex- 
pressed in terms of the Ek by 

B, = -- 
nEk-l 

2(2” - 1) l  

(7) 

see UZSO BERNOULLI POLYNOMIAL, EULER NUMBER, 
GENOCCHI NUMBER 

Euler’s Quadratic Residue Theorem 
A number D that possesses no common divisor with a 
prime number p is either a QUADRATIC RESIDUE or non- 
residue of p, depending whether D(P-1)/2 is congruent 
mod p to &l. 
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Euler Quartic Conjecture where (L) are BINOMIAL COEFFICIENTS. The POSITIVE 
Euler conjectured that there are no POSITIVE INTEGER terms in the series can be converted to an ALTERNATING 
solutions to the quartic DIOPHANT~NE EQUATION SERIES using 

A4 + B4 = C4 + D4. 

This conjecture was disproved by N. D. Elkies in 1988, 
who found an infinite class of solutions. 

see also DIOPHANTINE EQUATION-QUARTIC 
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Euler’s Rotation Theorem 
An arbitrary ROTATION may be described by only three 
parameters. 

see also EULER ANGLES, EULER PARAMETERS, ROTA- 
TION MATRIX 

Euler’s Rule 
The numbers 2npq and 2”r are AMICABLE NUMBERS if 
the three INTEGERS 

p =I: 2yrm + 1) - 1 

q G 2,(2,-, + 1) - 1 

T = 2n+m(2n-m + 1)” - 1 

are all PRIME numbers for some POSITIVE INTEGER m 
satisfying 1 < 772 5 n - 1 (Dickson 1952, p. 42). How- 
ever, there are exotic AMICABLE NUMBERS which do 
not satisfy Euler’s rule, so it is a SUFFICIENT but not 
NECESSARY condition for amicability. 

see also AMICABLE NUMBERS 
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Euler’s Series Transformation 
rate of CONVERGENCE for an ALTER- Accelerates the 

NATING SERIES 

S = F(-1)X3 

s-o 00 
= uo - u1+ IL2 - . . . - un-1 + x gg [A”%] (1) 

fyvr = y-)-l)“zur, 
r=l r=l 

(3) 

WT = vr + 2vzy + 421477 + 8vS7+ + . . . . (4) 

see also ALTERNATING SERIES 

References 
Abramowitz, M. and Stegun, C. A. (Eds.). Handbook 

of Mathematical Functions with Formulas, Graphs, and 
Mathematical Tables, 9th printing. New York: Dover, 
p. 16, 1972. 

Euler’s Spiral 

see CORNU SPIRAL 

Euler Square 
A square ARRAY made by combining n objects of two 
types such t hat the first an .d second elements form LATIN 
SQUARES. Euler squares are also known as GRAECO- 

LATIN SQUARES, GRAECO-ROMAN SQUARES, or LATIN- 
GRAECO SQUARES. For many years, Euler squares were 
known to exist for n = 3, 4, and for every ODD n except 
n = 3k. EULER'S GRAECO-ROMAN SQUARES CONJEC- 
TURE maintained that there do not exist Euler squares 
of order n = 4k + 2 for k = 1, 2, . l  . . However, such 
squares were found to exist in 1959, refuting the CON- 
JECTURE. 

see also LATIN RECTANGLE, LATIN SQUARE, ROOM 
SQUARE 

References 
Beezer, R. “Graeco-Latin Squares.” http : //buzzard l  ups. 

edu/squares . html. 
Kraitchik, M. “Euler (Graeco-Latin) Squares.” 57.12 in 

Mathematical Recreations. New York: W. W. Norton, 
pp+ 179~182,1942. 

Euler Sum 
In response to a letter from Goldbach, Euler considered 
DOUBLE SUMS ofthe form 

s(m,n) = F (l+ f +. . . + k)m (k + I>-” (1) 

k=l 
00 

- - 7 + tio(k + lj]“(~ + 1)-” (2) 
k=l 

for n EVEN and A the FORWARD DIFFERENCE operator 

AkUn G k (-1)” (L) %+k-ml 

m=O 

(2) 

with m > 1 and n > 2 and where y is the EULER- 
MASCHERONI CONSTANT and q(z) = $&c) is the 
DIGAMMA FUNCTION. Euler found explicit formulas in 
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terms of the RIEMANN ZETA FUNCTION for s(l,n) with 
n 2 2, and E. Au-Yeung numerically discovered 

00 

c( 

1 1 2 
l+++...+Ic k-2=7<(4), 

> (3) 
k=l 

where c(z) is the RIEMANN ZETA FUNCTION, which was 
subsequently rigorously proven true (Borwein and Bor- 
wein 1995). Sums involving k-” can be re-expressed in 
terms of sums the form (k + l)-” via 

m 

U 
I+ 

1 1 
2”+...fkm k-” 

> 
k=l 

00 
2 1 - - 

c[ 

l+~+**.+ (Ic 

I 
(k-t V” 

k=O 

00 

c( 
l+ 

1 l - - ~+...+~ ) (k + q-n +}fy k-b+4 

k=l k=l 

= v&n, n> + C(m + n) (4) 

and 

00 

c( 
1 l+, 

k=l 

where oh is defined 

+...+ 

= sJ-&(2 

l2 

k > 
k-” 

? n> -I- 2sh 

below. 

(l,n+ 1 

Bailey et al. (1994) subsequently considered sums of the 
forms 

\ M 

sh(m,n) = (k + I)-” (6) 
k=l 

M 
1 ( 1) 

k+l m  

1 -,+...+L 
k 1 (k + I)-” (7) 

k=l 

09 

ah (ml n) = (-l)“+“(k + l)-” (8) 
k=l 

00 

a&n, n) = 
1 

1 +...+- ( 1) -- 
2 k 

(-l)“+‘(k + l)-” 

k=l 

(9) 
00 

gh(? n) = l+ (10) 
k=l 

00 
1 ( 1) k+l 

h(m,n) = 1 -- 
+ +- 

2m  l  ” km 
> 

(k + I)-” (11) 

k=1 

00 

ah@+) = 1+ 
1 

’ 2n+...+km (-l)“+‘(k + l)-” 

k=l 

(12) 
00 k+l 

4m,n) = 
1 

l- ( 1) --+...+= 
km 

(-l)“+‘(k + I)-“, 

k=l 
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where sh and sa have the special forms 

Sh = f$ + +o(n + l>l”k + 1-” 
k=l 

00 

a, = In2 + +(-I)” 

(14) 

k=l 

x[y+2 + +) - $Jo($n + l)]}“(k + q-“* (15) 

Analytic single or double sums over c(z) can be con- 
structed for 

n-2 

sh(l, n) = fnC(n + 1) - f >) c(n - k)<(k + 1) (16) 

S&n) 

1 -- 
2n 

n 

= +(n 

n-2 

Ix 
a n 

kc0 

-2 

k=l 

+ U(n + 2) + wC(4 

- Wk + 2) 

k-l 

k=2 jz 1 

sh(2,2n - 1) = f$n2 - 7% - 3)[(2n + 1) + @)@n 

n-2 

> 

(17) 
- 1) 

1 
-- 2 xl (2k - 1)[(2n - 1 - 2k)c(2k + 2) 

k=l 

n-2 n-2-k 

+ i x ((2k + 1) x <(2j + 1)[(2n - 1 - 2k - 2j) 

j=l 

(18) 

ah(b) = sh(b) (19) 

a42,2n - 1) = -+(2n2 + n + l)@n + 1) + c(2)c(2n - 1) 

1 

+ R 2kg’(k + l)<(Zn - 2k) PQ 

uh (m even, n odd) = i [ ( ,zn) --I] C(m+4+04C(n) 

j = 1 
x <(2j - I)+2 + n - 2j + 1) (21) 

bh(m odd, n even) = -i [(m;n) + 11 C(m+n> 

k=l 

x <(2j - l)<(m + 72 - 2j + I), (22) 

where (E) is in BINOMIAL COEFFICIENT. Explicit for- 
mulas inferred using the PSLQ ALGORITHM include 

sh(2,2) = 

_ 11 4 - 
3Gv 

(23) 
(24) (13) 
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Sh(2,4)= $[(6)- ~C(2W) + + WI” - Kw” 
- 37 6 - - - ~CW2 22680r 

sh(%2) = FC(5) + ww 

sh(3,3) = -EC(G)+ 2[c(3)12 

sh(3,4)= s<(7)- yc(3)c(4 

s&,6) = EC(g) - yc(4)[@ 

+ [s(3)13 + WKV) 
sh(4,2)= Fc(6)+3[c(3)12 

(25) 
(26) 
(27) 
(28) 
(29) 

(30) 
(31) 
(32) 

(33) 
(34) 

sh(5,4) = $q(g> + fwN(5) - ~mc(6) - 5KM13 
+ ywm (35) 

sh(6,3) = -yc(9) - 2435(4)[(5) + y@)<(6) 

+ y[6(3)13 - ~cwv) (36) 
sh(7,2) = qgq(9) + +=[(4)[(5) + FC(3)C(6) 

+ 56[C(3)13 + yC(2)5(7), (37) 

Borwein, D.; Borwein, J. M.; and Girgensohn, R. “Explicit 
Evaluation of Euler Sums.” Proc. Edinburgh Math. Sot. 
38, 277-294, 1995. 

de Doelder, P. J. “On Some Series Containing q(z) - \E(y) 
and (Q(z) - Q(y))” for Certain Values of z and y.” J. 
Camp. Appl. Math. 37, 125-141, 1991. 

sa(2,2) = SLi&) + $12)~ - yc(4) + :<(2)(1112)~ 

(38) 

Euler’s Sum of Powers Conjecture 
Euler conjectured that at least n. nth POWERS are re- 
quired for n > 2 to provide a sum that is itself an nth 
POWER. The conjecture was disproved by Lander and 
Parkin (1967) with the counterexample 

~~(2~3) = 4Lis($) - &(h12)~ - $(5) - +[(4)ln2 

+ $c(3)(lnq2 + #)(lnq3 - ;c(qC(3), 

(39) 

275 + 845 + 1105 + 1335 = 1445. 

see also DIOPHANTINE EQUATION 

References 
sa(3,2) = -24Li&) + 6ln2Li&) + &(ln2)” + zc(5) Lander, L. J. and Parkin, T. R. “A Counterexample to Eu- 

- Fc(4)ln2 + gC(2)(ln2)3 + ;c(qcO, (40) 
ler’s Sum of Powers Conjecture.” A&x%. Comput. 21, 101- 
103, 1967. 

ah(2,2) = -2Li&) - +j(ln2)4 + g[(4) - $5(3)ln2 

+ +@)(ln2)2 (41) 

ah(2,3) = -4Li5(+)- 4(hd)Li4($- &(ln2)5 + %5(5) 

- $c(3)(ln2)2 + $<(2)(ln2)3 + :[(2)[(3) 

Euler’s Theorem 
A generalization of FERMAT'S LITTLE THEOREM. Euler 
published a proof of the following more general theorem 
in 1736. Let 4(n) denote the TOTIENT FUNCTION. Then 

(42) 

ah(3,2) = SLi&) + 6(ln2)Li&) + +(ln2)5 - y<(5) 

+ yc(3)(w2 - C(2>(lnq3 - +#K@), 

(43) 

and 

a,(2,2) = -4Li&) - i(ln2)4 + 5(4) + $[(3)(ln2) 

- 2[(2)(1n 2)” (44 

a&2,3) = 4(ln2) Lid(i) + i(ln2)5 - gC(5) 

+ $W)(ln2) - m(ln2)3 + ~wK(3) 

(45) 

a4(4 E 1 (mod n) 

for all a RELATIVELY PRIME to n. 

see also CHINESE HYPOTHESIS, EULER'S DISPLACE- 
MENT THEOREM, EULER'S DISTRIBUTION THEOREM, 
FERMAT'S LITTLE THEOREM,TOTIENT FUNCTION 

References 
Shanks, D. Solved and Unsolved Problems in Number Theory, 

4th ed. New York: Chelsea, p. 21 and 23-25, 1993. 

Euler Totient Function 

see TOTIENT FUNCTION 

a&3,2) = 3OLi&) - a(ln2)’ - 9[(5) 

+ %[(4)(ln2) + $+C(3)(ln2)2 

- ~W(W3 + ~5(2)c(3)~ (46) 

Euler Totient Function 

where Li, is a POLYLOGARITHM, and c(x) is the RIE- 
MANN ZETA FUNCTION (Bailey and Plouffe). Of these, 

only sh(3,2), sh(3,3) and the identities for sa(m,n), 
ah@&, n) and a,(m, n) have been rigorously established. 

References 
Bailey, II. and PloufTe, S. “Recognizing Numerical 

Constants.” http://wuw.cecm.sfu.ca/organics/papers/ 
bailey/. 

Bailey, D. H.; Borwein, J. Mm; and Girgensohn, R. “Experi- 
mental Evaluation of Euler Sums.” Exper. Math. 3, 17-30, 
1994. 

Berndt, B. C. Ramanujan’s Notebooks: Part I. New York: 
Springer-Verlag, 1985. 

Borwein, D. and Borwein, J. M. “On an Intriguing Integral 
and Some Series Related to c(4).” PTOC. Amer. Math. Sot. 
123, 1191-1198, 1995. 
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Euler’s Totient Rule 
The number of bases mod p in which l/p has cycle length 
2 is the same as the number of FRACTIONS O/(p - I), 

WP - 11, ” l  7 (p - 2)/(p - 1) which have least DENOM- 
INAToR 1. 

see also TOTIENT FUNCTION 

References 
Conway, J. II. and Guy, FL K. The Book of Numbers. New 

York: Springer-Verlag, pp. 167-168, 1996. 

Euh’s ‘Transform 
A technique for SERIES CONVERGENCE IMPROVEMENT 
which takes a convergent alternating series 

x(-l)“ak = a0 - a1 + u2 - . l  . 
(1) 

into a series with more rapid convergence to the same 
value to 

S= 
* (-l)“akao 

x 2k+1 ’ (2 
k=O 

where the FORWARD DIFFERENCE is defined by 

k 

Akao = 
x 

E (-1)” 
k 

m=O 0 
ak-m 

m (3 

(Abramowitz and Stegun 1972; Beeler et al. 1972, Item 
120). 

see also FORWARD DIFFERENCE 

References 
Abramowitz, M. and Stegun, C. A. (Eds.). Handbuok 

of Mathematical Functions with Formulas, Graphs: and 
Mathematical Tables, 9th printing. New York: Dover, 
p. 16, 1972. 

Beeler, M.; Gosper, R. W.; and Schroeppel, FL HAKMEM. 
Cambridge, MA: MIT Artificial Intelligence Laboratory, 
Memo AIM-239, Feb. 1972. 

Euler Transformation 

see EULER’S FINITE DIFFERENCE TRANSFORMATION, 
EULER'S HYPERGEOMETRIC TRANSFORMATIONS, Eu- 
LER'S TRANSFORM 

Euler’s Triangle 
The triangle of numbers A,+ given by 

A n,l - -A,,=1 1 

and the RECURRENCE RELATION 

A n+l,k = k&k -I- (n + 2 - JC)&,k--1 

for k f [2,n], where An,k are EULERIAN NUMBERS. 

1 

1 1 

1 4 1 

1 11 11 1 

1 26 66 26 1 

1 57 302 302 57 1 

1 120 1191 2416 1191 120 1. 

The numbers 1, 1, 1, 1, 4, 1, 1, 11, 11, 1, . . l  are Sloane’s 
A008292. Amazingly, the Z-TRANSFORMS of tn 

wz[tn] = l!I$$Y lim d” (A) 
2-o dP z - emzT 

are generators for Euler’s triangle. 

see also CLARK'S TRIANGLE, EULERIAN NUMBER, 
LEIBNIZ HARMONIC TRIANGLE, NUMBER TRIAN- 
GLE, PASCAL'S TRIANGLE, SEIDEL-ENTRINGER-AR- 
NOLD TRIANGLEJTRANSFORM 

References 
Sloane, N. J. A. Sequence A008292 in “An On-Line Version 

of the Encyclopedia of Integer Sequences.” 

Euler Diangle Formula 
Let 0 and I be the CIRCUMCENTER and INCENTER of a 
TRIANGLE with C~RCUMRADIUS Rand INRADIUS T. Let 
d be the distance between 0 and I. Then 

d2 = R2 - 2rR. 

Euler Walk 

see EULERIAN TRAIL 

Euler Zigzag Number 
The number of ALTERNATING PERMUTATIONS for nele- 
ments is sometimes called an Euler zigzag number. De- 
note the number of ALTERNATING PERMUTATIONS on 
n elements for which the first element is k by E(n, k). 

Then E(l,l) and 

0 for !G > n or k < 1 - 
E(n, k) = E(n, k + 1) otherwise. 

+E(n - 1,n - k) 

see UZSU ALTERN ATING PERM UTATION, ENTRIN 
Nu MBER ,, SECANT NUMBER, TA .NGENT NV MBER 

References 
Ruskey, F. “Information of Alternating Permutations.” 

http:// sue . csc . uvic . ca / - cos / inf / perm / 
Alternating. html. 

Sloane, N. J. A. Sequence AOOOlll/M1492 in “An On-Line 
Version of the Encyclopedia of Integer Sequences.” 
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Eulerian Circuit 
An EULERIAN TRAIL which starts and ends at the same 
VERTEX. In other words, it is a CYCLE which uses each 
EDGE exactly once. The term EULERIAN CYCLE is also 
used synonymously with Eulerian circuit. For technical 
reasons, Eulerian circuits are easier to study mathemat- 
ically than are HAMILTONIAN CIRCUITS. As a gener- 
alization of the K~NIGSBERG BRIDGE PROBLEM, Euler 
showed (without proof) that a CONNECTED GRAPH has 
an Eulerian circuit IFF it has no VERTICES of ODD DE- 
GREE. 

see also EULER GRAPH, HAMILTONIAN CIRCUIT 

Eulerian Cycle 

see EULERIAN CIRCUIT 

Eulerian Integral of the First Kind 
Legendre and Whittaker and Watson’s (1990) term for 
the BETA FUNCTION. 

References 
Whittaker, E. T. and Watson, G. N. A Course in bfodern 

Analysis, 4th ed. Cambridge, England: Cambridge Uni- 
versity Press, 1990. 

Eulerian Integral of the Second ‘Kind 

Eulerian Number 
The number of PERMUTATIONS 
RUNS, denoted (L), An,k, or 
numbers are given explicitly by 

of length 

4% k) l  

the sum 

n with k < n - 
The Eulerian 

(;) =fp.(il~l)wli... 

Making the definition 

b n,l -1 (2) 

h,n = 1 (3 > 

together with the RECURRENCE RELATION 

bn,k = n&k-l -t k&-1,k 

for n > k then gives 

= bk,n-k+l. (5) 

The arrangement of the numbers into a triangle gives 
EULER’S TRIANGLE, whose entries are 1, 1, 1, 1, 4, 1, 

1, 11, 11, 1, . . . (Sloane’s A008292) l  Therefore, they 
represent a sort of generalization of the BINOMIAL CO- 
EFFICIENTS where the defining RECURRENCE RELATION 
weights the sum of neighbors by their row and column 
numbers, respectively. 

The Eulerian numbers satisfy 

n 

k=l 

= n!. (6) 

Eulerian numbers also arise in the surprising context of 
integrating the SINC FUNCTION, and also in sums of the 
form 

00 n 

IEI 
knrk = Li-,(r) = 

(1 -T) 

n 

u > 
n-i 

T  n+l i 
T  7 (7) 

k=l i=l 

where I&-&) is the POLYLOGARITHM function. 

see UZSO COMBINATION LOCK, EULER NUMBER, Eu- 
LER’S TRIANGLE, EULER ZIGZAG NUMBER, POLYLOG- 
ARITHM, SINC FUNCTION, WORPITZKY’S IDENTITY, Z- 
TRANSFORM 
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Eulerian Trail 
A WALK on the EDGES of a GRAPH which uses each 
EDGE exactly once. A CONNECTED GRAPH has an EU- 
lerian trail IFF it has at most two VERTICES of ODD 
DEGREE. 

see also EWLERIAN CIRCUIT 

Eutactic Star 
An orthogonal projection of a CROSS onto a 3-D SUB- 
SPACE. It is said to be normalized if the CROSS vectors 
are all of unit length. 

see also HADWIGER’S PRINCIPAL THEOREM 

Evans Point 
The intersection of the GERGONNE LINE and the EULER 
LTNE. It does not 
representation. 

appear to have a simple parametric 

References 
Oldknow, A. “The Euler-Gergonne-Soddy Triangle of a Tri- 

angle.” Amer. Math, Monthly 103, 319-329, 1996. 
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Eve see also BESSEL’S FINITE DIFFERENCE FORMULA 

see APPLE, ROOT, SNAKE, SNAKE EYES, SNAKE OIL 
METHOD, SNAKE POLYIAMOND 

Heferences 
Abramowitz, M. and Stegun, C. A. (Eds.). Handbook 

of Mathematical Functions with Formulas, Graphs, and 
Mathematical Tables, 9th printing. New York: Dover, 
pp. 880-881, 1972. 

Acton, F. S. Numerical Methods That Work, 2nd printing. 
Washington, DC: Math. Assoc. Amer., pp* 92-93, 1990. 

Beyer, W. H. CRC Standard Muthematical Tables, 28th ed. 
Boca Raton, FL: CRC Press, p. 433, 1987. 

Even Function 
A function f(x) such that f(x) = f(-2). An even func- 
tion times an ODD FUNCTION is odd. 

Even Number 
An INTEGER of the form N = 2n, where n is an INTE- 
GER. The even numbers are therefore . . . , -4, -2, 0, 2, 
4, 6, 8, 10, l  . . (Sloane’s A005843). Since the even num- 
bers are integrally divisible by two, N G 0 (mod 2) for 
even N. An even number N for which N E 2 (mod 4) 
is called a SINGLY EVEN NUMBER, and an even num- 
ber N for which N = 0 (mod 4) is called a DOUBLY 
EVEN NUMBER. An integer which is not even is called 
an ODD NUMBER. The GENERATING FUNCTION of the 
even numbers is 

Everett Interpolation 

~~~EVERETT'S FORMULA 

Eversion 
A curve on the unit sphere S2 is an eversion if it has no 
corners or cusps (but it may be self-intersecting). These 
properties are guaranteed by requiring that the curve’s 
velocity never vanishes. A mapping o : S1 -+ S2 forms 
an immersion of the CIRCLE into the SPHERE IFF, for 
all 0 E Iw, 

2x 
= ( 1)” 2x + 4x2 + 6x3 + 8x4 + . . . . 2 - 

Smale (1958) showed it is possible to turn a 
inside out (SP HERE E VERSION) using eversion. 

SPHERE 
see also DOUBLY EVEN NUMBER, EVEN FUNCTION, 
ODD NUMBER, SINGLY EVEN NUMBER 

see also SPHERE EVERSION 
References 
Sloane, N. J. A. Sequence AO05843/M0985 in “An On-Line 

Version of the Encyclopedia of Integer Sequences.” 
References 
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Eventually Periodic 
A PERIODIC SEQUENCE such as (1, 1, 1, 2, 1, 2, 1, 2, 
1, 2, 1, 1, 2, 1, . . . } which is periodic from some point 
onwards. 

see also PERIODIC SEQUENCE 

Evolut e 
An evolute is the locus of centers of curvature (the en- 
velope) of a plane curve’s normals. The original curve 
is then said to be the INVOLUTE of its evolute. Given 
a plane curve represented parametrically by (f(t),g(t)), 
the equation of the evolute is given by 

Everett’s Formula 

x-f-Rsinr (1) 

y=g+Rcosq (2) fp = (I- p)fo + pfl + E2$ + F2s:: + Ed04 

+F4d14 + E&'+F& +.. l 1 (1) where (x,y) are the 
is the RADIUS OF C 

coordinates of the running point 7R 
URVATURE 

for P E IO, 11, where 6 is the CENTRAL DIFFERENCE and 

R _ ( f2 + g’2)3’2 - I fg II _ II t 7 fs 
(3) Ezn s G2n - G 2nfl - = B2T.L - Bzrl+1 (2) 

F2n = G2n+1 = B2n + B2n+1, (3) 
and T is the angle between the unit TANGENT VECTOR 

where Gk are the COEFFICIENTS from GAUSS'S BACK- 
WARDFORMULA and GAUSS'SFORWARDFORMULA and 
Bk are the COEFFICIENTS from BESSEL'S FINITE DIF- 
FERENCE FORMULA. The Eks and Fks also satisfy 

(4) 

and the X-AXIS, 
Ezn(p) = En(q) 

F2n(P) = E2&), 

(4) 

(5) COST=rt*ji: (5) 
sin-r=++ (6) 

q-1-p. (6) 
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Combining gives see also COVERING SYSTEM 

(7) 

(8) 

The definition of the evolute of a curve is independent 
of parameterization for any differentiable function (Gray 
1993). If E is the evolute of a curve I, then I is said to 
be the INVOLUTE of E. The centers of the OSCULATING 
CIRCLES to a curve form the evolute to that curve (Gray 
1993, p* 90). 

The following table lists the evolutes of some common 
curves. 

Curve Evolute 

astroid 
cardioid 
cayley’s sext ic 
circle 
cycloid 
deltoid 
ellipse 
epicycloid 
hypocycloid 
limason 

logarithmic spiral 
nephroid 
parabola 
tractrix 

astroid 2 times as large 
cardioid l/3 as large 
nephroid 
point (0, 0) 
equal cycloid 
deltoid 3 times as large 
Lam& curve 
enlarged epicycloid 
similar hypocycloid 
circle catacaustic 

for a point source 
equal logarithmic spiral 
nephroid l/2 as large 
Neile’s parabola 
catenary 

see also INVOLUTE, OSCULATING CIRCLE 
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Exact Differential 
A differential of the form 

df = P(x, Y) dx + Qh Y> dy (1) 

is exact (also called a TOTAL DIFFERENTIAL) ifs df is 
path-independent. This will be true if 

af 
df = g dx + By dy, 

so P and Q must be of the form 

(2) 

(3) 

But 
dP a”f --- 
dy - dydx 

aQ a”f --- 
ax - dxdy ’ 

(4) 

(5) 

so 
aP 8Q - 
ay - ax’ (6) 

see also PFAFFIAN FORM, INEXACT DIFFERENTIAL 

Exact Period 

see LEAST PERIOD 

Exact Tkilinear Coordinates 
The TRILINEAR COORDINATES ctr : p : y of a point P 
relative to a TRIANGLE are PROPORTIONAL to the di- 
rected distances a’ : b’ : c’ from P to the side lines (i.e, 
a’ : b’ : c’ = ka : bf = kp : ky). Letting k be the 
constant of proportionality, 

kz 2A 
aa+bp+cy’ 

where A is the AREA of AABC and a, b, and c are the 
lengths of its sides. When the trilinears are chosen so 
that k = 1, the coordinates are known as exact trilinear 
coordinates. 

see also TRILINEAR COORDINATES 
Exact Covering System 
A system of congruences ai mod ni with I < i < k is - - 
called a COVERING SYSTEM if every INTEGER y satisfies 
y I= ai (mod n) f or at least one value of i. A cover- 
ing system in which each integer is covered by just one 
congruence is called an exact covering system. 
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Exactly One 
“Exactly one” means “one and only one,” sometimes 
also referred to as “JUST ONE." J. II. Conway has 
also humorously suggested “onee” (one and only one) 
by analogy with IFF (if and only if), “twoo” (two and 
only two), and “threee” (three and only three). This 
refinement is sometimes needed in formal mathematical 
discourse because, for example, if you have two apples, 
you also have one apple, but you do not have eaactly 
one apple. 

In 2-valued LOGIC, exactly one is equivalent to the ex- 
clusive or operator XOR, 

P(E) XUR P(F) = P(E) + P(F) - 2P(E n F). 

see U~SO IFF, PRECISELY UNLESS, XOR 

Exactly When 

see IFF 

Excenter 
The center Ji of an EXCIRCLE. There are three excen- 
ters for a given TRIANGLE, denoted Jl, J2, J3. The 
INCENTER I and excenters Ji of a TRIANGLE are an 
ORTHOCENTRIC SYSTEM. 

where 0 is the CIRCUMCENTER, Ji are the excenters, 
and R is the CIRCUMRADIUS (Johnson 1929, p. 190). 

Denote the MIDPOINTS of the original TRIANGLE A& 
A&, and A&. Then the lines J1 A&, J2 A&, and J&f3 
intersect in a point known as the MITTENPUNKT. 

see also CENTROID (ORTHOCENTRIC SYSTEM),EXCEN- 
TER-EXCENTER CIRCLE, EXCENTRAL TRIANGLE, Ex- 
CIRCLE,INCENTER,MITTENPUNKT 
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Excenter-Excenter Circle 

Given a TRIANGLE ~lAlAzA3, the points Al, I, and JI 
lie on a line, where I is the INCENTER and J1 is the EX- 
CENTER corresponding to Al. F’urthermore, the circle 
with J2J3 as the diameter has Q as its center, where 
P is the intersection of AlJl with the CIRCUMCIRCLE 
of Ald42A3 and Q is the point opposite P on the CIR- 

CUMCIRCLE. The circle with diameter J2 J3 also passes 
through A2 and A3 and has radius 

It arises because the points 1, J1, J2, and J3 form an 
ORTHOCENTRIC SYSTEM. 

see also EXCENTER, INCENTER-EXCENTER CIRCLE, 
ORTHOCENTRIC SYSTEM 
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Excentral Triangle 

The TRIANGLE J = AJlJ2 J3 with VERTICES corre- 
sponding to the EXCENTERS of a given TRIANGLE A, 
also called the TRXTANGENT TRIANGLE. 

Beginning with an arbitrary TRIANGLE A, find the ex- 
central triangle J. Then find the excentral triangle J’of 
that TRIANGLE, and so on. Then the resulting TRIAN- 
GLE Jc”j approaches an EQUILATERAL TRIANGLE. 
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Call T the TRIANGLE tangent externally to the EXCIR- 
CLES of A. Then the INCENTER IT of K coincides with 
the CIRCUMCENTER CJ of TRIANGLE AJ&J3, where 
Ji are the EXCENTERS of A. The INRADIUS TT of the 
INCIRCLE 0fT is 

TT = 2R+r = +(r+r~ +7-z +7-s), 

where R is the CXRCUMRADIUS of A, T is the INRADIUS, 
and pi are the EXRADII (Johnson 1929, p. 192). 

see &I EXCENTER, EXCENTER-EXCENTER CIRCLE, 
EXCIRCLE, MITTENPUNKT 
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Excess 

see KURTOSIS 

Excess Coefficient 

see KURTOSIS 

Excessive Number 

see ABUNDANT NUMBER 

Excircle 

Given a TRIANGLE, extend two nonadjacent sides. The 
CIRCLE tangent to these two lines and to the other side 
ofthe TRIANGLE is caled an ESCRIBED CIRCLE, or ex- 
circle. The CENTER Ji of the excircle is called the Ex- 
CENTER and lies on the external ANGLE BISECTOR of 
the opposite ANGLE. Every TRIANGLE has three excir- 
cles, and the TRILINEAR COORDINATES of the EXCEN- 
TERS are -1: 1: 1,1: -1 : 1, and 1 : 1 : -1. The 
RADIUS ri of the excircle i is called its EXRADIUS. 

Given a TRIANGLE with INRADIUS T, let hi be the 
ALTITUDES of the excircles, and ri their RADII (the 
EXRADII). Then 

1 1 1 I 1 1 I 
h,+r+r= 2 3 T1+T,+.r,=; 

(Johnson 1929, p. 189). 

see aho EXCENTER, EXCENTER-EXCENTER CIRCLE, 
EXCENTRAL TRIANGLE, FEUERBACH'S THEOREM, 
NAGEL POINT, TRIANGLE TRANSFORMATION PRINCI- 
PLE 
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Excision Axiom 
One of the EILENBERG-STEENROD AXIOMS whichstates 
that, if X is a SPACE with SUBSPACES A and U such that 
the CLOSURE of A is contained in the interior of U, then 
the INCLUSION MAP (X U, A U) -+ (X,A) induces an 
isomorphism Hn (X U, A U) + I&(X, A). 

Excluded Middle Law 
A law in (2-valued) LOGIC which states there is no third 
alternative to TRUTH or FALSEHOOD. In other words, 
every statement must be either A or not-A. This fact no 
longerholdsin THREE-VALUED LOGIC or FUZZY LOGIC. 

Excludent 
A method which can be used to solve any QUADRATIC 
CONGRUENCE. This technique relies on the fact that 
solving 

x2 E b (mod p) 

is equivalent to finding a value y such that 

b+py=x2. 

Pick a few small moduli m.. If y mod nz does not make 
b +py a quadratic residue of m, then this value of y may 
be excluded. Furthermore, values of y > p/4 are never 
necessary. 

Excludent Factorization Method 
Also known as the difference of squares. It was first 
used by Fermat and improved by Gauss. Gauss looked 
for INTEGERS x and y satisfying 

y2 E x2 - IV (mod E) 

for various moduli E. This allowed the exclusion of 
many potential factors. This method works best when 
factors are of approximately the same size, so it is some- 
times better to attempt mlv for some suitably chosen 
value of nz. 

see also PRIME FACTORIZATION ALGORITHMS 

Exclusive Or 

see XOR 
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Exeter Point 
Define A’ to be the point (other than the VERTEX A) 
where the MEDIAN through A meets the CIRCUMCIR- 
CLE of ABC, and define B’ and C’ similarly. Then the 
Exeter point is the PERSPECTIVE CENTER of the TRI- 
ANGLE A’B’C’ and the TANGENTIAL TRIANGLE. It has 
TRIANGLE CENTER FUNCTION 

QI = a(b4 + c4 - a”). 
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Exhaustion Method 
The method of exhaustion was a INTEGRAL-like limiting 
process used by Archimedes to compute the AREA and 
VOLUME of 2-D LAMINA and 3-D SOLIDS. 

see also INTEGRAL, LIMIT 

Existence 
If at least one solution can be determined for a given 
problem, a solution to that problem is said to exist. FYre- 
quently, mathematicians seek to prove the existence of 
solutions and then investigate their UNIQUENESS. 

see also EXISTS, UNIQUE 

Existential Closure 
A class of processes which attempt to round off a domain 
and simplify its theory by adjoining elements. 

see also MODEL COMPLETION 
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Exists 
If there exists an A, this is written 3A. Similarly, A 
does not exit is written &IA. 

see also EXISTENCE, FOR ALL, QUANTIFIER 

Exmedian 
The line through the VERTEX of a TRIANGLE which is 
PARALLEL to the opposite side. 
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Exmedian Point 
The point of intersection of two EXMEDIANS. 
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Exogenous Variable 
An economic variable that is related to other economic 
variables and determines their equilibrium levels. 

see UZSO ENDOGENOUS VARIABLE 
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Exotic R4 
Donaldson (1983) showed there 
DIFFERENTIAL STRUCTURE on 

exists an exotic smooth 
Iw4. Donaldson’s result 

has been extended to there being precisely a CONTIN- 
UUM of nondiffeomorphic DIFFERENTIAL STRUCTURES 
on Iw4. 

see dso EXOTIC SPHERE 
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Exotic Sphere 
Milnor (1963) found more than one smooth struc- 
ture on the 7-D HYPERSPHERE. Generalizations have 
subsequently been found in other dimensions. Using 
SURGERY theory, it is possible to relate the number of 
DIFFEOMORPHISM classes of exotic spheres to higher ho- 
motopy groups of spheres (Kosinski 1992) l  Kervaire and 
Milnor (1963) computed a list of the number N(d) of dis- 
tinct (up to DIFFEOMORPHISM) DIFFERENTIAL STRUC- 
TURES on spheres indexed by the DIMENSION d of the 
sphere. For d = 1, 2, , . . , assuming the POXNCAR~ CON- 
JECTURE, they are 1, 1, 1, > 1, 1, 1, 28, 2, 8, 6, 992, 
1, 3, 2, 16256, 2, 16, 16, . l  . (Sloane’s A001676). The 
status of d = 4 is still unresolved: at least one exotic 
structure exists, but it is not known if others do as well. 

The only exotic Euclidean spaces are a CONTINUUM of 
EXOTIC Iw4 structures. 

see also EXOTIC R4, HYPERSPHERE 
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EXP 
see EXPONENTIAL FUNCTION 
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Expansion Exponent 
The POWER p in an expression up. An AFFINE TRANSFORMATION in which the scale is in- 

creased. It is the opposite of a DILATION (CONTRAC- 
TION). Exponent Laws 

The laws governing the combination of EXPONENTS 
(POWERS) are 

see also DILATION 

Expansive 
Let 4 be a MAP. Then 4 is expansive if the DISTANCE 
d(#nx, 4”~) < S for all n E z, then it: = y. Equivalently, 
4 is expansive if the orbits of two points x and y are 

xm&-kx m+n 
(1) 

Xrn m-n 
=x 

Xn 
(2) 

( 1 2 
mn 

= xmn 
(3) always very close. 

( Y) x m = xmym (4 
X 

0 

n 
Xn 

-- 

i -Y” 
(5) 

Expectation Value 
For one discrete variable, 

1 

(ij 

-7t - -- 
Xn 

(6) 

-n 

- Y” - - 

( > x ’ 
(7) For one continuous variable, 

(f (4) = / f (x>p(x> dx. where quantities in the DENOM 
nonzero. Special cases include 

INATOR are taken to be (2) 

The expectation value satisfies x1 =x (8) 

(ax + by) = a(x) + b(y) (3) and 
x0 = 1 (9) 

( > a = a (4) 
for x # 0. The definition 0’ = 1 is sometimes used 
to simplify formulas, but it should be kept in mind that 
this equality is a definition and not a fundamental math- 
ematical truth. For multiple discrete variables 

see also EXPONENT, POWER 
(f (x11 l  ’  l  1  

Xn)) = x  P(Xl~.--~Xn)- 
(6) 

Xl ,'.', X7-L Exponent Vector 
Let pi denote the ith PRIME, and write 

For multiple continuous variables 

- - 
f (Xl, l  ‘0  , xn)P(xl,. . . , xn) dxl. * * dxn- (7) 

Then the exponent vector is v(m) = (~11, ~2~. l  .)* 

see also DIXON'S FACTORIZATION METHOD 
The (multiple) expectation value satisfies 
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((x - px)(y - py)) = (XY - PXY - &ix + I-WY) 

= (ql) - PxPy - PYPX + P&l 

= (XY> - (4 (Y> 1 (8) Exponential Digital Invariant 

see NARCISSISTIC NUMBER where pi is the 

see also MEAN 

MEAN for the variable i. 

Exponential Distribution 

n 1 

Experimental Design 

see DESIGN 
x 
-I \ 
a 

x 

I II 
0 

Exploration Problem 

see JEEP PROBLEM J 
x 

I 
x 
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Given a POISSON DISTRIBUTION with rate of change 
A, the distribution of waiting times between successive 
changes (with k = 0) is 

to obtain 

( ) 
x =- 

; [~{(-+l}]m 

& 0 D(x) E P(X 5 x) = 1- P(X > x) 

= -s [e-x’s (1+ ;)I; 
cl- (A > 

x Oe-Xx 

O! 
= 1 - e-X” (1) 

= -s(o - 1) = s. (17) P(x) = D’(x) = Xe-‘“, (2) 

Now, to find 
which is normalized since 

(x2) = i /- x2e-x/s dz, 
0 

(3) 

(18) 

use the integral 

This is the only MEMORYLESS RANDOM DISTRIBU- 
TION. Define the MEAN waiting time between successive 
changes as 8 z X-l. Then 

s 

X2e 
-x/s da: = $2 - 2ax + a2x2) (19) 

(x2) =; [s (2+ fx+$x2)]; (4) 

The MOMENT-GENERATING FUNCTION is 
- -s2(o - 2) = 2s2, - (20) 

M(t) = dmetx (!-) e-x/edx= ;~me-~l-Ot)x/ndx 
giving 

u2 F (x2) - (x)” 

= 2s2 - g2 = s2 

= [e-:‘~;~“], = -& (5) 
(21) 

(22) 
I9 

M’(tJ = (1 u E &ar(x) = s. 

(7) 
If a generalized exponential probability function is de- 
fined by 

1 
P(a,p,(x) = pe-(x-ay (23) 

so 

R(t) = In M(t) = - ln(1 - et) (8) 
then the CHARACTERISTIC FUNCTION is 

Rt (t> 
8 - -- 

1 - et (9) 
e iat 

4(t) 
- -- 

1 - ipt’ (10) 
and the MEAN, VARIANCE, SKEWNESS, and KURTOSIS 
are 

p = R’(O) = 8 (11) 
c2 = R”(O) = 02. (12) 

P =a+0 (25) 

g2 c p” 
(26) 

y1 = 2 (27) 

The SKEWNESS and KURTOSIS are given by 

y1 = 2 (13) 
72 = 6. (14) 72 = 6. (28) 

The MEAN and VARIANCE can also be computed directly 

(x) G lm P(x) dx = ; lrn ~e-~/’ dx. (15) 
0 0 

see also DOUBLE EXPONENTIAL DISTRIBUTION 
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Use the integral 

s 

ax 

xeax dx = >(ax - 1) (16) 
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Exponential Divisor 

see e-DIVISOR 

Exponential Function 

1 

The exponential function is defined by 

exp(Ec) = es, 

where e is the constant 2.718.. . , It satisfies 

exp(x + y) = exp(x) exp(& 

If z = x + iy, 

(1) 

the identity 

(2) 

If 

then 

g = ex+zY z exezY = e”(cosy + isiny). (3) 

a + bi = ex+iy, (4) 

b 
y = tan-l a 

0 (5) 

II:= ln{bcsc [tan-’ ($)I} 

=ln{asec[tan-l(i)]}. (6) 

Fischer, G. (Ed.). Plates 127-128 in M&hem&is&e Mod- 
elle/Mathematical Models, Bildband/Photograph Volume. 
Braunschweig, Germany: Vieweg, pp. 124-125, 1986. 

Spanier, J. and Oldham, K. B. “The Exponential Function 
exp(bx + c)” and “Exponentials of Powers exp( -asy).” 
Chs. 26-27 in An Atlas of Functions. Washington, DC: 
Hemisphere, pp. 233-261, 1987. 

Yates, R. C. “Exponential Curves.” A Handbook on Curves 
and Their Properties. Ann Arbor, MI: J. W. Edwards, 
pp. 86-97, 1952. 

Exponential Function (Truncated) 

see EXPONENTIAL SUM FUNCTION 

Exponential Inequality 
For c < 1, 

xc < 1 + C(X - 1). 

Fort> 1, 
xc > 1 + c(x - 1’>* 

Exponential Integral 

Re[ExpIntegralEi zl IExpIntegralEi zI 

t21 [zl 

Let El(s) be the &-FUNCTION with n = 1, 

El(x)= p- ~ 
s 

O” emtx dt 

s 

* e-“du 

t -x IL’ (1) 
1 

Then define the exponential integral ei( z) by 

El(x) = - ei( -Ic), (2) 
Re[IExp zl ImIIExD z1 [IExP 21 

1. 0. 1. 
0. -0. 0. 

Izl [zl [zl 

The above plot shows the function elk 

see U~SO EULER FORMULA, EXPONENTIAL RAMP, FOUR- 
IER TRANSFORM-EXPONENTIAL FUNCTION, SIGMOID 

FUNCTION 
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where the retention of the - ei(-s) NOTATION is a his- 
torical artifact. Then ei(z) is given by the integral 

s O” 
ei(x) = - 

emt dt 
- 

t l  

-X 

(3) 

This function is given by the Mathematics@ (Wolfram 
Research, Champaign, IL) function ExpIntegralEi [xl. 
The exponential integral can also be written 

ei(ix) = ci(x) + isi( (4) 

where ci(x) and si(z) are COSINE and SINE INTEGRAL. 



Exponential Map 

The real ROOT of the exponential integral occurs at 
0.37250741078.. . , which is not known to be expressi- 
ble in terms of other standard constants. The quantity 
-e ei(-1) = 0.596347362.. . is known as the GOMPERTZ 
CONSTANT. 

see also COSINE INTEGRAL, &-FUNCTION, GOMPERTZ 
CONSTANT, SINE INTEGRAL 
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Exponential Map 
On a LIE GROUP, exp is a MAP from the LIE ALGEBRA 
to its LIE GROUP. If you think of the LIE ALGEBRA as 
the TANGENT SPACE to the identity ofthe LIE GROUP, 
exp(w) is defined to be h(l), where h is the unique LIE 
GROUP HOMEOMORPHISM from the REAL NUMBERS to 
the LIE GROUP such that its velocity at time 0 is zt. 

On a RIEMANNIAN MANIFOLD, exp is a MAP from the 
TANGENT BUNDLE of the MANIFOLDLY the MANIFOLD, 
and exp(w) is defined to be h(l), where h is the unique 
GEODESIC traveling through the base-point of w  such 
that its velocity at time 0 is zt. 

The three notions of exp (exp from COMPLEX ANALY- 
SIS, exp from LIE GROUPS, and exp from Riemannian 
geometry) are all linked together, the strongest link be- 
ing between the LIE GROUPS and Riemannian geometry 
definition. If G is a compact LIE GROUP, it admits a left 
and right invariant RIEMANNIAN METRIC. With respect, 
to that metric, the two exp maps agree on their common 
domain. In other words, one-parameter subgroups are 
geodesics. In the case of the MANIFOLD sl, the CIR- 
CLE, if we think of the tangent space to 1 as being the 
IMAGINARY axis (y-Ax~s)inthe COMPLEX PLANE, then 

exPRV iemannian geometry ( > V = eXPLie Groups ’ ( > 

= exp complex analysis ( > ‘u I 

and so the three concepts of the exponential all agree in 
this case. 

see UZSO EXPONENTIAL FUNCTION 

Exponential Matrix 

see MATRIX EXPONENTIAL 
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Exponential Ramp 

Re[ExpRamp 21 
XT---. Im[ExpRamp z] 

‘\ 
IEXPRamP 21 

The curve 

Y = 1 - $“. 

see also EXPONENTIAL FUNCTION, SIGMVID FUNCTION 
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Exponential Sum Formulas 

N-l 

c 

iNx 
1 _ eiN~ 

e = 

-eiNX/2 (,-iNX/2 - eiNx12) 

- = 
1 - eiX 

n=O 

-eiX/2 (,-ix/Z _ ,iX/2) 

- sin(+) ix((N-q/2 
- 

sin( +) 
e 1 (1) 

where 
N-l 

c 

1 - rn 
Tn = ~ 

1-T 
(2) 

n=O 

has been used. Similarly, 

N-l 

c 

n inx 
1 - pNeiNx (1-P NeiNx)(l - peai”) 

pe = 

n=O 

1 - peix = (1 - peix)(l - pe-ix) 

l I pNeiNx _ pe-ix + pN+leiz(N-l) 
- - 

1 - p(eix + edi”) + p2 

-2 
N+leix(N-1) _ pNeiNx + 1- pe-i” 

- 
I- 2pcosx +p2 

. (3) 

This gives 

00 
x n inx 

Pe = lim 
N+CQ 

N-l 

n inx 
pe = 

n=O n=O 

1 - pe-ix 

(4) 
By looking at the REAL and IMAGINARY PARTS of these 
FORMULAS, sums involving sines and cosines can be ob- 
tained. 
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Exponential Sum Function 

Extension Problem 

Exsecant 

esn(x) = exp,(x) = 9 2. 
77X=0 

see also GAMMA FUNCTION 

Exradius 

The RADIUS of an EXC~RCLE. Let a TRIANGLE have 
exradius TV (sometimes denoted pa), opposite side of 
length a, AREA A, and SEMIPERIMETER S. Then 

2 
Ta = (1) 

- s(s - c)(s - b) 
- 

s-u (2) 

= 4Rsin(+l)cos(+z)cos(&) (3) 

(Johnson 1929, p. 189) where R is the CIRCUMRADIUS. 
Let T be the INRADIUS, then 

(4) 

1 1 1 1 -+-+-=- 
Ta Tb Tc T 

(5) 

Some fascinating FORMULAS due to Feuerbach are 

T2T3 +T3T1 +TlT3 = S2 (7) 

(8) of Number- Theoretic Algorithms. Cambridge, MA: MIT 
Press, 1985. 

T(T1 + r2 + 7-3) = a2a3 +u3u1+u1u2 - s2 (9) 
Wagon, S. Mathematics in Action. Near York: W. H. Free- 

man, p. 295, 1991. 
~~i+TT2+rr3+rlr~+T2T3+T~rl = U2U3+u3ul +alu2 

(10) 
r2r3 +3rl $-rlr2 -ml -rr2 -Tr3 - $(a" +uz2 +u32) 

(11) 

(Johnson 1929, pp. 190-191). 

see also CIRCLE, CIRCUMRADIUS, EXCIRCLE, INRADIUS, 
RADIUS 

Keferences 
Johnson, R. A. Modern Geometry: An Elementary Treatise 

on the Geometry of the Triangle and the Circle. Boston, 
MA: Houghton Mifflin, 1929. 

Mackay, J+ S. “Formulas Connected with the Radii of the In- 
circle and Excircles of a Triangle.” Proc. Edinburgh Math. 
Sot. 12, 86405. 

Mackay, J. S. “Formulas Connected with the Radii of the In- 
circle and Excircles of a Triangle.” Proc. Edinburgh Math. 
sot. 13, 103-104. 

exsecx = secx - 1, 

where secx is the SECANT. 

see also COVERSINE, HAVERSINE, SECANT, VERSINE 

References 
Abramowitz, M. and Stegun, C. A. (Eds.). Handbook 

of Mathematical Functions with Formulas, Gaphs, and 
Mathematical Tables, 9th printing. New York: Dover, 
p. 78, 1972. 

Extended Cycloid 

see PROLATE CYCLOID 

Extended Goldbach Conjecture 
see GOLDBACH CONJECTURE 

Extended Greatest Common 

see GREATEST COMMON DIVISOR 

Divisor 

Extended Mean-Value Theorem 
Let the functions f and g be DIFFERENTIABLE on the 
OPEN INTERVAL (a, b) and CONTINUOUS on the CLOSED 
INTERVAL [u,b]. If g’(z) # 0 for any x E (a, b), then 
there is at least one point c E (a, b) such that 

f’(c) P - f @I - f (4 
g’(c) - S(b) - s(4 l  

see also MEAN-VALUE THEOREM 

Extended Riemann Hypothesis 
The first quadratic nonresidue mod p of a number is 
always less than 2(In~)~. 

see also RIEMANN HYPOTHESIS 

References 
Bach, E. Anulytic Methods in the Analysis and Design 

Extension 
The definition of a SET by enumerating its members. 
An extensional definition can always be reduced to an 
INTENTIONAL one. 

see also INTENSION 

References 
Russell, B. “Definition of Number.” Introduction to Mathe- 

matical Philosophy. New York: Simon and Schuster, 1971. 

Extension Problem 
Given a SUBSPACE A of a SPACE X and a MAP from A 
to a SPACE Y, is it possible to extend that MAP to a 
MAP from X to Y? 

see also LIFTING PROBLEM 
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Extensions Calculus 

see EXTERIOR ALGEBRA 

Extent 
The RADIUS of the smallest CIRCLE centered at one 
of the points of an N-CLUSTER, which contains all the 
points in the N-CLUSTER. 

see also N-CLUSTER 

Exterior 
That portion of a region lying “outside” a specified 
boundary. 

see also INTERIOR 

Exterior Algebra 
The ALGEBRA of the EXTERIOR PRODUCT, also called 
an ALTERNATING ALGEBRA or GRASSMANN ALGEBRA. 
The study of exterior algebra is also called AUSDEHN- 
UNGSLEHRE and EXTENSIONS CALCULUS. Exterior al- 
gebras are GRADED ALGEBRAS. 

For a TRIANGLE, the exterior angle bisector bisects the 
SUPPLEMENTARY ANGLE atagiven VERTEX- Italsodi- 
vides the opposite side externally in the ratio of adjacent 
sides. 

see ~SO ANGLE BISECTOR, ISODYNAMIC POINTS 

Exterior Angle Theorem 
In any TRIANGLE, if one of the sides is extended, the 
exterior angle is greater than both the interior and op- 
posite angles. 

References 
Dunham, W. Journey Through Genius: The Great Theorems 

of Mathematics. New York: Wiley, p. 41, 1990. 

Exterior Derivative 
Consider a DIFFERENTIAL ~-FORM 

w1 = ihdxl +b2dxz. (1) 

Then its exterior derivative is 

dwl = dbl A dxl + dbz A dxz, (2) 

where A is the WEDGE PRODUCT. Similarly, consider 

Then 

u1 = b&,x2) da + h(xl,xz) dm. 

dJ = dbl A dxl + dbz A dx2 

- - 

Denote the exterior derivative by 

Dt E a 
air: At. 

Then for a O-form t, 

for a l-form t, 

and for a Z-form t, 

w ijk G 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

where cijk is the PERMUTATION TENSOR. 

The second exterior derivative is 

D2t = -&A(&At)=(gA;)At=o, (9) 

which is known as POINCARI?S LEMMA. 

see also DIFFERENTIAL ~-FORM, POINCARI?S LEMMA, 
WEDGE PRODUCT 
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Exterior Dimension 
A type of DIMENSION which can be used to characterize 
FAT FRACTALS. 

see also FAT FRACTAL 

References 
Grebogi, C.; McDonald, S. W.; Ott, 33.; and Yorke, J. A. 

“Exterior Dimension of Fat Fractals.” Phys. Let. A 110, 
l-4, 1985. 

Grebogi, C.; McDonald, S. W.; Ott, E.; and Yorke, J+ A. 
Erratum to “Exterior Dimension of Fat Fractals.” Phys. 
Let. A 113, 495, 1986. 

Ott, E. Chaos in Dynamical Systems. New York: Cambridge 
University Press, p. 98, 1993. 

Exterior Product 
see WEDGE PRODUCT 

Exterior Snowflake 

A FRACTAL. 

see also FLOWSNAKE FRACTAL, KOCH ANTISNOW- 
FLAKE, KOCH SNOWFLAKE,~ENTAFLAKE 

References 
Wagon, S. Mathematics in Action. New York: W. H. Free- 

man, pp. 193~195,1991. 
@ Weisstein, E. W. “Fractals.” http: //www . astro. Virginia. 

edu/-eww6n/math/notebooks/Fractal.m. 

Extra Strong Lucas Pseudoprime 
Given the LUCAS SEQUENCE Un(b, -1) and V&I, --I), 
define A = b2 - 4. Then an extra strong Lucas pseu- 
doprime to the base b is a COMPOSITE NUMBER n = 
2’s + (A/n), where s is ODD and (n,2A) = 1 such 
that either Us E 0 (mod n) and Vs z l t2 (mod n), or 
V2ts E 0 (mod n) for some t with 0 5 t < T - 1. An 
extra strong Lucas pseudoprime is a STRONG LUCAS 
PSEUDOPRIME with parameters (b, -1). COMPOSITE n 

are extra strong pseudoprimes for at most l/8 of possi- 
ble bases (Grantham 1997). 

see also LUCAS PSEUDOPRIME, STRONG LUCAS PSEU- 
DOPRIME 

References 
Grantham, J. “fiobenius Pseudoprimes.” http://www. 

clark.net/pub/grantham/pseudo/pseudo,ps 
Grantham, J. “A F’robenius Probable Prime Test with 

High Confidence.” 1997. http://www.clark.net/pub/ 
grantham/pseudo/pseudo2.ps 

Jones, J. P. and MO, 2, “A New Primality Test Using Lucas 
Sequences.” Preprint. 

Extrapolation 
see RICHARDSON EXTRAPOLATION 

Extremal Graph 
A two-coloring of a COMPLETE GRAPH Kn of n nodes 
which contains exactly the number IV E (R + B)min 
of MONOCHROMATIC FORCED TRIANGLES andno more 
(i.e., a minimum of R + B where R and B are the num- 
bers of red and blue TRIANGLES). Goodman (1959) 
showed that for an extremal graph, 

Im(m - l)(m - 2) for n = 2m 
N(n) = !2m(m-1)(4m+l) forn=44m+l 

!2m(m + 1)(4m -1) forn=4772+3. 

This is sometimes known as GOODMAN'S FORMULA. 
Schwenk (1972) rewrote it in the form 

sometimes known as SCHWENK'S FORMULA, where 1x1 
is the FLOOR FUNCTION. The first few values of N(n) 
for n = 1, 2, . . . are 0, 0, 0, 0, 0, 2, 4, 8, 12, 20, 28, 40, 
52, 70, 88, . . . (Sloane’s AOl4557). 

see also BICHROMATIC GRAPH, BLUE-EMPTY GRAPH, 
GOODMAN'S FORMULA, MONOCHROMATIC FORCED 
TRIANGLE, SCHWENK'S FORMULA 

References 
Goodman, A. W. “On Sets of Acquaintances and Strangers 

at Any Party.” Amer. Math. Monthly 66, 778-783, 1959. 
Schwenk, A. J. “Acquaintance Party Problem." Amer. Math. 

MonthEy 79, 1113-1117,1972. 
Sloane, N. J. A. Sequence A014557 in “An On-Line Version 

of the Encyclopedia of Integer Sequences." 

Extremals 
A field of extremals is a plane region which is SIMPLY 
CONNECTED by a one-parameter family of extremals. 
The concept was invented by Weierstrafl. 

Extreme and Mean Ratio 

~~~GOLDEN MEAN 

Extreme Value Distribution 
N.B. A detailed on-line essay by S. Finch was the start- 

ing point for this entry. 

Let Mn denote the “extreme” (i.e., largest) ORDER 
STATISTICX tn> for a distribution of n. elements Xi taken 
from a continuous UNIFORM DISTRIEWTION. Then the 
distribution of the A& is 

i 

0 ifx<O 
P(M,<x)= xn ifO<xsl 

1 ifs > 1, 

and the MEAN and VARIANCE are 

(1) 

Extremal Coloring 

~~~EXTREMAL GRAPH 

n 
pw- 

n+l 

o2 = 
(n + l):(n + 2) ’ 

(2) 

(3) 



F(x) = -& 
s 

X 

e-t2’2 dt = + + a(x), (4 
n --oo 

where a(x) is the NORMAL DISTRIBUTION FUNCTION. 
The probability distribution of Mm is then 

P(Mn < x) = [F(x)]” = + s’ [ 

7r -m 

The MEAN p(n) and VARIANCE a2(n 
closed form for small n, 

CL(l) = 0 

42) 1 = 

7 7T 

3 
P(3) = r 7r 

‘t @>I n-l 
e 

-t2/2 dt. 

(5) 

are expressible in 

(6) 

(7) 

(8) 

i-44) 
3 - 

[ 

2 - 1 + - sin-l( +)I 
2fi 7r (9) 

P(5) 
- - & [l + !J sin-‘($)] (10) 

and 

a2(1) = 1 (11) 

u2(2)=1-1 (12) 7r - 

a2(3) = 
4n-9+2fi 

47r (13) 

a2(4) = 1 + 7 - [p(4)]” (14) 

a2(5) = l-f- 
5J3 5a 
4n + s sin-l(+) - [p(5)12. (15) 

No exact expression is known for ~(6) or c2 (6)) but there 
is an equation connecting them 

[p(S>l” + ~~(6) = 1 + g + $$ sin-‘(a). (16) 

An analog to the CENTRAL LIMIT THEOREM states that 
the asymptotic normalized distribution of M, satisfies 
one of the three distributions 

P(Y) = exp( -eDY) (17) 

P(Y) = { zxp(-y-a) if y s O 

exp[-(-y)a] if y < 0 
P(Y) = { 1 

- 
ify>O, 

(18) 

w 
also known as GUMBEL, FEchet,and WEIBULL DISTRI- 
BUTIONS, respectively. 

see UZSO FISHER-TIPPETT DISTRIBUTION, ORDER 
STATISTIC 
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Extreme Value Theorem 
If a function f is continuous on a closed interval [a, b], 
then f has both a MAXIMUM and a MINIMUM on [a, b]. 
If f has an extreme value on an open interval (a, b), 
then the extreme value occurs at a CRITICAL POINT. 
This theorem is sometimes also called the WEIERSTRAJ~ 
EXTREME VALUE THEOREM. 

Extremum 
A MAXIMUM or MINIMUM. An extremum may be LO- 
CAL (a.k.a. a RELATIVE EXTREMUM; an extremumin a 
given region which is not the overall MAXIMUM or MIN- 
IMUM) or GLOBAL. F’unctions with many extrema can 
be very difficult to GRAPH. Notorious examples include 
the functions cos(l/~) and sin(l/x) near x = 0 

and sin(e2x+g) T lear 0 and 1. 

The latter has 

extrema in the CLOSED INTERVAL [O,l] (Mulcahy 1996). 

see also GLOBAL EXTREMUM, GLOBAL MAXIMUM, 
GLOBAL MINIMUM, KUHN-TUCKER THEOREM, LA- 
GRANGE MULTIPLIER, LOCAL EXTREMUM, LOCAL 
MAXIMUM, LOCAL MINIMUM, MAXIMUM, MINIMUM 

,). Handbook 
? Graphs, and 
York: Dover, 

velets.” Math. 

and Minima. 
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Extremum Test 
Consider a function j(z) in 1-D. If f(z) has a relative 
extremum at ~0, then either f’(q)) = 0 or f is not 
DIFFERENTIABLE at 20. Either the first or second DE- 
RIVATIVE tests may be used to locate relative extrema 
of the first kind. 

A NECESSARY condition 
(MAXIMUM) at x0 is 

for f(z) to have a MINIMUM 

f’(xo) = 0, 

and 
f”(x0) 2 0 (f”(xo> I 0). 

A SUFFICIENT condition is I’ = 0 and f”(zco) > 0 

(f”(x0) < 0). Let f’(x0) = 0, f”(Xo> = 0, . . . , 
f(“)(zo) = 0, but f@+‘) (x0) # 0. Then f(x) has a REL- 
ATIVE MAXIMUM at ~0 if n is ODD and f(n+l)(xo) < 0, 
and f(z) has a RELATIVE MINIMUM at x0 if n is ODD 
and f(n+l)(xo) > 0. Th ere is a SADDLE POINT at 20 if 
n is EVEN. 

see also EXTREMUM, FIRST DERIVATIVE TEST, RELA- 
TIVE MAXIMUM, RELATIVE MINIMUM, SADDLE POINT 
(FUNCTION), SECOND DERIVATIVE TEST 

Extrinsic Curvature 
A curvature of a SUBMANIFOLD of a MANIFOLD which 
depends on its particular EMBEDDING. Examples of ex- 
trinsic curvature include the CURVATURE and TORSION 
of curves in 3-space, or the mean curvature of surfaces 
in 3-space. 

see 

CU 

~2~0 CURVATU 
RVATURE 

RE, INTRINSIC Cu RVATURE, 



F-Distribution Facet 

F see &O BETA FUNCTION, GAMMA FUNCTION, REGU- 
LARIZED BETA FUNCTION, SNEDECOR'S F-DISTRIBU- 

TION 
F-Distribution 
Arises in the testing of whether two observed samples 
have the same VARIANCE. Let xm2 and xn2 be inde- 
pendent variates distributed as CHI-SQUARED with m 
and n DEGREES OF FREEDOM. Define a statistic Fn,m 
as the ratio of the dispersions of the two distributions 

References 
Abramowitz, M. and Stegun, C. A. (Eds.). Handbook 

of Mathematical Functions with Formulas, Graphs, and 
Mathematical Tables, 9th printing. New York: Dover, 
pp. 946-949, 1972. 

xn2/n F =- n,m - 
xm2/772.’ 

(1) 

This statistic then has an F-distribution with probabil- 
ity function and cumulative distribution 

Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetter- 
ling, W. T. “Incomplete Beta Function, Student’s IXstribu- 
tion, F-Distribution, Cumulative Binomial Distribution.” 
s6.2 in Numerical Recipes in FORTRAN: The Art of Sci- 
entific Computing, 2nd ed. Cambridge, England: Cam- 
bridge University Press, pp. 219-223, 1992. 

Spiegel, M. R. Theory and Problems of Probability and 
Statistics. New York: McGraw-Hill, pp. 117-118, 1992. 

mm/2nn/22n/2-I 
- - 

(m + ~x)(~+~)/~B( in, $m) (3) 

= I(1; $m; in) - I 
> 

, (4) 

where l?(z) is the GAMMA FUNCTION, B(a, b) is the 
BETA FUNCTION, and I(a,b;~) is the REGULARIZED 
BETA FUNCTION. The MEAN, VARIANCE, SKEWNESS 
and KURTOSIS are 

m 

m-2 
(5) 

2m2(m+n-2) 

n(m - 2)2(m-4) (6) 
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F-Polynomial 

see KAUFFMAN POLYNOMIAL F 

F-Ratio 
The RATIO of two independent estimates of the VARI- 
ANCE of a NORMAL DISTRIBUTION. 

see U~SO F-DISTRIBUTION, NORMAL DISTRIBUTION, 
VARIANCE 

F-Ratio Distribution 

see F-DI~TRIwI~~N 

2(m + 2n - 2) 

m-6 

12(-16 + 20m - 8m2 + m3 + 44n) 

(7) 
Face 

Fabry Imbedding 
A representation of a PLANAR GRAPH as a planar 
straight line graph such that no two EDGES cross. 

n(m - 6)(m - 8)(n + m - 2) 

. 12(-32mn +- 5m2n - 22n2 + 5mn2) 
I 

n(m-6)(m-8)(n+m-2) ’ ‘“’ 

The probability that F would be as large as it is if the 
first distribution has a smaller variance than the second 
is denoted Q(Fn,m)- 

The noncentral F-distribution is given by 

e 

The intersection of an n-D POLYTOPE with a tan- 
gent HYPERPLANE. O-D faces are known as VERTICES 
(nodes), 1-D faces as EDGES, (n - 2)-D faces as RIDGES, 
and (n - 1)-D faces as FACETS. 

see ~2s~ EDGE (POLYHEDRON), FACET, POLYTOPE, 
RIDGE,VERTEX (POLYHEDRON) 

Facet 
An (n - 1)-D FACE of an n-D POLYTOPE. A procedure 
for generating facets is known as FACETING. 

where l?(z) is the GAMMA FUNCTION, B(Q) is the 
BETA FUNCTION, and L:(z) is an associated LA- 
GUERRE POLYNOMIAL. 
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Faceting Factorial 
The factorial n! is defined for a POSITIVE INTEGER n as Using a set of corners of a SOLID that lie in a plane to 

form the VERTICES of a new POLYGON is called faceting. 
Such POLYGONS may outline new FACES that join to 
enclose a new SOLID, even if the sides of the POLYGONS 
do not fall along EDGES of the original SOLID. 

n! s 
1 

n=(n- 1)~~.2=1 n= 1,2,... 
1 n = 0. 

References 
Holden, A. Shapes, Space, and Symmetry. New York: 

Columbia University Press, p. 94, 1971. 

The first few factorials for n = 0, 1, 2, l  . . are 1, 1; 2, 
6, 24, 120, . . . (Sloane’s A000142). An older NOTATION 
for the factorial is k (Dudeney 1970, Gardner 1978, 
Conway and Guy 1996). 

Factor 
A factor is a portion of a quantity, usually an INTE- 
GER or POLYNOMIAL. The determination of factors is 
called FACTORIZATION (or sometimes “FACTORING"). It 
is usually desired to break factors down into the smallest 
possible pieces so that no factor is itself factorable. For 
INTEGERS, the determination of factors is called PRIME 
FACTORIZATION. For large quantities, the determina- 
tion of all factors is usually very difficult except in ex- 
ceptional circumstances. 

As n grows large, factorials begin acquiring tails of trail- 
ing ZEROS. To calculate the number of trailing ZEROS 
for n!, use 

Z=F[$], (2) 
kc1 

see UZSO DIVISOR, FACTORIZATION, GREATEST PRIME 
FACTOR, LEAST PRIME FACTOR, PRIME FACTORIZA- 
TION ALGORITHMS 

and 1x1 is the FLOOR FUNCTION (Gardner 1978, p. 63; 
Ogilvy and Anderson 1988, pp. 112-114). For n = 1, 2, 

Factor Base 

"'1 the number of trailing zeros are 0, 0, 0, 0, 1, 1, 1, 
1, 1, 2, 2, 2, 2, 2, 3, 3, l  . l  (Sloane’s A027868). This is a 
special application of the general result that the POWER 
of a PRIME p dividing n! is 

The primes with LEGENDRE SYMBOL (n/p) = 1 (less 
than Iv = n(d) for trial divisor d) which need be consid- 
eredwhenusingthe QUADRATIC SIEVE FACTORIZATION 
METHOD. 

(4) 

see also DIXON'S FACTORIZATION METHOD 

References 

(Graham et al. 1994, Vardi 1991). Stated another way, 
the exact POWER of a PRIME p which divides n! is 

Morrison, M. A. and Brillhart, J. “A Method of Factoring 
and the Factorization of FT.” Math. Comput. 29, 183- 

n - sum of digits of the base-p representation of n 
. 

P-l 
(5) 

205, 1975. 

Factor (Graph) 
A l-factor of a GRAPH with TJ VERTICES is 
separate EDGES which collectively contain 
VERTICES of G among their endpoints. 

Factor Group 

see QUOTIENT GROUP 

Factor Level 
A grouping of statistics. 

Factor Ring 

see QUOTIENT RING 

Factor Space 

see QUOTIENT SPACE 

a set of n/2 
all n of the 

By noting that 
n! = r(n + l), (6) 

where r(n) is the GAMMA FUNCTION for INTEGERS n, 
the definition can be generalized to COMPLEX values 

z! c r(r+1) = e-V dt. 

This defines Z! for all COMPLEX values of Z, except when 
z is a NEGATIVE INTEGER, in which case Z! = 00. Us- 
ing the identities for GAMMA FUNCTIONS, the values of 
(in)! (half integral values) can be written explicitly 

(-$)! = Jx 
(8) 

( > 
11-L r 

2 
l  - 

2 d- (9) 

( 
lr n - f>! = -Zr(2n - 

212. 
l)!! (10) 

(n+ f>! = -$$(2n + l)!!, (11) 

where n!! is a DOUBLE FACTORIAL. 
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For INTEGERS s and n with s < n, Identities satisfied by sums of factorials include 
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O” 1 E - 
k! 

= e = 2.718281828.. . (22) 
k=O 

(s -n)! (-l)“-“(2n - 2s)! 

(2 s - 2n)! = ( n- s)! - (12) 

1) k - 
-1 

-=e 
k! 

= 0.3678794412.. . (23) 
The LOGARITHM of z! is frequently encountered 

k=O 

00 

x 1 

(k!)2 
= Io(2) = 2.279585302. . . (24) 

k=O 
L \ ‘J n-l 

O” ( 
c 

- 1) k 

~ = Jo(Z) = 0.2238907791. . . 
(k!)2 (25) 

k=O 
=+[-$$I -+(z) 

m  

+(1- $2 - y-)( 

z2n+l 

2n++$--g 
n=l 

IE 1 

w ! 
= cash 1 = 1.543080635 . , . (26) 

k=O 

k 

- = cos 1 = 0.5403023059 l  . l  

! 

(27) = In lim 
[ 

n! 
n--f00 (Z+l)(Z+2)*-++r/ (15) 1 

= lim [ln(n!) + zlnn - ln(z + 1) 
n+m 

- ln(z + 2) - . . l  - ln(z + n)] (16) 
IE - = sinhI = 1.175201194.. . 

(2k : 1) ! (28) 
k=O 

00 
- - 

x $1(o) . 
O” (1) k 

>: 

- 
- = (2k + l)! sin 1 = 0.8414709848.. . (29) 

k=O 

(17) 
n=l 

E -yz + ?(-I)” $C(n) (18) 
n=2 

= - ln(l + z) + ~(1 - 7) 

+ F(-ljn[C(n) - l$, 
n (19) 

(Spanier and Oldham 1987), where 10 is a MODIFIED 
BESSEL FUNCTION OF THE FIRST KIND, Jo is a BESSEL 
FUNCTION OF THE FIRST KIND, cash is the HYPER- 
BOLIC COSINE, cos is the COSINE, sinh is the HYPER- 
BOLIC SINE, and sin is the SINE. 

Let h be the exponent of the greatest POWER of a PRIME 

p dividing n!. Then 
where y is the EULER-MASCHERONI CONSTANT, c is the 
RIEMANN ZETA FUNCTION, and Fn is the POLYGAMMA 
FUNCTION. The factorial can be expanded in a series 

z! = &z”+1’2e-“(1 + &z-l 

+&Z-2 - =iF3 + . l  l )* 
51840 

(20) 
Let g be the number of 1s in the BINARY representation 
of n. Then 

g+h=n (31) 
STIRLING’S SERIES gives the series expansion for ln(z!), 

(Honsberger 1976). I n g eneral, as discovered by Legen- 
dre in 1808, the POWER vx of the PRIME p dividing n! 
is given by ln(z!) = $ln(2r) + (2 + +) lnz - 2 + $- 

+...+ 
B2n 

2n(2n - l)zznvl + ’ ’ ’ 

- $ln(2r) + (z + i) lnz - z + &z-’ - 

- 
5s -3 + &f5 - . . . , (21) 

m= 
n - (no + 721 + . . . + nN) 

P-l 
9 (32) 

where the INTEGERS nl, . . V , r&N are the digits of n in 
base p (Ribenboim 1989). 

The sum-of-factorials function is defined by where B, is a BERNOULLI NUMBER. 

E(n) E t k! 

k=l 

- -e + k(l) + pi + J&+1(-l)r(n + 2) - 7 D 
(33) 

- -e + ei(1) + !R[E zn+l(-l)]r(n+ 2) 
- 

> 
e (34) 
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where ei(1) z 1.89512 is the EXPONENTIAL INTEGRAL, (Sloane’s A014597). The first 
E,is the E,-FUNCTION, and iis the IMAGINARY NUM- alternating SUM 
BER. The first few values are 1, 3, 9, 33, 153, 873, 
5913, 46233, 409113, . . . (Sloane’s A007489) m C(n) can- 
not be written as a hypergeometric term plus a constant 
(PetkovBek et al. 1996). However the sum 

E’(n) E 2 kk! = (n + l)! - 1 

k=l 

(35) 

has a simple form, with the first few values being 1, 5, 
23, 119, 719, 5039, . . . (Sloane’s A033312). 

The numbers n! + 1 are prime for n = 1, 2, 3, 11, 27, 
37, 41, 73, 77, 116, 154, . . . (Sloane’s A002981), and the 
numbers n! - 1 are prime for n = 3, 4, 6, 7, 12, 14, 30, 
32, 33, 38, 94, 166, . . , (Sloane’s A002982). In general, 
the power-product sequences (Mudge 1997) are given by 
S:(n) = (n!)” * 1. The first few terms of S:(n) are 2, 
5, 37, 577, 14401, 518401, . l  . (Sloane’s AO20549), and 
S,f(n) is PRIME for n = 1, 2, 3, 4, 5, 9, 10, 11, 13, 24, 
65, 76, . . . (Sloane’s A046029). The first few terms of 
SC(n) are 0, 3, 35, 575, 14399, 518399, . , . (Sloane’s 
A046030), but S, ( ) n is PRIME for only n = 2 since 
SC(n) = (n!)’ - 1 = (n! + l)(n! - 1) for n > 2. The first 
few terms of ST(n) are 0, 7, 215, 13823, 1727999, . . . , 
and the first few terms of S,f (n) are 2, 9, 217, 13825, 
1728001, l  . . (Sloane’s A19514). 

There are only four INTEGERS equal to the sum of the 
factorials of their digits. Such numbers are called FAC- 
TORIONS. While no factorial is a SQUARE NUMBER, 
D. Hoey listed sums < 1012 of distinct factorials which 
give SQUARE NUMBERS, and J. McCranie gave the one 
additional sum less than 21! = 5.1 x lOI’: 

O! + l! + 2! = 22 

l! + 2! + 3! = 32 

l! + 4! = 52 

I! + 5! = 112 

4! + 5! = 122 

l! + 2! + 3! + 6! = 27’ 

l! + 5! + 6! = 2g2 

I! + 7! = 712 

4! + 5! + 7! = 722 

l! + 2! + 3! + 7! + 8! = 2132 

l! + 4! + 5! + 6! + 7! + 8! = 2E2 

I! + 2! + 3! + 6! + 9! = 6032 

l! + 4! + 8! + 9! = 6Xj2 

I! + 2! + 3! + 6! + 7! + 8! + lo! = 1917’ 

is PRIME are 3, 4, 5, 6, 7, 8, 
(Sloane’s A014615, Guy 1994, 
factorials which are products 
METIC SEQUENCE are 

few values for which the 

41, 59, 61, 105, 160, . . . 
p. 100). TI le only known 
of factorial in an ARITH- 

(36) 

O!l! = l! 

1!2! = 2! 

0!1!2! = 2! 

6!7! = lo! 

1!3!5! = 6! 

1!3!5!7! = lo! 

(Madachy 1979). 

There are no identities of the form 

n! = Ul!U2! l  ’  l  a,! 
(37) 

for T > 2 with ai 2 aj 2 2 for i < j for n < 18160 - - 
except 

9! = 7!3!3!2! (38) 
lo! = 7!6! = 7!5!3! (39) 
16! = 14!5!2! (40) 

(Guy 1994, p. 80). 

There are three numbers less than 200,000 for which 

(n - l)! + 1~ 0 (mod n2) , (41) 

namely 5, 13, and 563 (Le Lionnais 1983). BROWN 
NUMBERS are pairs (m, n) of INTEGERS satisfying the 
condition of BROCARD'S PROBLEM, i.e., such that 

n!+l=m2. (42) 

Only three such numbers are known: (5, 4), (11, 5), (71, 
7). Erdes conjectured that these are the only three such 
pairs (Guy 1994, p. 193). 

see also ALLADI~RINSTEAD CONSTANT, BROCARD'S 
PROBLEM, BROWN NUMBERS, DOUBLE FACTORIAL, 
FACTORIAL PRIME, FACTORION, GAMMA FUNCTION, 
HYPERFACTORIAL, MULTIFACTORIAL, POCHHAMMER 
SYMBOL, PRIMORIAL, ROMAN FACTORIAL, STIRLING'S 
SERIES, SUBFACTORIAL, SUPERFACTORIAL 

l! + 2! + 3! + 7! + 8! + 9! + lo! + ll! + 12! 

+13! + 14! + 15! = 11838932 
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Factorial Moment 

V(r) = x x9 (4, 
5 

where 
dr) = x(x - 1) ” ’ (x - T + 1). - 

Factorial Number 

see FACTORIAL 

Factorial Prime 
A PRIME of the form n! & 1. n! + 1 is PRIME for 1, 2, 
3, 11, 27, 37, 41, 73, 77, 116, 154, 320, 340, 399, 427, 
872, 1477, . . . (Sloane’s A002981) up to a search limit 
4850. n! - 1 is PRIME for 3, 4, 6, 7, 12, 14, 30, 32, 33, 
38, 94, 116, 324, 379, 469, 546, 974, 1963, 3507, 3610, 
. . . (Sloane’s A002982) up to a search limit of 4850. 
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Factorial Sum 
Sums with unity NUMERATOR and FACTORIALS in the 
DENOMINATOR which can be expressed analytically in- 
clude 

n 

c 

1 

i=l 
(n + i - k)!(n - i)! 

2Fl(l, -n;l+n-k;-1)-l - - 
r(l+ n)r(l+ n - k) (1) 

4 7 
n 

E 

1 WT 

(n + i - l)!(n - i)! = 2F(+ + n)r(l+ n) (2) 

i=l 

n 

x 

1 

i=l (n + i)!(n - i)! 

J 7r 1 - - 
2r(i + n)r(l+ n) - 2r2(1 + n) (3) 

n 

x 

1 

i=l (72 + i + l)!(n - i)! 
- 

dr 1 - - 
2r(% + n)r(l+ n) - ql+ n)r(2 + n)’ 

(4) 

where 2FI(a, b;c; Z) is a HYPERGEOMETRIC FUNCTION 
and l?(z) is a GAMMA FUNCTION. 

Sums with i in the NUMERATOR having analytic solu- 
t ions include 

n 

x 

i 

( + n i- 
i=l 

k)!(n - i)! 

nsFl(2,1-n;2-k+n;-1) - 
- (1 - k + n)r(l+ n)r(l - k + n) (5) 

n . 

x 
( + n i -- - I)!(, - i)! 

z- 1 

1 d- - -- 
2r(n) 2&n) + [ 

n 

r(i + n) 1 (6) 
n 

x 

i n 

i=l 
(n + i)!(n - i)! = 2r2(1+ n) 
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n , 
x ‘-1 (n + i + ;)!(n - i)! 
z- 

1 1 - (n2 + 372 + 2)& 
- - - 

W(1 + n) L r(2 + n) 1 2l?(%+n) * (8) 
see also FACTORIAL 

References 
Gardner, M. “Factorial Oddities.” Ch. 4 in Mathematical 

Magic Show: More Puzzles, Games, Diversions, Illusions _ 
and Other Mathematical Sleight-of-Mind j&m Scient$c 
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A sum with i2 in the NUMERATOR is 

n 
x 

i2 
I- 1 

(n + i - k)!(n - i)! 
z- 

- - 
(l-k+n)(2-k+n~~(l+n)F(l-k+n) 

x[(2-k+n)~F~(2,1-n;2-k+n;-l) 

+2(n-l)zFl(3,2-n;3-k+n;-l)], (9) 

Factorization 
Thefindingof FACTORS (DIVISORS) ofagiven INTEGER, 
POLYNOMIAL, etc. Factorization is also called FACTOR- 
ING* 

see also FACTOR, PRIME FACTORIZATION ALGORITHMS 
where 2FI (a,b;c;z) is the HYPERGEOMETRIC FUNC- 
TION. 

Sums of factorial POWERS include 

Fagnano’s Point 
The point of coincidence of P and P' in FAGNANO'S 
PROBLEM. 

f7 (n!)2 4 2n 
- - 

/r 
n=O (2 > n!-3+= UC Fagnano’s Problem 

Y) 
1 

x 

n! 3 
- - 

n=O 
(3 > s n!- o 

where 

In a given ACUTE-angled TRIANGLE AABC, INSCRIBE 
another TRIANGLE whose PERIMETER is as small as pos- 
sible. The answer is the PEDAL TRIANGLE of AABC. [P(t) + Q(t) cos-’ R(t)] dt, 

References 
Coxeter, H. S. M. and Greiteer, S. L. Geometry Revisited. 

Washington, DC: Math. Assoc. Amer., pp. 88-89, 1967. 

P(t) - a@ + at2 - 7t3) 
- 

(4 - t2 + t3)2 (12) Fagnano’s Theorem 
If P(x, y) and P(x’, y’> are two points on an ELLIPSE 

Q(t) - 4t(1 - t)(5 + t2 - t3) 
- 

(4 - t2 + t”)“J(1- t)(4 - t2 + t”) 
(13) 

X2 
-$+$=1. (1) 

R(t) = 1 - $(t” - t3) (14) 

with ECCENTRIC ANGLES 4 and 4’ such that (Beeler et al. 1972, Item 116). 

b 
tan&an& = a (2) 

References 
Beeler, M.; Gosper, R. W.; and SchroeppeI, R. HAKMEM. 

Cambridge, MA: MIT Artificial Intelligence Laboratory, 
Memo AIM-239, Feb. 1972. and A = P(,, 0) and B = P(0, b). Then 

Factoring 

see FACTORIZATION 

2 I 

arcBP+arcBP’= eza: 
a (3) 

This follows from the identity 
Factorion 
A factorion is an INTEGER which is equal to the sum of 
FACTORIALS of its digits. There are exactly four such 

E(u, k) + E(v, k) - E(k) = k2 sn(u, k) sn(v, k), (4) 

numbers: 
where E(u, k) is an incomplete ELLIPTIC INTEGRAL OF 
THE SECOND KIND, E(k) is a complete ELLIPTIC INTE- 
GRAL OF THE SECOND KIND, and sn(v, k) is a JACOBI 
ELLIPTIC FUNCTION. If P and P’ coincide, the point 
where they coincide is called FAGNANO'S POINT. 

1 = l! (1) 

2 = 2! (2) 
145 = l! + 4! + 5! (3) 

40,585 = 4! + O! + 5! + 8! + 5! (4) 
Fair Game 

(Gardner 1978, Madachy 1979, Pi&over 1995). The fac- A GAME which is not biased toward any player. 

torion of an n-digit number cannot exceed n = 9! digits. see also GAME, MARTINGALE 
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Fairy Chess 
A variation of CHESS involving a change in the form of 
the board, the rules of play, or the pieces used. For 
example, the normal rules of chess can be used but with 
a cylindrical or MOBIUS STRIP connection of the edges. 

see ah CHESS 

References 
Kraitchik, M. “Fairy Chess.” $12.2 in lMathematicaZ Recre- 

ations. New York: W. W. Norton, pp. 276-279, 1942. 

Fallacy 
A fallacy is an incorrect result arrived at by appar- 
ently correct, though actually specious reasoning. The 
most common example of a mathematical fallacy is the 
“proof” that 1 = 2 as follows. Let a = b, then 

ab = 2 

& - b2 = a2 - b2 

b(a - b) = (a + b)(a - b) 

b=a+b 

b = 2b 

1 = 2. 

The incorrect step is division by a - b (equal to 0), which 
is invalid. Ball and Coxeter (1987) give other such ex- 
amples in the areas of both arithmetic and geometry. 

References 
Ball, W. W. R. and Coxeter, H, S. M. IMathemdticaZ Recre- 

ations and Essays, 13th ed. New York: Dover, pp. 41-45 
and 76-84, 1987. 

Pappas, T. “G .eometric Fallacy & the Fibonacci Sequence.” 
The Joy of Mathematics. San Carlos, CA: Wide World 
Publ./Tetra, p. 191, 1989. 

False 
A statement which is rigorously not TRUE. Regular 
two-valued LOGIC allows statements to be only TRUE 
or false, but FUZZY LOGIC treats “truth” as a contin- 
uum which can have a value between 0 and 1. 

see &~ALETHIC, FUZZY LOGIC, LOGIC, TRUE,TRUTH 
TABLE,~NDECIDABLE 

False Position Met hod 

An ALGORITHM for finding ROOTS which uses the point 
where the linear approximation crosses the axis as the 
next iteration and keeps the same initial point for each 
iteration. Using the two-point form of the line 

with y = 0, using yr = 
fore gives the iteration 

f(zl), and solving for X~ there- 

X ?-L-l-Xl 
X?-L = x1 - 

f( xn-1) -f(m) 
f(xd- 

see also BRENT 
CANT METHOD 

's METHOD, RIDDERS' METHOD, SE- 

References 
Abramowitz, M. and Stegun, C. A. (Eds.). Handbook 

of Mathematical Functions with Formulas, Graphs, and 
Mathematical Tables, 9th printing. New York: Dover, 
p* 18, 1972. 

Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetter- 
ling, W. T. “Secant Method, False Position Method, and 
Ridders’ Method.” $9.2 in Numerical Recipes in FUR- 

TRAN: The Art of Scientific Computing, 2nd ed. Cam- 
bridge, England: Cambridge University Press, pp. 347- 
352,1992. 

Faltung (Form) 
Let A and B be bilinear forms 

A = A@, y) = x >) GjXiYi 

B = B(X, Y) = x x bijxiyi 

and suppose that A and B are bounded in Cp,p’] with 
bounds M and IV. Then 

F = F(A,B) = T,F: fijxiyj, 

is absolutely convergent, is called the faltung of A and 
B. F is bounded in Ip, p’], and its bound does not exceed 
MN. 

Heierences 
Hardy, G. H.; Littlewood, J. E.; and P6lya, G. Inequalities, 

2nd ed. Cambridge, England: Cambridge University Press, 
pp. ZlO-211,1988. 

Faltung (Function) 

see CONVOLUTION 

Fan 
A SPREAD in which each node has a FINITE number of 
children. 

see also SPREAD (TREE) 

Fano’s Axiom 
The three diagonal points of a COMPLETE QUADRILAT- 
ERAL are never COLLINEAR. 

f( &L--l) - f(a) 
y-y1= ( Xn - xd 

xn-1-a 
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Fano Plane As a : b : c approaches 1 : 1 : 1, this point moves out 
along the EULER LINE to infinity. 

References 
Kimberling, C. 

Plane of a Tri 
Kimberling, C . ; 

lem 1195 and 

“Central Points and Central Lines in 
angle.” Math. Msg. 67, 163487, 1994. 
Lyness, R. C.; and Veldkamp, G. R. “Pr 
Solution.” Crux Math. 14, 177-179, 198 

bob- 
8. 

Farey Sequence 
The Farey sequence Fn for any POSITIVE INTEGER n 
is the set of irreducible RATIONAL NUMBERS a/b with 
0 < a < b < 72 and (a, b) = 1 arranged in increasing - - - 
order. 

The 2-D PROJECTIVE PLANE over GF(2) (“of order 
two”), illustrated above. It is a BLOCK DESIGN with 
Y = 7, k = 3, X = 1, r = 3, and b = 7, and is also the 
STEINER TRIPLE SYSTEM S(7). 

The Fano plane also solves the TRANSYLVANIA LOT- 
TERY, which picks three numbers from the INTEGERS 
1-14. Using two Fano planes we can guarantee match- 
ing two by playing just 14 times as follows. Label the 
VERTICES of one Fano plane by the INTEGERS 1-7, the 
other plane by the INTEGERS 8-14. The 14 tickets to 
play are the 14 lines of the two planes. Then if (a, b, c) 
is the winning ticket, at least two of a, b, c are either in 
the interval [l, 71 or [8, 141. These two numbers are on 
exactly one line of the corresponding plane, so one of 
our tickets matches them. 

0111231 
F4 = {i, ;I3 37 29 39 47 i} 

There is always an ODD number of terms, and the mid- 
dle term is always l/2. Let p/q, p’/q’, and p”/q” be 
three successive terms in a Farey series. Then 

The Lehmers (1974) found an application of the Fano 
plane for factoring INTEGERS via QUADRATIC FORMS. 
Here, the triples of forms used form the lines of 
the PROJECTIVE GEOMETRY on seven points, whose 
planes are Fano configurations corresponding to pairs of 
residue classes mod 24 (Lehmer and Lehmer 1974, Guy 
1975, Shanks 1985). The group of AUTOMORPHISMS 
(incidence-preserving BIJECTIONS) of the Fano plane is 
the SIMPLE GROUP of ORDER 168 (Klein 1870). 

see also DESIGN, PROJECTIVE PLANE, STEINER TRIPLE 
SYSTEM,TRANSYLVANIA LOTTERY 

CIP’ - pq’ = 1 (6) 

p’ - P + P” 
T- q -I- q” l  

(7) 

These two statements are actually equivalent. 

The number of terms N(n) in the Farey sequence for 
the INTEGER n is 

N(n) = 1 + e@(k) = 1-t G(n), 
k=l 

(8) 
References 
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where 4(k) is the TOTXENT FUNCTION and Q(n) is the 
SUMMATORY FUNCTION of 4(k), giving 2, 3, 5, 7, 11, 
13, 19, l  . l  (Sloane’s A005728). The asymptotic limit 
for the function N(n) is 

N(n) N g = 0.3039635509n2 (9) Far Out 
A word used by Tukey to describe data points which are 
outside the outer FENCES. (Vardi 1991, p. 155). For a method of computing a suc- 

cessive sequence from an existing one of n terms, insert 
the MEDIANT fraction (a + b)/(c + d) between terms 
a/c and b/d when c + d < n (Hardy and Wright 1979, 
pp. 25-26; Conway and Guy 1996). 

References 
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Far-Out Point 
For a TRIANGLE with side lengths a, b, and c, the far-out 
point has TRIANGLE CENTER FUNCTION 

FORD CIRCLES provide a method of visualizing the 
Farey sequence. The Farey sequence Fn. defines a sub- 
tree of the STERN-BROCOT TREE obtained by pruning 
unwanted branches (Graham et al. 1994). 

see also FORD CIRCLE, MEDIANT, RANK (SEQUENCE), 
STERN-BROCOTTREE 

a! = a(b4 + c4 - a4 - b2C2). 
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Farey Series 

~~~FAREY SEQUENCE 

Farkas’s Lemma 
The INEQUALITY (fo,z) < 0 follows from - 

(fl,X) 2 0,*-v (fn7X) < 0 

IFF there exist NONNEGATIVE numbers &, 

n 

c 
xkfk = fO- 

k=l 

, X, with 

This LEMMA is used in the proof of the KUHN-TUCKER 
THEOREM. 

see also KUHN-TUCKER THEOREM, LAGRANGE MULTI- 
PLIER 

Faro Shuffle 

see RIFFLE SHUFFLE 

Fast Fibonacci Transform 
For a general second-order recurrence equation 

Fast Fourier Thnsform 

The inverse is then given by 

(A,B)-l = 
(-A, XA + B) 

B2 + xAB - yA2 ’ (3) 

and we have the identity 

(h YfO)(b 0)” = (h-t17 Yfn) (4) 

(Beeler et al. 1972, Item 12). 
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Fast Fourier Transform 
The fast Fourier transform (FFT) is a DISCRETE FOUR- 
IER TRANSFORM ALGORITHM which reduces the num- 
ber of computations needed for N points from 2N2 to 
2Nlg N, where LG is the base-2 LOGARITHM. If the 
function to be transformed is not harmonically related 
to the sampling frequency, the response of an FFT looks 
like a SING FUNCTION (although the integrated POWER 
is still correct). ALIASING (LEAKAGE) can be reduced by 
APODIZATION using a TAPERING FUNCTION. However, 
ALIASING reduction is at the expense of broadening the 
spectral response. 

FFTs were first discussed by Cooley and Tukey (1965), 
although Gauss had actually described the critical fac- 
torization step as early as 1805 (Gergkand 1969, Strang 
1993). A DISCRETE FOURIER TRANSFORM can be 
computed using an FFT by means of the DANIELSON- 
LANCZOS LEMMA if the number of points N is a POWER 
of two. If the number of points Iv is not a POWER of 
two, a transform can be performed on sets of points cor- 
responding to the prime factors of N which is slightly 
degraded in speed. An efficient real Fourier transform 
algorithm or a fast HARTLEY TRANSFORM (Bracewell 
1965) gives a further increase in speed by approximately 
a factor of two. Base-4 and base-8 fast Fourier trans- 
forms use optimized code, and can be 20-30% faster 
than base-2 fast Fourier transforms. PRIME factoriza- 
tion is slow when the factors are large, but discrete Four- 
ier transforms can be made fast for 1v = 2, 3, 4, 5, 7, 
8, 11, 13, and 16 using the WINOGRAD TRANSFORM 
ALGORITHM (Press et al. 1992, pp. 412-413, Arndt). 

Fast Fourier transform algorithms generally fall into 
two classes: decimation in time, and decimation in fre- 
quency. The Cooley-Tukey FFT ALGORITHM first re- 
arranges the input elements in bit-reversed order, then 
builds the output transform (d.ecimation in time). The 

f n+l = Xfn + yfn-1, (1) 

define a multiplication rule on ordered pairs by 

(A, B)(C, D) = (AD + BC + xAC, BD + yAC). (2) 



Fast Fourier lkansform Fatou’s Theorems 

basic idea is to break up a transform of length Iv into 
two transforms of length N/2 using the identity 

N-l N/2-1 

>: 
ad 

-2rink/N _ -2&(2n)k/N 
- a2d 

n=O 

N/2-1 

+>: a2n+le 
-2d(2n+l)k/N 

r&=0 

N/2--1 

>: 

even - 
an e 

-2&nk/(N/2) 
- 

n=O 

N/2-1 

+e -2bk/N aodde-2xink/(N/2) 
n 1 

n=O 

sometimes called the DANIELSON-LANCZOS LEMMA. 
The easiest way to visualize this procedure is perhaps 
via the FOURIER MATRIX. 

The Sande-Tukey ALGORITHM (Stoer and Burlisch 
1980) first transforms, then rearranges the output values 
(decimation in frequency). 

see also DANIELSON-LANCZOS LEMMA, DISCRETE 
FOURIER TRANSFORM, FOURIER MATRIX, FOURIER 

TRANSFORM, HARTLEY TRANSFORM, NUMBER THEO- 
RETIC TRANSFORM,~INOGRAD TRANSFORM 
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Fat Fkact al 
A CANTOR SET with LEBESGUE MEASURE greater than 
0. 

see also CAN ‘TO R SET, Ex 
TAL, LEBESG UE MEASURE 

TERIOR DERIVATIV E, FRAC- 
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Fatou Dust 

see FATOU SET 

Fatou’s Lemma 
If a SEQUENCE {fn} of NONNEGATIVE measurable func- 
tions is defined on a measurable set E, then 

s lim inf fn dp < lim inf - 
s 

fn dP* n-km n+w 

E E 

References 
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Fatou Set 
A set consisting of the complementary set of complex 
numbers to a JULIA SET. 

see also JULIA SET 
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Fatou’s Theorems 
Let f(B) be LEBESGUE INTEGRABLE and let 

be the corresponding POISSO N INTEGRAL. 

MOST EVERYWHERE in -- 2 8 I =, 

Then AL- 

lim f(r,O) = f(0). (2) 
?--ho- 

Let 

F( > z = CO + ClZ + C2Z2 + l  l  l  + CnZn + . * A 
(3) 

be regular for 1x1 < 1, and let the integral 

1 7r 

is s 
1 F(reie)12 d0 

-7r 

be bounded for T < 1. This condition is equivalent to 
the convergence of 

(5) 
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Then almost everywhere in -7r < 0 < q - - 

lim F(rP) = F(eie). (6) 
r+O- 

Furthermore, F(eis) is measurable, 1 F(eis) I2 is LEBES- 

GUE INTEGRABLE, and the FOURIER SERIES of F(eie) 
is given by writing z = P. 
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Faulhaber’s Formula 
In a 1631 edition of Academiae AZgebrae, J. Faulhaber 
published the general formula for the SUM of pth POW- 
ERS of the first n POSITIVE INTEGERS, 

n 

Ix 
kP 

k=l 

= --& F(-1yi’ (” ‘1 l)Bp+lBin’, 
i=l 

(1) 

where &, is the KRONECKER DELTA, (1) is a BINOMIAL 
COEFFICIENT, and Bi is the ith BERNOULLI NUMBER. 
Computing the sums for p = 1, . . . , 10 gives 

(2) 
k=l I‘ 
c k2 = i(2n3 + 3n2 + n) (3) 
k=l 

n 

c 
k3 = a(n4+2n3+n2) (4 

k=l 

c k4 = $(6n5 + 15n4 + lb3 - n) 

k=l 

(5) 

n 

x 
k5 = &(2n6 + 6n5 + 5n4 - n2) (6) 

k=l 

n 

x 
k6 = &(6n7 + 21n” + 21n5 - 7n3 + n) (7) 

k=l 
n 

x 
k7 = &(3ng + 12n7 + 14n” - 7n4 + 2n2) (8) 

k=l 

n 

x 
ks = & (long + 45 n0 -+ 60n7 - 42n5 

k=l 

+ 20n3 - 3n) 
n 

c 
kg = &(2n1’ + 1073’ + 1572’ - 14n6 

k=l 

+ 10n4 - 3n2) 
n 

IE 

10 
k = &(6n1’ + 33n1’ + 55ng - 66n7 

k=l 

+ 66n5 - 33n3 -+- 5n). 

(9) 

(10) 

(11) 

see also POWER, SUM 
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Favard Constants 
NJ. A detailed on-line essay by S. Finch was the start- 
ing-point for this entry. 

Let TV be an arbitrary trigonometric POLYNOMIAL 

Tn(x) = ia0 + $$ c&x) i- h sin(JEx)] ? 
k=l 

where the COEFFICIENTS are real. Let the rth deriva- 
tive of Tn(x) be bounded in [-l,l], then there exists a 
POLYNOMIAL Tn(x) for which 

If(x) - zl(x)I 5 & 
n 

for all x, where KT is the rth Favard constant, which is 
the smallest constant possible. 

These can be expressed by 

KY = 
Q(T + 1) for T odd 
~P(T + 1) for T even, 

where X is the DIRICHLET LAMBDA FUNCTION and @is 
the DIRICHLET BETA FUNCTION. Explicitly, 

K. = 1 

Kl = $r 

Kz = +rz 

K3 = &r3. 
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Feigenbaum Constant 
A universal constant for functions approaching CHAOS 
via period doubling. It was discovered by Feigenbaum 
in 1975 and demonstrated rigorously by Lanford (1982) 
and Collet and Eckmann (1979, 1980). The Feigenbaum 
constant S characterizes the geometric approach of the 
bifurcation parameter to its limiting value. Let pk be 
the point at which a period 2k cycle becomes unstable. 
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Denote the converged value by pm l  Assuming geometric 
convergence, the difference between this value and pk is 
denoted 

r 
lim pm-pk=~? 

k+m 
(1) 

> 1. Solving where I? is 
for 6 gives 

a constant and 6 is a constant 

(Rasband 1990, p* 23). For the LOGISTIC EQUATION, 

6 = 4.669216091.. . 

r = 2.637.. l  

CL- = 3.5699456.. . . 

(2) 

(3) 

(4 

(5) 

Amazingly, the Feigenbaum constant S ==: 4.669 is “uni- 
versal” (i.e., the same) for all 1-D MAPS f(z) if f(z) has 
a single locally quadratic MAXIMUM. More specifically, 
the Feigenbaum constant is universal for 1-D MAPS if 
the SCHWARZIAN DERIVATIVE 

D 
f"'(X) 3 f"(X) 2 

Schwarzian E - - - - 
f ‘(4 [ 1 2 f’(x) (6) 

is NEGATIVE in the bounded interval (Tabor 1989, 
p. 220). Examples of maps which are universal in- 
clude the H~NON MAP, LOGISTIC MAP, LORENZ SYS- 
TEM, Navier-Stokes truncations, and sine map x=+1 = 
a sin(;rrx,). The value of the Feigenbaum constant can 
be computed explicitly using functional group renormal- 
ization theory. The universal constant also occurs in 
phase transitions in physics and, curiously, is very nearly 
equal to 

7r+tan-l (eT) = 4.669201932, . . . (7) 

The CIRCLE MAP is not universal, and has a Feigenbaum 
constant of 6 ==: 2.833. For an AREA-PRESERVING 2-D 
MAP with 

Xn+l = f (Xn, Yn) (8) 

Yn+l = g(Xnr Yn)y (9) 

the l?eigenbaum constant is 6 = 0.7210978.. . (Tabor 
1989, p. 225). For a function of the form 

f(x) = 1 - alxln (10) 

with a and 72 constant and n an INTEGER, the Feigen- 
baum constant for various n is given in the following 
table (Briggs 1991, Briggs et al. 1991), which updates 
the values in Tabor (1989, pm 225). 

An additional constant a, defined as the separation of 
adjacent elements of PERIOD DOUBLED ATTRACTORS 
from one double to the next, has a value 

dn 
lim - 

d 
E -a = -2.502907875.. . (11) 

n+m n+l 

for “universal” maps (Rasband 1990, p. 37). This value 
may be approximated from functional group renormal- 
ization theory to the zeroth order by 

I- ly-l= 
1 - C2 

P - a-2(1 - a-912 ’ (12) 

which, when the QUINTIC EQUATION is numerically 
solved, gives QI = -2.48634 . . ., only 0.7% off from the 
actual value (Feigenbaum 1988) l  

see U~SO ATTRACTOR, BIFURCATION, FEIGENBAUM 
FUNCTION, LINEAR STABILITY, LOGISTIC MAP, PE- 
RIOD DOUBLING 
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Feigenbaum Function 
Consider an arbitrary 1-D MAP 

xn+1 = F(G) (1) 

at the onset of CHAOS. After a suitable resealing, the 
Feigenbaum function 

d > 
1 

X 
= 2% Fo(0) 

Fq2Fo(o)) (2) 

is obtained. This function satisfies 

9(9(x)) = -dgw~ (3) 

with cy = 2.50290 l  . l , a quantity related to the FEIGEN- 

BAUM CONSTANT. 

see also BIFURCATION, CHAOS, FEIGENBAUM CON- 
STANT 
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Feit-Thompson Conjecture 
Concerns PRIMES p and 4 for which pQ - 1 and 4” - 1 
have a common factor. The only (p, 4) pair with both 
values less than 400,000 is (17, 3313), with a common 
factor 112,643. 
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Feit-Thompson Theorem 
Every FINITE SIMPLE GROUP (which is not CYCLIC) has 
EVEN ORDER, and the ORDER of every FINITE SIMPLE 
noncommutative group is DOUBLY EVEN, i.e., divisible 
by 4 (Feit and Thompson 1963). 

see also BURNSIDE PROBLEM, FINITE GROUP, ORDER 
(GROUP), SIMPLE GROUP 
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Fejes T6th’s Integral 

1 7r 

2 
f( > 

27F(n + 1) -~ x s { 

sin[+(n+ 1)x] 

sin( 3x) 1 

dx 

gives the nth CES~RO MEAN of the FOURIER SERIES of 

f( ) 2 . 
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Fejes T6th’s Problem 
How can n points be distributed on a UNIT SPHERE such 
that they maximize the minimum distance between any 
pair of points ? In 1943, Fejes T&h proved that for Iv 
points, there always exist two points whose distance d 

I 

d< /4-csc2 [6C;;2,1, 

and that the limit is exact for N = 3, 4, 6, and 12. 

For two points, the points should be at opposite ends of 
a DIAMETER. For four points, they should be placed at 
the VERTICES of an inscribed TETRAHEDRON. There is 
no best solution for five points since the distance can- 
not be reduced below that for six points. For six points, 
they should be placed at the VERTICES of an inscribed 
OCTAHEDRON. For seven points, the best solution is 
four equilateral spherical triangles with angles of 80’. 
For eight points, the best dispersal is not the VERTICES 
of the inscribed CUBE, but of a square ANTIPRISM with 
equal EDGES. The solution for nine points is eight equi- 
lateral spherical triangles with angles of cos-1 (l/4). For 
12 points, the solution is an inscribed ICOSAHEDRON. 

The general problem has not been solved. 

SW UZSO THOMSON PROBLEM 
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Feller’s Coin-Tossing Constants 

see COIN TOSSING 

Feller-Levy Condition 
Given a sequence of independent random variates X1, 
X2, l  . . , if uk2 = var (X,) and 

/ 

Ok2 
pn2 F k+Nn &2 ’ max - 

- ( > 
then 

lim pn2 = 0. 
n+oo 

This means that if the LINDEBERG CONDITION holds 
for the sequence of variates X1, . . . , then the VARIANCE 

of an individual term in the sum Sn of XI, is asymp- 
totically negligible. For such sequences, the LINDEBERG 

CONDITION is NECESSARY as well as SUFFICIENT for 
the LINDEBERG-FELLER CENTRAL LIMIT THEOREM to 
hold. 
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Fence 
Values one STEP outside the HINGES are called inner 
fences, and values two steps outside the HINGES are 
called outer fences. ‘&key calls values outside the outer 
fences FAR OUT. 
see also ADJACENT VALUE 
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Fence Poset 
A PARTIAL ORDER defined by (i - 1, j), (i + 1, j) for 
ODD i. 
see also PARTIAL ORDER 

References 
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Ferguson-Forcade Algorithm 
A practical algorithm for determining if there exist in- 
tegers ai for given real numbers zi such that 

alxl +a222 +...+anxn =0, 

or else establish bounds within which no such INTEGER 
RELATION can exist (Ferguson and Forcade 1979). A 
nonrecursive variant of the original algorithm was sub- 
sequently devised by Ferguson (1987). The Ferguson- 
Forcade algorithm has shown that there are no algebraic 
equations of degree 5 8 with integer coefficients having 
Euclidean norms below certain bounds for e/n, e + r, 

ln 7 Y, er, r/e, Y/ r, and lny, where e is the base for 
the NATURAL LOGARITHM, n isPI, and y isthe EULER- 
MASCHERONI CONSTANT (Bailey 1988)* 

Fermat 4n + 1 Theorem 
Every PRIME of the form 4n + 1 is a sum of two SQUARE 
NUMBERS in one unique way (up to the order of SUM- 
MANDS). The theorem was stated by Fermat, but the 
first published proof was by Euler. 

see also SIERPI~~SKI’S PRIME SEQUENCE THEOREM, 
SQUARE NUMBER 
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Fermat’s Algorithm 

see FERMAT’S FACTORIZATION METHOD 

Fermat Compositeness Test 
Uses FERMAT’S LITTLE THEOREM 

Fermat’s Congruence 

see FERMAT’S LITTLE THEOREM 

Fermat Conic 
A PLANE CURVE of the form y = x? For n > 0, the 
curve is a generalized PARABOLA; for n < 0 it is a gen- 
eralized HYPERBOLA. 

see &O CYNIC SECTION, HYPERBOLA, PARABOLA 

Fermat’s Conjecture 

see FERMAT'S LAST THEOREM 

Fermat Difference Equation 

see PELL EQUATION 
Constant Bound 

eln 6.1030 x 1O1” 
e+n 2.2753 x 101* 
In 7r 8.7697 x 10’ 

Y 3.5739 x log 
eT 1.6176 x 1017 
r/e 1.8440 x 1011 

rlr 6.5403 x 10’ 

1n-Y 2.6881 x 10” 

Fermat Diophantine Equation 

~~~FERMAT DIFFERENCE EQUATION 

Fermat Equation 
The DIOPHANTINE EQUATION 

xn+yn=zn* 

see UZSO CONSTANT PROBLEM, EUCLIDEAN ALGO- 
RITHMJNTEGER RELATION, PSLQ ALGORITHM 
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The assertion that this equation has no nontrivial solu- 
tions for n > 2 is called FERMAT'S LAST THEOREM. 

see also FERMAT'S LAST THEOREM 

Fermat-Euler Theorem 

see FERMAT’S LITTLE THEOREM 
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Fermat’s Factorization Method 
Given a number n, look for INTEGERS II= and y such that 
n =x2-y2. Then 

n = (x - Y>(X + Y> (1) 

and n is factored. Any ODD NUMBER can be represented 
in this form since then n = ab, a and b are ODD, and 

x $ ky (mod n). It turns out that if n is ODD and DI- 
VISIBLE by at least two different PRIMES, then at least 
half of the solutions to x2 E y2 (mod n) with xy CO- 
PRIME to n are interesting. For such solutions, (n, x - y) 
is neither n nor 1 and is therefore a nontrivial factor of 
n (Pomerance 1996). This ALGORITHM can be used to 
prove primality, but is not practical. In 1931, Lehmer 
and Powers discovered how to search for such pairs using 
CONTINUED FRACTIONS. This method was improved 
by Morrison and Brillhart (1975) into the CONTINUED 
FRACTION FACTORIZATION ALGORITHM, whichwasthe 
fastest ALGORITHM inuse before the QUADRATIC SIEVE 
FACTORIZATION METHOD was developed. 

see UZSOPRIME FACTORIZATION ALGORITHMS, SMOOTH 
NUMBER 
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a=x+y 

b=x-y. 

Adding and subtracting, 

a+b=2x 

a - b = 2y, 

so solving for x and y gives 

X= $(a+b) 

Y= +(a - b). 

Therefore, 

X2 - y2 = +[(a + b)2 - (a - 

As the first trial for x, try x1 [fi 
CEILING FUNCTION. Then check if 

-b ) 

1 3 

is a SQUARE NUMBER. There are only 22 combinations 
of the last two digits which a SQUARE NUMBER can 
assume, so most combinations can be eliminated. If AXI 
is not a SQUARE NUMBER, then try 

2 1 = ab. (8) 

where [xl is the 

(9) Ax1 = xl2 - n 

617 

TION x"+y" = zn has no INTEGER solutions for n > 2. 

Fermat’s Last Theorem 
A theorem first proposed by Fermat in the form of a 
note scribbled in the margin of his copy of the ancient 
Greek text Arithmetica by Diophantus. The scribbled 
note was discovered posthumously, and the original is 
now lost. However, a copy was preserved in a book pub- 
lished by Fermat’s son. In the note, Fermat claimed to 
have discovered a proof that the DIOPHANTINE EQUA- 

x2 = x1+ 1, (10) 

Ax2 = x22 - n = (21 + 1)” - n = xl2 -I- 2x1+ 1 - n 

= Ax, + 2X1$- 1. (11) 

Continue with 

Axs = xS2 - n = (x2 + 1)2 -n = xz2 + 2x2 + 1 -n 

= Ax2 + 2x2 + 1 = Ax2 + 2x1+ 3, (12) 

so subsequent differences are obtained simply by adding 
two. 

Maurice Kraitchik sped up the ALGORITHM by looking 
for x and y satisfying 

i.e., 721(x2 - Y”>* 

x2 s y2 (mod n) , (13 

This congruence has uninteresting 

The full text of Fermat’s statement, written in Latin, 
reads “Cubum autem in duos cubes, aut quadrato- 
quadratum in duos quadratoquadratos & generaliter 
nullam in infinitum ultra quadratum potestatem in duos 
eiusdem nominis fas est diuidere cuius rei demonstra- 
tionem mirabilem sane detexi. Hanc marginis exiguitas 
non caperet? In translation, “It is impossible for a cube 
to be the sum of two cubes, a fourth power to be the 
sum of two fourth powers, or in general for any number 
that is a power greater than the second to be the sum 
of two like powers. I have discovered a truly marvelous 
demonstration of this proposition that this margin is too 
narrow to contain.” 

As a result of Fermat’s marginal no 
that the DIOPHANTINE EQUATION 

te, the proposi .tion 

x”+y” = c, (1) 

where x, y, z, and n are INTEGERS, has no NONZERO so- 
lutions for n > 2 has come to be known as Fermat’s Last 
Theorem. It was called a CLT~~~~~~" on the strength of 
Fermat’s statement, despite the fact that no other math- 
ematician was able to prove it for hundreds of years. 

solutions x I= &y (mod n) and interesting solutions 
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Note that the restriction n > 2 is obviously necessary 
since there are a number of elementary formulas for gen- 
erating an infinite number of PYTHAGOREAN TRIPLES 
(x, y, z) satisfying the equation for rz = 2, 

x2+y2=z2* (2) 

A first attempt to solve the equation can be made by 
attempting to factor the equation, giving 

( z 42 + yn/2)(2n/2 _ y”l”) = 2n* (3) 

Since the product is an exact POWER, 

z 42 + yn/2 = 4y-qp or p/2 + y”/2 = 4-&p 
z n/2 -Y n/2 = 4&n z 42 _ y”/2 = y9”. 

(4) 
Solving for y and z gives 

z 42 = 27-3” + qn or g-42 = pn + 2”-3f4 

Y 42 =2 n-2 n 
P -cr Y 42 = p” - 2n-zqn, 

(5) 
which give 

1 
x = (2 n-2Pn + 02’” 
y = (2”-2pn _ qn)2/” Or 

1 

z c (p” + 2+2qnj21n 
y = (p” - 2n-2q”)2/“. 

(6) 
However, since solutions to these equations in RATIONAL 
NUMBERS are no easier to find than solutions to the 
original equation, this approach unfortunately does not 
provide any additional insight. 

It is sufficient to prove Fermat’s Last Theorem by con- 
sidering PRIME POWERS only, since the arguments can 
otherwise be written 

(xmy + (y”)’ = (Zrn)P1 (7) 

so redefining the arguments gives 

xp+yp =gm (8) 

The so-called “first case” of the theorem is for expo- 
nents which are RELATIVELY PRIME to 2, y, and z 
(fix, y, x) and was considered by Wieferich. Sophie Ger- 
main proved the first case of Fermat’s Last Theorem for 
any ODD PRIME p when 2p+ 1 is also a PRIME. Legen- 
dre subsequently proved that if p is a PRIME such that 
4p + 1, 8p + 1, 10~ + 1, 14~ + 1, or 16~ + 1 is also a 
PRIME, then the first case of Fermat’s Last Theorem 
holds for p. This established Fermat’s Last Theorem for 
p < 100. In 1849, Kummer proved it for all REGULAR 
PRIMES and COMPOSITE NUMBERS of which they are 
factors (Vandiver 1929, Ball and Coxeter 1987). 

Kummer’s attack led to the theory of IDEALS, and Van- 
diver developed VANDIVER'S CRITERIA for deciding if 

a given IRREGULAR PRXME satisfies the theorem. Gen- 
occhi (1852) proved that the first case is true for p if 
(p,p - 3) is not an IRREGULAR PAIR. In 1858, Kum- 
mer showed that the first case is true if either (p,p - 3) 

or CP,P--5) is an IRREGULAR PAIR, which was subse- 
quently extended to include (p, p - 7) and (p, p - 9) by 
Mirimanoff (1905). Wieferich (1909) proved that if the 
equation is solved in integers RELATIVELY PRIME to an 
ODD PRIME p, then 

2’-l = 1 (mod p”) . - (9) 

(Ball and Coxeter 1987). Such numbers are called 
WIEFERICH PRIMES. Mirimanoff (1909) subsequently 
showed that 

3’4 - - - 1 (mod p”) (10) 

must also hold for solutions RELATIVELY PRIME to an 
ODD PRIME p, which excludes the first two WIEFERICH 
PRIMES 1093 and 3511. Vandiver (1914) showed 

5’-l E 1 (mod p”) , (11) 

and Frobenius extended this to 

It has also 
form 6z - 1 

b 

11P-1 17P-1 = 
1 - 1 (modp2). (12) 

een shown 
then 

that if p were a PRIME of the 

7P-1 13P-1 
1 ,19’-l G 1 (modp2), (13) 

which raised the smallest possible p in the “first case” to 
253,747,889 by 1941 (Rosser 1941). Granville and Mon- 
agan (1988) showed if there exists a PRIME p satisfying 
Fermat’s Last Theorem, then 

p-l - 
Q = 1 (mod p”) (14) 

for q = 5, 7, 11, l  , . , 71. This establishes that 
the first case is true for all PRIME exponents up to 
714,591,416,091,398 (Vardi 1991). 

The “second case” of Fermat’s Last Theorem (for 
plx, y, z) proved harder than the first case. 

Euler proved the general case of the theorem for n = 3, 
Fermat n = 4, Dirichlet and Lagrange n = 5. In 1832, 
Dirichlet established the case n = 14. The n = 7 case 
was proved by Lam6 (1839), using the identity 

(X+Y+z)7-(X7+Y7+27) 

= 7(X + Y)(X + Z)(Y + 2) 

x[(x2+Y2+z2+xY+xz+Y~)2 

+ XYZ(X + Y + Z)]. (15) 

Although some errors were present in this proof, these 
were subsequently fixed by Lebesgue (1840). Much ad- 
ditional progress was made over the next 150 years, but 
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no completely general result had been obtained. Buoyed 
by false confidence after his proof that PI is TRANSCEN- 
DENTAL, the mathematician Lindemann proceeded to 
publish several proofs of Fermat’s Last Theorem, all of 
them invalid (Bell 1937, pp. 464-465). A prize of 100,000 
German marks (known as the Wolfskel Prize) was also 
offered for the first valid proof (Ball and Coxeter 1987, 
p* 72). 

A recent false alarm for a general proof was raised by 
Y. Miyaoka (Cipra 1988) whose proof, however, turned 
out to be flawed. Other attempted proofs among both 
professional and amateur mathematicians are discussed 
by vos Savant (1993), although vos Savant erroneously 
claims that work on the problem by Wiles (discussed 
below) is invalid. By the time 1993 rolled around, the 
general case of Fermat’s Last Theorem had been shown 
to be true for all exponents up to 4 x lo6 (Cipra 1993). 
However, given that a proof of Fermat’s Last Theo- 
rem requires truth for all exponents, proof for any fi- 
nite number of exponents does not constitute any sig- 
nificant progress towards a proof of the general theorem 
(although the fact that no counterexamples were found 
for this many cases is highly suggestive). 

In 1993, a bombshell was dropped. In that year, 
the general theorem was partially proven by Andrew 
Wiles (Cipra 1993, Stewart 1993) by proving the 
SEMISTABLE case ofthe TANIYAMA-SHIMURA C~NJEC- 
TURE. Unfortunately, several holes were discovered in 
the proof shortly thereafter when Wiles’ approach via 
the TANIYAMA-SHIMURA CONJECTURE became hung up 

on properties of the SELMER GROUP using a tool called 
an “Euler system.” However, the difficulty was circum- 
vented by Wiles and R. Taylor in late 1994 (Cipra 1994, 
1995ab) and published in Taylor and Wiles (1995) and 
Wiles (1995). Wiles’ proof succeeds by (1) replacing 
ELLIPTIC CURVES with Galois representations, (2) re- 
ducing the problem to a CLASS NUMBER FORMULA, (3) 
proving that FORMULA, and (4) tying up loose ends that 
arise because the formalisms fail in the simplest degen- 
erate cases (Cipra 1995a). 

The proof of Fermat’s Last Theorem marks the end of a 
mathematical era. Since virtually all of the tools which 
were eventually brought to bear on the problem had yet 
to be invented in the time of Fermat, it is interesting to 
speculate about whether he actually was in possession 
of an elementary proof of the theorem. Judging by the 
temerity with which the problem resisted attack for so 
long, Fer-mat ‘s alleged proof seems likely to have been 
illusionary. 

see also ABC CONJECTURE, BOGOMOLOV-MIYAOKA- 

YAU INEQUALITY, MORDELL CONJECTURE, PYTHAG- 
OREAN TRIPLE, RIBET’S THEOREM, SELMER GROUP, 
SOPHTE GERMAIN PRIME, SZPIRO'S CONJECTURE, 
TANIYAMA~HIMURA CONJECTURE, VOJTA’S CONJEC- 
TURE,WARING FORMULA 
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Fermat ‘s Lesser Theorem 

see FERMAT'S LITTLE THEOREM 

Fermat’s Little Theorem 
Ifp is a PRIME number and a a NATURAL NUMBER, 
then 

up E a (mod p) . (1) 

Furthermore, if ~$a (p does not divide a), then there 
exists some smallest exponent d such that 

ud -1~0 (modp) 

and d divides p - 1. Hence, 

(2) 

g--l - 1 - = 0 (mod p) . (3) 

This is a generalization of the CHINESE HYPOTHESIS 
and a special case of EULER'S THEOREM. It is sometimes 
called FERMAT'S PRIMALITY TEST andisa NECESSARY 
but not SUFFICIENT test for primality. Although it was 
presumably proved (but suppressed) by Fermat, the first 
proof was published by Euler in 1749. 

The theorem is easily proved using mathematical IN- 
DUC TION. Suppose plap - a. Then examine 

Fermat ‘s Lit tie Theorem 

(a + 1)” - (a + I)* 

From the BINOMIAL THEOREM, 

(u+l)P=up+($f-~+(;)up-~+... 

Rewriting, 

+ 

. . 

(4 

P 

( > p-1 u+lm 

(5) 

.+ p 
( > p-l a. 

(6) 
But p divides the right side, so it also divides the left 
side. Combining with the induction hypothesis gives 
that p divides the sum 

[(a + 1)” - up - l] + (UP - a) = (a + 1)” - (CL + l), (7) 

as assumed, so the hypothesis is true for any a. The 
theorem is sometimes called FERMAT'S SIMPLE THEO- 
REM. WILSON'S THEOREM follows as a COROLLARY of 
Fermat’s Little Theorem. 

Fermat’s little theorem shows that, if p is PRIME, there 
does not exists a base a < p with (a,~) = 1 such that 
up--l - I possesses a nonzero residue modulo p. If such 
base a exists, p is therefore guaranteed to be compos- 
ite. However, the lack of a nonzero residue in Fermat’s 
little theorem does not guarantee that p is PRIME. The 
property of unambiguously certifying composite num- 
bers while passing some PRIMES make Fermat’s little 
theorem a COMPOSITENESS TEST which is sometimes 
calledthe FERMAT COMPOSITENESS TEST. COMPOSITE 
NUMBERS knownas FERMAT PSEUDOPRIMES (orsome- 
times simply "PSEUDOPRIMES") have zero residue for 
some as and so are not identified as composite. Worse 
still, there exist numbers known as CARMICHAEL NUM- 
BERS (the smallest of which is 561) which give zero 
residue for any choice of the base a RELATIVELY PRIME 
top. However, FERMAT'S LITTLETHEOREM CONVERSE 
provides a criterion for certifying the primality of a num- 
ber. 

A number satisfying Fermat’s little theorem for some 
nontrivial base and which is not known to be composite 
is called a PROBABLE PRIME. A table of the small- 
est PSEUDOPRIMES P for the first 100 bases u follows 
(Sloane’s AOO7535). 



Fermat’s Little Theorem con verse 

a P 

2 341 
3 91 
4 15 
5 124 
6 35 
7 25 
8 9 
9 28 

10 33 
11 15 
12 65 
13 21 
14 15 
15 341 
16 51 
17 45 
18 25 
19 45 
20 21 
21 55 

a P 

22 
23 33 
24 25 
25 28 
26 27 
27 65 
28 87 
29 35 
30 49 
31 49 
32 33 
33 85 
34 35 
35 51 
36 91 
37 45 
38 39 
39 95 
40 91 
41 105 

a P 

42 205 62 63 
43 77 63 341 
44 45 64 65 
45 76 65 133 
46 133 66 91 
47 65 67 85 
48 49 68 69 
49 66 69 85 
50 51 70 169 
51 65 71 105 
52 85 72 85 
53 65 73 111 
54 55 74 75 
55 63 75 91 
56 57 76 77 
57 65 77 95 
58 95 78 341 
59 87 79 91 
60 341 80 81 
61 91 81 85 

a P a P 

82 91 
83 105 
84 85 
85 129 
86 87 
87 91 
88 91 
89 99 
90 91 
91 115 
92 93 
93 301 
94 95 
95 141 
96 133 
97 105 
98 99 
99 145 

100 259 

see also BINOMIAL THEOREM, CARMICHAEL NUMBER, 
CHINESEHYPOTHESIS, COMPOSITENUMBER,COMPOS- 
ITENESS TEST, EULER'S THEOREM, FERMAT'S LITTLE 
THEOREM CONVERSE, FERMAT PSEUDOPRIME, MOD- 
ULO MULTIPLICATION GROUP, PRATT CERTIFICATE, 
PRIMALITY TEST, PRIME NUMBER, PSEUDOPRIME, 
RELATIVELY PRIME, TOTIENT FUNCTION, WIEFERICH 
PRIME, WILSON’S THEOREM, WITNESS 
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l?ermat’s Little Theorem Converse 
The converse of FERMAT'S LITTLE THEOREM is also 
known as LEHMER'S THEOREM. It states that, if an 
INTEGER II: is PRIME to vz and xrn-’ = 1 (mod m) 
and there is no INTEGER e < m - 1 for which xe = 
1 (mod m), then m is PRIME. Here, 2 is called a WIT- 
NESS to the primality of m. This theorem is the basis 
for the PRATT PRXMALITY CERTIFICATE. 

see also FERMAT'S LITTLE THEOREM, PRATT CERTIFI- 
CATE, PRIMALITY CERTIFICATE, WITNESS 
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Fermat-Lucas Number 
A number of the form 2= + 1 obtained by setting z = 1 
in a FERMAT-LUCAS POLYNOMIAL. The first few are 3, 
5, 9, 17, 33, l  . l  (Sloane’s AOOO05 1). 

see UZSO FERMAT NUMBER (LUCAS) 
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Fermat Number 
A BINOMIAL NUMBER of the form F, = 22n + 1. The 
first few for n = 0, 1, 2, . . . are 3, 5, 17, 257, 65537, 
4294967297, . . . (Sloane’s A000215). The number of 
DIGITS for a Fermat number is 

D(n) = [[10g(2~” + I)] + 1J Z [log(22”) + lj 

= 12” log 2 + 11. (1) 

Being a Fermat number is the NECESSARY (but not SUF- 

FICIENT) form a number 

Nn = 2” + 1 (2) 

must have in order to be PRIME. This can be seen by 
noting that if IV= = 2n + 1 is to be PRIME, then n cannot 
have any ODD factors b or else N, would be a factorable 
number of the form 

2n + 1 = (2”)b + 1 

= (2” + 1)[2++ - 2”@-2) + 2”(b-3) - , . l  + 11. (3) 

Therefore, for a PRIME Nn, n must be a POWER of 2. 

Fermat conjectured in 1650 that every Fermat number 
is PRIME, but only COMPOSITE Fermat numbers Fn 
are known for n 2 5. Eisenstein (1844) proposed as 
a problem the proof that there are an infinite number 
of Fermat primes (Ribenboim 1996, p. 88), but this has 
not yet been achieved. An anonymous writer proposed 

that numbers of the form 22 + 1, 222 + 1, 22 
22 

+ 1 were 
PRIME. However, this conjecture was refuted when Sel- 
fridge (1953) showed that 

22 

fi6 
= p0 + 1= 222 + 1 (4) 

is COMPOSITE (Ribenboim 1996, p. 88). Numbers of the 
form a2n + b2n are called generalized Fermat numbers 
(Ribenboim 1996, pp. 359-360). 

Fermat numbers satisfy the RECURRENCE RELATION 

Fn can be shown to be PRIME iff it satisfies P~PIN'S 
TEST 

3(%-W = - -1 (mod Fn). (6) 
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P~PIN'S THEOREM 

3 22n-1 E -1 (mod F n ) (7) 

is also NECESSARY and SUFFICIENT. 

In 1770, Euler showed that any FACTOR of Fn must have 
the form 

2 n+1K + 1, (8) 

where K is a POSITIVE INTEGER. In 1878, Lucas in- 
creased the exponent of 2 by one, showing that FACTORS 
of Fermat numbers must be of the form 

2 n+ZL + 1. (9) 

If 
F=plpz-pr 

is the factored part of F, = FC (where C is the cofactor 
to be tested for primality), compute 

A= 3Fn-1 (mod Fn) 

B s 3F-1 (mod F,-J 

R=A-B (modC). 

(11) 

(12) 

(13) 

Then if R = 0, the cofactor is a PROBABLE PRIME to 
the base 3F; otherwise C is COMPOSITE. 

In order for a POLYGON to be circumscribed about a 
CIRCLE (i.e., a CONSTRUCTIBLE POLYGON), it must 
have a number of sides N given by 

IV = 2kFo..m Fn, (14) 

where the F, are distinct Fermat primes. This is equiv- 
alent to the statement that the trigonometric func- 
tions sin( k7$V), cos@r/N), etc., can be computed in 
terms of finite numbers of additions, multiplications, 
and square root extractions iff N is of the above form. 
The only known Fermat PRIMES are 

FO -3 

Fz =5 

F2 = 17 

Fa = 257 

5'4 = 65537 

and it seems unlikely that any more exist. 

Factoring Fermat numbers is extremely difficult as a re- 
sult of their large size. In fact, only F5 to Fl1 have been 

complete factored, as summarized in the following table. 
Written out explicitly, the complete factorizations are 

Fs = 641 9 6700417 

F6 = 274177 l  67280421310721 

F7 = 59649589127497217m 5704689200685129054721 

Fs = 1238926361552897~93461639715357977769163~m~ 

. . . 558199606896584051237541638188580280321 

Fg = 2424833*74556028256478842083373957362004**- 

+ 1.54918783366342657 n P99 

Flo = 45592577.6487031809 l  46597757852200185 l  l  l  

l  l  l  43264560743076778192897. P252 

Ftl = 319489 l  974849 l  167988556341760475137 

l  3560841906445833920513 l  P564. 

Here, the final large PRIME is not explicitly given since 
it can be computed by dividing Fn by the other given 
factors. 

F,, Digits Facts. Digits Reference 
5 10 2 3, 7 Euler 1732 

6 20 2 6, 14 Landry 1880 
7 39 2 7, 22 Morrison and 

Brillhart 1975 

8 78 2 16, 62 Brent and Pollard 1981 

9 155 3 7, 49, 99 Manasse and Lenstra 
(In Cipra 1993) 

10 309 4 8, 10, 40, 252 Brent 1995 

11 617 5 6, 6, 21, 22, 564 Brent 1988 

Tables of known factors of Fermat numbers are given by 
Keller (1983), Brillhart et al. (1988), Young and Buell 
(1988), Riesel (1994), and Pomerance (1996). Young 
and Buell (1988) discovered that F~o is COMPOSITE, 
and Crandall et al. (1995) that F2z is COMPOSITE. A 
current list of the known factors of Fermat numbers is 
maintained by Keller, and reproduced in the form of a 
Mathematics@ notebook by Weisstein. In these tables, 
since all factors are of the form J~2”+1, the known factors 
are expressed in the concise form (Ic, n). The number of 
factors for Fermat numbers Fn for n = 0, 1, 2, . . . are 
1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 4, 5, . . . l  

see also CULLEN NUMBER, P~PIN'S TEST, PI?PIN'S 
THEOREM, POCKLINGTON'S THEOREM, POLYGON, 
PROTH’S THEOREM, SELFRIDGE~URWITZ RESIDUE, 
WOODALL NUMBER 
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Fermat Number (Lucas) 
A number of the form 2n - 1 obtained by setting x = 1 

in a FERMAT POLYNOMIAL is called a MERSENNE NUM- 

see also FERMAT-LUCAS NUMBER, MERSENNE NUMBER 

Fermat Point 

Also known as the first ISOGONE CENTER and the TOR- 
RICELLI POINT. In a given ACUTE TRIANGLE AABC, 
the Fermat point is the point X which minimizes the 
sum of distances from A, B, and C, 

IAXI + lBxl+ ICXl- (1) 

This problem is called FERMAT’S PROBLEM or 

STEINER’S PROBLEM (Courant and Robbins 1941) and 
was proposed by Fermat to Torricelli. Torricelli’s solu- 
tion was published by his pupil Viviani in 1659 (Johnson 
1929) l  

If all ANGLES of the TRIANGLE are less than 120” 
(2~r/3), then the Fermat point is the interior point X 
from which each side subtends an ANGLE of 120”, i.e., 

LBXC = LCXA = LAXB = 120”. (2) 

The Fermat point can also be constructed by drawing 
EQUILATERAL TRIANGLES on the outside of the given 
TRIANGLE and connecting opposite VERTICES. The 
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three diagonals in the figure then intersect in the Fer- 
mat point. The TRIANGLE CENTER FUNCTION of the 
Fermat point is 

a = csc(A + +T) (3) 

= bc[c2a2 + (c” + a2 - b2)2][a2b2 - (a” + b2 - c2)2] 

x [4A - ti(b2 + c2 - a”)]. (4) 

The ANTIPEDAL TRIANGLE is EQUILATERAL and has 
AREA 

A’=aA l+cotwcot ; , 
[ ( )I (5) 

where w is the BROCARD ANGLE. 

Giventhree POSITIVE REAL NUMBERS Z,m, n, the “gen- 
eralized” Fermat point is the point P of a given ACUTE 
TRIANGLE AABC such that 

l.PA+m+B+nmPC (6) 

is a minimum (Greenberg and Robertello 1965, van de 
Lindt 1966, Tong and Chua 1995) 

see also ISOGONJ~C CENTERS 
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Fermat’s Polygonal Number Theorem 
In 1638, Fermat proposed that every POSITIVE INTEGER 
is a sum of at most three TRIANGULAR NUMBERS, four 
SQUARE NUMBERS, five PENTAGONAL NUMBERS, and 
n ~-POLYGONAL NUMBERS. Fermat claimed to have a 
proof of this result, although Fermat’s proof has never 
been found. Gauss proved the triangular case, and noted 
the event in his diary on July 10, 1796, with the notation 

* * EYRHKA num =A+A+A. 

This case is equivalent to the statement that every num- 
ber of the form 8m + 3 is a sum of three ODD SQUARES 
(Duke 1997). M ore specifically, a number is a sum of 
three SQUARES IFF it is not of the form 4b(8m + 7) for 
b > 0, as first proved by Legendre in 1798. - 

Euler was unable to prove the square case of Fermat’s 
theorem, but he left partial results which were subse- 
quently used by Lagrange. The square case was finally 
proved by Jacobi and independently by Lagrange in 
1772. It is therefore sometimes known as LAGRANGE'S 
FOUR-SQUARE THEOREM. In 1813, Cauchy proved the 
proposition in its entirety. 

see also FIFTEEN THEOREM, VINOGRADOV'S THEO- 
REM, LAGRANGE'S FOUR-SQUARE THEOREM, WAR- 
ING'S PROBLEM 
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Fermat Polynomial 
The POLYNOMIALS obtained by setting p(z) = 3s and 
q(x)= -2 in the LUCAS POLYNOMIAL SEQUENCES. The 
first few Fermat polynomials are 

31(x) = 1 

& (2) = 3x 

33(x) = 9x2 - 2 

-T4(x) = 27x3 - 12x 

3S(x) = 81x4 - 54x2 + 4, 

and the first few Fermat-Lucas polynomials are 

fl(X> = 3x 

f2(x) = 9x2 - 4 

f3(x) = 27x3 - 18x 

f4(x) = 81x4 - 72x2 + 8 

f5(x) = 243x5 - 270x3 + 60x* 

Fermat and Fermat-Lucas POLYNOMIALS satisfy 

3n(l) = 3m 

fn(l> = fn 

where 3n are FERMAT NUMBERS and fn are FERMAT- 
LUCAS NUMBERS. 
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Fermat’s Primality Test 

see FERMAT'S LITTLE THEOREM 

Fermat Prime 
A FERMAT NUMBER E’n = 22n +l which is PRIME. 

see UZSO CONSTRUCTIBLE POLYGON,FERMAT NUMBER 

Fermat’s Problem 
In a given ACUTE TRIANGLE AABC, locate a point 
whose distances from A, B, and C have the smallest 
possible sum. The solution is the point from which each 
side subtends an angle of 120°, known as the FERMAT 
POINT. 

see also ACUTE TRIANGLE, FERMAT POINT 

Fermat Pseudoprime 
A Fermat pseudoprime to a base a, written psp(a), is a 
COMPOSITE NUMBER n such that an-’ E 1 (mod n) 

( i.e., it satisfies FERMAT'S LITTLE THEOREM, some- 
times with the requirement that rz must be ODD; Pomer- 
ante et al. 1980). psp(2) s are called POULET NUMBERS 

or, less commonly, SARRUS NUMBERS or FERMATIANS 
(Shanks 1993). The first few EVEN psp(2)s (including 
the PRIME 2 as a pseudoprime) are 2, 161038, 215326, 
l  l  l  (Sloane’s A006935). 

If base 3 is used in addition to base 2 to weed out po- 
tential COMPOSITE NUMBERS, only 4709 COMPOSITE 
NUMBERS remain < 25 x 10’. Adding base 5 leaves 2552, 
and base 7 leaves only 1770 COMPOSITE NUMBERS. 

see UZSO FERMAT'S LITTLE THEOREM, POULET NUM- 
BER,~SEUDOPRIME 

Fermat Quotient 
The Fermat quotient for a number a and a PRIME base 
p is defined as 

aP--l. -1 
cl&) = ~ 

P * 
(1) 

If dab, then 

qp (ab) = QP (4 + qP(b) 
qp(P * 1) = F1 

(2) 
(3) 

qp(2) - l ( 1 1 
l-5+3- 

1 1 = 
P 4+...-_l 

P > 
3 (4) 

all (mod p). The quantity qp(2) = (2p-1 - 1)/p is 
known to be SQUARE for only two PRIMES: the so-called 

WIEFERICH PRIMES 1093 and 3511 (Lehmer 1981, Cran- 
da11 1986). 

see also WIEFERICH PRIME 
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Feemat’s Right Xkiangle Theorem 
The AREA ofa RATIONAL RIGHT TRIANGLE cannot be 
a SQUARE NUMBER. This statement is equivalent to “a 
CONGRUUM cannot be a SQUARE NUMBER." 

see also CONGRUUM, RATIONAL TRIANGLE, RIGHT 
TRIANGLE,~QUARE NUMBER 

Fermat’s Sigma Problem 
Solve 

u(x3) = y2 

and 
a(x2) = y3, 

where u is the DIVISOR FUNCTION. 

see also WALLIS? PROBLEM 

Fermat’s Simple Theorem 

see FERMAT'S LITTLE THEOREM 

Fermat’s Spiral 

An ARCHIMEDEAN SPIRAL with m = 2 having polar 
equation 

T = &2, 

discussed by Fermat in 1636 (MacTutor Archive). It is 
also known as the PARABOLIC SPIRAL. For any given 
POSITIVE value of 8, there are two corresponding values 
of r of opposite signs. The resulting spiral is therefore 
symmetrical about the line y = --2. The CURVATURE is 

K(e) = 
g +a20 

($ + aag)3’2’ 
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Fern 

see BARNSLEY’S FERN 
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Modern Differen 
Boca Raton, FL: 
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Cambridge University Press, p. 175, 196% 
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Ferrari’s Identity 

(a” + 2ac - 2bc - b2)4 + (b2 - 2ab - 2ac - c”)” 

+(c2+2ab+2bc-a2)4 = 2(a2+b2+c2 -ab+ac+bC)4m Curves/Fermats .html. 
Wells, D. The Penguin Dictionary of Curious and Interesting 

Geometry. Middlesex, England: Penguin Books, 1991. 
see UZSO DI~PHANTINE EQUATION-QUARTIC 

Fermat Spiral Inverse Curve 
The INVERSE CURVE of FERMAT’S SPIRAL with the ori- 
gin taken as the INVERSION CENTER is the LITUUS. 
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Fermat Sum Theorem 
The only whole number solution to the DIOPHANTINE 
EQUATION 

y3 = x2 + 2 

Ferrers’ Function 
An alternative name for an associated LEGENDRE POLY- 

NOMIAL. 

see also LEGENDRE POLYNOMIAL is y = 3, 61: = &5. This theorem was offered as a problem 
by Fermat, who suppressed his own proof. References 

Sansone, G. Orthogonal Functions, rev. English ed. New 

Fermat’s Theorem 
A PRIME p can be represented in an essentially unique 
manner in the form x2 + y2 for integral it: and y IFF 
p G 1 (mod 4) or p = 2. It can be restated by letting 

York: Dover, p. 246, 1991. 

Ferrier’s Prime 
According to Hardy and Wright (1979), the largest 
PRIME found before the days of electronic computers 
is the 44-digit number 

Q(x, y) = x2 + y2, 

then all RELATIVELY PRIME solutions (2, y) to the prob- 
lem of representing Q(x, y) = m for m any INTEGER 

are achieved by means of successive applications of the 
GENUS THEOREM and COMPOSITION THEOREM. There 
is an analog of this theorem for EISENSTEIN INTEGERS. 

F s i15(2148 + 1) 

= 20988936657440586486151264256610222593863921, 

which was found using only a mechanical calculator. 
see also EISENSTEIN INTEGER, SQUARE NUMBER 
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Fermat’s Two-Square Theorem Feuerbach Circle 
see FERMAT’S THEOREM see NINE-POINT CIRCLE 

Fermat ian Feuerbach’s Conic Theorem 
The LOCUS of the centers of all CONKS through the 
VERTICES and ORTHOCENTER of a TRIANGLE (which 
are RECTANGULAR HYPERBOLAS whennotdegenerate), 
is a CIRCLE through the MIDPOINTS of the sides, the 
points half way from the ORTHOCENTER to the VER- 
TICES, and the feet of the ALTITUDE. 

see also ALTITUDE, CONIC SECTION, FEUERBACH'S 
THEOREM, KIEPERT’S HYPERBOLA, MIDPOINT, OR- 

THOCENTER, RECTANGULAR HYPERBOLA 

see POULET NUMBER 

Fermi-Dirac Distribution 
A distribution which arises in the study of half-integral 
spin particles in physics, 

P(k) = Ic” 
I++ + 1’ 

Its integral is 

s 

O” kSdk 
e”-p + 1 

= eT(s + l)@(-eP, s + 1, l), 
0 
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where @ is the LERCH TRANSCENDENT. York: Dover, p. 198, 1959. 



Feuerbach Point 

Feuerbach Point 

The point F at which the INCIRCLE and NINE-POINT 
CIRCLE are tangent. It has TRIANGLE CENTER FUNC- 

TION 
a = 1 - cos(B - C). 

see also FEUERBACH’S THEOREM 

References 
Johnson, R. A. Modern Geometry: An Elementary Treatise 

on the Geometry of the Triangle and the Circle. Boston, 
MA: Houghton Mifflin, p, 200, 1929. 

Kimberling, C. “Central Points and Central Lines in the 
Plane of a Triangle.” Math. Mug. 67, 163-187, 1994. 

Salmon, G. Conic Sections, 6th ed. New York: Chelsea, 
p. 127, 1954. 

Feuerbach’s Theorem 

1. The CIRCLE which passes through the feet of the 
PERPENDICULARS dropped from the VERTICES of 
any TRIANGLE on the sides opposite them passes 
also through the MIDPOINTS of these sides as well 
as through the MIDPOINT of the segments which join 
the VERTICES to the point of intersection of the PER- 
PENDICULAR (a NINE-POINT CIRCLE). 

2 The NINE-POINT CIRCLE of any TRIANGLE is TAN- 

GENT internally to the INCIRCLE and TANGENT ex- 
ternally to the three EXCIRCLES. 

see also EXCIRCLE, FEUERBACH POINT, INCIRCLE, 

MIDPOINT, NINE-POINT CIRCLE, PERPENDICULAR, 
TANGENT 

References 
Coxeter, H. S. M. and Greitzer, S. L. Geometry Revisited. 

Washington, DC: Math. Assoc. Amer., pp. 117-119, 1967. 
Dixon, R. Muthogrsphics. New York: Dover, p. 59, 1991. 
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Feynman Point 
The sequence of six 9s which begins at the 762th decimal 
place of P1, 

T = 3.14159. . ,134 999999 837 l  . . . 

see also PI 

FFT 

see FAST FOURIER TRANSFORM 

Fiber 
A quantity F corresponding to a FIBER BUNDLE, where 
the FIBER BUNDLE is a MAP f : E + B, with E the 
TOTAL SPACE ofthe FIBER BUNDLE and B the I~ASE 
SPACE of the FIBER BUNDLE. 

see U~SO FIBER BUNDLE, WHITNEY SUM 

Fiber Bundle 
A fiber bundle (also called simply a BUNDLE) with 
FIBER F is a MAP f : E + B where E is called the TO- 
TAL SPACE of the fiber bundle and B the BASE SPACE 
of the fiber bundle. The main condition for the MAP to 

be a fiber bundle is that every point in the BASE SPACE 
b E B has a NEIGHBORHOOD U such that f-‘(U) is 
HOMEOMORPHIC to U x F in a special way. Namely, if 

h : f-‘(U) + W x F 

is the HOMEOMORPHISM, then 

w& O h = flf-qu)p 

where the MAP projU means projection onto the U com- 
ponent. The homeomorphisms h which “commute with 
projection” are called local TRIVIALIZATIONS for the 
fiber bundle f. In other words, E looks like the product 
B x F (at least locally), except that the fibers f-l(~) 
for LC E B may be a bit “twisted.” 

Examples of fiber bundles include any product B x F -+ 
B (which is a bundle over B with FIBER F), the MOBIUS 
STRIP (which is a fiber bundle :over the CIRCLE with 
FIBER given by the unit interval [OJ]; i.e, the BASE 
SPACE is the CIRCLE), and s3 (which is a bundle over s2 
with fiber S’). A special class of fiber bundle is the VEC- 
TOR BUNDLE, in which the FIBER is a VECTOR SPACE. 

see also BUNDLE, FIBER SPACE, FIBRATION 

Fiber Space 
A fiber space, depending on context, means either a 
FIBER BUNDLE or a FIBRATION. 

see &SO FIBER BUNDLE, FIBRATION 
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Fibonacci Dual Theorem 
Let & be the nth FIB~NACCI NUMBER. Then the se- 

quence {~n}~iL2 = (1, 2, 3, 5, 8, l ..} is COMPLETE, 
even if one is restricted to subsequences in which no two 
consecutive terms are both passed over (until the desired 
total is reached; Brown 1965, Honsberger 1985). 

see also COMPLETE SEQUENCE,FIBONACCI NUMBER. 

References 
Brown, J. L. Jr. “A New Characterization of the Fibonacci 

Numbers.” Fib. Quart. 3, 1-8, 1965. 
Honsberger, R. Mathematical Gems III. Washington, DC: 

Math. Assoc. Amer., p. 130, 1985. 

Fibonacci Hyperbolic Cosine 
Let 

$El+#= $(3 + 6) x 2.618034 (1) 

where $ is the GOLDEN RATIO, and 

a = In4 ==: 0.4812118. (2) 

Then define 

ti 
x+1/2 

cFh(z) = 
+ ~I--(2+1/2) 

Js 
(3) 

4(22+1) + @-(2X-t-1) 
- - (4) 

45 
2 - - 

A 
cosh[(2x + 

This function satisfies 

cFh(-2) = cFh(z - 1 

For TL E Z, cFh(n) = I72n+1 where F, is a FIBONACCI 
NUMBER. 

References 
T&a&a, 2. W. “On Fibonacci Hyperbolic Trigonometry and 

Modified Numerical Triangles.” Fib. Quart. 34, 129-138, 
1996. 

Fibonacci Hyperbolic Cotangent 

cFh(z) 
ctFh(z) E 

sFh(z) ’ 

where cFh(z) is the FIBONACCI HYPERBOLIC COSINE 
and sFh(z) is the FIBONACCI HYPERBOLIC SINE. 

References 
Trzaska, Z. W. “On Fibonacci Hyperbolic Trigonometry and 

Modified Numerical Triangles.” Fib. Quart. 34, 129-138, 
1996. 

Fibonacci Hyperbolic Sine 1 

Let 
?/J-1+$= $(3 + &) ==: 2.618034 (1) 

where 4 is the GOLDEN RATIO, and 

a=ln@ z 0.4812118. (2) 

Then define 

sFh(z) = 
$” - *-” 

Js 
(3) 

4 2x - 4 -2x 
- - 

Js 
(4 

2 -- - 
& 

sinh [ 2xcx]. (5) 

For n YE Z, sFh(n) = I& where Fn is a FIBONACCI 
NUMBER. The function satisfies 

sFh(-2) = - sFh(z). (6) 

References 
T&a&a, Z. W. “On Fibonacci Hyperbolic Trigonometry and 

Modified Numerical Triangles.” Fib. Quart. 34, 129438, 
1996. 

Fibonacci Hyperbolic Tangent 

tFh@) G sFh0 
cFh(s) ’ 

where sFh(x) is the FIBONACCI HYPERBOLIC SINE and 
cFh(x) is the FIBONACCI HYPERBOLIC COSINE. 

References 
Trzaska, Z. W. “On Fibonacci Hyperbolic Trigonometry and 

Modified Numerical Triangles.” Fib. Quart. 34, 129-138, 
1996. 

Fibonacci Identity 
Since 

I(u+ib)(c+id)I = la+iblIc+dil (1) 

I( ac - bd) + i(bc + ad)1 = d+b2Jc2+dz, (2) 

it follows that 

(a2+b2)(c2+d2) = (ac-bd)2+(bc+ad)2 = e2+f2. (3) 

This identity implies the 2-D CAUCHY-SCHWARZ SUM 
INEQUALITY. 

see UZSO CAUCHY-SCHWARZ SUM INEQUALITY, EULER 
FOUR-SQUARE IDENTITY 

References 
Petkovgek, M.; Wilf, H. S.; and Zeilberger, D. A=B. Welles- 

ley, MA: A. K. Peters, p. 9, 1996. 

Fibonacci Matrix 
A SQUARE MATRIX related to the FIBONACCI NUM- 
BERS. The simplest is the FIB~NACCI Q-MATRIX. 
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Fibonacci n-Step Number 
An n-step Fibonacci sequence is given by defining Fk = 
0 for k < 0, F1 = Fz = 1, F3 = 2, and 

Fk = kFnBi (1) 
i=l 

for k > 3. The case n = 1 corresponds to the degener- 
ate 1, 1, 2, 2, 2, 2 . . . , n = 2 to the usual FIB~NACCI 
NUMBERS 1, 1, 2, 3, 5, 8, . . l  (Sloane’s A000045), n = 3 
to the TRIBONACCI NUMBERS 1, 1, 2, 4, 7, 13, 24, 44, 
81, ..e (Sloane’s AOOOO73), n = 4 to the TETRANACCI 
NUMBERS 1, 1, 2, 4, 8, 15, 29, 56, 108, . . . (Sloane’s 
A000078), etc. 

The limit limk+oo Fk lFk-1 is given by solving 

C(2 - 2) = 1 (2) 

for x and taking the REAL ROOT ~1: > 1. If n = 2, the 
equation reduces to 

x2(2-2) = 1 (3) 

X3 - 2x2 + l- (x - 1)(x" - 2 - 1) = 0, (4) 

giving solutions 

x = 1, $(lfJ5). (5) 

The ratio is therefore 

II:= +<1+ J5) = 4 = 1.618. l  . , (6) 

which is the GOLDEN RATIO, as expected. Solutions 
for n = 1, 2, . . m are given numerically by 1, 1.61803, 
1.83929, 1.92756, 1.96595, . . . , approaching 2 as 72 + 00. 

see &O FIBONACCI NUMBER, TRIBONACCI NUMBER 

References 
Sloane, N. 5. A. Sequences A000045/M0692, A000073/ 

M1074, and AO00078/M1108 in “An On-Line Version of 
the Encyclopedia of Integer Sequences.” 

Fibonacci Number 
The sequence of numbers defined by the Un in the LWCAS 
SEQUENCE. They are companions to the LUCAS NUM- 
BERS and satisfy the same RECURRENCE RELATION, 

for n = 3, 4, . . . , with Fl = & = 1. The first few 
Fibonacci numbers are 1, 1, 2, 3, 5, 8, 13, 21, . . . 
(Sloane’s AOOOO45). The Fibonacci numbers give the 
number of pairs of rabbits n months after a single pair 
begins breeding (and newly born bunnies are assumed 
to begin breeding when they are two months old). 

The ratios of alternate Fibonacci numbers are given by 
the convergents to $-2, where 4 is the GOLDEN RATIO, 

and are said to measure the fraction of a turn between 
successive leaves on the stalk of a plant (PHYLLOTAXIS): 
I/2 for elm and linden, l/3 for beech and hazel, 2/5 
for oak and apple, 3/B for poplar and rose, 5/13 for 
willow and almond, etc. (Coxeter 1969, Ball and Cox- 
eter 1987). The Fibonacci numbers are sometimes called 
PINE CONE NUMBERS (Pappas 1989,~. 224) 

Another RECURRENCE RELATION for the Fibonacci 
numbers is 

F 
Fn(l+ A) + 1 

n+1= 
2 

= pFn + 31 7 (2) 

where 1x1 is the FLOORFUNCTION and4isthe GOLDEN 
RATIO. This expression follows from the more general 
RECURRENCE RELATION that 

Fn F n+l l  l  l  F n+k 
F n+k+l F n+k+2 l  l  l  F n+2k 

l  . . . 

. . . . 

. . 
I 

. 

Fn+k(k-l)+l Fn+k(k-1)+2 l  l  ’ Fn+k2 

= 0. (3) 

The GENERATING FUNCTION for the Fibonacci numbers 
is 

00 

g(x) = >1 Fnxn = 1 ,‘- x2 4 (4) - 

Yuri MatijaseviE (1970) proved that the equation n = 
Fzm isa DIOPHANTINE EQUATION. Thisledtotheproof 
of the impossibility of the tenth of HILBERT'S PROBLEMS 
(does there exist a general method for solving DIOPHAN- 
TINE EQUATIONS?) by Julia Robinson and Martin Davis 
in 1970. 

The Fibonacci number Fn+l gives the number of ways 
for 2 x 1 DOMINOES to cover a 2 x n CHECKERBOARD, 
as illustrated in the following diagrams (Dickau). 

im Li3 E 

m LEB 
m LEEi 
EQ3 Em 
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The number of ways of picking a SET (including the 
EMPTY SET) from the numbers 1, 2, l  l  . , n without 
picking two consecutive numbers is Fn+2. The num- 
ber of ways of picking a set (including the EMPTY SET) 
from the numbers 1, 2, l  l  l  , n without picking two con- 

Sum FORMULAS for Fn include 

(21) 

secutive numbers (where 1 and n are now consecutive) 
is L, = F~+I +&-I, where L, is a LUCAS NUMBER. 
The probability of not getting two heads in a row in n 

tosses of a COIN is &+~/2~ (Honsberger 1985, pp. 120- 
122). Fibonacci numbers are also related to the number 
of ways in which n COIN TOSSES can be made such 
that there are not three consecutive heads or tails. The 
number of ideals of an n-element FENCE POSET is the 

Fn+l= (;)+(y) +(“;2)+-. (22) 

Ces&ro derived the FORMULAS 

= F2n (23) 

Fibonacci number Fn l  

Sum identities are (24) 

n 

x 
Fk = Fn+2 - 1. (5) 

(Honsberger 1985, pp. 109-110). Additional identities 

k=l 
can be found throughout the Fibomcci Quarterly jour- 
nal. A list of 47 generalized identities are given by Hal- 

FI + F3 + F5 + . . . + Fzk+l = %+2 

1 -t-F2 +F4 +Fs + . ..+h = Fzk+l 

(6) 

(7) 

ton (1965). 

In terms of the LUCAS NUMBER L,, 

n 

Ix Fk2 = FnFn+l (8) 
F2n = F,Ln (25) 

k=l F2n(L2n2 - 1) = fin (26) 
2 

F2n = Fn+l - Fix-1 
2 

(9) Fm+P + (-l)p+lF,_p = F,L, (27) 

F3n = &+I 3 + Fn3 + FaB13. (10) a+4n 

Additional RECURRENCE RELATIONS are CASSINI'S IE Fk = Fa+4n+2 -&+2 = finLa+2n+2 (28) 

IDENTITY k=a+l 

Fn-lF,+l - Fm2 = - ( 1) 
n 

(11) (Honsberger 1985, pp. 111-113). A remarkable identity 

and the relations is 

F2,+1 =l+F2+Fq+...+F2n 

F 2 n+l = 4FnFn-1 + Fn-z2 

(12) 

(13) 

exp(Llz+iL2z2+$L3x3+...) = F~+F~x+F~x~+.,. 

(29) 
(Honsberger 1985, pp* 118-119). It is also true that 

(Brousseau 1972)) 5Fn2 = Lm2 - 4(-l)” (30) 

F nfm = Fn-1Fm + F,Fm+l 

F(k+l)n = Fn-1Fkn + FnFkn+l 

(14) 

(15) 
(Honsberger 1985, p. 107), for a ODD, and 

Fn = FlF,-l-t.1 + Fi-IFn-1, (16) Ln2 + Ln+a2 - 8(-l)” = 5 

Fn2 + %+a2 
(32) 

so if I = n - 2 + 1, then 2Z = n + 1 and I = (n + 1)/2 

F, = F[n+1)/22 + Ftn-1)/22* (17) 
for a EVEN (fieitag 1996). 

Theequation(1) is a LINEAR RECURRENCE SEQUENCE 

Letting k G (n - 1)/2, 

Fzk+l = Fk+12 + Fk2 (18) 

X7-b = AXE-1 + Bxn-2 n 2 3, (33) 

so the closed form for F, is given by 

F n+2 ’ - Fn+12 = F,Fn+3 (19) 

Fn2 = Fn-1’ + 3Fn-2’ + 2Fn-2Fn-3. (20) 
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where a and p are the roots of x2 = Aa: + B. Here, 

A = B = 1, so the equation becomes 
The sequence of final digits in Fibonacci numbers re- 
peats in cycles of 60. The last two digits repeat in 300, 
the last three in 1500, the last four in 15,000, etc. 

x2 - z-l-0, (35) 

O” ( 1) 
n 

E 

- 
- - 

FnFn+z - 
2-h (42) 

n=l 

which has RENTS 

x = f(1* h). (36) 
(Clark 1995). A very curious addition of the Fibonacci 
numbers is the following addition tree, 

0 
1 

The closed form is therefore given by 

Fn = 
(1+ J5)” - (I- 43)” 

zn& ’ 
(37) 1 

2 
3 

5 
8 
13 
21 

34 
55 

89 

This is known as B~NET’S FORMULA. Another closed 
form is 

Fn= [s (+>“I = [G] 1 (38) 

. . . 
where [x] is the NINT function. 0112359550561... 

which is equal to the fractional digits of l/89, 
From (l), the RATIO of consecutive terms is 

00 

IE 
Fn 1 --- 

lO”+l - 89’ 
n=O 

Fn F- 1 

Fl n- 

=1++%1+r 
n- 1 n 1 

C-2 

(43) 

For n > 3, FnIFm IFF n[rn* LnlL, IFF n divides - 
into m an EVEN number of times. (Fm, Fn) = Fc~,~J 
(Michael 1964; Honsberger 1985, pp. 131-132). No ODD 
Fibonacci number is divisible by 17 (Honsberger 1985, 
pp. 132 and 242). No Fibonacci number > 8 is ever 
of the form p - 1 or p + 1 where p is a PRIME number 
(Honsberger 1985, p. 133). 

(39) 
---- 

7 

n-l 

which is just the first few terms of the CONTINUED 

FRACTION for the GOLDEN RATIO 4. Therefore, 
Consider the sum 

lim 
Fn 

r&+00 F,_1= @. 
(40) k 

Sk = 
‘T;7 
n=2 

- - 
1 

FR.-lFn+l 

This is a TELESCOPING SUM, so 
1 

p 
2 

3 
5 

8 

1 

13 

4 1 

10 10 5 1 

$k=l- 
Fk+lFk+2' 

thus 
s = lim sk = 1 

k+m 
(46 

(Honsberger 1985, pp. 134-135). Using BINET’S FOR 
MULA, it also follows that 

The “SHALLOW DIAGONALS” of PASCAL’S TRIANGLE 
sum to Fibonacci numbers (Pappas 1989), 

F n+r 
n+r a - pn+r p+r 1 - e 

- - - ( > 
n+r 

Fn - an - 72 P - an 
l-i > 

pn’ (47 
a i: (,‘“,I = (-1)"~F$,2,1-n;~(3-n),2- in;-+) 

fl(2- 3n+n2) 
k=l 

= Fn+l, (41) 
where 

a- $(I+&) 

P = i(l- K5) 

(48) 
(49) 

where zFz(a, b, c; d, e; Z) is a GENERALIZED HYPERGEO- 
METRIC FUNCTION. 
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Fn 
%+1&x+2 

=l (51) 
n=l 

(Honsberger 1985, pp* 138 and 242-243). The MILLIN 
SERIES has sum 

1 - - - 
F2n 

g7 - J5) 
n=O 

(52) 

(Honsberger 1985, pp. 135-137). 

The Fibonacci numbers are COMPLETE. In fact, drop- 
ping one number still leaves a COMPLETE SEQUENCE, 
although dropping two numbers does not (Honsberger 
1985, pp. 123 and 126). Dropping two terms from the 
Fibonacci numbers produces a sequence which is not 
even WEAKLY COMPLETE (Honsberger 1985, pa 128). 
However, the sequence 

FA E Fn - (-1)” (53) 

is WEAKLY COMPLETE, even with any finite subse- 
quence deleted (Graham 1964). {eFn2} is not CoM- 
PLETE, but {Fn2} + {Fn2} are. P-l copies of {FnN} 
are COMPLETE. 

For a discussion of SQUARE Fibonacci numbers, see 
Cohn (1964), who proved that the only SQUARE NUM- 
BER Fibonacci numbers are 1 and Fl2 = 144 (Cohn 1964, 
Guy 1994). Ming (1989) p roved that the only TRIAN- 
GULAR Fibonacci numbers are 1, 3, 21, and 55. The 
Fibonacci and LUCAS NUMBERS have no common terms 
except 1 and 3. The only CUBIC Fibonacci numbers are 
1 and 8. 

(FnFn+dFn+lFn+2, Fznn+a =F,+12 + Fn+z2) (54) 

is a PYTHAGOREAN TRIPLE. 

F4n2 +gF~n(Fzn + hn) zz (3F4n)2 (55) 

is always a SQUARE NUMBER (Honsberger 1985, p. 243). 

In 1975, James P. Jones showed that the Fibonacci num- 
bers arethe POSITIVE INTEGER valuesofthe POLYNOM- 

P(X,Y> = -y5 + 2y4x + y3x2 - 2y2x3 - y(x4 - 2) (56) 

for GAUSSIAN INTEGERS x and y (Le Lionnais 1983). If 
n and k are two POSITIVE INTEGERS, then between nk 
and nk+‘, there can never occur more than n Fibonacci 
numbers (Honsberger 1985, pp. 104-105). 

Every Fn that is PRIME has a PRIME n, but the converse 
is not necessarily true. The first few PRIME Fibonacci 
numbers are for n = 3, 4, 5, 7, 11, 13, 17, 23, 29, 43, 

47, 83, 131, 137, 359, 431, 433, 449, 509, 569, 571, l  . . 

(Sloane’s A001605; Dubner and Keller 1998). Gardner’s 
statement that F 531 is prime is incorrect, especially since 
531 is not even PRIME (Gardner 1979, p. 161). It is not 
known if there are an INFINITE number of Fibonacci 
primes. 

The Fibonacci numbers F,, are SQUAREFUL for rx = 6, 
12, 18, 24, 25, 30, 36, 42, 48, 50, 54, 56, 60, 66, . . . , 300, 
306, 312, 324, 325, 330, 336, . . . (Sloane’s AO37917) and 
SQUAREFREE for n = 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 

m (Sloane’s A037918). The largest known SQUAREFUL 
Fibonacci number is F336, and no SQUAREFUL Fibonacci 
numbers Fp are known with p PRIME. 

see U~SO CASSINI’S IDENTITY, FAST FIBONACCI TRANS- 
FORM, FIBONACCI DUAL THEOREM, FIBONACCI TC- 
STEP NUMBER, FIBONACCI Q-MATRIX, GENERALIZED 
FIBONACCI NUMBER, INVERSE TANGENT, LINEAR RE- 
CURRENCE SEQUENCE, LUCAS SEQUENCE, NEAR No- 
BLE NUMBER, PELL SEQUENCE, RABBIT CONSTANT, 
STOLARSKY ARRAY, TETRANACCI NUMBER, TRI- 
BONACCI NUMBER, WYTHOFF ARRAY, ZECKENDORF 
REPRESENTATION, ZECKENDORF’S THEOREM 
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Fibonacci Polynomial 

8- 

The W POLYNOMIALS obtained by setting p(x) = x and 

cl(x) = 1 in the LUCAS POLYNOMIAL SEQUENCE. (The 

corresponding 20 POLYNOMIALS are called LUCAS POLY- 
NOMIALS.) The Fibonacci polynomials are defined by 
the RECURRENCE RELATION 

F n+1 2, ( > = x&-t(x) + K-I(X), (1) 

with FI (x) = 1 and F&c) = x. They are also given by 
the explicit sum formula 

Lb-- W2J 
F,(x) = IX ( 

n-j-l 

j  > 
X 

n--j-l 
1 (2) 

j=O 

where 1x1 is the FLOOR FUNCTION and (z) is a BINO- 

MIAL COEFFICIENT. The first few Fibonacci polynomi- 
als are 

Fl(X) = 1 

Fz(x) = x 

F3(4 =x2+1 

F4 (4 = x3 + 2x 

F5 cx> = x4 +3x2 + 1. 

The Fibonacci polynomials are normalized so that 

F,(l) = F72, (3) 

where the Fns are FIBONACCI NUMBERS. 

The Fibonacci polynomials are related to the MORGAN- 
VOYCE POLYNOMIALS by 

fin+l(x) = &(x2) (4) 

F2n+n2 (X) = XBn (x2) (5) 

(Swamy 1968). 

see also BRAHMAGUPTA POLYNOMIAL, FIBONACCI 
NUMBER,MORGAN-VOYCEPOLYNOMIAL 
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Fibonacci Pseudoprime 
Consider a LUCAS SEQUENCE with P > 0 and Q = &l. 
A Fibonacci pseudoprime is a COMPOSITE NUMBER n 
such that 

Vn E P (mod n) . 

There exist no EVEN Fibonacci pseudoprimes with pa- 
rameters P = 1 and Q = -1 (IX Port0 1993) or P = 

Q = 1 ( AndrMeannin 1996). And&- Jeannin (1996) 
also proved that if (P, Q) # (1, -1) and (P, Q) # (1, l), 
then there exists at least one EVEN Fibonacci pseudo- 
prime with parameters P and Q. 

see also PSEUDOPRIME 
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Fibonacci Q-Matrix 
A FIBONACCI MATRIX of the form 

M= ‘I” :, . [ 1 
If U and V are defined as BINET FORMS 

Un = mu,-1 + Un-z (Uo = O,& = 1) 

Vn = mV,-1 + K-2 (Vo = 2, VI = m) 

M= 
[ 
w n-H u, 
KL Ul ?I- 1 

M -1 =M-ml= f -lrn . [ 1 
Defining 

Q Fl 1 - - Fo 
Q 

n F n+1 F, - - 
Fn F 1 n- 1 

(Honsberger 1985, pp* 106-107). 

see also BINET FORMS, FIBONACCI NUMBER 
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(7) 

Fibonacci Sequence 

see FIBONACCI NUMBER 

Fibration 
If f : E + B is a FIBER BUNDLE with B a PARACOM- 
PACT TOPOLOGICAL SPACE, then f satisfies the HOMO- 
TOPY LIFTING PROPERTY with respect to all TOPOLOG- 
ICAL SPACES. In other words, if g : [0, l] x X -+ B is 
a HOMOTOPY from go to 91, and if gb is a LIFT of the 
MAP go with respect to f, then g has a LIFT to a MAP 
g’ with respect to f. Therefore, if you have a HOMO- 
TOPY of a MAP into B, and if the beginning of it has a 
LIFT, then that LIFT can be extended to a LIFT of the 
HOMOTOPY itself. 

A fibration is a MAP between TOPOLOGICAL SPACES 
f : E -+ B such that it satisfies the HOMOTOPY LIFTING 
PROPERTY. 

see ah FIBER BUNDLE, FIBER SPACE 

Fields Medal. 

Field 
A field is any set of elements which sat\. the FIELD 
AXIOMS for both addition and multiplica‘ * In and is a 
commutative DIVISION ALGEBRA. An archaic word for 
a field is RATIONAL DOMAIN. A field with a finite num- 
ber of members is known as a FINITE FIET 7 r GALOIS 
FIELD. 

Because the identity condition must be different for ad- 
dition and multiplication, every field must have at least 
two elements. Examples include the COMPLEX NUM- 
BERS (c), RATIONAL NUMBERS (Q), and REAL NUM- 
BERS (R), but not the INTEGERS (Z), which form a 
RING. It has been proven by Hilbert and Weierstrafi 
that all generalizations of the field concept to triplets of 
elements are equivalent to the field of COMPLEX NUM- 
BERS. 

see &O ADJUNCTION, ALGEBRAIC NUMBER FIELD, 
COEFFICIENT FIELD, CYCLOTOMIC FIELD, FIELD Ax- 
IOMS, FIELD EXTENSION, FUNCTION FIELD, GALOIS 
FIELD, MAC LANE’S THEOREM, MODULE, NUMBER 
FIELD, QUADRATIC FIELD, RING, SKEW FIELD, VEC- 
TOR FIELD 

Field Axioms 
The field axioms are generally written in additive and 
multiplicative pairs. 

Name 
Commutivity 

Addition Multiplication 
a+b=b+a ab = bu 

Associativity 1 (a + b) + c = Q + (b + c) 
Distribut ivity 1 
Identity 

a@ + c) = ab + ac 
a+O=a=O+~ 

Inverses a + (4) = 0 = (-a) + a 

(ub)c = a(bc) 
(u + b)c = ac + bc 
a~l=a=f~a 
au --I = 1 = a-la 

ifa#O 

see also ALGEBRA, FIELD 

Field Extension 
A FIELD L is said to be a field extension of field EC’ 
if K is a SUBFIELD of L. This is denoted L/K (note 
that this NOTATION conflicts with that of a QUOTIENT 
GROUP). The COMPLEX NUMBERS are a field extension 
of the REAL NUMBERS, and the REAL NUMBERS are a 
field extension of the RATIONAL NUMBERS. 

see also FIELD 

Fields Medal 
The mathematical equivalent of the Nobel Prize (there 
is no Nobel Prize in mathematics) which is awarded by 
the International Mathematical Union every four years 
to one or more outstanding researchers, usually under 
40 years of age. The first Fields Medal was awarded in 
1936. 

see UZSO BURNSIDE PROBLEM, MATHEMATICS PRIZES, 
POINCAR~ CONJECTURE, ROTH’S THEOREM, TAU 
CONJECTURE 
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Fifteen Theorem 
A theorem due to Conway et al. (1997) which states 
that, if a POSITIVE definite QUADRATIC FORM with in- 
tegral matrix entries represents all natural numbers up 
to 15, then it represents all natural numbers. This the- 
orem contains LAGRANGE’S FOUR-SQUARE THEOREM, 
since every number up to 15 is the sum of at most four 
SQUARES. 

see also INTEGER-MATRIX FORM, LAGRANGE'S FOUR- 
SQUARE TIIEOREM,$UADRATIC FORM 
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Figurate Number 

P@@@ 

A number which can be represented by a regular geo- 
metrical arrangement of equally spaced points. If the 
arrangement forms a REGULAR POLYGON, the number 
is called a POLYGONAL NUMBER. The polygonal num- 
bers illustrated above are called triangular, square, pen- 
tagonal, and hexagon numbers, respectively. Figurate 
numbers can also form other shapes such as centered 
polygons, L-shapes, 3-dimensional solids, etc. The fol- 
lowing table lists the most common types of figurate 
numbers. 
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Name Formula 

biquadratic n4 

centered cube (2n - l)(n2 - 7-8 + 1) 

centered pentagonal $ ( 5n2 - 5n + 2) 

centered square n2 + (n - 1)” 

centered triangular 1 
z (3 n2 - 372 + 2) 

cubic n3 
decagonal 4n2 - 3n 
gnomic 2n - 1 
heptagonal +(5n - 3) 

heptagonal pyramidal in<, + 1)(5n - 2) 

hex 3n2 -3n+1 
hexagonal n(2n - 1) 
hexagonal pyramidal $n(n + 1)(4n - 1) 

octagonal n(3n - 2) 
octahedral $n(2n2 + 1) 

pentagonal $n(3n - 1) 

pentagonal pyramidal $n2<n + 1) 

pentatope +(n + l)(n + 2>(n + 3) 

pronic number n(n + 1) 
rhombic dodecahedral (2n - 1) (27x2 - 2n + 1) 
square n2 
stella octangula n(2n2 - 1) 
tetrahedral in<, + l)(n -I- 2) 
triangular +(n + 1) 

truncated octahedral 16n3 - 33n2 + 24n - 6 
truncated tetrahedral &(23n2 - 27n + 10) 

An n-D FIGURATE NUMBER can be defined by 

f 
T (7-s + m - s)(r + m - 2) 
m,s = m!(r - l)! . 

see UZSO BIQUADRATIC NUMBER, CENTERED CUBE 
NUMBER, CENTERED PENTAGONAL NUMBER, CEN- 
TERED POLYGONAL NUMBER, CENTERED SQUARE 
NUMBER, CENTERED TRIANGULAR NUMBER, CUBIC 
NUMBER, DECAGONAL NUMBER, FIGURATE NUMBER 
TRIANGLE$NOMIC NUMBER,HEPTAGONAL NUMBER, 
HEPTAGONAL PYRAMIDAL NUMBER, HEX NUMBER, 
HEX PYRAMIDAL NUMBER, HEXAGONAL NUMBER, 
HEXAGONAL PYRAMIDAL NUMBER, NEXUS NUMBER, 
OCTAGONAL NUMBER, OCTAHEDRAL NUMBER, PEN- 
TAGONAL NUMBER, PENTAGONAL PYRAMIDAL NUM- 
BER, PENTATOPE NUMBER, POLYGONAL NUMBER, 
PRONIC NUMBER, PYRAMIDAL NUMBER, RHOMBIC 
DODECAHEDRAL NUMBER, SQUARE NUMBER, STELLA 
OCTANGULA NUMBER, TETRAHEDRAL NUMBER, TRI- 
ANGULAR NUMBER, TRUNCATED OCTAHEDRAL NUM- 
BER,TRUNCATED TETRAHEDRAL NUMBER 
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Figurate Number Triangle 
A PASCAL’S TRIANGLE written in a square grid and 
padded with zeroes, as written by Jakob Bernoulli 
(Smith 1984). The figurate number triangle therefore 
has entries 

where i is the row number, j the column number, and 
(j) a BINOMIAL COEFFICIENT. Written out explicitly 
(beginning each row with j = 0), 

1 0 0 0 0 0 0 .**- 
1 1 0 0 0 0 0 l  ** 

1 2 1 0 0 0 0 l  *’ 
1 3 3 1 0 0 0 ‘** 
1 4 6 4 1 0 0 m-4 
1 5 10 10 5 1 0 l  ** 

1 6 15 20 15 6 1 l  e- 

1 7 21 35 35 21. 7 l *- 
. 1 l  l  I . l  

l  
. l  . l  . l  l  . 

l  . l  . l  . . l  m  

Then we have the sum identities 

i 

IE 
aij = 2; 

j=O 

i 

IL 
aij =y-1 

j=l 

n 

c 

n+l 
aij = a(n+l),(j+l> = - 

-_ 0 

j + p+ 

z- 

see also BINOMIAL COEFFICIENT, FIGURATE NUMBER, 

PASCAL'S TRIANGLE 
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Figure Eight Knot 

see FIGURE-OF-EIGHT KNOT 

Figure Eight Surface 

see EIGHT SURFACE 

Figure-of-Eight Knot 

The knot 04001, which is the unique PRIME KNC;T of 
four crossings, and which is a %EMBR,DDABLE KNOT. 
It is AMPHICHIRAL. It is also known as tht -GEM- 
ISH KNOT and SAVOY KNOT, and it bar, BRAID JORD 
0102 

-1 -1 

0102 l  
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Figures 
A number x is said to have % figures” if it takes n 
DIGITS to express it. The number of figures is therefore 
equal to one more than the POWER of 10 in the SCI- 
ENTIFIC NOTATION representation of the number. The 
word is most frequently used in reference to monetary 
amounts, e.g., a “six-figure salary” would fall in the 
range of $100,000 to $999,999. 

see &O DIGIT, SCIENTIFIC NOTATION, SIGNIFICANT 
FIGURES 

Filon’s Integration Formula 
A formula for NUMERICAL INTEGRATION, 

s 

X7-b 

f(x) cos(tx) dx 
“0 

= h{a(th)[fi, sin(tz2,) - f0 sin(h)] 

+P(th)Czn + r(th)Gn-1 + &th4SLJ- Rn, (1) 

where 

n 

c 2n = 
c 

f2i cos(txgi) - + [f2nCoS(tX2n)+ fOCOs(tXO)] 

*- z- 0 

(2) 

C2n-1 = ~f2i-lCOG(tZ2i-l) 

i=l 

(3) 

S& = 2 fiy!l sin(tx2i-1) (4) 

i=l 

a(O) 1 sin(20) 
2 

= 3 + 282 - - sin2 9 83 (5) 

p(g) = 2 
[ 

1 + cos2 8 
82 - @p 1 (6) 

yp> = 4 ($g - g> , (7) 

and the remainder term is 

R, = $ph5 f ‘“‘(5) + O(th7). (8) 
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Filter 
Formally, a filter is defined in terms of a SET X and a 
SET @ of SUBSETS of X. Then + is called a filter if 

1. x E a, 

2. the EMPTY SET We+, 

3. A c B c X and A E + IMPLIES B E @, 

4. andA,Bf~IMPLIESAUBE~. 

Informally, a filter is a function or procedure which re- 
moves unwanted parts of a signal. The concept of fil- 
tering and filter functions is particularly useful in en- 
gineering. One particularly elegant method of filtering 
FOURIER TRANSFORMS a signal into frequency space, 
performs the filtering operation there, then transforms 
back into the original space (Press et al. 1992). 

see also SAVITZKY-GOLAY FILTER, WIENER FILTER 

Heierences 
Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetter- 
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Fine’s Equation 

rI (1- p)(l - 43n)(l- q8”)(1 - q12”) 

n=l 
(1- Cp)(l- $4") 

- - l+):E 1,5,7,11 (N; 2qqN, 

N=l 

where E is the sum of the DWISORS of N CONGRUENT 
to 1, 5, 7, and 11 (mod 24) minus the sum of DIVISORS 
of N CONGRUENT to -1, -5, -7, and -11 (mod 24). 

see also q-SERIES 

Finite 
A SET which contains a NONNEGATIVE integral number 
of elements is said to be finite. A SET which is not finite 
is said to be INFINITE. A finite or COUNTABLY INFI- 
NITE SET is said to be COUNTABLE. While the meaning 
of the term “finite” is fairly clear in common usage, pre- 
cise definitions of FINITE and INFINITE are needed in 
technical mathematics and especially in SET THEORY. 

see also COUNTABLE SET, COUNTABLY INFINITE SET, 
INFINITE, SET THEORY, UNCOUNTABLY INFINITE SET 

Finite Difference 
The finite difference is the discrete analog of the DERIV- 
ATIVE. The finite FORWARD DIFFERENCE of a function 
fp is defined as 

Af, = fp+1 - fm (1) 

and the finite BACKWARD DIFFERENCE as 

Of, = fp - fp-1. (2) 

If the values are tabulated at spacings h, then the nota- 
tion 

fp = f (xo + ph) I= f (2) (3) 

is used. The /Ah FORWARD DIFFERENCE would then 
be written as akfp, and similarly, the kth BACKWARD 
DIFFERENCE as Vkfp. 

However, when fp is viewed as a discretiaation of the 
continuous function f(z), then the finite difference is 
sometimes written 

Af (x) = f (x + ;) - f (x - $) = 2$(x) * f(X), (4) 

where * denotes CONVOLUTION and II(x) is the odd IM- 
PULSE PAIR. The finite difference operator can therefore 
be written 

A = 2IIK (5) 

An nth POWER has a constant nth finite difference. For 
example, take n = 3 and make a DIFFERENCE TABLE, 

(6) 

The A3 column is the constant 6. 

Finite difference formulas can be very useful for extrap- 
olating a finite amount of data in an attempt to find the 
general term. Specifically, if a function f(n) is known at 
only a few discrete values n = 0, 1, 2, . l  . and it is de- 
sired to determine the analytical form of f, the following 
procedure can be used if f is assumed to be a POLYNOM- 
IAL function. Denote the nth value in the SEQUENCE of 
interest by a,. Then define b, as the FORWARD DIF- 
FERENCE A, = u,+~ -a,, cn as the second FORWARD 
DIFFERENCE A2 =b n- n+l - b,, etc., constructing a table 
as follows 

a0 = f (0) al e f(1) a2 = f(2) l  - ap= f(p) 

b() E a1 - a0 bl = u2 - a1 . . . b,-1 = ap - up-1 

co E b2 - bl . . . l  . . 

l  

l  

. 

(7) 
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Continue computing CEO, eo, etc., until a 0 value is ob- 
tained. Then the P~LYNUMIAL function giving the val- 
ues a, is given by 

(8) 

= a0+b0n+ 
con(n - 1) + don(n - l)(n - 2) + 

l  l  l  l  

2 2.3 (9) 

When the notation A0 E ao, Ai E bo, etc., is used, 
this beautiful equation is called NEWTON’S FORWARD 
DIFFERENCE FORMULA. To see a particular example, 
consider a SEQUENCE with first few values of 1, 19, 143, 
607, 1789, 4211, and 8539. The difference table is then 
given by 

1 19 143 607 1789 4211 8539 

18 124 464 1182 2422 4328 

106 340 718 1240 1906 

234 378 522 666 

144 144 144 

0 0 

Reading off the first number in each row gives a0 = 1, 
b. = 18, co = 106, do = 234, eo = 144. Plugging these 
in gives the equation 

f(n) = 1 + 18n + 53n(n - 1) + 39n(n - l)(n - 2) 

+6n(n - l)(n - 2)(n - 3), (10) 

which simplifies to f( n = 6n4+3n3+2n2+7n+1, and ) 
indeed fits the original data exactly! 

Beyer (1987) gives formulas for the derivatives 

hnd”f(xo +ph) ~ hndnfp - dnfp --- 
dxn dx” - dp” (11) 

(Beyer 1987, pp. 449-451) and integrals 

s 

XTl 

s 

n 

f(x) dx = h fP dP 
X0 0 

(Beyer 1987, pp. 455-456) of finite differences. 

(12) 

Finite differences lead to DIFFERENCE EQUATIONS, fi- 
nite analogs of DIFFERENTIAL EQUATIONS. In fact, 
UMBRAL CALCULUS displays many elegant analogs of 
well-known identities for continuous functions. Com- 
mon finite difference schemes for PARTIAL DIFFEREN- 
TIAL EQUATIONS include the so-called Crank-Nicholson, 
Du Fort-Frankel, and Laasonen methods. 

see also BACKWARD DIFFERENCE, BESSEL'S FINITE 
DIFFERENCE FORMULA,DIFFERENCE EQUATION, DIF- 
FERENCE TABLE, EVERETT'S FORMULA, FORWARD 
DIFFERENCE,GAUSS'S BACKWARD FORMULA,GAUSS'S 
FORWARD FORMULA, INTERPOLATION, JACKSON’S 

DIFFERENCE FAN, NEWTON'S BACKWARD DIFFER- 
ENCE FORMULA, NEWTON-C• TES FORMULAS, NEW- 
TON'S DIVIDED DIFFERENCE INTERPOLATION FOR- 
MULA, NEWTON'S FORWARD DIFFERENCE FORMULA, 
QUOTIENT-DIFFERENCE TABLE, STEFFENSON'S FOR- 
MULA, STIRLING'S FINITE DIFFERENCE FORMULA, UM- 
BRAL CALCULUS 
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Finite Field 
A finite field is a FIELD with a finite ORDER (number 
of elements), also called a GALOIS FIELD. The order of 
a finite field is always a PRIME or a POWER of a PRIME 
(Birkhoff and Mac Lane 1965). For each PRIME POWER, 
there exists exactly one (up to an ISOMORPHISM) fi- 
nite field GF(p”), often written as II$ in current us- 

age* WP) is called the PRIME FIELD of order p, and 
is the FIELD of RESIDUE CLASSES modulo p, where the 
p elements are denoted 0, I, . + l  , p - 1. a = b in GF(p) 
means the same as a z b (mod p). Note, however, that 
2 x 2 E 0 (mod 4) in the RING of residues modulo 4, 
so 2 has no reciprocal, and the RING of residues mod- 
ulo 4 is distinct from the finite field with four elements. 
Finite fields are therefore denoted GF(p”), instead of 

GF(pl .g 9 pn) for clarity. 

The finite field GF(2) consists of elements 0 and 1 which 
satisfy the followi 

“tg; 
addition and multiplications tables. 

If a subset S of the elements of a finite field F satisfies 
the above AXIOMS with the same operators of F, then S 



Finite Field Finite Group 639 

is 
in 

called a S UBFIELD. Finite fields are used extensively 
the study of ERROR-CORRECTING CODES. 

When n > 1, GF(p”) can be represented as the FIELD 
of EQUIVALENCE CLASSES of POLYNOMIALS whose Co- 
EFFICIENTS belong to (SF(p). Any IRREDUCIBLE POLY- 
NOMIAL of degree n yields the same FIELD up to an ISO- 
MORPHISM. For example, for GF(23), the modulus can 
be taken as s3+z2+1 = 0, x3+x+1, or any other IRRE- 
DUCIBLE POLYNOMIAL of degree 3. Using the modulus 
x3 + II: + 1, the elements of GF(23)-written 0, x0, x1, 
. * . -can be represented as POLYNOMIALS with degree 
less than 3. For instance, 

lc3E--II:-ls+1 

x4 E x(x3) E x(x + 1) E x2 + x 

X 5 E x(x” + 2) E x3 + x2 E x2 - x - 1 z x2 + x + 1 

x6 E x(x” + x + 1) = x3 + x2 + x = x2 - 1 E x2 + 1 

x7 E x(x2 + 1) s x3 + x = -1 = 1 E x0. 

Now consider the following table which contains several 
different representations of the elements of a finite field. 
The columns are the power, polynomial representation, 
triples of polynomial representation COEFFICIENTS (the 
vector representation), and the binary INTEGER corre- 
sponding to the vector representation (the regular rep- 
resentation). 

Representation 
Power Polynomial Vector Regular . 

0 0 (000) 0 
X0 1 (001) 1 
X1 2 (010) 2 
X2 X2 (100) 4 
X3 x+1 (011) 3 
X4 x2 +x (110) 6 
X5 x2+x+1 (111) 7 

X6 x2 + 1 (101) 5 

The set of POLYNOMIALS in the second column is closed 
under ADDITION and MULTIPLICATION modulo x3 +x + 
1, and these operations on the set satisfy the AXIOMS 
of finite field. This particular finite field is said to be 
an extension field of degree 3 of GF(2), written GF(Z3), 
and the field GF(2) is called the base field of GF( 2”>. If 
an IRREDUCIBLE POLYNOMIAL generates all elements in 
this way, it is called a PRIMITIVE IRREDUCIBLE POLY- 

NOMIAL. For any PRIME or PRIME POWER q and any 
POSITIVE INTEGER n, there exists a PRIMITIVE IRRE- 

DUCIBLE POLYNOMIAL of degree n over GF(q). 

For any element c of GF(q), cq = c, and for any NON- 
ZERO element d of GF(q), dqB1 = 1. There is a small- 
est POSITIVE INTEGER 72 satisfying the sum condition 
n n 1 = 0 in GF(q), which is called the characteristic 
of the finite field GF(q). The characteristic is a PRIME 

NUMBER for every finite field, and it is true that 

over a finite field with characteristic p. 

see also FIELD, HADAMARD MATRIX, RING, SUBFIELD 
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Finite Game 
A GAME in which each player has a finite number of 
moves and a finite number of of choices at each move. 

see U&W GAME, ZERO-SUM GAME 

-  #I 
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Finite Group 
A GROUP of finite ORDER. Examples of finite groups are 
the MODULO MULTIPLICATION GROUPS and the POINT 
GROUPS. The CLASSIFICATION THEOREM of finite SIM- 
PLE GROUPS states that the finite SIMPLE GROUPS can 
be classified completely into one of five types. 

There is no known FORMULA to give the number of pos- 
sible finite groups as a function of the ORDER h. It is 
possible, however, to determine the number of ABELIAN 
GROUPS using the KRONECKER DECOMPOSITION THE- 

OREM, and there is at least one ABELIAN GROUP for 
every finite order h. 

The following table gives the numbers and names of the 
first few groups of ORDER h. In the table, NNA denotes 
the number of non-Abelian groups, NA denotes the num- 
ber of ABELIAN GROUPS, and IV the total number of 
groups. In addition, Za denotes an CYCLIC GROUP of 
ORDER n, A, an ALTERNATING GROUP, D, a DTHE- 
DRAL GROUP, QS the group of the QUATERNIONS, T 
the cubic group, and @ a DIRECT PRODUCT. 

(II: + y)” = xp + yp 
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Miller (1930) gave the number of groups for orders l- 
100, including an erroneous 297 as the number of groups 
of ORDER 64. Senior and Lunn (1934, 1935) subse- 
quently completed the list up to 215, but omitted 128 
and 192. The number of groups of ORDER 64 was cor- 
rected in Hall and Senior (1964). James et al. (1990) 
found 2328 groups in 115 ISOCLINISM families of OR- 
DER 128, correcting previous work, and O’Brien (1991) 
found the number of groups of ORDER 256. The number 
of groups is known for orders up to 1000, with the pos- 
sible exception of 512 and 768. Besche and Eick (1998) 
have determined the number of finite groups of orders 
less than 1000 which are not powers of 2 or 3. These 
numbers appear in the Magma@ database. The num- 
bers of nonisomorphic finite groups IV of each ORDER h 
for the first few hundred orders are given in the following 
table (Sloane’s AOOOOOl-the very first sequence). 

The number of ABELIAN GROUPS of ORDER h is denoted 
NA (Sloane’s A000688). The smallest order for which 
there exist n = 1, 2, . . . nonisomorphic groups are 1, 4, 
75, 28, 8, 42, . . . (Sloane’s A046057). The incrementally 
largest number of nonisomorphic finite groups are 1, 2, 
5, 14, 15, 51, 52, 267, 2328, . . l  (Sloane’s A046058), 
which occur for orders 1, 4, 8, 16, 24, 32, 48, 64, 128, 
. l  l  (Sloane’s A046059). 

Ill 
211 

3 11 
4 2 2 

51 1 
6 2 1 
7 1 I 
8 5 3 

9 2 2 

10 2 1 
11 1 1 
12 5 2 
13 1 1 

14 2 1 

15 1 1 
16 14 5 
17 1 1 
18 5 2 
19 1 1 
20 5 2 

21 2 1 
22 2 1 
23 1 1 
24 15 3 

25 2 2 

26 2 1 
27 5 3 

28 4 2 

29 1 I 
30 4 1 
31 1 1 

32 51 7 
33 1 1 

34 2 1 

35 1 1 
36 14 4 

37 1 1 
38 2 1 
39 2 1 
40 14 3 

41 1 1 
42 6 1 
43 1 1 

44 4 2 

45 2 2 

46 2 1 

47 1 1 

48 52 5 

49 2 2 

50 2 2 

51 1 1 

52 5 2 

53 1 1 
54 15 3 

55 2 1 
56 13 3 

57 2 1 

58 2 1 
59 1 I 
60 13 2 

61 1 1 

62 2 1 

63 4 2 

64 267 11 
65 1 I 
66 4 1 

67 1 1 

68 5 2 

69 1 I 
70 4 I 
71 1 1 

72 50 6 

73 1 I 

74. 2 1 
75 3 2 

76 4 2 

77 1 1 
78 6 1 
79 1 1 
80 52 5 

81 15 5 
82 2 1 
83 1 1 

84 15 2 

85 1 1 
86 2 1 
87 1 1 
88 12 3 
89 1 1 

90 10 2 

91 1 1 

92 4 2 

93 2 1 
94 2 1 
95 1 1 

96 230 7 

97 I 1 

98 5 2 

99 2 2 

100 16 4 

101 1 1 

102 4 1 
103 1 1 

104 ‘4 3 

105 2 1 

106 2 1 

107 1 1 

108 45 6 

109 1 1 

110 6 1 

111 2 1 

112 43 5 

113 1 1 

114 6 1 

115 1 1 

116 5 2 

x17 4 2 

118 2 1 

119 1 1 

120 47 3 

121 2 2 

122 2 1 

123 1 1 

124 4 2 

125 5 3 

126 16 2 
127 1 1 

128 2328 15 

129 2 1 

130 4 1 

131 1 1 

132 IO 2 

133 1 1 

134 2 1 

135 5 3 

136 15 3 

137 1 1 

138 4 1 

139 1 1 

140 I1 2 

141 1 1 

142 2 1 

143 1 1 

144 197 IO 

145 1 1 

146 2 1 

147 6 2 

148 5 2 

149 1 1 

150 13 2 

151 1 1 
152 12 3 

153 2 2 

154 4 1 
155 2 1 
156 18 2 

157 1 I 

158 2 1 

159 1 1 

160 238 7 
161 11 
162 55 5 
163 1 1 

164 5 2 
165 2 1 

166 2 1 

167 1 1 

168 57 3 
169 2 2 
170 4 I 
171 5 2 

172 4 2 

173 1 I 
174 4 1 
175 2 2 

176 42 5 

177 1 1 

178 2 1 
179 1 1 
180 37 4 
181 1 1 
182 4 1 

183 2 1 

184 12 3 

185 1 1 

186 6 1 

187 1 1 

188 4 2 

189 13 3 

190 4 1 

191 1 1 

192 1543 11 

193 1 1 

194 2 1 

195 2 I 

196 17 4 

197 1 1 

198 10 2 

199 1 1 

200 52 6 
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h NNA[h N NA[ h N NA 1 h N NA 

201 2 1 
202 2 1 
203 2 1 
204 12 2 
205 2 1 
206 2 1 

207 2 2 
208 51 5 
209 1 1 
210 12 1 
211 1 1 
212 5 2 
213 1 1 
214 2 1 
215 1 1 
216 177 9 
217 1 1 
218 2 1 
219 2 1 
220 15 2 
221 1 1 
222 6 1 

223 1 1 
224 197 7 
225 6 4 
226 2 1 

227 1 1 

228 15 2 
229 1 1 

230 4 1 

231 2 1 

232 14 3 
233 1 1 
234 16 2 
235 1 1 
236 4 2 
237 2 1 

238 4 1 

239 1 1 

240 208 5 
241 1 1 

242 5 2 
243 67 7 
244 5 2 
245 2 2 
246 4 1 
247 1 1 
248 12 3 
249 1 1 
250 15 3 

251 1 1 
252 46 4 
253 2 1 
254 2 1 

255 1 1 

256 56092 22 
257 1 1 
258 6 1 
259 1 1 
260 15 2 

261 2 2 
262 2 1 

263 1 1 

264 39 3 
265 1 1 
266 4 1 
267 1 1 
268 4 2 
269 1 1 
270 30 3 
271 1 1 
272 54 5 
273 5 1 
274 2 1 
275 4 2 
276 10 2 
277 1 1 

278 2 1 

279 4 2 
280 40 3 
281 1 1 

282 4 1 

283 1 1 
284 4 2 
285 2 1 

286 4 1 
287 1 1 

288 1045 14 

289 2 2 
290 4 1 

291 2 1 
292 5 2 
293 1 1 
294 23 2 
295 1 1 
296 14 3 
297 5 3 
298 2 1 
299 1 1 
300 49 4 1 

301 2 1 
302 2 1 
303 1 1 
304 42 5 
305 2 1 

306 10 2 
307 1 1 
308 9 2 
309 2 1 
310 6 1 
311 1 1 

312 61 3 
313 1 1 

314 2 1 

315 4 2 

316 4 2 

317 1 1 
318 4 1 
319 1 1 
320 1640 11 
321 1 1 
322 4 1 
323 1 1 
324 176 10 
325 2 2 
326 2 1 

327 2 1 

328 15 3 
329 1 1 
330 12 1 
331 1 1 
332 4 2 

333 5 2 
334 2 1 
335 1 1 
336 228 5 
337 1 1 
338 5 2 
339 1 I 
340 15 2 
341 1 1 
342 18 2 
343 5 3 
344 12 3 
345 1 1 
346 2 1 
347 1 1 
348 12 2 
349 1 1 
350 10 2 

351 14 3 
352 195 7 
353 1 1 
354 4 1 
355 2 1 
356 5 2 
357 2 1 

358 2 1 
359 1 1 
360 162 6 
361 2 2 
362 2 I 
363 3 2 

364 11 2 
365 1 1 
366 6 1 
367 1 1 
368 42 5 
369 2 2 
370 4 1 
371 1 1 
372 15 2 
373 1 1 
374 4 1 

375 7 3 

376 12 3 
377 1 1 
378 60 3 
379 1 1 
380 11 2 
381 2 1 
382 2 1 
383 1 1 
384 20169 15 
385 2 1 
386 2 1 
387 4 2 
388 5 2 
389 1 1 
390 12 1 
391 1 1 
392 44 6 
393 1 1 
394 2 1 
395 1 1 
396 30 4 
397 1 1 
398 2 1 
399 5 1 
400 221 10 

see also ABELIAN GROUP, ABEL'S THEOREM, AB- 
HYANKAR’S CONJECTURE, ALTERNATING GROUP, 
BURNSIDE's LEMMA, BURNSIDE PROBLEM, CHEVALLEY 

GROUPS, CLASSIFICATION THEOREM, COMPOSITION 
SERIES, DIHEDRAL GROUP, GROUP, JORDAN-HOLDER 
THEOREM, KRONECKER DECOMPOSITION THEOREM, 
LIE GROUP, LIE-TYPE GROUP, LINEAR GROUP, MOD- 
ULO MULTIPLICATION GROUP, ORDER (GROUP), UR- 
THOGONAL GROUP, ~-GROUP, POINT GROUPS, SIMPLE 

GROUP, SPORADIC GROUP, SYMMETRIC GROUP, SYM- 

PLECTIC GROUP, TWISTED CHEVALLEY GROUPS, UNI- 
TARY GROUP 
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Finite Group-& 

The DIHEDRAL GROUP D3 is one of the two groups of 
ORDER 6. It the non-Abelian group of smallest ORDER. 
Examples of D3 include the POINT GROUPS known as 
Czh, Cav, S3, D3, the symmetry group of the EQUILAT- 
ERAL TRIANGLE, and the group of permutation of three 
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objects. Its elements Ai satisfy Ai = 1, and four of 
its elements satisfy Ai = 1, where 1 is the IDENTITY 
ELEMENT. The CYCLE GRAPH is shown above, and the 
MULTIPLICATION TABLE is given below. 

D.?Il A B C D E 
1 1 A B C D E 
A A 1 D E B C 
B BElDCA 
c CDElAB 
D D C A B E 1 
E EBCAlD 

The C~NJUGACY CLASSES are {l}, {A,B,C} 

A-‘AA = A (1 
B-lAB = C (2 

C-lAC = B (3 

D-lAD = C (4 

E-IAE = B 7 (5) 

and {D, El, 

DA-ID = E (6) 

B-l3B = D . (7) 

A reducible 2-D representation using REAL MATRICES 
can be found by performing the spatial rotations corre- 
sponding to the symmetry elements of CsV. Take the 
Z-AXIS along the C3 axis. 

I=R,(O)= ; ; [ 1 (8) 
sin( %r) s cos( p) 1 

[ 

1 -- 
- 2 - - 

1 
5 a 

1 *- 
2 a 

1 -- 
2 1 (9) 

[ & 
1 -- 

B=R,($)= ’ & 1 (10) -- -- 
2 2 

1 
C = R&r) = [ -1 0 

0 1 1 (11) 

D = R&n) = CB = 

E=R+)=CA= 

I 
l2 -- 
2 a 

1 
5 

1 
5 d 

1 -- 
2 J3 

1 -- 
2 1 1 5 J3 

1 l  
-- 

2 1 
(12) 

(13) 

To find the irreducible representation, note that there 
are three CONJUGACY CLASSES. Rule 5 requires that 
there be three irreducible representations satisfying 

By rule 6, we can let the first representation have all Is. 

D3 1 A B C D E 
r1 1 1 1 1 1 1 

To find representation orthogonal to the totally symmet- 
ric representation, we must have three +l and three -1 
CHARACTERS. We can also add the constraint that the 
components of the IDENTITY ELEMENT 1 be positive. 
The three CONJWGACY CLASSES have 1, 2, and 3 ele- 
ments. Since we need a total of three +ls and we have 
required that a +l occur for the CONJUGACY CLASS of 
ORDER 1, the remaining +ls must be used for the el- 
ements of the CONJUGACY CLASS of ORDER 2, i.e., A 
and B. 

B 

Using the rule 1, we see that 

l2 + l2 + ~~~(1) = 6, (16) 

so the final representation for 1 has CHARACTER 2. Or- 
thogonality with the first two representations (rule 3) 
then yields the following constraints: 

Solving these simultaneous equations by adding and 
subtracting (18) from (17), we obtain ~2 = -1, ;)c3 = 0. 
The full CHARACTER TABLE is then 

5 

Since there are only three CONJUGACY CLASSES, this 
table is conventionally written simply as 

yy 

Writing the irreducible representations in matrix form 
then yields 

l= 

‘1 

0 0 0 
0 1 0 0 
0 0 1 0 

,o 0 0 1 1 
b 1 

-- 
2 

-@ 

0 0 

1 
z a 

1 
-- 

0 o2 

0 0 

10 

0 0 0 1 , 1 
(19) 

h = 112 +122 +132 = 6, 

so it must be true that 

21 = 22 = 1,/a = 2. (15) 



Finite Group-D4 Finite Group-22 8 22 643 

(21) 

(22) 

E= 

see also DIHEDRAL GROUP, FINITE GR~uP-D~, FI- 
NITE GROUP-& 

Finite Group-D4 

5 
\\ 

1 8 

v 

4 2 

3 

The DIHEDRAL GROUP D4 is one of the two non-Abelian 
groups of the five groups total of ORDER 8. It is some- 
times called the octic group. Examples of Dd include the 
symmetry group of the SQUARE. The CYCLE GRAPH is 
shown above. 

see also DIHEDRAL GROUP, FINITE GROUP-D3, FI- 

NITE GROUP-&, FINITE GROUP-& @Z2 @&, FI- 
NITE GROUP-& &2’4, FINITE GROUP-& 

Finite Group-(e) 
The unique (and trivial) group of ORDER 1 is denoted 
(e). It is (trivially) ABELIAN and CYCLIC. Examples 
include the POINT GROUP Cl and the integers modulo 
1 under addition. 

The only class is { 1). 

Finite Group-Q8 

One of the three Abelian groups of the five groups to- 
tal of ORDER 8. The group Q8 has the MULTIPLICA- 
TION TABLE of xH, i,j, k, where 1, i, j, and k are the 
QUATERNTONS. The CYCLE GRAPH is shown above. 

see also FINITE GROUP-D4, FINITE GROUP-& 8 

Zz @ &, FINITE GROUP--& @ 24, FINITE GROUP- 

&, QUATERNION 

Finite Group----& 

The unique group of ORDER 2. 22 is both ABELIAN and 
CYCLIC. Examples include the POINT GROUPS C,, Ci, 
and Cs , the integers module 2 under addition, and the 
MODULO MULTIPLICATION GROUPS Mz, M4, and Ms. 
The elements Ai satisfy Ai = 1, where 1 is the IDEN- 
TITY ELEMENT. The CYCLE GRAPH is shown above, 
and the MULTIPLICATION TABLE is given below. 

Z2 1 A 

-t- 
1 1 A 
A A 1 

The CONJUGACY CLASSES are (1) and {A}. The irre- 
ducible representation for the Cz group is { 1, - 1). 

Finite Group---& @ 22 

One of the two groups of ORDER 4. The name of this 
group derives from the fact that it is a DIRECT PROD- 
UCT of two 22 SUBGROUPS. Like the group 24, 22 @ 22 
is an ABELIAN GROUP. Unlike 24, however, it is not 
CYCLIC. In addition to satisfying Ai = 1 for each 
element Ai, it also satisfies Ai = 1, where 1 is the 
IDENTITY ELEMENT. Examples of the 22 @ 22 group 
include the VIERGRUPPE, POINT GROUPS D2, &,and 
&,, and the MODULO MULTIPLICATION GROUPS Ma 
and Ml2. That MS, the RESIDUE CLASSES prime to 8 
given by (1, 3, 5, 7}, are a group of type 22 @ 22 can 
be shown by verifying that 

l2 =l 32 =9-l 52=25~1 72 

= 49 E 1 (mod 8) (1) 

3*5=15~7 3m7=221~5 5*7=35~3(mod8). 

(2) 
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Z2 @ Z2 is therefore a MODULO MULTIPLICATION 
GROUP. 

The CYCLE GRAPH is shown above, and the multiplica- 
tion table for the 22 @ 22 group is given below 

ZzBZ2 1 A B C 

1 1 A B C 
A AlCB 
B B C 1 A 
c C B A 1 

The CONJUGACY CLASSES are {l}, {A}, 

A-lAA = A 

B-lAB - A - 

C-lAC = A, 

PI 1 

A-IBA = B 

C-‘BC = B, 

(3) 
(4) 
(5) 

(6) 
(7) 

and {C}. 

Now explicitly consider the elements of the CzV POINT 
GROUP. 

-; 

In terms of the VIERGRUPPE elements 

A reducible representation using 2-D REAL MATRICES 

A= ;’ 
[ 

B= ’ ’ [ 1 1 0 

(9) 

(10) 

(11) 

Another reducible representation using 3-D REAL MA- 
TREES can be obtained from the symmetry elements of 

the D2 group (1, G(z), G(y), and G(4) or Czv group 

(1, Cz, ov, and a:). Place the Cz axis along the z-axis, 
gV in the s-y plane, and a: in the y-z plane. 

1 0 0 
1 =E=E= 0 1 0 [ 1 (12) 

0 0 1 

1 0 0 

A=R,(x)=au= 0 -1 0 [ 1 (13) 
0 0 1 

-1 0 0 
C=R2:(r)=C2= 0 -1 0 [ 1 (14) 

0 0 1 

-1 0 0 
B = R&r) = o:, = 0 1 0 . [ 1 (15) 

0 01 

In order to find the irreducible representations, note 
that the traces are given by x(1) = 3,x(&) = -1, 

and x(eJ = x(d) = 1. Therefore, there are at least 
three distinct CONJUGACY CLASSES. However, we see 
from the MULTIPLICATION TABLE that there are actu- 
ally four CONJUGACY CLASSES, so group rule 5 requires 
that there must be four irreducible representations. By 
rule 1, we are looking for POSITWE INTEGERS which 
satisfy 

112 + 1z2 + E32 + 142 = 4. 

The only combination which will work is 

(16) 

h = 22 = 23 = 24 = 1, (17) 

so there are four one-dimensional representations. Rule 
2 requires that the sum of the squares equal the ORDER 
h = 4, so each 1-D representation must have CHAR- 
ACTER S. Rule 6 requires that a totally symmetric 
representation always exists, so we are free to start off 
with the first representation having all 1s. We then use 
orthogonality (rule 3) to build up the other representa- 
tions. The simplest solution is then given by 

These can be put into a more familiar form by switching 
I1 and &,givingthe CHARACTER TABLE 

c 2v 

r3 

r2 

r1 

r4 

1 c2 g'v a:, 

1 -1 1 -1 
1 -1 -1 1 
1 1 1 1 
1 1 -1 -1 
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The matrices corresponding to this representation are 

1 0 0 0 

l- - [ 
0 10 0 
0 0 1 0 
0 0 0 1 I 

r-1 0 0 01 

(18) 

(19) 

which consist of the previous representation with an ad- 
ditional component. These matrices are now orthogonal, 
and the order equals the matrix dimension. As before, 

x(nJ = x(d). 
see also FINITE GROUP-& 

One of the three Abelian groups of tl le five groups total 
0f ORDER 8. Examples include the MOD ULO M ULTI- 
PLICATION GROUP A&. The elements Ai of this group 
satisfy Ai = 1, where 1 is the IDENTITY ELEMENT. 
The CYCLE GRAPH is shown above. 

see also FINITE GROUP---D+ FINITE GROUP-&, FI- 
NITE GROUP-& @ 24, FINITE GROUP-& 

Finite Group-22 @I 24 

z2@z4 

One of the three Abelian groups of the five groups to- 
tal of ORDER 8. Examples include the MODULO MUL- 
TIPLICATION GROUPS A&, AIIs, IWzO, and A&. The 
elements Ai of this group satisfy Ai = 1, where 1 is the 
IDENTITY ELEMENT, and four of the elements satisfy 
Ai = 1. The CYCLE GRAPH is shown above. 

see also FINITE GROUP-D4, FINITE GROUP-Q8, FI- 
NITE GROUP-& @ 22 8 22, FINITE GROUP-& 

Finite Group-23 

23 

The unique group of ORDER 3. It is both ABELIAN 
and CYCLIC. Examples include the POINT GROUPS C3 
and Da and the integer modulo 3. The elements Ai 
of the group satisfy Ai = 1 where 1 is the IDENTITY 
ELEMENT. The CYCLE GRAPH is shown above, and the 
MULTIPLICATION TABLE is given below. 

The CONJUGACY CLASSES are {I}, {A}, 

A-lAA - A - 

B-lAB - A - 7 

A-lBA = B 

B-IBB = B l  

The irreducible representation (CHARACTER TABLE) is 

therefore 

I- 1 A B 
r1 1 1 1 

4 

r2 1 1 -1 
r3 1 -1 1 

Finite Group---& 

One of the two groups of ORDER 4. Like 22 @I 22, it is 
ABELIAN, but unlike 22 @ 22, it is a CYCLIC. Examples 
include the POINT GROUPS C4 and Sd and the MODULO 
MULTIPLICATION GROUPS A& and A&. Elements Ai 
of the group satisfy Ai = 1, where 1 is the IDENTITY 

ELEMENT, and two of the elements satisfy Ai = 1. 

The CYCLE GRAPH is shown above. The MULTIPLI- 
CATION TABLE for this group may be written in three 
equivalent ways- denoted here by Zi”, Z’i”, and Zi3’- 
by permuting the symbols used for the group elements. 

z(l) 1 1 d A B C 
1 1 A B C 
A A B C 1 
B B C 1 A 
C ClAB 
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The MULTIPLICATION TABLE for Zi2’ is obtained from 

Z(l) by interchanging A and B 4 
. 

d2) 1 1 d A B C 
1 1 A B C 
A AlCB 
B B C A 1 
c C B 1 A 

The MULTIPLICATION TABLE for Zi3j is obtained from 

Z(l) by interchanging A and C 4 
. 

z(3) 
4 

1 
A 
B 
c 

The CONJUGACY CL. 

1 A B C 
1 A B C 
A C 1 B 
B 1 C A 
C B A 1 

SSES of 24 are {I}, {A}, 

A-lAA = A 

B-lAB -A - 

C-‘AC = A, 

VI 1 

A-lBA = B 

B-lBB - B - 

C-IBC = B t 

and {C}. 

(1) 
(2) 
(3) 

(4 
(5) 
(6) 

The group may be given a reducible representation using 
COMPLEX NUMBERS 

I=1 (7) 

A=i (8 

B = -1 (9 

c = -4, (10 

or REAL MATRICES 

A- ’ -’ - [ 1 1 0 
(11) 

(12) 

(13) 

(14 

Finite Group--26 

Finite Group-& 

The unique GROUP of ORDER 5, which is ABELIAN. Ex- 
amples include the POINT GROUP Cg and the integers 
mod 5 under addition. The elements Ai satisfy Ai = 1, 
where 1 is the IDENTITY ELEMENT. The CYCLE GRAPH 
is shown above, and the MULTIPLICATION TABLE is il- 
lustrated below. 

2% I 1 A B C D 
1 1 A B C D 
A A B C D 1 
B B C D 1 A 
c C D 1 A B 
D D 1 A B C 

The CONJUGACY CLASSES are {l}, {A}, {B}, {C}, and 

{W . 

Finite Group-26 

26 

One of the two groups of ORDER 6 which, unlike Ds, 
is ABELIAN. It is also a CYCLIC. It is isomorphic to 
22 8 23. Examples include the PRINT GROUPS Ce and 
&, the integers modulo 6 under addition, and the MOD- 
ULO MULTIPLICATION GROUPS i&, M9, and MU. The 
elements Ai of the group satisfy Ai = 1, where 1 is 
the IDENTITY ELEMENT, three elements satisfy Ai = 1, 
and two elements satisfy Ai = 1. The CYCLE GRAPH is 
shown above, and the MULTIPLICATION TABLE is given 
below, 

26 1 A l3 C D E 
1 1 A B C D E 
A A 1 E D B C 
B B E 1 A C D 
c CDAlEB 
D DBCElA 
E ECDBAl 

The CONJUGACY CLASSES are {l}, {A}, {B}, {C}, 

{Dl, and CE)* 
see also FINITE GROUP-& 

see also FINITE GROUP-& 822 
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Finite Simple Group 

see SIMPLE GROUP 

Finite Simple Group Classification Theorem 

see CLASSIFICATION THEOREM 

Finite-to-One Factor 
A MAP q!~ : IM -+ iW, where M is a MANIFOLD, is a 
finite-to-one factor of a MAP * : X -+ X if there exists 
a continuous ONTO MAP n : X -+ M such that $ o *IT = 
7r o !P and 7?(z) c X is finite for each GL: E IM. 

Finsler Geometry 
The geometry of FINSLER SPACE. 

Finsler Manifold 

see FINSLER SPACE 

Finsler Metric 
A continuous real function L( 2, y) defined on the TAN- 
GENT BUNDLE T(M) of ann-D DIFFERENTIABLEMAN- 
IFOLD 1M is said to be a Finsler metric if 

1. L(z,y) is DIFFERENTIABLE at 2 # y, 
2. L(z, Xy) = I~IL(z,~) for any element (2, y) E T(M) 

and any REAL NUMBER A, 
3. Denoting the METRIC 

Finite Group-27 

27 

1 
7 2 0 6 3 

5 4 

The unique GROUP of ORDER 7. It is ABELIAN and 
CYCLIC. Examples include the POINT GROUP C7 and 
the integers modulo 7 under addition. The elements Ai 
of the group satisfy Ai 7 = 1, where 1 is the IDENTITY 
ELEMENT. The CYCLE GRAPH is shown above. 

27 1 ABCDEF 
1 1 ABCDEF 
A ABCDEFl 
B BCDEFlA 
c CDEFlAB 
D D E F 1 A B C 
E E F 1 A B C D 
F F 1 A B C D E 

The CONJUGACY CLASSES are {l}, {A}, {B}, {C}, 

{D), {El, and IF). 

Finite Grou 

One of the three Abelian groups of the five groups total 
of ORDER 8. An example is the residue classes modulo 
17 which QUADRATIC RESIDUES, i.e., (1, 2, 4, 8, 9, 13, 
15, 16) under multiplication modulo 17. The elements 
Ai satisfy Ais = 1, four of them satisfy Ai = 1, and two 
satisfy Ai = 1. The CYCLE GRAPH is shown above. 

see also FINITE GROUP-D4, FINITE GROUP-Qg, FI- 
NITE GROUP-& 8 24, FINITE GROUP-& @ 22 @ 22 

Finite Mat hemat its 
The branch of mathematics which does not involve infi- 
nite sets, limits, or continuity. 

see ~230 COMBINATORICS, DISCRETE MATHEMATICS 

References 
Hildebrand, F. H. and Johnson, C. G. Finite Mathematics. 

Boston, MA: Prindle, Weber, and Schmidt, 1970. 
Kemeny, J. G.; Snell, J. L,; and Thompson, CL L. Introduc- 

tion to Finite Mathematics, 3rd ed. Englewood Cliffs, NJ: 
Prentice-Hall, 1974. 

Marcus, M. A Survey of Finite Mathematics. New York: 
Dover, 1993. 

then gij is a POSTTIVE DEFINITE MATRIX. 

A DIFFERENTIABLE MANIFOLD IUwithaFinslermetric 
is called a FINSLER SPACE. 

see also DIFFERENTIABLE MANIFOLD, FINSLER SPACE, 
TANGENT BUNDLE 

References 
Iyanaga, S. and Kawada, Y. (Eds.). “Finsler Spaces.” §lSl 

in Encyclopedic Dictionary of Mathematics. Cambridge, 
MA: MIT Press, p. 540-542, 1980. 

Finsler Space 
A general space based on the LINE ELEMENT 

ds = F(x’, . . . , x”; dx’, . . . , dxn), 

with F(x, y) > 0 for y # 0 a function on the TAN- 
GENT BUNDLE T(M), and homogeneous of degree 1 in 
y. Formally, a Finsler space is a DIFFERENTIABLE MAN- 
IFOLD possessing a FINSLER METRIC. Finsler geometry 
is RIEMANNIAN GEOMETRY without the restriction that 
the LINE ELEMENT be quadratic of the form 

F2 = gij(x) dxi dxj. 

A compact boundaryless Finsler space is locally 
Minkowskian IFF it has 0 “flag curvature.” 
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see UZSO FINSLER METRIC, HODGE’S THEOREM, RIE- 
MANNIAN GEOMETRY, TANGENT BUNDLE 

JXeferences 
Akbar-Zadeh, H. “Sur les espaces de Finsler B courbures sec- 

tionnelles const antes.” Acad. Roy. Belg. Bull. Cl. Sci. 74, 
281-322, 1988. 

Bao, D.; Chern, S.-S.; and Shen, 2. (Eds.). Finsler Geome- 
try. Providence, RI: Amer. Math. Sot., 1996. 

Chern, S.-S. ‘&Finsler Geometry is Just Riemannian Geome- 
try without the Quadratic Restriction.” Not. Amer. Math. 
Sot. 43, 959-963, 1996. 

Iyanaga, S. and Kawada, Y, (Eds.). “Finsler Spaces.” 5161 
in Eric yclopedic Dictionary of Mathematics. 
MA: MIT Press, p. 540-542, 1980. 

Finsler-Hadwiger Theorem 

c 

Cambridge, 

Let the SQUARES q ABCD and q AB’C’D’ share a com- 
mon VERTEX A. The midpoints Q and S of the segments 
B’D and BD’ together with the centers of the original 
squares R and T then form another square q QRST. 
This theorem is a special case of the FUNDAMENTAL 
THEOREM OF DIRECTLY SIMILAR FIGURES (Detemple 
and Harold 1996). 

see also FUNDAMENTAL THEOREM OF DIRECTLY SIMI- 
LAR FIGURES,~QUARE 

References 
Detemple, D. and Harold, S. “A Round-Up of Square Prob- 

lems .” Math. Mag. 69, 15-27, 1996. 
Finsler, P. and Hadwiger, H. “Einige Relat ionen im Dreieck.” 

Comment. Helv. 10, 316-326, 1937. 
Fisher, J. C.; Ruoff, D.; and Shileto, J. “Polygons and Poly- 

nomials +” In The Geometric Vein: The Coxeter Fest- 
schrift. New York: Springer-Verlag, 321-333, 1981. 

First-Countable Space 
A TOPOLOGICAL SPACE in which every point has a 
countable BASE for its neighborhood system. 

SuPPose f( x is CONTINUOUS at a STATIONARY POINT > 
x0. 

1. If f'(x) > 0 on an OPEN INTERVAL extending left 
from x0 and f'(x) < 0 on an OPEN INTERVAL ex- 
tending right from 20, then f has a RELATIVE MAX- 
IMUM (possibly a GLOBAL MAXIMUM) at x0. 

2. If f’ (x) < 0 on an OPEN INTERVAL extending left 
from x0 and f’(a) > 0 on an OPEN INTERVAL ex- 
tending right from x0, then f has a RELATIVE MIN- 
IMUM (possibly a GLOBAL MINIMUM) at x0. 

3. If f'(x) has the same sign on an OPEN INTERVAL 
extending left from x0 and on an OPEN INTERVAL 
extending right from ~0, then f does not have a REL- 
ATIVE EXTREMUM atzo. 

see also EXTREMUM, GLOBAL MAXIMUM, GLOBAL 
MINIMUM, INFLECTION POINT, MAXIMUM, MINIMUM, 
RELATIVE EXTREMUM, RELATIVE MAXIMUM, RELA- 
TIVE MINIMUM, SECOND DERIVATIVE TEST, STATION- 
ARY POINT 

References 
Abramowitz, M. and Stegun, C. A. (Eds.). Handbook 

of Mathematical Functions with Fornxulas, Graphs, and 
Mathematical Tables, 9th printing. New York: Dover, 
p. 14, 1972. 

First Digit Law 

see BENF~RD'S LAW 

First Digit Phenomenon 

see BENFORD’S LAW 

First Multiplier Theorem 
Let D be a planar Abelian DIFFERENCE SET and t be 
any DIVISOR of n. Then t is a numerical multiplier of 
D, where a multiplier is defined as an automorphism a 
of G which takes D to a translation g + D of itself for 
some g E G. If a is of the form QI : x -+ tx for t E Z 
relatively prime to the order of G, then a is called a 
numerical multiplier l  

References 
Gordon, D. M. “The Prime Power Conjecture is True 

for 12 < 2,000,000.” Electronic J. Combinatorics 1, 
R6,1-7,1994. http://wu.combinatorics, org/Volumel/ 
volumel,html#R6. 

Fischer’s Baby Monster Group 

see BABY MONSTER GROUP 
First Curvature 

see CURVATURE 

First Derivative Test 
f’(J) < 0, 
f "(X) > 0 

i 

f'b> < 0 f lx> > 0 
"$b"dN f'(x) < 0, V X- f"(X) < 0 f'(x) = 0 

f'(x) = 0 

f'(x) > 0 
n 

f'b, < 0 

Fischer Groups 
The SPORADIC GROUPS Fizz, Fi23, and F&. These 
groups were discovered during the investigation of 3- 
TRANSPOSITION GROUPS. 

see also SPORADIC GROUP 

References 
Wilson, R. A. “ATLAS of Finite Group Representation.” 

stationary point nm.xit.win~ http://for.mat. 
and F24.html. 

bham. ac. as/F22 .html, F23,html, 
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Fish Bladder 

SE LENS 

Fisher-Behrens Problem 
The determination of a test for the equality of MEANS 

for two NORMAL DISTRIBUTIONS with different VARI- 
ANCES given samples from each. There exists an ex- 
act test which, however, does not give a unique answer 
because it does not use all the data. There also exist 
approximate tests which do not use all the data. 

see also NORMAL DISTRIBUTION 

-  ”  

Keterences 
Fisher, R. A. “The Fiducial Argument in Statistical Infer- 

ence .” Ann. Eugenics 6, 391-398, 1935. 
Kenney, J. F. and Keeping, E. S. “The Behrens-Fisher Test.” 

$9.8 in M a th ematics of Statistics, Pt. 2, 2nd ed. Princeton, 
NJ: Van Nostrand, pp. 257-260 and 261-264, 1951. 

Sukhatme, P. V. “On Fisher and Behrens’ Test of Signifi- 
cance of the Difference in Means of Two Normal Samples.” 
Sankhya 4, 39, 1938. 

Fisher’s Block Design Inequality 
A balanced incomplete BLOCK DESIGN (v, k, A, T, b) 
exists only or b > ‘u (or, equivalently, T > k) q - 

see also BRUCK-RYSER-CHOWLA THEOREM 

References 
Dinitz, J. H. and Stinson, D. R. “A Brief Introduction to 

Design Theory.” Ch. 1 in Contemporary Design Theory: A 
Collection of Surveys (Ed. 3. H. Dinitz and D. R. Stinson). 
New York: Wiley, pp. l-12, 1992. 

Fisher’s Estimator Inequality 
Given T an UNBIASED ESTIMATOR of 0 SO that (T) = 8. 
Then 

var(T) 2 
1 

Nj-ym [WI2 f dz’ 

where var is the VARIANCE. 

Fisher’s Exact Test 
A STATISTICAL TEST used to determine if there are non- 
random associations between two CATEGORICAL VARI- 
ABLES. Let there exist two such variables X and Y, 
with m and n observed states, respectively. Now form 
an n x m MATRIX in which the entries aij represent the 
number of observations in which EL: = i and y = j. Cal- 
culate the row and column sums Ri and Cj, respectively, 
and the total sum 

N=xRi=)jCj 
i j 

(which is a HYPERGEUMETRIC DISTRIBUTION). Now 
find all possible MATRICES of NONNEGATIVE INTEGERS 
consistent with the row and column sums Ri and Cj . 
For each one, calculate the associated P-VALUE using 
(0) (where the sum of these probabilities must be 1). 
Then the P-VALUE of the test is given by the sum of all 
P-VALUES which are < Pcrit. - 

The test is most commonly applied to a 2 x 2 MATRICES, 
and is computationally unwieldy for large m or n. 

As an example application of the test, let X be a journal, 
say either Mathematics Magazine or Science, and let Y 
be the number of articles on the topics of mathematics 
and biology appearing in a given issue of one of these 
journals. If Mathematics Magazine has five articles on 
math and one on biology, and Science has none on math 
and four on biology, then the relevant matrix would be 

Math. Mag. Science 
math 5 0 RI = 5 
biology 1 4 R2 =5 

Cl=6 Cz=4 N-10. 

Computing Pcrit gives 

P 
5!26!4! 

crit = 
10!(5!0!1!4!) 

= 0.0238, 

and the other possible matrices and their Ps are 

[ 4 2 3 1 1 P = 0.2381 

[ 3 3 2 2 1 P = 0.4762 

3 
1 1 P = 0.2381 

1 4 [ 1 5 0 
P = 0.0238, 

which indeed sum to 1, as required. The sum of P-values 
less than or equal to Pcrit = 0.0238 is then 0.0476 which, 
because it is less than 0.05, is SIGNIFICANT. Therefore, 
in this case, there would be a statistically significant 
association between the journal and type of article ap- 
pearing. 

Fisher Index 
The statistical INDEX 

h=dEK, 

of the MATRIX. Then calculate the conditional LIKELI- 
HOOD (P-VALUE) of getting the actual matrix given the 
particular row and column sums, given by 

where PL is LASPEYRES’ INDEX and Pp is PAASCHE’S 
INDEX. 

see also INDEX 

(Rl!Rz! . . . R,!)(Cl!Cs! l  l  . Cn!) References 
P crit = 

N!ni ja;j! 
Kenney, J. F. and Keeping, E. S. Mathematics of Statistics, 

5 Pt. I, 3rd ed. Princeton, NJ: Van Nostrand, p. 66, 1962. 
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Fisher Kurtosis Fisher-Tippett Distribution 

~bz=E-3=~4-3 72 - 
P22 7 

1 

where pi is the ith MOMENT about the MEAN and u = 
fi is the STANDARD DEVIATION. 

see also FISHER SKEWNESS,KURT~SIS,PEARSON KUR- 
ToSIS 

Fisher Sign Test 
A robust nonparametric test which is an alternative to 
the PAIRED ~-TEST. This test makes the basic assump- 
tion that there is information only in the signs of the dif- 
ferences between paired observations, not in their sizes. 
Take the paired observations, calculate the differences, 
and count the number of +s n+ and -s n-, where 

Nsn++n- 

is the sample size. Calculate the BINOMIAL COEFFI- 
CIENT 

Then B/2N gives the probability of getting exactly this 
many +s and -s if POSITIVE and NEGATIVE values are 
equally likely. Finally, to obtain the P-VALUE for the 
test, sum all the COEFFICIENTS that are 5 B and divide 
by 2N. 

see also HYPOTHESIS TESTING 

Fisher Skewness 

P3 P3 
?I’--- 

p23/2 - 03 ’ 

where pi is the i MOMENT about the MEAN, and 0 = 
*is the STANDARD DEVIATION. 

see also FISHER KURTOSIS, 
STANDARD DEVIATION 

MOMENT, SKEWNESS, 

Fisher’s Theorem 
Let A be a sum of squares of n independent normal 
standardized variates ~:i, and suppose A = B + C where 
B is a quadratic form in the xi, distributed as CHI- 
SQUARED with h DEGREES OF FREEDOM. Then Cis 
distributed as x2 with n - h DEGREES OF FREEDOM 
and is independent of B. The converse of this theorem 
isknownas COCHRAN'S THEOREM. 

see also GIGSQUARED DISTRIBUTION, COCHRAN'S 
THEOREM 

Also called the EXTREME VALUE DISTRIBUTION and 
LOG-WEIBULL DISTRIBUTION. It is the limiting distri- 
bution for the smallest or largest values in a large sample 
drawn from a variety of distributions. 

P(x) = 
e(a--z)/b-e-)~~ 

b 
qx) = e-e(a-x)‘bm 

(1) 

(2) 

These can be computed directly be defining 

U-X 
z E exp - ( > b (3) 
X = a - blnz (4) 

Then the MOMENTS are 

exp[-e+“)lb] da: 

/ 

0 

-- - (a- bInz)"e-" dz 

- - / -(u- blnx)"e-" dz 
Jo 

kan-k k 
b 

s 0 

(5) 

(6) 

where I(k) are EULER-MASCHERONI INTEGRALS. Plug- 
gingin the EULER-MASCHERONI INTEGRALS I(k) gives 

po = 1 

Pl =a+by 

p2 = a2 + 2aby + b2(y2 + ;r2) 

P3 = a3 + 3a2by + 3ab2(y2 + :x2) 

+ b3[y3 + $7~~ + 2<(S)] 

p4 = a4 +4a3by + 6a2b2(y2 + +r2) 

+ 4ab3[y3 + $7~~ + 2c(3)] 

+ b4[y4 + y2n2 + +” + 8yc(3)], 
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wherey isthe EULER-MASCHER~NI CONSTANT andc(3) 
is AP~RY'S CONSTANT. The MEAN,~ARIANCE, SKEW- 
NESS, and KURTOSIS are therefore 

(12) 
(13) 

- - $${a3 + 3a’by + 3ab2(y2 + &r2) 

+ b3[y3 + +yr2 + 25(3)]} 

P4 yz=p-3 

- - $${a4 + 4a3by + a2b2(6y2 + T’) 

+ 4:b3[r3 + $yn2 + 2[(3)] 

(14) 

+ b4[y4 + y2;rr2 + &7T” + 8yC(3)]}. (15) 

The CHARACTERISTIC FUNCTION is 

qqt) = Iyl - ipt)eiat, (16) 

where I?(z) is the GAMMA FUNCTION. The special case 
of the Fisher-Tippett distribution with a = 0, b = 1 is 
called GUMBEL'S DISTRIBUTION. 

see UZSO EULER-MASCHERONI INTEGRALS, GUMBEL'S 
DISTRIBUTION 

Fisher’s x-Distribution 

n1l2 n2l2 

g(4 = 
2m 

xn& 

e 
n1z 

B( > ( 
nle2t: +n~)(nl+~l)/~ (1) 

2’2 

(Kenney and Keeping 1951). This general distribution 
includes the CHI-SQUARED DISTRIWTI~N and STU- 
DENT'S t-DISTRIBUTION as special cases. Let u2 and u2 
be INDEPENDENT UNBIASED ESTIMATORS ofthe VARI- 
ANCE ofa NORMALLY DISTRIBUTED variate. Define 

(2) 

Then let 

(3) 

n2 

so that nlF/nz is a ratio of CHI-SQUARED variates 

(4) 

which makes it a ratio of GAMMA DISTRIBUTION vari- 
ates, which is itself a BETA PRIME DISTRIBUTION vari- 
ate, 

Y(Y) j yy - - U > +)- -’ (5) 

giving 

-(nl+nzW nl 

n2 
(6) 

The MEAN is 

w 
n2 - -- 

7x2-2’ (7) 

and the MODE is 

n2 nl- 2 

722 + 2 nl ’ 
(8) 

see also BETA DISTRIBUTION, BETA PRIME DISTRI- 
BUTION, CHI-SQUARED DISTRIBUTION, GAMMA Drs- 
TRIBUTION, NORMAL DISTRIBUTION, STUDENT'S t- 

DISTRIBUTION 

References 
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Fisher’s &Transformation 
Let r be the CORRELATION COEFFICIENT. Then defin- 
ing 

z’ 1= tanh-’ T (1) 

< E tanh-‘p, (2) 

gives 

Q = (N - 3)-l/2 (3) 
1 4 - p2 

var(z’) = ; + 2n2 + . . l  
(4) 

(5) 
32 - 3p4 

72 = - 
16N ’ (6) 

where n= N - 1. 

see also CORRELATION COEFFICIENT 

Fitting Subgroup 
The unique smallest NORMAL NILPOTENT SUBGROUP 
of H, denoted F(H). The generalized fitting subgroup 
is defined by F*(H) = F(H)E(H), where E(H) is the 
commuting product of all components of H, and F is 
the fitting subgroup of H. 

Five Cubes 

see CUBE S-COMPOUND 
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Five Disks Problem Fixed Point 

Given five equal DISKS placed symmetrically about a 
given center, what is the smallest RADIUS T for which the 

RADIUS of the circular AREA covered by the five disks 
is l? The answer is T = 4 - 1 = l/4 = 0.6180340.. ., 
where 4 is the GOLDEN RATIO, and the centers ci of the 
disksi=l, . . . . 5 are located at 

ci = 

The GOLDEN RATIO enters here through its connection 
with the regular PENTAGON. If the requirement that the 
disks be symmetrically placed is dropped (the general 
DISK COVERING PROBLEM), then the RADIUS for n = 
5 disks can be reduced slightly to 0.609383. . . (Neville 
1915). 

see 
LIF 

also ARC, 
E, SEED o 

References 
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F LIFE 
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Five Tetrahedra Compound 

~~~TETRAHEDRON 5-CoMPowND 

Fixed 
When referring to a planar object, “fixed” means that 
the object is regarded as fixed in the plane so that it 
may not be picked up and flipped. As a result, MIRROR 
IMAGES are not necessarily equivalent for fixed objects. 

see also FREE, MIRROR IMAGE 

Fixed Element 

see FIXED POINT (MAP) 

A point which does not change upon application of a 
MAP, system of DIFFERENTIAL EQUATIONS, etc. 

see also FIXED POINT (DIFFERENTIAL EQUATIONS), 
FIXED POINT (MAP),FIXED POINT THEOREM 

References 
Shashkin, Yu. A. Fixed Points. Providence, RI: Amer. Math. 

sot., 1991. 

Fixed Point (Differential Equations) 
Points of an AUTONOMOUS system of ordinary differen- 
tial equations at which 

*- 
dt - fl(Xl,.*-, xn) =0 

. 
l  

. 

dx ,  _  

dt - f?Z(X1y*--,Xn)=Oa 

If a variable is slightly displaced from a FIXED POINT, it 
may (1) move back to the fixed point (“asymptotically 
stable” or “superstable”), (2) move away ( “unstable”), 
or (3) move in a neighborhood of the fixed point but 
not approach it (“stable” but not “asymptotically sta- 
ble”). Fixed points are also called CRITICAL POINTS 
or EQUILIBRIUM POINTS. If a variable starts at a point 
that is not a CRITICAL POINT, it cannot reach a critical 
point in a finite amount of time. Also, a trajectory pass- 
ing through at least one point that is not a CRITICAL 
POINT cannot cross itself unless it is a CLOSED CURVE, 
in which case it corresponds to a periodic solution. 

A fixed point can be classified into one of several classes 
using LINEAR STABILITY analysis and the resulting STA- 
BILITY MATRIX. 

see also ELLIPTIC FIXED POINT (DIFFERENTIAL EQUA- 

TIONS), HYPERBOLIC FIXED POINT (DIFFERENTIAL 
EQUATIONS),STABLEIMPROPERNODE,STABLENODE, 
STABLE SPIRAL POINT, STABLE STAR, UNSTABLE IM- 

PROPER NODE, UNSTABLE NODE, UNSTABLE SPIRAL 
POINT,UNSTABLE STAR 

Fixed Point (Map) 
A point x* which is mapped to itself under a MAP G, so 
that x* = G(x*). Such points are sometimes also called 
INVARIANT POINTS,~~FIXED ELEMENTS (Woodsl961). 
Stable fixed points are called elliptical. Unstable fixed 
points, corresponding to an intersection of a stable and 
unstable invariant MANIFOLD, are called HYPERBOLIC 
(or SADDLE). Points may also be called asymptotically 
stable (a.k.a. superstable). 

see UZSO CRITICAL POINT, INVOLUNTARY 

References 
Shashkin, Yu. A. Fixed Points. Providence, RI: Amer. Math. 

SOL, 1991. 
Woods, F. S. Higher Geometry: An Introduction to Advanced 

Methods in Analytic Geometry. New York: Dover, p. 14, 
1961. 



Fixed Point Theorem Fletcher Point 653 

Fixed Point Theorem 
If g is a continuous function g(z) E [a, b] FOR ALL x E 
[a, b], then g has a FIXED POINT in [a, b]. This can be 
proven by noting that 

Since g is continuous, the INTERMEDIATE VA 

OREM guarantees that there exists a c E [a, b] 

s(a) - a > 0 g(b) - b 2 0. 

g(c) - c = 0, 

so there must exist a c such that 

d > c =c, 

LUE THE- 
such that 

so there must exist a FIXED PRINT E [u,b]. 

see also BANACH FIXED POINT THEOREM, BROUWER 
FIXED POINT THEOREM, KAKUTANI’S FIXED POINT 
THEOREM, LEFSHETZ FIXED POINT FORMULA, LEF- 
SHETZ TRACE FORMULA,POINCAR&BIRKHOFF FIXED 
POINT THEOREM,SCHAUDERFIXED POINT THEOREM 

Fixed Point (Transformation) 

see FIXED POINT (MAP) 

Flag 
A collection of FACES of an n-D P~LYT~PE or simplicial 
COMPLEX, one of each DIMENSION 0, 1, . . . , n- 1, which 
all have a common nonempty INTERSECTION. In normal 
3-D, the flag consists of a half-plane, its bounding RAY, 
and the RAY'S endpoint. 

Flag Manifold 
For any SEQUENCE of INTEGERS 0 < nl < .*. < ?&k, 
there is a flag manifold of type (nl, . . . , nk) which is 
the collection of ordered pairs of vector SU~SPACES of 
W” (V-, l *., Vk) with dim(Vi) = ni and Vi a SUBSPACE 
of vi+1. There are also COMPLEX flag manifolds with 
COMPLEX subspaces of Cnk insteadof REAL SUBSPACES 
of a REAL nk-space. These flag manifolds admit the 
structure of MANIFOLDS in a natural way and are used 
in the theory of LIE GROUPS. 

see dso GRASSMANN MANIFOLD 

References 
Lu, J.-H. and Weinstein, A. “Poisson Lie Groups, Dressing 

Transformations, and the Bruhat Decomposition.” J. D#. 
Geom. 31, 501-526, 1990. 

Flat Norm 
The Aat norm on a CURRENT is defined by 

F(S) = s {Area T +vol R : S - T = dR}, 

where dR is the boundary of R. 

see also COMPACTNESS THEOREM, CURRENT 

References 
Morgan, F. “What Is a Surface?” Amer. Math. Monthly 103, 

369-376, 1996. 

Flat Space Theorem 
If it is possible to transform a coordinate system to a 
form where the metric elements gPy are constants inde- 
pendent of 2 P, then the space is flat. 

Flat Surface 
A REGULAR SURFACE and special class of MINIMAL 

SURFACE for the GAUSSIAN CURVATURE vanishes ev- 
erywhere. A TANGENT DEVELOPABLE, GENERALIZED 

CONE, and GENERALIZED CYLINDER are all flat sur- 
faces. 

see also MINIMAL SURFACE 

References 
Gray, A. Modern Differential Geometry of Curves and Sur- 

faces. Boca Raton, FL: CRC Press, p. 280, 1993. 

Flattening 
The flattening of a SPHEROID (also called OBLATENESS) 
is denoted c or f. It is defined as 

E= 
,ac = 1 - $ oblate 

- c-u _ 5 
a -a 

- 1 prolate, 

where c is the polar RADIUS and a is the equatorial 
RADIUS. 

see also ECCENTRICITY, ELLIPSOID, OBLATE SPHER- 
OID, PROLATE SPHEROID, SPHEROID 

Flemish Knot 

see FIGURE-OF-EIGHT KNOT 

Fletcher Point 

Flat 
A set in I@ formed by translating an affine subspace or 
by the intersection of a set of HYPERPLANES. 
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The intersect ion of the GERG~NNE LINE and the S~DDY 
LINE. It has TRILINEA .R C~ORDIN ATES given by 

where I is the INCENTER, Ge the GERGONNE POINT, 
and d, e, and f are the lengths of the sides of the CON- 
TACT TRIANGLE ADEF. 

see also CONTACT TRIANGLE, GERGONNE LINE, GER- 
GONNE POINT, SODDY LINE 

References 
Oldknow, A. “The Euler-Gergon ne-So ,ddy Triangle of 

angle.” Amer. Math. Monthly 103, 319-329, 1996. 
a Tri- 

Flexible Polyhedron 

The RIGIDITY THEOREM states that if the faces of a 
cwZtez POLYHEDRON are made of metal plates and the 
EDGES are replaced by hinges, the POLYHEDRON would 
be RIGID. The theorem was stated by Cauchy (1813), 
although a mistake in this paper went unnoticed for 
more than 50 years. Concave polyhedra need not be 
RIGID, and such nonrigid polyhedra are called flexible 
polyhedra. Connelly (1978) found the first example of a 
reflexible polyhedron, consisting of 18 triangular faces. 
A flexible polyhedron with only 14 triangular faces and 
9 vertices (shown above), believed to be the simplest 
possible composed of only triangles, was subsequently 
found by Steffen (Mackenzie 1998). There also exists 
a six-vertex eight-face flexible polyhedron (Wunderlich 
and Schwabe 1986, Cromwell 1997). 

Connelly ef al. (1997) p roved that a flexible polyhedron 
must keep its VOLUME constant (Mackenzie 1998). 

see also POLYHEDRON, QUADRICORN, RIGID, RIGIDITY 
THEOREM 
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Cromwell, P. R. Polyhedra. New York: Cambridge University 

Press, 1997. 
Mackenzie, D. “Polyhedra Can Bend But Not Breathe.” Sci- 

ence 279, 1637, 1998. 
Wunderlich, W. and Schwabe, C. “Eine Familie von 

Flexagon 
An object created by FOLDING a piece of paper along 
certain lines to form loops. The number of states pos- 
sible in an WFLEXAGON is a CATALAN NUMBER. By 
manipulating the folds, it is possible to hide and reveal 
different faces. 

see also FLEXATUBE, FOLDING, 

RAFLEXAGON 
HEXAFLEXAGON, TET- 

References 
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Gardner, M. Ch. 2 in The Second Scientific American Book 
of Mathematical Puzzles & Diversions: A New Selection. 
New York: Simon and Schuster, pp* 24-31, 1961. 

Maunsell, F. G. “The Flexagon and the Hexaflexagon.” 
Math. Gazette 38, 213-214, 1954. 

Oakley, C. 0. and Wisner, R. 3. “Flexagons.” Amer. Math. 
Monthly 64, 143-154, 1957. 

Wheeler, R. F. “The Flexagon Family.” Math. Gaz. 42, l-6, 
1958. 

Flexatube 

A FLEXAGON-like 
ends of a strip of 

structure created 
four squares after 

by connecting the 
folding along 45” 

diagonals. Using a number of folding movements, it is 
possible to flip the flexatube inside out so that the faces 
originally facing inward face outward. Gardner (1961) 
illustrated one possible solution, and Steinhaus (1983) 
gives a second. 

see also FLEXAGON, HEXAFLEX 
GON 

AGON, TETRAFLEXA- 

References 
Cundy, H. and Rollett, A. Muthematical Models, 3rd ed. 
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Flip Bifurcation 
Let f : R x IIB -+ Iw be a one-parameter family of C3 
maps satisfying 

geschlossen gleichflachigen Polyhedern 
sind.” Elem. Math. 41, 88-98, 1986. 

., die fast beweglich f (070) = 0 
af [ 1 z =- . 1 

p=o,2=0 



Floor Function Floquet Analysis 

2 u [ 1 8X2 
<o 

p=o,2=0 

Heierences 
Graham, R. L.; Knuth, D. E.; and Patashnik, 0. “Integer 

Functions.” Ch. 3 in Concrete Mathematics: A Foun- 
dation for Computer Science. Reading, MA: Addison- 
Wesley, pp, 67-101, 1990. 

3 af [ 1 8X3 
< 0. 

p=o,z=o 

Then there are intervals (pl,O), (0, ~2), and E > 0 such 
that 

1. If p E (0, ~2)~ then fp(x) has one unstable fixed point 
and one stable orbit of period two for x f (-E, E), and 

2. If ~1 E (~1, 0), then f&) has a single stable fixed 
point for x f (-E,E). 

This type of BIFURCATION is known as a flip bifurcation. 
An example of an equation displaying a flip bifurcation 
1s 

f(x) = p - 2 - x2* 

see also BIFURCATION 

References 
Rasband, S. N. Chaotic Dynamics of Nonlinear Systems. 
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Floor Function 

1x1 Ceiling 4 

[x] Nint (Round) 
- - - 1x1 Floor - 
_I___̂ _- x L 

The function 1x1 is the largest INTEGER < x, shown as 
the dashed curve in the above plot, and &o called the 
GREATESTINTEGERFUNCTION. In manycomputerlan- 
guages, the floor function is called the INTEGER PART 
function and is denoted int (x) . The name and sym- 
bol for the floor function were coined by K. E. Iverson 
(Graham et al. 1990). 

Unfortunately, in many older and current works (e.g., 
Shanks 1993, Ribenboim 1996), the symbol [x] is used 
instead of lx]. Because of the elegant symmetry of the 
floor function and CEILING FUNCTION symbols [xJ and 
[xl, and because [x] is such a useful symbol when inter- 
preted as an IVERSON BRACKET, the use of [x] to denote 
the Aoor function should be deprecated. In this work, 
the symbol [x] is used to denote the nearest integer NINT 
function since it naturally falls between the [zj and [xl 

see UZSO CEILING FUNCTION, FRACTIONAL PART, INT, 
IVERSON BRACKETJINT 
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Spanier, J. and Oldham, K. B. “The Integer-Value Int(z) and 
Fractional-Value frac(z) Functions.” Ch. 9 in An Atlas of 
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Floquet Analysis 
Given a system of periodic QRDINARY DIFFERENTIAL 
EQUATIONS of the form 

(1) 

the solution can be written as a linear combination of 
functions of the form x(t) X0 

y(t) [ HI ‘O e”“Pp(t), 
G(t) = Go 

VY (t> ‘LlYO 

(2) 

where &(t) is a function periodic with the same period 
T as the equations themselves. Given an ORDINARY 
DIFFERENTIAL EQUATION of the form 

52 + g(t)x = 0, (3) 

where g(t) is periodic with period T, the ODE has a 
pair of independent solutions given by the REAL and 
IMAGINARY PARTS of 

x(t) = w(t)e+@) 

55 = (ti + iw&eiQ 

9 = [I3 + iti$ + i(tid + wq + iwlJ2)]eiti 
- - EC 12 - wG2) + i(2ti4 + w&]e”. 

Plugging these into (3) gives 

ti + 2i7iqi + w(g + iq - 7)“) = 0, 

SO the REAL and IMAGINARY PARTS are 

ti + w(g - 7)") = 0 

2ti4$w4=0. 

From (91, 

. . 
z + $ = 2-$lnw) + -$ln(&)] 

- - g ln($w2) = 0. 

(4 
(5) 

(6) 

(7) 

(8) 

(9) 

(10) 
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Integrating gives 
. 

TJ!) 
c -- - 

w2 1 (11) 

where C is a constant which must equal 1, so $J is given 

bY 

The REAL solution is then 

x(t) = w(t) cO~[~(t)l, (13 

so 

k=ticos*-url)sin*=7.Z- wy!~ sin * 
W 

1 =ti:-w- - 1 
w2 sin* = ti? - - sin $ (14 20 w  w  

and 

1= cos2* + sin2 $ = x2wB2 + [w (ti: -q2 

= x2w-2 + (tix - wk)2 E I x,6 t>, (15) 

which is an integral of motion. 
w(t) is not explicitly known, an 
ists. Plugging (10) into (8) gives 

Flower 

see DAISY, FLOWER OF LIFE, ROSE 

Flower of Life 

One of the beautiful arrangements of CIRCLES found at 
the Temple of Osiris at Abydos, Egypt (Rawles 1997). 
The CIRCLES are placed with six-fold symmetry, forming 
a mesmerizing pattern of CIRCLES and LENSES. 

see also FIVE DISKS PROBLEM, REULEAUX TRIANGLE, 
SEED OF LIFE, VENN DIAGRAM 

Therefore, although 
integral I always ex- 

1 
ti + g(t)w - 7 = 0, (16) 
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Floquet’s Theorem 

see FLOQUET ANALYSIS 

Flow Fluxion 
An ACTION with G = Iw. Flows are generated by VEC- 
TOR FIELDS and vice versa. 

The term for DERIVATIVE in Newton’s CALCULUS. 

see also ACTION, AMBROSE-KAKUTANI THEOREM, 
ANOSOV FLOW, AXIOM A FLOW, CASCADE, GEODESIC 
FLOW, SEMIFLOW 

Flowsnake 

see PEANO-GOSPER CURVE 

Flowsnake fiactal 

see GOSPER ISLAND 

Floyd’s Algorithm 
An algorithm for finding the shortest path between two 
VERTICES. 

see also DIJKSTRA’S ALGORITHM 

Fluent 
Newton’s term for a variable in his method of FLUXIONS 
(differential calculus). 

FlYPe 
A 180” rotation of a TANGLE. 

see UZSO FLYPING CONJECTURE, TANGLE 

Flow Line 
A flow Iine for a map on a VECTOR FIELD F is a path 
a(t) such that d(t) = F@(t)). 
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Flyping Conjecture 
Also called the TAIT FLYPING CONJECTURE. Given two 
reduced alternating projections of the same knot, they 
are equivalent on the SPHERE IFF they are related by a 
series of FLYPES. It was proved by Menasco and This- 
tlethwaite (1991). It allows all possible REDUCED alter- 
nating projections of a given ALTERNATING KNOT to be 
drawn. 

References 
Adams, C. C. The Knot Book: An Elementary Introduction 

to the Mathematical Theory of Knots. New York: W. H. 
Freeman, pp. 164-165, 1994. 
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jecture.” Bull. Amer. Math. Sot. 25, 403-412, 1991. 
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Focus 
A point related to the construction and properties of 
CONIC SECTIONS. 

see also ELLIPSE, ELLIPSOID, HYPERBOLA, HYPER- 
BOLOID,PARABOLA,PARABOLOID,REFLECTION PROP- 
ERTY 

References 
Coxeter, H. S. M. and Greitzer, S. L. Geometry Revisited. 

Washington, DC: Math. Assoc. Amer., pp. 141-144, 1967. 

Fold Bifurcation 
Let f : Iw x Iw -+ Iw be a one-parameter family of C2 
MAP satisfying 

f(W) = 0 
af c 1 dz 

=l 
p=o,z=o 

1 af iYX2 2 1 >o 

p=o,2=0 

[ G af 1 > 0, 
p=o,2=0 

then there exist intervals (~1, 0), (0, ~2) and c > 0 such 
that 

1. If p E (pl,O), then fp(x) has two fixed points in 
(-e, c) with the positive one being unstable and the 
negative one stable, and 

2. If p E (O,p2), then f&z) has no fixed points in 

(-9 4 

This type of BIFURCATION is known as a fold bifurca- 
tion, sometimes also called a SADDLE-NODE BIFURCA- 
TION or TANGENT BIFURCATION. An example of an 
equation displaying a fold bifurcation is 

&q&-x2 

(Guckenheimer and Holmes 1997, p. 145). 

see also BIFURCATION 

Heierences 
Guckenheimer, 3. and Holmes, P. Nonlinear Oscillations, 
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ed. New York: Springer-Verlag, pp. 145-149, 1997. 

Rasband, S. N. Chaotic Dynamics of Nonlinear Systems. 
New York: Wiley, pp. 27-28, 1990. 

Fold Catastrophe 
A CATASTROPHE which can occur for one control factor 
and one behavior axis. 

Folding 
The points accessible from c by a single fold which leaves 

w,..., a72 fixed are exactly those points interior to or on 
the boundary of the intersection of the CIRCLES through 
c with centers at ai, for i = 1, . l  l  , n. Given any three 
points in the plane a, b, and c, there is an EQUILATERAL 
TRIANGLE with VERTICES x, y, and z for which a, b, and 
c are the images of x, y, and x under a single fold. Given 
any four points in the plane a, b, c, and d, there is some 
SQUARE with VERTICES x, y, Z, and w  for which a, b, c, 
and d are the images of x, y, z, and w  under a sequence 
of at most three folds. Also, any four collinear points 
are the images of the VERTICES of a suitable SQUARE 
under at most two folds. Every five (six) points are the 
images of the VERTICES of suitable regular PENTAGON 
(HEXAGON) under at most five (six) folds. The least 
number of folds required for n > 4 is not known, but 
some bounds are. In particular, every set of n points is 
the image of a suitable REGULAR n-gon under at most 
F(n) folds, where 

F(n) s i(3n - 2) for n even 
2(3n - 3) for n odd. 

The first few values are 0, 2, 3, 5, 6, 8, 9, 11, 12, 14, 15, 
17, 18, 20, 21, . . . (Sloane’s AOO7494). 

see ah FLEXAGON, MAP FOLDING, ORIGAMI 

References 
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Foliation 
Let kfn be an n-MANIFOLD and let F = {F,} denote 
a PARTITION of M into DISJOINT path-connected SUB- 
SETS. Then F is called a foliation of M of codimension 
c (with 0 < c < n) if there EXISTS a COVER of M by 
OPEN SETS U,eachequippedwith ~HOMEOMORPHISM 
h : U + R” or h : U -+ Ry which throws each nonempty 
component of Fa n U onto a parallel translation of the 
standard HYPERPLANE RnmC in R”. Each Fa is then 
called a LEAF and is not necessarily closed or compact. 

see also LEAF (FOLIATION), REEB FOLIATION 

References 
Rolfsen, II. Knots and Links. Wilmington, DE: Publish or 

Perish Press, p. 284, 1976. 
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Folium 

The word “folium” means leaf-shaped. The polar equa- 
tion is 

T = cos O( 4a sir? 8 - b) l  

If b > 4a, it is a single folium. If b = 0, it is a BIFOLIUM. 
If 02 b < 4a, it is a TRIFOLIUM. The simple folium is 
the PEDAL CURVE of the DELTOID where the PEDAL 
POINT is one of the CUSPS. 

see also BIFOLIUM, FOLIUM OF DESCARTES, KEPLER’S 
FOLIUM, QUADRIFOLIWM, ROSE, TRIFOLIUM 

References 
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F&urn of Descartes 

A plane curve proposed by Descartes to challenge Fer- 
mat’s extremum-finding techniques. In parametric form, 

3at 
xc- 

1 + t3 (1) 

3at2 
y= 1+t3’ (2) 

The curve has a discontinuity at t = - 1. The left wing 
is generated as t runs from -1 to 0, the loop as t runs 
from 0 to 00, and the right wing as t runs from --00 to 
-1. 

LL 
The CURVATURE and TANGENTIAL ANGLE of the folium 
of Descartes, illustrated above, are 

(3) K(t) = 
2(1 + t3)4 

3(1 + 4t2 - 4t3 - 4t5 + 4t6 + tsj3i2 

@(t)=++tanS1(J-$$-tanB1($$)]* 

(4) 

Converting the parametric equations to POLAR COOR- 

DINATES gives 

(3at)2(1 + 2) 

T2 = (l+t3)2 (5) 

0 = tan-l g = tar? t, 
0 X 

(6) 

so 
dt 

d0 = - 
1-t t2 - (7) 

The AREA enclosed by the curve is 

3 2 

s 

O” 3t2 dt - - P o (I+ t3)2’ 
(8) 

Now let u z 1+ t3 so du = 3t2 dt 

A= $” s “du 32 loo 

u2 = Za [ 1 -- = ;a2(-u + 1) = ia”. 
1 Ul 

(9) 

In CARTESIAN COORDINATES, 

x3 + y3 = 
(3at)3(1 + t3) _ (3ut)3 

(1ft3)3 - (1+t3)2 =3axy w  

(MacTutor Archive). The equation of the ASYMPTOTE 

is 
y=-a-x. (11) 
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Follows 

see SUCCEEDS 

Fonten Theorems 

1. If the sides of the PEDAL TRIANGLE of a point 
P meet the corresponding sides of a TRIANGLE 
a0,0& at X1, X2, and X3, respectively, then 
PlX1, P2X2, P3X3 meet at a point L common to 
the CIRCLES OlOzO3 and PlPgP3. In other words, 
L is one of the intersections of the NINE-POINT CIR- 
CLE of AlAzA3 and the PEDAL CIRCLE of P. 

2. If a point moves on a fixed line through the CIRCWM- 
CENTER, then its PEDAL CIRCLE passes through a 
fixed point on the NINE-POINT CIRCLE. 
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3. The PEDAL CIRCLE of a point is tangent to the 
NINE-POINT CIRCLE IFF the point and its ISOGO- 
NAL CONJUGATE lie ona LINE through the ORTHO- 
CENTER. FEUERBACH'S THEOREM is a special case 
of this theorem. 

see also CIRCUMCENTER, FEUERBACH'S THEOREM, 
ISOGONAL CONJUGATE, NINE-POINT CIRCLE, ORTHO- 
CENTER,PEDAL CIRCLE 

References 
Johnson, R. A. Modern Geometry: An Elementary Treatise 

on the Geometry of the Triangle and the Circle. Boston, 
MA: Houghton Mifflin, pp. 245-247, 1929. 

Foot 

see PERPENDICULAR FOOT 

For All 
If a proposition P is true for all B, this is written PW. 

see also ALMOST ALL, EXISTS, QUANTIFIER 

Forcing 
A technique in SET THEORY invented by P. Cohen 
(1963, 1964, 1966) and used to prove that the AXIOM OF 
CHOICE and CONTINUUM HYPOTHESIS areindependent 
ofone another in ZERMELO-FRAENKEL SET THEORY. 

see also AXIOM OF CHOICE, CONTINUUM HYPOTHESIS, 
SET THEORYJERMELO-FRAENKEL SET THEORY 

References 
Cohen, P. J. “The Independence of the Continuum Hypoth- 

esis .” Proc. Nat. Acad, Sci. U. S+ A. 50, 1143-1148, 1963. 
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Ford Circle 

Pick any two INTEGERS h and k, then the CIRCLE of 
RADIUS 1/(21c2) centered at (h/k, 1/(2K2)) is known as 
a Ford circle. No matter what and how many hs and ks 
are picked, none of the Ford circles intersect (and all are 
tangent to the X-AXIS). This can be seen by examining 
the squared distance between the centers of the circles 
with (h,k) and (h’, k’), 

(1) 

Let s be the sum of the radii 

1 1 
s = Tl + r2 = 

g3-p (2) 

then 

d2 - s2 = (h’k - hkt)2 - 1 

k2 kt2 
. (3) 

But (h’k - kth)2 > 1, so d2 - s2 > 0 and the dis- - - 
tance between circle centers is > the sum of the CIR- - 
CLE RADII, with equality (and therefore tangency) IFF 
Ih’k - k’hl = 1. Ford circles are related to the FAREY 

SEQUENCE (Conway and Guy 1996). 

see also ADJACENT FRACTION, FAREY SEQUENCE, 
STERN-BROCOT TREE 
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Conway, J. H. and Guy, R. K. “Farey Fractions and Ford 

Circles.” The Book of Numbers. New York: Springer- 
Verlag, pp. 152-154, 1996. 
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Ford’s Theorem 
Let a, b, and k be INTEGERS with k > 1. For j = 0, 1, - 
2, let 

Sj E x (-l)j (:> OikBibi. 
i=o 

i~j (mod 3) 

Then 

2(a2 + ab + b2)2k = (So - sl)4 + (Sl - s2)4 + (S2 - so)4* 

see UZSO BHARGAVA'S THEOREM, 
EQUATION-QUARTIC 

References 
Berndt, B. C. Ramanujan’s Notebooks, Part IV. New York: 

Springer-Verlag, pp. 100-101, 1994. 

Forest 
A GRAPH without any CIRCUITS (CYCLES), which 
therefore consists only of TREES. A forest with k com- 
ponents and n nodes has n - k EDGES. 

Fork 

see TREE 

Form 

see CANONICAL FORM, CUSP FORM, DIFFERENTIAL 
k-FORM, FORM (GEOMETRIC), FORM (POLYNOMIAL), 
MODULAR FORM, NORMAL FORM, PFAFFIAN FORM, 
QUADRATIC FORM 
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Form (Geometric) 
A 1-D geometric object such as a PENCIL or RANGE. 

Form (Polynomial) 
A HOMOGENEOUS POLYNOMIAL in two or more vari- 
ables. 

see also DISCONNECTED FORM&FORM 

Formal Logic 

see SYMBOLIC LOGIC 

Formosa Theorem 

see CHINESE REMAINDER THEOREM 

Formula 
A mathematical equation or a formal logical expression. 
The correct Latin plural form of formula is “formu- 
lae,” although the less pretentious-sounding “formulas” 
is used more commonly. 

~~~UZS~ARCHIMEDES'RECURRENCEFORMULA,BAYES' 
FORMULA, BENSON'S FORMULA, BESSEL’S FINITE DIF- 
FERENCE FORMULA, BESSEL'S INTERPOLATION FOR- 
MULA, BESSEL'S STATISTICAL FORMULA, BINET'S FOR- 
MULA, BINOMIAL FORMULA, BRAHMAGUPTA'S FOR- 
MULA, BRENT-SALAMIN FORMULA, -BRETSCHNEIDER'S 
FORMULA, BRIOSCHI FORMULA, CALDER~N'S FOR- 
MULA, CARDANO'S FORMULA, CAWHY'S FORMULA, 
CAUCHY'S COSINE INTEGRAL FORMULA, CAUCHY 
INTEGRAL FORMULA, CHASLES-CAYLEY-BRILL FOR- 
MULA,CHEBYSHEVAPPROXIMATIONFORMULA,CHRIS- 
TOFFEL-DARBOUX FORMULA, CHRISTOFFEL FOR- 
MULA, CLAUSEN FORMULA, CLENSHAW RECURRENCE 
FORMULA, DESCARTES-EULER POLYHEDRAL FOR- 
MULA,DESCARTES, FORMULA,DIRICHLET'S FORMULA, 
DIXON-FERRARFORMULA,DOBI~~SKI'SFORMULA, Du- 
PLICATION FORMULA,ENNEPER-WEIERSTRA~~ PARAM- 
ETERIZATION, EULER CURVATURE FORMULA, EULER 
FORMULA, EULER-MACLAURIN INTEGRATION FORMU- 
LAS,EULERPOLYHEDRAL FORMULA, EULER TRIANGLE 
FORMULA, EVERETT'S FORMULA, EXPONENTIAL SUM 
FORMULAS,FAULHABER,S FORMULA,FRENET FORMU- 
LAS, GAUSS'S BACKWARD FORMULA, GAUSS-BONNET 
FORMULA, GAUSS'S FORMULA, GAUSS'S FORWARD 
FORMULA, GAUSS MULTIPLICATION FORMULA, GAUSS- 
SALAMIN FORMULA, GIRARD'S SPHERICAL EXCESS 
FORMULA, GOODMAN'S FORMULA, GREGORY'S FOR- 
MULA, GRENZ-FORMEL, GRINBERG FORMULA, HAL- 
LEY'S IRRATIONAL FORMULA, HALLEY'S RATIONAL 
FORMULA,HANSEN-BESSEL FORMULA,HERON'S FOR- 
MULA, HOOK LENGTH FORMULA, JACOBI ELLIP- 
TIC FUNCTIONS, JENSEN'S FORMULA, JONAH FOR- 
MULA, KAC FORMULA, KNESER-SOMMERFELD FOR- 
MULA, KUMMER'S FORMULAS, LAISANT'S RECUR- 
RENCE FORMULA, LANDEN'S FORMULA, LEFSHETZ 
FIXED POINT FORMULA, LEFSHETZ TRACE FOR- 
MULA, LEGENDRE DUPLICATION FORMULA, LEGEN- 
DRE'S FORMULA,LEHMER,S FORMULA,LICHNEROWICZ 

FORMULA, LICHNEROWICZ-WEITZENBOCK FORMULA, 
LOBACHEVSKY'S FORMULA, LOGARITHMIC BINOMIAL 
FORMULA,LUDWIG'S INVERSION FORMULA,MACHIN,S 
FORMULA, MACHIN-LIKE FORMULAS, MEHLER'S BES- 
SEL FUNCTION FORMULA, MEHLER'S HERMITE POLY- 
NOMIAL FORMULA, MEISSEL'S FORMULA, MENSURA- 
TION FORMULA, M6~1us INVERSION FORMULA, MOR- 
LEY'S FORMULA, NEWTON'S BACKWARD DIFFER- 
ENCE FORMULA, NEWTON-C• TES FORMULAS, NEW- 
TON'S FORWARD DIFFERENCE FORMULA, NICHOL- 
SON'S FORMULA, PASCAL'S FORMULA, PICK'S FOR- 
MULA,POINCAR~~ FORMULA,POISSON,S BESSEL FUNC- 
TION FORMULA, POISSON'S HARMONIC FUNCTION 
FORMULA, POISSON SUM FORMULA, POLYHEDRAL 
FORMULA, PROSTHAPHAERESIS FORMULAS, QUADRA- 
TIC FORMULA, QUADRATURE FORMULAS, RAYLEIGH'S 
FORMULAS, RIEMANN'S FORMULA, RODRIGUES FOR- 
MULA, ROTATION FORMULA, SCHL~FLI'S FORMULA, 
SCHR~TER'S FORMULA, SCHWENK'S FORMULA, SEG- 
NER'S RECURRENCE FORMULA,~ERRET-FRENET FOR- 
MULAS, SHERMAN-MORRISON FORMULA, SOMMER- 
FELD,S FORMULA, SONINE-SCHAFHEITLIN FORMULA, 
STEFFENSON'S FORMULA, STIRLING'S FINITE DIF- 
FERENCE FORMULA, STIRLING'S FORMULA, STRASSEN 
FORMULAS, THIELE'S INTERPOLATION FORMULA, 
WALLIS FORMULA, WATSON'S FORMULA, WATSON- 
NICHOLSON FORMULA, WEBER'S FORMULA, WEBER- 
SONINE FORMULA, WEYRICH'S FORMULA,WOODBURY 
FORMULA 
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Fortunate Prime 

-A IO n . ..-. - 
" 0 20 40 60 80 

1 
100 120 140 

k 

Let 
xk =l+pk#, 

where pk is the kth PRIME and p# is the PRIMORIAL, 
and let qk be the NEXT PRIME (i.e., the smallest PRIME 
greater than &), 

qk = Pl+,(Xk) =Pl+T(l+pk#), 
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where r(n) is the PRIME COUNTING FUNCTION. Then 
R. F. Fortune conjectured that Fk E qk - & + 1 is 
PRIME for all k. The first values of Fk are 3, 5, 7, 13, 
23, 17, 19, 23, . . . (Sloane’s A005235), and all known 
values of Fk are indeed PRIME (Guy 1994). The indices 
of these primes are 2, 3, 4, 6, 9, 7, 8, 9, 12, 18, . . . l  In 
numerical order with duplicates removed, the Fortunate 
primes are 3, 5, 7, 13, 17, 19, 23, 37, 47, 59, 61, 67, 71, 
79, 89, . . . (Sloane’s A046066). 

see also ANDRICA'S CONJECTURE, PRIMORIAL 
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New York: Springer-Verlag, p. 7, 1994. 
Sloane, N. J. A. Sequences A046066 and A005235/M2418 in 
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Forward Difference 
The forward difference is a FINITE DIFFERENCE defined 

bY 
Afp = fpfl - fp* (1) 

Higher order differences are obtained by repeated oper- 
ations of the forward difference operator, so 

n”fp = Ap2 = A@,) = A(fPH - fP> 
= Ap+1 - Ap = fp+z - 2fp+l+ fp* (2) 

In general, 

where (L) is a BINOMIAL COEFFICIENT. 

NEWTON'S FORWARD DIFFERENCE FORMULA expresses 
fp as the sum of the nth forward differences 

fp = fo + PAO + $p(p + l)& + $p(p + l)(p + 2)& + . . . 

(4 
where & is the first nth difference computed from the 
difference table. 

see also BACKWARD DIFFERENCE, CENTRAL DIFFER- 
ENCE,DIFFERENCE EQUATION,DIVIDED DIFFERENCE, 
RECIPROCAL DIFFERENCE 

References 
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Fountain 
An (n, k) fountain is an arrangement of 72 coins in rows 
such that exactly FE coins are in the bottom row and each 
coin in the (; + 1)st row touches exactly two in the ith 
row. 

Four Coins Problem 

Am 

B b’ cl c 
-aa 

Given three coins of possibly different sizes which are 
arranged so that each is tangent to the other two, find 
the coin which is tangent to the other three coins. The 
solution is the inner SODDY CIRCLE. 

see also APOLLONIUS CIRCLES, APOLLONIUS' PROB- 
LEM, ARBELOS, BEND (CURVATURE), CIRCUMCIRCLE, 
COIN, DESCARTES CIRCLE THEOREM, HART’S THEO- 
REM,PAPPUS CHAIN, SODDY CIRCLES, SPHERE PACK- 
ING, STEINER CHAIN 

References 
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Four-Color Theorem 
The four-color theorem states that any map in a PLANE 
can be colored using four-colors in such a way that re- 
gions sharing a common boundary (other than a sin- 
gle point) do not share the same color. This prob- 
lem is sometimes also called GUTHRIE'S PROBLEM after 
F. Guthrie, who first conjectured the theorem in 1853. 
The CONJECTURE was then communicated to de Mor- 
gan and thence into the general community. In 1878, 
Cayley wrote the first paper on the conjecture. 

Fallacious proofs were given independently by Kempe 
(1879) and Tait (1880). Kempe’s proof was accepted for 
a decade until Heawood showed an error using a map 
with 18 faces (although a map with nine faces suffices 
to show the fallacy). The HEAWOOD CONJECTURE~~~- 
vided a very general result for map coloring, showing 
that in a GENUS 0 SPACE (i.e., either the SPHERE or 
PLANE), six colors suffice. This number can easily be 
reduced to five, but reducing the number of colors all 
the way to four proved very difficult. 

Finally, Appel and Haken (1977) announced a computer- 
assisted proof that four colors were SUFFICIENT. How- 
ever, because part of the proof consisted of an exhaus- 
tive analysis of many discrete cases by a computer, some 
mathematicians do not accept it. However, no flaws 
have yet been found, so the proof appears valid. A 
potentially independent proof has recently been con- 
structed by N. Robertson, D. P. Sanders, P. D. Seymour, 
and R. Thomas. 
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Martin Gardner (1975) played an April Fool’s joke by 
(incorrectly) claiming that the map of 110 regions illus- 
trated below requires five colors and constitutes a coun- 
terexample to the four-color theorem. 

see also CHROMATIC NUMBER, HEAWOOD C~NJEC- 

TURE, MAP COLORING, SIX-COLOR THEOREM 
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Four-Vertex Theorem 

Four Travelers Problem 
Let four LINES in a PLANE represent four roads in GEN- 
ERAL POSITION, and let one traveler Ti be walking along 
each road at a constant (but not necessarily.equal to any 
other traveler’s) speed. Say that two travelers Ti and Tj 
have “met” if they were simultaneously at the intersec- 
tion of their two roads. Then if Tr has met all other 
three travelers (!&, Z& and T4) and Z-& in addition to 
meeting Tr, has met T3 and T4, then T3 and T4 have 
also met! 

References 
Bogomolny, A. “Four Travellers Problem.” http : //www . cut - 

the-knot.com/gproblems.html. 

Four-Vector 
A four-element vector 

up - - 

which transforms under a LORENTZ TRANSFORMATION 
like the POSITION FOUR-VECTOR. This meansit obeys 

a, l  b, F a,bP 
(3) 

(4 
where A; is the LORENTZ TENSOR. Multiplication of 
two four-vectors with the METRIC gPV gives products of 
the form 

gpuxpxu = (x0)” - (xl)” - (x2)” - (x3)2. (5) 

In the case of the POSITION FOUR-VECTOR, x0 = ct 
(where c is the speed of light) and this product is an 
invariant known as the spacetime interval. 

see also GRADIENT FOUR-VECTOR, LORENTZ TRANS- 
FORMATION, POSITION FOUR-VECTOR, QUATERNION 
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Four-Vertex Theorem 
A closed embedded smooth PLANE CURVE has at least 
four vertices, where a vertex is defined as an extremum 
of CURVATWRE. 

see also CURVATURE 

References 
Tabachnikov, S. “The Four-Vertex Theorem Revisited-Two 
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Fourier Matrix 
The n x n SQUARE MATRIX F, with entries given by 

F. 3k =e 
2hjk/n 

(1) 

for j, /Z = 1, 2, l  l  l  , n, and normalized by l/fi to make 
it a UNITARY. The Fourier matrix F2 is given by 

Fourier-Bessel Series 

see BESSEL FUNCTION FOURIER EXPANSION, SCHL& 
MILCH'S SERIES 

Fourier-Bessel Transform 

~~~HANKEL TRANSFORM 

F-l I1 
“-Jz 1 i2 ’ [ 1 (2) Fourier Cosine Series 

If f(x) is an EVEN FUNCTION, then b, = 0 and the 
FOURIER SERIES collapses to 

and the F4 matrix by 

f( > x =&o-t 2 a, cos(nx), (1) 
11 1 

i3 
is 
ig 1 ?I=1 

F, = 5 

1 
=- 

2 

i i2 
i2 i4 
i3 ie 

1 

-1 
i 

-i 1 
In general, 

F 2n = 

[ 

In 
In -%n] [ Fn Fn] [ “iEG.td 1 3 (4) 

with 

rF n 1 1 F1 - - 
n 

1 

42 

Dn/2 

I 42 -Rx,, 

I 42 Dn/2 

I 
n/2 

- D 42 1 
1 r even-odd 1 

X 
rn’2 Fn/, Fn,2 J [r:t!i{{l J ’ (5) 

1 7r 
7r 

ao = - f (4 dx (2) 
7r s 

f(x) dx = z 
-7r s n 0 

1 = 
a, = - 

7r s 
f(x) cos(nx) dx 

-7r 

2 = - -- 
s n- 0 

f(x) cos(nx) dx, 

where the last equality is true because 

(3) 

f (2) cos(nx) = f (-2) cos(-nx). 

Letting the range go to L, 

(4) 

-a PL 
ao = + / f(x)dx (5) 

LJ Jo 

(6) 

see also EVEN FUNCTION, FOURIER COSINE TRANS- 

FORM, FOURIER SERIES, Fo URIER SIN 'E SERIES 
where In is the n x n IDENTITY MATRIX. Note that the 
factorization (which is the basis of the FAST FOURIER 
TRANSFORM) has two copies of F2 in the center factor 
MATRIX. 

see U~SOFAST FOURIER TRANSFORM,FOURIER TRANS- 
FORM 

Fourier Cosine Transform 
The Fourier cosine transform is the REAL PART of the 
full complex FOURIER TRANSFORM, 

~cosW)l = W[f (411~ References 
Strang, G. “Wavelet Transforms Versus Fourier Transforms.” 

Bull. Amer. Math. Sot. 28, 288-305, 1993. 
see also FOURIER SINE TRANSFORM, FOURIER TRANS- 
FORM Fourier-Mellin Integral 

The inverse of the LAPLACE TRANSFORM References 
Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vet- 

terling, W. T. “FFT of Real Functions, Sine and Cosine 
TTansforms.” 512.3 in Numerical Recipes in FORTRAN: 
The Art of Scientific Computing, 2nd ed. Cambridge, Eng- 
land: Cambridge University Press, pp. 504-515, 1992. 

1 PY+im 

F(t) = L-‘[f(s)] = & j estf(s)ds 
y--i= 

f(s) = L[F(t)] = 
s 

O” F(t)eDst dt. 
0 

Fourier Integral 

see FOURIER TRANSFORM see also BROMWICH INTEGRAL, LAPLACE TRANSFORM 
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Fourier Series and 

Fourier series are expansions of PERIODIC FUNCTIONS 
f(x) in terms of an infinite sum of SINES and COSINES I IF f(x) sin(mx) dx 

J-T 

= 

U 

F a, cos(nx) -I- F b, sin(nx) + $a~- 
-7r n=l n=l 1 f(x) = >1 a, cos(nx) + x b, sin(nx)* (1) 

n=O n=O 

x sin(mx) dx Fourier series make use of the ORTHOGONALITY rela- 
tionships of the SINE and COSINE functions, which can 
be used to calculate the coefficients an and bn in the 
sum. The computation and study of Fourier series is 
known as HARMONIC ANALYSIS. 

To compute a Fourier series, use the integral identities 

00 7r 
- - 

ES 
[an cos(nx) sin(mx) + 6, sin(nx) sh(mx)] dX 

n- -1 -n 

++a0 
s 

7r 

sin(mx) dx 
--Jr 

00 
- - 

C( 0 + bn~bn7-b) +O = r&z, (9) 

T-t=1 sin(mx) sin(nx) dx = KSmn for 72, m # 0 (2) 

so 

cos(mx) cos(nx) dx = n6mn for 72, m # 0 (3) s T f(x) cos(mx) dx = ii, a, cos(nx) 
-Tr n=l 

sin(mx) cos(nx) dx = 0 (4) 00 

-cb n sin(nx) + $zo cos(mx) dx 

n=l I 
7r 

sin(mx) dx = 0 (5) 

= x / [an cos(nx) cos(mx) 
n 

cos(mx) dx = 0, (6) 
n=l J-T 

I 

7T 
+b, sin(nx) cos(mx)] dx + +a~ cos(mx) dx 

where S,, is the KRONECKER DELTA. NOW, expand 
your function f(x) as an infinite series of the form 

J-T 

00 
- - In G~Srnn + 0) + 0 = ran. (10) 

f(X) = 7, a: cos(nx) + x bn sin(nx) 
Plugging back into the original series then gives n=O 

- +o + F&k COS(nX) + x b, sin(nx), - (7) 

1 7r 
Un = - 

7T J 
f( X 

--R 

s 

7r 
bn=’ f(x 

7T -T 

dx 

cos(nx) dx 

sin(nx) dx 

n=l 

where we have relabeled the a0 = Zab term for future 
convenience but left a, = a;. Assume the function is 
periodic in the interval [-r, ITT]. Now use the orthogo- 
nality conditions to obtain 

for n = 1, 2, 3, . . . . The series expansion converges to 
the function f (equal to the original function at points 
of continuity or to the average of the two limits at points 
of discontinuity) Fan cos(nx) -I- 2 bn sin(nx) + $UO dx 

n=l n=l 1 
f [ $ lim,,,,- f(x) + lim,+q+ f (41 s 7T 

[an cos(nx) + bn sin(nx)] dx + $a0 dx 
-T 

- 
f - for - r < X0 < r - - 

1 3 [limr+--rr + f (2) + limz-+x- f(X)] (14) 

( for x0 = --,K 
= )(o + 0) + Tao = Tao (8) 

if the function satisfies the DIRICHLET CONDITIONS. 
/  4 

n=l 
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Near points of discontinuity, a “ringing” known as the 
GIFIBS PHENOMENON, illustrated below, occurs. For 
a function f(x) periodic on an interval [-L, L], use a 
change of variables to transform the interval of integra- 
tion to [-l,l]. Let 

TX’ 
61:-- 

L 
ndx’ 

dx = - 
L ’ 

(15) 

(16) 

Solving for x’, x’ = Lx/x. Plugging this in gives 

00 
+P 

n7rx’ 
n sin - ( > L 

n=l 

an = ; s_LL f (x’) cos (+) dx’ . 

b, = $ J”, f (x’) sin (e) dx’ 

(17) 

(18) 

If a function is EVEN so that f(x) = f (-x), then 
f(x) sin(nx) is ODD. (This follows since sin(nx) is ODD 
and an EVEN FUNCTION times an ODD FUNCTION is an 
ODD FUNCTION,) Therefore, 6, = 0 for all n. Simi- 
larly, if a function is ODD so that f(x) = f(-x), then 
f(x) cos(nx) is ODD. (This follows since cos(nx) is EVEN 
and an EVEN FUNCTION times an ODD FUNCTION is an 
ODD FUNCTION.) Therefore, an = 0 for all n. 

Because the SINES and COSINES form a COMPLETE 
ORTHOGONAL BASIS, the SUPERPOSITION PRINCIPLE 
holds, and the Fourier series of a linear combination of 
two functions is the same as the linear combination of 
the corresponding two series. The COEFFICIENTS for 
Fourier series expansions for a few common functions 
are given in Beyer (1987, pp+ 411-412) and Byerly (1959, 
p. 51). 

The notion of a Fourier series can also be extended to 
COMPLEX COEFFICIENTS. Consider a real-valued func- 
tion f (2). Write 

f(x) = F Aneinxm (19) 
TX=--00 

Now examine 

= )\ A, 1 ei(n-m)x da: 
/ 4 

n=--00 J-T 

- - n - m)x] + isin[(n - m)x]} dx 

00 
- - Ix AnZrS,n = ETA,, (20) 

m=--oo 

so ‘I rr 
An = & 

J 
f( ) xe -inx dxa 

-m 
(21) 

The COEFFICIENTS can be expressed in terms of those 
in the FOURIER SERIES 

A, = I 
J 2n -T 

f (x)[cos(nx) - isin( dx 

& s_“, f (x)[cos(nx) + isin( dx n < 0 
- - & s-“, f (4 dx n=O 

$ s-“, f(x)[cos(nx) - isin( dx n > 0 

{ 

+(an + ib,) n < 0 
- - b, 

? 
n =0 (22) 

&?I - ib,) n > 0. 

For a function periodic in I-L, L], these become 

f(x) = )- Anei(2”nx/L) (23) 
n=--00 

4 rL/2 

A, = + 1 ’ f(x)e--i(2xnx~L)dx, 
JA J-L/~ 

These equations are the basis for the extremely impor- 
tant FOURIER TRANSFORM, which is obtained by trans- 
forming An from a discrete variable to a continuous one 
as the length L -+ 00. 

see also DIRICHLET FOURIER SERIES CONDITIONS, 
FOURIER COSINE SERIES, FOURIER SINE SERIES, 
FOURIER TRANSFORM, GIBBS PHENOMENON, LEBES- 
GUE CONSTANTS (FOURIER SERIES), LEGENDRE SE- 
RIES, RIESZ-FISCHER THEOREM, SCHL~MILCH’S SERIES 
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Fourier Series -Power Series 

For f(x) = xk on the INTERVAL [-L,L) and periodic 
with period 2L, the FOURIER SERIES is given by 

a, = ;[“,x’cos(~) dx 

where 1 Fz (a; b, C; x) is a generalized HYPERGEOMETRIC 
FUNCTION. 

Fourier Series-Right Triangle 1 
0.8 

0.6 

. 0.4 

0.2 

0.5 1 1.5 2 

Consider a string of length 2L plucked at the right end, 
then 

w  
2 

-1 

[2nn cos(n7r) - - 
- sin(mr)] sin(n7r) = o 

n27r2 

h,=i12L&sin(y) dx 

-2nn cos(27m) + sin(2n7r) 1 - - 
2n2n2 

z --• 
n7r 

The Fourier series is therefore 

see also FOURIER SERIES 

Fourier Series-Square Wave 

-0 

Consider a square wave of length 2L. Since the function 
is ODD, a0 = a, = 0, and 

b,= glLsin(y) dx 

4 4 0 n even -- - 
rm 

sin2(+) = G 
1 n odd. 

The Fourier series is therefore 

f( > 
4 O” 

x =- 
7r E 

1 nrx 
- sin - . 
n ( > L 

n=1,3,5,... 

see also FOURIER SERIES, SQUARE WAVE 

Fourier Series-Triangle 
1 

0.8 

0.6 

1 

0.4 

0.2 

0.5 1 1.5 2 

Let a string of length 2L have a y-displacement of unity 
when it is pinned an x-distance which is (l/m)th of the 
way along the string. The displacement as a function of 
z is then 
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The COEFFICIENTS are therefore 
2L/m 

=l 

a, = 
m [l - m - cos(27rn) + mcos (%)I 

2(m - l)n2r2 

m2 [cos (+) - 11 
- - 

2(m - l)n2n2 

b, = 
m [m sin (e) - sin(27rn)l 

2(m - l)n2n2 

m2 sin (%) 
- - 

2(m - l)n27r2 ’ 

The Fourier series is therefore 

fdx> = $ + 2(my2qa2 

x2{; [cos(F) -l]cos(Y) 

7b=l 

sin 2rrn 
+ ( > n7rx 

,,” sin L 

( ,) 

. 

If m = 2, then a, and b, simplify to 
4 4 

m sin2(+r) = -m 
0 n=O, 2, . . . 

a, = - 
1 n= 1,3, . . . 

b, = 0, 

giving 

f2(x)+-$ j-: fcos(y)- 
n=1,3,5,... 

see also FOURIER SERIES 

Fourier Series -Triangle Wave 

Consider a triangle wave of length 2 L. Since the function 
is ODD, a0 = a, = 0, and 

2 L/Z 
b, = z -2- sin 

L/2 
L s [ 2 

+ 
L/2 

l-L(x-2 AL)] sin(y) dx} dx 

32 - - m cos( +m) sin3 ($) 

for n even. 

The Fourier series is therefore 

f( > 
8 O” x =- 

Ix 

(-1p-w 

7T2 n2 
7x=1,3,5,... 

see UZSO FOURIER SERIES 

Fourier Sine Series 
If f(x) is an ODD FUNCTION, then a, = 0 and the 
FOURIER SERIES collapses to 

f (2) = F b, sin(nx), (1) 

where 

b, = 1 n 
IT s -7r 

f(x) sin(nx) dx = i /r f(x) sin(nx) dx 
0 

(2) 
for n = 1, 2, 3, . . . . The last EQUALITY is true because 

f (2) sin(nx) = [-f(-x)][- sin(-nx)] 

= f (-57) sin(-nx). (3) 

Letting the range go to L, 

b,= glL f(x)sin(y) dx. (4 

see also FOURIER COSINE SERIES, FOURIER SERIES, 
FOURIER SINE TRANSFORM 

Fourier Sine Transform 
The Fourier sine transform is the IMAGINARY PART of 
the full complex FOURIER TRANSFORM, 

see UZSO FOURIER COSINE TRANSFORM, FOURIER 
TRANSFORM 
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Fourier-Stieltjes Transform 
Let f(x) be a positive definite, measurable function on 
the INTERVAL (-oo,oo). Then there exists a monotone 
increasing, real-valued bounded function a(t) such that 

f(x) = lo; eitx da(t) 
J-m 

for “ALMOST ALL" X. If a(t) is nondecreasing and 
bounded and f( ) d fi d x is e ne as above, then f(z) is called 
the Fourier-Stieltjes transform of a(t), and is both con- 
tinuous and positive definite. 

see also FOURIER TRANSFORM,LAPLACE TRANSFORM 
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Fourier Transform 
The Fourier transform is a generalization of the COM- 
PLEX FOURIER SERIES in the limit as L + 00. Replace 
the discrete A, with the continuous F(k) dk while let- 
ting n/L --+ k. Then change the sum to an INTEGRAL, 
and the equations become 

f0 / 
00 

X = F(k)e2”ikx dk 
--oo 

F(k) = f( 1 xe -2Tikx dx. 

Here, 

F(k) = F[f(x)] = O” f(~)e-‘~~~~ dx d 
s --oo 

is called the fomard (4) Fourier transform, and 

f(x) = F-‘[F(k)] = 
s 

O” F(k)e2”ikx dk 
-m 

(1) 

(2) 

(3) 

(4) 

is called the inverse (+;) Fourier transform. Some au- 
thors (especially physicists) prefer to write the trans- 
form in terms of angular frequency w  G 27ru instead of 
the oscillation frequency V. However, this destroys the 
symmetry, resulting in the transform pair 

H(u) = F[h(t)] = /m h(t)e-i”t dt (5) 
J-m 

h(t) = ~‘[H(v)] = & lrn H(v)eiut dw. (6) 
-m 

In general, the Fourier transform pair may be defined 
using two arbitrary constants A and B as 

F(w) = A f(t) e Biwt dt (7) 

f(t) B O” - - s 27d -rn 
FW -Biwt dw. (8) 

The Mathematic@ program (Wolfram Research, Cham- 
paign, IL) calls A the $FourierOverallConstant and B 
the $FourierFrequencyConstant, and defines A = B = 
1 by default. Morse and Feshbach (1953) use B = 1 and 
A = l/a. In this work, following Bracewell (1965, 
pp+ 6-7), A = 1 and B = -27r unless otherwise stated. 

Since any function can be split up into EVEN and ODD 
portions E(x) and O(x), 

f( > x = $[f(x)+f(-x)]+$[f(x)-f(-x)1 = E(4+W4 
(9) 

Fourier Tbansform 

a Fourier transform can always be expressed in terms of 
the FOURIER COSINE TRANSFORM and FOURIER SINE 
TRANSFORM as 

s 
O” af (41 = E(x) cos(2rkx) dx 

--oo 

-i 
r 

O(x) sin(2nkx) dx. (10) 
-m 

A function f(x) has a forward and inverse Fourier trans- 
form such that 

i 

S” e2Tikx [ s-“, f we 
-2xikx dx 

-m 1 & 

f( > X = for f(x) continuous at x (11) 
i[f(x+) +f(x-)I 

for f(x) discontinuous at x, 

provided that 

1. s_moo If(x)1 dx exists. 

2. Any discontinuities are finite. 

3. The function has bounded variation. A SUFFI- 
CIENT weaker condition is fulfillment of the LIP- 
scm~z CONDITION. 

The smoother a function (i.e., the larger the number of 
continuous DERIVATIVES), the more compact its Fourier 
transform. 

The Fourier transform is linear, since if f(x) and g(x) 
have FOURIER TRANSFORMS F(k) and G(k), then 

s [af (x) + bg(~)]e-~“~“” dir: 

=a 
SW 

f( ) xe -2nikx da: + b 
Sm 

d > 
x e-2xikx dx 

--oo --oo 

= F(k) + G(k). (12) 

Therefore, 

Fbf (x)+W)l = uF[f (x)]+bF[g(x)] = aF(k)+bG(k). 

(13) 

The Fourier transform is also symmetric since F(k) = 
F[f(x)] implies F(-k) = F[f(x)]. 

Let f *g denote the CONVOLUTION, then the transforms 
of convolutions of functions have particularly nice trans- 
forms, 

FEf * 91 = F[fF[91 (14) 
afsl = F[fl * %I1 (15) 

W(f) + m>1 = f * 9 (16) 

W(f) * F(9)] = fs* (17) 
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The first of these is derived as follows: 

F[f * 91 = [m Irn e-25rikx f (x’)g(x - 21).&’ dx 
J --oo J-m 

- - 

ST 
1 

-2rikx’ 
e f (x7 dx’l 

--oo --oo 
x Le -2nik(x-x’) 

g(x - x’) dx] 

Vm 

-2rrikx’ - - e f (2’) dx’ 
-m 1 

-2Tikx” e g(x”) dx” 1 
where x” E x - XI. 

There is also a somewhat surprising and extremely im- 
portant relationship between the AUTOCORRELATION 
and the Fourier transform known as the WIENER- 
KHINTCHINE THEOREM. Let F[f(x)] = F(k), and F* 
denote the COMPLEX CONJUGATE ofF,thenthe FOUR- 
IER TRANSFORM of the ABSOLUTE SQUARE ofF(k) is 
given by 

mYk) I21 = J O” f*(r)f(r+x)d~. (19) 
-m 

The Fourier transform of a DERIVATIVE f’(x) of a func- 
tion f(x) is simply related to the transform of the func- 
tion f(x) itself. Consider 

nf’b>l = s 
-2wikx dzm 

(20) 
-m 

NOW use INTEGRATION BY PARTS 

s wdu= [uv] - 
s 

udv (21) 

with 
du = f’(x) dx 

-2rrikx 
v=e (22) 

u= x f( ) dv = -22;l~iJEe-~~~~~ dx, (23) 

then 

w WI 

= [f(+ -2nikx 00 ]--oo - 
s 

O” f 
-m 

(--27~ilce-~~~~~ dx). 

(24) 

The first term consists of an oscillating function times 
f(x)* But if th e f unction is bounded so that 

lim f(x) = 0 
X-F&m 

(25) 

(as any physically significant signal must be), then the 
term vanishes, leaving 

F[f’(x)] = 2&k [m f (x)e-2=ikx dx = hikF[f (x)]a 
J--o0 

(26) 

This process can be iterated for the nth DERIVATIVE to 
yield 

F[f’“‘(x)] = (2rik)“F[f(x)] . (27) 

The important MODULATION THEOREM of Fourier 
transforms allows F[cos(Znkox) f (x)] to be expressed in 
terms of F[f(x)] = F(k) as follows, 

F[cos(Znkox) f (x)] = 
SW 

f (2) cos(27rk0x)e -2Tikx dx 
--oo 

-1 -- 
2 

r 
f( ) xe 

2mikox e -2=ikx dx 
-m 

+f 
r 

f( ) 2e 
-2rikox -2dkx 

e dx 
-m 

-A - 
2 f( ) xe 

-hi(k-ko)x da: 

f( ) 
x e-2mi(k+ko)x dx 

+[F(k - ko) + F(k + ko)]. (28) 

Since the DERIVATIVE of the FOURIER TRANSFORM is 
given by 

F’(k) = $F[ f (x)] = lrn (-Xx) f (x)e-2mikx dx, 
-m 

(29) 
it follows that 

F’(O) = -27ri 
Sm 

xf (x) dx. 
-m 

Iterating gives the general FORMULA 

/&t E 
F(“)(O) 

x”f (4 dx = W’ (31) 

The VARIANCE of a FOURIER TRANSFORM is 

Of2 = (bf - (xfH2) ? 

and it is true that 

Of+s =q -to,. (33) 

If f(x) has the FOURIER TRANSFORM F(k), then the 
Fourier transform has the shift property 

r f (x - xo)e-axikx dx 
-m 

f (x - x0)e 
-2&(x-xo)ke-2ri(kxo) 

4 
x I xo) 

=e -2~ikxo F(k), (34) 
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SO f(a: - x0) has the FOURIER TRANSFORM 

F[f(x - x0)] = e-2"ikxoF(k). (35) 

If f(s) hasa FOURIER TRANSFORM F(k),then the Four- 
ier transform obeys a similarity theorem. 

s 
O” f (a~)e-~=~~~ dx 

-m 
1 I-- 
I  

- - 

I I.! u 
f (a+ 

-27Ti(ax)(k/a) 
44 

-m 

k - - IF - 
I I a 0 a ‘I (36) 

SO f(az) has the FOURIER TRANSFORM Ial-'F(t). 

The “equivalent width” of a Fourier transform is 

s-“, f (4 dx 
f(Q) 

The “autocorrelation width” is 

C wu - 
Jy.& f * f * dx 

[f *f*lo 

F(O) 

S_“,ff*dx ’ 

(37) 

(38) 

where f *g denotes the CROSS-CORRELATION of f and 

9. 

Any operation on f(x) which leaves its AREA unchanged 
leaves F (0) unchanged, since 

f(x) dx = F[f (0)] = F(O)* (39) 

In 2-D, the Fourier transform becomes 

F(X,Y) = 
IT 

f (JEX, w -2=i(k,x+kyy) & 
2 

& 
Y 

-m --oo 
(40) 

f (kX,kY) = 
ST 

% Y)” 
2Ti(k=x+k,d da: dy. (41) 

-m -m 

Similarly, the n-D Fourier transform can be defined for 
k, x E IIB” by 

F(x) = Sm Srn l  . l  

--oo -m 

f(k) e -2Tik-x d”k 

Wk 
2rrik.x dnxm 

(42) 

(43) 

HANKEL TRANSFORM, HARTLEY TRANSFORM, INTE- 
GRAL TRANSFORM, LAPLACE TRANSFORM, STRUC- 
TURE FACTOR,WINOGRAD TRANSFORM 
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Fourier Transform-l 
The FOURIERTRANSFORM of the CONSTANTFUNCTION 
f(x) = 1 is given by 

m - - e -2Tikx da: = J(k), 

according to the definition of the DELTA FUNCTION. 

see also DELTA FUNCTION 

see ~~AUTOCORRELATION,CONVOLUTXON,DISCRETE 
FOURIER TRANSFORM, FAST FOURIER TRANSFORM, 
FOURIER SERIES, FOURIER-STIELTJES TRANSFORM, 
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Fourier Transform-l/a: 
The FOURIER TRANSFORM of the function l/x is given 

Fourier Transform-Exponent ial Function 
The FOURIER TRANSFORM of e--ko121 is given by 

00 
--Fc0l4 

F[e = 

’ s -m 

s 

0 
-2rikx - - e 

-m 

e-kolxle-2rikx dx 

e 
2Txko dx + 

r 

e--2 
0 

rikx -2 
e 

- i sin(27rkx)]e2”ko~ dx 

TkOx dx 

Iz: dx. (1) 

=PV 
s 

O” cos(27~kx) - isin(27&x) dx 

X --oo 
2i 

s 

00 sin(27rkz) -- 
fl 0 - dx 

00 sin(2xZx) 

for k < 0 - - 
2i - 

s 7r 0 - dx 

-i for k ; 0 

for k > 0 

s 

0 

- - [cos(27Tkx) 

-m 

+ 

s 

O” [cos(2nkx) - i sin(2nkx)]e-2”k0 
0 (1) 

Now let, IL = --II: so du = -dx, then 

which can also be written as the single equation 

Fk -koixi] = 6”; [cos(27&4 + i sin(2rku)]e-2”“0” du] 

+ 
Im 

O” [cos( 2nku) - i sin(2rkzL)]e-2”kou du] 
0 

=2 
s 

cos(2rku)e-2”kou du, (2) 
0 

= i[l - 2H(-k)], (2) 

where H(X) is the HEAVISIDE STEP FUNCTION. The 
integrals follow from the identity 

dx = 
r 0 

E 

sin( 2;rrkx) 
2nkx 

sin( 2rkx) 
X 

which, 
GRAL, 

from the DAMPED EXPONENTIAL COSINE INTE- d(2rkx) 

sine z dz = $7L (3) F[e -2mkoIxI 1 _ 1 _ -L 
7~ k2 + ko2’ (3) 

which is a LORENTZIAN FUNCTION. 
Fourier Transform-Cosine see 

EXP 
&O DAMPED EXPON 
ONENTIAL FUNCTION, 

ENTrAL COSINE INTEGRA 
LORENTZIAN FUNCTION 

L, 

F[cos( 2;rrkox)] 
= S_: e-2nikx ( e2.1rikox >,,,i*“‘> dx Fourier Transform-Gaussian 

The FOURIER TRANSFORM of a GAUSSIAN FUNCTION 

f( > x I e-ax2 . Z 1s given by 
-2&(k--0)x 

+e 
-2ri(k+ko)x x Id 

ko) + S(k + ko)], F(k) - - r --a2 
2 

e e 
ikx da: 

--oo 

- - 

r 

e -ux2 [cos(kx) + i sin( kx)] dx 
-m 

e -ax2 cos(kx) dx + i e -ax2 sin(kx) dx. 

where d(x) is the DELTA FUNCTION. 

see also COSINE, FOURIER TRANSFORM-SINE 

Fourier Transform-Delta Function 
The FOURIER TRANSFORM of the DELTA FUNCTION is 

given by 
The second integrand is EVEN, so integration over a 
symmetrical range gives 0. The value of the first inte- 
gral is given by Abramowitz and Stegun (1972, p. 302, 
equation 7.4.6) F[d(x - x0)] = 6(x - x0)e-2Tikx dx = e-2Tikzo. 

F(k) = Ee-k2/4a, 
see also DELTA FUNCTION 

so a GAUSSIAN transforms to a GAUSSIAN. 

see UZSO GAUSSIAN FUNCTION 
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Fourier Transform-Heaviside Step Function 

qH(x)] = s O” e-2nik;c 
--oo 

H(x)dx = ; [a(k) - $1 , 

where H(X) is the HEAWSIDE STEP FUNCTION and 6( k) 
is the DELTA FUNCTION. 

see aho HEAVISIDE STEP FUNCTION 

Fourier Transform-Lorentzian Function 

F 1 
[ 

;r 1 -2TikX0-4klkl G (x - x())2 + (+I?)” = e l  

see UZSO LORENTZIAN FUNCTION 

Fourier Dansform-Ramp IFunction 
Let R(x) be the RAMP FUNCTION, then the FOURIER 
TRANSFORM of R(X) is given by 

F[R(x)] = 
s 

O” e-2rikx R(x) dx = 7&(27rk) - &, 
-m 

where 6'(z) is the DERIVATIVE& the DELTA FUNCTION. 

see also RAMP FUNCTION 

Fourier Transform-Rectangle Function 
Let II(x) be the RECTANGLE FUNCTION, then the 
FOURIER TRANSFORMER 

F[II(x)] = sinc(nk), 

where sine(x) is the SINC 

see also RECTANGLE FUN 

FUNCTION. 

CTION, SINC FUNCTION 

Fourier Transform-Sine 

F[sin( 27&x)] 
= [I e-2xikox ( e2rivot --;B2m’*ox) dx 

-e-23Ti(k--k())a: 
+e 

-2ri(k+k())a: 1 dt 

ko) - S(k - ko)], 

where d(x) is the DELTA FUNCTION. 

see also FOURIER TRANSFORM-COSINE, SINE 

Fox’s H-Function 
A very general function defined by 

1 

-s 

I-I;=1 r(bj - Pis) I-I;=, r(l - aj + ajs) 

= 2rri 
C 

n= j=,+l r('l - bj + Pjs) nap,+, r(aj - ajs)" ds' 

where 0 5 m 5 q, 0 5 n 5 p, aj 9 pj > 0, and ajj bj are 
COMPLEX NUMBERS such that the pole of I’(bj-pjs) for 
j = 1, 2, , , . , m coincides with any POLE of r (1 - Uj + 
‘YjS) for j = 1, 2, , . . , n. In addition C, is it CONTOUR 
in the complex s-plane from w  - ioo to w+ioo such that 

(bj + k)/P, and (aj - 1 - k)/q lie to the right and left 
of C, respectively. 

see U~SO MACROBERT% E-FUNCTION, MEIJER’S G- 
FUNCTION 
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Frac 

see FRACTIONAL PART 

Fractal 
An object or quantity which displays SELF-SIMILARITY, 
in a somewhat technical sense, on all scales. The object 
need not exhibit exactly the same structure at all scales, 
but the same “type” of structures must appear on all 
scales. A plot of the quantity on a log-log graph versus 
scale then gives a straight line, whose slope is said to be 
the FRACTAL DIMENSION. The prototypical example 
for a fractal is the length of a coastline measured with 
different length RULERS. The shorter the RULER, the 
longer the length measured, a PARADOX known as the 
COASTLINE PARADOX. 

see also BACKTRACKING, BARNSLEY'S FERN, Box 
FRACTAL, BUTTERFLY FRACTAL, CACTUS FRACTAL, 
CANTOR SET, CANTOR SQUARE FRACTAL, CAROTID- 
KUNDALINI FRACTAL, CESARO FRACTAL, CHAOS 
GAME, CIRCLES-AND-SQUARES FRACTAL, COASTLINE 
PARADOX, DRAGON CURVE, FAT FRACTAL, FA- 
TOU SET, FLOWSNAKE FRACTAL, FRACTAL DIMEN- 
SION, H-FRACTAL, H~NON MAP, ITERATED FUNC- 
TION SYSTEMJULIA FRACTAL, KAPLAN-Y• RKE MAP, 
KOCH ANTISNOWFLAKE, KOCH SNOWFLAKE, LI?VY 
FRACTAL, LEVY TAPESTRY, LINDENMAYER SYSTEM, 
MANDELBROT SET, MANDELBROT TREE, MENGER 
SPONGE, MINKOWSKI SAUSAGE,MIRA FRACTAL,NEW- 
TON'S METHOD, PENTAFLAKE, PYTHAGORAS TREE, 
RABINOVICH-FABRIKANT EQUATION, SAN MARCO 
FRACTAL, SIERPI~KI CARPET, SIERPI~SKI CURVE, 
SIERPI~~SKI SIEVE, STAR FRACTAL, ZASLAVSKII MAP 
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Fractal Dimension 
The term “fractal dimension” is sometimes used to refer 
to what is more commonly called the CAPACITY DI- 
MENSION (which is, roughly speaking, the exponent D 
in the expression n(c) = CD, where n(c) is the min- 
imum number of OPEN SETS of diameter c needed to 
cover the set). However, it can more generally refer 
to any of the dimensions commonly used to character- 
ize fractals (e.g., CAPACITY DIMENSION, CORRELATION 
DIMENSION,INFORMATION DIMENSION,LYAPUNOV DI- 
MENSION, MINKOWSKT-BOULIGAND DIMENSION). 

see UZSO Box COUNTING DIMENSION, CAPACITY DI- 
MENSION, CORRELATION DIMENSION, FRACTAL DI- 
MENSION, HAWSDORFF DIMENSION, INFORMATION 
DIMENSION, LYAPUNOV DIMENSION, MINKOWSKI- 
BOULIGAND DIMENSION, POINTWISE DIMENSION, Q- 
DIMENSION 
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Fkactal Land 

see CAROTID-KUNDALINI FRACTAL 

Fkactal Process 
A 1-D MAP whose increments are distributed according 
toa NORMAL DISTRIBUTION. Lety(t-&)and y(t+At) 
be values, then their correlation is given by the BROWN 
FUNCTION 

T = 22H-1 - 1. 

When H = l/2, T = 0 and the fractal process corre- 
sponds to 1-D Brownian motion. If H > l/2, then 
T > 0 and the process is called a PERSISTENT PRO- 
CESS. If H < l/2, then T < 0 and the process is called 
an ANTIPERSISTENT PROCESS. 

see also 
CESS 

ANTIPERSISTENT PROCESS, PERSISTENT PRO- 
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Fkactal Sequence 
Given an INFINITIVE SEQUENCE {zn} with associated 
array a&j), then (2,) is said to be a fractal sequence 

1. If i + 1 = 2n, then there exists m, < n such that 
2 = Gn, 

2. If h < i, then, for every j, there is exactly one k such 
that a&j) < a(h, k) < a(i,j + 1). 

(As i and j range through N, the array A = a(Q), 
called the associative array of X, ranges through all of 
N.) An example of a fractal sequence is 1, 1, 1, 1, 2, 1, 
2, 1, 3, 2, 1, 3, 2, 1, 3, . . . . 

If {zn} is a fractal sequence, then the associated array is 
an INTERSPERSION. If x is a fractal sequence, then the 
UPPER-TRIMMED SUBSEQUENCE is given by X(X) = 2, 
and the LOWER-TRIMMED SUBSEQUENCE V(x) is an- 
other fractal sequence. The SIGNATURE of an IRRA- 
TIONAL NUMBER is a fractal sequence. 

see also INFINITIVE SEQUENCE 
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Fract al Valley 

see CAROTID-KUNDALXNI FUNCTION 

Fraction 
A RATIONAL NUMBER expressed in the form a/b, where 
a is called the NUMERATOR and b is called the DENOM- 
INATOR. A PROPER FRACTION is a fraction such that 
a/b < l,and a LOWEST TERMS FRACTION is a fraction 
with common terms canceled out of the NUMERATOR 
and DENOMINATOR. 

The Egyptians expressed their fractions as sums (and 
differences) of UNIT FRACTIONS. Conway and Guy 
(1999) give a table of Roman NOTATION for fractions, in 
which multiples of l/12 (the UNCIA) were given separate 
names. 

see also ADJACENT FRACTION, ANOMALOUS CAN- 
CELLATION, CONTINUED FRACTION, DENOMINATOR, 
EGYPTIAN FRACTION, FAREY SEQUENCE, GOLDEN 
RULE, HALF, LOWEST TERMS FRACTION, MEDI- 
ANT, NUMERATOR, PROPER FRACTION, PYTHAGO- 
REANFRACTION,QUARTER,RATIONAL NUMBERJJNIT 
FRACTION 
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Fractional Calculus 
Denote the nth DERIVATIVE Dn and the n-fold INTE- 
GRAL Dan. Then 

s 

t 

D-‘f(t) = f CC) 6 (1) 
0 

Now, if 

D-“f(t) = -i- 
s (n - l)! 0 (2) 

is true for n, then 

D-(“+l) f (t) = D-l yt - r>“-‘f (8 d< 1 
=h’[&I’ ] (x - SYf (0 dJ dx* 

(3) 

Interchanging the order of integration gives 

1 
D-(“+‘)f(t) c J 

s 
(4) . 

0 

But (2) is true for n = 1, so it is also true for all n by 
INDUCTION. The fractional integral of f(t) can then be 
defined by 

D-y(t) = & s'(t - ~)"-'f(Sw~~ (5) 
y 0 

where r(v) is the GAMMA FUNCTION. 

The fractional integral can only be given in terms of 
elementary functions for a small number of functions. 
For example, 

D-“t-’ = r(x + ‘) 
r(x + u + 1) 

tX+u for X > -1, v > 0 (6) 

1 DDveat = -e at 

r( > u s 

t 
v-l 

x e -ax dx = E&, a), (7) 
0 

where Et@, a) is the &FUNCTION. The fractional de- 
rivative of f (if it exists) can be defined by 

D”f (t) = 13m[D-(m-p~ f (t)]- (8) 

An example is 

ptX = r(A + 1) 
r(x + m - p + 1) 

rp + 1) - - 
r(x - P + 1) 

p-p for X > -1,p > 0 

(9) 

DPEt(v, a) = Et+ - p, a) for v > 0, p # 0. (10) 
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It is always true that, for p, Y > 0, 

D-C”D--” f (t) = D-b+“), (11) 

but not always true that 

DpD” = D’“+“. (12) 

see also DERIVATIVE, INTEGRAL 
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Fractional Derivative 

~~~FRACTI~NAL CALCULUS 

Fractional Differential Equation 
The solution to the differential equation 

[D2, + aD” + bD’]y(t) = 0 

YW 
- I teat, ~~~ft~wl, ark(q - Ik~)D1-(“fl)“(teQqt) 
- 

for a = fl# 0 

I 
f2l+1 

WV) 
for QI = 0 = 0, 

1 q=- 
v q-1 

“P(t) = x p q-k-lEt(-kv,Pq), 

k=O 

E&,X) is the Et-Fu~c~lo~, and r(n) is the GAMMA 

FUNCTION. 
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Fractional Fourier Transform 

Fkactional Integral 

see FRACTIONAL CALCULUS 

Fractional Part 

The function giving the fractional (nonintegral) part of 
a number and defined as 

- 
frac(2) =1: x>o G { 11 5 

x - 1x1 - 1 2 < 0, 

where 1x1 is the FLOOR FUNCTION. 

see also CEILING FUNCTION, FLOUR FUNCTION, NINT, 
ROUND,TRUNCATE, WHOLE NUMBER 
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Fkactran 
Fkactran is an algorithm applied to a given list fi, f2, 
. . . . fc of FRACTIONS. Givenastarting INTEGERN, the 
F!ractran algorithm proceeds by repeatedly multiplying 
the integer at a given stage by the first element fi given 
an integer PRODUCT. The algorithm terminates when 
there is no such fi. 

The list 

17 78 19 23 29 77 95 77 1 11 13 15 1 55 --- 
91’ 85’ 51’ 38’ 33’ 29’ 23’ 19’ 17’ 13’ 11’ Z’ 5’ T 

with starting integer IV = 2 generates a sequence 2, 
15, 825, 725, 1925, 2275, 425, 390, 330, 290, 770, . . . . 
Conway (1987) showed that the only other powers of 2 
which occur are those with PRIME exponent: 22, 23, 25, 
2? 1 . . . . 
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Framework fi6chet Bounds 
Consider a finite collection of points p = (pl, . m m , p,), 

pi e Rd EUCLIDEAN SPACE (known as a CONFIGURA- 
TION) and a graph G whose VERTICES correspond to 
pairs of points that are constrained to stay the same 
distance apart. Then the graph G together with the 
configuration p, denoted G(p), is called a framework. 

see also BAR (EDGE), CONFIGURATION, RIGID 

Any bivariate distribution function with marginal dis- 
tribution functions F and G satisfies 

max{F(x) + G(y) - 1,O) I H(x, Y) I min{F(x), G(y)}* 

fi6chet Derivative 
A function f is F’rGchet differentiable at a if 

Franklin Magic Square 

exists. This is equivalent to the statement that 4 has a 
removable DISCONTINUITY at a, where 

$(x) _ f(x) - f(a) = 
x--a l  

Every function which is FXchet differentiable is also 
Caratheodory differentiable. 

see UZSO CARATH~ODORY DERIVATIVE, I~ERIVATIVE 

FGchet Space 

Benjamin Franklin constructed the above 8 x 8 PAN- 
MAGIC SQUARE having MAGIC CONSTANT 260. Any 
half-row or half-column in this square totals 130, and 
the four corners plus the middle total 260. In addition, 
bent diagonals (such as 52-3-5-54-10-57-63-16) also total 
260 (Madachy 1979, p. 87). 

see also MAGIC SQUARE, PANMAGIC SQUARE 

A complete metrizable SPACE, sometimes also with the 
restriction that the space be locally convex. 

fiedholm Integral Equation of the First 

Kind 
An INTEGRAL EQUATION of the form 
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Fran&n-Robinson Constant 

see UZSO FREDHOLM INTEGRAL EQUATION OF THE SEC- 
OND KIND, INTEGRAL EQUATION, VOLTERRA INTE- 
GRAL EQUATION OF THE FIRST KIND, VOLTERRA IN- 
TEGRAL EQUATION OF THE SECOND KIND 

FS 
s 

O” dx 
- = 2.8077702420..., 

Q r(x) 
References 

where r(x) is the GAMMA FUNCTION. The above plots 
show the functions r(x) and l/r(x). 

see also GAMMA FUNCTION 
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Fredholm Integral Equation of the Second 

Kind 

References An INTEGRAL EQUATION ofthe form 

Finch, S. “Favorite Mathematical Constants.” http : //www . 
mathsoft.com/asolve/constant/fran/fran.html. 

Fran&n, A, “Accurate Determination of the Inverse Gamma 
Integral.” BIT 19, 137-138, 1979. 

Fran&n, A. “Addendum and Corrigendum to ‘High-Precision 
Values of the Gamma Function and of Some Related Co- 
efficient s. “’ 1MaUz. Comput. 37, 233-235, 1981. 

F’ranskn, A. and Wrigge, S. “High-Precision Values of the 
Gamma Function and of Some Related Coefficients.” 
Math. Comput. 34, 553-566, 1980. 

Plouffe, S. “Fransen-Robinson Constant.” http : //lacim. 
uqam.ca/piDATA/fransen. txt. 

e 1 1 
x =- 

O” F(t)e-ixt dt 

J2 7r s -w 1 - &AK(t)’ 

see UZSO FREDHOLM INTEGRAL EQUATION OF THE 
FIRST KIND, INTEGRAL EQUATION, NEUMANN SE- 

RIES (INTEGRAL EQUATION), VOLTERRA INTEGRAL 

x-ha X -a 



I+ee 

EQUATION OF THE FIRST KIND, VOLTERRA INTEGRAL 
EQUATION OF THE SECOND KIND 
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Free 
When referring to a planar object, “free” means that the 
object is regarded as capable of being picked up out of 
the plane and flipped over. As a result, MIRROR IMAGES 
are equivalent for free objects. 

A free abstract mathematical object is generated by n 
elements in a “free manner,” i.e., such that the n ele- 
ments satisfy no nontrivial relations among themselves. 
To make this more formal, an algebraic GADGET X is 
freely generated by a SUBSET G if, for any function 
f : G + Y where Y is any other algebraic GADGET, 
there exists a unique HOMOMORPHISM (which has dif- 
ferent meanings depending on what kind of GADGETS 
you’re dealing with) g : X + Y such that g restricted 
to G is f. 

If the algebraic GADGETS are VECTOR SPACES, then 
G freely generates X IFF G is a BASIS for X. If the 
algebraic GADGETS are ABELIAN GROUPS, then G freely 
generates X IFF X is a DIRECT SUM of the INTEGERS, 
with G consisting of the standard BASIS. 

see UZSO FIXED, GADGET, MIRROR IMAGE, RANK 

Free Group 
The generators of a group G are defined to be the small- 
est subset of group elements such that all other elements 
of G can be obtained from them and their inverses. A 
GROUP is a free group if no relation exists between its 
generators (other than the relationship between an el- 
ement and its inverse required as one of the defining 
properties of a group). For example, the additive group 
of whole numbers is free with a single generator, 1. 

see also FREE SEMIGROUP 

Free Semigroup 
A SEMIGROUP with a noncommutative product in which 
no PRODUCT can ever be expressed more simply in terms 
of other ELEMENTS. 

see UZSO FREE GROUP, SEMIGROUP 

Free Variable 
An occurrence of a variable in a LOGIC FORMULA which 
is not inside the scope of a QUANTIFIER. 

see also BOUND, SENTENCE 

Fkeemish Crate 

An IMPOSSI 
not built. 

References 
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.lllusion. 

Jablan, S. “Are Impossible Figures Possible?” 

New York: 

http:// 
members.tripod.com/-modulEtrity/kulpa.htm. 

Pappas, T. “The Impossible Tribar.” The Joy of Mathemat- 
ics. San Carlos, CA: Wide World Publ./Tetra, p. 13, 1989. 

Freeth’s Nephroid 

A STROPHOID of ~CIRCLE withthe POLEO at the CEN- 
TER of the CIRCLE and the fixed point P on the CIR- 
CUMFERENCE of the CIRCLE. In a paper published by 
the London Mathematical Society in 1879, T. J. Freeth 
described it and various other STROPHOIDS (MacTutor 
Archive). If the line through P PARALLEL to the ~-AXIS 
cuts the NEPHRUID at A, then ANGLE AOP is 347, SO 

this curve can be used to construct a regular HEPTAGON. 
The POLAR equation is 

T = a[1 + 2 sin( $?)I. 

see also STROPHOID 

References 
curves. 

I “Fr beet h’s 
and. ac l  I lk/  

New 

fieiman’s Constant 
The end of the last gap in the LAGRANGE SPECTRUM, 
given by 

F = 2221564096 + 293748J462 = 4 52782g5661 
- 

491993569 
I . . . . 

REAL NUMBERS great 
MARKOV SPECTRUM. 

er, than F are members of the 
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see UZSOLAGRANGE SPECTRUM,MARKOV SPECTRUM References 
- n  

Heferences 
Conway, JI H. and Guy, R. K. The Book of Numbers. New 

York: Springer-Verlag, pp+ 188489, 1996. 

French Curve 

Fischer, G. (Ed.). Mathematical Models from the Collections 
of Universities and IMuseums. Braunschweig, Germany: 
Vieweg, p. 16, 1986. 

Fischer, G. (Ed.). Plates 38-39 in Mathematische Mod- 
elle/Mathematical Models, Bildband/Photograph Volume. 
Braunschweig, Germany: Vieweg, pp. 38-39, 1986. 

von Seggern, D. CRC Standard Curves and Surfaces. Boca 
Raton, FL: CRC Press, p. 304, 1993. 

Fkesnel Integrals 
In physics, the Fresnel integrals are most often defined 

J 
u 

C(u) + is(u) F einx2i2 dx 
0 

French curves are plastic (or wooden) templates having 
an edge composed of several different curves. E”rench 
curves are used in drafting (or were before computer- 
aided design) to draw smooth curves of almost any de- 
sired curvature in mechanical drawings. Several typical 
French curves are illustrated above. 

U U - - J cos( +x2) dx + i J sin( irz2) dx, (1) 
0 0 

so 

J 
u C(u) = cos( +x2) dx (2) 

0 

see UZSO CORNU SPIRAL 

I 
U 

SC > 
UE sin( &x2) dx. (3) 

0 

They satisfy 
F&net Formulas 
Also known as the SERRET-FRENET FORMULAS 

C(fa) = -+ (4) 
S(fm) = +. (5) 

Related functions are defined as where T is the unit TANGENT VECTOR, N is the unit 
NORMAL VECTOR, B is the unit BINORMAL VECTOR, 
7 is the TORSION, K is the CURVATURE, and k denotes 
dxjds. 

see also CENTRODE, FUNDAMENTAL THEOREM OF 
SPACE CURVES, NATURAL EQUATION 

5 

cos t2 dt 

X 

sin t2 dt 

J 
cost & Jj 

(6) 

(7) 

(8) 

(9) 

References 
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Kreyszig, E. “Formulae of Frenet .” $15 in Differential Ge- 

ometry. New York: Dover, p. 40-43, 1991. 
Serret, J. A. “Sur quelques formules relatives % la thkorie des An asymptotic expansion for x >> 1 gives 
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C(u) = a + k sin($ru2) (10) Frequency Curve 

see GAUSSIAN FUNCTION 

SC 1 
1 1 

U z--- 

2 
nu cos(+u2). w 

Fkesnel’s Elasticity Surface 
A QUARTIC SURFACE given by Therefore, as u -+ 00, C(u) = l/Z and S(u) = l/Z. The 

F’resnel integrals are sometimes alternatively defined as 

T= Ju2x2 + b2y2 + c2z2, 

I 
t x(t) = cos(v2) du (12) 

0 where 

I 
t 

y(t) = sin(v2) dv. w  
0 

also known as FRESNEL'S WAVE SURFACE. Itwasintro- 
duced by Fkesnel in his studies of crystal optics. 
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Letting II: E V2 so dx = 2vdv = 2&dw, and dw = 

X -V2 dx/2 

J 
d 

x(t) = 4 x-1’2 cosx dx (14 
0 

Jt 
y(t) -L -l/2 - 

2 J X sin x dx. (15) 
0 

In this form, they have a particularly simple expan- 
sion in terms of SPHERICAL BESSEL FUNCTIONS OF THE 
FIRST KIND. Using 

j,(x) = F (16) 

m(x) = -j-1(x) = -=, 
X 

(17) 

where nl(x) is a SPHERICAL BESSEL FUNCTION OF THE 
SECOND KIND 

J 
t x(t”) = -$ n1 (x)xli2 dx 

0 

-$ - 
s 

t 00 

j-l(x)x1’2 dx = xli2 xjzn(x) (18) 
0 n=O 

y(t”) = $ J 
t 

jo(x)x1’2 dx 
0 

= d2 x j2n+&). (19) 

see also CORNU SPIRAL 
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Fkesnelk Wave Surface 

see FRESNEL'S ELASTICITY SURFACE 

Frey Curve 
Let U* + bP = c13 be a solution to FERMAT'S LAST THE- 

OREM. Then the corresponding Frey curve is 

y2 = x(x 1 a")(x + bP)., (1) 

Frey showed that such curves cannot be MQDULAR, so if 
the TANIYAMA-SHIMURA CONJECTURE weTe-trwq:fiey 

curves couldn’t exist and FERMAT'S LAST THEOREM 
would follow with b EVEN and a E - 1 (mod 4). Frey 
curves are SEMISTABLE. Invariants include the DIS- 
CRIMINANT 

( ap - O)“(_bp - O)[aP - (-b)p]2 = a2*b2pC2p. (2) 

The MINIMAL DISCRIMINANT is 

A _ 2-0a2P&2P - P 

the CONDUCTOR is 

and the j-INVARIANT is 

j= 2*( azp + b2P + apbp)3 2* (c2P - bpCp)3 - - 
&b2pC2p (abc)2p l  (5) 

see also ELLIPTIC CURVE, FERMAT'S LAST THEOREM, 
TANIYAMA-SHIMURA CONJECTURE 
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Cox, ID. A. “Introduction to Fermat’s Last Theorem.” Amer. 

Math. Monthly 101, 3-14, 1994. 
Gouvea, F. Q* “A Marvelous Proof.” Amer. Math. Monthly 

101, 203-222,1994. 

Frey Elliptic Curve 

see FREY CURVE 

Friday the Thirteenth 
The Gregorian calendar follows a pattern of leap years 
which repeats every 400 years. There are 4,800 months 
in 400 years, so the 13th of the month occurs 4,800 times 
in this interval. The number of times the 13th occurs 
on each weekday is given in the table below. As shown 
by Brown (1933), the thirteenth of the month is slightly 
more likely to be on a Friday than on any other day. 

1 Dav 1 Number of 13s 1 Fraction 1 
Sunday 687 
Monday 685 
Tuesday 685 
Wednesday 687 

Thursday 684 

Friday 688 
Saturday 684 

see also 13, WEEKDAY 

14.31% 
14.27% 
14.27% 
14.31% 
14.25% 
14.33% 
14.25% 
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Friend 
A friend of a number n is another number TTZ such that 
(m, n) is a FRIENDLY PAIR. 

see also FRIENDLY PAIR, SOLITARY NUMBER 

References 
Anderson, C. W. and Hickerson, D. Problem 6020. “Friendly 

Integers.” Amer. Math. Monthly 84, 65-66, 1977. 

Friendly Giant Group 

see MONSTER GROUP 

Friendly Pair 
Define 

Z(n) s *, 
n 

where o(n) is the DIVISOR FUNCTION. Then a PAIR of 
distinct numbers (K, m) is a friendly pair (and /z is said 
to be a FRIEND of m) if 

C(k) = E(m). 

For example, 4320 and 4680 are a friendly pair, since 
~~(4320) = 15120, ~(4680) = 16380, and 

X(4320) E w  = ; 

X(4680) E z = ;. 

Numbers which do not have FRIENDS are called 
SOLITARY NUMBERS. SOLITARY NUMBERS satisfy 
(~(n),n) = 1, where (a$) is the GREATEST COMMON 
DIVISOR of a and b. 

see also ALIQUOT SEQUENCE, 
BER 

References 

FRIEND, SOLITARY NUM- 

Anderson, C. W. and Dickerson, D. Problem 6020. “Friendly 
Integers.” Amer. Math. Monthly 84, 65-66, 1977. 

Frieze Pattern 

b 
a d 

An arrangement of numbers at the intersection of two 
sets of perpendicular diagonals such that a+d = b+c+ 1 
(for an additive frieze pattern) or ad = bc + 1 (for a 
multiplicative frieze pattern) in each diamond. 

References 
Conway, J. H. and Coxeter, H. S. M. “Triangulated Polygons 

and Frieze Patterns.” Math. Gaz. 57, 87-94, 1973. 
Conway, J. H. and Guy, R, K. In The Book of Numbers. New 

York: Springer-Verlag, pp. 74-76 and 96-97, 1996. 

F’robenius-K6nig Theorem 
The PERMANENT of an 72 x n MATRIX with all entries 
either 0 or 1 is 0 IFF the MATRIX contains an T x s 
submatrix of OS with T + s = n + 1. This result follows 
from the KONGEGEV~RY THEOREM. 
see UZSO K~NIG-EGEV~RY THEOREM, PERMANENT 

Fkobenius Map 
A map 61: t+ xp where p is a PRIME. 

Fkobenius Method 
If x0 is an ordinary point of the ORDINARY DIFFEREN- 
TIAL EQUATION, expand y in a TAYLOR SERIES about 
20, letting 

00 

y = x a,x”. (1) 
n=O 

Plug y back into the ODE and group the COEFFICIENTS 
by POWER. Now,obtaina RECURRENCE RELATION for 
the nth term, and write the TAYLOR SERIES in terms of 
the ans. Expansions for the first few derivatives are 

Y=e a,xn (2) 
n=O 
00 00 

yt = 
>: na,xn--l = >(n + l)an+lxn (3) 
n=l n=O 

ytt = Tn(n - l)UnXnB2 

n=2 

If 20 is a regular singular 
FERENTIAL EQUATION, 

= f$ + 2)(n + l)afl+2Xnh 
n=O 

(4) 

point of the ORDINARY DIF- 

p(x)y” + Q(x)y’ + R(x)y = 0, (5) 

solutions may be found by the Frobenius method or 
by expansion in a LAURENT SERIES. In the Frobenius 
method, assume a solution of the form 

W 

Y = xk 
x ad, (6) 
n=O 

00 

y = Xk eUnXn =: x UnXn+k 

n=O n=O 

00 

(7) 

yt = y a,(n + k)x”+“-l (8) 
A 1 

n=O 

p” = ?a&+ k)(n+ k - l)~"+"-~. (9) 
n=O 

Now, plug y back into the ODE and group the COEFFI- 
CIENTS by POWER to obtain a recursion FORMULA for 
the a,th term, and then write the TAYLOR SERIES in 
terms of the a,s. Equating the a0 term to 0 will pro- 
duce the so-called INDICIAL EQUATION, which will give 
the allowed values of k in the TAYLOR SERIES. 

FUCHS'S THEOREM guaranteesthatatleastone POWER 
series solution will be obtained when applying the Fro- 
benius method if the expansion point is an ordinary, 



Fkobenius-Peron Equation 

or regular, SINGULAR PUINT. For a regular SINGULAR 
POINT, a LAURENT SERIES expansion can also be used. 
Expand y in a LAURENT SERIES, letting 

-n 
Y = C-nX +. - l +c-lx-1+co+clx+...+c,xn+.... 

(10) 
Plug y back into the ODE and group the COEFFICIENTS 
by POWER. Now, obtain a recurrence FORMULA for the 
cnth term, and write the TAYLOR EXPANSION in terms 
of the ens. 

see 

EQ 

also Fu 
UATION 

CHS’S THEOREM, ORDINARY DIFFERENTIAL 

fteterences 
A&en, G. “Series Solutions-Frobenius’ Method.” 58.5 in 

Mathematical Methods for Physicists, 3rd ed. Orlando, 
FL: Academic Press, pp. 454-467, 1985. 

Fkobenius-Peron Equation 

Pn+dX> = s Pn (Y>G - M(Y)] dY7 

where 6(x) is a DELTA FUNCTION, M(x) is a map, and 
p is the NATURAL DENSITY. 

References 
Ott, E. Chaos in. Dynamica Systems. New York: Cambridge 

University Press, p. 51, 1993. 

Fkobenius Pseudoprime 
Let f(z) be a MONIC POLYNOMIAL of degree d with 
discriminant A. Then an ODD INTEGER n with 

h f w> = 1 is called a Fkobenius pseudoprime with 
respect to f(x) if it passes a certain algorithm given 
by Grantham (1996). A Fkobenius pseudoprime with 
respect to a POLYNOMIAL f(x) E Z[x] is then a compos- 
ite Fkobenius probably prime with respect to the POLY- 
NOMIAL X-U. 

While 323 is the first LUCAS P~EUDOPRIME with respect 
to the Fibonacci polynomial z2 - z - 1, the first F’roben- 
iuspseudoprime is 5777. If f(x) = x3--~x~+sz-l, then 
any Fkobenius pseudoprime n with respect to f(z) is 
also a PERRIN PSEUDOPRIME. Grantham (1997) gives a 
test based on Fkobenius pseudoprimes which is passed by 
COMPOSITE NUMBERS with probability at most l/7710. 

see also PERRIN PSEUDOPRIME, PSEUDOPRIME, 
STRONG FROBENIUS PSEUDOPRIME 

References 
Grantham, J* “Frobenius Pseudoprimes.” 1996. http: // 

www,clark.net/pub/grantham/pseudo/pseudo.ps 
Grantham, J. “A Frobenius Probable Prime Test with 
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Frobenius Theorem 
Let A = aij be a MATRIX with POSITIVE COEFFICIENTS 
so that aij > 0 for all i, j = 1, 2, . . l  , n, then A has a 
POSITIVE EIGENVALUE X0, and all its EIGENVALWES lie 
on the CLOSED DISK 

see UZSO CLOSED DISK, USTROWSKI'S THEOREM 

References 
Gradshteyn, I. S. and Ryzhik, I. M. Tables of Integrals, Se- 

ries, and Products, 5th ed. San Diego, CA: Academic 
Press, p. 1121, 1979. 

fiobenius Triangle Identities 
Let CL,M be a PADS APPROXIMANT. Then 

qL+l)/MqL-1)/M - CL/(M+l)SL/(M+l) 

=CLJMSL/M (1) 

cL/{M+l)S(L+l)/M - C(L+l)/MSL/(M+l) 

= c(L+l)/(M+I)xsL/M (2) 

C@+I)/MSL/M -cL/MS(L+l)/M 

= c~~+l)/(M+l)~sL/(M-1) c3) 

CL/(M+~)SL/M - CL/MSL/(M+l) 

= c~~+l)l(M+l)~~(L-l)/M~ (4) 

where 

SLIM = G(@L(x) + H(x)QM(x) (5) 

and C is the C-DETERMINANT. 

see UZSO C-DETERMINANT,~AD~ APPROXIMANT 

References 
Baker, G. A. Jr. Essentials of Pad& Approximants in Theo- 

retical Physics. New York: Academic Press, p. 31, 1975. 

Frontier 

see BOWNDARY 

Fkullani’s Integral 
If f’(x) is continuous and the integral converges, 

s O” f(ax) - f w 
0 

X 
dx = Cm - fW1 In (i) l  

References 
Spiegel, M. R. Mathematical Handbook of Formulas and Ta- 

bles. New York: McGraw-Hill, 1968. 
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Fkustum 
The portion of a solid which lies between two PARALLEL 

PLANES cutting the solid. Degenerate cases are obtained 
for finite solids by cutting with a single PLANE only. 

see UZSO CONICAL FRUSTUM, PYRAMIDAL FRUSTUM, 
SPHERICAL SEGMENT 

Fubini Principle 
If the average number of envelopes per pigeonhole is 
a, then some pigeonhole will have at least a envelopes. 
Similarly, there must be a pigeonhole with at most a 
envelopes. 

see UZSO PIGEONHOLE PRINCIPLE 

Fuchsian System 
A system of linear differential equations 

with A(x) an ANALYTIC n x n MATRIX, for which the 
MATRIX A(z) is ANALYTIC in c\{al, . . . , UN} and has 
a POLE of order 1 at aj for j = 1, . . . , N. A system 

is F’uchsian IFF there exist n x 72 matrices B1, . . . , BN 
with entries in z such that 

A(z) = e & 

j=1 j 

N 

Ix % = 21. 

j=l 

Fuchs’s Theorem 
At least one POWER SERIES solution will be obtained 
when applying the FROBENIUS METHOD if the expan- 
sion point is an ordinary, or regular, SINGULAR POINT. 
The number of ROOTS is given by the ROOTS of the 
INDICIAL EQUATION. 

References 
A&en, G. Mathematical Methods for Physicists, 3rd ed. Or- 

lando, FL: Academic Press, pp, 462-463, 1985. 

Fuhrmann Circle 
c 

The CIRCUMCIRCLE of the FUHRMANN TRIANGLE. 

see also FUHRMANN TRIANGLE, MID-ARC POINTS 

References 
Fuhrmann, W. Synthetische Beweise Planimetrischer S&e. 

Berlin, p. 107, 1890. 
Johnson, R. A. Modern Geometry: An Elementary Treatise 

on the Geometry of the Triangle and the Circle. Boston, 
MA: Houghton Mifflin, pp. 228-229, 1929. 

Fuhrmann’s Theorem 
R 

Let the opposite sides of a convex CYCLIC HEXAGON be 

a, a’, b, b’, c, and c’, and let the DIAGONALS e, f, and g 
be so chosen that a, a’, and e have no common VERTEX 
(and likewise for b, b’, and f), then 

ef g = uu’e +- bb’f + cc/g + abc + u’b’c’. 

This is an extension of PTOLEMY’S THEOREM to the 
HEXAGON. 

see UZSO CYCLIC HEXAGON, HEXAGON, PTOLEMY’S 
THEOREM 

References 
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MA: Houghton MifSn, pp, 65-66, 1929. 

fihrmann Triangle 
c 

MAB 

The Fuhrmann triangle of a TRIANGLE AABC is the 
TRIANGLE AFcFB FA formed by reflecting the MID- 
ARC POINTS MAS, MAC, MBC about the lines AB, AC, 



fill Reptend Prime Function 

and BC. The CIRCUMCIRCLE of the Fuhrmann triangle 
is called the FUHRMANN CIRCLE, and the lines FAMBC, 
F~ikf~c, and FcMA~ CONCUR at the CIRCUMCENTER 
0. 

see UZSO FUHRMANN CIRCLE, MID-ARC POINTS 

References 
Fuhrmann, W. Synthetische Beweise Planimetrischer S&e. 

Berlin, pm 107, 1890. 
Johnson, El+ A. Modern Geometry: An Elementary Treatise 

on the Geometry of the Triangle and the Circle. Boston, 
MA: Houghton Mifflin, pp. 228-229, 1929. 

Full Reptend Prime 
A PRIME p for which l/p has a maximal period DECIMAL 
EXPANSION ofp- 1 DIGITS. The first few numbers with 
maximal decimal expansions are 7, 17, 19, 23, 29, 47, 
59, 61, 97, . . . (Sloane’s AOO1913). 

References 
Sloane, N. J. A. Sequence A001913/M4353 in “An On-Line 

Version of the Encyclopedia of Integer Sequences.” 

Full Width at Half Maximum 
The full width at half maximum (FWHM) is a param- 
eter commonly used to describe the width of a “bump” 
on a curve or function. It is given by the distance be- 
tween points on the curve at which the function reaches 
half its maximum value. The following table gives the 
analytic and numerical full widths for several common 
curves. 

Function Formula FWHM 

Bartlett l-!$ 
Blackman 

Connes p-g) ‘. 

Cosine cos z ( > 
4 
P 

Gaussian e-x2/(2o2) 2&iZ 0 
Hamming 1.05543a 
Harming a 

Ir 
Lorentzian .--+--- r 

z2+( -r-)2 

Welch 
?2 

1-s 4 a 

see also APODIZATION FUNCTION, MAXIMUM 

Fuller Dome 

see GEODESIC DOME 

Function 
A way of associating unique objects to every point in a 
given SET. A function from A to B is an object f such 
that for every a E A, there is a unique object f(u) E B. 
Examples of functions include sin X, 5, zc2, etc. The term 
MAP is synonymous with function. 

Poincark remarked with regard to the proliferation of 
pathological functions, “Formerly, when one invented a 
new function, it was to further some practical purpose; 
today one invents them in order to make incorrect the 

reasoning of our fathers, and nothing more will ever be 
accomplished by these inventions.” 

see UZSO ABELIAN FUNCTION, ABSOLUTE VALUE, ACK- 
ERMANN FUNCTION, AIRY FUNCTIONS, ALGEBRAIC 
FUNCTION, ALGEBROIDAL FUNCTION, ALPHA FUNC- 
TION, ANDREW'S SINE, ANGER FUNCTION, APODI- 
ZATION FUNCTION, APPARATUS FUNCTION, ARGU- 
MENT (FUNCTION), ARTIN L-FUNCTION, AUTOMOR- 
PHTC FUNCTION, BACHELIER FUNCTION, BARNES G- 
FUNCTION, BARTLETT FUNCTION, BASSET FUNC- 
TION, BATEMAN FUNCTION, BEI, BER, BERNOULLI 
FUNCTION, BESSEL FUNCTION OF THE FIRST KIND, 
BESSEL FUNCTION OF THE SECOND KIND, BESSEL 
FUNCTION OF THE THIRD KIND, BETA FUNCTION, 
BETA FUNCTION (EXPONENTIAL), BINOMIAL COEFFI- 
CIENT, BLACKMAN FUNCTION, BLANCMANGE FUNC- 
TION, BOOLEAN FUNCTION, BOURGET FUNCTION, 
BOXCAR FUNCTION, BROWN FUNCTION, CAL, CAN- 
TOR FUNCTION, CARMICHAEL FUNCTION, CAROTID- 
KUNDALINI FUNCTION, CEILING FUNCTION, CENTER 
FUNCTION, CENTRAL BETA FUNCTION, CHARACTER- 
ISTIC FUNCTION, CHEBYSHEV FUNCTION, CIRCULAR 
FUNCTIONS, CLAUSEN FUNCTION, COMB FUNCTION, 
COMPLETE FUNCTIONS, COMPLEX CONJUGATE, COM- 
PUTABLE FUNCTION, CONCAVE FUNCTION, CONFLU- 
ENT HYPERGEOMETRIC FUNCTION, CONFLUENT HY- 
PERGEOMETRIC FUNCTION OF THE FIRST KIND, CON- 
FLUENTHYPERGEOMETRICFUNCTION OF THESECOND 
KIND, CONFLUENT HYPERGEOMETRIC LIMIT FUNC- 
TION, CONICAL FUNCTION, CONNES FUNCTION, CON- 
STANT FUNCTION, CONTIGUOUS FUNCTION, CONTINU- 
OUS FUNCTION, CONVEX FUNCTION, COPULA, COSE- 
CANT, COSINE, COSINE APODIZATION FUNCTION, Co- 
TANGENT, COULOMB WAVE FUNCTION, COVERSINE, 
CUBE ROOT,CUBED,CUMULANT-GENERATING FUNC- 
TION, CUMULATIVE DISTRIBUTION FUNCTION, CUN- 
NINGHAM FUNCTION, CYLINDER FUNCTION, CYLIN- 
DRICAL FUNCTION, DEBYE FUNCTIONS, DECREAS- 
ING FUNCTION, DEDEKIND ETA FUNCTION, DEDEKIND 
FUNCTION, DELTA FUNCTION, DIGAMMA FUNCTION, 
DILOGARITHM, DIRAC DELTA FUNCTION, DIRICH- 
LET BETA FUNCTION, DIRICHLET ETA FUNCTION, 
DIRICHLET FUNCTION, DIRICHLET LAMBDA FUNC- 
TION, DISTRIBUTION FUNCTION, DIVISOR FUNCTION, 
DOUBLE GAMMA FUNCTION, DOUBLET FUNCTION, 
E,-FUNCTION, Et-Fu~c~ro~, EIGENFUNCTION, EIN 
FUNCTION,EINSTEINFUNCTIONS,ELEMENTARYFUNC- 
TION, ELLIPTIC ALPHA FUNCTION, ELLIPTIC DELTA 
FUNCTION, ELLIPTIC EXPONENTIAL FUNCTION, EL- 
LIPTIC FUNCTION, ELLIPTIC FUNCTIONAL, ELLIPTIC 
LAMBDA FUNCTION, ELLIPTIC MODULAR FUNCTION, 
ELLIPTIC THETA FUNCTION,ELSASSERFUNCTION, EN- 
TIRE FUNCTION, EPSTEIN ZETA FUNCTION, ERD~S- 
SELFRIDGE FUNCTION, ERF, ERROR FUNCTION, Ex- 
PONENTIAL RAMP, EULER L-FUNCTION, EVEN FUNC- 
TION, EXPONENTIAL FUNCTION, EXPONENTIAL FUNC- 
TION (TRUNCATED), EXPONENTIAL SUM FUNCTION, 
EXSECANT, FLOOR FUNCTION, Fox’s H-FUNCTION, 
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FUNCTION SPACE, G-FUNCTION, GAMMA FUNCTION, 
GATE FUNCTION, GAUSSIAN FUNCTION, GEGEN- 
BAUER FUNCTION, GENERALIZED FUNCTION, GENER- 
ALIZED HYPERBOLIC FUNCTIONS, GENERALIZED HY- 

PERGEOMETRIC FUNCTION, GENERATING FUNCTION, 
GORDON FUNCTION, GREEN’S FUNCTION, GROWTH 
FUNCTION, GUDERMANNIAN FUNCTION, H-FUNCTION, 
HAAR FUNCTION, HAMMING FUNCTION, HANKEL 
FUNCTION, HANKEL FUNCTION OF THE FIRST KIND, 
HANKEL FUNCTION OF THE SECOND KIND, HANN 
FUNCTION, HANNING FUNCTION, HARMONIC FUNC- 

TION, HAVERSINE, HEAVISIDE STEP FUNCTION, HECKE 
L-FUNCTION, HEMICYLINDRICAL FUNCTION, HEMI- 
SPHERICAL FUNCTION, HEUMAN LAMBDA FUNCTION, 
HH FUNCTION, HILBERT FUNCTION, HOLONOME 

FUNCTION, HOMOGENEOUS FUNCTION, HURWITZ ZETA 
FUNCTION, HYPERBOLIC COSECANT, HYPERBOLIC Co- 
SINE, HYPERBOLIC COTANGENT, HYPERBOLIC FUNC- 
TIONS, HYPERBOLIC SECANT, HYPERBOLIC SINE, HY- 
PERBOLIC TANGENT, HYPERELLIPTIC FUNCTION, HY- 

PERGEOMETRIC FUNCTION, IDENTITY FUNCTION, IM- 
PLICIT FUNCTION, IMPLICIT FUNCTION THEOREM, IN- 

COMPLETE GAMMA FUNCTION, INCREASING FUNC- 
TFON, INFINITE PRODUCT, INSTRUMENT FUNCTION, 
INT, INVERSE COSECANT, INVERSE COSINE, IN- 
VERSE COTANGENT, INVERSE FUNCTION, INVERSE HY- 

PERBOLE FUNCTIONS, INVERSE SECANT, INVERSE 
SINE, INVERSE TANGENT, ~-FUNCTION, JACOBI EL- 
LIPTIC FUNCTIONS, JACOBI FUNCTION OF THE FIRST 
KIND, JACOBI FUNCTION OF THE SECOND KIND, JA- 

COBI THETA FUNCTION, JACOBI ZETA FUNCTION, 
J~NC FUNCTION, JOINT PROBABILITY DENSITY FUNC- 
TION, JONQUI~RE’S FUNCTION, K-FUNCTION, KEI, 
KELVIN FUNCTIONS, KER, KOEBE FUNCTION, L- 
FUNCTION, LAMBDA FUNCTION, LAMBDA HYPERGEO- 

METRIC FUNCTION, LAMBERT’S W-FUNCTION, LAMP 
FUNCTION, LEGENDRE FUNCTION OF THE FIRST KIND, 

LEGENDRE FUNCTION OF THE SECOND KIND, LEM- 
NISCATE FUNCTION, LEMNISCATE FUNCTION, LENGTH 
DISTRIBUTION FUNCTION, LERCH TRANSCENDENT, 
LI%Y FUNCTION, LINEARLY DEPENDENT FUNC- 
TIONS, LIOUVILLE FUNCTION, LIPSCHITZ FUNCTION, 
LOGARITHM, LOGARITHMICALLY CONVEX FUNCTION, 
LOGIT TRANSFORMATION, LOMMEL FUNCTION, LYA- 
PUNOV FUNCTION, MACROBERT% E-FUNCTION, MAN- 
GOLDT FUNCTION, MATHIEU FUNCTION, MEASUR- 

ABLE FUNCTION, MEIJER’S G-FUNCTION, MEROMOR- 
PHIC, MERTENS FUNCTION, MERTZ APODIZATION 

FUNCTION, MITTAG-LEFFLER FUNCTION, MOBIUS 
FUNCTION, MOBIUS PERIODIC FUNCTION, MOCK 
THETA FUNCTION, MODIFIED BESSEL FUNCTION OF 
THE FIRST KIND, MODIFIED BESSEL FUNCTION OF 
THE SECOND KIND, MODIFIED SPHERICAL BESSEL 
FUNCTION, MODIFIED STRUVE FUNCTION, MODULAR 
FUNCTION, MODULAR GAMMA FUNCTION, MODULAR 
LAMBDA FUNCTION, MOMENT-GENERATING FUNC- 
TION, MONOGENIC FUNCTION, MONOTONIC FUNC- 
TION, Mu FUNCTION, MULTIPLICATIVE FUNCTION, 

MULTIVALUED FUNCTION, MULTIVARIATE FUNCTION, 
NEUMANN FUNCTION, NINT, Nu FUNCTION, NULL 
FUNCTION, NUMERIC FUNCTION, OBLATE SPHER- 

OIDAL WAVE FUNCTION, ODD FUNCTION, OMEGA 
FUNCTION, ONE- WAY FUNCTION, PARABOLIC CYL- 
INDER FUNCTION, PARTITION FUNCTION P, ‘PAR- 
TITION FUNCTION Q, PARZEN APODIZATION FUNC- 
TION, PEARSON-CUNNINGHAM FUNCTION, PEARSON’S 

FUNCTION, PERIODIC FUNCTION, PLANCK’S RADI- 
ATION FUNCTION, PLURISUBHARMONIC FUNCTION, 
POCHHAMMER SYMBOL, POINCARI&FUCHS-KLEIN Au- 
TOMORPHIC FUNCTION, POISSON-CHARLIER FUNC- 
TION, POLYGAMMA FUNCTION, POLYGENIC FUNC- 
TION, POLYLOGARITHM, POSITIVE DEFINITE FUNC- 
TION, POTENTIAL FUNCTION, POWER, PRIME COUNT- 

ING FUNCTION, PRIME DIFFERENCE FUNCTION, PROB- 
ABILITY DENSITY FUNCTION, PROBABILITY DISTRIBU- 
TION FUNCTION, PROLATE SPHEROIDAL WAVE FUNC- 
TION, PSI FUNCTION, PULSE FUNCTION, Q-BETA FUNC- 
TION, Q-FUNCTION, Q-GAMMA FUNCTION, QUASIPERI- 

ODIC FUNCTION, RADEMACHER FUNCTION, RAMANU- 
JAN FUNCTION, RAMANUJAN g- AND G- FUNCTIONS, 
RAMANUJAN THETA FUNCTIONS, RAMP FUNCTION, 

RATIONAL FUNCTION, REAL FUNCTION, RECTAN- 
GLE FUNCTION, REGULAR FUNCTION, REGULARIZED 

GAMMA FUNCTION, RESTRICTED DIVISOR FUNCTION, 
RIEMANN FUNCTION, RIEMANN-MANGOLDT FUNC- 
TION, RIEMANN-SIEGEL FUNCTIONS, RXEMANN THETA 
FUNCTION, RIEMANN ZETA FUNCTION, RING FUNC- 

TION, SAL, SAMPLING FUNCTION, SCALAR FUNCTION, 
SCHLOMILCH’S FUNCTION, SECANT, SEQUENCY FUNC- 
TION, SGN, SHAH FUNCTION, SIEGEL MODULAR FUNC- 
TION, SIGMA FUNCTION, SIGMOID FUNCTION, SIGN, 
SINC FUNCTION, SINE, SMARANDACHE FUNCTION, 

SPENCE’S FUNCTION, SPHERICAL BESSEL FUNCTION 
OF THE FIRST KIND, SPHERICAL BESSEL FUNCTION 
OF THE SECOND KIND, SPHERICAL HANKEL FUNCTION 

OF THE FIRST KIND, SPHERICAL HANKEL FUNCTION 
OF THE SECOND KIND, SPHERICAL HARMONIC, SPHER- 
OIDAL WAVEFUNCTION, SPRAGUE~RUNDY FUNCTION, 

SQUARE ROOT, SQUARED, STEP FUNCTION, STRUVE 
FUNCTION, STURM FUNCTION, SUMMATORY FUNC- 
TION, SYMMETRIC FUNCTION, TAK FUNCTION, TAN- 
GENT, TAPERING FUNCTION, TAU FUNCTION, TETRA- 
CHORIC FUNCTION, THETA FUNCTION, TOROXDAL 
FUNCTION, TORONTO FUNCTION, TOTAL FUNCTION, 

TOTIENT FUNCTION, TOTIENT VALENCE FUNCTION, 
TRANSCENDENTAL FUNCTION, TRANSFER FUNCTION, 

TRAPDOOR FUNCTION, TRIANGLE CENTER FUNCTION, 
TRIANGLE FUNCTION, TRICOMI FUNCTION, TRIGONO- 

METRIC FUNCTIONS, UNIFORM APODIZATION FUNC- 
TION, UNIVALENT FUNCTION, VECTOR FUNCTION, 
VERSINE, VON MANGOLDT FUNCTION, ~-FUNCTION, 

WALSH FUNCTION, WEBER FUNCTIONS, WEIERSTRAJ~ 
ELLIPTIC FUNCTION, WEIERSTRAJ~ FUNCTION, WEIER- 
STRAB SIGMA FUNCTION, WEIERSTRAQ ZETA FUNC- 
TION, WEIGHTING FUNCTION, WELCH APODIZATION 
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FUNCTION, WHITTAKER FUNCTION, WIENER FUNC- 
TION, WINDOW FUNCTION, XI FUNCTION, ZETA FUNC- 
TION 

References 
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Function Field 

see ALGEBRAIC FUNCTION FIELD 

Function Space 
f(1) is the collection of all real-valued continuous func- 
tions defined on some interval I. f(“)(l) is the collection 
of all functions E f(1) with continuous nth DERIVA- 
TIVES. A function space is a TOPOLOGICAL VECTOR 
SPACE whose “points” are functions. 

see also 
ATOR 

FUNCTIONAL, FUNCTIONAL ANALYSIS, OPER- 

Functional 
A mapping between FUNCTION SPACES if the range is 
on the REAL LINE or in the COMPLEX PLANE. 

see also COERCIVE FUNCTIONAL, CURRENT, ELLIP- 
TIC FUNCTIONAL, GENERALIZED FUNCTION, LAX- 
MILGRAM THEOREM,UPERATOR,RIESZ REPRESENTA- 
TION THEOREM 

Functional Analysis 
A branch of mathematics concerned with infinite dimen- 
sional spaces (mainly FUNCTION SPACES) and mappings 
between them. The SPACES may be of different, and pos- 
sibly INFINITE, DIMENSIONS. These mappings are called 
OPERATORS or, if the range is on the REAL line or in 
the COMPLEX PLANE,FUNCTIONALS. 

see also FUNCTIONAL, OPERATOR 
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Functional Calculus 
An early name for CALCULUS OF VARIATIONS. 

Functional Derivative 
A generalization of the concept of the DERIVATIVE to 
GENERALIZED FUNCTIONS. 

finctor 
A function between CATEGORIES which maps objects to 
objects and MORPHISMS to MORPHISMS. Functors exist 
in both covariant and contravariant types. 

see also CATEGORY, EILENBERG- 
MORPHISM, SCHUR F UNCTOR 

STEENROD AXIOMS, 

Fundamental Class 
The canonical generator of the nonvanishing HOMO- 
LOGY GROUP on a TOPOLOGICAL MANIFOLD. 

see also CHERN NUMBER, PONTRYAGIN NUMBER, 
STIEFEL-WHITNEY NUMBER 

Fundamental Continuity Theorem 
Given two POLYNOMIALS of the same order in one vari- 
able where the first p COEFFICIENTS (but not the first 

P- 1) are 0 and the COEFFICIENTS of the second ap- 
proach the corresponding COEFFICIENTS of the first as 
limits, then the second POLYNOMIAL will have exactly p 

roots that increase indefinitely. Furthermore, exactly k 
ROOTS of the second will approach each ROOT of mul- 
tiplicity k of the first as a limit. 

References 
Coolidge, J. L. 
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Fundamental Discriminant 
-D is a fundamental discriminant if D is a POSITIVE 
INTEGER which is not DIVISIBLE by any square of an 
ODD PRIME and which satisfies D E 3 (mod 4) or D c 
4,8 (mod 16). 

see also DISCRIMINANT 
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Fundamental Forms 
There are three types of so-called fundamental forms. 
The most important are the first and second (since the 
third can be expressed in terms of these). The fun- 
damental forms are extremely important and useful in 
determining the metric properties of a surface, such 
as LINE ELEMENT, AREA ELEMENT, NORMAL CURVA- 
TURE,GAUSSIAN CURVATURE, and MEAN CURVATURE. 
Let A4 be a REGULAR SURFACE with vP, wP points on 
the TANGENT SPACE A& of M. Then the first funda- 
mental form is the INNER PRODUCT of tangent vectors, 

The coefficients are also denoted gUu = E, guv = F, 

and gvv = G. In CURVILINEAR COORDINATES (where 
F = 0), the quantities 

are called SCALE FACTORS. 

The second fundamental. form is given explicitly by 

edu’+Zf dudv+gdu’ (14) 
I(V*, Wp) = Vp . Wpm (1) 

For M E R3, the second fundamental form is the sym- 
metric bilinear form on the TANGENT SPACE M,, 

WV, t WP> = SW l  wp, (2) 

where S is the SHAP 
tal form is given by 

E OPERATOR. The third fund .amen- 

IWP, WP> = SbP) l  S(WP)- (3) 

The first and second fundamental forms satisfy 

I(ax, + bxv,axu + bx,) = Ea2 + 2Fab + Gb2 (4) 

II(ax, + bx,, uxu + bx,) = a2 + 2 f ab + gb2, (5) 

and so their ratio is simply the NORMAL CURVATURE 

WP > K(Vp) = ~ 
I(% > 

(6) 

for any nonzeru TANGENT VECTOR. The third funda- 
mental form is given in terms of the first and second 
forms by 

III - 2HII + KI = 0, (7) 

where H is the MEA 

SIAN CURVATURE. 
N CURVATURE and Kisthe GAUS- 

The first fundamental form (or LINE ELEMENT) is given 
explicitly by the RIEMANNIAN METRIC 

ds2 = Edu2 +2Fdudv+Gdv’. (8) 

It determines the ARC LENGTH of a curve on a surface. 
The coefficients are given by 

ax 2 
E =xUU = BzL 

I I (9 

dx ax 
F=x,,=~*~ (10 

(11 

where 

X8 
2 

x 

Xi 
e= .- 

z au2 
(15) 

(17) 

and Xi are the DIRECTION COSINES of the surface nor- 
mal. The second fundamental form can also be written 

e=-N,*x,=N*x,, (18) 

f = -NV - xu  = N l  x u v  = NV, l  x v u  

= -Nu*xv 
(19) 

g  = -NV + x v  = N l  x vv ,  
(20) 

where Nisthe NORMAL VECTOR, or 

e- 
det(x,,xuxv) 

&!z=F 

f 
det(xuvx,xv) - - 

&!TFT 

9= 
det(xvvxuxv) 

&zT=’ 

(21) 

(22) 

(23) 

see also ARC LENGTH, AREA ELEMENT, GAUSSIAN 
CURVATURE, GEODESIC, K;~WLER MANIFOLD, LINE OF 
CURVATURE,LINEELEMENT,MEAN CURVATURE,NOR- 
MAL CURVATURE, RIEMANNIAN METRIC, SCALE FAC- 
TOR,~EINGARTEN EQUATIONS 
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Fundamental Group 
The fundamental group of a CONNECTED SET S is the 
QUOTIENT GROUP of the GROUP of all paths with initial 
and final points at a given point P and the SUBGROUP of 
all paths HOMOTOPIC to the degenerate path consisting 
of the point P. 

The fundamental group of the CIRCLE is the INFINITE 
CYCLIC GROUP. Two fundamental groups having dif- 
ferent points P are ISOMORPHIC. If the fundamental 
group consists only of the identity element, then the set 
S is simply connected. 

see also MILNOR'S THEOREM 

Fundamental Homology Class 

see also FUNDAMENTAL CLASS 

Fundamental Lemma of Calculus of 
Variations 
If 

s 

b 

M(x)h(x) dx = 0 
a 

V h(x) with CONTINUOUS second PARTIAL DERIVA- 
TIVES, then 

M(x) = 0 

on the OPEN INTERVAL (~,b). 

Fundamental System 
A set of ALGEBRAIC INVARIANTS for a QUANTIC such 
that any invariant of the QUANTIC is expressible as a 
POLYNOMIAL in members of the set. In 1868, Gordan 
proved the existence of finite fundamental systems of al- 
gebraic invariants and covariants for any binary QUAN- 
TIC. In 1890, Hilbert (1890) proved the HILBE~~T BASIS 
THEOREM, which is a finiteness theorem for the related 
concept of SYZYGIES. 

see also HILBERT BASIS THEOREM, SYZYGY 

References 
EIilbert, D. “uber die Theorie der algebraischen Fwmen.” 
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Fundamental Theorem of Algebra 
Every POLYNOMIAL equation having COMPLEX COEF- 
FICIENTS and degree 2 1 has at least one COMPLEX 
ROOT. This theorem was first proven by Gauss. It is 
equivalent to the statement that a POLYNOMIAL P(z) 
of degree n has n values of x (some of them possi- 
bly degenerate) for which P(z) = 0. An example of 
a POLYNOMIAL with a single ROOT of multiplicity > 1 
is x2 - 22 + 1 = (z - l)(z - l), which has z = 1 as a 
Rook of multiplicity 2. 

see also DEGENERATE,~OLYNOMIAL 

References 
Courant, R. and Robbins, H. “The Fundamental Theorem 

of Algebra.” 52.5.4 in What is Mathematics?: An Ele- 
mentary Approach to Ideas and Methods, 2nd ed. Oxford, 
England: Oxford University Press, pp. 101-103, 1996. 

Fundamental Theorem of Arithmetic 
Any POSITIVE INTEGER can be represented in exactly 
one way as a PRODUCT of PRIMES. The theorem is 
alsocalledthe UNIQUE FACTORIZATION THEOREM. The 
fundamental theorem of algebra is a COROLLARY of the 
first of EUCLID'S THEOREMS (Hardy and Wright 1979). 

see als o EUCLID'S THEOREMS, INTEGER, PRIME NUM- 
BER 
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ford, England: Clarendon Press, pp. 3 and 21, 1979. 

Fundamental Theorems of Calculus 
The first fundamental theorem of calculus states that, 
if f is CONTINUOUS on the CLOSED INTERVAL [a,b]and 
F is the ANTIDERIVATIVE (INDEFINITE INTEGRAL) off 
on [a, b], then 

s 

b 

f(x) dx = F(b) - F(a). (1) 
a 

The second fundamental theorem of calculus lets f be 
CONTINUOUS onan OPEN INTERVAL Iandletsabeany 
point in I. If F is defined by 

s 

3 

F(x) = f(t) dh (2) 
a 

then 

F’(x) = f(x) (3) 

at each point in 1. 

The complex fundamental theorem of calculus states 
that if f(a) h asa CONTINUOUS ANTIDERIVATIVE F(Z) in 
a region R containing a parameterized curve y : z = z(t) 
for cy < t < p, then - - 

s f(r) dz = F@(P)) - F(m)* (4) Y 
see also CAmuLus, DEFINITE INTEGRAL, INDEFINITE 
INTEGRAL,INTEGRAL 

Fundamental Theorem of Curves 
The CURVATURE and TORSION functionsalonga SPACE 
CURVE determine it up to an orientation-preserving 
ISOMETRY. 
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Fundamental Theorem of Directly Similar 

Figures 
Let Fo and Fl denote two directly similar figures in the 
plane, where PI E Fl corresponds to PO E FO under 
the given similarity. Let T E (0, l), and define FT = 
((1 - .)P() + 791 : PO E Fo}. Then Fr is also directly 
similar to Fo. 

see also FINSLER-HADWIGER THEOREM 
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Fundamental Theorem of Gaussian 

Quadrature 
The ABSCISSAS of the Iv point GAUSSIAN QUADRATURE 

FORMULA are precisely the ROOTS of the ORTHOGONAL 
POLYNOMIAL for the same INTERVAL and WEIGHTING 
FUNCTTOM. 

see also GAUSSIAN QUADRATURE 

Fundamental Theorem of Genera 

where w(d) is the genus of forms and h(4) is the CLASS 
NUMBER ofan IMAGINARY QUADRATIC FIELD. 
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Fundamental Theorem of Plane Curves 
Two unit-speed plane curves which have the same CUR- 
VATURE differ only by a EUCLIDEAN MOTION. 

see also FUNDAMENTAL THEOREM OF SPACE CURVES 

References 
Gray, A. Modern Differential Geometry of Curves and Sur- 
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1993. 

Fundamental Theorem of Projective 

Geometry 
A PROJECTIVITY is determined when three points of one 
RANGE and the corresponding three points of the other 
are given. 

see also PROJECTIVE GEOMETRY 

Fundamental Theorem of Space Curves 
If two single-valued continuous functions K(S) ( CURVA- 
TURE) and T(S) (TORSION) are given for s > 0, then 
there exists EXACTLY ONE SPACE CURVE, determined 
except for orientation and position in space (i.e., up to 
a EUCLIDEAN MOTION), where s is the ARC LENGTH, 
K is the CURVATURE, and r is the TORSION. 

see UZSO ARC LENGTH, CURVATURE, EUCLIDEAN Mo- 
TION, FUNDAMENTAL THEOREM OF PLANE CURVES, 
TORSION (DIFFERENTIAL GEOMETRY) 
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Fundamental Theorem of Symmetric 

Functions 
Any symmetric polynomial (respectively, symmetric ra- 
tional function) can be expressed as a POLYNOMIAL (re- 
spectively, RATIONAL FUNCTION) in the ELEMENTARY 
SYMMETRIC FUNCTIONS on those variables. 

see also ELEMENTARY SYMMETRIC FUNCTION 
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Fundamental Unit 
In a real QUADRATIC FIELD, there exists a special UNIT 
q known as the fundamental unit such that all units p 
are given by p = *vrn, for m = 0, &l, *2, . . . . The 
following table gives the fundamental units for the first 
few real quadratic fields. 
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2 1+fi 
3 2+fi 
5 #+fi) 
6 5+2fi 
7 8+3fi 

10 3+&s 
11 10+3fi 
13 i(3+fl) 
14 15+4J14 
15 4+1/15 
17 4+m 
19 170+39a 
21 3(5+Jzi) 
22 197+42m 
23 24+51/23 
26 5+m 
29 3(5+rn) 
30 11+2&G 
31 1520+273a 
33 5+4Js 
34 35+6a 
35 6+d% 
37 6+&7 
38 37+6J38 
39 25+4a 
41 32+5fl 
42 13+2&% 
43 3482+531- 
46 24335+3588m 
47 48f7m 

d 77(d) 
51 
53 
55 
57 
58 
59 
61 
62 
65 
66 
67 
69 
70 
71 
73 
74 
77 
78 
79 
82 
83 
85 
86 
87 
89 
91 
93 
95 
97 

50+7m 
+(7$-m) 
89+12- 
151+20&T 
99+13m 
530+69&J 
i(39+5J61 
63+8J62 
8+J65 
65+8a 
48842+5967m 
+(25+3J69) 
251+3Ofl 
3480+413fl 
1068+125J73 
43+5m 
$(9+rn) 
53f6fl 
80+9d% 
9+m 
82+9a 
+(wd%) 
10405+1122J86 
28+3&? 
501+54& 
1574+165J91 
$(29+3J93) 
39+4&E 
5604+569&i? 

UNIT see also QUADRATIC FIELD 

References 
Cohn, H. “Fundamental Units” and “Construction of Funda- 

mental Units.” 56.4 and 6.5 in Advanced Number Theory. 
New York: Dover, pp. 98-102, and 261-274, 1980. 

@ Weisstein, E. W. “Class Numbers.” http : //www . astro , 
virginia.edu/~eww6n/math/notebooks/ClassN~bers,~, 

Funnel 

FWHM 689 

and the parametric equations 

X(T, $1 = TCOS8 (2) 

Y (T, 0) = T  sin 8 (3) 

z(T, 0) = In r. (4 

see also GABRIEL'S HORN, PSEUDOSPHERE, SINCLAIR'S 
SOAP FILM PROBLEM 

References 
Gray, A. Modern Differential Geometry of Curves and Sur- 

faces. Boca Raton, FL: CRC Press, pp+ 325-327, 1993. 

Fuss% Problem 

see BICENTRIC POLYGON 

F’utile Game 
A GAME which permits a draw (“tie”) when played 
properly by both players. 

Fuzzy Logic 
An extension of two-valued LOGIC such that statements 
need not be TRUE or FALSE, but may have a degree of 
truth between 0 and 1. Such a system can be extremely 
useful in designing control logic for real-world systems 
such as elevators. 

see also ALETHIC, FALSE, LOGIC, TRUE 

References 
McNeil& D. and Freiberger, P. Fuzzy Logic. New York: Si- 

mon & Schuster, 1993. 
Nguyen, H. T. and Walker, E. A. A First Course in Fuzzy 

Logic. Boca Raton, FL: CRC Press, 1996. 
Yager, R. R. and Zadeh, L. A. (Eds.) An Introduction to 

Fuzzy Logic Applications in Intelligent Systems. Boston, 
MA: Kluwer, 1992. 

Zadeh, L. and Kakprzyk, J. (Eds.). Fuzzy Logic for the Man- 
agement of Uncertainty. New York: Wiley, 1992. 

see FULL WIDTH AT HALF MAXIMUM: 

The funnel surface is a REGULAR SURFACE defined by 
the Cartesian equation 

z = + ln(x2 + y”) (1) 
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G G’(z + 1) W) 
G(z + 1) 

= + ln(27r) - $ - x + z- 
r( > z (6) 

g-Function 

see RAMANUJAN g- AND G-FUNCTIONS 

G-F’unction 

0.9 

Re[G zl ImIG zl 

1. 10 4: 1 
-1. 10 

[zl 
-5. 1 

[zl 

Defined in Whittaker and Watson (1990, p. 264) and 
also called the BARNES G-FUNCTION. 

G(z + 1) = (2~)“/2e-[Z(Z+1)+Y”21/2 

where 7 is the EULER-MASCHERONI CONSTANT. This is 
an AN ALYTIC CONTINUATION ofthe G function defined 
in the construction of the GLAISHER- KINKELIN CON- 
STANT 

G(n + 1) G (n!)n 
K(n + 1) ’ 

(2) 

which has the special values 

if n = 0, -1, -2, l  . l  

ifn-1 (3) 
if n = 2,3,4,... 

for INTEGER 71. This function is what Sloane and 
Plouffe (1995) call the SUPERFACTORIAL, and the first 
few values for n = 1, 2, . . . are 1, 1, 1, 2, 12, 288, 
34560, 24883200,125411328000, 5056584744960000, l  . . 

(Sloane’s A000178). 

The G-function is the reciprocal of the DOUBLE GAMMA 
FUNCTION. It satisfies 

G(z + 1) = r(z)G(z) (4 

( > n! n 

G(n + 1) 
= ll. 22 .33 . ..nn (5) 

In [$&$I =~‘rrzcot(*1)dZ-1ln(2n) (7) 

and has the special values 

where 

1 = 1.28242713.... 

(10) 
The G-function can arise in spectral functions in math- 
ematical physics (Voros 1987). 

An unrelated pair of functions are denoted gn and Gn 
and are known as RAMANUJAN g- AND G-FUNCTIONS. 

see also EULER-MASCHERONI CONSTANT, GLAISHER- 
KINKELIN CONSTANT, K-FUNCTION, MEIJER’S G- 
FUNCTION,RAMANUJAN g- AND G-FUNCTIONS, SUPER- 
FACTORIAL 

References 
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Glaisher, J. W. L. “On a Numerical Continued Product.” 

Messenger Math. 8, 71-76, 1877. 
Glaisher, J. W. 1;. “On the Product 112233 l  9 4 n*? Messen- 

ger Math. 7, 43-47, 1878, 
Glaisher, J. W. L. “On Certain Numerical Products.” Mes- 

senger Math. 23, 145-175, 1893. 
Glaisher, J. W. L. “On the Constant which Occurs in the 

Formula for 112233 v q l  nn ” . Messenger Math. 24, l-16, 
1894. 

Kinkelin. “ober eine mit der Gammafunktion verwandte 
Transcendente und deren Anwendung auf die Integralrech- 
nung.” J. Reine Anger. Math. 57, 122-158, 1860. 

Sloane, N. J. A. Sequence A000178/M2049 in “An On-Line 
Version of the Encyclopedia of Integer Sequences.” 

Voros, A. “Spectral Functions, Special Functions and the Sel- 
berg Zeta Function.” Commun. Math. Phys. 110, 439- 
465, 1987. 

Whittaker, E. T. and Watson, G. N. A Course in Modern 
Analysis, 4th ed. Cambridge, England: Cambridge Uni- 
versity Press, 1990. 

G-Number 

see EISENSTEIN INTEGER 

G-Space 
A G-space is a special type of HAUSDORFF SPACE. Con- 
sider a point II: and a HOMEOMORPHISM of an open 
NEIGHBORHOOD V of 61: onto an OPEN SET of R”. Then 
a space is a G-space if, for any two such NEIGHBOR- 
HOODS V' and V", the images of V' U V" under the 
different HOMEOMORPHISMS are ISOMETRIC. If TX = 2, 
the HOMEOMORPHISMS need only be conformal 
necessarily orientation-preserving). 

see also GREEN SPACE 

(but not 
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Gabriel’s Horn 

The SURFACE OF REVOLUTION of the function y = l/z 
about the z-axis for it: 2 1. It has FINITE VOLUME 

V= ry2 dx = n 
s 

O” dx 

1 
22 1 O” =r -- [ 1 x 1 = ;Ir[o - (A)] = 7T, 

but INFINITE SURFACE AREA, since 

s 

O” dx 
> 2n ydx = 2rr 

1 

; = 24nx]~ 

= 27r[lnoo - o] = 00. 

This leads to the paradoxical consequence that while 
Gabriel’s horn can be filled up with r cubic units of 
paint, an INFINITE number of square units of paint are 
needed to cover its surface! 

see UZSO FUNNEL, PSEUDOSPHERE 

Gabriel’s Staircase 
The SUM 00 

Gallows 

Gale-Ryser Theorem 
Let p and q be PARTITIONS of a POSITIVE INTEGER, 
then there exists a (O,l)-matrix A such that c(A) = p, 

r(A) = q IFF 4 is dominated by p*. 

References 
Brualdi, R. and Ryser, H. J. $6.2.4 in Combinatorial Matrix 

Theory. New York: Cambridge University Press, 1991. 
Krause, M. “A Simple Proof of the Gale-Ryser Theorem? 

Amer. Math. Monthly 103, 335-337, 1996. 
Robinson, G. $1.4 in The Representation Theory of the Sym- 

metric Group. Toronto, Canada: University of Toronto 
Press, 1961. 

Ryser, H. J. “The Class &EL, S).” Combinatorial Mathemut- 

its. Buffalo, NY: Math. Assoc. Amer., pp. 61-65, 1963. 

Galilean Transformat ion 
A transformation from one reference frame to another 
moving with a constant VELOCITY ‘u with respect to 
the first for classical motion. However, special relativ- 
ity shows that the transformation must be modified to 
the LORENTZ TRANSFORMATION for relativistic motion. 
The forward Galilean transformation is 1 0 0 0 

--‘u 1 0 0 
0 010 
0 001 

and the inverse transformation is 

rti rl 0 0 01 vi 

see also LORENTZ TRANSFORMATION 

Gall’s Stereographic Projection 
A CYLINDRICAL PROJECTION which projects the equa- 
tor onto a tangent cylinder which intersects the globe at 
III 45”. The transformation equations are 

valid for 0 < r < 1. 
2 =A 

Gadget 
A term of endearment used by ALGEBRAIC TOPOLO- 

GISTS when talking about their favorite power tools such 
as ABELIAN GROUPS, BUNDLES, HOMOLOGY GROUPS, 
HOMOTOPYGROUPS,~THEORY,MORSETHEORY, OB- 
STRUCTIONS, stablehomotopytheory, VECTOR SPACES, 
etc. 

see UZSO ABELIAN GROUP, ALGEBRAIC TOPOLOGY, 
BUNDLE, FREE, HOMOLOGY GROUP, HOMOTOPY 

GROUP, ~-THEORY, OBSTRUCTION, MORSE THEORY, 
VECTOR SPACE 

[ 

t- 

X 

Y 
? 

where X is the LONGITUDE and 4 the LATITUDE. 

see ah STEREOGRAPHIC PROJECTION 

References 
Dana, P. H. 

depts/grg 
“Map Projections.” http: //www .utexas. edu/ 

/gcraf ‘t/notes/mapproj/mapproj. html. 

Gallows 
Schroeder (1991) calls the CEILING FUNCTION symbols 

[ and 1 the “gallows” because of their similarity in ap- 
pearance to the structure used for hangings. 

see also CEILING FUNCTION 

References 
Schroeder, M. Fractuls, Chaos, Power Laws: Minutes from 

an Infinite Paradise. New York: W, H. Freeman, p. 57, 
1991. 
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Gallucci’s Theorem 
If three SKEW LINES all meet three other SKEW LINES, 
any TRANSVERSAL to the first set of three meets any 
TRANSVERSAL to the second set of three. 

see also SKEW LINES, TRANSVERSAL LINE 

Galoisian 
An algebraic extension E of F for which every IRRE- 

DUCIBLE POLYNOMIAL in F which has a single ROOT in 
E has all its ROOTS in E is said to be Galoisian. Ga- 
loisian extensions are also called algebraically normal. 

Galois Extension Field 
The splitting FIELD for a separable POLYNOMIAL over a 
FINITE FIELD K, where L is a FIELD EXTENSION of K. 

Galois Field 

see FINITE FIELD 

Gambler’s Ruin 
Let two players each have a finite number of pennies 
(say, n1 for player one and n2 for player two). Now, flip 
one of the pennies (from either player), with each player 
having 50% probability of winning, and give the penny 
to the winner. If the process is repeated indefinitely, the 
probability that one or the other player will ewentuaEZy 
lose all his pennies is unity. However, the chances that 

Galois Group the individual players will be rendered penniless are 
Let 1; be a FIELD EXTENSION of K, denoted L/K, and 
let G be the set of AUTOMORPHISMS of L/K, that is, p1 = -EL- 
the set of AUTOMORPHISMS 0 of L such that a(z) = 2 . 721 + 722 

for every 61; E K, so that K is fixed. Then G is a GROUP p2 r --EL- 
of transformations of L, called the Galois group of L/K. m +n2' 

The Galois group of (C/IQ consists of the IDENTITY EL- 

EMENT and COMPLEX CONJUGATION. These functions 
both take a given REAL to the same real. 

see UZSO ABHYANKAR’S CONJECTURE, FINITE GROUP, 
GROUP 

References 
Jacobson, N. Basic Algebra I, 2nd ed. New York: W. H. 

Freeman, p. 234, 1985. 

Galois Imaginary 
A mathematical object invented 
CONGRUENCES of the form 

to solve irreducible 

F(x)= 0 (modp), 

where p is PRIME. 

Galois’s Theorem 
An algebraic equation is algebraically solvable IFF its 

GROUP is SOLVABLE. In order that an irreducible equa- 
tion of PRIME degree be solvable by radicals, it is NEC- 
ESSARY and SUFFICIENT that all its ROOTS be rational 
functions of two ROOTS. 

see also ABEL'S IMPOSSIBILITY THEOREM, SOLVABLE 
GROUP 

see UZSO COIN TOSSING, MARTINGALE, SAINT PETERS- 
BURG PARADOX 

References 
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Game 
A game is defined as a conflict involving gains and losses 
between two or more opponents who follow formal rules. 
The study of games belongs to a branch of mathematics 
knownas GAME THEORY. 

see also GAME THEORY 

Game Expectation 
Let the elements in a PAYOFF MATRIX be denoted aij, 
where the is are player A’s STRATEGIES and the js are 
player B's STRATEGIES. Player A can get at least 

. 
mm aij 
jln 

(1) 

Galois Theory 
If there exists a ONE-TO-ONE correspondence between 

for STRATEGY i. Player B can force player A to get 

two SUBGROUPS and SUBFIELDS such that 
no more than maxj<, aij for a STRATEGY~. The best 
STRATEGY for playei A is therefore 

G(E(G')) = G' 

E(G(E')) = E', 

then E is said to have a Galois theory. 

l  . 

mm minaij, 
i<m j<n 

and the best STRATEGY for player B is 

(2) 

min max Ui j . 
j<n i<m 

(3) 
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In general, 

l  . 

mm mm aij _ 
i<mj<n 

< min max aij . 
j<n i<rn 

(4) 

Equality holds only if a SADDLE POINT is present, in 
which case the quantity is called the VALUE of the game. 

see also GAME, PAYOFF MATRIX, SADDLE PRINT 
(GAME), STRATEGY, VALUE 

Game of Life 

Neumann, J+ von and Morgenstern, 0. Theory of Games and 
Economic Behavior, 3rd ed. New York: Wiley, 1964. 

Packel, E. The kfathematics of Games and Gambling. Wash- 
ington, DC: Math. Assoc. Amer., 1981. 

Straffin, P. D. Jr. Game Theory and Strategy. Washington, 
DC: Math. Assoc. Amer., 1993. 

Vajda, S. Mathematical Games and How to Play Them. New 
York: Routledge, 1992. 

Walker, P. “An Outline of the History of Game The- 
ory.” http://william-king.www.drexel,edu/top/c~ass/ 
histf ,html. 

Williams, J. D. The Compleat Strategy&, Being a Primer on 
the Theory of Games of Strategy. New York: Dover, 1986. 

see LIFE 
Gamma Distribution 

Game Matrix 

see PAYOFF MATRIX 

Game Theory 
A branch of MATHEMATICS and LOGIC which deals with 
the analysis of GAMES (i.e., situations in which parties 
are involved in situations where their interests conflict). 
In addition to the mathematical elegance and complete 
“solution” which is possible for simple games, the prin- 
ciples of game theory also find applications to compli- 
cated games such as cards, checkers, and chess, as well 
as real-world problems as diverse as economics, property 
division, politics, and warfare. 

see also BOREL DETERMINACY THEOREM, CATE- 
GORICAL GAME, CHECKERS, CHESS, DECISION THE- 
ORY, EQUILIBRIUM POINT, FINITE GAME, FUTILE 
GAME, GAME EXPECTATION, Go, HI-Q, IMPARTIAL 
GAME, MEX, MINIMAX THEOREM, MIXED STRAT- 
EGY, NASH EQUILIBRIUM, NASH'S THEOREM, NIM, 
NIM-VALUE, PARTISAN GAME, PAYOFF MATRIX, PEG 

SOLITAIRE, PERFECT INFORMATION, SADDLE POINT 
(GAME), SAFE, SPRAGUE-GRUNDY FUNCTION, STRAT- 
EGY, TACTIX, TIT-FOR-TAT, UNSAFE, VALUE, WYTH- 
OFF'S GAME, ZERO-SUM GAME 
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X x 

A general type of statistical DISTRIBUTION which is re- 
lated to the BETA DISTRIBUTION and arises naturally in 
processes for which the waiting times between POISSON 
DISTRIBUTED events are relevant. Gamma distributions 
have two free parameters, labeled a and 8, a few of which 
are illustrated above. 

Given a POISSON DISTRIBUTION with a rate of change X, 
the DISTRIBUTION FUNCTION D(x) giving the waiting 
times until the hth change is 

D(x) = P(X 5 x) = 1 - P(X > x) 

k=O 

k=O 

(1) 

for II: > 0. The probability function P(x) is then ob- 
tainedby differentiating D(x), 

P(x) = D’(x) 
h-1 

= Xc-X” (A > Xk -XX - 

k! -- 
k=O k=O -- 

h-l 

= Xc-X” + Xc-Xx 
x 

0 1 Xk -AX - 

k! -- 

h-1 k(Xz)k-lX 
x k! 

k=l k=l 

k=l L 

(A > X 
k-l 

P > 
x h-l 

1- - 

(h - l)! 

(k - l)! 
0 > Xk 

-- 

k! 

> 

- X(Ax)h-l -xx 
- 

(h - l)! e l  

(2) 
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Now let a z h and define 0 E l/X to be the time between 
changes. Then the above equation can be written 

random variates with a gamma distribution having pa- 
rameters (al,@, (~la,O), . . . , (a&), then Cyz1 Xi is 
distributed as gamma with parameters 

The CHARACTERISTIC FUNCTION describing this distri- 
bution is 

4(t) = (1 - it)-“, (4) Also, if Xl and X2 are independent random variates 
with a gamma distribution having parameters (~1~0) 
and (QIZ,@), then X1/(X1+X2) is a BETA DISTRIBUTION 
variate with parameters (cy1,cllz). Both can be derived 
as follows. 

and the MOMENT-GENERATING FUNCTION is 

s 
00 tx a-l -x/e M(t) = e x cy dx 

0 
r& 

s 

O” 
X 

a--le-(l-&)X/@ dx 

- 
- 

0 
(5) 

Let 
u = x1 + x2 Xl = uv (19) 

Xl v=- 
x1+x2 

x2 = u(l - v), (20) 

then the JACOBIAN is 

In order to find the MOMENTS of the distribution, let 

YE (1 - et>x 
0 (6) 

dY=B I 
1 - tit dx 

(7) 

J(y) +“, u+, (21) so 

so 

g(u,v)dudv = f (x, y) dxdy = f (x, y)ududv. (22) 1 - 

r 

a-1 - 
(1- &)T(a) o y e-Ydy 

- - 
(1 -‘et) a’ (8) 

du7 4 = r(al;f(a,) e-v4 
al-1 a2-1 

u (I - v)a2-1 

1 - - 
r(al>qaz) 

e -uUa~+a2-lval--l (1 - vyl. and the Isgarithmic Moment-Generating function is 

(23) R(t) E lnM(t) = -a ln(l - et) (9) 

The sum X1 + X2 therefore has the distribution (10) 
1 

f(u) = f (XI + x2) = 
s 

g(u, v) dv = e 
-uua1+a2 -1 

0 r(m +aa) ' 

(24) 
which is a gamma distribution, and the ratio X,/(X, + 
X2) has the distribution 

The MEAN, VARIANCE, SKEWNESS, and KURTOSIS are 
then 

p = R’(0) = ae 
o2 = R”(0) = are2 

(12) 

(13) 
h(v) = h (A) = ~m9wdu 

2 

y1 = --z d- 

V - 
W-1(1 _ v)a2-l 

- 

B(wp2) ' 
(14) (25) 

6 

y2 = a* (15) where B is the BETA FUNCTION, which is a BETA DIS- 
TRIBUTION. 

The gamma distribution is closely related to other statis- 
tical distributions. If X1, X2, . . . , X, are independent 

If X and Y are gamma variates with parameters ~1 and 
a2, the X/Y is a variate with a BETA PRIME DISTRI- 
BUTION with parameters al and a2. Let 

X 
u- X+Y v= -, 

Y 
(26) 
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then the JACOBIAN is 

dxdy = & dudv (28) 

1 ULV 

( > 

ax-1 

g(u) v) = r(al)r(az) e-U 1+w 

1 

= r(m)r(QIz) e 
-uual+Q2-lya2--l -a1 -a2 

(1+v) ' 

The ratio X/Y therefore has the distribution 

h( > u = g(u,v) du = ’ 
-y1+ 21)-l-2 (30) 

B(m, a2) 
1 

whichis a BETA PRIME DISTRIBUTION with parameters 

(w,az)* 

The %tandard form” of the gamma distribution is given 
by letting y E x/O, so dy = dx/O and 

a-1 -X/O 

‘(Y) dY = xrq( e)8” dx = 
WY) 

CY-le--y 

r(a)ea 
WY) 

a 

SO the MOMENTS about 0 are 

1 * rca+4 
v, = - - = 

r( > s 
e --zx-l+r dx = 

rw 

( ) 
Q rt 

a 0 
(32) 

where (+ is the POCHHAMMER SYMBOL. The Mo- 
MENTS about p = ~1 are then 

p1 = Q (33) 

P2 =a (34 

p3 = 2a (35) 

p4 = 3a2 + 6a. (36) 

The MOMENT-GENERATING FUNCTION is 

1 
Jm> = (1’ (37) 

and the CUMULANT-GENERATING FUNCTION is 

K(t) = a ln(1 - t) = QI t + it” + it” + . . .) , ( (38) 

SO the CUMULANTS are 

K’T = a(r). (39) 

If x is a NORMAL variate with MEAN p and STANDARD 
DEVIATION 0, then 

2u2 (40) 

is a standard gamma variate with parameter QI = l/2. 

see UZSO BETA DISTRIBUTION, CHI-SQUARED DISTRIBU- 
TION 

References 
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Gamma Function 

Re[Gamma 21 

-2. 

I i 4 

II 

Im[Gamma z] 
IGamma zI 

x-t---- 

The complete gamma function is defined to be, an exten- 
sionofthe FACTORIAL to COMPLEX and REAL NUMBER 
arguments. It is ANALYTIC everywhere except at z = 0, 
-1, -2, ..** Itcanbedefinedasa DEFINITE INTEGRAL 
for !R[z] > 0 (Euler’s integral form) 

r( > z E sm t Z-l 
ewt dt (1) 

0 

= 2 emt2tzr-’ &, (2) 
or 

r(z) = 1’ [In (i)]zB1 dt. (3) 

INTEGRATING (1) by parts for a REAL argument, it can 
3e seen that 

r( > x = t X-l Ct dt 

. - - P “-‘Ct]; + =(x - l)tx-2e-t dt 
s 0 

= (x - 1) 
r 

iF2est dt = (x - l)l?(x - 1). 
0 

(4 
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If z is an INTEGER n = 1, 2, 3, . . . then 

r(n) = (n - l)r(n - 1) = (n - l)(n - Z)lT(n - 2) 

= (n - l)(n - 2) l  l  l  1 = (n - l)!, (5 

so the gamma function reduces to the FACTORIAL for a 
POSITIVE INTEGER argument. 

BINET'S FORMULA is 

lnr(a) = (a- +)lna-a++ln(27r)+2 s 0 

(6) 
for R[a] > 0 (Whittaker and Watson 1990, p. 251). The 
gamma function can also be defined by an INFINITE 
PRODUCT form (Weierstrafi Form) 

where Q(Z) is the DIGAMMA FUNCTION and $0(z) is 
the P~LYGAMMA FUNCTION. nth derivatives are given 
in terms ofthe POLYGAMMA FUNCTIONS $~~,q&-l,..., 

$0. 

The minimum value ~0 of l?(z) for REAL POSITIVE CI: = 
x0 is achieved when 

r’(x0) = Rio = 0 (17) 

$0(x0) = 0, (18) 
This can be solved numerically to give x0 = 1.46163.. . 
(Sloane’s A030169), which has CONTINUED FRAC- 
TION [l, 2, 6, 63, 135, 1, 1, 1, 1, 4, 1, 38, . . .] 
(Sloane’s AO3OG’O). At x0, r(xo) achieves the value 
0.8856031944. l  . (Sloane’s AO30171), which has CON- 
TINUED FRACTION [0, 1, 7, 1, 2, 1, 6, 1, 1, . . l 1 (Sloane’s 
A030172). 

The Euler limit form is 
where y is the EULER-MASCHERONI CONSTANT. This 
can be written 

l?(z) = - exp f [z @pxkJ 1 (8) 

where 

Sl z y 

Sk = C(k) 

(9) 

(10) 

for k > 2, where c is the RIEMANN ZETA FUNCTION 
(Finch). Taking the logarithm of both sides of (7), 

-l@(z)] = lnz + yz + 2 [In (1+ i) - i] . (11) 
n=l 

Differentiating, 

---1+,+J: W) 

r( 1 x -2. ,_,(&-a) 

- - ;+7+y&-g 
n=l 

r'c 1 
x =- r(z) 

[ 

;+y+fy-&-i 

n=l )I 
E r(z)*(x) = Rio 

r’(l) = -r(i) - (1 +y + [(; - I) + (5 - +) 

+...+ ( -& - ;) +***]} 
=-(l+y-1)=-y 

(12) 

(13) 

(14) 

(15) 
I\ l?(n) - 1 1 1 = -r(n) 1 +y + K --I + 

> ( 
--- 
2+n 2) 

+ 
( 

&- ;) +.gn 

=-(n-l>! (A++:), W 

so 

1 

r( > 

= x lim e(l+l/2+...+l/m--Inm)z 
x [ m+m 1 

= ; fi [(l+ y (l+ ;)-l] t (19) 
n=l 

r(z) = lim 
1 l  2. 3m,-n 

n+m X(X + 1)(X + 2) l  ” (z + n, nr* 
(20) 

The LANCZOS APPROXIMATION for z > Ois 

qz + 1) = (Z + 7 + ~)Z+1~2ez+r+1~2J2, 

x co+ 
[ 

Cl c2 
-+- 
z+ l  x+2 

+***+-& +E] l  
(21) 

The complete gamma function l?(x) can be generalized 
to the incomplete gamma function r(x,a) such that 

r( > X = r&O). The g amma function satisfies the re- 
currence relations 

r(i + 2) = s(z) 
r(i - Z) = -q-z). 

(22) 
(23) 

Additional identities are 

r(x)r(-x) = - x sin~~x) 
r(qyi - 5) = n 

sin( Irrx) 

(24) 

(25) 

ln[r(x + iy + 1)] = ln(x2 + y”) + i tan-r 
0 

g 
X 

+ ln[r(a: + ip)] (26) 

(27) 

I(71 + ix)!1 = 
/*q-* (28) 
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For integral arguments, the first few values are 1, 1, 
2, 6, 24, 120, 720, 5040, 40320, 362880, . . . (Sloane’s 
A000142). For half integral arguments, 

r(i) = fi (29) 
w L. 

2=2 7T r (30) 
r( > s -“fi* 

2 -4 (31) 
In general, for m a POSITIVE INTEGER m = 1, 2, . . . 

- (2m - l)!! 
- 

2" J- 7r (32) 

rc; -4 = 1 w)m2m r 3 5 . . . . 

(II) 2 
(2m - 1) 7r 

m m  
- - 

(2 
d- m- l ) ! !  7r* 

(33) 

For E[z] = -5, 

I(-; + iyY12 = $-q 

Gamma functions of argument 22 can be expressed using 
the LEGENDRE DUPLICATION FORMULA 

r(2x) = (2~)-1'222"-1'2r(z)r(x+ $). (35) 

Gamma functions of argument 3x can be expressed using 
a triplication FORMULA 

r(3z) = (2~)-~3~“-~‘~ r(z)r(z + ;)I+ + 3). (36) 

The general result is the GAUSS MULTIPLICATION FOR- 
MULA 

r(+y~++)memr(z+~) = (2K)(n-1)/2nl'2-n"r(nZ). 
(37) 

The gamma function is also related to the RIEMANN 
ZETA FUNCTION <by 

r (t) T-2/2c(s) = r (G) ~-(~-~)/~~(l - s). (38) 

Borwein and Zucker (1992) give a variety of identities 
relating gamma functions to square roots and ELLIPTIC 
INTEGRAL SINGULAR VALUES k,, i.e., MODULI k, such 
that 

(39) 

where K(k) is a complete ELLIPTIC INTEGRAL OF THE 
FIRST KIND and K’(k) = K(k’) = K(dm) is the 
complementary integral. 

r( +) = 27/g3-1/12~1/3[K(k3)]1/3 (40) 
r( > I 

4 
= 2r1’4[K(k1)]1’2 (41) 

r(i) =2 -l/33V2T-W[r( $)]2 (42) 

r(;)r(i) = (h - 1)1’2213’4d’2K(k2) (43) 
1 

r(;' - 2(fi + 1)1’2r-1’4[K(k1)]1’2 - - 
r( > 

(44) 
8 

r(A)=2 -1/433/a(~+ 1)l/2T-1/2r(+)r($) 
(45) 

r(+) r(s) = 21/43-1/S@ - 1)1/2n1/2---, 
w  

(46) 
3 

r(&)r(g) 
r($)r(&) 

= duGx (47) 

r(A)r(&) 
r(%)r(ti) 

= 4 l  3’/“(fi + fi)r-1/2K(k1) (48) 

r($$G) 

r(&)r(&) 
= p/18 l/3 3 (A + l)n-1’3[K(k3)]2’3 

(49) 

r(&)r(&)r(&)r(~) 

= 384(&+ l)(h - J2)(2 - h>n[K(ks)12 (50) 

r(h)=2 -7/1051/4(&+ l)1/2n-1/2r(;)r(g) (51) 

r(g)=2 -3/"(& - q&g (52) 
5 

r(&)r(&)r(&) =2 31/2sl/6 
l  

r(&) 

sin( +)[I?( $)I2 (53) 

r(il;;)r($)r(&) 

r(i$) 

= Z2 l  32/5 sin( +) sin( +) [r( ;)I2 (54 

r(&m&)r(&-1 

r(&) 
2-3/23-l/5 1/4 5 (A- 1)"2[r(i)]2 - - 

sin( &7r) 
(55) 

r(il,)r(&)r(&) 

r(&) 
= 60(& - 1) sin( &R)[K(&)]’ 

- - 2'15(10 - 2&)1'2~-1 sin( +) sin(&7r)[r(i)]2 

(58) 

r($N&) 

r(&)Q$) 
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- - 23'5(10+ 2fiy2c1 sin( $71) sin( &) [r( $)I” 

(59) 

r($>r(&>r(&>r(&J 

The upper incomplete gamma function is given by 

- - 160(& - 2)“27r[K(k,)]2. (60) 

r(a,x) E 

s* 

P-Pdt = i -?(a,~), (69) 

X 

A few curious identities include 

n=l 

[WI” 32 52 - 1 72 - ~ 
- 

---. . . 
167~~ 32 -1 52 72 -1 

rv> w> --- 
w W) 

= 2ln2 
2 

(Magnus and Oberhettinger 1949, p. 1). Ramanujan 
also gave a number of fascinating identities: 

r2(n + 1) 
qn + xi + l)Iy?2 - zi + 1) = 1 

(64) 

4b-b n>4h m) = 
r3(m + l)r3(n + I) 

lT(2m + n + l)lT(2n + m + 1) 

X 
cosh[r(m + n)fi] - cos[;rr(m - n)] 

2n2(m2 +mn+n2) 
1 (65) 

where 

k=T L 

n [l+ (S”] g  [1+3&k)?] 
k=l - 

r(fn> cosh(rn&) - cos(rn) - - 
r[; (n + l>l 2n+2,312n (67) 

(Berndt 1994)+ 

The following ASYMPTOTIC SERIES is occasionally use- 
ful in probability theory (e.g., the 1-D RANDOM WALK): 

r(J + $1 1 1 - - 
F(J) ’ - 8J + 128J2 

5 21 
+ ~ - 

1024J3 
~ +... 
32768J4 (68) 

(Graham et al. 1994). This series also gives a nice 
asymptotic generalization of STIRLING NUMBERS OF 
THE FIRST KIND to fractional values. 

It has long been known that r(a)Y1/4 is TRANSCEN- 
DENTAL (Davis 1959), as is r(i) (Le Lionnais 1983), and 
Chudnovsky has apparently recently proved that r(a) 
is itself TRANSCENDENTAL. 
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where y is the lower incomplete gamma function. For a 
an INTEGER n 

r(n, 2) = (n - l)!e-” nf 
X5 

s! 
= n- ( l)!e-" eSn-l(X), 

s=o 
(70) 

where es is the EXPONENTIAL SUM FUNCTION. The 
lower incomplete gamma function is given by 

s 

2 

~(a, X) E r(a) - r(a, 2) = e?“-’ dt 
0 

=a -lx”e-“&(l; 1 + a; 2) 

= a-lxa~Fl(u; 1+ a; -x), (71) 

where #&$;x) is the CONFLUENT HYPERGEOMETRIC 
FUNCTION OF THE FIRST KIND. For a an INTEGERS, 

r(v) = (n - l)! (l-esx$$j 

= ( n - l)! [l - es,-l(x)]. (72) 

The function r(a, z) is denoted Gamma [a, z J and 
the function $a,~) is denoted Gamma[a,O,zl in 
Mathematics @ (Wolfram Research, Champaign, IL). 

see also DIGAMMA FUNCTION,DOUBLE GAMMA FUNC- 
TION, FRANSI?N-ROBINSON CONSTANT G-FUNCTION, 
GAUSS MULTIPLICATION FORMULA, LAMBDA FUNC- 
TION, LEGENDRE DUPLICATION FORMULA, Mu FUNC- 
TION, Nu FUNCTION, PEARSON'S FUNCTION, POLY- 
GAMMA FUNCTION,REGULARIZED GAMMA FUNCTION, 
STIRLING'S SERIES 
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Gives a lower bound for the inner product (Lu, u), where 
L is a linear elliptic REAL differential operator of order 
VI, and u has compact support. 
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for the Special Functions of Mathematical Physics. New 
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Garman-Kohlhagen Formula 

terling, W. T. ‘LGarnma Function, Beta Function, Fac- 
torials, Binomial Coefficients” and “Incomplete Gamma 
Function, Error Function, Chi-Square Probability fine- 
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T/t = emY’StN(dl) - e-“KN(da), 

where N is the cumulative NORMAL DISTRIBUTION and 

&,dz = 
log (g) + (T - y It iU”)T 

. 
aJ7 

If y = 0, this is the standard form of the Black-Scholes 
formula. 

Spanier, 5. and Oldham, K. B. “The Gamma Function I?(z)” 
and “The Incomplete Gamma y(~; x) and Related Func- 
tions.” Chs. 43 and 45 in An A&s of Functions. Wash- 
in&on, DC: Hemisphere, pp. 411-421 and 435-443, 1987. 

Whittaker, E. T. and Watson, G. N. A Course in Modern 
Analysis, 4th ed. Cambridge, England: Cambridge Uni- 
versity Press, 1990. 

see ~2s~ BLACK-SCHOLES THEORY 
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Gamma Group 
Amer. Math. Sot. 43, 964-971, 1996. 

The gamma group r is the set of all transformations w  
of the form 

at + b 
w(t) = ct+ 

where a, b, c, and d are INTEGERS and ad - bc = 1. 

see ~2s~ KLEIN'S ABSOLUTE INVARIANT, LAMBDA 
GROUP, THETA FUNCTION 

Gate Function 
Bracewell’sterm for the RECTANGLE FUNCTION. 

References 
Bracewell, R. The Fourier Transform and Its Applications. 

New York: McGraw-Hill, 1965. 

Gauche Conic 
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Borwein, J. M. and Borwein, P. B. Pi & the AGM: A Study in 

Analytic Number Theory and Computational Complexity. 
New York: Wiley, pp. 127-132, 1987. 

see SKEW CONIC 

Gaullist Cross 

Gamma-Modular 

see MODULAR GAMMA FUNCTION 

Gamma Statistic 
A CROSS alsocalledthe CROSS OF LORRAINEOF~ATRI- 

fh 
yr = &+2 ’ ARCHAL CROSS. 

where ~~ are CUMULANTS and 0 is the STANDARD DE- 
see also CROSS, DISSECTION 

VIATION. 

see also KURTOSIS, SKEWNESS 
Gauss’s Backward Formula 

Garage Door 

see ASTROID 

j-p = fo+p~-~,~+G;~~+G3631,2+G~S04+G5651/2+. l  l  , 

for P E [o, 11, where S is the CENTRAL DIFFERENCE~~~ 

G;, = ‘2+,” 
( > 

Gzn+1 = 
P+n ( > 2n+l ’ 



Gauss-Bodenmiller Theorem Gauss-Bonnet Theorem 

where (L) is a BINOMIAL COEFFICIENT. 2-D RIEMANNIAN MANIFOLD, theintegralofthe GAUS- 

see ah CENTRAL DIFFERENCE, GAUSS'S FORWARD SIAN CURVATURE over the entire MANIFOLD with re- 

FORMULA spect to AREA is 2n times the EULER CHARACTERISTIC 
of the MANIFOLD, 

References 
Beyer, W. H. CRC Standard Mathematical Tab& 28th ed. 

Boca Raton, FL: CRC Press, p. 433, 1987+ K dA = %x(M). (2) 

Gauss-Bodenmiller Theorem 
The CIRCLES on the DIAGONALS ofa COMPLETE QUAD- 
RILATERAL as DIAMETERS are COAXAL. Furthermore, 
the ORTHOCENTERS of the four TRIANGLES of a COM- 
PLETE QUADRILATERAL are COLLINEAR on the RADI- 
CAL AXIS ofthe COAXAL CIRCLES. 

see &SO COAXAL CIRCLES, COLLINEAR, COMPLETE 
QUADRILATERAL, DIAGONAL (POLYGON), URTHOCEN- 
TER, RADICAL AXIS 

This is somewhat surprising because the total GAUSSIAN 
CURVATURE is differential-geometric in character, but 
the EULER CHARACTERISTIC is topological in character 
and does not depend on differential geometry at all. So 
if you distort the surface and change the curvature at 
any location, regardless of how you do it, the same total 
curvature is maintained. 

References 

Another 
surfaces 

way of looking at 
in 3space is that 

Johnson, R. A. Modern Geometry: An Elementary Treatise 
on the Geometry of the TTiangle and the Circle. Boston, 
MA: Houghton Mifflin, pm 172, 1929. 

Gauss-Bolyai-Lobachevsky Space 

has DEGREE givenbyhalfthe EULER CHARACTERISTIC 
of the surface 

K dA = 2q(M) - ~,CQ - 
s 

kg ds, 0 
aM 

Gauss-Bonnet theorem for 
GAUSS MAP of the surface 

the 
the 

A non-Euclidean space with constant NEGATIVE GAUS- 
SIAN CURVATURE. 

see also LOBACHEVSKY-BOLYAI-GAUSS GEOMETRY, 
NON-EUCLIDEAN GEOMETRY 

Gauss-Bonnet Formula 
The Gauss-Bonnet formula has several formulations. 
The simplest one expresses the total GAUSSIAN CUR- 
VATURE of an embedded triangle in terms of the total 
GEODESIC CURVATURE of the boundary and the JUMP 
ANGLES at the corners. 

which works only for ORIENTABLE SURFACES. This 

makes the Gauss-Bonnet theorem a simple consequence 
of the POINCARE-HOPF INDEX THEOREM, which is a 
nice way of looking at things if you’re a topologist, but 
not so nice for a differential geometer. This proof can 
be found in Guillemin and Pollack (1974). Millman 
and Parker (1977) give a standard differential-geometric 
proof of the Gauss-Bonnet theorem, and Singer and 
Thorpe (1996) give a GAUSS'S THEOREMA EGREGIUM- 
inspired proof which is entirely intrinsic, without any 
reference to the ambient EUCLIDEAN SPACE. 

More specifically, if M is any 2-D RIEMANNIAN MANI- 
FOLD (like a surface in 3-space) and if T is an embedded 
triangle, then the Gauss-Bonnet formula states that the 
integral over the whole triangle of the GAUSSIAN CUR- 
VATURE with respect to AREA is given by 2n minus the 
sum of the JUMP ANGLES minus the integral of the GEO- 

DESIC CURVATURE over the whole of the boundary of the 
triangle (with respect to ARC LENGTH), 

A general Gauss-Bonnet formula that takes into account 
both formulas can also be given For any compact 2-D 
RIEMANNIAN MANIFOLD with corners, the integral of 
the GAUSSIAN CURVATURE over the ~-MANIFOLD with 
respect to AREA is 2n times the EULER CHARACTERIS- 
TIC of the MANIFOLD minus the sum of the JUMP AN- 
GLES andthetotal GEODESIC CURVATURE ofthebound- 
ary. 
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where Kisthe GAUSSIAN CURVATURE, dA is the AREA wood Cliffs, NJ: Prentice-Hall, 1974. 

measure, the QI~S are the JUMP ANGLES of 8T, and &g 
Millman, R. S. and Parker, G. D. Elements of Differential 

is the GEODESIC CURVATURE of dT, with ds the ARC 
Geometry. Prentice-Hall, 1977. 

Reckziegel, H. In Mathematical Models from the Collections 
LENGTH measure. 

The next most common formulation of the Gauss- 
Bonnet formula is that for any compact, boundaryless 

of Universities and Museums (Ed. G. Fischer). Braun- 
schweig, Germany: Vieweg, p. 31, 1986. 

Singer, I. M. and Thorpe, J. A. Lecture Notes on Elemen- 
tary Topology and Geometry. New York: Springer-Verlag, 
1996. 

Gauss-Bonnet Theorem 

see GAUSS-BONNET FORMULA 



702 Gauss’s Circle Problem 

Gauss’s Circle Problem 
. . l  . . 

a^ 

+ 

m  . . 

. l 4 l l -  

.  a a 0 4 -  

^ ^ 

+ 

.  4 l a a ’ 

” ^ 
.  4 0 0 4 -  

.  A .  .  4 .  

Count the number of LATTICE POINTS 

m  .  . . l  

N(r) inside the 
boundary of a CIRCLE of RADIUS T with center at the 
origin. The exact solution is given by the SUM 

N(r)=1+4lrj+4E1d??i. (1) 

The first few values 
(Sloane’s A000328) = 

Gauss showed that 

N 

where 

L 4 

i=l 

are 1, 5, 13, 29, 49, 81, 113, 149, . . 

‘( > T = rr2 + E(T), (2 > 

. . - 
IE(r)l < 2d27rr. - (3) 

Writing [Ed 2 Cr’, the best bounds on 8 are l/2 < 
8 < 46173 - z 0.630137 (Huxley 1990). The problem 
has also been extended to CoNICS and higher dimen- 
sions. The limit l/2 was obtained by Hardy and Landau 
(1915), and the limit 46/73 improves previous values of 
24137 = 0.64864 (Cheng 1963) and 34/53 z 0.64150 
(Vinogradov), and 7/11 =z: 0.63636. 

see also CIRCLE LATTICE POINTS 
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Gauss’s Class Number Conjecture 
In his monumental treatise Dis@itiones Arithmeticae, 
Gauss conjectured that the CLASS NUMBER h(4) of 
an IMAGINARY quadratic field with DI~CRIMINANT -d 
tends to infinity with d. A proof was finally given by 
Heilbronn (1934), and Siegel (1936) showed that for any 
E > 0, there exists a constant cE > 0 such that 

h(-d) > cEd1’2-e 

Gauss’s Class Number Problem 

as d + 00. However, these results were not effective 
in actually determining the values for a given m of a 
complete list of fundamental discriminants -d such that 
h(-d) = m, a problem known as GAUSS'S CLASS NUM- 
BER PROBLEM. 

Goldfeld (1976) showed that if there exists a “Weil 
curve” whose associated DIRICHLET L-SERIES has a zero 
of at least third order at s = 1, then for any E > 0, there 
exists an effectively computable constant cE such that 

h(-d) > c,(lnd)‘-“. 

Gross and Zaiger (1983) showed that certain curves must 
satisfy the condition of Goldfeld, and Goldfeld’s proof 
was simplified by Oesterlh (1985). 

see also CLASS NUMBER, GAUSS'S CLASS NUMBER 
PROBLEM,HEEGNER NUMBER 
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Gauss’s Class Number Problem 
For a given m, determine a complete list of fundamen- 
tal DISCRIMINANTS -d such that the CLASS NUMBER 
is given by h( -d) = m. Heegner (1952) gave a solution 
for m = 1, but it was not completely accepted due to a 
number of apparent gaps. However, subsequent exam- 
ination of Heegner’s proof show it to be “essentially” 
correct (Conway and Guy 1996). Conway and Guy 
(1996) therefore call the nine values of n(-d) having 

h(-4 = 1 where -d is the DISCRIMINANT correspond- 
ingtoa QUADRATIC FIELD u+bd% (n = -1, -2, -3, 
-7, -11, -19, -43, -67, and -163; Sloane’s AOO3173) 
the HEEGNERNUMBERS. The HEEGNERNUMBERS have 
a number of fascinating properties. 

Stark (1967) and Baker (1966) gave independent proofs 
of the fact that only nine such numbers exist; both 
proofs were accepted. Baker (1971) and Stark (1975) 
subsequently and independently solved the generalized 
class number problem completely for m = 2. OesterE 
(1985) solved the case m = 3, and Arno (1992) solved 
the case m = 4. Wagner (1996) solve the cases n = 5, 6, 
and 7. Arno et al. (1993) solved the problem for ODD 
m satisfying 5 5 m 5 23. 
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see also Cuss NUMBER, GAwss’s Cuss NUMBER 
CONJECTURE, HEEGNER NUMBER 
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Gauss’s Constant 
The RECIPROCAL of the ARITHMETIC-GEOMETRIC 
MEAN of 1 and &, 

1 2l 1 

s 
~ dx 

M(l,fi) = G o q’i=? 
(1) 

2 

s 

42 
- -- 

r 0 

- - 

- 0.83462684167.. . , - (4) 

where K(k) isthecomplete ELLIPTIC INTEGRAL OF THE 
FIRST KIND and l?(z) is the GAMMA FUNCTION. 

see also ARITHMETIC-GEOMETRIC MEAN, GAUSS- 
KUZMIN-WIRSING CONSTANT 
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Gauss’s Criterion 
Let pbe an ODD PRIME and b a POSITIVEINTEGER not 
divisible by p. Then for each POSITIVE ODD INTEGER 
2k - 1 < p, let ri be 

rk G (2k - 1)b (mod p) 

with 0 < ?-k < p, and let t be the number of EVEN T~S. 
Then 

WPI = W”, 

where (b/p) is the LEGENDRE SYMBOL. 
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Gauss’s Double Point Theorem 
If a sequence of DOUBLE POINTS is passed as a CLOSED 
CURVE is traversed, each DOUBLE PRINT appears once 
in an EVEN place and once in an ODD place, 
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Gauss Equations 
If x is a regular patch on a REGULAR SURFACE in Iw3 
with normal fi, then 

X uu = r:lx, +&xv + ek (1) 
X uv = r:zx, + r;2x, + ffi (2) 

1 2 
e 

xvv = rmxu + r22xv + gN, (3) 

where e, f, and g are coefficients of the second FUNDA- 
MENTAL FORM and rFj are CHRISTOFFEL SYMBOLS OF 
THE SECOND KIND. 

see also CHRISTOFFEL SYMBOL OF THE SECOND KIND, 
FUNDAMENTAL FORMS, MAINARDI-CQDAZZI EQ~A- 
TIONS 
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Gauss’s Equation (Radius Derivatives) 
Expresses the second derivatives of r in terms of the 
CHRISTOFFEL SYMBOL OF THE SECOND KIND. 
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Gauss’s Formula Gauss’s Hypergeometric Theorem 

xp - y” 
4- 

X-Y 
= R2(x, y) - (-l)‘p-1”2ps2(X,y), 

where R and S are HOMOGENEOUS POLYNOMIALS in x 

and y with integral COEFFICIENTS. 

see ah AURIFEUILLEAN FACTORIZATION, GAUSS'S 
BACKWARD FORMULA,GAUSS'S FORWARD FORMULA 
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Gauss’s Formulas 
Let a SPHERICAL TRIANGLE have sides a, b, and c with 
A, B, and C the corresponding opposite angles. Then 

sin[$ - b)] 
sin($) = 

sin[i(A - B)] 

cos( ;c> 

sin[+(a + b)] 

sin(+) = 

cos[i(A - B)] 

sin( $C) 

cos[$(u - b)] sin[$(A + B)] 

cos(+) = cos( $7) 

cos[;(u + b)] cos[$(A + B)] 

cos(~c) = sin($C) l  

see  a lso  SPHERICAL TRIGONOMETRY 

Gauss’s Forward Formula 

l  l  1  

1  

for P E IA 11, where S is the CENTRAL DIFFERENCE ana 

(1) 

(2) 

(3) 

(4) 

Gzn= (p+;-‘) 

where T 0 is a BINOMIAL COEFFICIENT. 
see also CENTRAL DIFFERENCE, GAUSS'S BACKWARD 
FORMULA 
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Gauss’s Harmonic Function Theorem 
If a function $ is HARMONIC in a SPHERE, then the value 
of 4 at the center of the SPHERE is the ARITHMETIC 
MEAN of its value on the surface. 

zF~(u, b; c; 1) = 
r(c)r(c - a - b) 

r(c - u)l?(c - b) 

for R[c - a - b] > 0, where 2Fl (a, 6; c; x) is a HYPERGE- 
OMETRIC FUNCTION. If a is a NEGATIVE INTEGER -TJ, 
this becomes 

(c - b)n 2Fl(-n,b;c; 1) = - 
( > 

1 
Cn 

which is known as the VANDERMONDE THEOREM. 

see also GENERALIZED HYPERGEOMETRIC FUNCTION, 
HYPERGEOMETRIC FUNCTION 
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Gauss’s Inequality 
If a distribution has a single MODE at ~0, then 

where 
7 2 = c2 + (p - po)2* 

Gauss’s Interpolation Formula 

2n 

f (2) = &t(X) = 7; fdk(x), 
k=O 

where t,,(x) is a trigonometric POLYNOMIAL of degree TI 
such that t&k) = fk for k: = 0, l  . . , 2n, and 

b(x) = 
sin[+(x - xO)]“‘sin[+(x - x&l)] 

sin[ $ (xk - x0)] ’ ’ - sin[ $ (xk - x&l)] 
sin[+(x - xk+l) ]  l  l  ‘sin[$(X - Xsn)] 

sin[+(xk - xk+l) ]  n  n  l  s in [+(xk - xh)] l  
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Gauss-Jacobi Mechanical Quadrature 
If x1 < x2 < l  . l  < xn denote the zeros of pn(x), there 
exist REAL NUMBERS XI, X2, . . . , X, such that 

I‘ 
b 

P(X) da(x) = X~P(XI) + A2p(x2) + 4.. + LP(Xn), 
JU 

for an arbitrary PULYNOMIAL of order 2n - 1 and the 
Xgs are called CHRISTOFFEL NUMBERS. The distribu- 
tion da(x) and the INTEGER n uniquely determine these 
numbers X,. 
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Gauss-Jordan Elimination 
A method for finding a MATRIX INVERSE. TO apply 
Gauss-Jordan elimination, operate on a MATRIX 

a11 *-* al, 1 0 .” 0 
a21 l  ” u2n 0 1 ‘** 0 

. . . . . . . , 
l  . l  . l  . . 

l  
. 

. 

a,1 l  ” arm. 0 0 l  ‘1 i I 
where I is the IDENTITY MATRIX, to obtain a MATRIX 

of the form 

The MATRIX 

is then the MATRIX INVERSE of A. The procedure is 
numerically unstable unless PXV~TING (exchanging rows 
and columns as appropriate) is used. Picking the largest 
available element as the pivot is usually a good choice. 

see also GAUSSIAN ELIMINATION, LU DECOMPOSITION, 

MATRIX EQUATION 
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Gauss-Kummer Series 

2Fl(-+,-;; 

= I+ ih2 + $L4 + &fh6 + . . . , 

where gFl (a, b; C; 2) is a HYPERGEOMETRIC FUNCTION. 
This can be derived using KUMMER’S QUADRATIC 
TRANSFORMATION. 

Gauss-Kuzmin-Wirsing Constant 
N.B. A detailed on-line essay by S. Finch was the start- 
ing point for this entry. 

Let ~0 be a random number from [0, l] written as a 
simple CONTINUED FRACTION 

=o+ 
1 

x0 
1 l  

(1) 

al + 
1 

a2 + - 
as+.*. 

Define 

=o+ 
1 

Xn 
1 

%x+1+ 
1 
I  

h-b+2 + 
an+3 + 4 l  l  

1 1 - -- - - 
Xl n- L 1 . X7x-l 

(2) 

Gauss (1800) showed that if F(n, x) is the probability 
that xn < X, then 

lim F(n,x) = 
ln(l + x) 

In2 ’ (3) n+=m 

Kuzmin (1928) published the first proof, which was sub- 
sequently improved by L&y (1929). Wirsing (1974) 
showed, among other results, that 

n-300 - n (4) 

where X = 0.3036630029.. . and S’(x) is an analytic 
function with Xl!(O) = Q(1) = 0. This constant is con- 
nected to the efficiency of the EUCLIDEAN ALGORITHM 
(Knuth 1981). 
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Gauss-Laguerre Quadrature 

see LAGUERRE-GAUSS QUADRATURE 

Gauss’s Lemma 
Let the multiples wz, 2772, l  l  . , [(p-1)/2]m of an INTEGER 
such that dm be taken. If there are an EVEN number 
T of least POSITIVE RESIDUES mod p of these numbers 
> p/2, then m. is a QUADRATIC RESIDUE of p. If T is 
ODD, nz is a QUADRATIC NONRESIDUE. Gauss’s lemma 
can therefore be stated as (mlp) = (-l)‘, where (mlp) 
is the LEGENDRE SYMBOL. It was proved by Gauss as 
a step along the way to the QUADRATIC RECIPROCITY 

THEOREM. 

see also QUADRATIC RECIPROCITY THEOREM 
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Gauss’s Machin-Like Formula 
The MACHIN-LIKE FORMULA 

+T = 12 cot-l 18 + 8cot-1 57 - 5 cot-’ 239. 

Gauss-Manin Connection 
A connection defined on a smooth ALGEBRAIC VARIETY 
defined over the COMPLEX NUMBERS. 

References 
Iyanaga, S. and Kawada, Y. (Eds.). Encyclopedic Dictionary 
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Gauss Map 
The Gauss map is a function from an ORIENTABLE SUR- 
FACE in EUCLIDEAN SPACE to a SPHERE. It associates 
to every point on the surface its oriented NORMAL VEC- 
TOR. For surfaces in 3-space, the Gauss map of the 
surface has DEGREE given by half the EULER CHARAC- 
TERISTIC of the surface 

K dA = 2rx(iW) - 7; cti - 
s 

Kg d% 
8M 

which works only for ORIENTABLE SURFACES. 

see also CURVATURE, NIRENBERG'S CONJECTURE, 
PATCH 
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Mathematics.” §10.3 and 315.3 in Modern Differential Ge- 
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Gauss’s Mean-Value Theorem 
Let f(z) be an ANALYTIC FUNCTION in Ix - al < R. 
Then 

1 /r2r 

f( ) 
1 

z=5Go J 
f (z + d) d0 

for 0 < T < R. 

Gauss Measure 
The standard Gauss measure of a finite dimensional 
REAL HILBERT SPACE H with norm 11 l  l[H has the 
BOREL MEASURE 

PH (dh) = (V%)-dim(H’ exp($lh[&)XH (dh), 

where XH is the LEBESGUE MEASURE on H. 

Gauss Multiplication Formula 

(24 
(n-WnW-yynz) 

= r(z)I+ + i)r(z + ;, ” ’ I+ + V) 

n-l 

where r(z) is the GAMMA FUNCTION. 

see also GAMMA FUNCTION, LEGENDRE DUPLICATION 
FORMULA, POLYGAMMA FUNCTION 
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of Mathematical Functions With Formulas, Graphs, and 
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Gauss Plane 

see COMPLEX PLANE 

Gauss’s Polynomial Theorem 
Ifa POLYNOMIAL 

f( > II: = xN + clxN-l + &xN-’ +. . . + CN 

Wi th integral COEFFI CIENTS is 
of two POLYN OMIALS f = I@ 

divisible into a product 

* = x m  + ck lxm-- l  +. l  l  + am  

4 
= Xn + /31XnB1 + l  . l  + Pnp 

then the COEFFICIENTS of this POLYNOMIAL are INTE- 
GERS. 

see dso ABEL'S IRREDUCIBILITY THEOREM, ABEL'S 
LEMMA, KRONECKER'SPOLYNOMIAL THEOREM,POLY- 
NOMIAL,SCHOENEMANN'S THEUREM 

References 
DSrrie, JiL 100 Great Problems of Elementary Mathematics: 

Their History and Solutions. New York: Dover, p. 119, 
1965. 

Gauss’s Reciprocity Theorem 

see QUADRATIC RECIPROCITY THEOREM 

Gauss-Salamin Formula 

see BRENT-SALAMIN FORMULA 

Gauss’s Test 
If tin > 0 and given B(n) a bounded function of n as 
n + 00, express the ratio of successive terms as 

W-t = l+ h + B(n) - 

%a+1 72 n2 ’ 

The SERIES converges for h >l and diverges for h < 1. - 

see UZSO CONVERGENCE TESTS 
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Gauss’s Theorem 

NONDIVERGENCE THEOREM 
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Gauss’s Theorema Egregium 
Gauss’s theorema egregium states that the GAUSSIAN 
CURVATURE of a surface embedded in 3-space may 
be understood intrinsically to that surface. “Resi- 

dents” of the surface may observe the GAUSSIAN CUR- 
VATURE of the surface without ever venturing into full 
&dimensional space; they can observe the curvature of 
the surface they live in without even knowing about the 
3-dimensional space in which they are embedded. 

In particular, GAUSSIAN CURVATURE can be measured 
by checking how closely the ARC LENGTH of small RA- 
DIUS CIRCLES correspond to what they should be in Eu- 
CLIDEAN SPACE, 2~ If the ARC LENGTH of CIRCLES 
tends to be smaller than what is expected in EUCLID- 
EAN SPACE, then the space is positively curved; if larger, 
negatively; if the same, 0 GAUSSIAN CURVATURE. 

Gauss (effectively) expressed the theorema egregium by 
saying that the GAUSSIAN CURVATURE at a point is 
given by -R(w,w)v, w, where R is the RIEMANN TEN- 
SOR, and ‘u and w  are an orthonormal basis for the TAN- 

GENT SPACE. 

see also CHRISTOFFEL SYMBOL OF THE SECOND KIND, 
GAUSS EQUATIONS, GAUSSIAN CURVATURE 
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Gauss’s Transformat ion 
If 

(1 + EL: sin’ c~) sin p = (1 + 2) sin cq 

then 

a 

(1+ 4 
SJ 

d# - - 

0 1 - x2 sin2 q5 la &qyb- 

see also ELLIPTIC INTEGRAL OF THE FIRST KIND, LAN- 
DEN'S TRANSFORMATION 

Gaussian Approximation AIgorit hm 

see ARITHMETIC-GEOMETRIC MEAN 

Gaussian Bivariate Distribution 
The Gaussian bivariate distribution is given by 

P(m,x2) = 
1 

2nu102 J1-p2 exP [-2(11pz)] 7 Cl) 

where 

x1 
(Xl - p1)2 

- 

a2 

2p(x1 -p1)(x2 -P2) + (22 -d2 

u22 
1 

0102 

(2) 

707 

and 

p E cov(x1,22) = 
(x122) - (Xl) (52) 

0102 
(3) 

is the COVARIANCE. Let X1 and X2 be normally and 
independently distributed variates with MEAN 0 and 
VARIANCE 1. Then define 

K = p1 +m& +012X2 (4 

yz = p2 +~21&+~22X2* (5) 

These new variates are normally distributed with MEAN 
p1 and ~2, VARIANCE 

2- 2 
01 = au2 -t-c12 (6) 

02 
2- 

= 0212 +a22 
2 

3 (7) 

and COVARIANCE 

The COVARIANCE matrix is 

Vij = 

where 
vl2 

pc- 
~11~21 + 012022 

_- - . (10) 
0102 OlU2 

[ 

01 
2 

pna2 

paa a22 ' 1 (9) 

The joint probability density function for xi and 22 is 

f (xl, x2) dxl dx2 = -e l -(=12+=22)/2 dxl dx 
27r 

20 (11) 

However, from (4) and (5) we have 

Now, if 

011 012 

I I 021 022 
#O 7 (13) 

then this can be inverted to give 

Therefore, 

Xl2 + xz2 = 
[a22(y1 - p1) - mz(y2 - p2>12 

(uw22 - u12021)2 

+[-a21(y1 - p1)+ m(y2 -p2)12 

(a~22 - c712u21)2 

. (15) 
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Expanding the NUMERATOR gives The JACOBIAN is 

m2(y1 -p1)2 - 25l2522(yl -p1>(y2 -p2) 

+5122(y2 -p2)2 -t5212(Y1 - p1)2 

-2511521(y1 -p&/2 -p2) +5n"(y2 - p2)2, - -- 1 511522 
P 

12 ( - 512521) 

(16) 1 1 - -- - (25) 
SO P’ - 0147’ 

(a2 +x22)(5ll522 -512521)2 

= (y1 -pl)2(5212 +5222) 

-2(Y1 - W>(Yz - I-12)( 511521 + 512522) 

+(y2 - p2)2(5112 +5122) 

Therefore, 

and 

dxl dx2 = 
dyl dyz 

(26) 
5152J1-pZ 

- - 522(Yl -pl)2 - qy1 - p&l2 -Pz)(P5152) 
~e-h2+~22)/2 dxl dx2 

+512(y2 -p2)2 27T 

(Yl - Pd2 2P(Yl - PlNY2 - Pa) - 
512 5152 

- - 2rr5152;l-plr.“2 dyl dyz, (27) 

But 

+ (Y2 - WI2 

522 1 where . (17) 
1 

=&&)2 

1 1 a12o22 x (Yl -WI2 

[ 

- 
512 

V(Yl - Pl)(Y2 - P2> + (Y2 - WI2 

5152 1 cz2 - (28) 
Z 

(511~ +512~)(521~ + 5222) - (511521 +512522)~' 

(18) 
The DENOMINATOR is 

U1125212 +5ll25222 +a1225212 +5l22a222 - 5112521 2 

-2511512521522-512 2 522 2 = (511522 -512521)2r (19) 

Now, if 

then 

I 511 521 512 I 522 
= 0, (29) 

511512 = 512521 (30) 

y1 =p1+5llxl+5l2x2 (31) 
so 

and 

1 51252 
2 

y2 =p2 + =x2 = /.L2 + 
511521x1 +512521x2 

- = 
1 - p2 (511522 - 512521)2 

(20) 511 511 
521 

=p2 + --@1x1 +512x2), (32) 

1 
Xl2 +x22 = ~ 

1 - p2 
SO 

x (Yl - Pd2 

[ 

- 
512 

2P(Yl - cLd(Y2 - m> + (Y2 - ml2 
Cl 52 522 1 . 

(21) 

where 
Solving for x1 and 22 and defining 

Yl = p1 + 53 

521 
Y2 =p2 + -x3, 

511 

x3 =y1-p1 = 3Y2 - P2L 

(33) 
(34 

(35) 

pt E 
5l52& -p2 

511522 - 512521 
(22) The CHARACTERISTIC F~WTION is given by 

gives 
4(w2) = 

/T 
e i(he1+t2s2)p 

(a,x2)dxl dx2 
-m --oo 

nm Irm r 1 
Xl = 

522(Yl - p1)-512(Y2 -p2) 

P’ 
(23) = N -- -- eqhw+t2z2) 

-52&l - p1) +511(y2 - p2) J J --oo --oo 
exp [-2(1 ” p2,j da dm, 

x2 = . 
P’ 

(24) (36) 
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where 

zs 
[ 

(Xl - pl)2 - 
U12 

+(a -/41)(x2 - P2> + (x2 - MI2 

0102 022 1 (37) 
and 

NG 
1 

27m102 J1-pz’ 
(38) 

Now let 

Then 

+(tl,tz) = N’ s_^I, pexp [-2(’ Ip2) $1) 

e e v -dudw, (41) 

where 

1 1 
u--ql-p2)~ 2L2-. [ 

2pmw u 
u2 

I 

N’ E 

ei(tlPl+t2P21 

2nala2 J1-pz’ 

COMPLETE THE SQUARE intheinner integral 

(42) 

Rearranging to bring the exponential depending on w  
outside the inner integral, letting 

OlW 
VEU-p-, 

02 

and writing 

it1u 
e = cos(tlu) + i sin(tlu) 

gives 

(44 

(45) 

1 

x exp 2a22(1- p”) [ 
p2 w2] s_N_exp [-2D22(:-p2)u2J 

x {cos [t, (v+ y)] 

paw 
v + - 

fl2 
dv dw. (46) 

Gaussian Bivariate Distribution 

Expanding the term in braces gives 

709 

[ 
cos(tlv) cos (F) - sin(tlv)sin (y)] 

+i 
[ 
sin(tw) cos z + cos(tlv) sin 

( > 
(Ey] 

= [Cos(F) +isin (e)] 

[cos(tlv) + i sin(trv)] 

= exp (@$I) [cos(tlv) + i sin(tlv)]. (47) 

But Px2 sin(bx) is ODD, so the integral over the sine 
term vanishes, and we are left with 

t$(tl, t2) = N’ eitzW exp - & [ 1 
xexp [202:(y:P2)] exp [@$I dw 

NOW evaluate the GAUSSIAN INTEGRAL 

ikX e e -ux2 dx = eSax2 cos(kx) dx 

(49) 

to obtain the explicit form of the CHARACTERISTIC 
FUNCTION, 

$(W2) = 

ei(tlPl+t2P2) 

27nTlU2 JV 

x {td5iexp [-i (t2++)‘2a2P]} 

x {&mexp [-+t122a12(1 - p”,]} 

= ewJl+t2P2) exp{-$22a22 + 2pal&& 

+p2u12t12 + (I- p2)u12t12]} 

= exp[i(tlpl + t2p2) 

-$(u12t12 + 2p al~ztltz +u12t12)]* (50) 

Let z1 and 252 be two independent Gaussian variables 
with MEANS pi = 0 and oi2 = 1 for i = 1, 2. Then 
the variables al and a2 defined below are Gaussian bi- 
variates with unit VARIANCE and CROSS-CORRELATION 
COEFFICIENT p: 

(51) 
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a2=~~zl-/~z2~ (52) 

The conditional distribution is 

P(x2 1x1) = 
1 

52+qTq 

exp [-‘“z;-z’z] , (53) 

where Gaussian Curvature 

$2 = p2 -I- +x1 - p1) 

5’2 = 52dG. 

The marginal probability density is 

An intrinsic property of a space independent of the co- 
ordinate system used to describe it. The Gaussian cur- 
vature of a REGULAR SURFACE in Iw3 at a point p is 

formally defined as 

P(x2) = P(xl, x2) da 

K(P) = + dew(P)), (1) 

where Sis the SHAPE OPERATOR and det denotes the 
DETERMINANT. 

- - +exP [-‘x2;;2’2] . (56) 
52 T  

see UZSO BOX-MULLER TRANSFORMATION, GAUSSIAN 
DISTRIBUTION, MCMOHAN’S THEOREM, NORMAL DIS- 
TRIBUTION 

References 
Abramowitz, M. and Stegun, C. A. (Eds.). Handbook 

of Mathematical Functions with Formulas, Graphs, and 
Mathematical Tables, 9th printing. New York: Dover, 
pp. 936-937, 1972. 

Spiegel, M. R. Theory and Problems of Probability and 
Statis&s. New York: McGraw-Hill, p. 118, 1992. 

Gaussian Brackets 
Published by Gauss in Disquisitiones Arithmeticae. 
They are defined as follows. 

[I=1 (1) 

[al] = a1 (2) 

[al, a21 = [&]a2 + [ ] (3) 

[a42,*.*, an] = [m,aa,. ‘. ,a,-11% 

+[m, a2, m - m ) b-2]* (4 

Gaussian brackets are useful for treating CONTINUED 
FRACTIONS because 

1 - [a2 9 an] -- 1 
a+ 

[a, G-&] * 
1 

(5) 

a2 + 
1 

u3 + l  l  l  + -z- 

&a 

The NOTATION [x] conflicts with that of GAUSSIAN 
POLYNOMIALS and the NINT function. 

References 
Heraberger, M. Modern Geometrical Optics. New York: In- 

terscience Publishers, pp* 457-462, 1958. 

Gaussian Curvature 

Gaussian Coefficient 

see Q-BINOMIAL COEFFICIENT 

Gaussian Coordinate System 
A coordinate system which has a METRIC satisfying 
gii = -1 and dgij/dxj = 0. 

Ifx: U + Iw3 is a REGULAR PATCH, then the Gaussian 
curvature is given by 

(2) 

where E, F, and G are coefficients of the first FUNDA- 
MENTAL FORM and e, f, and g are coefficients of the 
second FUNDAMENTAL FORM (Gray 1993,p.282). The 
Gaussian curvature can be given entirely in terms of the 
~~~~~FUNDAMENTAL FORM 

ds2 = Edu2+2Fdudv+Gdv2 

and the DISCRIMINANT 

g=EG-F2 

bY 

(3) 

(4) 

where lYfj are the CONNECTION COEFFICIENTS. Equiv- 
alent ly, 

E 
K=+ F 

g2 -- IaE 
2 au 

F 
G 

km 

aF 135 -- -- 
dV 

16 6 
&t 

-- 

2 au 

ha 

E F 
18E -- 

1 4 & -- F G -- g2 1dE 1 aG 2 au 
-- -- 
2 dv 2 dv 

0 

where 

dF 1dE k23 E - - -- 
&L 2 av 

(6) 

1d2E d2F 1 d2G k33----+---- 
2 &I2 au&l 2 au2 ’ 



Gaussian Cusva t ure 

Writing this out, 

d2F d2E d2G 
2m-s-m 1 

- 2g - g) - g,‘] 

(9) 

The Gaussian curvature is also given by 

K = det(x,,x,x,) det(xvvxuxv) - [det(xuuxuxv)]2 

[Ixu~2~xv~2 - (XZL - x?J2]2 
(10) 

(Gray 1993, p. 285), as well as 

. . 
where cz3 is the LEVI-CIVITA SYMBOL, fi is the unit 
NORMALVECTOR and?istheunit TANGENTVECTOR. 
The Gaussian curvature is also given by 

(12) 

where R is the CURVATURE SCALAR, fil and 62 the 
PRINCIPAL CURVATURES, and RI and R2 the PRINCI- 
PAL RADII OF CURVATURE. For a MONGE PATCH with 
x = h(u, v), 

huuh,, - L2 

K = (l+ hU2 + h,2)2’ 
(13) 

The Gaussian curvature K and MEAN CURVATURE H 
satisfy 

H2 > K, - (14) 

with equality only at UMBILIC POINTS, since 

H2 - K2 = ;(tcl - IE~)~. (15) 

If p is a point on a REGULAR ,SURFACE A4 c R3 and 
vp and wp are tangent vectors to A4 at p, then the 
Gaussian curvature of M at p is related to the SHAPE 
OPERATORS by 

S(b) WWP) =K(Ph xw,* (16) 

Let 2 be a nonvanishing VECTOR FIELD on M which is 
everywhere PERPENDICULAR to M, and let V and I;Fr be 

Gaussian Distribution 711 

VECTOR FIELDS tangent to M such that V x W = 2, 
then 

K=Z-(D~ZxDwZ) 

214 
4 (17) 

(Gray 1993, pp. 291-292). 

For a SPHERE, the Gaussian quadrature is K = l/a2. 
For EUCLIDEAN SPACE, the Gaussian quadrature is 
K = 0. For GAUSS-B• LYAI-LOBACHEVSKY SPACE, the 
Gaussian quadrature is K = -l/a2. A FLAT SURFACE 
is a REGULAR SURFACE and special class of MINIMAL 
SURFACE on which Gaussian curvature vanishes every- 
where. 

A point p on a REGULAR SURFACE M E R3 is classified 
based on the sign of K(p) as given in the following table 
(Gray 1993, p. 280), where S is the SHAPE OPERATOR. 

Sign Point 

K(P) > 0 elliptic point 

K(P) < 0 hyperbolic point 
K(p) = 0 but S(p) # 0 parabolic point 
K(p) = 0 and S(p) = 0 planar point 

A surface on which the Gaussian curvature K is every- 
where POSITIVE is called SYNCLASTIC, while a surface 
on which K is everywhere NEGATIVE is called ANTI- 
CLASTIC. Surfaces with constant Gaussian curvature 
include the CONE, CYLINDER, KUEN SURFACE, PLANE, 
PSEUDOSPHERE, and SPHERE. Ofthese,the CONE and 
CYLINDER are the only FLAT SURFACES OF REVOLU- 
TION. 

see also ANTICLASTIC, BRIOSCHI FORMULA, DEVEL- 
OPABLE SURFACE, ELLIPTIC POINT, FLAT SURFACE, 
HYPERBOLIC POINT, INTEGRAL CURVATURE, MEAN 
CURVATURE, METRIC TENSOR, MINIMAL SURFACE, 
PARABOLIC POINT, PLANAR POINT, SYNCLASTIC, UM- 
BILIC POINT 

References 
Geometry Center. “Gaussian Curvature.” http; //www . geom 

unn. edu / zoo / diffgeom / surf space / concepts / 
&atures/gauss-curv. html. 

Gray, A. “The Gaussian and Mean Curvatures” and “Sur- 
faces of Constant Gaussian Curvature.” $14.5 and Ch. 19 
in Modem Differential Geometry of Curves and Surfaces. 
Boca Raton, FL: CRC Press, pp. 279-285 and 375-387, 
1993. 

Gaussian Differential Equation 

~~~HYPERGEOMETRTC DIFFERENTIAL EQUATION 

Gaussian Distribution 

4 
X 

2 
E 

/ 
X 
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The Gaussian probability distribution with MEAN p and 
STANDARD DEVIATION 0 is a GAWSSIAN FUNCTION of 
the form 

P(x) = -L 
a& 

-(,-p)2/2o2 ? (1) 

extractions, and so both must be either computed nu- 
merically or otherwise approximated. The value of a for 
which P(x) falls within the interval [-a, a] with a given 
probability P is called the P CONFIDENCE INTERVAL. 

where P(x) dx gives the probability that a variate with 
a Gaussian distribution takes on a value in the range 
[z, z + da]. This distribution is also called the NORMAL 
DISTRIBUTION or, because of its curved flaring shape, 
the BELL CURVE. The distribution P(x) is properly 
normalized for x E (-oo, oo) since 

The Gaussian distribution is also a special case of the 
CHI-SQUARED DISTRIBUTION, since substituting 

z - (x -PI2 -- - 
u2 (7) 

so that - I . 

P(x)dx = 1. (2) 

- J-7 
dx = -- 1 2(X d 

2 
dx - - 1 dx 

u 
d 

6 (8) 

(where an extra factor of l/2 has been added to dz since 
z runs from 0 to 00 instead of from --00 to oo), gives 

The cumulative DISTRIBUTION FUNCTION, which gives 
the probability that a variate will assume a value 5 2, 
is then 

D(x) E 
I 

X 

P(x) dx = 1 
--00 I 

X 

aa -m 

e -b-d2/2a2 dxs 

(3) 

Gaussian distributions have many convenient properties, 
so random variates with unknown distributions are of- 
ten assumed to be Gaussian, especially in physics and 
astronomy. Although this can be a dangerous assump- 
tion, it is often a good approximation due to a surprising 
result known as the CENTRAL LIMIT THEOREM. This 
theorem proves that the MEAN of any set of variates with 
any distribution having a finite MEAN and VARIANCE 
tends to the Gaussian distribution. Many common at- 
tributes such as test scores, height, etc., follow roughly 
Gaussian distributions, with few members at the high 
and low ends and many in the middle. 

Making the transformation 

X-P ZE- 
u (4) 

so that dz = dz/a gives a variate with unit VARIANCE 
and 0 MEAN 

P(x) d ’ --22’2 dz, x=-e 
J2 7r 

(5) 

known as a standard NORMAL DISTRIBUTION. So de- 
fined, z is known as a Z-SCORE). 

The NORMAL DISTRIBUTION FUNCTION gives the prob- 
ability that a standard normal variate assumes a value 
in the interval [0, r], 

@( 1 x z- (6) 

Here, ERF is a function sometimes called the error func- 
tion. Neither a(z) nor ERF can be expressed in terms of 
finite additions, subtractions, multiplications, and root 

P(x)dx = ~e~~z/O)‘z (2) 
-l/2 

7T 0 
d (E) dx 

u 

1 - - ,+/4/2 
21/q f) 

(;)-1’2d (;) dz,(9) 

which is a CHI-SQUARED DISTRIBUTION in z/a with 
T = 1 (i.e., a GAMMA DISTRIBUTION with Q! = l/2 and 
8 = 2). 

Cramer showed in 1936 that if X and Y are INDEPEN- 
DENT variates and X + Y has a Gaussian distribution, 
then both X and Y must be Gaussian (CRAMER'S THE- 
OREM). 

The ratio X/Y of independent Gaussian-distributed 
variates with zero MEAN is distributed with a CAUCHY 
DISTRIBUTION. This can be seen as follows. Let X and 
Y both have MEAN 0 and standard deviations of ga: and 
Q, respectively, then the joint probability density func- 
tion is the GAUSSIAN BIVARIATE 
P = 0, 

DISTRIBUTION with 

f(x, y) = 2,,1 u c-[x2/(2a,2)+y2/(2~y2)1~ 
(10) 

x Y 

From RATIO DISTRIBUTION, the distribution of U = 
Y/X is 

P(u) = 

1 - -- 
r 2TUxQ --oo 

~x/e-~22/~2u.2)+~2x2/~zu~~~J 

=-J--~mxexP[-x$$+~)] dx* 

But 

1 -,x2 O" 
xe lax2 dx c --g 

I 0 

= &[o- (-l)] = &, 

(12) 
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so and 

P(u) = -L 1 1 ox uy - 
ruxz:y 2 

( 
,2 - LL2ax2+uy2 *+5Yq > 

1 2 - -- 
752+ 3 ( > 

2’ (13) 

UX 

which is a CAUCHY DISTRIBUTION with MEAN p = Cl 
and full width 

r=?EE* (14) 
OX 

The CHARACTERISTIC FUNCTION for the Gaussian dis- 
tribution is 

4(t) =e irnt-UT/2 
? (15) 

and the MOMENT-GENERATING FUNCTION is 

(16) 

COMPLETING THE SQUARE intheexponent, 

1 2 

2a2: 
I - Q-4 + a2t)x + p”] 

=&x4 p + a2t)j2 + [p2 - (p + u2t)2]} - (17) 

Let 

yzx- 

dy = dx 

1 

(=Za2 

The integral then becomes 

exp[-ay2 + pt + $a2t2] dy 

so 

&f’(t) = (p + u2t)ept+“2t2/2 (22) 
M”(t) = u2ePt+u2t2/2 + ePt+f12t2/2(p + ta2)2, (23) 

p = M’(O) = p 
u2 = M”(O) - [M’(O)]” 

=(u2fp2)-p2=u2. 

These can also be computed using 

w  = ln[M(t)] = pt + $a2t2 

R’(t) = p + u2t 
R”(t) = a2, 

yielding, as before, 

p = R’(O) = p 

u2 = R”(O) = 02. 
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(24) 

(25) 

(26) 

(27) 
(28) 

(29) 
(30) 

The moments can also be computed directly by comput- 
ing the MOMENTS about the origin ph = (C), 

Now let 

x-I-1 UE- 
1/z u 
dx 

du = - 
1/z u 

2=cTd2+p, 

(32) 

(33) 

(34) 

giving 

XYU 
1 O” 

’ du = - 
d- 

xne-u2 du, 
7r s -m 

(35) 

1 O” 
p; = - 

J 
xCu2 du 

7T s --oo 

1 O” - - 
J- s 

(&au -+ p)cu2 du 
7T --oo 

s 

O” 2 -u2 du 
xe 

-m 

1 OQ - - 
d- s 

(2a2u2 + ~&U/AU -t p2)Cu2 du 
IT --oo 

3 -u2 du 
xe 
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1 O” - - 
6 s 

(2J2 CT=U= + 6pa2u2 
7T --oo 

+ 31/2p20u + p3)Cu2 du 

= [zJZa3H3(1) + 6pg2H2(l) 

+ 3J2p2aH1(1) + /J=&(l)] 

= (0 + 6p202+ + 0 + p=) = p(p2 + 30~) (39) 

1 O” pi = - d- x3e-u2 du 7r s --oo 
1 O” - - 

J s 
(4a4u4 + &pa3u3 

7t‘ -cm 

+ 12p2a2u2 + 4J2p3au + p4)e-u2 du 

= [4a4H4(1) + 8hpa=H3(1) + 12p2a2H2(l) 

+ 4dp3bH1(1) + p4Ho(l)] 
- - (4a4;+O+12p2a2$ +O+p4) 

= p4 -f- 6p2c2 + 3a4, (40) 

where &(a) are GAUSSIAN INTEGRALS. 

Now find the MOMENTS about the MEAN, 
l  

/Al = 0  
(41) 

P2 E pa - (pi)" = (p" + a2) - p2 = u2 (42) 
p3 = p; - 3p;p: + 2(p;)3 

= p(p2 + 3a2) - 3(a2 + p2)p + 2/L= = 0 (43) 

p4 =p: - a4 + G4/a2 - q/Q4 

= (p4 + 6p2a2 + 30~) - 4(p3 + 3pa2)p 

+ 6(p2 + u2)p2 - 3p4 

= 304, (44) 

SO the VARIANCE, STANDARD DEVIATION, SKEWNESS, 
and K~RTOSIS are given by 

var(x) E ~2 = o2 

stdv (x) F &&j = CT 

(45) 

(46) 

(47) 

The VARIANCE of the SAMPLEVARIANCE s2 for asample 
taken from a population with a Gaussian distribution is 

var(s2) = 
(N - l)[(N - 1)/A; - (N - 3)/Ak2 

Iv= 

- - y[(N - l)(/~” + 6p202 + 3a4) 

-(N - 3)(p2 + u:)~] 

2(N - T)(p4 + 2G2Na2 + Nu4) - - 
IV= 

. (49) 

If p = 0, this expression simplifies to 

and 

var(s2) = 
2(N - 1)Na4 2a4(N - 1) 

N3 = N2 ' (50) 

the STANDARD ERROR~~ 

[standard error] = 
$(N - 1) 

N ’ (51) 

The CUMULANT-GENERATING FUNCTION for a Gaus- 
sian distribution is 

K(h) = ln(e vlhea2h2/2 
1 = zqh + +02h2, (52) 

so 

61 = Vl (53) 

K2 = u2 (54) 

Kr = 0 for T > 2. (55) 

For Gaussian variates, K~ = 0 for r > 2, so the variance 
of LSTATISTIC !Q is 

QK3 
2 6~2~ 

+ N-l + N(N - l)(N - 2) 

6~2~ - - 
N(N - l)(N - 2)’ 

(56) 

Also, 

24k24N(N - 1)” 

var(k4)= (N-3)(N-2)(N+3)(N+5) (57) 

6N(N - 1) 
var(gl) = (N - 2)(N + l)(N + 3) (58) 

24N(N - 1)” 

var(g2) = (N - 3)(N - 2)(N + 3)(N + 5)’ (5g) . 

where 

h 
g1 E - 

k23/2 
(60) 

If P(x) is a Gaussian distribution, then 

D(x)=: [l+erf(%)], 

(61) 

(62) 

so variates xi with a Gaussian distribution can be gener- 
ated from variates yi having a UNIFORM DISTRIBUTION 
in (0,l) via 

’ xi = 4 erfW1(2yi - 1) + p* (63) 
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However, a simpler way to obtain numbers with a Gaus- 
siandistributionistousethe Box-MULLER TRANSFOR- 
MATION. 

which is of the standard form with 

(3) 
The Gaussian distribution is an approximation to the 
BINOMIAL DISTRIBUTION in the limit of large numbers, 

12 
0 = a2tT2. (4) 

(m - NP)~ 1 
For a weighted sum of independent variables 

1 
P(n1) = dm exp - 

2NPq ’ 
(64) &Xi, (5) 

where n1 is the number of steps in the PO~ITWE direc- 
tion, N is the number of trials (N z n1 + n2)r and p 
and q are the probabilities of a step in the POSITIVE the expectation is given by 

direction and NEGATIVE direction (q E 1 - p). 

The differential equation having a Gaussian distribution 
as its solution is 

M(t) = (eYt) = 

(65) 
= e l 

altxl a2tx2 
e a,txn 

l  l  l  
e  

> 

i=l *- z- 1 

(66) Setting this equal to 

Y In - = 
( > Yo 

-&-“I2 

Y = Yoe 
-(x-p)2/202 

(67) exp(pt + +a2t2) (7) 

This equation has been generalized to yield more compli- 
cated distributions which are named using the so-called 

n 

PEARSON SYSTEM. 
i=l 

n 

see also BINOMIAL DISTRIBUTION, CENTRAL LIMIT 

THEOREM, ERF, GAUSSIAN BIVARIATE DISTRIBUTION, 
/ 4 
i=l 

LOGIT TRANSFORMATION, NORMAL DISTRIBUTION, 

NORMAL DISTRIBUTION FUNCTION, PEARSON SYSTEM, 
RATIO DISTRIBUTION, Z-SCORE 

(8) 

Therefore, the MEAN and VARIANCE of the weighted 
sums of n RANDOM VARIABLES are their weighted sums. 

References If zi are INDEPENDENT and NORMALLY DISTRIBUTED 
Beyer, W. H. CRG Standard Mathematical Tables, 28th ed. 

Boca Raton, FL: CRC Press, pp, 533-534,1987. 
with MEAN 0 and VARIANCE c2, define 

Kraitchik, M. “The Error Curve.” 56.4 in Mathematical 
Recreations. New York: W+ W. Norton, pp. 121-123, 1942. 

Spiegel, M. R. Theory and Problems of Probability and 
Statistics. New York: McGraw-Hill, pa 109-111, 1992. 

yi E ECijXj, 

Gaussian Distribution-linear Combination 
where c obeys the ORTHOGONALITY CONDITION 

of Variates 
If x is NORMALLY DISTRIBUTED with MEAN p and 

(10) 

(11) 

VARIANCE a2, then a linear function of 2, 

Y = ax + b, (1) 

with 6 the KRONECKER DELTA. Then yi are also in- 
dependent and normally distributed with MEAN 0 and 
VARIANCE g2. 

is also NORMALLY DISTRIBUTEIL The new distribution 
has MEAN q&b and VARIANCE a2a2, as can be derived 
using the MOMENT-GENERATING FUNCTION 

Gaussian Elimination 
A method for solving MATRIX EQUATIONS of the form 

Ax = b. (1) 

=e 
tb+pat+02a2t2/2 = e(b+ap)t+a2c2t2/2 

9 (2) 
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Starting with the system of equations 

Gaussian Function 

Solving, 

(4 
a12 

a22 

l  l  l  

. . . 

alk 

@Zk 

. 

. 

. 
1 

Xl h 

x2 b2 
- 1 [I - 

l  l  
1  

. . 

l  m  

xk bk 

(5) (2) 

(x0 - d2 = 2a21n2 (6) akk j ak2 l  l  . 

~0=*0~2ln2+~. (7) compose the augmented MATRIX equation 

The FULL WIDTEI AT HALF MAXIMUM is therefore given 

bY all 
a21 

. 

. 

. 

a12 

a22 

l  l  l  

l  l  l  

alk 

a2k 

bl 

b2 
. 
. . 

bk 1 
Xl 

x2 
. 1 . . . 

xk 

(3) FWHM E x+ - x- = 2d2 In 2 o z 2.35480. (8) 

akk 
. m  l  

Then, perform MATRIX operations to put the aug- 
mented MATRIX into the form 

(4) 0. 

0. 
0. 
0 

solve for f&k7 then substitute back in to obtain solutions 
for n = 1, 2, . . . , k - 1, 

In 2-Q the circular Gaussian function is the distribu- 
tion function for uncorrelated variables x and y having 
a GAUSSIAN BIVARIATE DISTRIBUTION and equal STAN- 
DARD DEVIATION O= oz =u~, 

(5) 

see ah GAUSS-JORDAN ELIMINATION, LU DECOMPO- 
SITION, MATRIX EQUATION, SQUARE ROOT METHOD 

f(%Y) = & 
-I(s-~z)2+(Y--~y21/2u2 . (9) 

Gaussian Function 

In l-D, the GAssia 
GAussIAN DISTRIBUTION, 

he function from the 

The corresponding elliptical Gaussian function corre- 
sponding to ca: # gy is given by 

Im[Gaussian zl 

f( 1 
1 

x =- 
u&r" 

-(x-p)2/2m2 
9 

The above plots show the real and imaginary parts of 

together with the complex absolute value 

. 
sometimes also called the FREQUENCY CURVE. The 
FULL WIDTH AT HALF MAXIMUM (FWHM) for a Gaus- 
sian is found by finding the half-maximum points x0. 
The constant scaling factor can be ignored, so we must 
solve 

But f(xmax) occurs at xmax = ~1, so The Gaussian function can also be used as an APODI- 
ZATION FUNCTION, shown above with the corresponding 
INSTRUMENT FUNCTION. e-(m42/2~2 - 1 f(p) = + -- 

2 l  
(3) 
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The HYPERGEOMETRIC FLJTNCTIUN is also sometimes 
known as the Gaussian function. 

see also ERF, ERFC, FOURIER TRANSFORM-GAUSS- 
IAN, GAUSSIAN BWARIATE DISTRIBUTION, GAUSSIAN 
DISTRIBUTION, NORMAL DISTRIBUTION 

References 
MacTutor History of Mathematics Archive. “frequency 

Curve .” http://uww-groups.dcs.st-and.ac.uk/mhistory 
/Curves/Frequency.html. 

Gaussian Hypergeometric Series 
~~~HYPERGEOMETRIC FUWTION 

Gaussian Integer 
A COMPLEXNUMBER a+biwhereaand b ~~~INTEGERS. 
The Gaussian integers are members of the QUADRATIC 
FIELD Q(d?)* Th e sum, difference, and product of 
two Gaussian integers are Gaussian integers, but a + 
bile + di only if there is an e + fi such that 

(a + bi)(e + fi) = (ae - bf) + (af + be)i = c + di. 

Gaussian INTEGERS can be uniquely factored in terms 
of other Gaussian INTEGERS up to POWERS of i and 
rearrangements. 

The norm of a Gaussian integer is defined by 

n(x+iy)=x2+y2. 

GAUSSIAN PRIMES are Gaussian integers a+ib for which 
n(a -I- ib) = a2 + b2 is PRIME and a a PRIME INTEGER a 
such that a E 3 (mod 4). 

1. If 21n(x + iy), then 1 + i and 1 - ila: + iy. These 
factors are equivalent since -;(i - 1) = i + 1. For 
example, 2 = (1 + i)( 1 - i) is not a Gaussian prime. 

2. If n(x+iy) = 3 (mod 4) In(x+iy), then n(a+ib)Ix+ 

3. If n(x + iy) E 1 (mod 4) In(x + iy), then a + ib or 
b + ialx + iy. If both do, then n(a + ib)lx + iy. 

The Gaussian primes with [a[, lb1 < 5 are given by -5 - 
4i, -5 - 2i, -5 + 2i, -5 + 4i, -4-- 5i, -4 - i, -4 + i, 
-4 + 5i, -3 - 2i, -3, -3 + 2i, -2 - 5i, -2 - 3i, -2 - i, 
-2+i, -2+3i, -2+5i, --l--4& -l-2& -l-i, -l+i, 
-1 + 2i, -1 + 4i, -3i, 3i, 1 - 4i, 1 - 2i, 1 - i, 1 + i, 
1 + 2i, 1 + 4i, 2 - 5i, 2 - 3i, 2 - i, 2 + i, 2 + 3i, 2 + 5i, 
3 - 2i, 3, 3 + 2i, 4 - 5i, 4 - i, 4 + i, 4 + 5i, 5 - 4i, 5 - 2i, 
5 + 2i, 5 + 4i. 

Every Gaussian integer is within In I /Jz of a multiple of 
a Gaussian integer n. 

see also COMPLEX NUMBER, EISENSTEIN INTEGER, 
GAUSSIAN PRIME, INTEGER, OCTONION 

References 
Conway, J. H. and Guy, R. K. “Gauss’s Whole Numbers.” 

In The Book of Numbers. New York: Springer-Verlag, 
pp. 217-223, 1996. 

Shanks, D. “Gaussian Integers and Two Applications.” $50 
in Solved and Unsolved Problems in Number Theory, 4th 
ed. New York: Chelsea, pp. 149-151, 1993. 

Gaussian Integral 
The Gaussian integral, also called the PROBABILITY 
INTEGRAL, is the integral of the 1-D Gaussian over 
(-oo,oo). It can be computed using the trick of com- 
bining two 1-D Gaussians 

- - dJW JW e-(x2+~2) dy da: (1) -m -m 
and switching to POLAR COORDINATES, 

e -x2 dx = e -T2rdrd$ 

However, a simple proof can also be given which does 
not require transformation to POLAR COORDINATES 
(Nicholas and Yates 1950). 

The integral from 0 to a finite upper limit a can be given 
by the CONTINUED FRACTION s a e -x2 dx = 

0 

----- fi 2 a+2a+a+2a+...’ l 2 3 4 

The general class of integrals of the form 

In(a) E ewax2xn dx 

can be solved analytically by setting 

x E a-ll2y 

dx = a-‘12 dy 

y2 = ax2. 

Then 

(4) 

(5) 
(6) 
(7) 

In(a) = a-Ii2 
Sm 

e-y2 a-l/2 n 
> dY 

0 

= a-(1+n)/2 

J 

O” e-Y2yn dy 
l  

(8) 

0  

For n = 0, this is just the usual Gaussian integral, so 

fi -l/2 _ IO(a)=-a 
1 7r 

-- 
2 2 6 a 

-. (9) 

For n = 1, the integrand is integrable by quadrature, 

II(a) = a 
-1 

Jrn 

eDY2ydy = a-1[-fe-Y2]r = +a-', 

0 

(10) 
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TO compute 1&z) for n. > 1, use the identity 

--&,(a) = --g Sm e-ax2xn-2dx 
0 

Sm 

2 -ax2 n-2 - -- -x e X dx 
0 - - e -ax2Xn dx = In(U). (11) 

JO 

For n = 2~ EVEN, 

In(a) = (-$) 17x-2(a) = (-$)‘-Jn-d 

- 
- - 

- .m. - 

( 

d 
-> 

42 
au ICI (4 

a) - - fi P'2 a-1/2 _I- 
2 danI2 ? 

SO 

r x2se-ax 2da:=S= ( ‘)! (29 - l)!! 7T (13) 

0 
2p+“P J p+1@3 a’ 

If n = 2s + 1 is ODD, then 

In(U)= (-g)I--2(a)= (-f-)2rn-4(a) 

d b--1)/2 
- - 
- l  ** - 

( 1 
-- 

da Ilb> 

so 

s”; 

X2s+le-ax2 S! 
dx= gTi' (15) 

0 

The solution is therefore 

r 

(n-l)!! 

e --ax2xn dx = 2n/2+lan/2 I/- 
z for n even 

I,kn,+:‘:‘,“,]2! for n odd. 
(16) 

0 n 

The first few values are therefore 

1 
II(a) = - 

2a 

(17) 

(18) 

(19) 

1 
&(a) = - 

2a2 

1 
I&) = - 

a3 

(20) 

(al> 

(22) 

(23) 

Gaussian Polynomial 

A related, often useful integral is 

HJa) s --$ s 00 
eeax2xn dx, 

7r --oo 

which is simply given by 

Hn = y for n even 
0 for n odd. 

(24 

(25) 

References 
Nicholas, C. B. and Yates, R. C. “The Probability Integral.” 

Amer. Math. Monthly 57, 412-413, 1950. 

Gaussian Integral (Linking Number) 

see LINKING NUMBER 

Gaussian Joint Variable Theorem 
Also called the MULTIVARIATE THEOREM. Given an 
EVEN number of variates from a NORMAL DISTRIBU- 
TION with MEANS all 0, 

(X1X2) = (X1)(X2), (1) 

(X1X2X3X4) 

= (51X2)(X324)+ ( Xlx3)(X2X4) + (X154)(2223), (2) 

etc. Given an ODD number of variates, 

(Xl) = 0, (3) 

etc. 

(X1X2X3) = 0, (4) 

Gaussian Mountain Range 

see CAROTID-KUNDALINI FUNCTION 

Gaussian Multivariate Distribution 

see also GAUSSIAN BIVARIATE DISTRIBUTION, JOINT 
THEOREM, MULTIVARIATE THEOREM 

Gaussian Polynomial 
Defined by 

VI 
1 - q1 =- - 
l-c? (1) 

for integral 2, and 

r 
0 

Unfortunately, the 
GAUSSIAN BRACK: 

1 Fxl w  for 0 < k 5 n - 
otherwise. 

(2) 

NOTATION conflicts with that of 
ETS and the NEAREST INTEGER 
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FUNCTION, Gaussian POLYNOMIALS satisfy the iden- 
tities 

b+ll 
p+q l-q”+1 --- 

[ 1 
- 1 - qn-” (3) n k+l 

n-+-l [ 1 k+l 1 _ qn--k+1 
- - 

n+l [ 1 
- l- qk+l ’ (4) 

k 

For q = 1, the Gaussian polynomial turns into the BI- 
NOMIAL COEFFICIENT. 

see also BINOMIAL COEFFICIENT, GAUSSIAN COEFFI- 
CIENT, q-SERIES 

Gaussian P ‘rime 

Gaussian primes are GAUSSIAN INTEGERS a + ib for 
which n(a + ib) = a2 + b2 is PRIME and a a PRIME 
INTEGER a such that a E 3 (mod 4). The above plot 
of the COMPLEX PLANE shows the Gaussian primes as 
filled squares. 

see also EISENSTEIN INTEGER, GAUSSIAN INTEGER 

References 
Guy, R. K. “Gaussian Primes. Eisenstein- Jacobi Primes." 

§A16 in Unsolved Problems in Number Theory, 2nd ed. 
New York: Springer-Verlag, pp+ 33-36, 1994. 

Wagon, S. “Gaussian Primes .” 89.4 in Mathematics in Ac- 
tion. New York: W. H. Freeman, pp. 298-303, 1991. 

Gaussian Quadrature 
Seeks to obtain the best numerical estimate of an inte- 
gral by picking optimal ABSCISSAS zi at which to eval- 
uate the function f(z). The FUNDAMENTAL THEOREM 
OF GAUSSIAN QUADRATURE statesthattheoptimal AB- 
SCISSAS of the m-point GAUSSIAN QUADRATURE FOR- 
MULAS are precisely the roots of the orthogonal POLY- 
NOMIAL for the same interval and WEIGHTING FUNC- 
TION. Gaussian quadrature is optimal because it fits all 
POLYNOMIALS up to degree 2m exactly. Slightly less op- 
timal fits are obtained from RADAU QUADRATURE and 
LAGUERRE QUADRATURE. 

W(x) Interval xi Are Roots Of 

1 (41) pdx) 
e -t (09 4 Ln Cx> 

(-007 00) Hdx) 

(-191) Trl (4 

(1 - t2y2 (-1,l) urt (4 
x1/2 

(09 1) 
x-W 

(03 1) 

To determine the weights corresponding to the Gaus- 
sian ABSCISSAS, compute ~LAGRANGE~NTERPOLATING 
POLYNOMIAL for f(x) by letting 

T(X) E fi(X - Xj) (1) 

j=l 

(where Chandrasekhar 1967 uses F instead of 7t), so 

T’(Xj) = [$] 2=zj = fiCxj - x4= C2) 

i=l 
i#j 

Then fitting a LAGRANGE INTERPOLATING P~LYNOM- 
IAL through the m, points gives 

4(x) = iz, 44 
(X - Xj)T'(Xj) 

f Cxd (3) 
j=l 

for arbitrary points xi* We are therefore looking for a set 
of points xj and weights wj such that for a WEIGHTING 
FUNCTION W(X), 

s b 

4(x)W(x) dx = dx f Cxj) 
a 

E FWjf (xj>, (4) 
j=l 

with WEIGHT 

b ;rr(x)w(x) da: 
X-Xj ’ (5) 

The weights wj are sometimes also called the CHRIS- 
TOFFEL NUMBER (Chandrasekhar 1967) For orthogo- 
nal POLYNOMIALS 4j(x) with j=l, . l  . , n, 

49(X> = AjT(x) (6) 

(Hildebrand 1956, p. 322), where A, is the COEFFI- 
CIENT of xn in $n(Z), then 

1 

s 

b 

wj = &-(gJ 
W(x) * dx 

Aa 

X - Xj 

n+l*fn 
- 

- -An+X(xj)+n+l(x)’ 
(7) 
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where 

Gaussian Quadrature 

Ym E [$m(X)]2W(X) dX. 
s 

Using the relationship 

4n+1(xi) = -A”‘A1A2”-1 Yn 
&-I (Xi) 

n ")'n-1 

(Hildebrand 1956, p. 323) gives 

A, Y?-L-1 

wj =I A,_1 +k(Xj)4n-l(Xj) ’ 

(Note that Press et al. 1992 omit the factor A,/A, 
In Gaussian quadrature, the weights are all POSIT 
The error is given by 

(8) 

(9) 

-1.) 

VE. 

E 
n 

= f’““‘(t) 

-i-r (2 > s 

b qx)[T(x)]2 da: = Yn f(2n)(E) 

A2 n n!’ a (2 > 
(11) 

where a < c < b (Hildebrand 1956, pp* 320-321). Gaussian Sum 

Other curious identities are 

- - * [4L+l (x>4m(x> - 4i-n (x>+m+l (X)1 A 
(12) 

and 

m [h @>I2 x --_ Am#in(Xi)~m+l (Xi) 1 - 

k=O % - 

-- 

A m+lYm Wi 
(13) 

(Hildebrand 1956, p. 323). 

In the NOTATION of Seegii (1975), let x1, < . . . < xnn be 
an ordered set of points in [a, b], and let Xln, . . . , Ann be 
a set of REAL NUMBERS. If f(x) is an arbitrary function 
on the CLOSED INTERVAL [a, b], write the MECHANICAL 
QUADRATURE as 

Qn(f) = 2 Lnf(xvn)- (14) 

v=l 

Here xyn are the ABSCISSAS and Xv, are the COTES 
NUMBERS. 

see also CHEBYSHEV QUADRATURE, CHEBYSHEV- 
GAUSS QUADRATURE, CHEBYSHEV-RADAU QUADRA- 
TURE,FUNDAMENTAL THEOREM OF GAUSSIAN QUAD- 
RATURE, HERMITE-GAUSS QUADRATURE, JACGBI- 

GAUSS QUADRATURE, LAGUERRE-GAUSS QUADRA- 

TURE, LEGENDRE-GAUSS QUADRATURE, LOBATTO 

QUADRATURE, MEHLER QUADRATURE, RADAU QUAD- 
RATURE 

Gaussian Sum 

Mathematical Tables, 9th printing. New York: Dover, 
pp. 887488, 1972. 

Acton, F. S. Numerical Methods That Work, 2nd printing. 
Washington, DC: Math. Assoc. Amer., p. 103, 1990. 

Arfken, G. “Appendix 2: Gaussian Quadrature.” Muthemat- 
ical Methods for Physicists, 3rd ed. Orlando, FL: Aca- 
demic Press, pp. 968-974, 1985. 

Beyer, W. H. CRC Standard Mathematical Tables, 28th ed, 
Boca Raton, FL: CRC Press, p. 461, 1987. 

Chandrasekhar, S. An Introduction to the Study of Stellar 
Structure. New York: Dover, 1967. 

Hildebrand, F. B. Introduction to Numerical Analysis. New 
York: McGraw-Hill, pp. 319-323, 1956. 

Press, W, H,; Flannery, B. P.; Teukolsky, S. A.; and Vetter- 
ling, W. T. ‘(Gaussian Quadratures and Orthogonal Poly- 
nomials .” 54.5 in Numerical Recipes in FORTRAN: The 
Art of Scientific Computing, 2nd ed. Cambridge, England: 
Cambridge U niversity Press, pp. 140-155, 1992. 

SaegB, G. Orthogonal Polynomials, 4th ed. Providence, RI: 
Amer. Math. Sot., pp. 37-48 and 340-349, 1975. 

Whittaker, E. T. and Robinson, G. The Calculus of Observa- 
tions: A Treatise on Numerical Mathematics, 4th ed. New 
York: Dover, ppm 152-163, 1967. 

9-l 
S(p, q> E x iPr2plq, (1) 

where p and q are RELATIVELY PRIME INTEGERS. If 
(n,n’) = 1, then 

S(m, nd) = S(mn’, n)S(mn, 72’). (2) 

Gauss showed 

9-l 
IE e 

27Tir2/q 1 - iq - -- 
l-i d? (3) 

for ODD q. A more general result was obtained by 
Schaar. For p and q of opposite PARITY (i.e., one is 
EVEN and the other is ODD), SCHAAR’S IDENTITY states 

1 
9-l 

IE e 
-7&+/q - - 

fi r=o 

e -&/4 P--l 

c 
p2qlP . 

r=o 

(4) 

Such sums are important in the theory of QUADRATIC 
RESIDUES. 

see also KLOOSTERMAN’S SUM, SCHAAR’S IDENTITY, 

SINGULAR SERIES 

References 
Evans, R. and Berndt, B. “The Determination of Gauss 

Sums.” Bull. Amer. Math. Sot. 5, 107-129, 1981. 
Katz, N. M. Gauss Sums, Kloosterman Sums, and Mon- 

odromy Groups. Princeton, NJ: Princeton University 
Press, 1987. 

Riesel, H. Prime Numbers and Computer Methods for Fac- 
torization, 2nd ed. Boston, MA: Birkhauser, pp. 132-134, 
1994. 

References 
Abramowitz, M. and Stegun, C. A. (Eds.). Hand book 

of Mathematical Functions with Formulas, Graphs, and 
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Gear Graph 
A WHEEL GRAPH with a VERTEX added between each 
pair of adjacent VERTICES. 

Gegenbauer Function 

see ULTRASPHERICAL FUN 

Gegenbauer Polynomial 

see ULTRASPHERICAL POLYNOMIAL 

Gelfond-Schneider Constant 
The number 2& = 2.66514414.. . which is known to be 
TRANSCENDENTAL by GELFOND’S THEOREM. 

References 
Courant, R. and Robbins, H. What is Mathematics?: An El- 

ementary Approach to Ideas and Methods, 2nd ed. Oxford, 
England: Oxford University Press, p. 107, 1996. 

Gelfond-Schneider Theorem 

see GELFOND’S THEOREM 

Gelfond’s Theorem 
Also called the GELFOND-SCHNEIDER THEOREM. ab is 
TRANSCENDENTAL if 

1. a is ALGEBRAIC # 0,land 

2. b is ALGEBRAIC and IRRATIONAL. 

This provides the solution to the seventh of HILBERT'S 
PROBLEMS. 

see UZSO ALGEBRAIC NUMBER, HILBERT’S PROBLEMS, 
IRRATIONAL NUMBER, TRANSCENDENTAL NUMBER 

References ’ 
Baker, A. Transcendental Number Theory. London: Cam- 

bridge University Press, 1990. 
Courant, R. and Robbins, H. What is Mathematics?: An EZ- 

ementary Approach to Ideas and Methods, 2nd ed. Oxford, 
England: Oxford University Press, p. 107, 1996. 

Genaille Rods 
Numbered rods which can be used to perform multipli- 
cation. 

see also NAPIER'S BONES 

References 
Gardner, M. “Napier’s Bones.” Ch. 7 in Knotted Dough- 

nuts and Other Mathematical Entertainments. New York: 
W. H. Freeman, 1986. 

Genera 

see FUNDA MENTAL THEOREM OF GENERA 

General Linear Group 
The general linear group GL, (q) is the set of n x n MA- 
TRICES with entries in the FIELD IF, which have NON- 

ZERO DETERMINANT. 

see also LANGLANDS RECIPROCITY, PROJECTIVE GEN- 

ERAL LINEAR GROUP, PROJECTIVE SPECIAL LINEAR 
GROUP,~PECIAL LINEAR GROUP 

References 
Conway, J. H.; Curtis, R. T.; Norton, S. P.; Parker, R. A.; 

and Wilson, R. A. “The Groups GL,(q), SL,(q), PGL,(q), 
and PSL,(q) = L,(q).” 52.1 in Atlas of Finite Groups: 
Maximal Subgroups and Ordinary Characters for Simple 
Groups. Oxford, England: Clarendon Press, p. x, 1985. 

General Orthogonal Group 
The general orthogonal group GO,(q,F) is the SUB- 
GROUP of all elements of the PROJECTIVE GENERAL 
LINEAR GROUP. that fix the particular nonsingular 
QUADRATIC FORM F. The determinant of such an ele- 
ment is *I. 

see UZSO PROJECTIVE GENERAL LINEAR GROUP 

References 
Conway, J. H.; Curtis, R. T.; Norton, S. P.; Parker, 

R. A.; and Wilson, R. A. “The Groups GO,(q), SO,(q), 
PGO,(q), and PSO,(q), and O,(q).” $2.4 in Atlas of 
Finite Groups: Max:imal Subgrozlps and Ordinary Chur- 
acters for Simple Groups. Oxford, England: Clarendon 
Press, pp. xi-xii, 1985. 

General Position 
An arrangement of points with no three COLLINEAR, Or 
of lines with no three concurrent. 

see also ORDINARY LINE, NEAR-PENCIL 

References 
Guy, R. K. “Unsolved Problems Come of Age.” Amer. Math. 

MonthEy 96, 903-909, 1989. 

General Prismatoid 
A solid such that the AREA A, of any section parallel to 
and a distance y from a fixed PLANE can be expressed 
as 

4 = ay3 + by2 + cy + d. 

The volume of such a solid is the same as for a PRISMA- 
TOID, 

V = ih(Al + 4M + AZ). 

Examples include 
SPHERE, and SPH 

the C ONE, CYLINDER, PRISMATO ID, 
EROID. 

see also PRISMATOID, PRISMOID 

Keferences 
Beyer, W. H. CRC Standard Mathematical Tables, 28th ed. 

Coca Raton, FL: CRC Press, p. 132, 1987. 
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General Unitary Group 
The general unitary group G&(q) is the SUBGROUP of 
all elements of the GENERAL LINEAR GROUP GL(q2) 
that fix a given nonsingular Hermitian form. This is 
equivalent, in the canonical case, to the definition of 
GU, as the group of UNITARY MATRICES. 

Keterences 
Conway, J. H.; Curtis, R. T.; Norton, S. P.; Parker, 

R. A.; and Wilson, R. A. “The Groups G&(q), S&(q), 
PGU,(q), and PSU,(q) = Un(q).” $2.2 in Atlas of Finite 
Groups: Maximal Subgroups and Ordinary Characters for 
Simple 
1985. 

Groups. Oxford, England: Clarendon Press, p. x, 

Generalized Cone 

A RULED SURFACE is called a generalized cone if it can 
be parameterized by X(U, V) = p + WY(U), where p is 
a fixed point which can be regarded as the vertex of 
the cone. A generalized cone is a REGULAR SURFACE 
wherever vy x y’ # 0. The above surface is a generalized 
cylinder over a CARDIOID. A generalized cone is a FLAT 
SURFACE. 

see also CONE 

References 
Gray, A. Modern Differential Geometry of Curves and Sur- 

faces. Boca Raton, FL: CRC Press, pp 341-342,1993. 

Generalized Cylinder 

A RULED SURFACE is called a generalized cylinder if it 
can be parameterized by x(u, w) = vp + y(u), where p 
is a fixed point. A generalized cylinder is a REGULAR 
SURFACE wherever y’ x p # 0. The above surface is 
a generalized cylinder over a CARDIOID. A generalized 
cylinder is a FLAT SURFACE. 

see also CYLINDER 

References 

Generalized Fibonacci Number 
A generalization of the FIBONACCI NUMBERS defined 
by 1 = GI = Gz = . . . = GC--l and the RECURRENCE 
RELATION 

G, = G,-1 + Gn-,. (1) 

These are the sums of elements on successive diagonals 
of a left-justified PASCAL’S TRIANGLE beginning in the 
left-most column and moving in steps of c - 1 up and 
1 right. The case c = 2 equals the usual FIBONACCI 
NUMBER. These numbers satisfy the identities 

Gz + G2 + G3 + . . . + Gn = Gn+3 - 1 (2) 

G3 +G6 +G9 +...+h = &k+l - 1 (3) 

G +G4 +G? +...+&+I = &+2 (4) 

G2 +G5 +G8 +...+&k+2 = %+3 (5) 

(Bicknell-Johnson and Spears 1996). For the special 
case c = 3, 

G n+w - - Gt,-2G + Gw-&,+I + Gw-lGn+z. (6) 

Bicknell-Johnson and Spears (1996) give many further 
identities. 

Horadam (1965) defined the generalized Fibonacci num- 
bers {wn} as wn = W&I, b; p, q), where a, b, p, and q are 
INTEGERS, w. = a, w1 = b, and wn = pw,-1 - qwn-2 
for n, 2 2. They satisfy the identities 

wnwn+2r -es"& =wn+r2 (7) 

4Wn%+1 2wn+2 +(wqn)2 = (wnwn+2 + wn+12)2 (8) 

- - w7-&+24 + eqyp2 + q)wt+22 + e2q2n+1P2 (9) 

- - (wn+lwn+2Wn+6 + wnwn+4wn+5)2, (10) 

where 

e = pab - qa2 - b2 

un s Wn(O7 l;P,Q). 

(11) 

(12) 

The final above result is due to Morgado (1987) and is 
called the MORGADO IDENTITY. 

Another generalization of the Fibonacci numbers is de- 
noted xn. Given x1 and x2, define the generalized Fi- 
bonacci number by xn E xn-2 + xn-1 for n > 3, - 

Gray, A. Modern Differential Geometry of Curves and Sur- 

faces. Boca Raton, FL: CRC Press, pp+ 341-342, 1993. 
n 

x 
Xn = Xn+2 - X2 (13) 

i=l 
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10 

): 
Xn =11x7 (14) 

*- z- 1 

2 
Xn - Xn- 15n+2 =(-1>n(x22 -a2 -x1x2), (15) 

where the plus and minus signs alternate. 

see also FIBONACCI NUMBER 
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Generalized Function 
The class of all regular sequences of PARTICULARLY 
WELL-BEHAVED FUNCTIONS equivalent to a given reg- 
ular sequence (sometimes also called a DISTRIBUTION 
or FUNCTIONAL). A generalized function p(x) has the 
properties 

p’(x)f (x) dx = - 

O” ptn)f(x) dx = (-1)” /m p(x)f(“)(x)dx. 

The DELTA FUNCTION is a generalized function. 

see also DELTA FUNCTION 

Generalized Helicoid 
The SURFACE generated by a twisted curve C when ro- 
tated about a fixed axis A and, at the same time, dis- 
placed PARALLEL to A so that the velocity of displace- 
ment is always proportional to the ANGULAR VELOCITY 
of ROTATION. 

Generalized Helix , 
The GEODESICS on a general cylinder generated by lines 
PARALLEL to a line I with which the TANGENT makes a 
constant ANGLE. 

see also HELIX 

Generalized Hyperbolic Functions 
In 1757, V. Riccati first recorded the generalizations of 
the HYPERBOLIC FUNCTIONS defined by 

F:,,(x) = CF cnka;r,lxnk+r, . 
k=O 

(1) 

for T = 0, . . . . 72 - 1, where Q! is COMPLEX, and where 
the normalization is taken so that 

Fngo(0) = 1. (2) 

This is called the a-hyperbolic function of order n of the 
&h kind. The functions F,q, satisfy 

F:,,(x) = ( ti>-‘( tix) (3) 

and 

f (kJ (x) = af(x), (4) 

where 

0 k#r,O<k<n-1, 
- - (5) 

. 

In addition, 

The functions give a generalized EULER FORMULA 

n- 1 

e * = x( G)TF&.(x). 
r=o 

(7) 

Since there are n nth roots of a, this gives a system of 
n linear equations. Solving for F& gives 

n--l 

c,r (4 = A( *)wr ~Wn-TkeXp(Unk *X), (8) 

k=O 

see also GENERALIZED HELIX, HELICOID, HELIX 
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where 
2ni 

wn = exp ( > n (9) 

is a PRIMITIVE ROOT OF UNITY. 

The LAPLACE TRANSFORM~S 

e-“tF&(at) dt = ’ 
n-r-l T  

a . 
Sn + QIan (10) 
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The generalized hyperbolic function is also related to 
the MITTAG-LEFFLER FUNCTION E&c) by 

F;,,(x) = I$&?). (11) 

The values n = 1 and n = 2 give the exponential and 
circular/hyperbolic functions (depending on the sign of 
cy), respectively. 

F:,(x) = e= 

F&(x) = cosh(&x) 

sinh(&x) 
F$(x) = J  l  

a 

For Ed = 1, the first few functions are 

F-f,(x) = ex 

go (2) = coshx 

Fl,l(X> = sinhx 

Fi,o(x) = i[e” + 2e-x’2 cos(~&x)] 

Fl,&c) = i[eS + 2ewxi2 cos(t&x + ir)] 

Ft,2(x) = $ [ex + 2Pi2 cos( i&x - $)I 

Fi,o (4 = 3 (cash x + cos x) 

G,l(X> = 3 (sinh x + sin x) 

c,2 (4 = $(cosh x - cos x) 

F& (2) = $ (sinh II: - sin x). 

(12) 
(13) 

(14) 

see also HYPERBOLIC FUNCTIONS, MXTTAG-LEFFLER 

FUNCTION 
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Generalized Hypergeometric F’unction 
The generalized hypergeometric function is given by a 
WYPERGEOMETRIC SERIES, i.e., a series for which the 
ratio of successive terms can be written 

ak+l P(k) (k+al)(k+az)~~~(Jc+a,) 

- = Q(k) = (k + bl)(k + b2) l  l  l  (k + bq)(k + 1) x* ak 

(1) 

(The factor of k + 1 in the DENOMINATOR is present for 
historical reasons of notation.) The resulting generalized 
hypergeometric function is written 

k=O 

akxk = pFq 
al,a2,-,ap 

bl,b2,. -- ,b, ‘x (2) 

O” (al)k(aZ)k l  l  l  (ap)k xk - - 

k=. (h)kb(bz)k l  l  l  (b,)k k! ’ 
(3) 

where (& is the POCHHAMMER SYMBOL or RISING 
FACTORIAL 

qa + k) (a)k = - w = a(a + 1). . . (a + k - 1). (4) 

If the argument x = 1, then the function is abbreviated 

zFl(a, b; c; z) is “the” HYPERGEOMETRIC FUNCTION, 
and 1Fl (a; b; Z) = M(z) is the CONFLUENT HYPERGEO- 
METRIC FUNCTION. A function of the form &(; b; Z) is 
called a CONFLUENT HYPERGEOMETRE LIMIT FUNC- 
TION. 

The generalized hypergeometric function 

F a,aa,***,ap+1 
P+l P bl,b2,...& ” 1 (6) 

is a solution to the DIFFERENTIAL EQUATION 

[S(S + b - 1). . . (6 + b, - 1) 

-46+a1)(49+a2)4fl+a,+1)]y=0, (7) 

where 

9-g. 

The other linearly independent solution is 

(8) 

[Ifal-bl,l-az-b2, 1 

x 
l--b1 

p+lFp 

1+ a,+1 - h 

2-bl,;':b2-bl,,,,, ;' (9) 

1 - b, - bl 

A generalized hypergeometric equation is termed “well 
posed” if 

Many sums can be written as generalized hypergeomet- 
ric functions by inspection of the ratios of consecutive 
terms in the generating HYPERGEOMETRIC SERIES. For 
example, for 

/  4 

k 0 

2 

f(n) = n-1,” ; 3 

the ratio of successive terms is 

@+l (-l)k+l (;;I)~ - - - 
(k - 2n)2 - -- 
(k + 1)” ’ 

(11) 

(12) 



Generalized Hypergeometric Function Generalized Matrix Inverse 

yielding 

f(n) = ZFI 
- Zn, -2n 

- -1 
1 ’ 1 = zFl(-Zn, -2n; 1; -1) 

(13) 
(Petkovgek 1996, pp. 44-45). 

Gosper (1978) d iscovered a slew unusual hypergeo- 
metric function identities, many of which were sub- 
sequently proven by Gessel and Stanton (1982). An 
important generalization of Gosper’s technique, called 
ZEILBERGER'S ALGORITHM, in turn led to the powerful 
machinery of the WILF-ZEILBERGER PAIR (Zeilberger 
1990) l  

Special hypergeometric identities include GAWSS'S HY- 
PERGEOMETRIC THEOREM 

zFl(a, b; c; 1) = 
r(c)r(c - a - b) 

rye - a)lT(c - b) (14) 

for $?[c- u -b]> O,KUMMER'S FORMULA 

zFl(a, b; c; -1) = 
r($b + i)r(b - u + 1) 

r(b + i)r($b - a + 1) ’ (15) 

where a - b + c = 1 and b is a positive integer, 
SAALSCH~~TZ'S THEOREM 

3Fz(a,b,c;d,e;l) = 
(d - 4lcl Cd - bhcl 
dlcl (d - a - b)lcl 

(16) 

for d + e = a + b + c + 1 with c a negative integer and 
(a), the POCHHAMMER SYMBOL,DIXON% THEOREM 

aFz(a, b, c; d, e; 1) = 
($~)!(a - b)!(u - c)!( +a - b - c)! 

a!(;~ - b)!( +a - c)!(a - b - c)! ’ 

(17) 
where 1 + a/2 - b - c has a positive REAL PART, d = 
a-b+l,ande=a- c + 1, the CLAUSEN FORMULA 

4F3 
a b c d (2a)ldl ca + b)lcll(2b)ldl 

e f 9 ; ' 1 = (2a + 2b)lcip/cilbl~l ’ 
(18) 

for a+b+c-d = l/Z, e = a+b+1/2, a+f = d+l = b+g, 
d a nonpositive integer, and the DOUGALL-RAMANUJAN 
IDENTITY 

7F6 
%a27a3~a47a57a6~a7 

h,bzh,h,b& ;' 
I 

x (a1 - a2 - a4 + l)n(a1 - a3 - a4 + 1)n 

(a1 - a4 + l>n( a1 - a2 - u3 - a4 + l)n ’ (19) 

where n = 2al + 1 = a2 + a3 + a4 + a5, a6 = 1 + a1/2, 
a7 = -n, and bi = 1 + al - ai+l for i = 1, 2, . . . , 6. For 
all these identities, (a), is the POCHHAMMER SYMBOL. 
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Gessel (1994) f ound a slew of new identities using WILF- 
ZEILBERGER PAIRS, including the following: 

3Fz 
-3n,$ -c,3n+2 3 1 (c+ $I(& 

%,I-3c ;4 = (l-c),($), 

3F2 
-3b,-tn, $(I - 3n) 4 ($ - b)n 

-3n, i - b - n ’ s = (i + b)n 1 

(PetkovBek et al. 1996, pp* 135-137). 

see also CARLSON'S THEOREM, CLAUSEN FOR- 
MULA, CONFLUENT HYPERGEOMETRIC FUNCTION, 
CONFLUENT HYPERGEOMETRIC LIMIT FUNCTION, 
DIXON’S THEOREM,DOUGALL-RAMANUJAN IDENTITY, 
DOUGALL'S THEOREM, GOSPER'S ALGORITHM, HEINE 
HYPERGEOMETRIC SERIES, HYPERGEOMETRIC FUNC- 
TION, HYPERGEOMETRIC IDENTITY, HYPERGEOMET- 
RIC SERIES, JACKSON'S IDENTITY, KUMMER'S THE- 
OREM, RAMANUJAN'S HYPERGEOMETRIC IDENTITY, 
SAAL,SCH~~TZ'S THEOREM, SAALSCH~TZIAN, SISTER 
CELINE'S METHOD, THOMAE'S THEOREM, WATSON'S 
THEOREM, WHIPPLE'S TRANSFORMATION, WILF-ZEIL- 
BERGER PAIR, ZEILBERGER'S ALGORITHM 
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Generalized Matrix Inverse 

see MOORE-PENROSE GENERALIZED MATRIX INVERSE 
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Generalized Mean 
A generalized version of the MEAN 

with paramet ‘er t which gives the GE OMETRIC 
ARITHMETIC MEAN, and HARMONIC MEAN as 
cases: 

1/t 

see also MEAN 

lim m(t) = G 
t-k0 

m(l) = A 

m(4) = H. 

Generalized Remainder Met hod 
An algorithm for computing a UNIT FRACTION 

Generat ing Function 
A POWER SERIES 

f (2) = x anxn 
n=O 

(1) 

MEAN, 
special 

(2) 

(3) 

(4) 

. 

whose COEFFICIENTS give the SEQUENCE {ao, al, 
. . . }. The Muthematica@ (Wolfram Research, Cham- 

paign, IL) function DiscreteMath’RSolve ‘PowerSum 
gives the generating function of a given expression, and 
ExponentialPowerSum gives the exponential generating 
function. 

Generating functions for the first few powers are 

1: & = x  + x2  + x3  + l  l  l  

12: (1:x)2 = x + 2x2 + 3x3 + 4x4 + l  . l  

n2 : x(x+1) 
(1 -d3 

= x + 4x2 + 9x3 + 16x4 + . . . 

n3 . 2(2+42+1) 
l  

(-l)4 

= x + 8x2 + 27x3 + . . . 

n4 . x(x+l)(~2+10~+l) 
. 

(x-l>5 
= x + 16x2 + 81~~ + . m . . 

see also MOMENT- 
RENCE RELATION 

GEN ERATIN G FUNCTION, RECUR- 

References 
Wilf, H. S. GeneratingfiLnctionology, 2nd ed. New York: 
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Generation 
In population studies, the direct offspring of a refer- 
ence population (roughly) constitutes a single genera- 
tion. For a CELLULAR AUTOMATON, the fundamental 
unit of time during which the rules of r 
applied once is called a genera tion. 

uction are 

Gentle Diagonal 

Generator (Digitadition) 
An INTEGER used to generate a DIGITADITION. A num- 
ber can have more than one generator. If a number has 
no generator, it is called a SELF NUMBER. 

Generator (Group) 
An element of a CYCLIC GROUP, the POWERS of which 
generate the entire GROUP. 

References 
A&en, G. “Generators.” 54.11 in Mathematical Methods for 
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Genetic Algorithm 
An adaptive ALGORITHM involving search and optimiza- 
tion first used by John Holland. Holland created an elec- 
tronic organism as a binary string (“chromosome”), and 
then used genetic and evolutionary principles of fitness- 
proportionate selection for reproduction (including ran- 
dom crossover and mutation) to search enormous solu- 
tion spaces efficiently. So-called genetic programming 
languages apply the same principles, using an expres- 
sion tree instead of a bit string as the “chromosome.” 

see also CELLULAR AUTOMATON 

Genocchi Number 
A number given by the GENERATING FUNCTION 

00 
2t 

- = 
et + 1 Ix Gn$. 

. 
n=l 

It satisfies Gl = 1, G3 = Gg = G7 = . . ., and even 
coefficients are given by 

G2n = 2(1 - 22n)B2n 

= 2nJ&-l(O), 

where Bn is a BERNOULLI NUMBER and En(x) is an 
EULER POLYNOMIAL. The first few Genocchi numbers 
for n EVEN are -1, 1, -3, 17, -155, 2073, . . . (Sloane’s 
A001469). 

see UZSO BERNOULLI NUMBER, EULER POLYNOMIAL 
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Gentle Diagonal 

see PASCAL’S TRIANGLE 
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Gentle Giant Group 

see MONSTER GROUP 

Genus (Curve) 
One of the PL~~CKER CHARACTERISTICS, defined by 

p E i(n-l)(n-2)-(6+n) = f(m-l)(m-2)-(r+b), 

where m is the class, n the order, S the number of nodes, 
K the number of CUSPS, L the number of stationary tan- 
gents (INFLECTION POINTS), and 7 the number of BI- 
TANGENTS. 

see also RIEMANN CURVE THEOREM 
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York: Dover, p. 100, 1959. 

Genus (Knot) 
The least genus of any SEIFERT SURFACE for a given 
KNOT. The UNKNOT is the only KNOT with genus 0. 

Genus (Surface) 
A topologically invariant property of a surface defined 
as the largest number of nonintersecting simple closed 
curves that can be drawn on the surface without sepa- 
rating it. Roughly speaking, it is the number of HOLES 
in a surface. 

Geodesic 
Given two points on a surface, the geodesic is defined 
as the shortest path on the surface connecting them. 
Geodesics have many interesting properties. The NOR- 
MAL VECTOR to any point of a GEODESIC arc lies along 
the normal to a surface at that point (Weinstock 1974, 
p. 65). 

Furthermore, no matter how badly a SPHERE is dis- 
torted, there exist an infinite number of closed geodes- 
ics on it. This general result, demonstrated in the early 
199Os, extended earlier work by Birkhoff, who proved 
in 1917 that there exists at least one closed geodesic 
on a distorted sphere, and Lyusternik and Schirelmann, 
who proved in 1923 that there exist at least three closed 
geodesics on such a sphere (Cipra 1993) l  

For a surface g(z, y, z) = 0, the geodesic can be found 
by minimizing the ARC LENGTH 

dx2 + dy2 + dz2. (1) 

But 

dx = 
da: OX 
&u+ %du (2) 

dx’= g 2du2+2ggdudv+ ($)‘du’, (3) 
( > 

see also EULER CHARACTERISTIC 
and similarly for dy2 and dz2. Plugging in, 

Genus Theorem 
A DIOPHANTINE EQUATION 

x2 + y2 = p 

can IX solved for p a PRIME IFF p = 1 (mod 4) or p = 2. 
The representation is unique except for changes of sign 
or rearrangements of x and y* 

see also COMPOSITION THEOREM, FERMAT’S THEOREM 

Geocentric Latitude 
An AUXILIARY LATITUDE given by 

6 9 = tan-‘[(I - e”) tan& 

The series expansion is 

q5g = q5 - e2 sin(2$) + $zz2 sin(44) + iez3 sin(64) + 

where 
e2 

e2 = 2 _ e2 l  

see also LATITUDE 
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L=s( [(g)2+(g)2+(g)2]du2 

[ 
dx ax aY aY -0 zz+--+ 

au dv 
gg] dudu 

+ [(g)‘+ (g)2+ (g)“] dv2}1’2- (4) 

This can be rewritten as 

L- 
Id 

P + 2Qw’ -+ Rvi2 du 

- - +- 2Qu’ +- R du, 

where 

du 
v’ G du 

(5) 

(6) 

du ui = - 
dv 

and 

PG (g)2+(g)2+(g)2 (9) 

(10) 

(11) 
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Rvt2 - (P + Rvi2) = cl -\/P + Rv’2 (25) Taking derivatives, 

= P + Rd2 dL - - 
&I 

- ;(P + 2Qv’ + Rvt2)-li2 (26) 

( 
dP aQ t dR r2 

x z+2jy +-v 
dV > 

P2 - CpP ‘2 

RC12 
=v , (12) (27) 

al; - - 
dV' 

- $(P + 2Qv’ + Rvt2)-li2(2Q + ~Rv’), (13) and 

SJ R 
u = Cl 

p2 -c12p dv- (28) SO the EULER-LAGRANGE DIFFERENTIAL EQUATION 
then gives 

For a surface of revolution in which y = g(z) is rotated 
about the z-axis so that the equation of the surface is E +2v’$$ +vt2g d Q+Rv’ -- 

2JP + 2Qv’ + Rvt2 du 
L ) 

= 0. 
P + 2Qv’ + Rvf2 

(14 

In the special case when P, Q, and R are explicit func- 
tions of u only, 

y2 + z2 = g"(x), (29) 

the surface can be parameterized by 

x=u (30) 
y = g(u) cosv (31) 
z = g(u) sinv. (32) 

Q+Rv' 
z/P + 2Qv’ + Rut2 

= Cl (15) 

Q2 + 2QRv’ + R2vt2 

P + 2Qv’ + Rvt2 
= Cl2 The equation of the geodesics is then (16) 

vf2R(R- cl”) + 2v’Q(R - cl”) + (Q” - Pc12) = 0 (17) 
(33) 

1 

vt = 2R(R - c12) 
[2Q(cl" - R) 

see also ELLIPSOID GEODESIC, GEODESIC CURVATURE, 
GEODESIC DOME, GEODESIC EQUATION, GEODESIC 
TRIANGLE, GREAT CIRCLE, HARMONIC MAP, OBLATE 
SPHEROID GEODESIC, PARABOLOID GEODESIC 

@Qz(R - c,~)~ - 4R(R - cl”)@” - pc12)]. (18) 

Now, if P and R are explicit functions of u only and 

Q = 0, References 
Cipra, B. What’s Happening in the Mathematical Sciences, 

Vol. I. Providence, RI: Amer. Math. Sot., pp. 27, 1993. 
Weinstock, R. Calculus of Variations, with Applications to 

Physics and Engineering. New York: Dover, pp. 26-28 
and 45-46, 1974. 

v’ = 
d4R(R - c12)Pc12 

2R(R - a2) (19) 

so 

Geodesic Curvature 
For a unit speed curve on a surface, the length of the 
surface-tangential component of acceleration is the geo- 
desic curvature K~. Curves with K~ = 0 are called 
GEODESICS. For a curve parameterized as (r(t) = 
x(u(t),v(i)), the geodesic curvature is given by 

(20) 

In the case Q = 0 where P and R are explicit functions 
of v only, then 

Kg = JEG - ~y-r&‘~ + rizvt3 - (21-7;~ - r;l)u12vf 

+(2ri2 - r~2)uV + dfd - d?,i], so 

tYP ‘2 m 
%+v %-25=R 

x 

where E, F, and G are coefficients of the first FUNDA- 
MENTAL FORM and r& are CHRISTOFFEL SYMBOLS OF 
THE SECOND KIND. 

see also GEODESIC 

dP t2 dR dv + v au _ 2Rv” + 2R2v’2v” 
P + Rvt2 

=o (23) References 
Gray, A. “Geodesic Curvature.” $20.5 in Modem. Diflerential 
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Press, pp. 402-407, 1993. 



Geodesic Dome Geometric Construction 

Geodesic Dome Solid - f v e’ n A F c 
tetrahedron 3 3 45O 90" 270" 
cube 24 14 3 4 51;' 81;' 3084" 

octahedron 4 3 38;' 108;' 308;" 

dodecahedron 60 32 3 5 56+' 71;" 337;" 

icosahedron 5 3 33;' 118;' 337+' 

see UZSO TRIANGULAR SYMMETRY GROUP 

A TRIANGULATION of a PLATONIC SOLID or other 
POLYHEDRON to produce a close approximation to a 
SPHERE. The nth order geodesation operation replaces 
each polygon of the polyhedron by the projection onto 
the CIRCUMSPHERE of the order n regular tessellation 
of that polygon. The above figure shows geodesations 
of orders 1 to 3 (from top to bottom) of the TETRA- 
HEDRON, CUBE, OCTAHEDRON, DODECAHEDRON, and 
ICOSAHEDRON (from left to right). 

R. Buckminster Fuller designed the first geodesic dome 
(i.e., geodesation of a HEMISPHERE). Fuller’s dome was 
constructed from an ICOSAHEDRON by adding ISOSCE- 
LES TRIANGLES about each VERTEX and slightly reposi- 
tioning the VERTICES. In such domes, neither the VER- 
TICES nor the centers of faces necessarily lie at exactly 
the same distances from the center. However, these con- 
ditions are approximately satisfied. 

In the geodesic domes discussed by Kniffen (1994), the 
sum of VERTEX angles is chosen to be a constant. Given 
a PLATONIC SOLID, let e’ = 2e/w be the number of 
EDGES meeting at a VERTEX and n be the number of 
EDGES of the constituent POLYGON. Call the angle of 
the old VERTEX point A and the angle of the new VER- 
TEX point F. Then 

A=B 

Ze’A = nF 

2A + F = 180”. 

(1) 

(2) 

(3) 

Solving for A gives 

2A+ (4 

(5 

and 

F= 2dA = 18o”e 
e/+72’ (6) n 

The VERTEX sum is 

C=nF=180”+- 
e’+n’ (7) 
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Geodesic Equation 

or 

d-r2 = -%P dS” dP, 

d2E” = 0 
dT2 ’ 

see also GEODETIC 

Geodesic Flow 
A type of FLOW technically defined in terms of the TAN- 
GENT BUNDLE ofa MANIFOLD. 

see UZSO DYNAMICAL SYSTEM 

Geodesic Triangle 
A TRIANGLE formed by the arcs of three GEODESICS on 
a smooth surface. 

see also INTEGRAL CURVATURE 

Geodetic Latitude 

see LATITUDE 

Geographic Latitude 

see LATITUDE 

Geometric Construction 
In antiquity, geometric constructions of figures and 
lengths were restricted to use of only a STRAIGHTEDGE 
and COMPASS. Although the term "RULER" is some- 
times used instead of STRAIGHTEDGE," no markings 
which could be used to make measurements were al- 
lowed according to the Greek prescription. Furthermore, 
the "COMPASS" could not even be used to mark off dis- 
tances by setting it and then “walking” it along, so the 
COMPASS had to be considered to automatically collapse 
when not in the process of drawing a CIRCLE. 

Because of the prominent place Greek geometric con- 
structions held in Euclid’s EEements, these constructions 
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are sometimes also known as EUCLIDEAN C~NSTRUC- 
TIONS. Such constructions lay at the heart of the GEo- 
METRIC PROBLEMS OF ANTIQUITY of CIRCLE SQUAR- 
ING, CUBE DUPLICATION, and TRISECTION of an AN- 
GLE. The Greeks were unable to solve these problems, 
but it was not until hundreds of years later that the 
problems were proved to be actually impossible under 
the limitations imposed. 

Simple algebraic operations such as a + b, a - b, TU 
(for r a RATIONAL NUMBER), a/b, ab, and fi can be 
performed using geometric constructions (Courant and 
Robbins 1996). Other more complicated constructions, 
such as the solution of APOLLONIUS' PROBLEM and the 
construction of INVERSE POINTS can also accomplished. 

One of the simplest geometric constructions is the con- 
structionofa BISECTOR ofa LINE SEGMENT; illustrated 
above. 

Equilateral Triangle Square 

Pentagon 17-gon 

The Greeks were very adept at constructing POLYGONS, 
but it took the genius of Gauss to mathematically de- 
termine which constructions were possible and which 
were not. As a result, Gauss determined that a se- 
ries of POLYGONS (the smallest of which has 17 sides; 
the HEPTADECAGON) had constructions unknown to 
the Greeks. Gauss showed that the CONSTRUCTIBLE 
POLYGONS (several of which are illustrated above) were 
closely related to numbers called the FERMAT PRIMES. 

Wernick (1982) gave a list of 139 sets of three located 
points from which a TRIANGLE was to be constructed. 
Of Wernick’s original list of 139 problems, 20 had not 
yet been solved as of 1996 (Meyers 1996). 

Geometric Construction 

It is possible to construct RATIONAL NUMBERS and 
EUCLIDEAN NUMBERS using a STRAIGHTEDGE and 
COMPASS construction. In general, the term for a 
number which can be constructed using a COMPASS 
and STRAIGHTEDGE is a CONSTRUCTIBLE NUMBER. 
Some IRRATIONAL NUMBERS, but no TRANSCENDEN- 
TAL NUMBERS, can be constructed. 

It turns out that all constructions possible with a COM- 
PASS and STRAIGHTEDGE canbe done witha COMPASS 
alone, as long as a line is considered constructed when 
its two endpoints are located. The reverse is also true, 
since Jacob Steiner showed that all constructions pos- 
sible with STRAIGHTEDGE and COMPASS can be done 
using only a straightedge, as long as a fixed CIRCLE and 
its center (or two intersecting CIRCLES without their 
centers, or three nonintersecting CIRCLES) have been 
drawn beforehand. Such a construction is known as a 
STEINER CONSTRUCTION. 

GEOMETROGRAPHY is a quantitative measure of the 
simplicity of a geometric construction. It reduces ge- 
ometric constructions to five types of operations, and 
seeks to reduce the total number of operations (called 
the LLS~~~~~~~~~'Y) needed to effect a geometric con- 
struction. 

Dixon (1991, pp. 34-51) gives approximate construc- 
tions for some figures (the HEPTAGON and NONAGON) 
and lengths (PI) which cannot be rigorously con- 
structed. Ramanujan (1913-14) and Olds (1963) give 
geometric constructions for 355/123 = K. Gardner 
(1966, pp. 92-93) gives a geometric construction for 

3 + E = 3.1415929,. . % 7r* 

Constructions for 7r are 
of CIRCLE SQUARING. 

approximate (b t U inexact forms 

see UZSOCIRCLE SQUARING,~OMPASS$ONSTRU~TIBLE 
NUMBER, CONSTRUCTIBLE POLYGON, CUBE DUPLICA- 
TION, ELEMENTS,FERMAT PRIME, GEOMETRIC PROB- 
LEMS OF ANTIQUITY, GEOMETROGRAPHY, MASCHER- 
ONI CONSTRUCTION, NAPOLEON'S PROBLEM, NEU- 
SIS CONSTRUCTION, PLANE GEOMETRY, POLYGON, 
P~NCELET-STEINER THEOREM, RECTIFICATION, SIM- 
PLICITY, STEINER CONSTRUCTION, STRAIGHTEDGE, 
TRISECTION 
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Geometric Distribution 

A distribution such that 

P(n) = qn-‘p = p(l - p)+-l, (1) 

where q E 1 - p and for n = 1, 2, . . . . The distribution 

is normalized since 

~P(n)=C~n-l~=PJ:4n=~=~=l. 
n=l n=l n=O 

(2) 

The MOMENT-GENERATING FUNCTION is 

b(t) = p[l - (1 --p)eit]-l, (3) 

n=O 

= pet x(etq)n = 5 
n=O 

(4) 

- Ml(t) =p 
[ 

(1 etq)et - et (-etq> 

(1 - etq)2 1 
PV - qe2t + qe2t) Pet - - 

(1 
(5) - etq)2 = (1 - etq)2 

M”(t) =p (1 - 
etq)2et - et2(1 - etq)(-etq) 

(1 - etq)4 

(1 - 2etq + e2tq2)et + 2qe2t(l - etq) 
I= P 

(1 - ew4 

=pe 
t - 2e2tq + e3tq2 + 2qe2t - 2q2e3t 

(1 - etq)4 

=pe 
t - q2e3’ pet (1 - G”e”“> 

(1 - etq)4 = (1 - etq)4 

pet(l + qe”) - - 
(1 - etq)3 (6) 

M”‘(t) = 
pet[l + 4et(l -p) + ezt(l -p>“] 

(1 - et + etp)4 
l  

(7) 

Therefore, 

P 1 
IM’(O) z ~‘1 = p = 1 - - - - 

(1 - d2 - P2 - P 

Mc4) 

and 

p(l+ 4) 
0) = /h = (lt = p3 = 

P(2-PI 2-P (9) 
p2 

0) = p; = 
@-6P+P”) 

P3 
(10) 

0) = pi = 
(p - 2)(-p2 + =p - 12) 

P4 
7 (11) 

/A2 E p; - (p;)2 I- 1 1-P - 2 = - 
P P2 

-Q - 
P2 

(12) 

P3 = p$ - 3p;p; + 2(pij3 

- - 

6 - 6p + p2 - 3(2 - p) + 2 - - 
P3 

(P - l)(P - 2) - - 
P” 

(13) 

~4 -oh -4/&p; +6~;(p;)~ -3(~;)~ 

- - (P - 2)(-p2 + 12~ - 12) _ 46 - 6p+p2 1 

+&$ (;j2?3(;)’ p3 ’ 

- (P - 1)(-P” + 9p - 9) - 
P4 

7 (14) 
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SO the MEANJARIANCE, SKEWNESS, and KURTOSIS are 

given by 

4 o2 = p2 = - 
P2 

(16) 

cl3 (P-l)(P-2) 
71=-g= 

P3 

(P - UP - 2) 2-p 2-p - - (17) 

P4 y2=~-3= (P - WP” + 9P - 9) _ 3 
p4 O-PI2 

P4 

- - -9+9p-p2 -3 

(P-1) 

_ p2 - 6p + 6 - 
l-p . (18) 

In fact, the moments of the distribution are given ana- 
lytically in terms of the P~LYLUGARITHM function, 

n=l n=l 

(19) 

For the case p = l/2 (corresponding to the distribu- 
tion of the number of COIN TOSSES needed to win in 
the SAINT PETERSBURG PARADOX) this formula imme 
diat ely gives 

P: =2 (20) 

p; = 6 (21) 
p; = 26 (22) 
pi = 150, (23) 

SO the MEAN, VARIANCE, SKEWNESS, and K~RTOSIS in 
this case are 

I_L=2 (24) 

o2 = 2 (25) 

y,=;J2 (26) 
72 = y. (27) 

The first CUMULANT of the geometric distribution is 

1-P kc1 = - 
P ’ 

(28) 

and subsequent CUMULANTS are given by the RECUR- 
RENCE RELATION 

d&r 
fh+1= (I- PI-&. (29) 

see also SAINT PETERSBURG PARADOX 
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Geometric Mean 

/ n \ lln 

Hoehn and Niven (1985) show that 

G(ai+c,az+c,...,a,+c) >c+G(al,az ,..., a,) 

for any POSITIVE constant c. 

see also ARITHMETIC MEAN, ARITHMETIC-GEOMETRIC 

MEAN, CARLEMAN’S INEQUALITY, HARMONIC MEAN, 
MEAN, ROOT-MEAN-SQUARE 
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Geometric Mean Index 
The statistical INDEX 

PG E [n (~)vo]“Evo, 

where pn is the price per unit in period n, qn is the 
quantity produced in period n, and un E p,q, the value 
of the n units. 

see also INDEX 
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Geometric Probability Constants 

see CUBE POINT PICKING, CUBE TRIANGLE PICKING 

Geometric Problems of Antiquity 
The Greek problems of antiquity were a set of geometric 
problems whose solution was sought using only COM- 
PASS and STRAIGHTEDGE: 

1. CIRCLE SQUARING. 

2. CUBE DUPLICATION. 

3. TRISECTION of an ANGLE. 

Only in modern times, more than 2,000 years after they 
were formulated, were all three ancient problems proved 
insoluble using only COMPASS and STRAIGHTEDGE. 

Another ancient geometric problem not proved impos- 
sible until 1997 is ALHAZEN'S BILLIARD PROBLEM. 
As Ogilvy (1990) points out, constructing the general 
REGULAR POLYHEDRON was really a “fourth” unsolved 
problem of antiquity. 
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see also ALHAZEN'S I~ILLIARD PROBLEM, CIRCLE 
SQUARING, COMPASS, CONSTRUCTIBLE NUMBER, CON- 
STRUCTIBLE POLYGON, CUBE DUPLICATION, GE- 

OMETRIC CONSTRUCTION, REGULAR POLYHEDRON, 
STRAIGHTEDGE, TRISECTION 

Subtracting 

(I- r)Sn = (1 + r + T2 + . . . + T”) 

- (T + T2 + T3 + l  l  . + Tn+l) 

= 1 - rnfl, 

(4) 
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so  

n 

s, E 
x 

n-t1 
Tk = l-r 

l-r l  

(5) 

k=O 

As n + 00, then 

00 
Ogilvy, C. S. Excursions in Geometry. New York: Dover, 

pp. 135-138, 1990. 
Pappas, T. “The Impossible Trio.” The Joy of Mathematics. 

San Carlos, CA: Wide World Publ./Tetra, pp. 130-132, 
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SIS,= fkE1 
>: l-r’ 
k=O 

(6) 

Jones, A.; Morris, S.; and Pearson, K. Abstract Algebra and 
Famous Impossibilities. New York: Springer-Verlag, 1991. 

see also ARITHMETIC SERIES, GABRIEL'S STAIRCASE, 
HARMONIC SERIES,HYPERGEOMETRIC SERIES,~HEAT 
AND CHESSBOARD PROBLEM 

Geometric Progression 

see GEOMETRIC SEQUENCE 

Geometric Sequence 
A geometric sequence is a SEQUENCE {arc}, k = 1, 2, 

such that each term is given by a multiple T of the 
prk:ious one. Another equivalent definition is that a 
sequence is geometric IFF it has a zero BIAS. If the 
multiplier is T, then the kth term is given by 
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Without loss of generality, take a0 = 1, giving 
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Geometrization Conjecture 

see THURSTON'S GEOMETRIZATION CONJECTURE 

Geometric Series 
Geometrography 

A geometric series ck ak is a series for which the ratio of 
each two consecutive terms ak+&k is a constant func- 
tion of the summation index k, say T. Then the terms 
ak are Of the form ak = CLoTk, SO ak++ = F’. If {ak}, 
with k = 1, 2, . l  l  , is a GEOMETRIC SEQUENCE with 
multiplier -1 < r < 1 and a0 = 1, then the geometric 
series 

S,=j:ak=kTk (1) 

A quantitative measure of the simplicity of a GEOMET- 
RIC CONSTRUCTZON which reduces geometric construc- 
tions to five steps. It was devised by &. Lemoine. 

S1 Place a STRAIGHTEDGE'S EDGE through a given 
POINT, 

S2 Draw a straight LINE, 

is given by 

k=O k=O 

Cl Place a POINT of a COMPASS on a given POINT, 

C2 Place a POINT of a COMPASS on an indeterminate 
POINT on a LINE, 

C3 Draw a CIRCLE. 

Tk = 1+r+r2+...+F, (2 > 
k=O 

so 
rsy& = r + T2 + f3 + l  . l  + rn+l* (3 > 

Geometrography seeks to reduce the number of opera- 
tions (called the SIMPLICITY") needed to effect a con- 
struction. If the number of the above operations are 
denoted nzl, 7322, 721, n2, and n3, respectively, then the 
SIMPLICITY is ml + nz2 + n1 + n2 + n3 and the symbol is 
rn& +m& +nlCl +n2C2 +n&. It is apparently an 
unsolved problem to determine if a given GEOMETRIC 
CONSTRUCTION is of the smallest possible simplicity. 
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see also SIMPLICITY 
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Geometry 
Geometry is the study of figures in a SPACE of a 
given number of dimensions and of a given type. The 
most common types of geometry are PLANE GEOMETRY 
(dealing with objects like the LINE, CIRCLE, TRIANGLE, 
and POLYGON), SOLID GEOMETRY (dealing with objects 
likethe LINE, SPHERE, and POLYHEDRON), and SPHER- 
ICAL GEOMETRY (dealing with objects like the SPHER- 
ICAL TRIANGLE and SPHERICAL POLYGON). 

Historically, the study of geometry proceeds from a 
small number of accepted truths (A XIOMS or POSTU- 
LATES), then builds up true statements using a system- 
atic and rigorous step-by-step PROOF. However, there 
is much more to geometry than this relatively dry text- 
book approach, as evidenced by some of the beautiful 
and unexpected results of PROJECTIVE GEOMETRY (not 
to mention Schubert’s powerful but questionable ENU- 
MERATIVE GEOMETRY). 

Formally, a geometry is defined as a complete locally 
homogeneous RIEMANNIAN METRIC. In @, the possible 
geometries are Euclidean planar, hyperbolic planar, and 
elliptic planar. In Iw”, the possible geometries include 
Euclidean, hyperbolic, and elliptic, but also include five 
other types. 

see also ABSOLUTE GEOM ETRY, AFFINE G EOMETRY, 
CO ORDINATE GEOMETRY, DIFFERENTIAL G EOMETRY, 
ENUMERATIVE GEOMETRY, FINSLER GEOMETRY, IN- 

VERSIVEGEOMETRY,MINKOWSKIGEOMETRY,NIL GE- 
OMETRY,NON-EUCLIDEAN GEOMETRY,~RDERED GE- 
OMETRY,PLANE GEOMETRY,PRUJECTIVE GEOMETRY, 
SOL GEOMETRY, SOLID G EOMETRY, SP HERI CAL GE- 
OMETRY,THURST ON'S GEO ~METRIZATION CON 'JECTWRE 

References 
Altshiller-Court, N. College Geometry: A Second Course in 

Plane Geometry for Colleges and Normal Schools, 2nd ed., 
rev. enl. New York: Barnes and Noble, 1952. 

Brown, K. S. “Geometry.” http://www.seanet.com/ 
-ksbrown/igeometr.htm. 

Coxeter, H. S. M. Introduction to Geometry, 2nd ed. New 
York: Wiley, 1969. 

Croft, H. T.; Falconer, K. J.; and Guy, R. K. Unsolved Prob- 
lems in Geometry. New York: Springer-Verlag, 1994. 

Eppstein, D. “Geometry Junkyard.” http: //www. its .uci. 
edu/-eppstein/junkyad/. 

Eppstein, D. “Many-Dimensional Geometry.” http: // www l  

ics.uci.edu/~eppstein/junkyard/highdim.html. 
Eppstein, D. “Planar Geometry.” http://www.ics.uci.edu 

/-eppstein/junkyard/2d.html. 
Eppstein, D. “Three-Dimensional Geometry.” http : // www . 

ics.uci.edu/-eppstein/jtiyard/3d*html. 
Eves, H. W. A Survey of Geometry, rev. ed. Boston, MA: 

Allyn and Bacon, 1972. 

Geometry Center. http: //www. geom.umn. edu. 
Ghyka, M. C. The Geometry of Art and Life, 2nd ed. New 

York: Dover, 1977. 
Hilbert, D. The Foundations of Geometry, 2nd ed. Chicago, 

IL: The Open Court Publishing Co., 1921. 
Johnson, R. A. Advanced Euclidean Geometry: An Elemen- 

tary Treatise on the Geometry of the Triangle and the Cir- 
de. New York: Dover, 1960. 

King, J. and Schattschneider, D. (Eds.). Geometry Turned 
On: Dynamic Software in Learning, Teaching and Re- 
search. Washington, DC: Math. Assoc. Amer., 1997. 

Klein, F. Famous Problems of Elementary Geometry and 
Other Monogruphs.082840108X New York: Dover, 1956. 

Melzak, Z. A. Invitation to Geometry. New York: Wiley, 

Moise, E. E. Elementary Geometry from an Advanced Stand- 
point, 3rd ed. Reading, MA: Addison-Wesley, 1990. 

Ogilvy, C. S. “Some Unsolved Problems of Modern Geom- 
etry.” Ch. 11 in Excursions in Geometry. New York: 
Dover, pp. 143-153, 1990. 

Simon, M. ober die Entwicklung der Elementargeometrie im 
XIX Jahrhundert. Berlin, pp, 97-105, 1906. 

Woods, F. S. Higher Geometry: An Introduction to Advanced 
Methods in Analytic Geometry. New York: Dover, 1961. 

Gergonne Line 

The perspective line for the CONTACT TRIANGLE 
ADEF and its TANGENTIAL TRIANGLE AABC. It is 
determined by the NOBBS POINTS D’, E’, and F’. In 
addition to the NOBBS POINTS, the FLETCHER PRINT 
and EVANS POINT also lie on the Gergonne line where 
it intersects the SODDY LINE and EULER LINE, respec- 
tively. The D and D’ coordinates are given by 

f D=B+-C 
e 

D’ =:B- f C, 
e 

so BDCD’ form a HARMONIC RANGE. The equation of 
the Gergonne line is 

a P Y z+-+-‘0. 
e f 

see also CONTACT TRIANGLE, EULER LINE, EVANS 
POINT, FLETCHER POINT, NOBBS POINTS, S~DDY 
LINE, TANGENTIAL TRIANGLE 

References 
Oldknow, A. “The Euler-Gergonne-Soddy Triangle of a Tri- 

angle.” Amer. Math. MonthEy 103, 319-329, 1996. 



Gergonne Point Ghost 

Gergonne Point 

The common point of the CONCURRENT lines from the 
TANGENT points of a TRIANGLE’S INCIRCLE to the op- 
posite VERTICES. It has TRIANGLE CENTER FU ‘NCTIoN 

QI = [a@ + c - a)]-l = $ set’ A. 

It is the ISOTOMIC CONJUGATE POINT of the NAGEL 
POINT. The CONTACT TRIANGLE and TANGENTIAL 
TRIANGLE are perspective from the Gergonne point. 

see also GERG~NNE LINE 
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New York: Barnes and Noble, pp. 160-164, 1952. 

Coxeter, H. S M. and Greitzer, S. L. Geometry Revisited, 
New York: Random House, pp. H-13, 1967. 

Eves, H. W. A Survey of Geometry, rev. ed, Boston, MA: 
Allyn and Bacon, p. 83, 1972. 

Gallatly, W. The Modern Geometry of the Triangle, 2nd ed. 
London: Hodgson, p. 22, 1913. 

Johnson, R. A. Modern Geometry: An Elementary Treatise 
on the Geometry of the Triangle and the Circle. Boston, 
MA: Houghton Mifflin, pp. 184 and 216, 1929. 

Kimberling, C. “Gergonne Point? http://wuw.evansville. 
edu/-ck6/tcenters/class/gergonne.html. 

Germain Primes 

see SOPHIE GERMAIN PRIME 

Gerono Lemniscate 

see EIGHT CURVE 

GerSgorin Circle Theorem 
Gives a region in the COMPLEX PLANE containing all 
the 

12k1 = 

define 

of a COMPLEX SQUARE MATRIX. Le t 

max{\ziI : 1 < i 5 n} > 0 

Then each EIGENVALUE of the MATRIX A of order 72 is 
in at least one of the disks 

{ I x:2- _ UiJ < Ri}. (3) 

735 

The theorem can be made stronger as follows. Let T be 
an INTEGER with 15 T 5 n, then each EIGENVALUE of 
A is either in one of the disks I?1 

{z : 1% - Ujjl 5 sy}, (4 

or in one of the regions 

where Sj’-‘) is the sum of magnitudes of the r-l largest 
off-diagonal elements in column j. 

References 
Buraldi, R. A. and Mellendorf, S. “Regions in the Complex 

Plane Containing the Eigenvalues of a Matrix.” Amer. 
Math. Monthly 101, 975-985, 1994. 

Gradshteyn, I. S. and Ryzhik, I. M. Tables of Integrals, Se- 
ries, and Products, 5th ed. San Diego, CA: Academic 
Press, pp. 1120-1121, 1979. 

Taussky-Todd, 0. “A Recurring Theorem on Determinants.” 
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If the sampling of an interferogram is modulated at a 
definite frequency instead of being uniformly sampled, 
spurious spectral features called “ghosts” are produced 
(Brault 1985). P eriodic ruling or sampling errors intro- 
duce a modulation superposed on top of the expected 
fringe pattern due to uniform stage translation. Be- 
cause modulation is a multiplicative process, spurious 
features are generated in spectral space at the sum and 
difference of the true fringe and ghost fringe frequencies, 
thus throwing power out of its spectral band. 

Ghosts are copies of the actual spectrum, but appear 
at reduced strength. The above shows the power spec- 
trum for a pure sinusoidal signal sampled by translat- 
ing a Fourier transform spectrometer mirror at constant 
speed. The small blips on either side of the main peaks 
are ghosts. 

In order for a ghost to appear, the process producing it 
must exist for most of the interferogram. However, if 
the ruling errors are not truly sinusoidal but vary across 
the length of the screw, a longer travel path can reduce 
their effect. 

see also JITTER 
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References Gilbrat’s Distribution 
Brault, J. W. “Fourier Transform Spectroscopy.” In High 

Resolution in Astronomy: 15th Advanced Course of 
the Swiss Society of Astronomy and Astrophysics (Ed. 
A. Benz, M. Huber, and M. Mayor). Geneva Observatory, 
Sauverny, Switzerland, 1985. 

A CONTINUOUS DISTRIBUTION in which the LOGA- 
RITHM of a variable 61: has a NORMAL DISTRIBUTION, 

p(x) = l e-(ln42/2m 
A- 7r 

Gibbs Constant 

see WILBRAHAM-GIBBS CONSTANT 

Gibbs Effect 

see GIBBS PHENOMENON 

Gibbs Phenomenon 

An overshoot of FOURIER SERIES and other EIGEN- 
FUNCTION series occurring at simple DISCONTINUITIES. 

It can be removed with the LANCZOS 0 FACTOR. 

see also FOURIER SERIES 

References 
A&en, G. “Gibbs Phenomenon.” 5 14.5 in Mathematical 

Methods for Physicists, 3rd ed. Orlando, FL: Academic 
Press, pp. 783-787, 1985. 

Foster, J. and Richards, F. B. “The Gibbs Phenomenon for 
Piecewise-Linear Approximation.” Amer. Math. MonthEy 
98,47-49,1991. 

Gibbs, J. W. “Fourier Series.” Nature 59, 200 and 606, 1899. 
Hewitt, E. and Hewitt, R. “The Gibbs-Wilbraham Phenom- 

enon: An Episode in Fourier Analysis.” Arch. Hist. Exact 

Sci. 21, 129-160, 1980. 
Sansone, G. “Gibbs’ Phenomenon.” $2.10 in Orthogonal 

Functions, reu. English ed. New York: Dover, pp. 14l-- 
148, 1991. 

Gigantic Prime 
A PRIME with 10,000 or more decimal digits. As of 
Nov. 15, 1995, 127 were known. 

see also TITANIC PRIME 

References 
Caldwell, C. “The Ten Largest, Known Primes.” http : //www , 

utm. edu/research/primes/largest . html#largest, 

It is a special case of the LOG NORMAL, DISTRIBUTION 

P(x) = -A- 
S&Ge 

-(lna:-M)2/2S2 
. 

with S = 1 and M = 0. 

see also LOG NORMAL DISTRIBUTION 

Gilbreath’s Conjecture 
Let the DIFFERENCE of successive PRIMES be defined by 
d, E pPn+l - pn, and & by 

for k = 1 
for k > 1. 

N. L. Gilbreath claimed that df = 1 for all k (Guy 1994). 
It has been verified for k < 63419 and all PRIMES up to 
r( 1013), where r is the PRIME COUNTING FUNCTION. 

References 
Guy, R. K. “Gilbreath’s Conjecture.” §A10 in Unsolved Prob- 

lems in Number Theory, 2nd ed. New York: Springer- 
Verlag, pp. 25-26, 1994. 

Gill’s Method 
A formula for numerical solution of differential equa- 

Yn+l = Yn + i[kl + (2 - di)Icz 

f(2 + J2)ks + k4) + O(h5), 

where 

h = kf(xn, yn) 
kz = hf(xn + +h, yn + +kl) 

k3 = hf(xn + +h, yn + ;(-I + h)kl + (1 - $fi)k2) 

h=hf(xn+h,yn- $Jzkz+(l+ iJz)rC,). 

see also ADAMS’ METHOD, MILNE’S METHOD, PREDIC- 
TOR-CORRECTOR METHODS,RUNGE-KUTTA METHOD 

References 
Abramowitz, M. and Stegun, C. A. (Eds.). Handbook 

of Mathematical Functions with Formulas, Graphs, and 
Mathematical Tables, 9th printing. New York: Dover, 
p. 896, 1972. 
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. 
GII ngerbreadman Map 

8 

6 

1 

-2 0 2 4 6 8 

A 2-D piecewise linear MAP defined by 

Xn+l = 1 - Yn + /Xrbl 

Yn+l = Xn* 

The map is chaotic in the filled region above and stable 
in the six hexagonal regions. Each point in the interior 
hexagon defined by the vertices (0, 0), (1, 0), (2, l), (2, 

2>, (17 2>, and (0’1) h as an orbit with period six (except 
the point (1, l), which has period 1). Orbits in the other 
five hexagonal regions circulate from one to the other. 
There is a unique orbit of period five, with all others 
having period 30. The points having orbits of period 
five are (-1, 3), (-1, -l), (3, --I), (5, 3), and (3, 5), 
indicated in the above figure by the black line. However, 
there are infinitely many distinct periodic orbits which 
have an arbitrarily long period. 

References 
Devaney, R. L. “A Piecewise Linear Model for the Zones of 

Instability of an Area Preserving Map.” Physica D IO, 
387-393, 1984. 

Peitgen, H.-O. and Saupe, D. (Eds.). “A Chaotic Ginger- 
breadman.” $3.2.3 in The Science of Fractal Images. New 
York: Springer-Verlag, pp. 149-150, 1988. 

Girard’s Spherical Excess Formula 
Let a SPHERICAL TRIANGLE A have angles A, B, and 
C. Then the SPHERICAL EXCESS is given by 

A=A+B+C-n. 

see also ANGULAR DEFECT, LWUILIER'S THEOREM, 
SPHERICAL EXCESS 

References 
Coxeter, H. S, M. Introduction to Geometry, 2nd ed. New 

York: Wiley, pp. 94-95, 1969. 

Girko’s Circular Law 
Let X be EIGENVALUES ofasetof RANDOM nxn MATRI- 
CES. Then A/< n is uniformly distributed on the DISK. 

References 
Girko, V. L. Theory of Random Determinants. Boston, MA: 

Kluwer, 1990. 

Girth 
The length of the shortest CYCLE in a GRAPH. 

Girth Example 

3 tetrahedron 
4 cube, K3,3 

5 Petersen graph 

Giuga’s Conjecture 
If n > 1 and 

41 n4 + 2”-l + . . . + (n - ,>,-l + 1, 

is n necessarily a PRIME? In other words, defining 

n- 1 

E 
Sn - 

>: 
kn--l, 

k=l 

does there exist a COMPOSITE n such that sn = 
-1 (mod n)? It is known that sn E -1 (mod n) IFF 
for each prime divisor p of n, (p - 1)1 (n/p - 1) and 
p&x/p- 1) (Giuga 1950, Borwein et al. 1996); therefore, 
any counterexample must be SQUAREFREE. A compos- 
ite INTEGER n satisfies sn = -1 (mod n) IFF it is both 
a CARMICHAEL NUMBER anda GIUGA NUMBER. Giuga 
showed that there are no exceptions to the conjecture up 
to 101oO? This was later improved to lO17oo (Bedocchi 
1985) and 1013soo (Borwein et al. 1996). 

see also ARGOHIS CONJECTURE 
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Ribenboim, P. The Book of Prime Number Records, 2nd ed. 

New York: Springer-Verlag, pp. 20-21, 1989. 

Giuga Number 
Any COMPOSITE NUMBER n with pl(n/p - I) for all 
PRIME DIVISORS p of n. n is a Giuga number IFF 

n-l 

Ix 

ke-4 = 
- -1 (mod n) 

k=l 

where 4 is the TOTIENT FUNCTION and IFF 
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?z is a Giuga number IFF 

nB+) E -1 (mod n), 

where & is a BERNOULLI NUMBER and 4 is the To- 
TTENT FUNCTION. Every counterexample to Giuga’s 
conjecture is a contradiction to ARGOH’S CONJECTURE 
and vice versa. The smallest known Giuga numbers are 
30 (3 factors), 858, 1722 (4 factors), 66198 (5 factors), 
2214408306, 24423128562 (6 factors), 432749205173838, 
14737133470010574, 550843391309130318 (7 factors), 

244197000982499715087866346, 

554079914617070801288578559178 

(8 factors), . . , (Sloane’s A007850). 

It is not known if there are an infinite number of Giuga 
numbers. All the above numbers have sum minus prod- 
uct equal to 1, and any Giuga number of higher order 
must have at least 59 factors. The smallest ODD Giuga 
number must have at least nine PRIME factors. 

see also ARGOH'S CONJECTURE, BERNOULLI NUMBER, 
TOTIENT FUNCTION 

References 
Borwein, II; Borwein, J. M.; Borwein, P. B.; and Girgen- 

sohn, R. “Giuga’s Conjecture on Primality.” Amer. Math. 
MonthZy103, 40-50, 1996. 

Sloane, N. J. A. Sequence A007850 in “An On-Line Version 
of the Encyclopedia of Integer Sequences.” 

Giuga Sequence 
A finite, increasing sequence of INTEGERS {nl, . . l  , n,} 

such that 
na 4 m 4 

A sequence is a Giuga sequence IFF it satisfies 

for i = 1, l  . . , m. There are no Giuga sequences of 
length 2, one of length 3 ((2, 3, 5}), two of length 4 
((2, 3, 7, 41) and (2, 3, 11, 13}), 3 of length 5 ((2, 
3, 7, 43, 1805}, (2, 3, 7, 83, 85}, and (2, 3, 11, 17, 
59}), 17 of length 6, 27 of length 7, and hundreds of 
length 8. There are infinitely many Giuga sequences. 
It is possible to generate longer Giuga sequences from 
shorter ones satisfying certain properties. 

see also CARMICHAEL SEQUENCE 

fteierences 
Borwein, D.; Borwein, J. M.; Borwein, P. 13.; and Girgen- 

sohn, R. “Giuga’s Conjecture on Primality.” Amer. Math. 
MonthEy 103, 40-50,1996. 

Glaisher-Kinkelin Constant 
N.B. A detailed on-line essay by S. Finch was the start- 
ing point for this entry. 

Define 

K(n + 1) s OO1l2~3~. . .nn (1) 

G(n + 1) = (n!)n = { i,1,2, 
ifn-0 

K(n+l) . l  l ==(n-l)! ifn>O. 

(2) 
where G is the G-FUNCTION and K is the K-FVNCTION. 
Then 

lim 
K(n + 1) 

n+m nn2/2fn/2+1/2e-n2/4 
=A (3) 

lim 
G(n + 1) ew2 

n+m nn2/2-1/,2(2~~n/2e-3n2/4 = A ’ (4) 

where 

A=exp -- 
[ 

C’(2) + ln(W + Y - 
2n2 12 z 1 = 1.28242713 l  . . , 

(5) 
where C(Z) is the RIEMANN ZETA FUNCTION, T is PI, 
and y is the EULER-MASCHERONI CONSTANT (Kinkelin 
1860, Glaisher 1877, 1878, 1893, 1894). Glaisher (1877) 
also obtained 

A = 27/36~-“1’” exp 

Glaisher (1894) showed that 

3r2/6 

11/121/431/941/1651/25 l  l  l  _  
- 

r2/8 

11/131/951/2571/4991/81 . . . - - (8) 

31/277f/343111/1331.,. 

A 

> 

T3 
- - 

25/32,$/32e3/32fr/48+s/4 1 (9) 

where 

C(3) 1 -- C(5) 1 
+ + -- cm 1 

S= 
~- 
3*4.543 5 l  6 . 7 45 7 . 8 v 9 47 + ’  l  ’  ’  (10) 

see also G-FUNCTION, HYPERFACTORIAL,K-FUNCTION 

References 
Finch, S. “Favorite Mathematical Constants.” http: //uww . 

mathsoft.com/asolve/constant/glshkn/glshkn.html. 
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Kinkehn. ‘&ober eine mit der Gammafunktion verwandte 
Transcendente und deren Anwendung auf die Integralrech- 
nung.” J. Reine Angew. Math. 57, 122-158, 1860. 
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Glide 
Aproductofa REFLECTION inaline and TRANSLATION 
along the same line. 

see also REFLECTION, TRANSLATION 

Glissette 
The locus of a point P (or the envelope of a line) fixed in 
relation to a curve C which slides between fixed curves. 
For example, if C is a line segment and P a point on 
the line segment, then P describes an ELLIPSE when C 
slides so as to touch two ORTHOGONAL straight LINES. 

The glissette of the LINE SEGMENT C itself is, in this 
case, an ASTROID. 

see also RUULETTE 

References 
Besant, W. H. Notes on Roulettes and Glissettes, 2nd enl. 

ed. Cambridge, England: Deighton, Bell & Co., 1890. 
Lockwood, E. H. “Glissettes.” Ch+ 20 in A Book of 

Curves. Cambridge, England: Cambridge University 
Press, pp. 160-165, 1967. 

Yates, R. C. “Glissettes.” A Handbook on Curves and Their 
Properties. Ann Arbor, MI: J. W. Edwards, pp. 108-112, 

Global C(G; T) Theorem 
If a SYLOW %SWBGROUP T of G lies in a unique max- 
imal Z-local P of G, then P is a “strongly embedded” 
SUBGROUP of G, and G is known. 

Global Extremum 
A GLOBAL MINIMUM or GLOBAL MAXIMUM. 

see also LOCAL EXTREMUM 

Global Maximum 
The largest overall value of a set, function, etc., over its 
entire range. 

see also GLOBAL 
MUM 

MINIMUM, LOCAL MAXIMUM, MAXI- 

Global Minimum 
The smallest overall value of a set, function, etc., over 
its entire range. 

see also GLOBALMAXIMUM, 
LOCAL MINIMUM, MINIMUM 

KUHN-TUCKERTHEOREM, 

Globe 
A SPHERE which acts as a model of a spherical (or el- 
lipsoidal) celestial body, especially the Earth, and on 
which the outlines of continents, oceans, etc. are drawn. 

see also LATITUDE, LONGITUDE, SPHERE 

Glove Problem 
Let there be m doctors and n 5 m patients, and let all 
mn possible combinations of examinations of patients 
by doctors take place. Then what is the minimum num- 
ber of surgical gloves needed G(m, n) so that no dot tor 
must wear a glove contaminated by a patient and no 
patient is exposed to a glove worn by another doctor? 
In this problem, the gloves can be turned inside out and 
even placed on top of one another if necessary, but no 
“decontamination” of gloves is permitted. The optimal 
solution is 

2 m-n=2 

9(m,n> = +(m+l) n=l,m=Zk+l 

[i(m) + in] otherwise, 

where [zl is the CEILING FUNCTION (Vardi 1991). The 
case m = n = 2 is straightforward since two gloves have 
a total of four surfaces, which is the number needed for 
mn = 4 examinations. 

References 
Gardner, M. Aha! Aha! Insight. New York: Scientific Amer- 

ican, 1978. 
Gardner, M. Science Fiction Puzzle Tales. New York: 

Crown, pp. 5, 67, and 104-150, 1981. 
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Propagation of Certain Diseases at Minimum Cost.” 510.1 
in Interfaces Between Computer Science and Operations 
Research (Ed. J. K. Lenstra, A. H. G. Rinnooy Kan, and 
P. van Emde Boas). Amsterdam: Matematisch Centrum, 
1978. 

Orlitzky, A. and Shepp, I,, “On Curbing Virus Propagation.” 
Exercise 10.2 in Technical Memo. Bell Labs, 1989. 

Vardi, I. “The Condom Problem.” Ch. 10 in Computational 
Recreations in Mathematics. Redwood City, CA: Addison- 
Wesley, p. 203-222, 1991. 

Glue Vector 
A VECTOR specifying how layers are stacked in a LAM- 
INATED LATTICE. 

Gnomic Number 
A FIGURATE NUMBER of the form gn = 2n - 1 which 
are the areas of square gnomons, obtained by removing 
a SQUARE of side n - 1 from a SQUARE of side n, 

g, = n2 - (n - 1)” = 2n - 1. 

The gnomic numbers are therefore equivalent to the 
ODD NUMBERS, and the first few are 1, 3, 5, 7, 9, 11, 
l  . l  (Sloane’s A005408). The GENERATING FUNCTION 
for the gnomic numbers is 

x(1 + 2) 
( 2 - 1)” 

= x + 3x2 + 5x3 + 7x4 + l  l  . l  

see also ODD NUMBER 

References 
Sloane, N. J. A. Sequence A005408/M2400 in “An On-Line 

Version of the Encyclopedia of Integer Sequences.” 
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Gnomic Projection 

A nonconformal projection from a SPHERE’S center in 
which ORTHODROMES are straight LINES. 

X= 
cos t$ sin( X - X0) 

cos c 
cos $1 sin 4 - sin $1 cos 4 cos(A - X0) 

Y= Y cos c 

where 

cos c = sin& sin4 + co+ cos&zos(X - X0). 

The inverse FORMULAS are 

4 = sin -l(coscsin& +ysinccosccos$1) 

x = A0 + tan-l 
( 

X 

> costjS1 -ysin$l ’ 

(1) 

(2) 

(3) 

(4) 

(5) 

References 
Coxeter, II. S. M. and Greitzer, S. L. Geometry Revisited. 

Washington, DC: Math. Assoc. Amer., pp, 150-153, 1967. 
Snyder, J. P. Map Projections-A Working Manual. U. S. 

Geological Survey Professional Paper 1395. Washington, 
DC: U. S. Government Printing Office, pp. 164-168, 1987. 

Gnomon 
A shape which, when added to a figure, yields another 
figure SIMILAR to the original. 

References For example, we have the sequences {sn (mod k)}z=l: 
Shanks, D. Solved and Unsolved Problems in Number Theory, 

4th ed. New York: Chelsea, p. 123, 1993. 

Gnomon Magic Square 
A 3 x 3 array of numbers in which the elements in each 
2 x 2 corner have the same sum. 

see also MAGIC SQUARE 

Go 
There are estimated to be about 4.63 x 10i7’ possible 
positions on a 19 x 19 board (Flammenkamp). The num- 
ber of n-move Go games are 1, 362, 130683, 47046242, 
l  l  . (Sloane’s A007565). 
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Beeler, M.; Gosper, R. W.; and Schroeppel, R. HAKMEM. 
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Flammenkamp, A. “A Short, Concise Ruleset of Go.” 
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Kraitchik, M. “Go.” 512.4 in Mathematical Recreations. New 
York: W. W. Norton, pp. 279-280, 1942. 
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Gijbel’s Sequence 
Consider the RECURRENCE RELATION 

1+ xo2 + Xl2 + . . l  + X+12 
x:n = 1 n (1) 

with x0 = 1. The first few iterates of X~ are 1, 2, 3, 
5, 10, 28, 154, . . . (Sloane’s A003504). The terms grow 
extremely rapidly, but are given by the asymptotic for- 
mula 

X~ $=: (n2+2n-1+4n-1-21n-2+137n-3-. . .)C2”, (2) 

where 

C = 1.04783144757641122955990946274313755459.. . 

(3) 
(Zagier). It is more convenient to work with the trans- 
formed sequence 

sn = 2 + xl2 + xz2 + . . . + xn-12 = nxn, 

which gives the new recurrence 

(4 

sn 
2 

ST&+1 =sn+- 
n2 (5) 

with initial condition s1 = 2. Now, sn+l will be nonin- 
tegral IFF nJjs,. The smallest p for which s, $ 0 (mod 
p) therefore gives the smallest nonintegral ++I. In ad- 
dition, since &, xP = s,/p is also the smallest nonin- 
tegral 2,. 

2,6 E 2, s = O,O,O (mod 5) (6) 

2,6,15 = 1, 4 E O,O,O,O (mod 7) (7) 
2 6 15 s 4 52 = 7 161 = 8 264 = 0 0 7 I ’ 9 >w - 15 - 7 7”‘7 0 

(mod 11). (8) 

Testing values of k shows that the first nonintegral X~ 
is ~43~ Note that a direct verification of this fact is 
impossible since 

x43 
E 5.4093 x 10178485291567 

(9) 

(calculated using the asymptotic formula) is much too 
large to be computed and stored explicitly. 
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A sequence even more striking for remaining integral 
over many terms is the 3-GSbel sequence 

1+ xo3  + Xl3 + . l  l  + x ,q3 

xn  = l  

n (10) 

The first few terms of this sequence are 1, 2, 5, 45, 22815, 
l  l  l  (Sloane’s A005 166). 

The GGbel sequences can be generalized to /C powers by 

1+ x(p + xp  + m.  l  + xn- l Ic  

X n= l  

n (11) 

see also SOMOS SEQUENCE 

Reterences 
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Zaiger, D. “Solution: Day 5, Problem 3.” http://uuw- 
groups. dcs . st - and l  ac . uk / y john / Zagier / Solution 
5.3.html. 

Goblet Illusion 

An IL LUSION in which the eye 
faces, or a white goblet. 

alternately sees two black 

References 
Fineman, M. The Nature of Visual Illusion. New York: 

Dover, pp. 111 and 115, 1996. 
Rubin, E. Synoplevede Figurer. Copenhagen, Denmark: 

Gyldendalske, 1915. 
What’s Up with Kids Magazine. “Reversible Goblet ,” 

http://wuwk.spurtek.com/COI~eversible_goblet.htm~ 

G6del’s Completeness Theorem 
If T is a set of AXIOMS in a first-order language, and a 

statement JI holds for any structure M satisfying T, then 
p can be formally deduced from T in some appropriately 
defined fashion. 

see also G~DEL’S INCOMPLETENESS THEOREM 

GSdel’s Incompleteness Theorem 
Informally, Gijdel’s incompleteness theorem states that 
all consistent axiomatic formulations of NUMBER THE- 

ORY include undecidable propositions (Hofstadter 1989). 
This is is sometimes called Gijdel’s first incompleteness 
theorem, and answers in the negative HILBERT’S PROB- 
LEM asking whether mathematics is “complete” (in the 
sense that every statement in the language of NUMBER 
THEORY can be either proved or disproved). Formally, 
Gijdel’s theorem states, “To every w-consistent recursive 
class K of FORMULAS, there correspond recursive class- 
signs T such that neither (U Gen r) nor Neg(v Gen r) 
belongs to Fig(h), where 21 is the FREE VARIABLE of T” 
(Gijdel 1931), 

A statement sometimes known as Gijdel’s second incom- 
pleteness theorem states that if NUMBER THEORY is 
consistent, then a proof of this fact does not exist us- 
ing the methods of first-order PREDICATE CALCULUS. 
Stated more colloquially, any formal system that is in- 
teresting enough to formulate its own consistency can 
prove its own consistency IFF it is inconsistent. 

Gerhard Gentzen showed that the consistency and com- 
pleteness of arithmetic can be proved if “transfinite” in- 
duction is used. However, this approach does not allow 
proof of the consistency of all mathematics. 

see UZSO G~DEL'S COMPLETENESS THEOREM, 
HILBERT'S PROBLEMS, KREISEL CONJECTURE, NATU- 

RAL INDEPENDENCE PHENOMENONJUMBERTHEORY, 
RICHARDSON'S THEOREMJJNDECIDABLE 
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GSdel Number 
A Gijdel number is a unique number associated to a 
statement about arithmetic. It is formed as the PROD- 
UCT of successive PRIMES raised to the POWER of the 
number corresponding to the individual symbols that 
comprise the sentence. For example, the statement 
(3x)(x = sy) that reads “there EXISTS an x such that x 
is the immediate successor of y” is coded 
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where the numbers in the set (8, 4, 13, 9, 8, 13, 5, 7, 16, 
9) correspond to the symbols that make up (&c)(x = 

SY>* 

see also G~DEL'S INCOMPLETENESS THEOREM 
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Goldbach Conjecture 
Goldbach’s original conjecture, written in a 1742 letter 
to Euler, states that every INTEGER > 5 is the SUM 
of three PRIMES. As re-expressed by Euler, an equiv- 
alent of this CONJECTURE (called the “strong” Gold- 
bath conjecture) asserts that all POSITIVE EVEN INTE- 
GERS 2 4 can be expressed as the SUM of two PRIMES. 
Schnirelmann (1931) proved that every EVEN number 
can be written as the sum of not more than 300,000 
PRIMES (Dunham 1990), which seems a rather far cry 
from a proof for four PRIMES! The strong Goldbach 
conjecture has been shown to be true up to 4 x 1011 
by Sinisalo (1993). Pogoraelski (1977) claimed to have 
proven the Goldbach conjecture, but his proof is not 
generally accepted (Shanks 1993). 

The conjecture that all ODD numbers > 9 are the SUM 
of three ODD PRIMES is called the “weak” Goldbach 
conjecture. Vinogradov proved that all ODD INTEGERS 

starting at some sufficiently large value are the SUM 
of three PRIMES (Guy 1994). The original “sufficiently 
large'1 jv > 3315 = ee16*s73 was subsequently reduced to 

e 
p503 

biGhen and Wang (1989). Chen (1973, 1978) 
also showed that all sufficiently large EVEN NUMBERS 
are the sum of a PRIME and the PRODUCT of at most 
two PRIMES (Guy 1994, Courant and Robbins 1996). 

It has been shown that if the weak Goldbach conjec- 
ture is false, then there are only a FINITE number of 
exceptions. 

Other variants of the Goldbach conjecture include the 
statements that every EVEN number 2 6 is the SUM of 
two ODD PRIMES, and every INTEGER > 17 the sum of 
exactly three distinct PRIMES. Let R(n) be the number 
of representations of an EVEN INTEGER n as the sum of 
two PRIMES. Then the “extended” Goldbach conjecture 
states that 

where 4(z) is the TOTIENT FUNCTION (Guy 1994, 
p* 105). 

Vinogradov (1937ab, 1954) proved that every suffi- 
ciently large ODD NUMBER is the sum of three PRIMES, 
and Estermann (1938) proves that almost all EVEN 
NUMBERS are the sums of two PRIMES. 
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Golden Mean 

?‘kb 

where II2 is the TWIN PRIMES CONSTANT (Halberstam 
and Richert 1974). 

If the Goldbach conjecture is true, then for every number 
m, there are PRIMES p and Q such that 

see GOLDEN RATIO 

Golden Ratio 
A number often encountered when taking the ratios 
of distances in simple geometric figures such as the 
DECAGON and DODECAGON. It is denoted 4, or some- 
times T (which is an abbreviation of the Greek “tome,” 
meaning “to cut”). 4 is also known as the DIVINE PRO- 

PORTION, GOLDEN MEAN, and GOLDEN SECTION and is 
a PISOT~IJAYARAGHAVAN CONSTANT. It has surpris- 
ing connections with CONTINUED FRACTIONS and the 
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EUCLIDEAN ALGORITHM for computing the GREATEST 
COMMON DIVISOR oftwo INTEGERS. 

(Sloane’s AOOO012) Another infinite representation in 
termsofa CONTINUED SQUARE ROOT is 

Given a RECTANGLE having sides in the ratio 1 : 4, 4 
is defined such that partitioning the original RECTAN- 
GLE into a SQUARE and new RECTANGLE results in a 
new RECTANGLE having sides with a ratio 1 : 4. Such 
a RECTANGLE is called a GOLDEN RECTANGLE, and 
successive points dividing a GOLDEN RECTANGLE into 
SQUARES lie on a LOGARITHMIC SPIRAL. This figure is 
known as a WHIRLING SQUARE. 

L 

Ramanujan gave the curious CONTINUED FRACTION 
ident it ies 

(11) 
1 + e-47r 

,-6x 

l+... 

This means that 
1 

-=4 (1) 
1 

1 > -# 
+/a 

e 
-2ds 

=I+ 
-4x& 02) 

l+ 
e 

l+ 

e-67r& 

l+ 

e-87r& 

-10X& 

l+L 
I+.., 

q!12-+1=0. (2) 

So,bythe QUADRATIC EQUATION, 

4 - $(1&&x)= i(l+&) - (3) 
= 1.61803398874989484820458683436563811772Q... 

(4 

(Sloane’s AOOl622). 
(Ramanathan 1984). x 1 

l 8 A i c The legs of a GOLDEN TRIANGLE are in a golden ra- 
tio to its base. In fact, this was the method used by 
Pythagoras to construct 4. Euclid used the following 
construction. 

A geometric definition can be given in terms of the above 
figure. Let the ratio x = AB/BC. The NUMERATOR 
and DENOMINATOR can then be taken as AB = z and 
BC = 1 without loss of generality. Now define the posi- 
tion of B by 

F G 

x 

BC AB -=- 
AB AC’ (5) 

Plugging in gives 
1 Ex: -=- 

X 1+x’ (6) 

or 
x2 - x -l=O, (7) 

c u 

Draw the SQUARE q ABDC, call E the MIDPOINT of 
AC, so that AE = EC = z. Now draw the segment 
BE, which has length 

which can be solved using the QUADRATIC EQUATION 
to obtain 

4 = 
l&p- (-4) 

- 2= 
2 

= i(l + A&). (8) 

4 is the “most” IRRATIONAL number because it has a 
CONTINUED FRACTION representation 

a:d22+ 12=x&, (13) 

and construct EF with this length. Now construct 
FG = EF, then 

4 
FC EF+CE --- x(d+ 1) - 
CD - CD = 2x 

= i(&+1). (14) 
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The ratio of the CIRCUMRADIUS to the length of the side 
of a DECAGON is also 4, 

R -- 
s 

- $ csc T- 
( ) 10 

= $(l+ J5) = qi (15) 

Similarly, the legs ofa GOLDEN TRIANGLE (an ISOSCE- 
LES TRIANGLE with a VERTEX ANGLE of 36”) are in 
a GOLDEN RATIO to the base. Bisecting a GAULLIST 
CROSS also gives a golden ratio (Gardner 1961, p. 102). 

t-(1+ 

AlE @ B 

In the figure above, three TRIANGLES can be INSCRIBED 
in the RECTANGLE nABCD of arbitrary aspect ratio 
1 : T such that the three RIGHT TRIANGLES have equal 
areas by dividing AB and BC in the golden ratio. Then 

which are all equal. 

The golden ratio also satisfies the RECURRENCE RELA- 
TION 

4 
n+1 n--l - - 4 + 4". (19) 

Taking n = 0 gives References 

(b = tp-l+ 1 (20) 

4 
2 

=1+& (21) 

But this is the definition equation for 4 (when the root 
with the plus sign is used). Squaring gives . 

4 
2 

- $(5+2&+1) = +(6+2&)= $(3+&) - 

- +(T5+1)+1=@+# - (22) 

@3 = (@O + ~‘)~1 = @Oqbl + (4’)” = (b’ + qb2, (23) 

and so on. 

For the difference equations 

i 

X0 -1 
1 

X7-h =1+- for n = 1,2,3, (24 
Xn-1 

q5 is also given by 

4 = lim Xn. (25) n--f00 

In addition, 
Fn 4 = lim - 

n+m Fn-l’ (26) 

where Fn is the nth FIBONACCI NUMBER. 

The SUBSTITUTION MAP 

0 + 01 (27) 

l--+0 (28) 

gives 
0 + 01 + 010 + 01001 + . . . , (29) 

giving rise to the sequence 

0100101001001010010100100101... (30) 

(Sloane’s A003849). Here, the zeros occur at positions 
1, 3, 4, 6, 8, 9, 11, 12, . . . (Sloane’s AOOO2Ol), and 
the ones occur at positions 2, 5, 7, 10, 13, 15, 18, . . l  

(Sloane’s A001950). These are complementary BEATTY 
SEQUENCES generated by ln4] and Lnti2]. The se- 
quence also has many connections with the FIBONACCI 

NUMBERS. 

Salem showed that the set of PISOT~IJAYARAGHAVAN 

CONSTANTS is closed, with # the smallest accumulation 
point of the set (Le Lionnais 1983). 

see &O BERAHA CONSTANTS, DECAGON, FIVE DISKS 
PROBLEM,GOLDEN RATIO CONJUGATE,GOLDEN TRI- 
ANGLE, ICOSIDODECAHEDRON, NOBLE NUMBER, PEN- 
TAGON, PENTAGRAM, PHI NUMBER SYSTEM, SECANT 
METHOD 
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Golden Ratio Conjugate 
The quantity 

1 
(+--=+-l= 

G-1 

4 
- F=: 0.6180339885, 

2 (1) 

where q% is the GOLDEN RATIO. The golden ratio con- 
jugate is sometimes also called the SILVER RATIO. A 
quantity similartothe FEIGENBAUM CONSTANT canbe 
found for thenth CONTINUED FRACTION representation 

[ao, a142, l  l  *I* 
(2) 

Taking the limit of 

gives 
SE lim =1+~=2+~c. (4) n--too 

see also GOLDEN RATIO, SILVER RATIO 

Golden Rectangle 
Given a RECTANGLE having sides in the ratio 1 : 4, the 
GOLDEN RATIO 4 is defined such that partitioning the 
original RECTANGLE into a SQUARE and new RECTAN- 
GLE results in a new RE ,CTANGLE having sid .es with a 
ratio 1 : 4. Such a RECTANGLE is called a golden rect- 
angle, and successive points dividing a golden rectangle 
into SQUARES lie on a LOGARITHMIC SPIRAL. 

see also 
ANGLE 

GOLDEN RATIO, LOGARITHMIC SPIRAL, RECT- 
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Golden Rule 
The mathematical golden rule states that, for any FRAC- 
TION, both NUMERATOR and DENOMINATOR may be 
multiplied by the same number without changing the 
fraction’s value. 

Golden Section 

see GOLDEN RATIO 

Golden Theorem 

see QUADRATIC RECIPROCITY THEOREM 

Golden Triangle 

MO=& 

+ 
a 

@ 

6 

An ISOSCELES TRIANGLE with VERTEX angles 36”. 
Such TRIANGLES occur in the PENTAGRAM and 
DECAGON. The legs are in a GOLDEN RATIO to the 
base. For such a TRIANGLE, 

ib 
sin(l8”) = sin(&)= y (1) 

6-1 
b = 2asin(+) = 2a4 = $u(J5 - 1) (2) 

b-t1 = $a(J5+1) 

b+a d%+l # - = 
a 2= l  

(3) 

(4) 

see also DECAGON, 
GLE, PENTAGRAM 

GOLDEN TRIAN- 

ftekrences 
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Goldschmidt Solution 
The discontinuous solution of the SURFACE OF REVOLU- 
TION AREA minimization problem for surfaces connect- 
ing two CIRCLES. When the CIRCLES are sufficiently 
far apart, the usual CATENOID is no longer stable and 
the surface will break and form two surfaces with the 
CIRCLES as boundaries. 

see ah CALCULUS OF VARIATIONS, SURFACE OF REV- 
OLUTION 

Golomb Constant 

see GOLOMB-DICKMAN CONSTANT 

see also DENOMINATOR, FRACTION, NUMERATOR 
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Golomb-Dickman Constant 
N.B. A detailed on-line essay by S. Finch was the start- 
ing point for this entry. 

Let II be a PERMUTATION of n elements, and let QC~ be 
the number of CYCLES of length i in this PERMUTATION. 
Picking II at RANDOM gives 

r 1 c n 1 >: 1 
ttj = i 

=lnn+y+O - 
0 n (1) 

j=l i=l 

n 
i-l 1 

var (” j x CYj = IE i2 
=lnn+y-$7T2+0 - 

( > n 
\j=1 / i=l 

(2) 
1 

lim P(al = 0) = - (3) 
n+oo e 

(Shepp and Lloyd 1966, Wilf 1990). Goncharov (1942) 
showed that 

which is a POISSON DISTRIBUTION, and 

(4 

L \ j=l / J 
(5) 

which is a NORMAL DISTRIBUTION, y is the EULER- 
MASCHERONI CONSTANT, and @ is the NORMAL DIS- 
TRIBUTION FUNCTION. Let 

(6) 

(7) 

Golomb (1959) derived 

X E lim VW) 

~ = 0.6243299885. . l  , 
(8) 

n+m n 

which is known as the G~LOMB CONSTANT or Golomb- 
Dickman constant. Knuth (1981) asked for the con- 
stants b and c such that 

lim nb[(M(a)) - An - +A] = c, (9) n+oo 

and Gourdon (1996) showed that 

$7 - I(-l)n 
(M(a))=X(n+f)-&+ ,2” 

+ 
-L&r + $1)” + iLj1+2n + ip+n 

723 1 (10) 

where 
- E e2ai/3 

J . (11) 

A can be expressed in terms of the function f(x) defined 
by f(x) = 1 for 1 < x < 2 and - - 

df f(x - 1) -- 
dz= x-l (12) 

for x > 2, by 

A= 
J 

“f( > Ldx. 
X2 

(13) 
1 

Shepp and Lloyd (1966) derived 

=llexp(lx$) dx:. (14) 

Mitchell (1968) computed X to 53 decimal places. 

Surprisingly enough, there is a connection between X 
and PRIME FACTORIZATION (Knuth and Pardo 1976, 
Knuth 1981, pp. 367-368, 395, and 611). Dickman 
(1930) investigated the probability P(z, n) that the 
largest PRIME FACTOR p of a random INTEGER between 
1 and n satisfies p < nx for x E (0,l). He found that 

F(x) E lim P(x,n) = 
n-m 

(15) 
Dickman then found the average value of x such that 

P = nx, obtaining 

= L’F (&) dt =(X62432999, 

which is A. 

(16) 
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Golomb Ruler 
A Golomb ruler is a set of NONNEGATIVE integers such 
that all pairwise POSITIVE differences are distinct. The 
optimum Golomb ruler with n marks is the Golomb 
ruler having the smallest possible maximum element 
(“length”). The set (0, 1, 3, 7) is an order four Golomb 
ruler since its differences are (1 = 1 - 0, 2 = 3 - 1, 
3 = 3-0, 4 = 7-3, 6 = 7-1, 7 = 7-O), all ofwhich are 
distinct. However, the optimum 4-mark Golomb ruler is 
(0, 1, 4, 6), which measures the distances (1, 2, 3, 4, 5, 
6) (and is therefore also a PERFECT RULER). 

The lengths of the optimal n-mark Golomb rulers for 
n = 2, 3, 4, . . . are 1, 3, 6, 11, 17, 25, 34, . . . (Sloane’s 
A003022, Vanderschel and Garry). The lengths of the 
optimal n-mark Golomb rulers are not known for n 2 20. 

see &O PERFECT DIFFERENCE SET, PERFECT RULER, 
RULER, TAYLOR’S CONDITION, WEIGHINGS 
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Golygon 

A PLANE path on a set of equally spaced LATTICE 
POINTS, starting at the ORIGIN, where the first step 
is one unit to the north or south, the second step is two 
units to the east or west, the third is three units to the 
north or south, etc., and continuing until the ORIGIN is 
again reached. No crossing or backtracking is allowed. 
The simplest golygon is (0, 0), (0, l), (2, l), (2, -2), 

(-2, -21, C-2, -71, C-8, -7), (-8, o), (0, 0). 

A golygon can be formed if there exists an EVEN INTE- 
GER n such that 

*l * 3 * . . . * (n - 1) = 0 (1) 

+2*4i...*n=O (2) 

(Vardi 1991). G ar d ner proved that all golygons are of 
the form n = TIC. The number of golygons of length n 
(EVEN), with each initial direction counted separately, I 

is the PRODUCT of the COEFFICIENT of LP’/~ in 

(1+ x)(1 + x3) l  ’ l  (1+ C-l), (3) 

with the COEFFICIENT of zn(n/2+1J/8 in 

(1+ x)(1 + x2) ’  l  . (1+ zn’“). (4) 

The number of golygons N(n) of length 8n for the first 
few n are 4, 112, 8432, 909288, . . . (Sloane’s A006718) 
and is asymptotic to 

N(n) - 
3. p-4 

7m2(4n + 1) (5) 

(Sallows et al. 1991, Vardi 1991). 

see UZSO LATTICE PATH 
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GOmory’s Theorem 
Regardless of where one white and one black square are 
deleted from an ordinary 8 x 8 CHESSBOARD, the reduced 
board can always be covered exactly with 31 DOMINOES 
(of dimension 2 x 1). 

see also CHESSBOARD 

Gompertz Constant 

GE 
s 

00 e-u 
- du = -e ei(-1) = 0.596347362 v  . l  , 

0  

1+u 

where ei(rc) is the EXPONENTIAL INTEGRAL. Stieltjes 
showed it has the CONTINUED FRACTION representation 

see UZSO EXPONENTIAL INTEGRAL 
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Gompertz Curve 
The function defined by 

Schwenk (1972) rewrote the equation in the form 

Y = abqX l  

It is used in actuarial science for specifying a simpli- 
fied mortality law. Using s(z) as the probability that a 
newborn will achieve age X, the Gompertz law (1825) is 

44 = exp[-m(c” - l)], 

for c> 1,~ > 0. 

see also LIFE EXPECTANCY, LOGISTIC GROWTH 
CURVE, MAKEHAM CURVE, POPULATION GROWTH 
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Gonal Number 

~~~POLYG~NAL NUMBER 

Good Path 

seep-GOOD PATH 

Good Prime 
A PRIME p, is called “good” if 

Prt2 > pn-ipn+i 

for all 1 < i < n - 1 (there is a typo in Guy 1994 in - - 
which the is are replaced by 1s). There are infinitely 
many good primes, and the first few are 5, 11, 17, 29, 
37, 41, 53, . l  l  (Sloane’s AO28388). 

~~~&~ANDRICA'S CONJECTURE, P~LYA CONJECTURE 
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Goodman’s Formula 
A two-coloring of a COMPLETE GRAPH K, of n nodes 
which contains exactly the number of MONOCHROMATIC 
FORCED TRIANGLES and no more (Le., a minimum of 
R + B where R and B are the number of red and blue 
TRIANGLES) iscalledan EXTREMAL GRAPH. Goodman 
(1959) showed that for an extremal graph, 

where (;) is a BINOMIAL COEFFICIENT and LlcJ is the 
FLOOR FUNCTION. 

see also BLUE-EMPTY GRAPH, EXTREMAL GRAPH, 
MO NOCH ROMATK FORC ED TRIANGLE 
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Goodstein Sequence 
Given a HEREDITARY REPRESENTATION of a number 
n in BASE, let B[b](n) be the NONNEGATIVE INTEGER 
which results if we syntactically replace each b by b + 1 

( i.e., B[b] is a base change operator that ‘bumps the 
base’ from b up to b + 1). The HEREDITARY REPRESEN- 
TATION of 266 in base 2 is 

266 = Z8 + 23 + 2 

=2 zz2+l + 22+1 + 2, 

so bumping the base from 2 to 3 yields 

B[2](266) = 333+1 + 33+1 + 3. 

Now repeatedly bump the base and subtract 1, 

Go (266) = 266 = z2’+l + z2+l + 2 

&(266) = B[2](266) - 1 = 333+1 + 33+1 + 2 

C2(266) = B[3](G1) - 1 = 444” + 44+1 + 1 

G3(266) = B[4](&) - 1 = 555+1 + 55+1 

G4(266) = B[5J(G3) - 1 = 6”‘+l + 66+1 - 1 

=6 “+l + 5 - 6” + 5 l  65 + . . . + 5 l  6 + 5 

G5(266) = B[6](G4) - 1 

=7 77+1 + 5 - 77 + 5 l  75 + l  . . + 5 ’ 7 + 4, 

etc. Starting this procedure at an INTEGER n gives the 
Goodstein sequence { Gk (n)}. Amazingly, despite the 
apparent rapid increase in the terms of the sequence, 
G~ODSTEIN’S THEOREM states that Gk(n) is 0 for any 
n and any sufficiently large /L 

see also GOODSTEIN'S THEOREM, HEREDITARY REPRE- 
SENTATION 

{ 

im(m - l)(m - 2) for n = 2m 
R-l-B= -m(m - 1)(4m + 1) 

4 
for n = 4m + 1 

,m(m + 1)(4m - 1) for n = 4m + 3. 
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Goodstein’s Theorem 
For all n, there exists a k such that the kth term of 
the GOODSTEIN SEQUENCE C&(n)= 0. In other Words, 
every GOODSTEIN SEQUENCE converges to 0. 

The secret underlying Goodstein’s theorem is that the 
HEREDITARY REPRESENTATION of n in base b mimics 
an ordinal notation for ordinals less than some number. 
For such ordinals, the base bumping operation leaves the 
ordinal fixed whereas the subtraction of one decreases 
the ordinal. But these ordinals are well-ordered, and 
this allows us to conclude that a Goodstein sequence 
eventually converges to zero. 

Goodstein’s theorem cannot be proved in PEANO 
ARITHMETIC (i.e., formal NUMBER THEORY). 

see also 
PEANO A 

NATURAL 
RITHMETIC 

INDEPENDENCE 

Googol 
A LARGE NUMBER equal to lOloo, or 

PHENOMENON, 

10000000000000000000000000 

0000000000000000000000000 

0000000000000000000000000 

0000000000000000000000000. 

see also GOOGOLPLEX,LARGE NUMBER 

Googolplex 

A LARGE NUMBER equal to 1020100. 

see ~ZSOGOOGOL, LARGE NUMBER 

Gordon Function 
Another name for the CONFLUENT HYPERGEOMETRXC 
FUNCTION OF THE SECOND KIND, defined by 

G(+lz) = eixu r(c) w - 4 r(a) { r(l [e- + sinE-(L)y 
qc - 1) l-c x#1(a;c;x) -2p 
r(c - a) z 

~~&-c+1;2-c;z) , 
1 

where r(x) is the GAMMA FUNCTION and &(a; b; z) is 
the CONFLUENTHYPERGEOMETRIC FUNCTION OF THE 
FIRST KTND. 

see UZSO CONFLUENT HYPERGEOMETRIC FUNCTION OF 
THE SECOND KIND 
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Gorenstein Ring 
An algebraic RING which appears in treatments of du- 
ality in ALGEBRAIC GEOMETRY. Let A be a local AR- 
TINIAN RING with n-z c A its maximal IDEAL. Then 
A is a Gorenstein ring if the ANNIHILATOR of nz has 
DIMENSION 1 as a VECTOR SPACE over K- A/m. 

see also CAYLEY-BACHARACH THEOREM 
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Gosper’s Algorithm 
An ALGORITHM for finding closed form HYPERGEOMET- 
RIC IDENTITIES The algorithm treats sums whose suc- 
cessive terms have ratios which are RATIONAL FUNC- 
TIONS. Not only does it decide conclusively whether 
there exists a hypergeometric sequence X~ such that 

tn = &x+1 -&by 

but actually produces zn if it exists. If not, it pro- 
duces CL-,’ tn. 
(Petkovgek1996): 

An outline of the algorithm follows 

1. For the ratio r(n) = t,+& which is a RATIONAL 
FUNCTION of n. 

2. Write 
a(n) c(n + 1) 

rb4 = Zl(n)C(7L)’ 
where a(n), b(n), and c(n) are polynomials satisfying 

GCD(a(n), b(n + h) = 1 

for all nonnegative integers h. 

3. Find a nonzero polynomial solution x(n) of 

a(n)x(n + 1) - b(n - 1)x(n) = c(n), 

if one exists. 

4. Return b(n - l)x(n)/c(n)t, and stop. 

Petkovgek et al. (1996) describe the algorithm as “one of 
the landmarks in the history of computerization of the 
problem of closed form summation.” Gosper’s algorithm 
is vital in the operation of ZEILBERGER'S ALGORITHM 
and the machinery of WILF-ZEILBERGER PAIRS. 

see UISOHYPERGEOMETRIC IDENTITY,~ISTER CELINE'S 
METHOD, WILF-ZEILBERGER PAIR, ZEILBERGER’S AL- 
GORITHM 
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Gosper Island 

A modification of the KOCH SNOWFLAKE which has 
FRACTAL DIMENSION 

2 In 3 
D=------- 

In 7 
= 1.12915.. . . 

The term “Gosper island” was used by Mandelbrot 
(1977) because this curve bounds the space filled by the 
PEANO~OSPER CURVE; Gosper and Gardner use the 
term FLOWSNAKE FRACTAL instead. Gosper islands can 
TILE the PLANE. 

see ~2s~ KOCH SNOWFLAKE, PEANO-GOSPER CURVE 
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Gosper’s Method 

see GOSPER'S ALGORITHM 

Graceful Graph 
A LABELLED GRAPH which can be “gracefully num- 
bered” is called a gracefu1 graph. Label the nodes 
with distinct NONNEGATIVE INTEGERS. Then label the 
EDGES with the absolute differences between node val- 
ues. If the EDGE numbers then run from 1 to e, the 
graph is gracefully numbered. In order for a graph to 

be graceful, it must be without loops or multiple EDGES. 

6 

Thomsen Graph 

Golomb showed that the number of EDGES connecting 
the EVEN-numbered and ODD-numbered sets of nodes 

is l(e + q/q 1 where e is the number of EDGES. In ad- 
dition, if the nodes of a graph are all of EVEN ORDER, 
then the graph is graceful only if [(e + 1)/2] is EVEN. 
The only ungraceful simple graphs with 5 5 nodes are 
shown below. 

There are exactly e! graceful graphs with e EDGES 
(Sheppard 1976), where e!/Z of these correspond to 
different labelings of the same graph. Golomb (1974) 
showed that all complete bipartite graphs are graceful. 
CATERPILLAR GRAPHS; COMPLETE GRAPHS &, K3? 

& = w4 = T (and only these; Golomb 1974); CYCLIC 
GRAPHS Cn when n = 0 or 3 (mod 4), when the num- 
ber of consecutive chords k = 2, 3, or n - 3 (Koh and 
Punim 1982), or when they contain a pk chord (Delorme 
et al. 1980, Koh and Yap 1985, Punnim and Pabhapote 
1987); GEAR GRAPHS; PATH GRAPHS; the PETERSEN 
GRAPH; POLYHEDRAL GRAPHS T = Kq = FV4, C, 0, 
D, and I (Gardner 1983); STAR GRAPHS; the THOMSEN 

GRAPH (Gardner 1983); and WHEEL GRAPHS (fiucht 
1938) are all graceful. 

Some graceful graphs have only one numbering, but oth- 
ers have more than one. It is conjectured that all trees 
are graceful (Bondy and Murty 1976), but this has only 
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been proved for trees 
been conject ured that 

with < 16 - 
all unicycl 

An excellent on-line reso urce is Brundage (http : //www . 
mat h.washington.edu/” brundage/oldgraceful/)+ 

see dso HARMONIOUS GRAPH,LABELLED GRAPH 

VERTICES. It has also 
.ic graphs are graceful. 
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Graded Algebra 
If A is a graded module and there EXISTS a degree- 
preserving linear map 4 : A @ A -+ A, then (A,#) is 

called a graded algebra. 

References 
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Gradian 
A unit of angular measure in which the angle of an entire 
CIRCLE is 400 gradians. A RIGHT ANGLE is therefore 
100 gradians. 

see also DEGREE, RADIAN 

Gradient 
The gradient is a VECTOR operator denoted V and 
sometimes also called DEL or NABLA. It most often is 
applied to a real function of three variables f (~1, ~2, ua), 
and may be denoted 

Of G grad(f). (1) 

For general 
is given by 

CURVILINEAR COORDINATES, the gradient 

1 a+, l&b* 1 a&* 
w=j-~Ul+--U2+--U3, 

hz au2 ha du3 
(2) 

11 

which simplifies to 

(3) 

in CARTESIAN COORDINATES. 

The direction of Of is the orientation in which the DI- 
RECTIONAL DERIVATIVE hasthelargest value and IVfl 
is the value ofthat DIRECTIONAL DERIVATIVE. firther- 
more, if Of # 0, then the gradient is PERPENDICULAR 
to the LEVEL CURVE through (x0, yo) if z = f(x, y) and 
PERPENDICULAR to the level surface through (1~0, yo, ~0) 
if F(x, y,z) = 0. 
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In TENSOR notation, let 

Graeffe’s Method 

Graeco-Latin Square 

see EULER SQUARE 
ds2 = gp dzp2 (4) 

Graeco-Roman Square 

see EULER SQUARE be the LINE ELEMENT in principal form. Then 

(5) Graeffe’s Method 
A ROOT-finding method which proceeds by multiplying 
a POLYNOMIAL f(z) by f(--LC) and noting that 

For a MATRIX A, 
f (5) = (x - al)(x - a2) l  l  l  (x - a,) (1) 

f (-2) = (-l)“(x + a1)(x + az) l  l  ’ (x + a,) (2) VIA 1 cAxlTA x =- 
IA I x  l  

(6) 
so the result is 

For expressions giving the gradient in particular coordi- 
nate systems, see CURVILINEAR COORDINATES. f (X)f (-2) = (-1>“(2” - a12)(X2 - az2) ’ l  ’ (X2 - CIin2). 

(3) 

Repeat v times, then write this in the form 
see also CONVECTIVE DERIVATIVE, Cum, 
GENCE, L APLACIAN, VECTOR DERIVATIVE 

DIVER- 

yn  + bly”-’ + n  - a + bn = 0 (4 References 
A&ken, G. “Gradient, V” and “Successive Applications of 

V.” 51.6 and 1.9 in Mathematical Methods for Physicists, 
3rd ed. Orlando, FL: Academic Press, pp. 33-37 and 47- 
51, 1985. 

where y E x2? Since the coefficients are given by NEW- 
TON'S RELATIONS 

bl = -(yl +y2 + .*a +yn) 

62 = (~192 + ~1~3 + l  l  l  + yn-lyn) 

bn = (-~)“YIYz l  l ‘yny 

(5) 

(6) 

(7) 

Gradient Four-Vector 
The 4-dimensional version of the GRADIENT, encoun- 
tered frequently in general relativity and special relativ- 
ity, is 

v, = 

and since the squaring pro cedure has separated 
roots, the first term is larger than rest l  Therefore, 

the 

bl N” -yl 

bz $=: y1y2 

bn z (-1)“ylyZ a. ’ ynj 

(8) 

(9) 

(10) 
which can be written 

pz- 2 (V > - - 0 1 giving 

where f12 is the D'ALEMBERTIAN OPERATOR. y1 = -h 

bz 

y2=-G 

bn 
yn z - 

h-1 l  

see also D'ALEMBERTIAN 
SOR, VECTOR 

OPERATOR, GRADIENT, TEN- 
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Solving for the original roots gives 

Gradient Theorem 

(15) s a(Vf) . ds = f(b) - f (a>, 
b 

where V is the GRADIENT, and the integral is a LINE 
INTEGRAL. It is this relationship which makes the defi- 
nition of a scalar potential function f so useful in gravi- 
tation and electromagnetism as a concise way to encode 
information about a VECTOR FIELD. 

see also DIVERGENCE THEOREM, GREEN'S THEOREM, 
LINE INTEGRAL 

This method works especially well if all roots are real. 
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Graham’s Biggest Little Hexagon 

0.34377 I 

The largest possible (not necessarily regular) HEXAG~~J 
for which no two of the corners are more than unit 
distance apart. In the above figure, the heavy lines 
are all of unit length. The AREA of the hexagon is 
A = 0.674981..., where A is a ROOT of 

4096Al' - 8192A’ - 3008A8 - 30,848A7 + 21,056A6 

+146,496A5 - 221, 360A4 + 1232A3 + 144, 464A2 

-78,488A+ 11,993 = 0. 

see also CALABI’S TRIANGLE 
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Graham’s Number 
The smallest dimension of a HYPERCWBE such that if the 
lines joining all pairs of corners are two-colored, a PLA- 
NAR COMPLETE GRAPH & of one color will be forced. 
That an answer exists was proved by R. L. Graham and 
B. 1;. Rothschild. The actual answer is believed to be 6, 
but the best bound proved is 

where t is stacked ARROW NOTATION. It is less than 
3 + 3 + 3 -+ 3, where CHAINED ARROW NOTATION 
has been used. 

see also ARROW NOTATION, CHAINED ARROW NOTA- 
TION, SKEWES NUMBER 
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Gram-Charlier Series 
Approximates a distribution in terms of a NORMAL DIS- 
TRIBUTION. Let 

(P(t) 
1 - -tZ/2 - - -e 

a- 
7 

7T 

then 

f(t) = 4(t) + gy1q5(3)(t) + $&4'(t) + . .' 9 

see also EDGEWORTH SERIES 

References 
Kenney, J. F. and Keeping, E. S. Mathematics of Statistics, 

Pt. 2, 2nd ed. Princeton, NJ: Van Nostrand, pp. 107-108, 
1951. 

Gram Determinant 
The DETERMINANT 

G(fl, f2, l  l  l  t fd 
sf1”dt Sfifdt l  -- $fifndt 

Sfifidt Sf;dt a.0 Jfifndt - - . 
l  

. 

sflindt Jflindt l :: sf;dt 

see also GRAM-SCHMIDT ORTHONORMALIZATI~N, 
WRONSKIAN 

References 
Sansone, G. Orthogonal Functions, rev. English ed. New 

York: Dover, p. 2, 1991. 

Gram’s Inequality 

Letfi(z), l -t f&) be REALINTEGRABLEFUNCTIONS 
over the CLOSED INTERVAL [a$], then the DETERMI- 
NANT of their integrals satisfies 

see also GRAM-SCHMIDT ORTHONORMALIZATION 

References 
Gradshteyn, I. S+ and Ryzhik, I. M. Tables of Integrals, Se- 

ries, and Products, 5th ed. San Diego, CA: Academic 
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Gram Matrix 
Given m points with n-D vector coordinates vi, let M 
be the n x m matrix whose jth column consists of the 
coordinates of the vector vj, with j = 1, . . . , nz. Then 
define the KO x nt Gram matrix of dot products aij = 
Vi-Vj as 

A = MTM, 

where AT denotes the TRANSPOSE. The Gram matrix 
determines the vectors vi up to ISOMETRY. 

Gram-Schmidt Orthonormalization 
A procedure which takes a nonorthogonal set of LIN- 
EARLY INDEPENDENT functions and constructs an OR- 
THOGONAL BASIS over an arbitrary interval with respect 
to an arbitrary WEIGHTING FUNCTION w(x). Given an 
original set of linearly independent functions {~1~}, let 
{&} denote the orthogonalized (but not normalized) 
functions and {&} the orthonormalized functions. 

$0 cx> G Ul(X) (1) 
do(x) = $0 Ix) 

Jm ’ (2) 

Take 

+1(x) = w(~>+m4o(~), (3) 

where we require 

$l@owdx = ulqbow dx + a10 qbo2wdx = 0. (4) 

By definition, 

s 
qbo2~dx = 1, 

so 
alo = - s ulqbow dx. 

The first orthogonalized function is therefore 

~1=w(x)- [/u140w dx] $0, 

and the corresponding normalized function is 

41= Jc. 

By mathematical induction, it follows that 

444 = J-&> 

where 

@i (4 = ui +aio+o +ail@l..* +ai,i-l&l 

(7) 

(8) 

(9) 

(10) 

and 
- 

aij = - 
s 

ui$jw dx:. (11) 

If the functions are normalized to Nj instead of 1, then 

s 

b 

[4j(x)12w dx = Nj2 
a 

(12) 

4i(X) = Ni J* 

% = - 
Suit$jwdx 

Nj2 ’ 

(13) 

(14) 

ORTHOGONAL POLYNOMIALS are especially easytogen- 
erate using GRAM-SCHMIDT ORTHONORMALIZATION. 
Use the notation 

(XilXj) = (XiIWjXj) E lb Xi(X)Xj(X:)W(X) dX, (15) 
a 

where w(x) is a WEIGHTING FUNCTION, and define the 
first few POLYNOMIALS, 

PO(X) = 1 (16) 
Plb) = [X-$$$jPo. (17) 

As defined,po andpl are ORTHOGONAL POLYNOMIALS, 
as can be seen from 

(POlPl) = ([x-y#]Po) 

@PO IPO) 
= @PO) - (polpo) (PO) 

= @PO) - @PO> = 0. (18) 
NOW use the RECURRENCE RELATION 

&+1(X) = 2 [ - p&q Pi - [ ,~~yJ Pi-l (19) 

to construct all higher order POLYNOMIALS. 

To verify that this procedure does indeed produce OR- 
THOGONAL POLYNOMIALS, examine 

(Pi+1 IPi) = ([x-p&qPi~Pi) 

( 

(Pi IPi) - 
(Pi-1 Ipi-l)pi-l pi I> 

lx% Ipi) 
= CxP; IP;) - lPilPi) 

(p; IPi) 

(pi h) - 
(Pi-l [Pi-l) 

(pi-1 IPi) 

- - (,;f;;;;yl) (Pi-1 IPi) - 

(Pi IPd - 
- -(pi-lipi-1) [ 

(pd+d (pj-2/pj-l) 

-(pj-2IPj-2) 1 - - - .*. - (-l) (poipo) j hh) (polpl) = 0, (20) 



Gram Series Graph (Graph Theory) 755 

since (P&Q) = 0. Therefore, all the POLYNOMIALS pi(x) 
are orthogonal. Many common ORTHOGONAL POLYNO- 
MIALS of mathematical physics can be generated in this 
manner. However, the process is numerically unstable 
(Golub and van Loan 1989). 

see also GRAM DETERMINANT, GRAM'S INEQUALITY, 
ORTHOGONAL POLYNOMIALS 
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Gram Series 

00 

R(x) = 1+ 
E 
k=l 

(ln x)~ 

kk!C(k + 1) ’ 

where [is the RIEMANN ZETA FUNCTION. This approx- 
imation to the PRIME COUNTING FUNCTION is 10 times 
better than Li(z) for x < 10’ but has been proven to be 
worse infinitely often by Littlewood (Ingham 1990). An 
equivalent formulation due to Ramanujan is 

2k-1 

-7TX ( > 

(Berndt 1994), where &k is a BERNOULLI NUMBER. 
The integral analog, also found by Ramanujan, is 

4 > x E 
(I~x)~ dt 

tqt + l)s(t + 1) 
- dx> 

(Berndt 1994). 
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Granny Knot 

A COMPOSITE KNOT of seven crossings consisting of a 
KNOT SUM of TREFOILS. The granny knot has the same 
ALEXANDER POLYNOMIAL (x2---5+ 1)” as the SQUARE 
KNOT. 

Graph (Function) 

fl 1 x 

Technically, the graph of a function is its RANGE (a.k.a. 
image). Informally, given a FUNCTION f(zl, . . . , xn) de- 
fined on a DOMAIN U, the graph of f is defined as a 
CURVE or SURFACE showing the values taken by f over 
U (or some portion of U), 

graphf(x) s {(x,F(x)) E Iw2 : x E U} 

graph f(xl, . l  . , xn) E {(xl,. l  . 9Xn9 f(Xl9 l  l  9  9  Xn)) 

E IWnfl : (xl,*..,xn) E U}. 

A graph is sometimes also called a PLOT. 

Good routines for plotting graphs use adaptive algo- 
rithms which plot more points in regions where the 
function varies most rapidly (Wagon 1991, Math Works 
1992, Heck 1993, Wickham-Jones 1994). 

see also CURVE, EXTREMUM, GRAPH (GRAPH THE- 
ORY), HISTOGRAM,MAXIMUM,MINIMUM 
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Graph (Graph Theory) 

1 l 
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A mathematical object composed of points known as 
VERTICES or NODES and lines connecting some (possibly 
empty) SUBSET of them, known as EDGES. The study 
of graphs is known as GRAPH THEORY. Graphs are 1-D 
COMPLEXES, and there are always an EVEN number of 
ODD NODES in a graph. The number of nonisomorphic 
graphs with w  NODES is given by the P~LYA ENUMER- 
ATION THEOREM. The first few values for n = 1, 2, . . . , 
are 1, 2, 4, 12, 34, 156, 1044, . l  . (Sloane’s A000088; see 
above figure). 

Graph sums, differences, powers, 
defined 1 as can graph eigenvalues. 

and products can be 

Before applying P~LYA ENUMERATION THEOREM, de- 
fine the quantity 

hj = 
P’ 

rI 
p ‘*. 
i=l 

z&j& ’ 

where p! is the FACTORIAL of p, and the related poly- 
nomial 

Z,(S) = x hji n fk’ji’“, (2) 
i k=l 

where the ji = (jl, . . l  , j,)i are all of the p-VECTORS 
satisfying 

(3) 

For example, for p = 3, the three possible values of j are 

h = W,Q, since (l-3) + (2 l  0) + (3 l  0) = 3, 

giving hj, = 
3! 

(133!)(200!)(300!) = ’ (4) 

j2 = (l,l, 0), since (1 . 1) + (2 l  1) + (3 l  0) = 3, 

giving hj, = 
3! 

(111’)(211’)(300!) 
= 3, (5) 

. . 

j3 = (W 11, since (1 . 0) + (2 l  0) + (3 9 1) = 3 

giving hj3 = 
3! 

(1°0!)(200!)(311!) 
= 2. (6) 

Therefore, 

23(S) = f13 + 3flf2 + 2f3* (7) 

For small p, the first few values of Z,(S) are given by 

zz(S)= fl" +f2 (8) 

23(s) = f13 + 3fif2 + 2f3 (9) 

24(s) = fl” + 6fi2f2 + 3f2’ + 8flf3 + 6f4 (10) 

25(S) = f15 + lOfi”fi + 15flfi” + 20f12f3 

+ 2ofif3 + 30flf4 + 24f5 (11) 
26(s) = fi” + 15f14f2 + 45f12 f22 + 15fi3 

+ 40fl”f3 + 12oflfif3 + 4of3 2 

+ 9ofi2f4 + gofif4 + 144flf5 + 12of6 (12 

z?(S) = fl’ + 21f15f2 + 105f13f22 + 105flfi3 

+ 70fi4f3 + 420f12f2f3 + 210f22f3 

+ 280fl f32 + 210f13f4 + 630flfif4 

+ 42Of3f4 + 504fi2f5 + 504fif5 

> 

+ 84Oflfs + 72Of7. (13) 

Application of the P~LYA ENUMERATION THEOREM 
then gives the formula 

Z(R) = $ x hj L(p$2J g2n+lnj2n+1+@n+l)(j2;+1) 
(j) 

b/21 
X 

rI [( 
gng2~)n-l]j2ng2n2n(322n) 

q=l r=q+1 

where [z] is the FLOOR FUNCTION, (z) is a BINOMIAL 
COEFFICIENT, LCM is the LEAST COMMON MULTIPLE, 
GCDis the GREATEST COMMON DIVISOR, andtheSuM 
(j) is over all ji satisfying the sum identity described 
above. The first few generating functions z,(R) are 

22(R)= 2gl (15) 

23(R) = g13 + 3glg2 + 293 (16) 

24(R) = g16 + 9g12gz2 + 8ga2 + 6gzg4 (17) 

G(R) = do + log14g23 + 15g12g24 + 2oglg33 

+30g2g42 +24g52 +2oglg3g6 (18) 

Zs(R)=g115 + 15g17gz4 + 60g13gz6 + 40g13ga4 

+ 40g35 + 180g1g2gd3 + 144gs3 

+ 120glg2g32g6 + 120g3gS2 

Z7(R)=~71~~ + 21g111g25 + 105g15g28 09) 

+ 105g13gzg + 70g16gB5 + 280ga7 

+ 210g13g2g44 + 630g1g22g44 

+ 504g1g54 + 420g12g22g33g6 

+ 210g12g22g3g62 + 840g3gs3 + 720gT3 

+ 504glg52g10 +42og29394912- (20) 

Letting gi = 1 + xi then gives a POLYNOMIAL Si(x), 
which is a GENERATING FUNCTION for (i.e., the terms 
of tci give) the number of graphs with i EDGES. The 
total number of graphs having i edges is Si (1). The first 
few Si(x) are 

&=1+x (21) 

s3 = 1+ x + x2 + x3 (22) 

54 = 1+ x + 2x2 + 3x3 + 2X4 + x5 + x6 (23) 

S5 = 1 + x + 2x2 + 4x3 + 6x4 + 6x5 + 6x6 

+ 4x7 + 2x8 + x9 + xl0 (24) 

S6 = 1 + Iz: + 2x2 + 5x3 + 9x4 + 15x5 

+ 21~~ + 24x7 + 24x8 + 21x’ 

+ 15x1° + 9x11 + 5x12 

+ 2x13 + xl4 + xl5 (25) 
s7 = 1+ x + 2x2 + 5x3 + 10x4 + 21x5 

+ 21x6 + 24x7 + 41x6 + 65x7 + 97x8 
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+ 1312’ + 148x1’ + 148? 

+ 131~~~ + 97x13 + 65~~~ + 41~~~ 

+ 21X1” + 10217 + 5218 + 2xX9 + x20 + xzl, 

(26) 

giving the number of graphs with 72 nodes as 1, 2, 4, 11, 
34, 156, 1044, . . . (Sloane’s A000088). King and Palmer 
(cited in Read 1981) have calculated & up to n = 24, 
for which 

$4 = 1%,704,906,302,078,447,922,174,862,416,* 0  l  

l  - l  726,256,004,122,0?5,267,063,365,754,368. (27) 

see also BIPARTITE GRAPH, CATERPILLAR GRAPH, 
CAYLEY GRAPH, CIRCULANT GRAPH, COCKTAIL 
PARTY GRAPH, COMPARABILITY GRAPH, COMPLE- 
MENT GRAPH,COMPLETEGRAPH,CONEGRAPH,CON- 
NECTED GRAPH, COXETER GRAPH, CUBICAL GRAPH, 
DE BRUIJN GRAPH, DIGRAPH, DIRECTED GRAPH, 
D~DECAHEDRAL GRAPH, EULER GRAPH, EXTREMAL 
GRAPH, GEAR GRAPH, GRACEFUL GRAPH, GRAPH 
THEORY, HANOI GRAPH, HARARY GRAPH, HARMO- 
NIOUS GRAPH, HOFFMAN-SINGLETON GRAPH, Ices- 

AHEDRAL GRAPH, INTERVAL GRAPH, ISOMORPHIC 
GRAPHS, LABELLED GRAPH, LADDER GRAPH, LATTICE 
GRAPH,MATCHSTICK GRAPH,MINOR GRAPH,MOORE 
GRAPH, NULL GRAPH, OCTAHEDRAL GRAPH, PATH 
GRAPH, PETERSEN GRAPHS, PLANAR GRAPH, RAN- 
DOM GRAPH, REGULAR GRAPH, SEQUENTIAL GRAPH, 
SIMPLE GRAPH, STAR GRAPH, SUBGRAPH, SUPER- 
GRAPH, SUPERREGULAR GRAPH, SYLVESTER GRAPH, 
TETRAHEDRALGRAPH, THOMASSEN GRAPH,TOURNA- 
MENT,TRIANGULAR GRAPH,TURAN GRAPH,TUTTE'S 
GRAPH, UNIVERSAL GRAPH, UTILITY GRAPH, WEB 
GRAPH,WHEEL GRAPH 
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Graph Theory 
The mathematical study of the properties of the formal 
mathematical structures called GRAPHS. 

see also ADJACENCY MATRIX, ADJACENCY RELA- 

TION, ARTICULATION VERTEX, BLUE-EMPTY COLOR- 
ING, BRIDGE (GRAPH), CHROMATIC NUMBER, CHRO- 
MATIC POLYNOMIAL, CIRCUIT RANK, CROSSING NUM- 
BER (GRAPH), CYCLE (GRAPH), CYCLOMATIC NUM- 
BER, DEGREE, DIAMETER (GRAPH), DIJKSTRA'S AL- 
GORITHM, ECCENTRICITY, EDGE-COLORING, EDGE 
CONNECTIVITY, EULERIAN CIRCUIT,EULERIAN TRAIL, 
FACTOR (GRAPH), FLOYD'S ALGORITHM, GIRTH, 
GRAPH TWO-C• LORING,GROUP THEORY,HAMILTON- 
IAN CIRCUIT,HASSE DIAGRAM, HUB,INDEGREE,INTE- 
GRAL DRAWING,ISTHMUS,JOIN (GRAPH),LOCAL DE- 
GREE, MONOCHROMATIC FORCED TRIANGLE, OUTDE- 
GREE,PARTY PROBLEM, P~LYA ENUMERATION THEO- 
REM,P~LYA POLYNOMIAL,RADIUS (GRAPH),RAMSEY 
NUMBER, RE-ENTRANT CIRCUIT, SEPARATING EDGE, 
TAIT COLORING, TAIT CYCLE, TRAVELING SALES- 
MAN PROBLEM, TREE,TUTTE'S THEOREM,~NICURSAL 
CIRCUIT,VALENCY,VERTEX COLORING,~ALK 
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Graph Two-Coloring 
Assignment of each EDGE of a GRAPH to one of two 
color classes ( “red” or “green”). 

see also BLUE-EMPTY GRAPH, MONOCHROMATIC 
FORCED TRIANGLE 
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Graphical Partition 
A graphical partition of order n is the DEGREE SE- 
QUENCE of a GRAPH with n/2 EDGES and no isolated 
VERTICES. For n = 2, 4, 6, l  l  l  , the number of graphical 
partitions is 1, 2, 5, 9, 17, . . . (Sloane’s A000569). 
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Grassmann Algebra 

~~~EXTERIOR ALGEBRA 

Grassmann Coordinates 
An (m + 1)-D SUBSPACE W of an (n + 1)-D VECTOR 
SPACE V can be specified by an (m+l)x (n+l) MATRIX 
whose rows are the coordinates of a BASIS of w. The set 
of all (:I:) (m + 1) x (m + 1) MINORS of this MATRIX 
are then called the Grassmann coordinates of w  (where 
(E) is a BINOMIAL COEFFICIENT). 

see also CHOW, COORDINATES 
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Grassmann Manifold 
A special case of a FLAG MANIFOLD. A Grassmann 
manifold is a certain collection of vector SUBSPACES of 
a VECTOR SPACE. In particular, G,,k is the Grass- 
mann manifold of k-dimensional subspaces of the VEC- 
TOR SPACE R”. It has a natural MANIFOLD structure 
as an orbit-space of the STIEFEL MANIFOLD V& of 
orthonormal k-frames in R” g One of the main things 
about Grassmann manifolds is that they are classifying 
spaces for VECTOR BUNDLES. 

Gray Code 
An encoding of numbers so that adjacent numbers have 
a single DIGIT differing by 1. A BINARY Gray code with 
n DIGITS corresponds to a HAMILTONIAN PATH on an 
n-D HYPERCUBE (including direction reversals). The 
term Gray code is often used to refer to a “reflected” 
code, or more specifically still, the binary reflected Gray 
code. 

To convert a BINARY number dl dz m l  . d,-l d, to its cor- 
responding binary reflected Gray code, start at the right 
with the digit d, (the nth, or last, DIGIT). If the &-I 
is 1, replace d, by 1 - d,; otherwise, leave it unchanged. 
Then proceed to d,-1. Continue up to the first DIGIT 

&, which is kept the same since do is assumed to be a 
0. The resulting number g1 g2 . m. gn-l gn is the reflected 
binary Gray code. 

To convert a binary reflected Gray code g1 g2 l  l  l  g,-l gn 
to a BINARY number, start again with the nth digit, and 
compute 

n-l 

C, E xgi (mod 2). 
i=l 

If C, is 1, replace gn by 1 - gn; otherwise, leave it the 
unchanged. Next compute 

n-2 

En-1 E >Ig; (mod 2), 

i=l 

and so on. The resulting number dl d2 9 9 0 dn-1 d, is 
the BINARY number corresponding to the initial binary 
reflected Gray code. 

The code is called reflected because it can be generated 
in the following manner. Take the Gray code 0, 1. Write 
it forwards, then backwards: 0, 1, 1, 0. Then append OS 
to the first half and 1s to the second half: 00, 01, 11, 10. 
Continuing, write 00, 01, 11, 10, 10, 11, 01, 00 to obtain: 
000, 001, 011, 010, 110, 111, 101, 100, . . . (Sloane’s 
A014550). Each iteration therefore doubles the number 
of codes. The Gray codes corresponding to the first few 
nonnegative integers are given in the following table. 

0 0 20 11110 
1 1 21 11111 
2 11 22 11101 
3 10 23 11100 
4 110 24 10100 
5 111 25 10101 
6 101 26 10111 
7 100 27 10110 
8 1100 28 10010 
9 1101 29 10011 

10 1111 30 10001 
11 1110 31 10000 
12 1010 32 110000 
13 1011 33 110001 
14 1001 34 110011 
15 1000 35 110010 
16 11000 36 110110 
17 11001 37 110111 
18 11011 38 110101 
19 11010 39 110100 

The binary reflected Gray code is 
solutionofthe TOWERS OF HANOI 
NAUDIER. 

2 

40 111100 
41 111101 
42 111111 
43 111110 
44 111010 
45 111011 
46 111001 
47 111000 
48 101000 
49 101001 
50 101011 
51 101010 
52 101110 
53 101111 
54 101101 
55 101100 
56 100100 
57 100101 
58 100111 
59 100110 

:losely related to the 
~swellas the BAGUE- 

see also BAGUENAUDIER, BINARY, HILBERT CURVE, 
MORSE-THUE SEQUENCE, RYSER FORMULA, TOWERS 
OF HANOI 
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The equation of the great circle can be explicitly com- 
puted using the GEODESIC formalism. Writing 

gives the P, Q, and R parameters of the GEODESIC 
(which are just combinations of the PARTIAL DERIVA- 
TIVES) as 

P= (g)z+(g)2+ (g)2=aZsin2v (6) 

Q 
ax ax 

= au dv + 
dY dY dz dz -- -- 
au av + 

-- 
au dv 

=o (7) 

RE (g)2+(g)2+(g)2=u2. (8) 

Great Circle 

The GEODESIC differential equation then becomes 

cos v sin4 w+ 2 cos 21 sin2 2121’2 +cos ww 
t4 

-sinvv” = 0. (9) 

The shortest path between two points on a SPHERE, 
also known as an ORTHODROME. To find the great cir- 
cle (GEODESIC) distance between two points located at 
LATITUDE S and LONGITUDE X of (a,; Ai) and (S2, X2) 
on a SPHERE of RADIUS a, convert SPHERICAL COOR- 
DINATEs to CARTESIAN COORDINATES using 

cos xi cos si 
ri = a 

[ I 
sin Ai cos & . (1) 

sin & 

(Note that the LATITUDE S is related to the COLATI- 
TUDE 4 of SPHERICAL COORDINATES by 6 = 90° - 4, 
SO the conversion to CARTESIAN COORDINATES replaces 
sin4 and cos C$ by cos S and sin& respectively.) Now 
find the ANGLE a between ri and r2 using the DOT 
PRODUCT, 

= cos S1 cos 62 (sin X1 sin X2 + cos X1 cos X2) 

+ sin & sin & 

= cos 61 cos 62 cos(X1 - X2) + sin & sin S2. (2) 

The great circle distance is then 

d = aces -l[cossl cos 62 COS(Al - X2) + sin 61 sin & 1, (3) 

For the Earth, the equatorial RADIUS is a “N 6378 km, or 
3963 (statute) miles. Unfortunately, the FLATTENING of 
the Earth cannot be taken into account in this simple 
derivation, since the problem is considerable more com- 
plicated for a SPHEROID or ELLIPSOID (each of which 
has a RADIUS which is a function of LATITUDE). 

However, because this is a special case of Q = 0 with P 
and R explicit functions of 2, only, the GEODESIC solu- 
tion takes on the special form 

u= 

- - 

- - 

r dv 

cos v 

.JEF 1 ~ +c2 (10) 

(Gradshteyn and Ryzhik 1979, p. 174, eqn. 2.599.6), 
which can be rewritten as 

v=  l  

--m-l y& + c2* (11) 

i ) 

It therefore follows that 

(sin c&z sin v cos u - (cos ca)a sin v sin u 
acosw 

-JG =O* (12) 

This equation can be written in terms of the CARTESIAN 
COORDINATES as 

x sin c2 - y cos c2 - 

J-G- 

= 0, 
2 

(13) 
-1 

which is simply a PLANE passing through the center of 
the SPHERE and the two points on the surface of the 
SPHERE. 



760 Great Cubicuboctahedron 

see &O GEODESIC, GREAT SPHERE, LOXODROME, MI- 
KUSI~~SKI'S PROBLEM, ORTHODROME, POINT-POINT 
DISTANCE-2-D,SPHERE 

References 
Gradshteyn, I. S. and Ryzhik, I. M. Tables of Integrals, Se- 

ries, and Products, 5th ed. San Diego, CA: Academic 
Press, 1979. 

Weinstock, R. Calculus of Variations, with Applications to 
Physics and Engineering. New York: Dover, pp. 26-28 
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Great Cubicuboctahedron 

The UNIFORM POLYHEDRON iY14 whose DUAL POLY- 
HEDRON is the GREAT HEXACRONIC ICOSITETRAHE- 
DRON. It has WYTHOFF SYMBOL 341 $. Its faces are 
8{3}+6{4}+6{ 5>* It is ~FACETED versionofthe CUBE. 
The CIRCUMRADIUS of a great cubicuboctahedron with 
unit edge length is 

References 
Wenninger, M. J* Polyhedron 1ModeZs. Cambridge, England: 

Cambridge University Press, pp. 118-119, 1989. 

Great Deltoidal Hexecontahedron 
The DUAL ofthe GREAT RHOMBICOSIDODECAHEDRON 
(UNIFORM). 

Great Deltoidal Icositetrahedron 
The DUAL of the GREAT RHOMBICUBOCTAHEDRON 
(UNIFORM). 

Great Dirhombicosidodecacron 
The DUAL of the GREAT DIRHOMBICOSIDODECAHE- 
DRON. 

Great Dirhombicosidodecahedron 

The UNIFORM POLYHEDRON & whose DUAL is the 
GREAT DIRHOMBICOSIDODECACRON. This POLYHE- 
DRON is exceptional because it cannot be derived from 

Great Ditrigonal Icosidodecahedron 

SCHWARZ TRIANGLES and because it is the only UNT- 
FORM POLYHEDRON withmorethansix POLYGONS sur- 
rounding each VERTEX (four SQUARES alternating with 
two TRIANGLES and two PENTAGRAMS). It has WYTH- 
OFF SYMBOL ]%%3:. Its faces are 40{3} + 60{4} + 
24(g), and its CIRCUMRADIUS for unit edge length is 

R=$h. 

References 
Wenninger, M. J. Polyhedron Models. Cambridge, England: 

Cambridge University Press, pp. 200-203, 1989. 

Great Disdyakis Dodecahedron 
The DUAL of the GREAT TRUNCATED CUBOCTAHE- 
DRON. 

Great Disdyakis Triacontahedron 
The DUAL ofthe GREATTRUNCATED ICOSIDODECAHE- 
DRON. 

Great Ditrigonal Dodecacronic 
Hexecontahedron 
The DUAL ofthe GREAT DITRIGONAI, DODECICOSIDO- 
DECAHEDRON. 

Great Ditrigonal Dodecicosidodecahedron 

The UNIFORM POLYHEDRON U42 whose DUAL is the 
GREAT DITRIGONAL DODECACRONIC HEXECONTAHE- 
DRON. It has WYTHOFF SYMBOL 35 14. Its faces are 
20{3}+12{5}+12{~}, and its CIRCUMRADIUS for unit 
edge length is 

References 
Wenninger, M. J. Polyhedron Models. Cambridge, England: 

- Cambridge University Press, p. 125, 1989. 

Great Ditrigonal Icosidodecahedron 



Great Dodecacronic Hexecontahedron Great Dodecicosacron 761 

The UNIFORM POLYHEDRON U47 whose DUAL is the 
GREAT TRIAMBIC ICOSAHEDRON. It has WYTHOFF 
SYMBOL t 13 5. Its faces are-20{3} + 12{5}, and its 
CIRCUMRADIUS for unit edge length is 

References 
Wenninger, M. J. PoZyhedrorz Models. Cambridge, England: 

Cambridge University Press, pp. 135-136, 1989. 

Great Dodecacronic Hexecontahedron 
The DUAL of the GREAT DODECICOSIDODECAHEDRON. 

Great Dodecadodecahedron 

Great Dodecahedron 

The UNIFORM POLYHEDRON U35 which is the DUAL 
of the SMALL STELLATED DODECAHEDRON and one of 
the KEPLER-P• INSOT SOLIDS. Its faces are 12{5}. Its 
SCHL~FLI SYMBOL is {5,$},and its WYTH~FF SYMBOL 
is $ 12 5. Its faces are U(5). 1t.s CIRCUMRADIUS for unit 
edge length is 

R= ;51/4&/2a= t51/4&z), 

where 4 is the GOLDEN RATIO. 

DECAHEDRON, KEPLER-P• INSOT SOLID, SMALL STEL- 
LATED DODECAHEDRON 

References 
Fischer, G. (Ed.). Plate 105 in Mathematische Mbd- 

elle/Mathematical Models, Bildband/Photogruph Volume. 
Braunschweig, Germany: Vieweg, pm 104, 1986. 

Great Dodecahedron-Small Stellated 

Dodecahedron Compound 
A POLYHEDRON COMPOUND in which the GREAT Do- 
DECAHEDRON isinteriortothe SMALL STELLATED Do- 

Great Dodecahemicosacron 
The DU 'AL of the GREAT DODECA HEMICOSAHEDRON. 

Great Dodecahemicosahedron 

The UNIFORM POLYHEDRON &5 whose DUAL is the 
GREAT DODECAHEMICOSACRON. It has WYTHOFF 
SYMBOL ::I$ Its faces are 12{;} + 6{ y}. It is a 
FACETED DODECADODECAHEDRON. The CIRCUMRA- 
DIUS for unit edge length is 

References 
Wenninger, M. J. Polyhedron Mudels. Cambridge, England: 

Cambridge University Press, pp. 106-107, 1989. 

Great Dodecahemidodecacron 
The DUAL of the GREATDODECAHEMIDODECAHEDRON. 

Great Dodecahemidodecahedron 

The UNIFORM POLYHEDRON U70 whose DUAL is the 
GREAT DODECAHEMIDODECACRON. It has WYTHOFF 
SYMBOL g# Its faces are 12(g) + 6{ y}. Its CIR- 
CUMRADIUS for unit edge length is 

R = 4-l, 

where 4 is the GOLDEN RATIO. 

References 
Wenninger, M. J. Polyhedron Models. Cambridge, England: 

Cambridge University Press, p. 165, 1989. 

Great Dodecicosacron 
The DUAL ofthe GREAT DODECICOSAHEDRON. 

DECAHEDRON. 

see also POLYHEDRON COMPOUND 



762 Great Dodecicosahedron Great Icosicosidodecahedron 

Great Dodecicosahedron Great Icosahedron 

One of the KEPLER-PUINSOT SOLIDS whose DUAL is 
the GREAT STELLATED D~DECAHEDRON. Its faces are 

The UNIFORM POLYHEDRON &3 whose DUAL is the 
GREAT DODECICOSACRON. It has WYTHOFF SYMBOL 

3 

351 ;* Its faces are 20{6} + 12{?}. Its CIRCUMRA- 
2 

DIUS for unit edge length is 

References 
Wenninger, M. J. Polyhedron AIodels. Cambridge, England: 

Cambridge University Press, pp* 156-157, 1989. 

Great Dodecicosidodecahedron 

The UNIFORM POLYHEDRON UsI whose DUAL is the 
GREAT DODECACRONIC HEXECONTAHEDRON. Its 

WYTHOFF SYMBOL is 2 4 13. Its faces are 20{6}+12{ g}, 
and its CIRCUMRADIUS for unit edge length is 

R=+J58-18&. 

References 
Wenninger, M. J. PoZyhedron 1ModeZs. Cambridge, England: 

Cambridge University Press, p. 148, 1989. 

20{3}. It is also UNIFORM POLYHEDRON u53 and 
WYTHOFF SYMBOL 3 g 1 ge Its faces are 20{3}+12{ 
12{?}. Its CIRCUMRADIUS for unit edge length is 

has 
2 
2 )+ 

see also GREAT DODECAHEDRON, GREAT ICOSAHE- 
DRON, GREAT STELLATED DODECAHEDRON, KEPLER- 
POINSOT SOLID, SMALL STELLATED DODECAHEDRON, 
TRUNCATED GREAT IC~SAHEDRON 

References 
Fischer, G. (Ed.). Plate 106 in hkzthematische Mod- 

eEle/~atherkzt&aE Models, BiEdband/Photograph Volume. 
Braunschweig, Germany: Vieweg, p, 105, 1986. 

Wenninger, M. 3. Polyhedron Models. Cambridge, England: 
Cambridge University Press, p, 154, 1989. 

Great Icosahedron-Great Stellated 
Dodecahedron Compound 

A POLYHEDRON COMPOUND most easily constructed by 
adding the VERTICES of a GREAT ICOSAHEDRON to a 
GREAT STELLATED DODECAHEDRON. 

see &~P~LYHEDRON COMPOUND 

Great Hexacronic Icositetrahedron 
The DUAL ofthe GREAT CUBICUBOCTAHEDRON. 

References 
Cundy, H. and Rollett, A. kfathematical Models, 3rd ed. 

Stradbroke, England: Tarquin Pub., ppm 132-133, 1989. 

Great Hexagonal Hexecontahedron Great Icosicosidodecahedron 

The DUAL ofthe GREAT SNUBDODECICOSIDODECAHE- 
DRoN. 

Great Icosacronic Hexecontahedron 
The DUAL ofthe GREAT TCOSICOSIDODECAHEDRON. 



Great Icosidodecahedron Great Quasitruncated Icosidodecahedron 763 

The UNIFoRM POLYHEDRON & whose DUAL is the 
GREAT ICOSACRONIC HEXECONTAHEDRON. It has 
WYTHOFF SYMBOL 3 5 13. Its faces are 20{3}+20{6}+ 
12{5}. Its C~RCWMRADIXJS for unit edge length is 

References 
Wenninger, M. J. PoEyhedron Ahdels. Cambridge, England: 

Cambridge University Press, pp. 137-139, 1989. 

Great Icosidodecahedron 

A UNIFORM POLYHEDRON U54 whose DUAL is the 
GREAT RHOMBIC TRIACONTAHEDRON (also called the 
GREAT STELLATED TRIACONTAHEDRON). It is a STEL- 
LATED ARCWIMEDEAN SOLID. It has SCHLAFLI SYM- 

BOL 2 
11 5 

and WYTH~FF SYMBOL 213:. Its faces are 

20{3} + 12{ i}. Its CIRCUMRADIUS for unit edge length 
is 

The UNIFORM POLYHEDRON &g whose DUAL is the 
GREAT INVERTED PENTAGONAL HEXECONTAHEDRON. 
It has WYTHOFF SYMBOL 12 3 %. Its faces are 80{3} + 
12{$}. For unit edge length, it has CIRCUMRADIUS 

R = 4-l, where 

where 4 is the GOLDEN RATIO. 

References 
Cundy, IX and Rollett, A. lMathematica2 Models, 3rd ed. 

Stradbroke, England: Tarquin Pub., p. 124, 1989. 
Wenninger, M. J. Polyhedron Models. Cambridge, England: 

Cambridge U niversity Press, p. 147, 1989. 

Great Icosihemidodecacron 
The DUAL ofthe GREAT ICOSIHEMIDODECAHEDRON, 

References 
Wenninger, M. J. PoZyhedron IModels. Cambridge, England: 

Cambridge University Press, p* 179, 1989. 

Great Icosihemidodecahedron 

Great Pentagonal Hexecontahedron 
The DUAL ofthe GREAT SNUB ICOSIDODECAHEDRON. 

The UNIFORM POLYHEDRON &I whose DUAL is the 

GREAT ICOSIHEMIDODECACRON. It has WYTHOFF 
SYMBOL % 3 1 5. Its faces are 20{3} + 6{ y}. For unit 

edge length, its CIRCUMRADIUS is 

where 4 is the GOLDEN RATIO. 

References 
Wenninger, M. J. Polyhedron Models. Cambridge, England: 

Cambridge Universitv Press, D. 164. 1989. 

Great Inverted Pentagonal Hexecontahedron 
The DUAL of the GREAT INVERTED SNUB ICOSIDODEC- 
AHEDRON. 

Great Inverted Retrosnub 
Icosidodecahedron 

see GREAT RETROSNUB ICOSIDODECAHEDRON 

Great Inverted Snub Icosidodecahedron 

R=1 J g . p/3 - 16x + 21i3x2 

2 8 l  22/3 - 1ox+21/3x2 

= 0.816080674799923, 

Great Pentagrammic Hexecontahedron 
The DUAL ofthe GREAT RETROSNUB ICOSIDODECAHE- 
DRON. 

Great Pentakis Dodecahedron 
The DUAL ofthe SMALL STELLATED TRUNCATED Do- 
DECAHEDRON. 

Great Quasitruncated Icosidodecahedron 

~~~GREAT TRUNCATED ICOSIDODECAHEDRON 



764 Great Retrosnu b Icosidodecahedron Great Rhombicuboctahedron 

Great Retrosnub kosidodecahedron 

The UNIFORM POLYHEDRON U7+alsocalledthe GREAT 
INVERTED RETROSNUB ICOSIDODECAHEDRON, whose 
DUAL is the GREAT PENTAGRAMMIC HEXECONTAHE- 

DRON. It has WYTHOFF SYMBOL 12 4 i. Its faces are 
80{3}+12{;}. F or unit edge length, it has CIRCUMRA- 
DIUS t 

$=: 0.5800015, 

where z is the smaller NEGATIVE root of 

x3 +2x2 -qs-" =o, 

with q5 the GOLDEN MEAN. 

References 
Wenninger, M. J* Polyhedron. IModels. Cambridge, England: 

Cambridge U niversity Press, pp. 189493, 1989. 

Great Rhombic Triacontahedron 
A ZONOHEDRON whichisthe DUAL ofthe GREAT ICOS- 
IDODECAHEDRON. It is also called the GREAT STEL- 
LATED TRIACONTAHEDRON. 

fteierence;s_ 
Cundy, H. and Rollett, A. Mathematical Models, 3rd ed. 

Stradbroke, England: Tarquin Pub., p. 126, 1989. 

Great Rhombicosidodecahedron 

(Archimedean) 

An ARCHIMEDEAN SOLID also known as the RHOM- 
It is sometimes 

improperly called the TRUNCATED ICOSIDODECAHE- 
DRON, a name which is inappropriate since TRUNCATION 
would yield RECTANGULAR instead of SQUARE. The 
great rhombicosidodecahedron is also UNIFORM POLY- 
HEDRON &. Its DUAL is the DISDYAKIS TRIACON- 
TAHEDRON, also called the HEXAKK ICOSAHEDRON. It 
has SCHL~FLI SYMBOL t(i) and WYTHOFF SYMBOL 
235 f. The INRADIUS, MIDRADIUS, and CIRCUMRADIUS 
for a = 1 are 

' (105+6&)d-= 3.73665 T=241 

p’; d30+12& 3.76938 

R=+ d31+ 12& = 3.80239. 

see also SMALL RHOMBICOSIDODECAHEDRON 

Heierences 
Ball, W. W. R. and Coxeter, H. S. M. Mathematical Recre- 

ations and Essays, 13th ed. New York: Dover, p* 137, 
1987. 

Great Rhombicosidodecahedron (Uniform) 

The UNIFORM POLYHEDRON &, also called the 
QUASIRHOMBICOSIDODECAHEDRON, whose DUAL is the 
GREAT DELTOIDAL HEXECONTAHEDRON. It has 

SCHL~FLI SYMBOL r’ g . It has WYTHOFF SYMBOL 
11 

3 5 12. Its faces are 20!3} + 30{4} + 12{$}* For unit 
edge length, its CIRCUMRADIUS is 

References 
Wenninger, M. J. Polyhedron Models. Cambridge, England: 

Cambridge University Press, pp. 162-163, 1989. 

Great Rhombicuboctahedron 

(Archimedean) 



Great Rhombicuboctahedron (Uniform) Great Rhombihexahedron 765 

An ARCHIMEDEAN SOLID sometimes (improperly) called 
the TRUNCATED CUBOCTAHEDRON and also called the 
RHOMBITRUNCATED CUBOCTAHEDRON. Its DUAL is 
the DISDYAKIS DODECAHEDRON, also called the HEX- 
AKIS OCTAHEDRON. It has SCHLAFLI SYMBOL t(z). 
It is also UNIFORM POLYHEDRON Uli and has WYTH- 
OFF SYMBOL 2 3 4 1. Its faces are 8{6} + 12{4} + 6{8}. 
The SMALL CUBICUBOCTAHEDRON is a FACETED ver- 
sion. The INRADIUS, MIDRADIUS, and CIRCUMRADIUS 
for unit edge length are 

Great Rhombidodecacron 
The DUAL ofthe GREAT RHOMBID~DECAHEDRON. 

Great Rhombidodecahedron 

The UNIFORM POLYHEDRON U73 whose DUAL is 
Great Rhombidodecacron. It WYTHOFF SYM 

2 
251 g* 

4 
Its faces are 30{4} + 12(y). Its CIRC 

3 (14 + Jz)&Gz E 2.20974 r=% 

p= +J12+6Jza 2.26303 

RADIUS’for unit edge length is 

R=~hzz. 

the 
BOL 

R=+ &3 + 6J2 = 2.31761. 
References 

Additional quantities are 
Wenninger, M. J. PoEyhedron Models. Cambridge, England: 

Cambridge University Press, pp. 168-170, 1989. 

t = tan(&) = & - 1 

2 = 2t = 2(Jz - 1) 

h = 1 + kin(&) = 3 - J2. 

Great Rhombihexacron 
The DUAL of the GREAT RHOMBIHEXAHEDRON. 

Great Rhombihexahedron 
SW U~SO SMALL RHOMBZCUBOCTAHEDRON, GREAT 
TRUNCATED CUBOCTAHEDRON 

References 
Ball, W. W. R. and Coxeter, H. S. M. Mathematical Recre- 

ations and Essays, 13th ed. New York: Dover, p. 138, 
1987. 

Great Rhombicuboctahedron (Uniform) 

The UNIFORM POLYHEDRON Vzl whose DUAL is the 
GREAT RHOMBIIHEXACRON. It has WYTHOFF SYMBOL 

Its CIRCUMRADIUS 2 2 1 . Its faces are 12{4} + 6{5}. 

for uiit edge length is 

The UNIFORM POLYHEDRON &7, also known as 

the QUASIRHOMBICUBOCTAHEDRON, whose DUAL is 
the GREAT DELTOIDAL ICOSITETRAHEDRON. It has 
SCHL;~FLISYMBOL~'{~} and WYTHOFF SYMBOL i 412. 
Its faces are 8{3} + 20{4}. Its CIRCUMRADIUS for unit 

edge length is 

References 
Wenninger, M. J. Polyhedron Models. Cambridge, England: 

Cambridge University Press, pp* 159-160, 1989. 

References 
Wenninger, M. 

Cambridge U 

J. Polyhedron 
‘niversity Press 

Models. 

1 PP. 132 
Cambridge, 
-133, 1989. 

England: 



766 Great Snub Dodecicosidodecahedron Great Stellated Tlwncated Dodecahedron 

The UNIFORM POLYHEDRON & whose DUAL is the Oneofthe KEPLER-P• INSOT SOLIDS whose DUAL isthe 
GREAT HEXAGONAL HEXECONTAHEDRON. It has 
WYTHOFF SYMBOL 13 4 ;a Its faces are 80{3} + 24(g). 

GREAT ICOSAHEDRON. Its SCHL;~FLI SYMBOL is {&3}. 

Its CIRCUMRADIUS for unit edge length is 
It is also UNIFORM POLYHEDRON US2 and has WYTH- 
OFF SYMBOL 312q. Its faces are 12{$}. Its CIRCUM- 

R=;&. RADIUS for unit edge length is 

References 
R = id&b-’ = a&(&- 1). 

Wenninger, M. J. Polyhedron 1ModeZs. Cambridge, England: 
Cambridge U niversity Press, pp. 183-185, 1989. The easiest way to construct it is to make 12 TRIANGXJ- 

LAR PYRAMIDS 

w 

with side length q5 = (lf A)/2 (the GOLDEN RATIO) 
times the base and attach them to the sides of an ICOS- 
AHEDRON. 

The UNIFORM POLYHEDRON Us7 whose DUAL is the see also GREAT DODECAHEDRON, GREAT ICOSAHE- 
GREAT PENTAGONAL HEXECONTAHEDRON. It has 
WYTHOFF SYMBOL 12 3 5. Its faces are 80{3} + 12{ g}. 

DRON, GREAT STELLATED TRUNCATED DODECAHE- 

For unit edge length, it has CIRCUMRADIUS 
DRON, KEPLER-P• INSOT SOLID, SMALL STELLATED 
DODECAHEDRON 

= 0.6450202, 

where it: is the must NEGATIVE ROOT of 

x3 + 2x2 - $-2 = 0, 

with 4 the GOLDEN RATIO. 

References 
Wenninger, M. J. Polyhedron IModels. Cambridge, England: 

Cambridge University Press, pp. 186-188, 1989. 

Great Sphere 
The great sphere on the surface of a HYPERSPHERE is 
the 3-D analog of the GREAT CIRCLE on the surface of 
a SPHERE. Let 2h be the number of reflecting SPHERES, 
and let great spheres divide a HYPERSPHERE into g 4-D 
TETRAHEDRA. Then for the POLYTOPE with SCHL~FLI 
SYMBOL {PI 4, T), 

64h 4 4 

9 
=12-p-24-r+-+;. 

P 

see also GREAT CIRCLE 

References 
Fischer, G. (Ed.). Plate 104 in Muthematische Mod- 

elle/Mathematical Models, Bildband/Photograph Volume. 
Braunschweig, Germany: Vieweg, p. 103, 1986. 

Great Stellated Triacontahedron 

see GREAT RHOMBIC TRIACONTAHEDRON 

Great Stellated Truncated Dodecahedron 

The UNIFORM POLYHEDRON Usa, also called the QUA- 

SITRUNCATED GREAT STELLATED DODECAHEDRON, 
whose DUAL is the GREAT TRIAKIS ICOSAHEDRON. It 
has SCHL;~FLI SYMBOL t’{&3} and WYTHOFF SYMBOL 



Great Triakis Icosahedron Greater Than/Less Than Symbol 767 

2 3 1 g. Its faces are 20{3} + 12{ T}. Its CIRCUMRADIUS GREAT STELLAPENTAKIS D~DECAHEDRON. It has 

for unit edge length is SCHL~FLI SYMBOL t(3, g} and WYTHOFF SYMBOL 
2 $ 13. Its faces are 20{6} + 12(g). Its CIRCUMRADIUS 

R=+-J74-. 
for unit edge length is 

References 
Wenninger, M. J. PoEyhedron. Models. Cambridge, England: 

Cambridge University Press, p. 161, 1989. 

Great Triakis Icosahedron 
The DUAL of the GREAT STELLATED TRUNCATED Do- 
DECAHEDRON. 

Great Triakis Octahedron 
The DUAL of the STELLATED TRUNCATED HEXAHE- 
DRON. 

see also SMALL TRTAKIS OCTAHEDRON 

Great Triambic Icosahedron 
The DUAL of the GREAT DITRIGONAL ICOSIDODECA- 
HEDRON. 

Great Tkmcated Cuboctahedron 

The UNIFORM POLYHEDRON UZO, also called the QUA- 
SITRUNCATED CUBOCTAHEDRON, whose DUAL is the 
GREAT DISDYAKIS DODECAHEDRON. It has SCHL~FLI 
SYMBOLS'{:} and WYTHOFF SYMBOL 23; I. Its CIR- 
CUMRADIUS for unit edge length is 

References 
Wenninger, M. 3. Polyhedron ModeIs. Cambridge, England: 

Cambridge University Press, pp. 145-146, 1989. 

Great Truncated Icosahedron 

R+ J58 - 186. 

References 
Wenninger, M. J. Polyhedron kfodels. Cambridge, England: 

Cambridge University Press, p, 148, 1989. 

Great Truncated Icosidodecahedron 

The UNIFORM POLYHEDRON C&S, also called the GREAT 
QUASITRUNCATED ICOSIDODECAHEDRON, whose DUAL 
is the GREAT DISDYAKIS TRIACONTAHEDRON. It has 

SCHL;~FLI SYMBOL t' 
{ > 

g and WYTHOFF SYMBOL 
5 

2 3 g I. Its faces are 20{6} + 30{4} + 12{+}. Its CIR- 
CUMRADIUS for unit edge length is 

References 
Wenninger, M. J. Polyhedron Models. Cambridge, England: 

Cambridge University Press, pp, 166-167, 1989. 

Greater 
A quantity a is said to be greater than b if a is larger 
than b, written a > b. If a is greater than or EQUAL 
to b, the relationship is written a 2 b. If a is MUCH 
GREATER than b, this is written a >> b. Statements 
involving greater than and Loss than symbols are called 
INEQUALITIES. 

see &~EQUAL,GREATERTHAN/LESS THAN SYMBOL, 
INEQUALITY,.LESS, MUCH GREATER 

Greater Than/Less Than Symbol 
When applied to a system possessing a length R at which 
solutions in a variable T change character (such as the 
gravitational field of a sphere as r runs from the interior 
to the exterior), the symbols 

T> E max(r, R) 

r< E min(r, R) 

The UNIFORM POLYHEDRON &,also called the TRUN- 
CATED GREAT ICOSAHEDRON, whose DUAL is the 

are sometimes used. 

see also EQUAL, GREATER, LESS 
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Greatest Common Denominator 

see GREATEST COMMON DIVISOR 

Greatest Common Divisor 
The greatest common divisor of a and b GCD(a, b), 

sometimes written (a, b), is the largest DIVISOR com- 
mon to a and 6. Symbolically, let 

as 
rI Pi 

“i 
(1) 

Then the greatest common divisor is given by 

@, b) = ~piminbirk), 
(3) 

where min denotes the MINIMUM. The GCD is DIS- 
TRIBUTIVE 

(ma, mb) = m(a, b) (4) 

(ma, mb, mc) = m(a, b, c), 

and ASSOCIATIVE 

(a7 b7 4 = ((a, b), c) = (a, (b, 4) 

(ab,cd) = (a, c)(b, d) 
_ . 
(7) 

If a = a&, b) and b = b&z, b), then 

(a, b) = (ada, b), bl(a, b)) = (a, b)(w, h), (8) 

so (a&) = 
PRIME. The 

1 and 
GCD 

al and bl are said to be RELATIVELY 
is also IDEMP~TENT 

(a, 4 = a, (9) 

COMMUTATIVE 

(a, b) = (h 4 (10) 

and satisfies the ABSORPTION LAW 

The probability that two INTEGERS picked at random 
are RELATIVELY PRIME is [[(2)1-l = 6/n2, where c(z) is 
the RIEMANN ZETA FUNCTION. Polezzi(1997)observed 
that (m,n) = k, where k is the number of LATTICE 
POINTS in the PLANE on the straight LINE connecting 
the VECTORS (0,O) and (m,n) (excluding (m,n) itself). 
This observation is intimately connected with the prob- 
ability of obtaining RELATIVELY PRIME integers, and 
also with the geometric interpretation of a REDUCED 
FRACTION y/a as a string through a LATTICE of points 
with ends at (1,O) and (2, y). The pegs it presses against 

(xi, yi) give alternate CONVERGENTS y&i of the CON- 
TINUED FRACTION for y/x, while the other CONVER- 
GENTS are obtained from the pegs it presses against with 
the initial end at (0, 1). 

Knuth showed that 

(2 p - 1, QQ - 1) = 2(“‘4) - 1 
(12) 

for p, Q PRIME. 

The extended greatest common divisor of two INTEGERS 
m and n can be defined as the greatest common divisor 
of m and n which also satisfies the constraint g = rm + 
sn for T and s given INTEGERS. It is used in solving 
LINEAR DIOPHANTINE EQUATIONS. 

see U~SO BEZOUT NUMBERS, EUCLIDEAN ALGORITHM, 
LEAST PRIME FACTOR 

References 
Polezzi, M. “A Geometric4 Method for Finding an Explicit 

Formula for the Greatest Common Divisor.” Amer. Math. 
Monthly 104, 445-446, 1997. 

Greatest Common Divisor Theorem 
Given m and n, it is possible to choose c and d such that 
cm + dn is a common factor of m and n. 

Greatest Common Factor 

see GREATEST COMMON DIVISOR 

Greatest Integer Function 

see FLOOR FUNCTION 

Greatest Lower Bound 

~~~INFIMUM,LEAST UPPER BOUND 

Greatest Prime Factor 

60~ 

b 
20 40 60 80 100 

For an INTEGER n > 2, let gpf(s) denote the greatest - 
prime factor of n, i.e., the number pk in the factorization 

with pi < pj for i < j* For n = 2, 3, . . . , the first 
few are 2, 3, 2, 5, 3, 7, 2, 3, 5, 11, 3, 13, 7, 5, . . l  

(Sloane’s A006530) l  The greatest muEtipEe prime factors 
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for SQUAREFUL integers are 2, 2, 3, 2, 2, 3, 2, 2, 5, 3, 2, 
2, 3, . . . (Sloane’s A046028). 

see also DISTINCT PRIME FACTORS, FACTOR, LEAST 
COMMON MULTIPLE, LEAST PRIME FACTOR, MAN- 
GOLDT FUNCTION,~RIME FACTORS, TWIN PEAKS 

Sloane, N. J. A. Sequence A006530/M0428 in “An On-Line 
Version of the Encyclopedia of Integer Sequences.” 

Grebe Point 

see LEMOINE POINT 

Greedy Algorithm 
An algorithm used to recursively construct a SET of ob- 
jects from the smallest possible constituent parts. 

Given a SET of Fz INTEGERS (al, ~2, . . . , ak) with ai < 
a2 < .*. < ak, a greedy algorithm can be used to find a 
VECTOR of coefficients (cl, ~2, . . l  , ck) such that 

k 

): 
ciai = c -a = n, (1) 

i=l 

where c.a is the DOT PRODUCT, for some given INTEGER 
n. This can be accomplished by letting ci = 0 for i = 1, 
* l  l  1  

k - 1 and setting 

(2) 

Now define the difference between the representation 
and n as 

A_n-c-a. (3) 

If A = 0 at any step, a representation has been found. 
Otherwise, decrement the NONZERO ai term with least 
i, set all aj = 0 for j < i, and build up the remaining 
terms from 

(4) 

for j =i- 1, . . . . 1 until A = 0 or all possibilities have 
been exhausted. 

For example, MCNUGGET NUMBERS are numbers which 
are representable using only (al, a~, as) = (6,9,20). 
Taking n = 62 and applying the algorithm iteratively 
gives the sequence (0, 0, 3), (0, 2, 2), (2, 1, 2), (3, 0, 
2), (1, 4, l), at which point A = 0. 62 is therefore a 
MCNUGGET NUMBER with 

62 = (10 6)+(49+(1-20). (5) 

If any INTEGER n can be represented with ci = 0 or 
1 using a sequence (al, a~, . . . ), then this sequence is 
called a COMPLETE SEQUENCE. 

A greedy algorithm can also be used to break down arbi- 
trary fractions into UNIT FRACTIONS in a finite number 
of steps. For a FRACTION a/b, find the least INTEGER 
~1 such that l/xl 5 a/b, i.e., 

Pl x1=-, 
a (6) 

where [xl is the CEILING FUNCTION. Then find the 
least INTEGER 22 such that 1/x2 < a/b - l/xl. Iterate - 
until there is no remainder. The ALGORITHM gives two 
or fewer terms for l/n and 2/n, three or fewer terms for 
3/n, and four or fewer for 4/n. 

Paul ErdCs and E. G. Strays have conjectured that the 
D~OPHANTINE EQUATION 

4 11 1 
-= -+z+- 
n a C 

(7) 

always can be solved, and W. Sierpifiski conjectured that 

5 111 -- 
n-a 

-+g+; (8) 

can be solved. 

see also COMPLETE SEQUENCE, INTEGER RELA- 
TION, LEVINE-O'SULLIVAN GREEDY ALGORITHM, Mc- 
NUGGET NUMBER, REVERSE GREEDY ALGORITHM, 
SQUARE NUMBER, SYLVESTER'S SEQUENCE, UNIT 
FRACTION 

References 

Greek Cross 

An irregular DODECAHEDRON CROSS in the shape of a 
PLUS SIGN. 

see also CROSS, DISSECTION, DODECAHEDRON, LATIN 
CROSS, PLUS SIGN, SAINT ANDREW'S CROSS 

Greek Problems 

see GEOMETRIC PROBLEMS OF ANTIQUITY 

Green’s Function 
Let 

z  = z>” + a,_,(t)P1 + l  l  l  + Ul (t)D + so(t) 
(1) 

be a differential OPERATOR in l-D, with a;(t) CONTINU- 
OUSfori=O,l,...,n- 1 on the interval I, and assume 
we wish to find the solution y(t) to the equation 

LY w 
- - w 9 (2) 
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where h(t) is a given CONTINUOUS on I. To solve equa- 
tion (a), we look for a function g : Cn(I) H C(1) such 
that I/(g(h)) = h, where 

&a(rz>= f&a = b-n, (13) 

n=O 

y(t) = dh(t))* (3) 

This is a CONVOLUTION equation of the form 

y=g*h, (4) 
By plugging in the differential operator, solving for the 
a,s, and substituting into G, the original nonhomoge- 
neous equation then can be solved. 

so the solution is 

s 

t 

Y(t) 
- - 90 - x)h(x) dx, (5) 

t0 

where the function g(t) is called the Green’s function for 
z on I. 

Now, note that if we take h(t) = s(t), then 

s 

t 

y(t) = dt - x>qx> dx = g(t), (6) 
t0 

so the Green’s function can be defined by 

Lg(t) = S(t). (7) 

However, the Green’s function can be uniquely deter- 
mined only if some initial or boundary conditions are 
given. 

For an arbitrary linear differential operator in 3-D, 
the Green’s function G(r, r’) is defined by analogy with 
the 1-D case by 

LG(r, r’) = S(r - r’>. (8) 

The solution to L4 = f is then 

q5(r) = 1 G(r, r’) f (r’> d3rr. (9) 

Explicit expressions for G(r, r’) can often be found in 
terms of a basis of given eigenfunctions &(rl) by ex- 
panding the Green’s function 

G(rlJ2) = ~(h(r2)&(rl) 

n=O 

w 

and DELTA FUNCTION, 

J3(rl -r2)= ebnd,(rl)m 

n=O 

Multiplying both sides by &$a) and integrating over 
rl space, 

s &-&2)d3(rl -2) d3n = &&2)&4n) d”n 
(12) 

References 
Arfken, G. “Nonhomogeneous Equation-Green’s F’unc- 

tion, ” “Green’s Functions-One Dimension,” and “Green’s 
Functions-Two and Three Dimensions.” 58.7 and §16.5- 
16.6 in Mathematical Methods for Physicists, 3rd ed. Or- 
lando, FL: Academic Press, pp. 480-491 and 897-924, 
1985. 

Green’s Function-Helmholtz Differential 

Equation 
Theinhomogeneous HELMHOLTZ DIFFERENTIAL EQUA- 
TION is 

v2*w + k2*(r> = P(r), (1) 

where the Helmholtz operator is defined as z G V2 + k2. 
The Green’s function is then defined by 

(V2 + k2)G(rl,r2) = d3(rl - 1’2). (2) 

Define the basis functions #n as the solutions to the 
homogeneous HELMHOLTZ DIFFERENTIAL EQUATION 

V2&(r) + kn2&(r) = 0. (3) 

The Green’s function can then be expanded in terms of 

the &a, 

G(n, r2) = 2 an(r2)4n(rl), (4) 
n=O 

and the DELTA FUNCTION as 

J3(rl - r2) = x (bn(ri)(bn(r2)a (5) 
n=O 

Plugging (4) and (5) into (2) gives 

V2 + k2 2 a&&&l) F a&z)&&) 1 
Ln=O 

Using (3) gives 

n=O 

= F &-b(rl)$n(r2>- C6) 
n=O 

- 71 an(r2)kn2&(r) + k2 >: an(rz)&(rl) 

n=O n=O 

= F (i$t(ri)&(r2) (7) 
n=O 
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Ca,(l-,)@n(n)(k2 - kn2) = 55n(~)4&2). (8) 
where T< and T> are GREATER THAN/LESS THAN SYM- 
BOLS. This expression simplifies to 

n=O n=O 

This equation must hold true for each n, so 

GWd 
h(r2) = - 

k2 - kn2 ’ 

and (4) can be written 

O” ~nWW2) Gh,r2) = x k2 _ k 2 - 
n=O 

n 

The general solution to (1) is therefore 

q(n) = / G(rl, m)p(m) d3n 4n(rl)4n(T2)P(r2) 
k2 - kn2 

d3r2. 

References 
A&en, G. Mathematical Methods for Physicists, 3rd ed. Or- 

lando, FL: Academic Press, pp. 529-530, 1985. 

Green’s Function-Poisson’s Equation 
PoIssoWs EQUATION equation is 

v2q5 = 4np, (1) 

where 4 is often called a potential function and p a den- 
sity function, so the differential operator in this case is 
i = V2. As usual, we are looking for a Green’s function 
G(rl, r2) such that 

V2G(rl,r2) = h3(rl - r2). (2) 

But from LAPLACIAN, 

Q2 1 
( > lr - 61 

= -4rS3(r - r’), (3) 

so 

G(r,r’) = - 
1 

4nlr - r/l ’ (4) 

and the solution is 

$(r) = ./ G(r, r’)[47rp(r’)] d3rr = - / ‘fluff’. (5) 

Expanding G(rl, r2) in the SPHERICAL HARMONICS q” 
gives 

G(n, r2) 

=ek 
1 4 ,1.,~Y,“(e1,~~)~m*(82rQ2)r (6) 

l=O m=-1 > 

771 

where pE are LEGENDRE POLYNO~IIALS, and cosy = 
rl . r2. Equations (6) and (7) give the addition theorem 
for LEGENDRE POLYNOMIALS. 

In CYLINDRICAL COORDINATES, the Green’s function is 
much more complicated, 

G(rl,n) = & F W&=-m 
I,(kp<)K,(Icp>)eim(~l-~‘~ cos[k(zl - z2)] dk, 

(8) 

where Im(x) and I!&&) are MODIFIED BESSEL FUNC- 
TIONS OF THE FIRST and SECOND KINDS (A&en 1985). 

References 
Arfken, G. Mathematical Methods for Physicists, 3rd ed. Or- 

lando, FL: Academic Press, pp. 485-486, 905, and 912, 
1985. 

Green’s Identities 
Green’s identities are a set of three vector deriva- 
tive/integral identities which can be derived starting 
with the vector derivative identities 

where Vm is the DIVERGENCE, V is the GRADIENT, V2 
is the LAPLACIAN, and a-b is the DOT PRODUCT. From 
the DIVERGENCE THEOREM, 

s 
(V*F)dV= Fmda. 

V s S 

Plugging (2) into (3), 

This is Green’s first identity. 

Subtracting (2) from (l), 

v * ((bV$ - *v4) = 4v”q - $w2(b. 

Therefore, 

(3) 

(4) 

(5) 

s 
(qw2$ - $W2$) dV = (Wzl, - WP> 9 da* (6) 

V s S 
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This is Green’s second identity. Gregory’s Formula 

Let u have continuous first PARTIAL DERIVATIVES and 
be HARMONIC inside the region of integration. Then 
Greeri’s third identity is 

1 
U(X,Y> = g 

ldu d 

$i 0 
1 ds (7) c In - ---3dn - r dn ( >I r 

(Kaplan 1991, p. 361). 

References 
Kaplan, W. Advanced Calculus, 4th ed. Reading, MA: 

Addison- Wesley, 199 1. 

Greene’s Method 
A method for predicting the onset of widespread CHAOS. 
It is based on the hypothesis that the dissolution of an 
invariant torus can be associated with the sudden change 
from stability to instability of nearly closed orbits (Ta- 
bor 1989, pm 163). 

see also OVERLAPPING RESONANCE METHOD 

References 
Tabor, M. Chaos and Integrability in Nonlinear Dynamics: 

An Introduction. New York: Wiley, 1989. 

Green Space 
A G-SPACE provides local notions of harmonic, hyper- 
harmonic, and superharmonic functions. When there 
exists a nonconstant superharmonic function greater 
than 0, it is a called a Green space. Examples are R” 
(for n 2 3) and any bounded domain of Iw”. 

Green’s Theorem 
Green’s theorem is a vector identity which is equivalent 
to the CURL THEOREM in the PLANE. Over aregion D 
in the plane with boundary dD, 

s 
f (2, Y) dx + s(x, Y> dY 

aD 
=ss,($$) dxdy 

If the region D is on the left when traveling around 8D, 

then AREA of D can be computed using 

A=; s xdy- ydx. 
all 

see also CURL THEOREM, DIVERGENCE THEOREM 

References 
A&en, G. “Gauss’s Theorem.” 51.11 in lMathematica2 IMeth- 

ods for Physicists, 3rd ed. Orlando, FL: Academic Press, 
pp* 57-61, 1985. 

A series FORMULA for PI found by Gregory and Leibniz, 

It converges very slowly, but its convergence can be ac- 
celerated using certain transformations, in partic ular 

7T= 
k=l 

where C(Z) is the RIEMANN ZETA FUNCTION (Vardi 
1991). 

see UZSO MACHIN’S FORMULA, MACHIN-LIKE FORMU- 
LAS, PI 

References 
Vardi, I. Computational Recreations in Mathematics. Read- 

ing, MA: Addison-Wesley, pp* 157-158, 1991. 

Gregory Number 
A number 

tx = tan-l( $) = cot-l x, 

where xis an INTEGER or RATIONAL NUMBER, tan-lx 
is the INVERSE TANGENT, and cot-’ x is the INVERSE 
COTANGENT. Gregory numbers arise in the determina- 
tion of MACHIN-LIKE FORMULAS. Every Gregory num- 
ber t, can be expressed uniquely as a sum of t,s where 
the ns are STDRMER NUMBERS. 

References 
Conway, 3. H. and Guy, R. K. “Gregory’s Numbers” In The 

Book of Numbers. New York: Springer-Verlag, pp. 241- 
242,1996. 

Grelling’s Paradox 
A semantic PARADOX, also called the HETEROLOGICAL 
PARADOX, which arises by defining “heterological” to 
mean “a word which does not describe itself.” The word 
“heterological” is therefore heterological IFF it is not. 

see also RUSSELL'S PARADOX 

References 
Hofstadter, D. R. G6deE, Escher, Bach: An Eternal Golden 

Braid. New York: Vintage Books, pp. 20-21, 1989. 

Grenz-Formel 
An equation derived by Kronecker: 

where 
r(n) = 4xsin($~d), 

din 
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C(Z), is the RIEMANN ZETA FUNCTION, q(z) is the 
DIRICHLET ETA FUNCTION, I?(X) is the GAMMA FUNC- 
TION, and the primed sum omits infinite terms (Selberg 
and Chowla 1967). 

References 
Borwein, 3. M. and Borwein, P. B. Pi & the AGM: A Study in 

Analytic Number Theory and Computational Complexity. 
New York: Wiley, pp* 296-297, 1987. 

Selberg, A. and Chowla, S. “On Epstein’s Zeta-Function.” J. 
Reine. Angew. Math. 227, 86-110, 1967. 

Griffit hs Points 
“The” Griffiths point is the fixed point in GRIFFITHS' 
THEOREM. Given four points on a CIRCLE and a line 
through the center of the CIRCLE, the four correspond- 
ing Griffiths points are COLLINEAR (Tabov 1995). 

The points 
Gr=I+4Ge 

are known as the first and second Griffiths points, where 

I is the IN CENTER and Ge is the GERGONNE POINT. 

Grt = I - 4Ge, 

see also GERGONNE POINT, GRIFFITHS' THEOREM, IN- 

CENTER ,ULDKN~W POINTS, RIGBY POINTS 

References 
Oldknow, A. “The Euler-Gergonne-Soddy Triangle of a Tri- 

angle.” Amer. Math. Monthly 103, 319-329, 1996. 
Tabov, J. “Four Collinear Griffiths Points." Math. Msg. 68, 

61-64,1995. 

Griffiths’ Theorem 
When a point P moves along a line through the CIR- 
CUMCENTER of a given TRIANGLE a, the CIRCUMCIR- 
CLE of the PEDAL TRIANGLE of P with respect to n 
passes through a fixed point (the GRIFFITHS POINT) on 
the NINE-POINT CIRCLE of& 

see UZSO CIRCUMCENTER, GRIFFITHS POINTS, NINE- 
POINT CIRCLE, PEDAL TRIANGLE 

Grimm’s Conjecture 
Grimm conjectures that if n + 1, n + 2, , , . , n + IJZ are all 
COMPOSITE NUMBERS, then there are distinct PRIMES 
pij such that pij [(n + j) for 1 < j < k. - - 

References 
Guy, R. K. “Grimm’s Conjecture." §B32 in Unsolved Prob- 

lems in Number Theory, 2nd ed. New York: Springer- 
Verlag, p. 86, 1994. 

Grinberg Formula 
A formula satisfied by all HAMILTONIAN CIRCUITS with 
n nodes. Let fj be the number of regions inside the 
circuit with j sides, and let gj be the number of regions 
outside the circuit with j sides. If there are d interior 
diagonals, then there must be d + 1 regions 

Any region with j sides is bounded by j EDGES, so such 
regions contribute jfj to the total. However, this counts 
each diagonal twice (and each EDGE only once). There- 
fore, 

2fi + 3f3 + . . . + nfn = 2d + n. (2) 

Take (2) - 2 x (l), 

f3 + 2f4 + 3f5 + l  l  . + (n - 2) fn = 72 - 2. (3) 

Similarly, 

g3 + 2g4 + . - - + (72 - 2)gn = n - 2, (4) 

(f3-g3)+2(f4-g4)+3(f5-g5)+. . .+(n-2)(fn-g,) = 0. 

(5) 

Grijbner Basis 
A Grabner basis for a system of POLYNOMIAL equations 
is an equivalence system that possesses useful proper- 
ties. It is very roughly analogous to computing an OR- 
THONORMAL BASIS from a set of BASIS VECTORS and 
can be described roughly as a combination of GAUS- 
SIAN ELIMINATION (for linear systems)andthe EUCLID- 
EAN ALGORITHM (for UNIVARIATE POLYNOMIALS over 
a FIELD), 

Grijbner bases are useful in the construction of sym- 
bolic algebra algorithms. The algorithm for computing 
Grijbnerbases is knownas BUCHBERGER'S ALGORITHM. 

see als 

ALGEB 
oB UCHBERG ER'S ALG ORITHM, COMMUTATIVE 

References 
Adams, W. W. and Loustaunau, P. An Introduction to 

Gr6bner Bases. Providence, RI: Amer. Math. Sot., 1994. 
Becker, T. and Weispfennig, V. Griibner Bases: A Compu- 

tational Approach to Commutative Algebra. New York: 
Springer-Verlag, 1993. 

Cox, D.; Little, J.; and O’Shea, D. Ideals, Varieties, and 
Algorithms: An Introduction to Algebraic Geometry and 
Commutative Algebra, 2nd ed. New York: Springer- 
Verlag, 1996. 

Eisenbud, D. Commutative Algebra with a View toward Al- 
gebraic Geometry. New York: Springer-Verlag, 1995+ 

Mishra, B. Algorithmic Algebra. New York: Springer-Verlag, 
1993. 

Groemer Packing 
A honeycomb-like packing that forms HEXAGONS. 

see also GROEMER THEOREM 

References 
Stewart, I. “A Bundling Fool Beats the Wrap.” Sci. Amer. 

268,142-144,1993. 

[#regionsininterior]=d+l= fi+f3+...+fn. (1) 
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Groemer Theorem 
Given n CIRCLES and a PERIMETER p, the total AREA 
of the CONVEX HULL is 

A Convex Hull IT= 2&(n - 1) +p(l - i&i> + n(h - 1). 

Furthermore, the actual AREA equals this value IFF the 
packing is in GROEMER PACKING. The theorem was 
proved in 1960 by Helmut Groemer. 

see also CONVEX ISum 

Gronwall’s Theorem 
Let o(n) be the DIVISOR FUNCTION. Then 

lim ~ - 44 _ eY 
~L+OO nlnlnn 

Y 

where y is the EULER-MASCHERONI CONSTANT. Ra- 
manujan independently discovered a less precise version 
of this theorem (Berndt 1994). Robin (1984) showed 
that the validity of the inequality 

u(n) < e’nlnlnn 

for n > 5041 is equivalent to the RIEMANN HYPOTHESIS. - 

References 
Berndt, B. C. Ramanujan’s IVotebooks: Part I. New York: 

Springer-Verlag, p. 94, 1985. 
Gronwall, T. H. ‘Some Asymptotic Expressions in the The- 

ory of Numbers.” Trans. Amer. Math. Sot. 37, 113-122, 
1913. 

Nicholas, J.-L. “On Highly Composite Numbers.” In Ra- 
ntanujan Revisited: Proceedings of the Centenary Confer- 
ence (Ed, G. E. Andrews, B. C. Berndt, and R. A. Rankin). 
Boston, MA: Academic Press, pp. 215-244, 1988. 

Robin, G. “Grandes Valeurs de la faction somme des diviseurs 
et hypothgse de Riemann.” J. Math. Pures Appl. 63, 187- 
213, 1984. 

Gross 
A DOZEN DOZEN, or the SQUARE NUMBER 144. 

see also 12, DOZEN 

Grossencharacter 
In the original formulation, a quantity associated with 
ideal class groups m According to Chevalley’s formula- 
tion, a Grossencharacter is a MULTIPLICATIVE CHAR- 

ACTER of the group of ADI?LES that is trivial on the 
diagonally embedded kx, where /z is a number FIELD. 

References 
Knapp, A. W. “Group Representations and Harmonic Anal- 

ysis, Part II.” IVot. Amer. Math. Sot. 43, 537-549, 1996. 

Grothendieck’s Theorem 

Grossman’s Constant 
Define the sequence a0 = 1, al = X, and 

an 
an+2 = ~ 

1-t G-L+1 

for n > 0. Janssen and Tjaden (1987) showed that - 
this sequence converges for exactly one value of z, 
X = 0.73733830336929.. ., confirming Grossman’s con- 
jecture. 

References 
Finch, S. “Favorite Mathematical Constants.” http: //www. 

mathsoft.com/asolve/constant/grssmn/grssmzhtml. 
Janssen, A, J. E. M. and Tjaden, D. L. A. Solution to Prob- 
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Grothendieck’s Majorant 
The best known majorant of Grothendieck’s constant. 
Let A be an n x 72 REAL SQUARE MATRIX such that 

/ 15g5naijx~yj / (l) 

in which xi and yj have REAI, ABSOLUTE VALUES < 
1. Grothendieck has shown there exists a number KG 
independent of A and n satisfying 

1 x aij (XhYj) 1 (2) 
l<i,j<n 

in which the vectors xi and yj have a norm < 1 in 
HILBERT SPACE. The Grothendieck constant is the 
smallest REAL NUMBER for which this inequality has 
been proven. Krivine (1977) showed that 

1.676 l  . . 5 KG 5 1.782,. . , 

and has postulated that 

(3) 

KG E 2ln(l?; Jz> 
= 1.7822139.. . . 

It is related to KHINTCHINE’S CONSTANT. 
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Grot hendieck’s Theorem 
Let E and F be paired spaces with S a family of ab- 
solutely convex bounded sets of F such that the sets of 
S generate F and, if 231, B2 E S, then there exists a 
& E S such that & 1 Br and & 1 B2. Then Es is 
complete IFF algebraic linear functional f(y) of F that 
is weakly continuous on every B E S is expressed as 
f(y) = (x, y) for some x E E. When ES is not com- 
plete, the space of all linear functionals satisfying this 
condition gives the completion l?s of Es, 

see also MACKEY’S THEOREM 
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Ground Set 
A PARTIALLY ORDERED SET is defined as an ordered 
pair P = (X, 5). Here, X is called the GROUND SET of 
P and < is the PARTIAL ORDER of P. - 

see also PARTIAL ORDER, PARTIALLY ORDERED SET 

tiroup 
A group G is defined as a finite or infinite set of 
OPERANDS (called “elements”) A, L3, C, . . . that may be 
combined or “multiplied” via a BINARY OPERATOR to 
form well-defined products and which furthermore sat- 
isfy the following conditions: 

Closure: If A and B are two elements in G, then the 
product AB is also in G. 

Associativity: The defined multiplication is associa- 
tive, i.e., for all A, B, C E G, (AB)C = A(BC). 

Identity: There is an IDENTITY ELEMENT I (a.k.a. 
1, E, or e) such that IA = AI = A for every element 
A E G. 

Inverse: There must be an inverse or reciprocal of 
each element. Therefore, the set must contain an 
element 13 = A-’ such that AA-l = A-lA = I for 
each element of G. 

A 
1s 

group is therefore a MONOID for 
invertible. A group must contain 

which every 
at leas t one 

element 
element. 

The study of groups is known as GROUP THEORY. If 
there are a finite number of elements, the group is called 
a FINITE GROUP and the number of elements is called 
the ORDER of the group. 

Since each element A, B, C, . . . , X, and Y is a mem- 
ber of the GROUP, GROUP property 1 requires that the 
product 

DE ABC*.-XY (1) 

must also be a member. Now apply D to 
y-lx-1 . . . ~-l~-l~-f 

? 

D(y-‘X-l . . . C-lB-lA-l) 

= (ABC*. -XY)(Y-‘X-l l  l  l  C-IB-lA-l). (2) 

But 

ABC.0 . xyy-lx-l.. . @B-IA-l 

= ABC.. .X1X-l.. . C-lB-lA-l 

=ABC... C-lB-lA-l - - . . . = AA-l = I, (3) 

so 
I = D(y-lX-l.. . C-lB-lA-l), (4) 

which means that 

An IRREDUCIBLE REPRESENTATION ofagroupis arep- 
resentation for which there exists no UNITARY TRANS- 
FORMATION which will transform the representation 
MATRIX into block diagonal form. The IRREDUCIBLE 
REPRESENTATION has some remarkable properties. Let 
the ORDER of a GROUP be h, and the dimension of the 
ith representation (the order of each constituent matrix) 
be Zi (a POSITIVE INTEGER). Let any operation be de- 
noted R, and let the nzth row and nth column of the 
matrix corresponding to a matrix R in the ith IRRE- 
DUCIBLE REPRESENTATION be I?i( R),, . The following 
properties can be derived from the GROUP ORTHOGO- 
NALITY THEOREM, 

1. The DIMENSIONALITY THEOREM: 

h = xli2 = 112 + lz2  +1s2 + l  . 
- = CXi”(I), 

i  i  

where each Zi must be a POSITIVE INTEGER and 
the CHARACTER (trace) of the representation. 

2. The sum of the sauares of the CHARACTERS in 
IRREDUCIBLE REPRESENTATION i equals h, 

h = xxi”(R). 

R 

ORTHOGONALITY of different representations 

(7) 

(8) 

x is 

any 

(9) 

for i # j. > ;x;(R)xj(R) = Q 
R 

PQ) 

In a given representation, reducible or irreducible, 
the CHARACTERS of all MATRICES belonging to op- 
erations in the same class are identical (but differ 
from those in other representations) l  

The number of IRREDUCIBLE REPRESENTATIONS of 
a GROUP is equal to the number of CONJUGACY 
CLASSES in the GROUP. This number is the dimen- 
sion of the r MATRIX (although some may have zero 
elements) . 

6. A one-dimensional representation with all 1s (totally 
symmetric) will always exist for any GROUP. 

7. A 1-D representation for a GROUP with elements ex- 
pressed as MATRICES can be found by taking the 
CHARACTERS of the MATRICES. 

8. The number ai of IRREDUCIBLE REPRESENTATIONS 
xi present in a reducible representation c is given by 

-1 D = y-1x-l.. .C-lB-lA-l (5) 

(11) 

(ABC.. . Xy)-l = y-lx-l.. . C-lB-lA-l. (6) 
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where h is the ORDER of the GROUP and the sum 
must be taken over all elements in each class. Writ- 
ten explicitly, 

(12) 

where xi’ is the CHARACTER of a single entry in 
the CHARACTER TABLE and TXR is the number of 
elements in the corresponding CONJUGACY CLASS. 

see also ABELIAN GROUP, AD~~LE GROUP, AFFINE 
GROUP, ALTERNATING GROUP, ARTINIAN GROUP, As- 
CHBACHER'S COMPONENT THEOREM, &-THEOREM, 
BABY MONSTER GROUP,BETTI GROUP, BIMONSTER, 
BORDISM GROUP, BRAID GROUP, BRAUER GROUP, 
BURNSIDE PROBLEM, CENTER (GROUP), CENTRAL- 
IZER, CHARACTER (GROUP), CHARACTER (MULTI- 
PLICATIVE),~HEVALLEY GROUPS,~LASSICAL GROUPS, 
COBORDISM GROUP, COHOMOTOPY GROUP, COMPO- 
NENT, CONJUGACY CLASS, COSET, CONWAY GROUPS, 
COXETERGROUP,CYCLIC GROUP,DIHEDRAL GROUP, 
DIMENSIONALITY THEOREM, DYNKIN DIAGRAM, EL- 
LIPTIC GROUP MODULO p, ENGEL'S THEOREM, Eu- 
CLIDEAN GROUP, FEIT-THOMPSON THEOREM, FINITE 
GROUP, FISCHER GROUPS, FISCHER'S BABY MEN- 
STER GROUP, FUNDAMENTAL GROUP, GENERAL LIN- 
EAR GROUP, GENERAL ORTHOGONAL GROUP, GEN- 
ERAL UNITARY GROUP, GLOBAL C(G;T) THEO- 
REM,GROUPOID,GROUP ORTHOGONALITY THEOREM, 
HALL-JANKO GROUP,HAMILTONIAN GROUP,HARADA- 
NORTON GROUP,HEISENBERG GROUP,HELD GROUP, 
HERMANN-MAUGUTN SYMBOL, HIGMAN-SIMS GROUP, 
HOMEOMORPHIC GROUP, HYPERGROUP, ICOSAHEDRAL 
GROUP, IRREDUCIBLE REPRESENTATION, ISOMORPHIC 
GROUPS, JANK~ GROUPS, JORDAN-HOLDER THE- 
OREM, KLEINIAN GROUP, KUMMER GROUP, L,t- 
BALANCE THEOREM, LAGRANGE'S GROUP THEO- 
REM, LOCAL GROUP THEORY, LINEAR GROUP, 

LYONS GROUP, MATHIEU GROUPS, MATRIX GROUP, 
MCLAUGHLIN GROUP, MOBIUS GROUP, MODULAR 
GROUP, MODULO MULTIPLICATION GROUP, MON- 
ODROMY GROUP, MONOID, MONSTER GROUP, MUL- 
LIKEN SYMBOLS, N~RON-SEVERI GROUP, NILPOTENT 
GROUP, NONCOMMUTATIVE GROUP, NORMAL SUB- 
GROUP, NORMALIZER, O’NAN GROUP, OCTAHEDRAL 
GROUP,ORDER(GROUP),ORTHOGONAL GROUP, OR- 

THOGONAL ROTATION GROUP, OUTER AUTOMUR- 
PHISM GROUP, ~-GROUP, ~/-GROUP, ~-LAYER, POINT 
GROUPS, POSITIVE DEFINITE FUNCTION, PRIME 
GROUP, PROJECTIVE GENERAL LINEAR GROUP,PRO- 
JECTIVE GENERAL ORTHOGONAL GROUP, PROJEC- 
TIVE GENERAL UNITARY GROUP, PROJECTIVE SPE- 
CIAL LINEAR GROUP, PROJECTIVE SPECIAL OR- 
THOGONAL GROUP, PROJECTIVE SPECIAL UNITARY 

GROUP, PROJECTIVE SYMPLECTIC GROUP, PSEU- 
DOGROUP, QUASIGROUP, QUASISIMPLE GROUP, Qu- 
ASITHIN THEOREM, QUASI-UNIPOTENT GROUP, REP- 
RESENTATION, RESIDUE CLASS, RUBIK'S CUBE, RUD- 
VALIS GROUP, SCH~NFLIES SYMBOL, SCHUR MUL- 
TIPLIER, SEMISIMPLE, SIGNALIZER FUNCTOR THEO- 
REM, SELMER GROUP, SEMIGROUP, SIMPLE GROUP, 
SOLVABLE GROUP, SPACE GROUPS, SPECIAL LIN- 
EAR GROUP, SPECIAL ORTHOGONAL GROUP, SPE- 
CIAL UNITARY GROUP, SPORADIC GROUP, STOCHAS- 
TIC GROUP, STRONGLY EMBEDDED THEOREM, SUB- 
GROUP, SUBNORMAL, SUPPORT, SUZUKI GROUP, SYM- 
METRIC GROUP, SYMPLECTIC GROUP, TETRAHE- 
DRAL GROUP, THOMPSON GROUP, TIGHTLY EMBED- 
DED, TITS GROUP, TRIANGULAR SYMMETRY GROUP, 
TWISTED CHEVALLEY GROUPS, UNIMODULAR GROUP, 
INPOTENT, UNITARY GROUP, VIERGRUPPE, VON 

DYCK’S THEOREM 
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Group Convolution 
The convolution of two COMPLEX-valued functions on a 
GROUP G is defined as 

(a * b)(g) = ): 4ww1d 
kEG 

where the SUPPORT 
tion is finite. 

References 

(set is not zero) of func- 
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Group Orthogonality Theorem 
Let r be a representation for a GROUP of ORDER h, then 

The proof is nontrivial and may be found in Eyring et 
al. (1944). 
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Group Ring 
The set of sums c ax:2 ranging over a multiplicative 
GROUP and ai are Elements of a FIELD with all but a 
finite number of ai = 0. 
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Group Theory 
The study of GROUPS. Gauss developed but did not 
publish parts of the mathematics of group theory, but 
Galois is generally considered to have been the first to 
develop the theory. Group theory is a powerful formal 
method for analyzing abstract and physical systems in 
which SYMMETRY is present and has surprising impor- 
tance in physics, especially quantum mechanics. 

see also FINITE GROUP, GROUP, PLETHYSM, SYMME- 
TRY 
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Groupoid 
There are at least two definitions of “groupoid” cur- 
rently in use. 

The first type of groupoid is an algebraic structure on 
a SET with a BIN ARY OPERATOR. The only restriction 

on the operator is CLOSURE (i.e., applying the BINARY 
OPERATOR to two elements of a given set S returns 
a value which is itself a member of S). Associativity, 
commutativity, etc., are not required (Rosenfeld 1968, 
pp. 88-103). A groupoid can be empty. The numbers of 
nonisomorphic groupoids of this type having n elements 
are 1, 1, 10, 3330, 178981952, . l  l  (Sloane’s AOO1329), 
and the numbers of nonisomorphic and nonantiisimor- 
phic groupoids are 1, 7, 1734, 89521056, . . . (Sloane’s 
A001424). A n associative groupoid is called a SEMI- 

The second type of grou’poid is an algebraic structure 
first defined by Brandt (1926) and also known as a VIR- 
TUAL GROUP. A groupoid with base B is a set G with 
mappings a and p from G onto B and a partially defined 
binary operation (s, h) H gh, satisfying the following 
four conditions: 

1. gh is defined only when p(C) = a(h) for certain 
maps Q! and p from G onto Iw2 with ct : (x, y, y) ++ zc 

and P: (vY,Y) ++ Y* 

2. ASSOCIATIVITY: If either (gh)Jc or g(U) is defined, 
then so is the other and (gh)k = g(M). 

3. For each g in G, there are left and right IDENTITY 
ELEMENTS A, and ps such that X,g = g = gps. 

4. Each g in G has an inverse 9-l for which 99-l = X, 
and gclg = ps 

(Weinstein 1996). A groupoid is a small CATEGORY with 
every morphism invertible. 

see UZSOBINARY OPERATORJNVERSE SEMIGROUP, LIE 

ALGEBROID, LIE GROUPOID, MONOID, QUASIGROUP, 
SEMIGROUP,TOPOLOGICAL GROUPOID 
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Growth 
A general term which refers to an increase (or decrease 
in the case of the oxymoron “NEGATIVE growth”) in a 
given quantity. 

see ah GROWTH FUNCTION, GROWTH SPIRAL 

Growth Function 

see BLOCK GROWTH 

Growth Spiral 

see LOGARITHMIC SPIRAL 

GROUP. 
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Grundy’s Game 
A special case of NIM played by the following rules. 
Given a heap of size n, two players alternately select a 
heap and divide it into two unequal heaps. A player loses 
when he cannot make a legal move because all heaps 
have size 1 or 2. Flammenkamp gives a table of the ex- 
tremal SPRAGUE-GRUNDY VALUES for this game. The 
first few values of Grundy’s game are 0, 0, 0, 1, 0, 2, 1, 

0, 2, . . . (Sloane’s A002188). 
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Grundy-Sprague Number 

see NIM-VALUE 

Gudermannian Function 
Denoted either y(x) or gd(x). 

gd(x) E tar?(sinhx) = 2 tanc1(ex) - 3~ (1) 

gd-l(x) = ln[tan($r + ix)] = ln(secx + tanx). (2) 

Gutschoven’s Curve 

see KAPPA CURVE 

Guy’s Conjecture 
Guy’s conjecture, which has not yet been proven or dis- 
proven, states that the CROSSING NUMBER for a COM- 

PLETE GRAPH oforder n is 

where 1x1 ~S~~~FLOORFUNCTION, whichcanberewrit- 
ten 

$-it(n - 2)"(n - 4) for n even 
&(n - 1)2(n - 3)2 for n odd. 

The first few values are 0, 0, 0, 0, 1, 3, 9, 18, 36, 60, . . . 
(Sloane’s A000241). 

see UZSO CROSSING NUMBER (GRAPH) 
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Gyrate Bidiminished 

Rhombicosidodecahedron 

see JOHNSON SOLID 
The derivatives are given by 

d 
dz gd(x) = sechx (3) 

f gd-l(x) = secx. (4) 

Guldinus Theorem 

see PAPPUS’S CENTROID THEOREM 

Gumbel’s Distribution 
A special case of the FISHER-TIPPETT DISTRIBUTION 

with a = 0, b = 1. The MEAN, VARIANCE, SKEWNESS, 

and KURTOSIS are 

P=Y 
g2 = ;7T2 

y1 = 
12&C(3) 

73 

72 = y* 

where y is the EULER-MASCHERONI CONSTANT, and 
c(3) is AP~RY’S CONSTANT. 

see also FISHER-TIPPETT DISTRIBUTION 

Guthrie’s Problem 
The problem of deciding if four-colors are sufficient to 
color any map on a plane or SPHERE. 

see also FOUR-COLOR THEOREM 

Gyrate Rhombicosidodecahedron 

see JOHNSON SOLID 

Gyrobicupola 

A BICUPOLA in which the bases are in opposite orienta- 
tions. 

see also &CUPOLA, PENTAGONAL GYROBICUPOLA, 
SQUARE GYROBICUPOLA 

Gyrobifastigium 

JOHNSON SOLID J 26, consisting of two joined triangular 
PRISMS. 

Gyrobirotunda 
A BIROTUNDA in which the bases are in opposite orien- 
tations. 
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Gyrocupolarotunda 
A CUPOLAROTUNDA in which the bases are in opposite 
orientations. 

see also ORTHOCUP~LAROTUNDA 

Gyroelongated Square Cupola 

see JOHNSON SOLID 

Gyroelongated Square Dipyramid 

Gyroelongated Cupola 
A n-gonal CUPOLA adjoined to a 2n-gonad ANTIPRISM. 

see ~~GYROELONGATED PENTAGONAL C~POLA,GY- 
ROELONGATED SQUARE CUPOLA, GYROELONGATED 
TRIANGULAR CUPOLA 

Gyroelongated Dipyramid 

see GYROELONGATED PYRAMID, GYROELONGATED 
SQUARE DIPYRAMID 

One of the eight convex DELTAHEDRA. It -consists of 
two oppositely faced SQUARE PYRAMIDS rotated 45” to 
each other and separated by a ribbon of eight side-to- 
side TRIANGLES. It is JOHNSON SOLID J17. 

Gyroelongated Pentagonal Bicupola 
Call the coordinates of the upper PYRAMID bases (k 1, 
% 1, hl) and of the lower (ffi, 0, -41) and (0, %1/2, 
41). Call the PYRAMID apexes (0, 0, f(hl + hz)). 
Consider the points (1, 1, 0) and (0, 0, hl + hz). The 
height of the PYRAMID is then given by 

J12 + l2 + hz2 = J2+hzz = 2 (1) 
JOHNSON SOLID J46, which consists of a PENTA 
ROTUNDA adjoin .ed to a dec agonal ANTIP RISM. 

GONAL 
h2= . J2 (2) 

Now consider the points (1, 1, hl) and (a, 0, 41). 
The height of the base is given by Gyroelongated Pentagonal 

see JOHNSON SOLID 

Birotunda 

(1 - A>” + 1’ + (2h1)’ = 1 - 2J2+ 2 + 1 + 4h12 

- - 4 - 2J2+ 4h12 = 22 = 4 (3) Gyroelongated Pentagon .a1 C upola 

see JOHNSON SOLI 
4h12 = =21/z (4 

Gyroelongate d Pent 

LI D 

al C upolarot 
fi h12 = 2 = 1 

4 
= p/2, (5) ~~~JOHNSON So 

Gyroelongated Pentagonal Pyramid 

see JOHNSON SOLID hl = 2-li4 

h2 c 21/2. 
(6) 

(7) Gyroelongated Pentagonal Rotunda 

see JOHNSON SOLID 

Gyroelongated Square Pyramid 
Gyroelongated Pyramid 
An n-gonal pyramid adjoined to an n-gonal ANTIPRISM. 

see aho ELONGATED PYRAMID, GYROELONGATED DI- 
PYRAMID, GYROELONGATED PENTAGONAL PYRAMID, 
GYROELONGATED SQUARE DIPYRAMID, GYROELON- 
GATED SQUARE PYRAMID 

see JOHNSON SOLID 

Gyroelongated Triangular Bicupola 

see JOHNSON Sorm 

Gyroelongated Triangular Cupola 

see JOHNSON SOLID Gyroelongated Rotunda 

~~~GYR~ELONGATED PENTAG ONAL ROTUNDA 

Gyroelongated Square Bicupola 

see JOHNSON SOLID 





h-Cobordism Haar Function 

H H-Transform 

h-Cobordism 
An h-cobordism is a COBORDISM IV between two MANI- 
FOLDS M1 andM2 suchthat Wis SIMPLY CONNECTED 
and the inclusion maps Ml + IV and A42 + W are 
HOM~T~PY equivalences. 

A 2-D generalization of the HAAR TRANSFORM which is 
used for the compression of astronomical images. The 
algorithm consists of dividing the 2N x 2N image into 
blocks of 2 x 2 pixels, calling the pixels in the block 
~00, alo, ~01, and all. For each block, compute the four 
coefficients 

h-Cobordism Theorem 
If W is a SIMPLY CONNECTED, COMPACT MANIFOLD 
with a boundary that has two components, Ml and Mz, 
such that inclusion of each is a HOMOTOPY equivalence, 
then W is DIFFEOMORPHIC to the product Ml x [0,1] 
for dim@&) > 5. In other words, if M and A&’ are two - 
simply connected MANIFOLDS of DIMENSION 2 5 and 
there exists an h-COBORDISM IV between them, then 
W is a product M x I and A.4 is DIFFEOMORPHIC to 
lw’. 

ho = $(a11 +a10 +a01 +aoo) 

h, = +(m + alo - a01 - aoo) 

h, G $(all - a10 +a01 - aoo) 

h, E +(ull - a10 - a01 + aoo). 

Construct a 2N-1 x 2N-1 image from the ho values, and 
repeat until only one ho value remains. The H-transform 
can be performed in place and requires about 16N2/3 
additions for an N x N image. 

see also HAAR TRANSFORM 

The proof of the h-cobordism theorem can be accom- 
plished using SURGERY. A particular case of the h- 
cobordism theorem is the POINCARJ? CONJECTURE in 
dimension 72 > 5. Smale proved this theorem in 1961. - 

see UZSO DIFF’EOMORPHISM, POINCAR~ CONJECTURE, 
SURGERY 
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Nachr. 299, 283-303, 1978. 

t+rT-z 

The FRACTAL illustrated above. 

White, R. L.; Postman, M.; and Lattanei, M. G. “Com- 
pression of the Guide Star Digitised Schmidt Plates.” In 
Digitised Optical Sky Surveys: Proceedings of the Con- 
ference on “Digitised Optical Sky Surveys” held in Edin- 
burgh, Scotland, 18-H June 1991 (Ed. H. T. MacGillivray 
and E. B. Thompson). Dordrecht, Netherlands: Kluwer, 
pp. 167-175, 1992. 

References 
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Haar F’unct ion 

@ Weisstein, E, W. Y?ractals.” http: //wuw. astro. Virginia. 
edu/-eww6n/math/notebooks/Fractal .m. 

H-IFunction 

see FOX’S H-FUNCTION 

H-Spread 
The difference & - HI, where Hl and & are HINGES. 
It is the same as the INTERQUARTILE RANGE for N = 5, 
9, 13, . l  . points. 

-1 

see also HINGE, INTERQUARTILE RANGE, STEP 

References 
Tukey, J. W. Explanatory Data Analysis. Reading, MA: 

Addison-Wesley, p. 44, 1977. 
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Define 
o<x<$ 
;?Xsl 

otherwise 
(1) 

and 
$jk(x) E $(Z’X - k), (2) 

where the FUNCTIONS plotted above are 

$00 = x *c > 
$10 ='1c1(22) 

'ICI11 = *(2x - 1) 

q20 = ti(4x) 

$21 = $(4x - 1) 

*21 = $(4x - 2) 

*21 = $(4x - 3). 

Then a FUNCTION f(x) can be written as a series ex- 
pansion by 

00 2j-1 

f( > 2 = CO + x >: cjk$jk(x). (3) 

j=O k=O 

The FUNCTIONS $jk and @ are all ORTHOGONAL in 
[0, 11, with 

s 

1 

$(x)@jk(x) dx = 0 (4) 
0 

s 

1 

$jk(x)&m(x) dx = 09 (5) 
0 

These functions can be used to define WAVELETS. Let a 
FUNCTION be defined on 1 intervals, with n a POWER of 
2. Then an arbitrary function can be considered as an 
n-VECTOR f, and the COEFFICIENTS in the expansion 
b can be determined by solving the MATRIX equation 

f=W,b (6) 

for b, where W is the MATRIX of Q basis functions. For 
example, 

The WAVELET MATRIX can be computed in O(n) steps, 
compared to O(nlg n) for the FOURIER MATRIX. 

see also WAVELET, WAVELET TRANSFORM 
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Strang, G. “Wavelet Transforms Versus Fourier Transforms.” 
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Haar Integral 
The INTEGRAL associated with the HAAR MEASURE. 

see &O HAAR MEASURE 

Haar Measure 
Any locally compact Hausdorff topological group has a 
unique (up to scalars) NONZERO left invariant measure 
which is finite on compact sets. If the group is Abelian 
or compact, then this measure is also right invariant and 
is known as the Haar measure. 

Haar Transform 
A 1-D transform which makes use of the HAAR FUNC- 
TIONS. 

see H-TRANSFORM, HAAR FUNCTION 

References 
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Haberdasher’s Problem 

With four cuts, DISSECT an EQUILATERAL TRIANGLE 
into a SQUARE. First proposed by Dudeney (1907) and 
discussed in Gardner (1961, p. 34) and Stewart (1987, 
p. 169). The solution can be hinged so that the three 
pieces collapse into either the TRIANGLE or the SQUARE. 

see also DISSECTION 
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Hadamard Design 
A SYMMETRIC BLOCK DESIGN (4n + 3, n + 1, n) which 
is equivalent to a HADAMARD MATRIX of order 4n + 
4. It is conjectured that Hadamard designs exist from 
all integers n > 0, but this has not yet been proven. 
This elusive proof (or disproof) remains one of the most 
important unsolved problems in COMBINATORICS. 

Neierences 
Dinitz, J. H. and Stinson, D. R. “A Brief Introduction to 

Design Theory.” Ch. 1 in Contemporary Design Theory: A 
Collection of Surveys (Ed. 5. H. Dinitz and D, R. Stinson). 
New York: Wiley, pp. 1-12, 1992. 

Hadamard’s Inequality 
Let A = aii be an arbitrary n x n nonsingular MATRIX 
with REAL elements and DETERMINANT [Al, then 



Hadamard Matrix 

see &O HADAMARD’S THEOREM 
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Hadamard Matrix 

A class of SQUARE MATRIX invented by Sylvester (1867) 
underthenameof ANALLAGMATIC PAVEMENT. AHad- 
amard matrix is a SQUARE MATRIX containing only 1s 
and -1s such that when any two columns or rows are 
placed side by side, HALF the adjacent cells are the same 
SIGN and half the other (excepting from the count an 1;- 
shaped “half-frame” bordering the matrix on two sides 
which is composed entirely of Is). When viewed as pave- 
ments, cells with 1s are colored black and those with -1s 
are colored white. Therefore, the n x n Hadamard ma- 
trix H, must have n(n - 1)/2 white squares (-1s) and 
n(n + 1)/2 black squares (1s). 

This is equivalent to the definition 

H,HnT = nln, (1) 

where 1, is the n x n IDENTITY MATRIX. A Hadamard 
matrix of order 4n + 4 corresponds to a HADAMARD 
DESIGN (4n + 3, 2n + 1, n). 

PALEY'S THEOREM guarantees that there always exists 
a Hadamard matrix H, when n is divisible by 4 and of 
the form 2”(q” + l), where p is an ODD PRIME. In such 
cases, the MATRICES can be constructed using a PALEY 
CONSTRUCTION. The PALEY CLASS k is undefined for 
the following values of VJ < 1000: 92, 116, 156, 172, 
184, 188, 232, 236, 260, 268, 292, 324, 356, 372, 376, 
404, 412, 428, 436, 452, 472, 476, 508, 520, 532, 536, 
584, 596, 604, 612, 652, 668, 712, 716, 732, 756, 764, 

772, 808, 836, 852, 856, 872, 876, 892, 904, 932, 940, 
944, 952, 956, 964, 980, 988, 996. 

Sawade (1985) constructed Hzss. It is conjectured (and 
verified up to n < 428) that H, exists for all n DIVISIBLE 
by 4 (van Lint and Wilson 1993). However, the proof 
of this CONJECTURE remains an important problem in 
CODING THEORY. The number of Hadamard matrices of 
order 4n are 1, 1, 1, 5, 3, 60,487, . . . (Sloane’s AOO7299). 

If H, and H, are known, then H,, can be obtained by 
replacing aI1 1s in H, by H, and all -1s by -H,. For 
n < 100, Hadamard matrices with n = 12, 20, 28, 36, - 
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44, 52, 60, 68, 76, 84, 92, and 100 cannot be built up 
from lower order Hadamard matrices. 

H 
2= [ 1 1 -1 1 1 

- - 

H2 

942 

H 
H: = I 

HB can be similarly generated from Hd. Hadamard ma- 
trices can also be expressed in terms of the WALSH 
FUNCTIONS Cal and Sal 

Hadamard matrices can be used to make 
CORRECTI NG CODES. 

H8 = 

‘Cal(0, t) 
Sal(4, t) 
Sal(2, t) 
Cal(2, t) 
Sal(1, t) 
Cal(3, t) 
Cal( 1, t) 
Sal(3, t) 

(2) 

1 1 
-1 

[ 

1 
-1 

1 
1 1 
1 
1 1 1 

(3) 

. (4) 

ERROR- 

see U~SO HADAMARD DESIGN, PALEY CONSTRUCTION, 
PALEY'S THEOREM,~ALSH FUNCTION 
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Hadamard’s Theorem 
Let ]A[ be an n x n DETERMINANT with COMPLEX (or 
REAL) elements a~, then IAl # 0 if 

j=l 

j#i 

see also HADAMARD'S INEQUALITY 
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Hadamard Dansform 
A FAST FOURIER TRANSFORM-like ALGORITHM which 
produces a hologram of an image. 

Hadamard-VaKe Poussin Constants 
N.B. A detailed on-line essay by S. Finch was the start- 
ing point for this entry. 

The sum of RECIPROCALS of PRIMES diverges, but 

lim 
n-300 1 

E Cl = 0.2614972128.. . , (1) 

where n(n) is the PRIME COUNTING FUNCTION and 
y is the EULER-MASCHERONI CONSTANT (Le Lionnais 
1983). Hardy and Wright (1985) show that, if w(n) is 
the number of distinct PRIME factors of n, then 

i kw(k) - ln(lnn) = Cl. (2) 
k=l 1 

Furthermore, if O(n) is the total number of PRIME fac- 
tors of n, then 

lim 
n-km 

00 
.d 

= Cl + r; pkcp; _ 1) = 1.0346538819.. . l  (3) 

Similarly, 

--c2= -1.3325822757. . . . (4) 
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Hadwiger’s Principal Theorem 
The VECTORS &al, . . . . &a, in a 3-space form a nor- 
malized EUTACTIC STAR IFF TX = x for all x in the 
3-space. 

Hadwiger Problem 
What is the largest number of subcubes (not necessarily 
different) into which a CUBE cannot be divided by plane 
cuts? The answer is 47. 

see also CUBE DISSECTION 

Hafner-Sarnak-McCurley Constant 
NJ. A detailed on-line essay by S. Finch was the start- 
ing point for this entry. 

Given two randomly chosen INTEGER n x n matrices, 
what is the probability D(n) that the corresponding de- 
terminants are coprime ? Hafner et al. (1993) showed 
that 

, 

where the product is over PRIMES. The case D(1) is just 
the probability that two random INTEGERS are coprime, 

D(1) = 3 = 0.6079271019.. . . (2) 
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Vardi (1991) computed the limit 

u E lim D(n) = 0.3532363719.. . . (3) 
n--f00 

The speed of convergence is roughly N 0,57n (Flajolet 
and Vardi 1996). 
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Hahn-Banach Theorem 
A linear FUNCTIONAL defined on a SUBSPACE of a VEC- 
TOR SPACE V and which is dominated by a sublinear 
function defined on V has a linear extension which is 
also dominated by the sublinear function. 

References 
Zeidler, E. Applied Functional Analysis: Applicatians to 

Mathematical Physics. New York: Springer-Verlag, 1995. 

Hailstone Number 
Sequences of INTEGERS generated in the COLLATZ 
PROBLEM. For example, for a starting number of 7, 
the sequence is 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 
5, 16, 8, 4, 2, 1, 4, 2, 1, . . l  l  Such sequences are called 
hailstone sequences because the values typically rise and 
fall, somewhat analogously to a hailstone inside a cloud. 

While a hailstone eventually becomes so heavy that it 
falls to ground, every starting INTEGER ever tested has 
produced a hailstone sequence that eventually drops 
down to the number 1 and then “bounces” into the small 
loop 4, 2, 1, . . . . 

see also COLLATZ PROBLEM 

References 
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Hairy Ball Theorem 
There does not exist an everywhere NONZERO VECTOR 
FIELD on the Z-SPHERE s2. This implies that some- 
where on the surface of the Earth, there is a point with 
zero horizontal wind velocity. 

Half-Closed Interval 
An INTERVAL in which one endpoint is included but not 
the other. A half-closed interval is denoted [a, b) or (a, b] 
and is also called a HALF-OPEN INTERVAL. 

see also CLOSED INTERVAL, OPEN INTERVAL 

Half-Normal Distribution 

I\ 1 

A NORMALDISTRIBUTION with MEAN Oand STANDARD 
DEVIATION l/0 limited to the domain [O,oo). 

p(z) = 2+282/, 
7T 

The MOMENTS are 

(1) 

(2) 

(3) 
II 

cc2 = 2t2 (4 

p3 = ; (5) 

3;rr2 
p4=4t4’ (6) 

so the MEAN,VARIANCE,SKEWNESS, and KURTOSIS are 

1 
C”‘e (7) 

T-2 
u 2 E p2 - /&I2 = 2t2 (8) 

I 

=2 - zi 2 
Yl (9) ?I- 

72 = 0. (10) 
see also NORMAL DISTRIBUTION 

Half-Open Interval 

see HALF-CLOSED INTERVAL 

Hall- Janko Group 
The SPORADIC GROUP HJ, also denoted J2. 

see also JANKO GROUPS 

Half 
The UNIT FRACTION l/2. 

see also QUARTER, SQUARE ROOT, UNIT FRACTION 



786 Halley’s Irrational Formula Halley’s Method 

Halley’s Irrational Formula 
A ROOT-finding ALGORITHM which makes use of a 
third-order TAYLOR SERIES 

f(x) = f(x~)+f’(x~)(x-x~)+~f”(~~)(~--~)2+*~” 
(1) 

A ROOT of f(z) satisfies f(x) = 0, so 

0 = f (xn) + f’(GL)( Xn+l - Xn) + f f”(Xn)(Xn+l - XTL)2. 

(2) 

Using the QUADRATIC EQUATION then gives 

Xn+l 
= x 

n 
+ -f’(xn) * dLf’(xn)]2 - 2f(xn)f”(xfi) 

f’Yxn) 
. 

(3) 

Using the result from NEWTON'S METHOD, 

f (Icn) 
Picking the plus sign gives the iteration function 

Xn+l - Xn = -- 

f’(xn) ’ 

l- 
J 

1 _ 2fb)f’W 

C,(x) = x - 
If WI2 

%+ ’ 
(4 

X 

This equation can be used as a starting point for deriving 
HALLEY'S METHOD. 

If the alternate form of the QUADRATIC EQUATION is 
used instead in solving (2), the iteration function be- 
comes instead 

Cf (2) = x - 
2f (4 

f’(x) It J[f’(x)]” - 2f(x)f”(X) l  (5) 

This form can also be derived by setting 12 = 2 in 
LAGUERRE'S METHOD. Numerically, the SIGN in the 
DENOMINATOR is chosen to maximize its ABSOLUTE 
VALUE. Note that in the above equation, if f”(x) = 0, 
then NEWTON'S METHOD is recovered. This form of 
Halley’s irrational formula has cubic convergence, and 
is usually found to be substantially more stable than 
NEWTON’S METHOD. However, it does run into diffi- 
culty when both f(x) and f’(x) or f’(x) and f”(x) are 
simultaneously near zero. 

see also HALLEY'S METHOD, LAGUERRE'S METHOD, 
NEWTON'S METHOD 
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Halley’s Met hod 
Also known as the TANGENT HYPERBOLAS METHOD 
or HALLEY'S RATIONAL FORMULA. AS in HALLEY'S 
IRRATIONAL FORMULA, take the second-order TAYLOR 
POLYNOMIAL 

f (2) = f (Xn) + f’(Xn)(X-Xn) + $f”(Xfi)(X-x2n)2 +. l  l  l  

(1) 

A ROOT of f(x) satisfies f(x) = 0, so 

0 z f (Xn) + f’(Xn)( xn+1 - xn) + $f”(G&L+l - q2* 

(2) 

Now write 

0 = f (X73) + (Xn+l -Xn)[f’(Xn> + +f”(xn)(Xn+l -xn)], 

(3) 
giving 

d/ \ 

Xn+l = X7-b - 
IPd 

f’(Xn)+ $f"(Xn)(Xn+l -X,>' 
(4 

(5) 

gives 

Xn+l = Xn - 
2f (xn)f’W 

2[f’(Xn)]’ - f (Xn)f”(Xn) ’ 
(6) 

so the iteration function is 

Hf(x) = x - 
2f (x)f ‘(x) 

2[f’(x)12 - f (X)f”(X)’ 
(7) 

This satisfies H;(a) = H;(a) = 0 where cy is a ROOT, 
so it is third order for simple zeros. Curiously, the third 
derivative 

H;‘(+-{s-i [$$12} (8) 

is the SCHWARZIAN DERIVATIVE. Halley’s method may 
also be derived by applying NEWTON'S METHOD to 

ff 
I--1/2 

. It may also be derived by using an OSCULAT- 
ING CURVE ofthe form 

Y(X) = 
( X-Xn)+C 

a(x - xn) + b’ 
(9) 

Taking derivatives, 

f (Xn) = i (10) 

f’(xn) = F (11) 

f”(xn) = 2a(a;3- b), 
(12) 

which has solutions 

a=- f"(Xn) 

2[f ‘(Xn>12 - f (Xn)f”(Xn) 
(13) 

2f ‘(xn) 

b = 2[f’(Xn)]2 - f (Xn) f”(Xn) 
(14) 

’ = 2[f’(Xn)12 - f (Xn)f”(Xn)’ 
(15) 
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so at a RooT, y(xn+l) = 0 and 

G-b+1=-2n -c, (16) 

which is Halley’s method. 

see UZSO HALLEY’S IRRATIONAL FORMULA, LAGUERRE’S 
METHOD, NEWTON’S METHOD 
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Halley’s Rat ional Formula 

see HALLEY'S METHOD 

Halphen Constant 

see ONE-NINTH CONSTANT 

Halphen’s Transformation 
A curve and its polar reciprocal with regard to the fixed 
CONIC have the same Halphen transformation. 
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Halting Problem 
The determination of whether a TURING MACHINE will 
come to a halt given a particular input program. This 
problem is formally UNDECIDABLE, as first proved by 
Turing. 

see also BUSY BEAVER, CHAITIN’S CONSTANT, TURING 

MACHINE, UNDECIDABLE 

References 
Chaitin, G. J. “Computing the Busy Beaver Function.” $4.4 

in Open Problems in Communication and Computation 
(Ed. T. M. Cover and B. Gopinath). New York: Springer- 
Verlag, pp. 108-112, 1987. 

Davis, M. “What It a Computation.” In Mathematics Today: 
Twelve Informal Essays (Ed. L. A. Steen). New York: 
Springer-Verlag, pp. 241-267, 1978. 

Penrose, R. The Emperor’s New Mind: Concerning Comput- 
ers, Minds, and the Laws of Physics. Oxford, England: 
Oxford University Press, pp. 63-66, 1989. 

Ham Sandwich Theorem 
The volumes of any n n-D solids can always be simulta- 
neously bisected by a (n - 1)-D HYPERPLANE. Proving 
the theorem for n = 2 (where it is known as the PAN- 

CAKE THEOREM) is simple and can be found in Courant 
and Robbins (1978). The theorem was proved for n > 3 
by Stone and Tukey (1942). 

see also PANCAKE THEOREM 

References 
Chinn, W. G. and Steenrod, N. E. First Concepts of Topol- 

ogy. Washington, DC: Math. Assoc. Amer., 1966+ 
Courant, R. and Robbins, H. What is Mathematics?: An El- 

ementary Approach to Ideas and Methods. Oxford, Eng- 
land: Oxford University Press, 1978. 

Davis, P. J. and Hersh, R. The Mathematical Experience. 
Boston, MA: Houghton Mifflin, pp. 274-284, 1981. 

Hunter, J. A. H. and Madachy, 3. S. Mathematical Diver- 
sions. New York: Dover, pp* 67-69, 1975. 

Stone, A. H. and Tukey, J. W. “Generalized ‘Sandwich’ The- 
orems.” Duke Math. J. 9, 356-359, 1942. 

Hamilton’s Equations 
The equations defined by 

(2) 

where ci: E dx/dt and H is the so-called Hamiltonian, are 
called Hamilton’s equations. These equations frequently 
arise in problems of celestial mechanics. Another formu- 
lation related to Hamilton’s equation is 

a1; 

p=%’ 

where L is the so-called Lagrangian. 

(3) 
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Hamilton’s Rules 
The rules for Ihe MULTIPLICATION of QUATERNIONS. 

see also QUATERNION 

Hamiltonian Circuit 
A closed loop through a 
exactly once and ends adj 

GRAPH that visits each node 
acent to the initial point. The 

Hamiltonian circuit is named after Sir William Rowan 
Hamilton, who devised a puzzle in which such a path 
along the EDGES of an ICOSAHEDRON was sought (the 
ICOSIAN GAME). 

All PLATONIC SOLIDS have a Hamiltonian circuit, as 
do planar 4-connected graphs. However, no foolproof 
method is known for determining whether a given gen- 
eral GRAPH has a Hamiltonian circuit. The number of 
Hamiltonian circuits on an n-HYPERCUBE is 2, 8, 96, 
43008, . . . (Sloane’s A006069, Gardner 1986, pp. 23- 
24). 

see also CHVATAL’S THEOREM, DIRAC’S THEO- 

REM, EULER GRAPH, GRINBERG FORMULA, HAM- 
ILTONIAN GRAPH, HAMILT~NIAN PATH, ICOSIAN 
GAME, KOZYREV-GRINBERG THEORY, ORE’S THEO- 
REM, P&A’s THEOREM, SMITH’S NETWORK THEOREM 

References 
Chartrand, G. Introductory Graph Theory. New York: 

Dover, p. 68, 1985. 
Gardner, M. “The Binary Gray Code.” In Knotted Dough- 

nuts and Other Mathematical Entertainments. New York: 
W. H, Freeman, pp+ 23-24, 1986. 

Sloane, N. J. A. Sequence A006069/M1903 in “An On-Line 
Version of the Encyclopedia of Integer Sequences.” 
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Hamiltonian Cycle 

see HAMILTONIAN CmcuIT 

Hamiltonian Graph 
A GRAPH possessing a HAMILTONIAN CIRCUIT. 

see ah HAMILTONIAN CIRCUIT, HAMILTONIAN PATH 

References 
Chartrand, G. Introductory Graph Theory. New York: 

Dover, pa 68, 1985. 
Chartrand, G.; Kapoor, S. F.; and Kronk, H. V. “The Many 

Facets of Hamiltonian Graphs.” IMath, Student 41, 327- 
336, 1973. 

Hamiltonian Group 
A non-Abelian GROUP all of whose SUBGROUPS are self- 
conjugate. 

References 
Carmichael, R. D. “Hamiltonian Groups.” 531 in Introduc- 

tion to the Theory of Groups of Finite Order. New York: 
Dover, p. 113-116, 1956. 

Hamiltonian Map 
Consider a 1-D Hamiltonian MAP of the form 

H(P, q> = ;P” + V(q), 

which satisfies HAMILTON’S EQUATIONS 

l  dH 

q= ap 

dH p=--, 
% 

Now, write 

where 

(q i+1 - Qi) 
4; = At ’ 

Qi = q(t) 

qi+1 = q(t + at>. 

Then the equations of motion become 

qi+1 = qi +p& 

. 
Q==Qi 

(1) 

(2) 

(3) 

(4) 

(5) 
(6) 

(7) 

(8) 

Note that equations (7) and (8) are not AREA- 
PRESERVING, since 

qf?i+llPi+l) 1 -At-$ za2V 

a(qi,pi) = At 1 ’ 
= 1+ (At> dQi # 1. 

(9) 
However, if we take instead of (7) and (8), 

qi+r = qi + piat (10) 

pi+1 = pi - At 
W ( > - 
aqi 4=qi+1 

(11) 

qqi+lIPi+l) 1 

a(qi,pi) = At 

-At$(g 2 q=qi+1 

1 

2a2v 
= l+ (At) w = 1, 

which is AREA-PRESERVING. 

(12) 

Hamiltonian Path 
A loop through a GRAPH that visits each node exactly 
once but does not end adjacent to the initial point. The 
number of Hamiltonian paths on an +HYPERCUBE is 
0, 0, 48, 48384, . . . (Sloane’s A006070, Gardner 1986, 
pp. 23-24). 

see also HAMILTONIAN CIRCUIT, HAMILTONIAN GRAPH 

References 
Gardner, M. “The Binary Gray Code.” In Knotted Dough- 

nuts and Other Mathemuticul Entertainments. New York: 
W. H. Freeman, pp. 23-24, 1986. 

Sloane, N. J. A. Sequence A006070/M5295 in “An On-Line 
Version of the Encyclopedia of Integer Sequences.” 

Hamiltonian System 
A system of variables which can be written in the form 
of HAMILTON’S EQUATIONS. 

Hammer-Aitoff Equal-Area Projection 
A MAP PROJECTION whose inverse is defined using the 
intermediate variable 

Then the longitude and latitude are given by 

X = 2 tan-l 
( 2(2;x- 1,) 

4 = sin -1 
(Y > z . 

Hamming Function 
1.25 

0.7 
0 5 3\ 0. 5 

-3 -2-~~25 1 2 3 

-0.5 

An APODIZATION FUNCTION chosen to minimize the 
height of the highest sidelobe. The Hamming function 
is given by 

A(x) = 0.54 + 0.46~0s (1) 

Its FULL WIDTH AT HALF MAXIMUM is 1.05543a. The 
corresponding INSTRUMENT FUNCTION is 

I(k) - a(1.08 - 0.64a2k2) sinc(2rak) 
- 

1 - 4a2k2 
. (2) 



Handedness 

This APODIZATION FUNCTION is close to the one pro- 
duced by the requirement that the APPARATUS FUNC- 

TION goes to 0 at ku = 5/4. From APODIZATION FUNC- 
TIoN, a general symmetric apodization function A(x) 
can be written as a FOURIER SERIES 

44 =uo+2~uncos(~), 
?z=l 

(3) 

where the COEFFICIENTS satisfy 

The corresponding apparatus function is 

I(t) = 2b{ao sinc(27rkb) + F[sinc(2xbb + nn) 
n=l 

+ sinc(2;rrkb - n7r)]}. (5) 

To obtain an APODIZATION FUNCTION with zero at ka = 
3/4, use 

a() + 2Ul = 1, (6) 

so 
a0 sine($) + u+inc($7r) + sine($) = 0 (7) 

(l-2u1)- $a, ($ + $) =(1-2uI)3-ul(3+~)= 0 

(8) 
Ul($ + $ + $) = ; (9) 

1 5 7.3 
a1 = 

f+$+f = 2*3#7+3*5+5-7 

21 
- =z: 0.2283 -- 

92 (10) 

= 1 - 2Ul = 

92 - 2'21 92-42 

a0 = 92 92 
5o 25 - $=: 0 5435 - -- 92-46 ’ ’ (11) 

The FWHM is 1.81522, the peak is 1.08, the peak NEG- 
ATIVE and POSITIVE sidelobes (in units of the peak) are 
-0.00689132 and 0.00734934, respectively. 

see also APODIZATION FUNCTION, HANNING FUNC- 
TION, INSTRUMENT FUNCTION 

References 
Blackman, R. B. and Tukey, J. W. “Particular Pairs of Win- 

dows.” In The Measurement of Power Spectra, From 
the Point of View of Communications 

York: Dover, pp+ 98-99, 1959. 
Engineering. New 

Handedness 
Objects which are identical except for a mirror reflection 
are said to display handedness and to be CHIRAL. 

see UZSO AMPHICHIRAL, CHIRAL, ENANTIOMER, MIR- 

ROR IMAGE 

Hankel Aznc tion 

Handkerchief Surface 

789 

A surface given by the parametric equations 

x(u,v) = u 

Y(W) = v 

t(u,v) = $L3 +uv2 +2(?L2 -v2). 

References 
Gray, A. Modern Differential Geometry of Curves and Sur- 

faces. Boca Raton, FL: CRC Press, p. 628, 1993. 

Handle 
Handles are to MANIFOLDS as CELLS are to CW- 
COMPLEXES. If A4 is a MANIFOLD together with a 
(k -1)~SPHERE Sk-' embedded in its boundary with a 
trivial TUBULAR NEIGHBORHOOD, we attacha k-handle 
to M by gluing the tubular NEIGHBORHOOD of the 
(Jc-l)-SPHERE Sk-l to the TUBULAR NEIGHBORHOOD 
of the standard (/G - Q-SPHERE S”-’ in the dim(M)- 
dimensional DISK. 

In this way, attaching a k-handle is essentially just the 
process of attaching a fattened-up k-DISK to kf along 
the (L - l)-SPHERE Sk-'. The embedded DISK in this 
new MANIFOLD is called the &handle in the UNION of 
IV and the handle. 

see also HA 

BORHOOD 

NDLEBODY, SURGERY, TUBULAR NEIGH- 

Handlebody 
A handlebody of type (n, k) is an n-D MANIFOLD that 
is attained from the standard n-DISK by attaching only 
/G-D HANDLES. 

see also HANDLE, HEEGAARD SPLITTING, SURGERY 

Keierences 
RoIfsen, D. Knots and Links. Wilmington, DE: Publish or 

Perish Press, p. 46, 1976. 

Hankel finct ion 
A COMPLEX function which is a linear combination of 
BESSEL FUNCTIONS OF THE FIRST and SECOND KINDS. 

see UZWHANKEL FUNCTION OF THE FIRST KIND,HAN- 
KEL FUNCTION OF THE SECOND KIND, SPHERICAL 

HANKEL FUNCTION OF THE FIRST KIND, SPHERICAL 
HANKEL FUNCTION OF THE SECOND KIND 



790 Hankel Function of the First Kind Hankel Transform 

References Hankel Matrix 
A MATRIX with identical values for each element in a 
given diagonal. Define H, to be the Hankel matrix with 
leading column made up of the INTEGERS 1, . l  . , VI, then 

A&en, G. “Hankel F’unctions.” $11.4 in lMathematica2 1Me& 
ods for Physicists, 3rd ed. Orlando, FL: Academic Press, 
pp. 604-610, 1985. 

Morse, P. M. and Feshbach, H. Methods of Theoretical Phys- 
ics, Part I. New York: McGraw-Hill, pp. 623-624, 1953. 

Hankel Function of the First Kind 

H%) = Jn(z) + iYn(z), n - 

where Jn(z) isa BESSEL FUNCTION OF THEFIRST KIND 
and Y,(Z) is a BESSEL FUNCTION OF THE SECOND 
KIND. Hankel functions of the first kind can be rep- 
resented as a CONTOUR INTEGRAL using 

J 
O” 

0 [upper half plane] 

see also DEBYE'S ASYMPTOTIC REPRESENTATION, 
WATSON-NICHOLSON FORMULA,WEYRICH'S FORMULA 

Hankel Function of the Second Kind 

Hc2’(z) = Jn(z) - iYn(x), n - 

Meth- 
Press, 

Phys- 
953. 

where Jn(Z) is a BESSEL FUNCTION OF THE FIRST 
KIND and Y,(z) is a BESSEL FUNCTION OF THE SEC- 
OND KIND. Hankel functions of the second kind can be 
represented as a CONTOUR INTEGRAL using 

H(‘)(z) = + 

0 eww--ll~~ 

n 
in s 

p+l dt. 
--oo [lower half plane] 

see also WATSON-NICHOLSON FORMULA 

References 
A&en, G. “Hankel Functions.” 511.4 in Mathematical IMeth- 

ads for Physicists, 3rd ed. Orlando, FL: Academic Press, 
pp. 604-610, 1985. 

Morse, P. M. and Feshbach, H. Methods of Theoretical Phys- 
ics, Part I. New York: McGraw-Hill, pp. 623-624, 1953. 

Hankel’s Integral 

m 

Jm(x) = 2m-lfixr (m+ +) 

s 

1 

X cos(xt)(l - t2)m-1’2 dt, 
0 

where Jm(x) is a BESSEL FUNCTION OF THE FIRST 
KIND and l?(z) is the GAMMA FUNCTION. Hankel’s in- 
tegral can be derived from SONINE'S INTEGRAL. 

see also POISSON INTEGRAL, SONINE'S INTEGRAL 

Hz= ; ; [ 1 
1 2 3 

H3 = [ 2 3 0 1 l  

3 0 0 

Hankel Transform 
Equivalent to a 2-D FOURIER TRANSFORM with a radi- 
ally symmetric KERNEL, and also called the FOURIER- 
BESSEL TRANSFORM. 

g(u, v) = F[f(r)] = Irn [w f(~)e-~~~++‘~) dxdy. 

Let 

J -mt/-# 

(1) 

2 + iy = re 
io 

(2) 

u + iv = qe” (3) 

so that 

2 = rcose 

y = T sin 0 

u = qcos# 

w  = qsin4 

q= d IL2 + v2* 

(4) 
(5) 
(6) 

(7) 
(8) 

(9) 

Then 

S(Q) = f( > 7-e 
-22iirq(COS 4 COS e+sin # sin 0) r dr de 

f( > r e--a-rrirq co+-#)r dr de 

f( > 
-27&q cos 0 

7-e rdrd8 

f( > - 27rirq cos 8 
7-e rdrdt9 

= lrn f(r) [12n e-2xirqcose do] rdr 

f(r) Jo(%+ dr, (10) 
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where JO(x) is a zeroth order BESSEL FUNCTION OF THE 
FIRST KIND. Therefore, the Hankel transform pairs are 

s(k) - - Sa f (2) Jo&x)x drx: (11) 
0 

f(x) = /- g(k) Jo(kx)k dk* 
0 

(12) 

see &O BESSEL FUNCTION OF THE FIRST KIND, FOUR- 

IER TRANSFORM, LAPLACE TRANSFORM 

References 
A&en, G. Mathematical Methods for Physicists, 3rd ed. Or- 

lando, FL: Academic Press, p. 795, 1985. 
Bracewell, R. The Fourier Transform and Its Applications. 

New York: McGraw-Hill, pp. 244-250, 1965. 

Hann Function 

see HANNING FUNCTION 

Hanning Function 

An APODDAT~ON FUNCTION, also called the HANN 

FUNCTION, frequently used to reduce ALIASING in 
FOURIER TRANSFORMS. The illustrations above show 
the Hanning function, its INSTRUMENT FUNCTION, and 
a blowup of the INSTRUMENT FUNCTION sidelobes. The 
Hanning function is given by 

f( > 
TX 7TX 

X = cos2 
( > 

-2-l 
2a -2 

‘ z  c o s  - l  

( > a 

(1) 

The INSTRUMENT FUNCTION for Hanning apodization 
can also be written 

a[sinc(2rka) + $ sinc(Z;rrka -n)+ i sinc(2rka+x)]. (2) 

Its FULL WIDTH AT HALF MAXIMUM is a. It has AP- 

PARATUS FUNCTION 

P 
a 

I 

a 
1 -2nikx da: _ ; e-2rrikx da: --1 - 
2 

J 
e 

E i(ilU+ 

J -a 

A) 2. (3) 

Therefore, with L E 2a, the FULL WIDTH AT HALF 
MAXIMUM is 

1 2 
The first integral is FWHM = 2k1,2 = a = -. 

L 

s 

a 
I1 = e--anikx dx 

--a 

sin( 2rka) - - 
nk 

= 2a sinc( 2rka). (4) see also APODIZATION FUNCTION, HAMMING FUNC- 
TION 

The second integral can be rewritten 

+pos (F) e--2Kikzdx 
= laces (IF) (e2=ikx +e-2-)dx 
= 21acos (7) cos(2rkx)dx 

=2 

I 

sin z - ( 2rk) X 

2( 
x -- 
u 2nk) 

=a 
sin@ - 2rku) 

7r- 2rka 

+ sin@ + 2nka) 

T +- 2rrka 1 
- a sin( 2rku) sin( 2rka) 

-- - 7T i 1- 2ka 1+2ka 1 
= a[sinc(r - 2nku) + sinc(r + arka)]. (5) 

Combining (4) and (5) gives 

A(x) = a[sinc(2rku) + i sinc(;rr - 2nku) 

+i sinc(;rr + 2;rrku)]. (6) 

To find the extrema, define x s 2nku and rewrite (6) as 

49 = a[sinx + + sinc(x - 7~) + $ sinc(x + r)]. (7) 

Then solve 

dA .R2(-x3 cosx + 3 -- x2 sin x + 7r2x cos x - r2 sin 2) 

dx - x2(7T 2 - x2)2 

= 0 (8) 

to find the extrema. The roots are x = 7.42023 
and 10.7061, giving a peak NEGATIVE sidelobe of 
-0.026708 and a peak POSITIVE sidelobe (in units of 
a) of 0.00843441. The peak in units of a is I, and the 
full-width at half maximum is given by setting (7) equal 
to l/2 and solving for x, yielding 

x1/2 = 2rklpa = T. (9) 

w 
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Hanoi Graph 

A GRAPH & arising in conjunction with the TOWERS 
OF HANOI problem. The above figure is the Hanoi graph 

H3* 

see also TOWERS OF HANOI 

Hanoi Towers 

see TOWERS OF HANOI 

Hansen-Bessel Formula 

Jr+) = 
eiz c0s tei4t-742) & 

--?I 

s 

7r 

2 

e iz ‘OS h(nt) dt 
7T 0 

1 7r - 
s 

cos(z sin t - nt) dt 
7T 0 

- - 

for n = 0, 1, 2, . . . , where J&z) is a BESSEL 

OF THE FIRST KIND. 
FUNCTION 

Kererences 
Iyanaga, S. and Kawada, Y. (Eds.). Encyclopedic Dictionary 

of Mathematics. Cambridge, MA: MIT Press, p. 1472, 
1980. 

Hansen Chain 
An ADDITION CHAIN for which there is a SUBSET H of 
members such that each member of the chain uses the 
largest element of H which is less than the member. 

see UZSO ADDITION CHAIN, BRAUER CHAIN, HANSEN 
NUMBER 

References 
Guy, R. K. “Addition Chains. Brauer Chains. Hansen 

Chains.” SC6 in Unsolved Problems in Number Theory, 
2nd ed. New York: Springer-Verlag, pp. 111-113, 1994. 

Hansen Number 
A number n for which a shortest chain exists 
H ANSEN CHAIN is called a Hansen number. 

which is a 

Keierences 
Guy, R. K. Unsolved Problems in Number Theory, 2nd ed. 

New York: Springer-Verlag, pp+ 111-112, 1994. 

Harary Graph 

Hansen’s Problem 
A SURVEYING PROBLEM: from the position of two 
known but inaccessible points A and B, determine the 
position of two unknown accessible points P and P’ by 
bearings from A, B, P’ to P and A, B, P to P’. 

see also SURVEYING PROBLEMS 

References 
Dijrrie, H. “Annex to a Survey.” $40 in IOU Great Problems 

of Elementary Mathematics: Their History and Solutions. 
New York: Dover, pp. 193-197, 1965. 

Happy Number 
Let the sum of the SQUARES of the DIGITS of a POS- 
ITIVE INTEGER SO be represented by sl. In a similar 
way, let the sum of the SQUARES of the DIGITS of ~1 be 
represented by ~2, and so on. If some si = 1 for i 2 1, 
then the original INTEGER SO is said to be happy. 

Once it is known whether a number is happy (or not), 
then any number in the sequence ~1, ~2, ~3, . . . will also 
be happy (or not). A number which is not happy is 
called UNHAPPY. Unhappy numbers have EVENTUALLY 
PERIODIC sequences of si 4, 16, 37, 58, 89, 145, 42, 20, 
4, .*. which do not reach 1. 

Any PERMUTATION of the DIGITS of an UNHAPPY or 
happy number must also be unhappy or happy. This 
follows from the fact that ADDITION is COMMUTATIVE. 

The first few happy numbers are 1, 7, 10, 13, 19, 23, 28, 

31, 32, 44, 49, 68, 70, 79, 82, 86, 91, 94, 97, 100, n l  l  

(Sloane’s A007770). These are also the numbers whose 
~-RECURRING DIGITAL INVARIANT sequences have pe- 
riod 1. 

see UZSO KAPREKAR NUMBER,RECURRING DIGITAL IN- 
VARIANT,~NHAPPY NUMBER 

References 
Dudeney, H. E. Problem 143 in 536 Puzzles @ Curious Prob- 
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Guy, R. K. “Happy Numbers.” SE34 in Unsolved Problems 

in Number Theory, 2nd ed. New York: Springer-Verlag, 

pp. 234-235, 1994. 
Madachy, J. S. Madachy’s Mathematical Recreations. New 

York: Dover, pp. 163-165, 1979. 
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Washington, DC: Math. Assoc. Amer., 1994. 
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Harada-Norton Group 
The SPORADIC GROUP HN. 

References 
Wilson, R. A. “ATLAS of Finite Group Representation.” 

http://for.mat.bham.ac.uk/atlas/HN.html. 

Harary Graph 
The smallest &connected GRAPH with n VERTICES. 
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Hard Hexagon Entropy Constant 
N.B. A detailed on-line essay by S. Finch was the start- 
ing point fur this entry. 

A constant related to the HARD SQUARE ENTROPY 

CONSTANT. This constant is given by 

&h e lim [G(N)]‘/” = 1.395485972. l  l  , 
N-km (1) 

where G(N) is the number of configurations of nonat- 
tacking KINGS on an n x rz chessboard with regular 
hexagonal cells, where N E n2* Amazingly, oh is al- 
gebraic and given by 

where 

K1 s 4-135/411-55/12c-- 
(3) 

K2=[1-&Y+ J 2+c+2J1+csc2]2 (4) 

K3=[-14E+ 4 2 + c + 2&Tzq2 (5) 

= [dG+ J2+a+2Jlfa+a2]-‘12 (6) k4 - 

a G x&l1/3 (7) 

b E g331’2 

c = {a + gup + 1p3 - (b - 1)1/31)1/3. (9) 

(Baxter 1980, Joyce 1988). 

References 
Baxter, R. J. “Hard Hexagons: Exact Solution.” J. Physics 

A 13, 1023-1030, 1980. 
Finch, S. “Favorite Mathematical Constants.” http: //wnn, 

mathsoft.com/asolve/constant/square/square.html. 
Joyce, G. S. “On the Hard Hexagon Model and the Theory 

of Modular Functions.” Phil. Trans. Royal Sot. London A 
325, 643-702, 1988. 

Plouffe, S. “Hard Hexagons Constant.” http: //lacim.uqam. 
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Hard Square Entropy Constant 
N.B. A detailed on-line essay by S. Finch was the start- 
ing point for this entry. 

Let F(n2) be the number of binary n x n MATRICES with 
no adjacent 1s (in either columns or rows). Define N = 
n2, then the hard square entropy constant is defined by 

K, = lim [F(N)]‘/” = 1.503048082. . . . 
N+m 

The quantity In K arises in statistical physics (Baxter 
et al. 1980, Pearce and Seaton 1988), and is known as 
the entropy per site of hard squares. A related constant 
known as the HARD HEXAGON ENTROPY CONSTANT 
can also be defined. 

References 
Baxter, R. J.; Enting, I. G.; and Tsang, S. K. “Hard-Square 

Lattice Gas.” J, Statist. Phys. 22, 465-489, 1980, 
Finch, S. “Favorite Mathematical Constants.” http: //uww, 

mathsoft.com/asolve/constant/square/square.html. 
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Hardy’s Inequality 
Let {a,} be a NONNEGATIVE SEQUENCE and f(z) a 
NONNEGATIVE integrable FUNCTION. Define 

12 

A, = 
x 

uk 

k=l 

B, = fy ak 

k=n. 

and 

J 
2 

F(x) = f (9 dt 
0 

and take p > 1. For sums, 

2 ($)p < (~)p~~un~p 
?I= 1 

(unless all a, = 0), and for integrals, 

(unless f is identically 0). 

m P 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

nererences 
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Hardy-Littlewood Conjectures 
The first Hardy-Littlewood conjecture is called the k- 
TUPLE CONJECTURE. It states that the asymptotic 
number of PRIME CONSTELLATIONS can be computed 
explicitly. 

The second Hardy-Littlewood conjecture states that 

T(X + y) - n(x) 5 T(Y) 

for all 2 and y, where ITT(Z) is the PRIME COUNTING 
FUNCTION. Although it is not obvious, Richards (1974) 
proved that this conjecture is incompatible with the first 
Hardy-Littlewood conjecture. 

see also PRIME CONSTELLATION, PRIME COUNTING 
FUNCTION 

References 
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Hardy-Littlewood Constants Hardy-Ramanujan Theorem 
Let w(n) be the number of DISTINCT PRIME FACTORS 
of n. If q(z) tends steadily to infinity with 2, then 

see PRIME CONSTELLATION 

Hardy-Littlewood Tauberian Theorem 
Let a, > 0 and suppose - 

lnlnz - SP(x)hXG < w(n) < lnlnz + Ik(z)vGiE 

for ALMOST ALL numbers n < 5. ((ALMO 
means here the frequency of those INTEGERS 
interval 1 < n 5 x for which 

ST ALL" 
n in the 

00 

x 

1 
a,eBan N - 

a 
n=l 

Iw(n) - InIna:/ > S(z)AiE 
asa-+O+. Then 

Ix 
a, N z 

approaches 0 as 2 + 00. 

see UZSO DISTINCT PRIME FACTORS, ERD~S-KAC THE- 
OREM asx-+oo. 

see also TAWBERIAN THEOREM 

Hardy’s Rule 
Let the values of a function f(z) be tabulated at in- 
tervals equally spaced by h about ~0, so that f-3 = 

f(x0 - 3h), f-2 = f(x0 - 2h), etc. Then Hardy’s rule 
gives the approximation to the integral of f(z) as 

References 
Berndt, B. C. Ramanujan’s Notebooks, Part IV. New York: 

Springer-Verlag, pp* 118-119, 1994. 

Hardy-Littlewood k-Tuple Conjecture 

see PRIME PATTERNS CONJECTURE s q+3h 

f(x) dx = &(28f-3 + 162f-2 + 22f0 + l62fi 
x0-3h 

+W3) + &h7Pf ‘“‘(G) - h2fC8k)], 
Hardy-Ramanujan Number 
The smallest nontrivial TAXICAB NUMBER, i.e., the 
smallest number representable in two ways as a sum of 
two CUBES. It is given by where the final term gives the error, with &,& f [x0 - 

3FL, x0 + 3h]. 

see also BODE'S RULE, DURAND'S RULE, NEWTON- 
COTES FORMULAS, SIMPSON'S 3/8 RULE, SIMPSON'S 
RULE, TRAPEZOIDAL RULE,~EDDLE'S RULE 

1729 = l3 + 123 = g3 + 103. 

The number derives its name from the following story 
G. II. Hardy told about Ramanujan. “Once, in the taxi 
from London, Hardy noticed its number, 1729. He must 
have thought about it a little because he entered the 
room where Ramanujan lay in bed and, with scarcely a 
hello, blurted out his disappointment with it. It was, he 
declared, ‘rather a dull number,’ adding that he hoped 
that wasn’t a bad omen. ‘No, Hardy,’ said Ramanujan, 
‘it is a very interesting number. It is the smallest number 
expressible as the sum of two [POSITIVE] cubes in two 
different ways”’ (Hofstadter 1989, Kanigel 1991, Snow 
1993) l  

Harmonic Addit ion Theorem 
To convert an equation of the form 

fV> = acos8 + bsi 

to the form 

expand (2) using the trigonometric addition formulas to 
obtain 

m = ccos8cosS - csin8sin6. (3) 
see also 
NUMBER 

DIOPHANTINE EQUATION-CUBIC, TAXICAB 
NOW equate the COEFFICIENTS of (1) and (3) 

a = ccosS 

b = -csinS, 
(4) 

(5) 

References 
Guy, R. K. “Sums of Like Powers. Euler’s Conjecture.” SD1 

in Unsolved Problems in Number Theory, 2nd ed. New 
York: Springer-Verlag, pp. 139-144, 1994. 

Hardy, G. H. Ramanujanr Twelve Lectures on Subjects Sug- 
gested by His Life and Work, 3rd ed. New York: Chelsea, 
p. 68, 1959. 

Hofstadter, D. R. G6de2, Escher, Bach: An Eternal GoZden 
Braid. New York: Vintage Books, pa 564, 1989. 

Kanigel, R. The Man Who Knew Infinity: A Life of the 
Genius Ramanujan. New York: Washington Square Press, 
p. 312, 1991. 

b 
tan6 = -- 

a (6) 

a2+b2 =c2, (7) 

and we have 

6 = tan-l 
b 

( > 
- - 

a 
Snow, C. P. Foreword to Hardy, G. H. A Mathematician’s 

Apulogy, reprinted with a foreword by C. P. Snow, New 
York: Cambridge University Press, p. 37, 1993. 

(8) 

c= da2+b2. (9) 
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Given two general sinusoidal functions with frequency 
W: 

their sum $ can be expressed as a sinusoidal function 
with frequency w  

$ = $1+*2 = AI [sin(&) cos 61 + sin 61 cos(wt)] 

+ AZ [sin(&) cos ~52 + sin 62 cos(wi!)] 
- - [Al cos 61 + A2 cos 621 sin(wt) 

+ [Al sin& + Aa sin&] cos(wt). (12) 

Now, define 

AcosS = Al cos& + A2 cos& 

AsinS c A1 sin& + As sin&. 

Then (12) becomes 

AcosSsin(wt) + AsinScos(wt) = Asin(wt + 8). (15) 

Square and add (13) and (14) 

A2 = Al2 + Az2 + 2A1A2 cos(& - 6,). 

Also, divide (14) by (13) 

tan6 = 
A1 sin Sr + A2 sin Sz 

Al cos & + A2 cos Sz ’ 

$ = A sin(wt + 6), (18) 

where A and 6 are defined by (16) and (17). 

This procedure can be generalized to a sum of rz har- 
manic waves, giving 

$=?A i COS(Wt + Si) = Acos(wt + S), 

i=l 

n n 

i=l j>i i=l 

tanS = - 

(19) 

(20) 

(21) 

Harmonic Brick 
A right-angled PARALLELEPIPED with dimensions a x 
ab x abc, where a, 6, and c are INTEGERS. 

see aho BRICK, DE BRUIJN'S THEOREM, EULER BRICK 

Harmonic Conjugate Function 
The harmonic conjugate to a given function U(X, y) is a 
function ~(2, y) such that 

f (5, Y) = u(x, Y> + 4x1 Y) 

is COMPLEX DIFFERENTIABLE (i.e., satisfies the 
CAUCHY-RIEMANN EQUATIONS). It is given by 

v(z) = 
s 

uxdy - uydx. 

Harmonic Conjugate Points 

w  x Y 2 

Given COLLINEAR points WV, X, Y, and 2, Y and 2 are 
harmonic conjugates with respect to IV and X if 

IWYl IWZl --- 
IYX] - IZXI l  

The distances between such points are said to be in HAR- 
MONIC RATIO, and the LINE SEGMENT depicted above 
is called a HARMONIC SEGMENT. 

Harmonic conjugate points are also defined for a TRI- 

ANGLE. If W and X have TRILINEAR COORDINATES 
a : p : y and (Y' : p' :T', then the TRILINEAR COORDI- 
NATES of the harmonic conjugates are 

Y=a+a’:p+p’:r+$ 

2 = a - a’ : p - p’ : y - y’ 

(Kimberling 1994). 

see U&W HARMONIC RANGE, HARMONIC RATIO 
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Harmonic Coordinates 
Satisfy the condition 

(1) 

(2) 

Harmonic Analysis or equivalently, 

see also FOURIER SERIES 
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It is always possible to choose such a system. Using the 
D'ALEMBERTIAN OPERATOR, 

Sloane, N. J. A. Sequences A007340/M4299 in “An On-Line 
Version of the Encyclopedia of Integer Sequences.” 

Sloane, N. J. A. and Plouffe, S. Extended entry in The Ency- 
clopedia of Integer Sequences. San Diego: Academic Press, 

Zachariou, A. and Zachariou, E. “Perfect, Semi-Perfect and 
Ore Numbers ,” Bull. Sot. Math. G&e (New Ser.) 13, 

. 12-22,1972. But since I? E 0 for harmonic coordinates, 

Harmonic Equation 

see LAPLACE'S EQUATION 
q 2xp = 0. (4) 

Harmonic Function 
Any real-valued function u(x,v) with continuous sec- 
ond PARTIAL DERIVATIVES which satisfies LAPLACE'S 
EQUATION 

V2u(x,y) = 0 (1) 

Harmonic Decomposition 
A POLYNOMIAL function in the elements of x can be 
uniquely decomposed into a sum of harmonic POLYNO- 
MIALS times POWERS of IX]. 

Harmonic Divisor Number 
A number 72 for which the HARMONIC MEAN of the DI- 
VISORS of n, i.e., nd(n)/a(n), isanI~~~~~~,where d(n) 
is the number of POSITIVE integral DIVISORS of n and 
a(n) is the DIVISOR FUNCTION. For example, the divi- 
sors of n = 140 are 1, 2, 4, 5, 7, 10, 14, 20, 28, 35, 70, 
and 140, giving 

is called a harmonic function. Harmonic functions are 
called POTENTIAL FUNCTIONS in physics and engineer- 
ing. Potential functions are extremely useful, for exam- 
ple, in electromagnetism, where they reduce the study 
of a 3-component VECTOR FIELD to a l-component 
SCALAR FUNCTION. A scalar harmonic function is 
called a SCALAR POTENTIAL, and a vector harmonic 
function is called a VECTOR POTENTIAL. 

d(140) = 12 

(~(140) = 336 

140d( 140) 140 l  12 
= - = a(140) 335 5, 

To find a class of such functions in the PLANE, write the 
LAPLACE’S EQUATION in POLAR COORDINATES 

1 1 
UTf + -ur + -$m = 0, (2) T 

so 140 is a harmonic divisor number. Harmonic divisor 
numbers are also called ORE NUMBERS. Garcia (1954) 
gives the 45 harmonic divisor numbers less than 107. 
The first few are 1, 6, 140, 270, 672, 1638, . . l  (Sloane’s 
A007340). 

and consider only radial solutions 

(3) 

This is integrable by quadrature, so define w  G du/dr, 
For distinct PRIMES p and 4, harmonic divisor numbers 
are equivalent to EVEN PERFECT NUMBERS for numbers 
of the form p’q. Mills (1972) proved that if there exists 
an ODD POSITIVE harmonic divisor number n, then n 
has a prime-POWER factor greater than 107. 

(4 

dv dr 
-= -- 
zt T 

Another type of number called “harmonic” is the HAR- 
MoNIc NUMBER. In i = -1nr 

( > 
see UZSO DIVISOR FUNCTION, HARMONIC NUMBER 

v 1 

A=; (7) References 
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Ore, 0. “On the Averages of the Divisors of a Number.” 
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Pomerance, C “On a Problem of Ore: Harmonic Numbers.” 
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du A 

v=clr=r 
(8) 

du = A*, 
T (9) 

so the solution is 
u = Alnr. 

Ignoring the trivial additive and multiplicative con- 
stants, the general pure radial solution then becom .es 

u = ln[(x-a)2+(y-b)2]1/2 = + ln [(x - a)” + (y - b)2] . 

(11) 



Harmonic-Geometric Mean Harmonic Logarithm 

Other solutions may be obtained by differentiation, such Harmonic Homology 
A PERSPECTIVE COLLINEATION with center 0 and axis 
o not incident is called a HOMOLOGY. A HOMOLOGY 
is said to be harmonic if the points A and A’ on a line 
through 0 are harmonic conjugates with respect to 0 
and ~*a. Every PERSPECTIVE COLLINEATION ofperiod 
two is a harmonic homology. 

see also HOMOLOGY (GEOMETRY), PERSPECTIVE 
CULLINEATION 

as 

X--a 
u= 

(x - a)2 + (y - b)2 

V= 
Y-b 

( x - a)2 + (y - i!~)~ ’ 

u= ex sin y (14 

zf= ex cos y, (15 

and 

Harmonic functions containing azimuthal dependence 
include 

u = rn cos(n0) (17) 

V = rn sin(&). (18) 

The POISSON KERNEL 

U(T7 R, 07 $1 = 
R2 - r2 

R2 - 2rRcos(0 - qb) + T2 
(19) 

is another harmonic function. 

see &U SCALAR POTENTIAL, VECTOR POTENTIAL 
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Harmonic-Geometric Mean 
Let 

w$n 
w&+1= - 

w-b + Pn 

P n+1= Jcynpn, 

then 

H(ao,Po) = lim a, = 
1 

nnm M(cyo-l,Po-l)’ 

where M is the ARITHMETXC~EOMETRIC MEAN. 

see &O ARITHMETIC MEAN, ARITHMETIC-GEOMETRIC 
MEAN,GEOMETRIC MEAN,I~ARMONIC MEAN 
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Harmonic Logarithm 
For al INTEGERS n and NONNEGATIVE INTEGERS~, the 

harmonic logarithms X:‘(x) of order t and degree n are 
defined as the unique functions satisfying 

1 l  X@)(x) - (In x)t 
0 - 7  

2. X;‘(x) has no constant term except Xrl(X) = 1, 

3 dX(tJ(x) = Lnl A@’ 1(x) 
’ dx n n- 7 

where the "ROMAN SYMBOL" ln] is defined by 

n for n # 0 
1 for n = 0 

(Roman 1992). This gives the special cases 

for n 2 0 

for n < 0, 

where & is a HARMONIC NUMBER 

n 1 
Hn-C,. 

k=l 

The harmonic logarithm has the INTEGRAL 

s 
xyx) dx = 1 n P (2) 

m  n+l  l  

The harmonic logarithm can be written 

P(x) = 17x1 ID-“(In X)t n . 7 

where fi is the DIFFERENTIAL OPERATOR, (so 
the nth INTEGRAL). Rearranging gives 

11 fi”x$f’(x) = f+ !xzlk(x). L 1 n- 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

Cn is 

(7) 

This formulation gives an analog of the BINOMIAL THE- 
OREM called the LOGARITHMIC BINOMIAL FORMULA. 
Another expression for the harmonic logarithm is 

X$f)(x) = xn ~(-l)‘(t)~~~)(lnm)“-j, (8) 

j=O 



798 Harmonic Map Harmonic Num her 

where (t)j = t(t - 1) '*=(t -j + 1) is a POCHHAMMER 
SYMBOL and c?’ is a two-index HARMONIC NUMBER 
(Roman 1992). 

Harmonic Mean Index 
The statistical INDEX 

see also LOGARITHM, ROMAN FACTORIAL 
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Roman, S. “The Logarithmic Binomial Formula.” Amer. 
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where p, is the price per unit in period n, qn is the 
quantity produced in period n, and vn = pnqn the value 
of the n units. 

see also INDEX 
Harmonic Map 
A harmonic map between RIEMANNIAN MANIFOLDS can 
be viewed as a generalization of a GEODESIC when the 
domain DIMENSION is one, or of a HARMONIC FUNCTION 

when the range is a EUCLIDEAN SPACE. 
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Harmonic Number 
A number of the form see als 0 BOCHNER IDENTITY, EUCLIDEAN SPACE, GEO- 

DESIC, HARMONIC FUNCTION ', RIEMANNIAN MAN IFOLD 

n 1 
“-=c,. 

k=l 

References 
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(1) 

This can be expressed analytically as 

Eels, J. and Lemaire, L. “Anot her Report 
Maps. ” Bull. London Math. Sot. 2 0,385-5 

Harmonic 
1988. Hn = y + 'rcIo(n + 0, (2) 

where y is the EULER-MASCHERONI CONSTANT and 
q(z) =$0(z) is the DIGAMMA FUNCTION. Thenumber 
formed by taking alternate signs in the sum also has an 
analytic solution 

Harmonic Mean 
The harmonic mean H(zl, . . . , zn) of n points x:i (where 
i= 1, . . . . n) is 

H:, = 2 ( 1) 
kfl - 

k (3) 
k=f. 

= In2 + $-1>“[~0(~n + +) - $o(+n+ I)]* (4) 

The special case of n = 2 is therefore 

gj=i($+-$,) (2) 
The first few harmonic numbers H, are 1, 3/2, 11/6, 
25/12, 137/60, . . . (Sloane’s A001008 and AOOZSOS). 
The HARMONIC NUMBER H, is never an INTEGER (ex- 
cept for HI), which can be proved by using the strong 
triangle inequality to show that the Z-ADIC VALUE of I& 
is greater than 1 for n > 1. The harmonic numbers have 
ODD NUMERATORS and EVEN DENOMINATORS. The 
nth harmonic number is given asymptotically by 

1 Xl +x2 

H= l  &x2 

The VOLUME-to-SURFACE AREA ratio for a cylindrical 
container with height h and radius r and the MEAN 
CURVATURE of a general surface are related to the har- 
monic mean. 

Hoehn and Niven (1985) show that 

Hn 
1 

-lnn+y+G, (5) 
H(al+c,a2+c,..., an+c) > c+H(al,az,...,a,) (4) 

where y is the EULER-MASCHERONI CONSTANT (Con- 
way and Guy 1996). Gosper gave the interesting identity 

for any POSITIVE constant c. 

see also ARITHMETIC MEAN, ARITHMETIC-GEOMETRIC 
MEAN, GEOMETRIC MEAN, HARMONIC-GEOMETRIC 
MEAN, ROOT-MEAN-SQUARE 

00 
x #Hi 

i! = 4 
7 > 

x 
---! = e”[lnx+l?(O,z)+y], (6) 

-2 

kk! 
i=o k=l References 

Abramowitz, M. and Stegun, C. A. (Eds.). Handbook 
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Mathematical Tables, 9th printing. New York: Dover, 
p. 10, 1972. 

Hoehn, L. and Niven, I. “Averages on the Move.” Math. 
Mag. 58, 151-156, 1985. 
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where r(0, Z) is the incomplete GAMMA FUNCTION and 
7 is the EULER-MASCHERONI CONSTANT. Borwein and 
Borwein (1995) show that 

OQ Hn2 
lE 

17 -=- 
n2 4 C(4) = &$x4 (8) 

n=l 

(9) 

n=l 

where C(Z) is the RIEMANN ZETA FUNCTION. The first 
of these had been previously derived by de Doelder 
(1991), and the last by Euler (1775). These identities 
are corollaries of the identity 1 7r - s 22(1n[2 cos( $)]}” Gkc = 3(4) = &x4 (10) 

7r 0 

(Borwein and Borwein 1995). Additional identities due 
to Euler are 

O” Hn 
c -p = K(3) (11) 

plus the recurrence relation 

For general n > 0 and j > 0, this is equivalent to 

and for n > 0, it simplifies to 

n 

$1 = 
n i-1 .- * - 

n 

co 

. 
i 

( 1) 2 3 (20) 

f- ?,- 1 

For n < 0, the harmonic number can be written 

c$f) = (-1)j [nl!s(-n,j), (21) 

where Lnl! is the ROMAN FACTORIAL and s is a STIR- 
LING NUMBER OF THE FIRST KIND. 

A separate type of number sometimes also called a “har- 
monic number” is a HARMONIC DIVISOR NUMBER (or 
ORE NUMBER). 

see UZSO AP~RY'S CONSTANT, EULER SUM, HARMONIC 
LOGARITHM,HARMONIC SERIES,~RE NUMBER 
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T-L= 1 TL= 1 
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Harmonic Progression 

see Harmonic Series 

Hi3’ _= 9; Iii(2) = (Hn+2 - H2), (14) 
i=l 

and the nth harmonic number by 

H(“) - n - (H n+k-1 - Nk-1). (15) 

A slightly different definition of a two-index harmonic 
number cp’ is given by Roman (1992) in connection with 
the HARMONIC LOGARITHM. Roman (1992) defines this 

bY 

(0) - cn - 
{ 

1 for n 2 0 
0 for n < 0 

$1 = 
{ 

1 for j = 0 
0 for j # 0 

(16) 

(17) 

Harmonic Range 
A B c D 

2 -1, 3 

A set of four COLLINEAR points A, B, C, and D ar- 
ranged such that 

AB:BC=2:1 

AD : DC = 6 : 3. 

Hardy (1967) uses the term HARMONIC SYSTEM OF 
POINTS to refer to a harmonic range. 

see UZSO EULER LINE, GERGONNE LINE, HARMONIC 
CONJUGATE POINTS, SODDY LINE 
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Harmonic Ratio Harnack’s Inequality 

Har manic Ratio References 

see HARMONIC CONJUGATE POINTS 

Harmonic Segment 

see HARMONIC CONJUGATE POINTS 

Harmonic Series 
The SUM 

k=l 

(1) 

is called the harmonic series. It can be shown to DI- 
VERGE using the INTEGRAL TEST by comparison with 
the function l/x. The divergence, however, is very slow. 
In fact, the sum 

Ix 
1 

i 
(2) 

P 

taken over all PRIMES also diverges. The generalization 
of the harmonic series 

k=l 

is known as the RIEMANN ZETA FUNCTION. 

The sum of the first few terms of the harmonic series is 
given analytically by the nth HARMONIC NUMBER 

where y is the EULER-MASCHERONI CONSTANT and 
q(x)= $J&c) is the D~GAMMA FUNCTION. The number 

of terms needed to exceed 1, 2, 3, are 1, 4, . . . 11, 31, 
83, 227, 616, 1674, 4550, 12367, 33617, 91380, 248397, 

(Sloane’s A004080). Using the analytic form shows 
ihat after 2.5 x 10’ terms, the sum is still less than 20. 

Furthermore, to achieve a sum greater than 100, more 
than 1.509 x 1O43 terms are needed! 

Progressions of the form 

1 1 1 --- 
al9 al +d’al +2d”” (5) 

A&en, G. Mathematical Methods for Physicists, 3rd ed. Or- 
lando, FL: Academic Press, pp. 279-280, 1985. 

Beyer, W. H. (Ed.). CRC Standard Mathematical Tables, 

28th ed. Boca Raton, FL: CRC Press, p. 8, 1987. 
Boas, R. P. and Wrench, J. W. “Partial Sums of the Harmonic 

Series.” Amer. Math. Monthly 78, 864-870, 1971. 
Honsberger, R. “An Intriguing Series.” Ch. 10 in Mathe- 

matical Gems II. Washington, DC: Math. Assoc. Amer., 
pp. 98-103, 1976. 

Sloane, N. J. A. Sequence A004080 in “An On-Line Version 
of the Encyclopedia of Integer Sequences.” 

Harmonic System of Points 

see HARMONIC RANGE 

Harmonious Graph 
A connected LABELLED GRAPH with n EDGES in which 
all VERTICES can be labeled with distinct INTEGERS 
(mod n) so that the sums of the PAIRS of numbers at the 
ends of each EDGE are also distinct (mod n). The LAD- 
DER GRAPH,FAN, WHEEL GRAPH, PETERSEN GRAPH, 
TETRAHEDRAL GRAPH, DODECAHEDRAL GRAPH, and 
ICOSAHEDRAL GRAPH are all harmonious (Graham and 
Sloane 1980). 

see also GRACEFUL GRAPH, LABELLED GRAPH, 
POSTAGE STAMP PROBLEM,~EQUENTIAL GRAPH 
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Harnack’s Inequality 
Let D = D(z&) be an OPEN DISK, and let u be a 
HARMONIC FUNCTION on D such that U(Z) > 0 for all - 
z E D. Then for all z e D, we have 

see also LIOUVILLE'S CONFORMALITY THEOREM 
are also sometimes called harmonic series (Beyer 1987). 

The modified harmonic series, given by the sum 

O” 1 

T=$ 
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Flanigan, F. J. “Harnack’s Inequality.” 52.5.1 in Complex 

Variables: Harmonic and Analytic Functions. New York: 
Dover, pp. 88-90, 1983. 

where pk is the kth PRIME, diverges. 

see also ARITHMETIC SERIES, BERNOULLI'S PARADOX, 
BOOK STACKING PROBLEM,EULER SUMJIPF'S LAW 
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Harnack’s Theorems 
Harnack’s first theorem states that a real irreducible 
curve of order n cannot have more than 

remain COLLINEAR. Coxeter (1969, p. 428) shows that 
if A0 = pAB, then 

OPxOP’= /~(l- p)(AD2 - AB2). 

$(n- 1) (n - 2) - >1 s&i - 1) + 1 

see UZSO PEAUCELLIER INVERS~R 

circuits (Coolidge 1959, p. 57). 

Harnack’s second theorem states that there exists a 
curve of every order with the maximum number of cir- 
cuits compatible with that order and with a certain num- 
ber of double points, provided that number is not per- 
missible for a curve of lower order (Coolidge 1959, p. 61). 

References 
Coolidge, J. L. A Treatise on Algebraic Plane Curves. New 

York: Dover, 1959. 

Harshad Number 
A POSITIVE INTEGER which is DIVISIBLE by the sum of 
its DIGITS, also called a NXVEN NUMBER (Kennedy et 
al. 1980). The first few are 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 
12, 18, 20, 21, 24, . . . (Sloane’s AOO5349). Grundman 
(1994) proved that there is no sequence of more than 
20 consecutive Harshad numbers, and found the small- 
est sequence of 20 consecutive Harshad numbers, each 
member of which has 44,363,342,786 digits. 

Grundman (1994) defined an n-Harshad (or n-Niven) 
number to be a POSITIVE INTEGER which is DIVISIBLE 
by the sum of its digits in base n > 2. Cai (1996) showed 
that for n = 2 or 3, there exists an infinite family of 
sequences of consecutive n-Harshad numbers of length 
2n. 

References 
Cai, T. “On 2-Niven Numbers and 3-Niven Numbers.” Fib. 

Quart. 34, 118-120, 1996. 
Cooper, C. N. and Kennedy, R. E. “Chebyshev’s Inequality 

and Natural Density.” Amer. Math. Monthly 96, 118-124, 
1989. 

Cooper, C. N. and Kennedy, R. “On Consecutive Niven Num- 
bers.” Fib. Q uart. 21, 146-151, 1993. 

Grundman, I-I. G. “Sequences of Consecutive n-Niven Num- 
bers.” Fib. Quart. 32, 174-175, 1994. 

Kennedy, R.; Goodman, R.; and Best, C. “Mathematical Dis- 
covery and Niven Numbers.” MATYC J. 14, 21-25, 1980. 

Sloane, N. J. A. Sequence A005349/M0481 in LCAn On-Line 
Version of the Encyclopedia of Integer Sequences.” 

Vardi, I. “Niven Numbers.” $2.3 in Computational Recre- 
ations in Mathematics. Redwood City, CA: Addison- 
Wesley, pp. 19 and 28-31, 1991. 

Hart’s Inversor 

A linkage which draws the inverse of a given curve. It 
can also convert circular to linear motion. The rods 
satisfy AB = CD and BC = DA, and 0, P, and P’ 

References 
Courant, R. and Robbins, H. What is Mathematics?: An El- 

ementary Approach to Ideas and Methods. Oxford, Eng- 
land: Oxford University Press, p. 157, 1978. 

Coxeter, H. S. M. Introduction to Geometry, 2nd ed. New 
York: Wiley, pp. 82-83, 1969. 

Rademacher, H. and Toeplitz, 0. The Enjoyment of Math- 
ematics: Selections from Mathematics for the Amateur. 
Princeton, NJ: Princeton University Press, pp. 124-129, 
1957. 

Hart’s Theorem 
Any one of the eight APOLLONIUS CIRCLES of three 
given CIRCLES is TANGENT to a CIRCLE C, as are the 
other three APOLLONIUS CIRCLES having (1) like con- 
tact with two of the given CIRCLES and (2) unlike con- 
tact with the third. 

see also APOLLONIUS CIRCLES 

References 
Johnson, R. A. Modern Geometry: An Elementary Treatise 

on the Geometry of the Triangle and the Circle. Boston, 
MA: Houghton Mifflin, pp. 127-128, 1929. 

Hartley Transform 
An INTEGRAL TRANSFORM which shares some features 
with the FOURIER TRANSFORM, but which (in the dis- 
crete case), multiplies the KERNEL by 

cos(F) -sin(T) (1) 

instead of 

e -2dkn/N = cos (T) -isin( (2) 

The Hartley transform produces REAL output for a 
REAL input, and is its own inverse. It therefore can have 
computational advantages over the DISCRETE FOURIER 
TRANSFORM, although analytic expressions are usually 
more complicated for the Hartley transform. 

The discrete version of the Hartley transform can be 
written explicitly as 

N-l 

w 1 a G & >:a, [cos(T) -sin(F)] (3) 
n=O 

= W[a] - W[a], (4) 

where F denotes the FOURIER TRANSFORM. The Hart- 
ley transform obeys the CONVOLUTION property 
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where 

Hartley Transform 

(Arndt). Like the FAST FOURIER TRANSFORM, there is 
a “fast” version of the Hartley transform. A decimation 
in time algorithm makes use of 

&"[u] = %42[aeven]+ mn,2[aodd] (9) 

7pht [a] = Tin,2 [aeven] - x3-1,/2 [aodd], (10) 

where X denotes the sequence with elements 

U,COS (Tjf) -&sin(F). 

A decimation in frequency algorithm makes use of 

3cyn [a] = 31,/z [deft + aright], (12) 
?gdd[a] = T&,2 [x(aleft - aright)]* (13) 

The DISCRETE FOURIER TRANSFORM 

can be written 

F 

(14 

(15) 

- cos (T) sin (F) 
- 

TL=o\ - , 
-sin(T) cos (T) 

Y 
H 

so 
F = T-?-iT. (W 

(16) 

see also DISCRETE FOURIER TRANSFORM,FAST FOUR- 
IER TRANSFORM, FOURIER TRANSFORM 

References 
Arndt, J. “The Hartley Transform (HT)." Ch. 2 in ‘Remarks 

on FFT Algorithms.” http://uuw.jjj,de/fxt/. 
Bracewell, R. N. The Fourier Transform and Its Applica- 

tions. New York: McGraw-Hill, 1965. 
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HashLife 
A LIFE ALGORITHM that achieves remarkable speed by 
storing subpatterns in a hash table, and using them to 
skip forward, sometimes thousands of generations at a 
time. HashLife takes tremendous amounts of memory 
and can’t show patterns at every step, but can quickly 
calculate the outcome of a pattern that takes millions of 
generations to complete. 

References 
Hensel, A. “A Brief Illustrated Glossary of Terms in Con- 

way’s Game of Life.” http://www.cs.jhu.edu/-eallahan/ 
glossary. html. 

Hasse’s Algorithm 

see COLLATZ PROBLEM 

Hasse’s Conjecture 
Define the ZETA FUNCTION of a VARIETY over a NUM- 
BER FIELD by taking the product over all PRIME IDEALS 
ofthe ZETA FUNCTIONS of this VARIETY reduced mod- 
ulo the PRIMES. Hasse conjectured that this product 
has a MEROMORPHIC continuation over the whole plane 
and a functional equation. 

References 
Lang, S. “Some History of the Shimura-Taniyama Conjec- 

ture.” Not. Amer. Math. Sot. 42, 1301-1307, 1995. 

Hasse-Davenport Relation 
Let F be a FINITE FIELD with Q elements, and let FS 
be a FIELD containing F such that [F, : F] = 3. Let x 
be a nontrivial MULTIPLICATIVE CHARACTER of F and 

XI = X ~NF,~F a character of Fs. Then 

(-dx)Y = --s(x7, 

where g(x) is a GAUSSIAN SUM. 

see also GAUSSIAN SUM, MULTIPLICATIVE CHARACTER 

References 
Ireland, K. and Rosen, M. “A Proof of the Hasse-Davenport 

Relation.” $11.4 in A Classical Introduction to Modern 
Number Theory, 2nd ed. New York: Springer-Verlag, 
pp. 162-165, 1990. 

Hasse Diagram 
A graphical rendering of a PARTIALLY ORDERED SET 
displayed via the COVER relation of the PARTIALLY OR- 
DERED SET with an implied upward orientation. A point 
is drawn for each element of the POSET, and line seg- 
ments are drawn between these points according to the 
following two rules: 

1. If x < y in the poset, then the point corresponding 
to z appears lower in the drawing than the point 
corresponding to y. 

2. The line segment between the points corresponding 
to any two elements z and y of the poset is included 
in the drawing IFF GL: covers y or y covers CC. 

Hasse diagrams are also called UPWARD DRAWINGS. 
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Hasse-Minkowski Theorem 
Two nonsingular forms are equivalent over the rationals 
IFF they have the same DETERMINANT and the same 
p-SIGNATURES for all p. 

Hasse Principle 
A collection of equations satisfies the Hasse principle if, 
whenever one of the equations has solutions in R and 
all the &, then the equations have solutions in the RA- 

TIONALS Q. Examples include the set of equations 

ax2 + bxy + cy2 = 0 

with a, b, and c INTEGERS, and the set of equations 

EC2 +y2 =a 

for a rational. The trivial solution zc = y = 0 is usu- 
ally not taken into account when deciding if a collec- 
tion of homogeneous equations satisfies the Hasse princi- 
ple. The Hasse principle is sometimes called the LOCAL- 
GLOBAL PRINCIPLE. 

see UZSO LOCAL FIELD 

Hasse’s Resolution Modulus Theorem 
The JACOBI SYMBOL (a/y)= x(y) asa CHARACTER can 
be extended to the KRONECKER SYMBOL (f(a)/y) = 
x*(y) so that x*(y) = x(y) whenever x(y) # 0. When 
y is RELATIVELY PRIME to f(a), then x*(y) # 0, 
and for NONZERO values x*(yl) = x* (~2) IFF yl = 
y2 mod+ f(u). In addition, If(a)1 is the minimum value 
for which the latter congruence property holds in any 
extension symbol for x(y). 

~~~UZS~CHARACTER(N~MBERTHE~RY),JACOBI SYM- 
BOL,KRONECKER SYMBOL 

References 
Cohn, H. Advanced Number Theory. New York: Dover, 

pp. 35-36, 1980. 

Hat 
The hat is a caret-shaped symbol most commonly used 
to denote a UNIT VECTOR (+) or an ESTIMATOR (?). 

see UZSO ESTIMATOR, UNIT VECTOR 

Haupt-Exponent 
The smallest exponent e for which b” = 1 (mod p), 
where b and p are given numbers, is the haupt- 
exponent of b (mod p)* The number of bases having 
a haupt-exponent e is 4(e), where 4(e) is the TOTIENT 
FUNCTION. Cunningham (1922) published the haupt- 
exponents for primes to 25409 and bases 2, 3, 5, 6, 7, 
10, 11, and 12. 

see also COMPLETE RESIDUE SYSTEM,RESIDUE INDEX 

References 
Cunningham, A. Haupt-Exponents, Residue Indices, Primi- 

tive Roots. London: F. Hodgson, 1922. 
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Hausdorff Axioms 
Describe subsets of elements x in a NEIGHBORHOOD SET 
E of x. The NEIGHBORHOOD is assumed to satisfy: 

There corresponds to each point 5 at least one 
NEIG:HB~RHooD U(X), and each NEIGHBORHOOD 
U(z) contains the point z. 

If U(x) and V(X) are two NEIGHBORHOODS of the 
same point z, there must exist a NEICHB~RHOOD 
W(z) that is a subset of both. 

If the point y lies in U(x), there must exist a NEIGH- 
BORHOOD U(y) that is a SUBSET of W(x). 

For two different points x and y, there are two corre- 
sponding NEIGHBORHOODS U(x) and U(y) with no 
points in common. 

Hausdorff-Besicovitch Dimension 

see CAPACITY DIMENSION 

Hausdorff Dimension 
Let A be a SUBSET of a METRIC SPACE X. Then the 
Hausdorff dimension D(A) of A is the INFIMUM of d > 0 
such that the d-dimensional HAUSDORFF MEASURGof 
A is 0: Note that this need not be an INTEGER. 

In many cases, the IIausdorff dimension correctly de- 
scribes the correction term for a resonator with FRAC- 
TAL PERIMETER in Lorentz’s conjecture. However, in 
general, the proper dimension to use turns out to be the 
MINKOWSKI-BOULIGAND DIMENSION (Schroeder 1991). 

see also CAPACITY DIMENSION, FRACTAL 

MINKOWSKI-BOULIGAND DIMENSION 
DIMENSION, 

References 
Federer, H. Geometric Measure Theory. New York: 
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79, 157-179, 1919. 
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namical Systems. New York: Cambridge University Press, 
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Hausdorff Measure 
LetX bea METRIC SPACE, A be a SUBSET ofX,and d 
a number > 0. The d-dimensional Hausdorff measure of - 
A, Hd(A), is the INFIMUM of POSITIVE numbers y such 
that for. every T > 0, A can be covered by a countable 
family of closed sets, each of diameter less than T, such 
that the sum of the dth POWERS of their diameters is 
less than y. Note that Hd(A) may be infinite, and d 
need not be an INTEGER. 

Heferences 
Federer, H. G eometric Measure Theory. New York: 

Springer-Verlag, 1969. 
Ott, E. Chaos in Dynamical Systems. Cambridge, England: 
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Hausdorff Paradox 
For n > 3, there exist no additive finite and invariant - 

Heapsort 
An Nlg IV SORTING ALGORITHM which is not quite as 

measures for the group of displacements in IV. fast as QUICKSORT. It is a “sort-in-place” algorithm 

References 
Le Lionnais, F. Les nombres remarquables. Paris: Hermann, 

and requires no auxiliary storage, which makes it par- 
titularly concise and elegant to implement. 

p. 49, 1983. see &O QUICKSORT, SORTING 

References 
Press, W. H.; Flannerv, B. P.; Teukolsky, S. A.; and Vet- Hausdorff Space 

A TOPOLOGICAL SPACE in which any two points have 
disjoint NEIGHBORHOODS. 

Haversine 

teriiug, W.’ T. c4H&&k1y 58.3 in Numerical Recipes 
in FORTRAN: The Art of Scientific Computing, 2nd 
ed- Cambridge, England: Cambridge University Press, 
pp. 327-329, 1992. 

hav(x) E $vers(z) = $(l - cosz), 
Heart Surfacc 3 

3 

where vers(z) is the VERSINE and cos is the COSINE. 
Using a trigonometric identity, the haversine is equal to 

hav(z) = sin2($z). 

see also COSINE, COVERSINE, EXSECANT, VERSINE 

References 
Abramowitz, M. and Stegun, C. A. (Eds.). Handbook 

of Mathematical Function ,s with Formulas Graphs, and 

Mathematical Tables, 9th printing. New York: Dover, 
p. 78, 1972. 

A heart-shaped surface given by the SEXTIC EQUATION 

Heads Minus Tails Distribution 
A fair COIN is tossed 2n times, Let D E IH - TI be 
the absolute difference in the number of heads and tails 
obtained. Then the probability distribution is given by 

P(D T=: 2k) = 
<f>“” (2) k=O 

2($)““(,:nlc> k = 1, 2, . . . . 

(2x2 + 2y2 + z2 - 1)” - &x2z3 - y2z3 = 0. 

see also BONNE PROJECTION, PIRIFORM 

References 
Nordstrand, T. “Heart .” http://www.uib.no/people/ 

nf ytn/hearttxt l  htm. 

where P(D = 2k - I) = 0. The most probable value of Heat Conduction Equation 

DisD= 2, and the expectation value is A diffusion equation of the form 

2n 

u? 
n n ( ) - -- 
22n-1' 

(1) 

see also BERNOULLI DISTRIBUTION, COIN, COIN Toss- 
Physically, the equation commonly arises in situations 
where K is the thermal diffusivity and T the tempera- 

TN@ ture. 

References 
Handelsman, M. B. Solution to Problem 436, “Distribut- 

The 1-D heat conduction equation is 

ing ‘Heads’ Minus ‘Tails.“’ College Math. J. 22, 444-446, 
1991. dT d2T - - 

at - Qx2' (2) 

Heap 
A SET of Iv members forms a heap if it satisfies a~j/21 > 

Thiscanbesolvedby SEPARATION OF VARIABLES using 

aj for 1 5 Lj/ZJ < j 5 IV, where 1x1 is the FLOOR 
FUNCTION, 

T(x, t) = X(x)T(t). (3) 
see also HEAPSORT Then 

XdT = KTd2x 
dt dx2 - (4 
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Dividing both sides by KXT gives Multiplying both sides by sin(m7rx/L) and integrating 
from 0 to L gives 

1 dT 1 d2X 1 -- - -- - -- 
KT dt - X dx2 - X2’ (5) s L 

0 

sin 
m7rx ( > L 

T(x, 0) dx 

where each side must be equal to a constant. Antic- 
ipating the exponential solution in 57, we have picked 
a negative separation constant so that the solution re- 
mains finite at all times and X has units of length. The 
T solution is 

w  
= Ae-“W2, 

and the X solution is 

The general solution is then 

T(x, t) = T(t)X(x) 

=AeMKtix2 [Ccos (F) +Dsin (F)] 

=emKtjX2 [DCOS (F) +&in(f)] 

If we are given the boundary conditions 

T&t) = 0 

and 
T(L,t) = 0, 

then applying (9) to (8) gives 

D cos 
0 t 

=Q*D=O, 

and applying (10) to (8) gives 

L L 
=O+-x=~~+X=-, 

n7r 

so (8) becomes 

Tn(x,t) = E,e-E(nT~L~2t sin y . 
( > 

Since the general solution can have any n, 

T(x, t) = 2 cn sin (y) e-K(nrr’L’2t. 

n=l 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

03) 

(14) 

Now, if we are given an initial condition T(x, 0), we have 

T(X,O) = FC,sin (y) . (15) 
n=l 
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= lL Fc,sin (y) sin(y) dx:. (16) 

- n=l 

Using the ORTHOGONALITY of sin(nx) and sin(mx), 

F Cn lL sin (7) sin (7) dx = 2 ixtjmncn 
n=l n=l 

= $cm = lLsh (y) T(x,O)dx, (17) 

so 

cn = i lLsin (y) T(x,O)dx. (18) 

If the boundary conditions are replaced by the require- 
ment that the derivative of the temperature be zero at 
the edges, then (9) and (10) are replaced by 

(19) 

dT 

dx (W) 
= 0. (20) 

Following the same procedure as before, a similar answer 
is found, but with sine replaced by cosine: 

T(x, t) = y; Cn COS ( y ) e--n’nm’L’2t, (21) 

where 

Heat Conduction Equation-Disk 
TO solve the HEAT CONDUCTION EQUATION on a 2-D 
disk of radius R = 1, try to separate the equation using 

T(T, 0, t) = R(r)O(B)T(t). (1) 

Writing the 8 and T terms of the LAPLACIAN in SPHER- 
ICAL COORDINATES gives 

so the HEAT CONDUCTION EQUATION becomes 

RO d2T 2 dR 1 d20 --- %T+Tz@T+FwRT. 
K dt2 - dr2 (3) 
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Multiplying through by r2/ROT gives Heaviside Step Function 

l7 r2 d2T r2 d2R 2r dR d20 1 
--=-- 
KT dt2 R dr2 +Rdr+d82& (4) 

0.8 

0.6’ 

0.4. 

0.2. 

The 0 term can be separated. 

d20 1 -- - 
de2 0 - 

-n(n + I), (5) I  

A discontinGous ‘Gp” function, l;so call:d the UNIT 
STEP, and defined by which has a solution 

o(e) = Aces [J-O] +Bsin [Jn(n+l)B] . 

(6) 
The remaining portion becomes 

(1) 

It is related to the BOXCAR FUNCTION. The DERIVA- 
TIVE is given by ~~ d2T r2 d2R 2r dR ----- 

KT dt2 - R dr2 
+ -- -n(n+l). 

R dr (7) 
d zH(x) = w, (2) 

Dividing by ~~ gives 

where 6(x) is the DELTA FUNCTION, and the step func- 
tion is related to the RAMP FUNCTION R(x) by 1 d2T 1 d2R 2 dR n(n + 1) 1 --- 

KT dt2 - R dr2 
--+z-&-7=-p (8) 

= -H(x). (3) where a NEGATIVE separation constant has been chosen 
so that the t portion remains finite 

Bracewell (1965) gives many identities, some of which 
include the following. Letting * denote the CONVOLU- 
TION, 

H(x) * f(x) = I’ f(x’)dx’ (4) 

w = &-4x2. (9) 
The radial portion then becomes 

1 d2R 2 dR 
+ 

n(n+l) 1 -- ---- 
R dr2 rR dr T2 

+x2=0 (10) 

H(T) * H(T) = rrn H(u)H(T - u) du 
J-CG 

(5) 
2d2R 

T p+2r 
= H(0) H(T - u) du 

whichisthe SPHERICAL BESSEL DIFFERENTIAL EQUA- 
TION. If the initial temperature is T(r, 0) = 0 and the 
boundary condition is T( 1, t) = 1, the solution is s 

T  

= H(O)H(T) du = TH(T). (6) 
0 

Additional identities are 
O” Jo(w-) 

T(r, t) = 1 - 27; cy )ean2t, Jl(a (12) 
n n 

n=l (7) 

where an. is the nth POSITIVE zero of the BESSEL FUNC- 
TION OF THE FIRST KIND Jo. 

- 9) HW 

Heaviside Cakulus 
A method of solving differential equations using FOUR- 
IER TRANSFORMS and LAPLACE TRANSFORMS. 

see also FOURIER TRANSFORM, LAPLACE TRANSFORM 

H (x + k) a>0 - - 
H( 

-x-i 
> a < 0. 

(8) 

The step function obeys the integral identities 

s 

b 

s 

b 

H(u - uo)f (u) du = H(uo) f (4 du (9) 
-a UO 

s 

b 

s 

Ul 

H(UI - u)f(u) du = H(ul) f (4 du (10) 
-a -a 
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s b 
H(u - uo)H(u~ - u) f (u) du 

--a 
Ul 

= H(uo)H(ul) 
s 

f(u) oh (11) 
“0 

The Heaviside step function can be defined by the fol- 
lowing limits, 

H(x) (12) 
- + limerfc(-7) - (13) 

t40 

- - t--l e -2/t du (14) 

-- - : + +,l&si(y) (15) 

where A is the one-argument 
si(x) is the SINE INTEGRAL. 

=~~[~t-‘sinc(~) du 

(18) 

TRIANGLE FUNCTION and 

The FOURIER TRANSFORM of the Heaviside step func- 
tion is given by 

3[H(x)] = 
s 

O” e-2”ikxH(x)dx = i [s(k) - -$] , 
--oo 

(19) 
where S(k) is the DELTA FUNCTION. 

see also BOXCAR FUNCTION, DELTA FUNCTION, FOUR- 
IER TRANSFORM-HEAVISIDE STEP FUNCTION, RAMP 
FUNCTION, RAMP FUNCTION, RECTANGLE FUNCTION, 
SQUARE WAVE 
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Heawood Conjecture 
The bound for the number of colors which are SUFFI- 
CIENT for MAP COLORING on a surface of GENUS 9, 

is the best possible, where [xj is the FLOOR FUNCTION. 
x(g) is called the CHROMATTC NUMBER, and the first 
few values for g = 0, 1, . . . are 4, 7, 8, 9, 10, 11, 12, 12, 
13, 13, 14, . l  . (Sloane’s A000934). 

The fact that x(g) is also NECESSARY was proved by 
Ringel and Youngs (1968) with two exceptions: the 
SPHERE (PLANE), and the KLEIN BOTTLE (for which 
the Heawood FORMULA gives seven, but the correct 
bound is six). When the FOUR-COLOR THEOREM was 
proved in 1976, the KLEIN BOTTLE was left as the only 
exception. The four most difficult cases to prove were 
g = 59, 83, 158, and 257. 

see UZSO CHROMATIC NUMBER, FOUR-COLOR THEO- 
REM, MAP COLORING, SIX-COLOR THEOREM, TORUS 
COLORING 
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Hebesphenomegacorona 

see JOHNSON SOLID 

Hecke Algebra 
An associative RING, also called a HECKE RING, which 
has a technical 
SUBGROUPS. 

definition in terms of commensurable 

Hecke L-Function 
A generalization of the EULER L-FUNCTION associated 
with a GROSSENCHARACTER. 

Keierences 
Knapp, A. W. “Group Representations and Harmonic Anal- 

ysis, Part II.” Not. Amer. Math. Sot. 43, 537-549, 1996. 

Hecke Operator 
A family of operators on each SPACE of MODULAR 
FORMS. Hecke operators COMMUTE with each other. 

Hecke Ring 

see HECKE ALGEBRA 

Hectogon 
A loo-sided POLYGON. 

Hedgehog 
An envelope parameterized by its GAUSS MAP. The 
parametric equations for a hedgehog are 

2= p(O) cos 8 + p’(e) sin0 

y = p(O) sin t? + p’(8) cos 0. 

A plane convex hedgehog has at least four VERTICES 
where the CURVATURE has a stationary value. A plane 
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convex hedgehog of constant width has at least six VER- 
TICES (Martinez-Maure 1996). 

References 
Langevin, R.; Levitt, G.; and Rosenberg, H. “H&issons et 

Multiherissons (Enveloppes parametrees par leu applica- 
tion de Gauss.” Warsaw: Singularities, 245-253, 1985. 
Banach Center Pub. 20, PWN Warsaw, 1988. 

Martinez-Maure, Y. “A Note on the Tennis Ball Theorem.” 
Amer. Math. Monthly 103, 338-340, 1996. 

Heegaard Diagram 
A diagram expressing how the gluing operation that 
connects the HANDLEBODIES involved in a HEEGAARD 
SPLITTING proceeds, usually by showing how the merid- 
ians of the HANDLEBODY are mapped. 

see UZSO HANDLEBODY, HEEGAARD SPLITTING 

Reierences 
Rolfsen, D. Knots and Links. Wilmington, DE: Publish or 

Perish Press, p. 239, 1976, 

Heegaard Splitting 
A Heegaard splitting of a connected orientable 3- 
MANIFOLD iU is any way of expressing iW as the 
UNION of two @,I)-HANDLEBODIES along their bound- 
aries. The boundary of such a ($I)-HANDLEBODY is an 
orientable SURFACE of some GENUS, which determines 
the number of HANDLES in the (3,1)-HANDLEBODIES. 
Therefore, the HANDLEBODIES involved in a Heegaard 
splitting are the same, but they may be glued together 
in a strange way along their boundary. A diagram show- 
ing how the gluing is done is known as a HEEGAARD 
DIAGRAM. 

References 
Adams, C. C. The Knot Book: An Elementary Introduction 

to the Mathematical Theory of Knots. New York: W. H. 
Freeman, p. 255, 1994. 

Heegner Number 
The values of -d for which QUADRATIC FIELDS 
Q( da) are uniquely factorable into factors of the form 
a + b&ii Here, a and b are half-integers, except 
for d = 1 and 2, in which case they are INTEGERS. 
The Heegner numbers therefore correspond to DISCRIM- 
INANTS -d which have CLASS NUMBER h(-d) equal to 
1, except for Heegner numbers - 1 and -2, which corre- 
spond to d = -4 and -8, respectively. 

The determination of these numbers is called GAUSS'S 
CLASS NUMBER PROBLEM, and it is now known that 
there are only nine Heegner numbers: -1, -2, -3, -7, 
-11, -19, -43, -67, and -163 (Sloane’s AOO3173), cor- 
responding to discriminants -4, -8, -3, -7, -11, -19, 
-43, -67, and -163, respectively. 

Heilbronn and Linfoot (1934) showed that if a larger d 
existed, it must be > 10’. Heegner (1952) published a 
proof that only nine such numbers exist, but his proof 
was not accepted as complete at the time. Subsequent 

examination of Heegner’s proof show it to be “essen- 
tially” correct (Conway and Guy 1996). 

The Heegner numbers have a number of fascinating 
connections with amazing results in PRIME NUMBER 
theory. In particular, the ~-FUNCTION provides stun- 
ning connections between e, 7~, and the ALGEBRAIC 
INTEGERS. They also explain why Euler’s PRIME- 
GENERATING POLYNOMIAL n2-n+41 is sosurprisingly 
good at producing PRIMES. 

see UZSO CLASS NUMBER, DISCRIMINANT (BINARY 
QUADRATIC FORM), GAUSS'S CLASS NUMBER PROB- 
LEM, j-Function, PRIME-GENERATING POLYNOMIAL, 
QUADRATIC FIELD 

References 
Conway, J. H. and Guy, R. K. ‘&The Nine Magic Discrimi- 

nants.” In The Book of Numbers. New York: Springer- 
Verlag, pp. 224-226, 1996. 

Heegner, K. “Diophantische Analysis und Modulfunktionen.” 
Math. 2, 56, 227-253, 1952. 

Heilbronn, H. A. and Linfoot, E. H. “On the Imaginary Quad- 
ratic Corpora of Class-Number One.” Quart. J. Math. 

(Oxford) 5, 293-301, 1934. 
Sloane, N. J. A. Sequence A003173/M0827 in “An On-Line 

Version of the Encyclopedia of Integer Sequences.” 

Heesch Number 
The Heesch number of a closed plane figure is the max- 
imum number of times that figure can be completely 
surrounded by copies of itself. The determination of the 
maximum possible (finite) Heesch number is known as 
HEESCH'S PROBLEM. The Heesch number of a TRIAN- 
GLE, QUADRILATERAL, regular HEXAGON, or any other 
shape that can TILE or TESSELLATE the plane, is in- 
finity. Conversely, any shape with infinite Heesch num- 
ber must tile the plane (Eppstein). The largest known 
(finite) Heesch number is 3, and corresponds to a tile 
invented by R. Ammann (Senechal 1995). 

References 
Eppstein, D. “Heesch’s Problem.” http://www,ics.uci. 

edu/-eppstein/junkyard/heesch/. 
Fontaine, A. “An Infinite Number of Plane Figures with 

Heesch Number Two.” J. Comb. Th. A 57, 151-156,199l. 
Senechal, M. Quasicrystals and Geometry. New York: Cam- 

bridge University Press, 1995. 

Heesch’s Problem 
How many times can a shape be completely surrounded 
by copies of itself without being able to TILE the en- 
tire plane, i.e., what is the maximum (finite) HEESCH 
NUMBER? 

References 
Eppstein, D. “Heesch’s Problem.” http: //wuu. its .uci . 

edu/-eppstein/junkyard/heesch/. 

Height 
The vertical length of an object from top to bottom. 

see also LENGTH (SIZE), WIDTH (SIZE) 
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Heilbronn Triangle Problem 
N.B. A detailed on-line essay by S. Finch was the start- 
ing point for this entry. 

Given any arrangement of n points within a UNIT 
SQUARE, let & be the smallest value for which there is 
at least one TRIANGLE formed from three of the points 
with AREA < Hn. The first few values are - 

Ha = + 

H4 = $ 

H:,=$fi 

Hs = $ 

& 2 $ 

H8> $(2-h) 

Hs 2 & 

HI0 2 $(3fi- 11) 

Hll 2 $ 

H12 > $ 

H13 2 0.030 

HI4 2 0.022 

HI5 2 0.020 

HIS > 0.0175. - 

Koml6s et al. (1981, 1982) have shown that there are 
constants c such that 

clnn c 
n,_<&S- n8i7 - E’ 

for any E > 0 and all sufficiently large n. 

Using an EQUILATERA 
gives the constants 

L TRI ANGLE of unit AREA instead 

h3 = 1 

h4 = + 

h5 = 3-2fi 

hs = +. 

References 
Finch, S. “Favorite Mathematical Constants.” http : //www l  

mathsoft.com/asolve/constant/hlb/hlb,htmL 
Goldberg, M. “Maximizing the Smallest Triangle Made by N 

Points in a Square.” Math. Mag. 45, 135-144, 1972, 
Guy, R. K. Unsolved Problems in Number Theory, 2nd ed. 

New York: Springer-Verlag, pp. 242-244, 1994, 
Komlo& J.; Pintz, J.; and Szemerkdi, E. ‘LOn Heilbronn’s 

Triangle Problem.” J. London Math. Sot. 24, 385-396, 

Komlo& J.; Pi&z, J.; and Szemerkdi, E. “A Lower Bound for 
Heilbronn’s Triangle Problem.” J. London Math. Sot. 25, 
13-24, 1982. 

Roth, K. F. “Developments in Heilbronn’s Triangle Prob- 
lem.” Adv. Math. 22, 364-385, 1976. 

Heine-Bore1 Theorem 
If a CLOSED SET of points on a line can be covered by a 
set of intervals so that every point of the set is an interior 
point of at least one of the intervals, then there exist a 
finite number of intervals with the covering property. 

Heine Hypergeometric Series 

where 

(ai q>n = (1 - a)(1 - aq)(l - aq2) l  * l  (1 - aq”-l),(2) 

(a;q)o = 1. (3) 

In particular, 

2qh(a,b;c; q,x) = 

00 

IE 
n=O 

Ca; Q)n(b; Q)nZn 

(??i Q)n(G Ir)n 
(4 

(Andrews 1986, p. 10). Seine proved the transformation 
formula 

241 (a, b; c; q, 2) = (6; 400 (w do0 
cc; d& q>m 2h(Clb;w !Lb), 

(5) 

and Rogers (1893) obtained the formulas 

(c/b; d&G & - - 
(G &(c; cl>- 2qb (b, ab+; bx; q, c/b) (6) 

(Andrews 1986, pp4 10-11). 

see also q-S ERIES 
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+ (~“-l)(s”+l-l)(q~-l)(q~+l~~) i2 ;-- ,; 
~q-~)(q~-l)(p~-l)(q-f+l-l) l  l  ** J. reine angew. 
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l  l  l  * ‘)’ J. reine angew. 

Math. 34, 285-328, 1847. 
Heine, E. Theorie der Kugelfunctionen und der verwandten 

Functionen, Vol. 1. Berlin: Reimer, 1878. 
Rogers, L. J. “On a Three-Fold Symmetry in the Elements 

of Heine’s Series.” Proc. London Math. Sot. 24, 171-179, 
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Heisenberg Group 
The Heisenberg group H” in n COMPLEX variables is 
the GROUP of all (~,t) with z E c” and t f R having 
multiplication 

(w, t)(x, t’) = (w + z, t + t + S[WTZ]) 

where w  T l  1s the conjugate transpose. The Heisenberg 
group is ISOMORPHIC to the group of MATRICES 

[ 

1 XT $lr12 + it 

0 

1 

z 1 ? 0 0 1 

and satisfies 
(2, t)-’ = (-z, -t). 

Every finite-dimensional unitary representation is trivial 
on 2 and therefore factors to a REPRESENTATION of the 
quotient V. 

see also NIL GEOMETRY 

References 
Knapp, A. W. “Gmup Representations and Harmonic Anal- 

ysis, Part II.” Not. Amer. Math. Sm. 43, 537-549, 1996. 

Heisenberg Space 
The boundary of COMPLEX HYPERBOLIC ~-SPACE. 

see also HYPERBOLIC SPACE 

Held Group 
The SPORADIC GROUP He. 

References 
Wilson, R. A. “ATLAS of Finite Group Representation.” 

http://for.mat.bham.ac.uk/atlas/He.html. 

Helen of Geometers 

see CYCLOID 

Helicoid 

The MINIMAL SURFACE having a HELIX as its bound- 
ary. Itistheonly RULED MINIMAL SURFACE other than 
the PLANE (Catalan 1842, do Carmo 1986). For many 
years, the helicoid remained the only known example of 
a complete embedded MINIMAL SURFACE of finite topol- 
ogy with infinite CURVATURE. However, in 1992 a sec- 
ondexample,knownas HOFFMAN'S MINIMAL SURFACE 
and consisting of a helicoid with a HOLE, was discovered 
(Sci. News 1992). 

The equation of a helicoid in CYLINDRICAL COORDI- 
NATESis 

z = ce. (1) 

In CARTESIAN COORDINATES,~~~~ 

Y - = tan k . 
X 0 C 

(2) 

It can be given in parametric form by 

2 = ucosv (3) 

y=~sinw (4 

z = cu, (5) 

which has an obvious generalization to the ELLIPTIC 
HELICOID. The differentials are 

dx = cosvdu - usinvdv 

dY = sinvdu+ucosvdv 

dz = 2cudy, 

(6) 

(7) 

(8) 

SO the LINE ELEMENT on the surface is 

ds2 = dx2 + dy2 + dz2 

= cos’ w du2 - 2u sin v cos v du dw + u2 sin2 v dv2 

+ sin2 v du2 + 2u sin v cos v du dv + u2 COS' v dv2 

+ 4c2u2 du2 

= (l+ 4c2u2) du2 + u2 dv’, (9) 

and the METRIC components are 

Quu = 1 + 4C2U2 (10) 

suv =o (11) 

svv = u2. (12) 

from GAUSS'S THEOREMA EGREGIUM, the GAUSSIAN 
CURVATURE is then 

4c2 

K = (1+ 4cW)2 l  

(13) 

The MEAN CURVATURE is 

H = 0, (14) 

and the equation for the LINES OF CURVATURE is 

U = &csinh(v - k). (15) 
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The helicoid can be continuously deformed into a makes a constant ANGLE with a fixed line. The helix is 
CATENOID by the transformation a SPACE CURVE with parametric equations 

4% 4 = cos a sinh v sin u + sin Q cash v cos u w  

Ybv) = - cos a sinh w  cos u + sin a: cash v sin u (17) 

4% 4 = ucosa+ vsinar, (18) 

where a = 0 corresponds to a helicoid and QI = r/2 to 
a CATENOID. 

If a twisted curve C (i.e., one with TORSION 7 # 0) 
rotates about a fixed axis A and, at the same time, is 
displaced parallel to A such that the speed of displace- 
ment is always proportional to the angular velocity of 
rotation, then C generates a GENERALIZED HELICOID. 

see also CALCULUS OF VARIATIONS, CATENOID, ELLIP- 
TIC HELICOID, GENERALIZED HELICOID, HELIX, HOFF- 
MAN’S MINIMAL SURFACE, MINIMAL SURFACE 
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Helix 

A helix is also called a CURVE OF CONSTANT SLOPE. 
It can be defined as a curve for which the TANGENT 

2 = ?-cost (1) 
y = rsint (2) 
z = ct, (3) 

where c is a constant. The CURVATURE of the helix is 
given by 

T 
/$c- 

7-2 + c2 ’ (4) 

and the LOCUS of the centers of CURVATURE of a helix 
is another helix. The ARC LENGTH is given by 

The TORSION of a helix is given by 

“I I -rsint -r cost rsint A 
rcost 

r= r2(r2+c2) c 
-rsint -r cost 

0 0 
C - -- 

7-2 + c2’ 

so 
K 7+ T -- - -=- 

T $7 C' 

(5) 

(6) 

(7) 

which is a constant. In fact, LANCRET’S THEOREM 
states that a NECESSARY and SUFFICIENT condition for 
a curve to be a helix is that the ratio of CURVATURE to 
TORSION be constant. The OSCULATING PLANE of the 
helix is given by 

a - rcost z2 --sirit 23 -ct 

-r sin t rcost c =o (8) 
-T cos t --T sin t 0 

zpzsint - z2ccos t + (~3 - ct)r = 0. (9) 

The MINIMAL SURFACE of a helix is a HELICOID. 

see also GENERALIZED HELIX, HELICOID, SPHERICAL 
HELIX 
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which simplifies to Helly Number 
Given a Euclidean n-space, 

see also EUCLIDEAN SPACE, HELLY’S THEOREM 

Helly’s Theorem 
If F is a family of more than n bounded closed convex 
sets in Euclidean n-space R”, and if every Hn. (where 
Hn is the HELLY NUMBER) members of F have at least 
one point in common, then all the members of F have 
at least one point in common. 

see &O CARATH~ODORY'S FUNDAMENTAL THEOREM, 
HELLY NUMBER 

Helmholtz Differential Equation 
A PARTIAL DIFFERENTIAL EQUATION which can be 
written in a SCALAR version 

V2$ + k”$ = 0, (1) 

O~VECTOR form, 

V2A+ k2A= 0, 

where V2 is the LAPLACIAN. When k = 0, the 
Helmholtz differential equation reduces to LAPLACE’S 
EQUATION. Wh en k2 < 0, the equation becomes the 
space part of the diffusion equation. 

The Helmholtz differential equation can be solved by 
SEPARATION OF VARIABLES in only 11 coordinate sys- 

tems, 10 of which (with the exception of CONFOCAL 
PARABOLOIDAL COORDINATES) are particular cases of 
the CONFOCAL ELLIPSOIDAL system: CARTESIAN, CON- 
FOCALELLIPSOIDAL, CONFOCAL PARABOLOIDAL$ON- 
ICAL, CYLINDRICAL, ELLIPTIC CYLINDRICAL, OBLATE 
SPHEROIDAL, PARABOLOIDAL, PARABOLIC CYLINDRI- 
CAL,PROLATE SPHEROIDAL, and SPHERICAL COORDI- 

NATES (Eisenhart 1934). LAPLACE'S EQUATION (the 
Helmholtz differential equation with k = 0) is separa- 
ble in the two additional BISPHERICAL COORDINATES 
and TOROIDAL COORDINATES. 

If Helmholtz’s equation is separable in a 3-D coordinate 
system, then Morse and Feshbach (1953, pp. 509-510) 
show that 

where i # j # ?I. The LAPLACIAN is therefore of the 
form 

1 
v2 = hlh2h3 

1 d 
+-- 

hz2f2 au2 

++& [f3b3&' (5) 
3 3 U3 

Such a coordinate system obeys the ROBERTSON CON- 
DITION, which means that the ST~CKEL DETERMINANT 
is of the form 

h h2 h3 
s = fl(Ul>f2(U2)f3(U3> ’ 

(6) 

Coordinate System Variables Solution Functions 

Cartesian WW(YM4 exponential, circular, 

hyperbolic 

circular cylindrical w-~vM4 Bessel, exponential, 
circular 

conical ellipsoidal harmonics, 
power 

ellipsoidal NNm4w~ ellipsoidal harmonics 

elliptic cylindrical U(u)V(v)Z(z) Mathieu, circular 
oblate spheroidal R(X)M(J.A)N(Y) Legendre, circular 
parabolic Bessel, circular 

parabolic cylindrical Parabolic cylinder, 

Bessel, circular 

paraboloidal U(u)V(v)O(O) B aer functions, circular 
prolate spheroidal A(X)M(p)N(v) Legendre, circular 

spherical R(r)@(B)+(#) Legendre, power, 

circular 

see also LAPLACE'S EQUATION, POISSON'S EQUATION, 
SEPARATION OF VARIABLES, SPHERICAL BESSEL DIF- 
FERENTIAL EQUATION 
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Physical Review 45, 427-428, 1934. 
Eisenhart, L. P. “Separable Systems of St%ckel.” Ann. Math. 
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Helmholta Differential Equation-Bipolar 

Coordinates 
In BIPOLAR COORDINATES, the HELMHOLTZ DIFFER- 

ENTIAL EQUATION is not separable, but LAPLACE'S 
EQUATION is. 

see also LAPLACE'S EQUATION-BIPOLAR COORDI- 

NATES 

Helmholtz Differential Equation-Cartesian 

Coordinates 
In 2-D CARTESIAN COORDINATES, attempt SEPARA- 

TION OF VARIABLES by writing 

F(X,Y) = X(J:)Y(Y), (1) 
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where X, Y, and 2 could be permuted depending on 
boundary conditions. The general solution is therefore 

then the HELMHOLTZ DIFFERENTIAL EQUATION be- 
comes 

d2X d2Y 
sY+dyzX+k2XY=0. (2) F(x, Y7 x) 

Dividing both sides by XY gives =xX( AleEx + Bp?x)(Cme”Y + D,eBmy) 

1=1 m=l 
1 d2X 1 d2Y 

xG+Ydyl+k2=0. (3) 
x (&?ze 

-iJliqiqz% + fi m eie”), (15) 

This leads to the two coupled ordinary differential equa- 
tions with a separation constant m2, 

References 
Morse, P. M. and Feshbach, H. AIethods of Theoretical Phys- 

ics, Part I. New York: McGraw-Hill, pp. 501-502, 513-514 
and 656,1953. 1d2X 2 --= 

X dx2 m 
1 d2Y --- 
Y dy2 

- -(n-t2 + k”), 

(4) 

(5) 
Helmholtz Differential Equation-Circular 

Cylindrical Coordinates 
In CYLINDRICAL COORDINATES, the SCALE FACTORS 
are h, = 1, he = T, h, = 1 and the separation functions 

are fi(~) = T, f2(@) = 1, f3(z) = 1,so the ST~KEL DE- 
TERMINANT is 1. Attempt SEPARATION OF VARIABLES 
by writing 

where X and Y could be interchanged depending on the 
boundary conditions. These have solutions 

X = A,emx + Bmemmx (6) 

Y = Cme i&&sy + D 
m 

,-“JZWY 

= Em sin(Jm2flc2y) -I Fm COS(-Jm2+Ic2Y)- 

(7) 

F(T, 8, x) = R(r)O(B)Z(z), (1) 

then the HELMHOLTZ DIFFERENTIAL EQUATION be- 
comes 

1 d20 d2Z 
~~z+~~OZ+~~R~+~RO+klRsZ = 0. 

(2) 
Now divide by ROZ, 

The general solution is then 

F(x,y) = x(Amemx -t B,e-““) 

m=l 

X[Emsin(Jm2+lczy) +F,cos(J~~~~C~Y)]. (8) 
r2 d2R r dR d20 1 -- -- 
R dr2 + R dr 

+ d820 + z$ +k2 = 0, (3) 

so the equation has been separated. Since the solution 
must be periodic in 0 from the definition of the circular 
cylindrical coordinate system, the solution to the second 
part of (3) must have a NEGATIVE separation constant 

In 3-D CARTESIAN COORDINATES, attempt SEPARA- 
TION OF VARIABLES by writing 

F(x, Y, z> = X(X>~(Y)~($ (9) 

d20 1 
WG 

= -(k” +m”), then the HELMHOLTZ DIFFERENTIAL EQUATION be- 
comes 

(4) 

which has a solution 

@(O) = C,e-il/-= + DmeiJ=y 
(5) 

d2X 
pyz + EXZ+ 

d2Z 

dY2 
-XY + k2XY = 0. (10) 

Dividing both sides by XYZ gives Plugging (5) back into (3) gives 

1 d2X 1 d2Y 1 d2Z 
,s+-,+,dzZ+k2=O~ 

y dY 
(11) 

r2 d2R T dR 
-- 

R dr2 -+ 
-- 

R dr - m2 + dz2 2 
d2Z T2 = o 
-- (6) 

1 d2R 1 dR m2 d2Z 1 
RJ-p+zJyF+--=O- 

dz2 Z (7) 
This leads to the three coupled differential equations 

1 d2X = l2 -- 

X dx2 (12) The solution to the second part of (7) must not be sinu- 
soidal at &oo for a physical solution, so the differential 
equation has a POSITIVE separation constant 

1 d2Y -- 
y dy2 = m2 (13) 

1 d2Z -- - 
Z dz2 

- -(k” + l2 + m2), 
d2Z 1 -- 
&2 2 = n2y (14) (8) 
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where and the solution is 

dX 
a=c 

P 2 - b2)(X2 - 3) 

Z(x) = EneBnz + Fnenz. (9) 

Plugging (9) back into (7) and multiplying through by 
R yields =F[$s)-F($six?(~)] (2) 

P d2R 
dr2+ 

co 1 d2R 
zp+- (,‘,,;z + [l - &] R= 0 (11) 

dv 
Y =C 

(b 2, u2)(c2 - Y2) 
d2R 1 dR m2 

-+(nr)d(nr)+ l-02 R=O* d(nr)2 [ 1 (12) 

= F (i,sin-’ (5)) l  (4) This is the BESSEL DIFFERENTIAL EQUATION, which 
has a solution 

In terms of a, 0, and y, 

R(r) = AmnJm(nr) + B,,Y,(nr), (13) 

(5) 

(6) 

where Jn(x) and Y,(z)are BESSEL FWNCTI~NS OF THE 
FIRST and SECOND KINDS, respectively. The general 
solution is therefore 

A,,J,(nr) + ~mn~m(~~>] 
m=O n=O 

qc e-i+38+D 
m 

eidw8)(Ene-n% + F en%) 
n . 

Equation (1) is not separable using a function of the 
form 

F = LwwwYL (8) 
(14) 

but it is if we let 

1 d2L --- 
Lda2 - >: 

UkX” (9) 

1 d2M --- 
M do2 - IE bkpk (10) 

P 

1 d2N --- 
N dy2 - IE 

CkUk. (11) 

Actually, the HELMHOLTZ DIFFERENTIAL EQUATION is 
separable for general k of the form 

k2(r$,z) = f(r) + 9 + h(z) + kt2. (15) 

see dso CYLINDRICAL COORDINATES, HELMHOLTZ DIF- 
FERENTIAL EQUATION These give 

References 
Morse, P. M. and Feshbach, H. IWethods of Theoretical Phys- 

ics, Part I. New York: McGraw-Hill, pp. 514 and 656-657, 
1953. 

a0 = -bo = co 

a2 = 42 = 422, 

(12) 

(13) 

and all others terms vanish. Therefore (1) can be broken 
up into the equations 

Helmholta Different ial Equat ion-Confocal 

Ellipsoidal Coordinates 
Using the NOTATION of Byerly (1959, pp, 252-253), LA 
PLACE’S EQUATION can be reduced to 2 = (a0 + a2X2)L 

d2M - = 
w  

-(a0 + a2p2)M 

(14) 

(15) V2F = (r2-u2)g+(X2-u2)g+(~2+ = 0, 
(1) 

s = (a0 + a2v2)N. (16) 
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For future convenience, now write References 
Morse, P. M. and Feshbach, H. Methods of Theoretical Phys- 

then 

a0 = -(b2 + c2)p 

a2 = m(m + l), 

(17) 

(18) 

ics, Part I. New York: McGraw-Hill, p* 664, 1953. 

$$ - [m(m + 1)X” - (b2 + c2)p]L = 0 (19) 

d2M 
dp2 + [m(m + l)p2 - (b2 + c2)p]M = 0 (20) 

$ - [m(m + l)v2 - (b2 + c2)p]N = 0. (21) 

Now replace QI, p, and y to obtain 

Helmholtz Differential Equation-Conical 
Coordinates 
In CONICAL COORDINATES, LAPLACE'S EQUATION can 
be written 

where 

(A” - b2)(X2 - c2,g + X(A2 - b2 +x2 - c2)E 

-[m(m + 1)X2 - (b2 + c2)p]L = 0 (22) 

(P 2 - b2)(p2 - c2)s + P(P2 
2 &f -b2+p2-C)-& 

-[m(m + l)p2 - (b2 + c2)p]M = 0 (23) 

( 
2 d2N 

Y2 - b2)(u2 - c )- 
2 dN 

du2 + u(u2 - b2 + u2 - c )z 

-[m(m + l)v2 - (b2 + c”)p]N = 0. (24) 

Each of these is a LAM& DIFFERENTIAL EQUATION, 
whose solution is called an ELLIPSOIDAL HARMONIC. 
Writing 

dP a= 
(P 

2 - a2)(b2 - p2) 

P 
du - - 

(a2 - v2)(b2 - v2) 

(Byerly 1959). Letting 

V = U(u)R(r) 

breaks (1) into the two equations, 

= m(m + l)R 

L(X) = EL(X) (25) 

qw = GXP) (26) 

N(X) = E&(v) (27) 

gives the solution to (1) as a product of ELLIPSOIDAL 
HARMONICS Ed. 

d2U a2u 

a+ 
bpz + m(m + 1)(p2 - v2)U = 0. 

Solving these gives 

R(r) = AT” + BT-~-’ 

where EL are ELLIPSOIDAL HARMONICS. The regular 
solution is therefore 

V = Ar”E:,(p)E;(v). (9) 

F = E&(X)EL(p)E;(v). (28) 

References 
A&en, G. “Confocal El1 ipsoidal Coordinates (61, (2, & ).” 

52.15 in Mathematical Methods for Physicists, 2nd ed. Or- 
lando, FL: Academic Press, pp, 117-118, 1970. 

Byerly, W. E. An Elementary Treatise on Fourier’s Series, 
and Spherical, CyEindrical, and Ellipsoidal Harmonics, 
with Applications to Problems in Mathematical Physics. 
New York: Dover, pp. 251-258, 1959. 

Morse, P. M. and Feshbach, H. Methods of Theoretical Phys- 
ics, Part I. New York: McGraw-Hill, p. 663, 1953. 

However, because of the cylindrical symmetry, the so- 
lution Eg(p)EL( ) v is an mth degree SPHERICAL HAR- 
MONIC. 

References 

Helmholtz Differential Equation-Confocal 
Paraboloidal Coordinates 
As shown by Morse and Feshbach (1953), the 
HELMHOLTZ DIFFERENTIAL EQUATION is separable in 
CONFOCAL PARABOLOIDAL COORDINATES. 

A&en, G. “Conical Coordinates (<I, Jar &).” 52.16 in Math- 
ematical Methods for Physicists, 2nd ed. Orlando, FL: 
Academic Press, pp. 118-119, 1970. 

Byerly, W. E. An Elementary Treatise on Fourier’s Series, 
and Spherical, Cylindrical, and Ellipsoidal Harmonics, 
with Applications to Problems in Mathematical Physics. 
New York: Dover, p. 263, 1959. 

Morse, P. M. and Feshbach, H. Methods of Theoretical Phys- 
ics, Part I. New York: McGraw-Hill, pp, 514 and 659, 
1953. 

see UZSO CONFOCAL PARABOLOIDAL COORDINATES 

Helmholta Differential Equation-Elliptic 
Cylindrical Coordinates 
In ELLIPTIC CYLINDRICAL COORDINATES, the SCALE 

FACTORS are h, = h, = a&inh2 u + sin2 w, h, = 1, 

815 

(1) 

(2) 

(3) 

(4 

(5) 

(6) 

(7) 

(8) 
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and the separation functions are fi(u) = fi(v) = 

f3k) = 1, giving a ST~CKEL DETERMINANT of S = 
a2 ( sin2 w  + sinh2 u). The Helmholtz differential equation 
is 

Now use 
sinh2 u = f [l - cosh(Zu)] (14) 

sin2 ‘u = + [I - cos(24] (15) 

to obtain 

(1) 

d2U -- 
du2 

{c + im2[1 - cosh(2u)j)U = 0 

Attempt SEPARATION OF VARIABLES by writing 
d2V 
du2 + {c + $m2[l - cos(2v)]}V = 0. 

F(u, v, 2) = U(u>V(v>z(& (2) 
Regrouping gives 

then the HELMHOLTZ DIFFERENTIAL EQUATION be- 

comes g - [(c+ ;m2> - +‘2cosh(2u)]U = 0 (18) 

z d2U d2V 

sinh2 u + sin2 o vJp+“&-T 
> 

$ + [(c+ +12) - ~m22cos(2v)]V = 0. (19) 

+uvg + k2UVZ = 0. ‘I (3) Let b = $m2 + c and Q E $m2, then these become 

Now divide by UVZ to give 

1 1 d2U 1 d2V -- -- 
sinh2 u + sin2 v U du2 

+ 
V dv2 > 

g - [b - 2q cosh(2u)lU = 0 (20) 

d2V 
dv2 + [b - 2qcos(2v)]V = 0. (21) 

1 d2Z 
+Zdz2 + k2 = 0. (4) 

Here, (21) is the MATHIEU DIFFERENTIAL EQUA- 
TION and (20)isthe modified MATHIEU DIFFERENTIAL 
EQUATION. These solutions are known as MATHIEIJ 
FUNCTIONS. Separating the 2 part, 

see UZSO ELLIPTIC CYLINDRICAL COORDTNATES,MATH- 
IEU DIFFERENTIAL EQUATION, MATHIEU FUNCTION 1 d2Z -- - 

Z dz2 
- -(k2 + m2) 

1 

sinh2 u + sin2 v 

References 
Morse, P. M. and Feshbach, H. Methods of Theoretical Phys- 

ics, Part I. New York: McGraw-Hill, pp. 514 and 657, 
1953, 

so 
d2Z - - 
dz2 

- -(k2 + m2)Z, (7) Helmholtz Differential Equation-Oblate 

Spheroidal Coordinates 
As shown by Morse and Feshbach (1953) and A&en 
(1970), the HELMHOLTZ DIFFERENTIAL EQUATION is 
separable in OBLATE SPHEROIDAL COORDINATES. 

which has the solution 

Z(z) = Acos(Jlc2fm2z) + Bsin(dmt). (8) 

References 
Arfken, G. “Ablate Spheroidal Coordinates (u, v, p).” 52.11 

in Mathematical Methods for Physicists, 2nd ed. Orlando, 
FL: Academic Press, pp* 107-109, 1970. 

Morse, P. M. and Feshbach, H. Methods of Theoretical Phys- 
ics, Part I. New York: McGraw-Hill, pa 662, 1953. 

Rewriting (6) gives 

1 d2U --- 
U du2 

1 d2V 
-- 
V dv2 

- m2 sin2 v = 0, 

which can be separated into 
Helmholtz Differential Equation-Parabolic 

Coordinates 
The SCALE FACTORS are h, = h, = 1/u2 + w2, he = uu 
and the separation functions are fi(u) = U, fi(w) = w, 
f3(0)= 1, given a ST~CKEL DETERMINANT ofS= u2+ 
v2* The LAPLACIAN is 

1 d2U --- 
U du2 

m2 sinh2 u = c 

1 d2V 
c+--- 

V dv2 
m2 sin2 v = 0, 

so 
d2U -- 
du2 

(c + m2 sinh2 u)U = 0 (12 
1dF d2F -- 
v dv + dv2 

d2V 
p+(c- m2 sin2 v)V = 0. 

1 d2F 
+- - + k2 = 0. 

u2v2 a2 
(1) (13 
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Attempt SEPARATION OF VARIABLES by writing so 
2d2U dU 

vP+du - (c+ k2)U = 0 

2d2V dV 
v dv2 -5 dv + (c - k2)V = 0. 

(13) 

(14) 

F(u, v, z) E U(u)V(v)O(B), (2) 

then the HELMHOLTZ DIFFERENTIAL EQUATION be- 
comes 

References 
A&en, G. “Parabolic Coordinates (<, q, ,).” $2.12 in 1Muth- 

ematical Methods for Physicists, 2nd ed. Orlando, FL: 
Academic Press, pp. 109-111, 1970. 

Morse, P. M. and Feshbach, H. Methods of Theoretical Phys- 
ics, Part I. New York: McGraw-Hill, pp. 514-515 and 660, 
1953. 

++g+!$)] +k2UvO=0. (3) 

Now divide by UVO, 
Helmholtz Differential Equation-Parabolic 

Cylindrical Coordinates 
In PARABOLIC CYLINDRICAL COORDINATES, the SCALE 
FACTORS are h, = h, = dm, h, = 1 and the 
separation functions are f&) = fi(v) = f3(z) = 1, 
giving STXCKEL DETERMINANT of S = u2 +v2. The 
HELMHOLTZ DIFFERENTIAL EQUATION is 

+$z + k2 = 0. I (4) 

Separating the 0 part, 

-&(~+$)+~+k’=O. (1) 
1 d2@ 

of82 
= -(k2 +m2) (5) 

Attempt SEPARATION OF VARIABLES by writing 

F(u, v, z) = U(u)V(v)Z(z), (2) 

= k2, (6) 
then the HELMHOLTZ DIFFERENTIAL EQUATION be- 
comes so 

d20 -= 
do2 

-(k2 + m2)0, (7) 1 

u2 + v2 
VZd2U 

d2V 
Jq+yp 

> 
+uvg 

+k2UVZ = o. (3) 

which has solution 

O(O) = Acos(JG8) + Bsin(JIc2+mZO), (8) 

Divide by UVZ, 
and 

1 d2V -- 
+ V dv2 > 

+;g+le2=o. (4) 

-k 
2 u2 + v2 

- = 0 (9) 
u2v2 

Separating the 2 part, 

1 d2Z --= 
Z dz2 

-(k2 + m2) (5) 

1 d2V 
+ -- 

V dv2 > 
-k2=(-) (6) 

1 d2U 1 d2V 
Vdu2 + Vdv2 - k2(u2 + v”) = 0, 

so 
d2Z 
- r 
dz2 

-(k2 + m2)Z, 

which has solution 

(7) 

(8) 

This can be separated 

(11) 

Z(z) = Acos(~~t) +Bsin(dwr), (9) (12) 
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(6) 

and 

?d?! - k2u2 
U du2 

Plug (4) back into (3) 

r2R” + TR’ - m2 R = 0. 

Thisis an EULER DIFFERENTIAL EQUATION withct E 1 
and p E --m2* The roots are T = &L So for m = 0, 
T = 0 and the solution is 

This can be separated 

!d?! - Jc2u2 
U du2 

=c 

Ad2 - k2v2 = 
V dv2 

--c 7 

(11) R(T) = cl + c2 lnr. (7) 

But since In T blows up at T = 0, the only possible phys- 
ical solution is R(T) =cl. Whenm>O,r=*m,so 

R( > T = CITm + C2T-*. (8) 

(12) 

g-(c+k2u2)Li=0 (13) 
But since T-~ blows up at T = 0, the only possible 
physical solution is Rm(r) = clrm. The solution for R 
is then 

d2V 
dv2 + (c - k2v2)V = 0. (14) 

Rm(T)=CmTm (9) These are the WEBER DIFFERENTIAL EQUATIONS, and 
the solutions are known as PARABOLIC CYLINDER 
FUNCTIONS. 

for nz = 0, 1, . . . and the general solution is 

see ah PARABOLIC CYLINDER 
CYLINDRICAL COORDINATES, 

FUNCTION *, PARABOLIC 
IFFERENTIAL F(r, S) = g[amrm sin(dw0) 

m=O 
WEBER D 

EQUATIONS 

References 
Morse, P. M. and Feshbach, H. lMethods of Theoretical Phys- 

ics, Part I. New York: McGraw-Hill, pp. 515 and 658, 
1953. 

+ bmTm cos( z/k2 + m2 O)]. (10) 

References 
Morse, P. M. and Feshbach, H. IMethods of ZXeoretical Phys- 

ics, .Part I. New York: McGraw-Hill, pp. 502-504, 1953. 

Helmholtz Differential Equation-Polar 
Coordinates 
In 2-D POLAR COORDINATES, attempt SEPARATION OF 
VARIABLES by writing 

Helmholtz Differential Equation-Prolate 
Spheroidal Coordinates 
As shown by Morse and Feshbach (1953) and Arfken 
(1970)) the HELMHOLTZ DIFFERENTIAL EQUATION is 
separable in PROLATE SPHEROIDAL COORDINATES. F(T$) = R(T)@(~), (1) 

References 
Arfken, G. “Prolate Spheroidal Coordinates (u, zt, cp).” 52.10 

in Mathematical Methods for Physicists, 2nd ed. Orlando, 
FL: Academic Press, pp. 103-107, 1970. 

Morse, P. M. and Feshbach, H. kfethods of Tlzeoretical Phys- 
ics, Part I. New York: McGraw-Hill, p. 661, 1953. 

then the HELMHOLTZ DIFFERENTIAL EQUATION be- 
comes 

1 d20 
7wR+k2RO=0. (2) 

Helmholtz Differential Equation-Spherical 
Coordinates 

Divide both sides by RO 

;$f+$) + @+k2) =O. (3) 
In SPHERICAL COORDINATES, the SCALE FACTURS are 
h, = 1, he = rsin#, h4 = T, and the separation func- 
tions are fi (T) = y2, fi (0) = 1, f3 (4) = sin 4, giving a 
STXCKEL DETERMINANT ofS =l. The LAPLACIAN is The solution to the second part of (3) must be periodic, 

so the differential equation is 

d20 1 

de2G 
= -(k2 + n-x2), (4) 

which has solutions 

1 d d 
+- 

r2 sin 4 Zj ( > sin4G l  

(1) 

TO solve the HELMHOLTZ DIFFERENTIAL EQUATION 

in SPHERICAL COORDINATES, attempt SEPARATION OF 
VARIABLES by writing 

w = cle i&qize + c2e-i@3e 

- - c3 sin(&GZG) + c4cos(&iG%9). 

(5) 
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Then the HELMH~LTZ DIFFERENTIAL EQUATION be- 
comes 

Then 

T2 2(n+c)(n+c- l)anr”+“-2+2T ~(n+C)anrn+C-l 1 d20 @R + -- 
~2 sin2 gb de2 

+ *e@R+ 
r2 sin+ d+ 

+3R = 0. (3) 

n=O 

00 

-Z(Z + 1) XunP+= = 0 (13) 
n=O 

Now divide by ROG, 

00 

Ix 
n=O 

00 

C( n d2R 
dr2+ 

1 d20 
+-- T2 sin2 @@RdS, + - - 

~~ sin2 4 @RO 

COST ~~ sin2qMPOR 

r2 sin4 @OR d4 

l T2 sin2 4 d2@@R = 0 
+p +RO d#2 

(4) 

mr 
n+c 

=0 

(n + C)(?l + C - l)Unrn+c + 2 

-Z(l + 1 

7210 

00 

E a (14) 
n=O 

x[(n + c)(n + c + 1) - Z(Z + l)]anF+’ = 0. (15) 

r-2 sin2 4 d2R -p+ R This must hold true for all POWERS of T. For the T’ 
term (with n = 0), + cos 4 sin 4 d@ 

a&+ 

sin2 4 d2@ 
-- 

a @ d42 > 
= 0. (5) 

c(c + 1) = qz+ l), (16) 
The solution to the second part of (5) must be sinusoidal, 
so the differential equation is which is true only if c = I, --I - 1 and all other terms 

vanish. So a, = 0 for n # I, -2 - 1. Therefore, the 
solution of the R component is given by d20 1 -- 

&j2 0 = -m2’ (6) 
Rlb9 = ANT” + B/-f (17) 

which has sblutions which may be defined either as a 
COMPLEX function with m = -00, . . l  , 00 Plugging (17) back into (9), 

O(O) = A,eime, (7) 
Z(Z + 1) - 

m2 cos$ 1 d@ ld2@ -+ --- -- 
sin2 4 sin 4 @ dqb -+ + d42 

=o 
(18) 

or as a sum of REAL sine and cosine functions with m = 

--00, l  . l  , Qo 

w + $a/+ 
[ 
2(1+ 1) - -g- @ = 0, 

sin q5 1 (19) 
O(O) = Sm sin(m9) + Cm cos(m0). (8) 

which is the associated LEGENDRE DIFFERENTIAL 
EQUATIUN for 61: = cos C$ and m = 0, . . . , 2. The general 
COMPLEX solution is therefore 

Plugging (6) back into (7)) 

r2 d2R 2rdR 1 -- ---- 
R dr2 + R dr sin2 4 

m2 + 
cos@sin$ d@ 

a >- d4 00 1 

x x (Air’ + B~~-‘-l)p;~~(cos~)e-~~~ 

1=0 m=-l 

m I 

The radial part must be equal to a constant E x x (AJ + B~T-‘-~)~~(~,~), (20) 
I=0 m=-1 

r2 d2R -- 
R dr2 

+ $p = l(1 + 1) (10) 
where 

Km@, 6) E P;“(cos @)Cirne (21) 2d2R dR 
T - + 2r- = l(l+ l)R. 

dr2 dr (11) 
are the (COMPLEX) SPHERICAL HARMONICS. The gen- 
eral REAL solution is 

But thisisthe EULER DIFFERENTIAL EQUATION,SO we 
try a series solution of the form 00 1 

En Air’ + Bl~-l-l)Plm(~~~ 4) 

I=0 m=O 

X[S,sin(m0) + CmCOS(mB)]* (22) 
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Some of the normalization constants of Plm can be ab- 
sorbed by Sm and Cm, so this equation may appear in 
the form 

1 
2X( Air’ + Blr-L-l)Plm(cos 4) 
I=0 m=O 

x [S,” sin(m0) + Can cos(m0)] 

s F k(Alr” + B&-I) 

E=O m=O 

x [Sl”r,“‘“‘(e, 4) + C?y,“(“)(& $)], (23) 

where 

YI m(o) (e, 4) E Plm (~0s 0) sin(m0) (24) 

qrnO (e, 4) c Plm (COS 0) cos(m0) (25) 

are the EVEN and ODD (real) SPHERICAL HARMONICS. 
If azimuthal symmetry is present, then O(8) is constant 
and the solution of the @ component is a LEGENDRE 
POLYNOMIAL Pi (cos 4). The general solution is then 

F(d) = f$d + BY”-‘)P&os~). (26) 
l=O 

Actually, the equation is separable under the more gen- 
eral condition that k2 is of the form 

k2(T,8,$) = f(r) + 9 + * +kf2. 
r2 sin e (27) 

References 
Morse, P. M. and Feshbach, H. Methods of Theoretical Phys- 

Zcs, Part I. New York: McGraw-Hill,p. 514 and 658, 1953. 

Helmholtz Differential Equation-Spherical 
Surface 
On the surface of a SPHERE, attempt SEPARATION OF 
VARIABLES in SPHERICAL COORDINATES by writing 

then the HELMHOLTZ DIFFERENTIAL EQUATION be- 
comes 

1 d20 
--a+ 
sin2 4 de2 

Dividing both sides by W, 

Helmholtz Differential Equation 

The solution to this equation must be periodic, so m 
must be an INTEGER. The solution may then be defmed 
either as a COMPLEX function 

e(e) = Arneidme + Bme-id-e (5) 

for m = -00, . . l , 00, or as a sum of REAL sine and 
cosine functions 

o(e) = Sm sin (JIc2+mze) + Cm cos(-&L&) 

(6) 
form=O, ,.., 00 s Plugging (4) into (3) gives 

(7) 

at’ + - COSTS/ + m2 

sin 4 
-a==, 
sin2 # 

(8) 

which is the LEGENDRE DIFFERENTIAL EQUATION for 
z=cos+with 

m2 c v + 11, (9) 

giving 
12+1-m2=o (10) 

Solutions are therefore LEGENDRE POLYNOMIALS with 
a COMPLEX index. The general COMPLEX solution is 
then 

F(W) = F Pl(cos4)(Ameirne + Bmehime), (12) 

m=-m 

and the general REAL solution is 

F(B, 4) = 2 Pl(cos 4)[S, sin(&) + Cm c0+7&)]. 
m=O 

(13) 

Note that these solutions depend on only a single vari- 
able m. However, on the surface of a sphere, it is usual to 
express solutions in terms of the SPHERICAL HARMON- 
ICS derived for the 3-D spherical case, which depend on 
the two variables 2 and m. 

Helmholtz Differential Equation-Toroidal 
Coordinates 
The HELMHOLTZ DIFFERENTIAL EQUATION is notsep- 
arable. 

see LAPLACE'S EQUATION-T• ROIDAL COORDINATES 

which can now be separated by writing 

d20 1 -- - 
de2 0 - 

-(k2 + m2)* (4) 
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Helmholtz’s Theorem 
Any VECTOR FIELD v satisfying 

Hemisphere 

[v~v]~=o (1) 

[Vxv],=O (2) 

may be written as the sum of an IRROTATIONAL part 
and a SOLENOIDAL part, 

v=-Vq5+VxA, 

where for a VECTOR FIELD F, 

(3) 

Half of a SPHERE cut by a PLANE passing through its 
CENTER. A hemisphere of RADIUS T can be given by 
the usual SPHERICAL COORDINATES 

4 - -- 

s 
v  l  F d3rl 

v 4nlr’ - rl 

A= 
s 

VXF 
v 4rlr’ - r, d3rr* 

(4) 

(5) 

see also &ROTATIONAL FIELD, SOLENOIDAL FIELD, 
VECTOR FIELD 

References 
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Helson-Szeg6 Measure 
An absolutely continuous measure on dD whose density 
has the form exp(a: + y), where II: and y are real-valued 
functions in L”, llylloo < n/2, expisthe EXPONENTIAL 
FUNCTION, and Ilyll is the NORM. 

Hemicylindrical Function 
A function S,(z) which satisfies the RECURRENCE RE- 
LATION 

&L-l(~) - %+1(z) = 2X(a) 

together with 
S&z) = -S&) 

is called a hemicylindrical function. 
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Sonine, N. “Recherches sur les fonctions cylindriques et le 

d&eloppement des fonctions continues en s&ies.” Math. 
Ann. 10, l-9 and 71-80, 1880. 

Watson, G. N. “Hemi-Cylindrical Functions.” $10.8 in A 
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GL: = rcos8sinqS (1) 

Y = rsin8sin4 (2) 

z = TCOS& (3) 

where 0 E [0, 2~) and 4 E [0, x/2]. All CROSS-SECTIONS 
passing through the z-axis are SEMICIRCLES. 

The VOLUME of the hemisphere is 

s 
r 

v = n (T2 - z’) dz = +T3. 

0 

The weighted mean of z over the hemisphere is 

s 
T l> z =7r Z(T2 - x”) dz = +rT2. 

0 

The CENTROID is then given by 

(4) 

(5) 

(6) 

(Beyer 1987). 

see also SEMICIRCLE, SPHERE 

References 
Beyer, W. H. (Ed.) CRC Standard Mathematical Tables, 

28th ed. Boca Raton, FL: CRC Press, p. 133, 1987. 

Hemispherical Function 
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The hemisphere function is defined as 

Watson (1966) defines a hemispherical function as a 
function S which satisfies the RECURRENCE RELATIONS 

s-kl(Z) - S,+&) = 2Snl(x) 

with 
S&) = -s;(x). 

see also CYLINDER FUNCTION, CYLINDRICAL FUNC- 
TION 

References 
Watson, G. N. A Treatise on the Theory of Bessel Functions, 

2nd ed. Cambridge, England: Cambridge University Press, 
p. 353, 1966. 

Hempel’s Paradox 
A purple cow is a confirming instance of the hypothesis 
that all crows are black. 
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Hendecagon 

~~~UNDECAGON 

Henneberg’s Minimal Surface 

A double algebraic surface of 15th order and fifth class 
which can be given by parametric equations 

4% 4 = 2sinhucosv - t sinh(3u) cos(3w) 0) 

y(u, w) = 2 sinhu sinv - $ sinh(3u) sin(%) (2) 

x(u, v) = 2 cosh( 2zc) cos( 24. (3) 

It can also be obtained from the ENNEPER-WEIERSTRAJ~ 
PARAMETERIZATION with 

f = 2 - 2c4 (4) 

9 = x. (5) 

see also MINIMAL SURFACE 

References 
Eisenhart, L. P. A Treatise on the Difierential Geometry of 

Curves and Surfaces. New York: Dover, p. 267, 1960. 
Gray, A. Modern Differential Geometry of Curves and Sur- 

faces. Boca Raton, FL: CRC Press, pp. 446-448, 1993. 
Nitsche, J. C. C. Introduction to Minimal Surfaces. Cam- 

bridge, England: Cambridge University Press, p. 144, 
1989. 

Hhon Attractor 

see H~NON MAP 

HhnokHeiles Equation 
A nonlinear nonintegrable HAMILTONIAN SYSTEM with 

. . W 

x=-z (1) 

dV c=--, 
dY 

(2) 

V(x, Y> = $(x2 + y2 + 2x2y - $y”) 

V(r$) = 
13 ir2 + g sin(38). 

(3) 

(4) 

The energy is 

E = V(x, y) + ;(k2 + @“). (5) 

E = l/12 E= 118 

’ 
-0.4 L , ., I 

I,, i.. 

I,,,,, 

a.4 L 
‘.S\ \; -;- 1. 

I . 
..,z *  . 

‘.’ 

,_ - 1.1 ,.I.. .1. I 

4.5 00 0.5 
a5 0.0 0.5 

The above piots are SURFACES OF SECTION for E = 
l/12 and E = l/8. The Hamiltonian for a generalized 
H&on-Heiles potential is 

H- +(pz2 + py2 + Ax2 + By2) + Dx2y - fCy3* (6) 
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The equations of motion are integrable only for 

1. D/C = 0, 

2. D/C = -l,A/B = 1, 

3. D/C = -l/6, and 

4. D/C = -1/16,A/B = l/6. 

References 
Gleick, J. Chaos: Making a New Science, New York: Pen- 

guin Books, pp. 144-153, 1988. 
H&non, M. and Heiles, C. “The Applicability of the Third In- 

tegral of Motion: Some Numerical Experiments.” A&on. 
J. 69, 73-79, 1964. 

G&+1 =1-ax,2+y, (1) 

yn+l =Pxn (2) 

Xn+l = xn cosa - (yn - xn2) sin Q: 

Yn+i = xAna+ (yn - X~")COS(Y. 

(3) 
(4) 

The above map is for Q! = 1.4 and 0 = 0.3. The H&on 
map has CORRELATION EXPONENT 1.251tO.02 (Grass- 
berger and Procaccia 1983) and CAPACITY DIMENSION 
1.2611tO.003 (Russell et al. 1980). Hitzl and Zele (1985) 
give conditions for the existence of periods 1 to 6. 

see also BOGDANOV MAP, LOZI MAP, QUADRATIC MAP 

References 

Henseh Lemma 
An important result in VALUATION THEORY which gives 
information on finding roots of POLYNOMIALS. Hensel’s 
lemma is formally stated as follow. Let (K, 1 n I) be a com- 
plete non-Archimedean valuated field, and let R be the 
corresponding VALUATION RING. Let f(x) be a POLY- 
NOMIAL whose COEFFTCIENTS are in R and suppose ~0 
satisfies 

Ifbo)l < lf’(a0)12, (1) 

where f’ is the (formal) DERIVATIVE of f. Then there 
exists a unique element a E R such that f(a) = 0 and 

(2) 

Less formally, if f(x) is a POLYNOMIAL with “INTEGER" 
COEFFICIENTS and f(uo) is “small” compared to f’(uo), 
then the equation f(x) = 0 has a solution “near” aa. In 
addition, there are no other solutions near a~, although 
there may be other solutions. The proof of the LEMMA 
is based around the Newton-Raphson method and relies 
on the non-Archimedean nature of the valuation. 

Consider the following example in which Hensel’s lemma 
is used to determine that the equation x2 = -I is solv- 
able in the 5-adic numbers Q (and so we can embed 
the GAUSSIAN INTEGERS inside Q5 in a nice way). Let 
Eir be the 5-adic numbers & let f(x) = x2 + 1, ‘and let 
a0 = 2. Then we have f(2) = 5 and f’(2) = 4, so 

lf(2)15 = ; < If’(2)l$ = 1, (3) 

and the condition is satisfied. Hensel’s lemma then tells 
us that there is a 5-adic number a such that u2 + 1 = 0 
and 

I a - 215 <= 1515 = ;. (4 

Similarly, there is a 5-adic number b such that b2 + 1 = 0 
and 

(b - 315 <= ]+I5 = ;. (5) 

Dickau, R. M. “The H&on Attractor.” http: // forum . 
swarthmore.edu/advanced/robertd/henon.html. 

Gleick, J. Chaos: Making a New Science. New York: Pen- 
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of Strange Attractors.” Physica D 9, 189-208, 1983. 

Hitzl, D. H. and Zele, F. “An Exploration of the H&on Quad- 
ratic Map.” Physica D 14, 305-326,1985. 

tauwerier, H. Fructals: Endlessly Repeated Geometric Fig- 
urns. Princeton, NJ: Princeton University Press, ppm 128- 
133, 1991. 

Peitgen, H.-O. and Saupe, D. (Eds.). “A Chaotic Set in the 
Plane.” $3.2.2 in The Science of Fractal Images. New 
York: Springer-Verlag, pp* 146-148, 1988. 

Russell, D. A.; Hanson, J. D.; and Ott, E. “Dimension of 
Strange Attractors.” Phys. Rev. Let. 45, 1175-1178, 1980. 

Therefore, we have found both the square roots of -1 in 
Q5. It is possible to find the roots of any POLYNOMIAL 
using this technique. 

Henstock-Kurzweil Integral 

see HK INTEGRAL 

Heptacontagon 
A 70-sided POLYGON. 
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Heptadecagon 

The REGULAR POLYGON of 17 sides is called the HEP- 
TADECAGON, or sometimes the HEPTAKAIDECAGON. 
Gauss proved in 1796 (when he was 19 years old) 
that the heptadecagon is CONSTRUCTIBLE with a COM- 
PASS and STRAIGHTEDGE. Gauss’s proof appears in 
his monumental work Disquisitiones Arithmeticae. The 
proof relies on the property of irreducible POLYNOMIAL 
equations that ROOTS composed of a finite number of 
SQUARE ROOT extractions only exist when the order of 
the equation is a product of the form 2a3bF, l  Fd n . . &, 
where the F. are distinct PRIMES of the form 

F, = 22n + 1, 

known as FERMAT PRIMES. Constructions for the regu- 

lar TRIANGLE (3l), SQUARE (2”), PENTAGON (2”’ +i), 
HEXAGON (2l3l), etc., had been given by Euclid, but 
constructions based on the FERMAT PRIMES 2 17 were 
unknown to the ancients. The first explicit construction 
of a heptadecagon was given by Erchinger in about 1800. 

Ns F 0 E N, 

17-gon 

The following elegant construction for the heptadecagon 
(Yates 1949, Coxeter 1969, Stewart 1977, Wells 1992) 
was first given by Richmond (1893). 

1. 

2. 

3. 

Given an arbitrary point 0, draw a CIRCLE centered 
on 0 and a DIAMETER drawn through 0. 

Call the right end of the DIAMETER dividing the CIR- 
CLE into a SEMICIRCLE p0. 

Construct the DIAMETER PERPENDICULAR to the 
original DIAMETER by finding the PERPENDICULAR 
BISECTOROK 

4. 

5. 

Find J a QUARTER the way up OB. 

Join JPO and find E so that LOJE is a QUARTER of 
LOJP(). 

6. Find F so that LEJF is 45”. 

7. Construct the SEMICIRCLE with DIAMETER FPo. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

Heptadecagun 

This SEMICIRCLE cuts 013 at K. 

Draw a SEMICIRCLE with center E and RADIUS EK. 

This cuts the extension of OPo at IVa. 

Construct a line PERPENDICULAR to OPo through 

N3. 

This line meets the original SEMICIRCLE at Pa. 

You now have points PO and P3 of a heptadecagon. 

Use PO and P3 to get the remaining 15 points of the 
heptadecagon around the original CIRCLE by con- 
structing PO, p3, Ps, P9, P-12, R5, PI, p4, P7, PIO, 

fi3, PlS, p2, p5, p8, PII, and fi4- 

Connect the adjacent points Pi. 

This construction, when suitably streamlined, has SIM- 
PLICITY 53. The construction of Smith (1920) has a 
greater SIMPLICITY of 58. Another construction due to 
Tietze (1965) and reproduced in Hall (1970) has a SIM- 
PLICITY of 50. However, neither Tietze (1965) nor Hall 
(1970) provides a proof that this construction is cor- 
rect. Both Richmond’s and Tietae’s constructions re- 
quire extensive calculations to prove their validity. De 
Temple (1991) gives an elegant construction involving 
the CARLYLE CIRCLES which has GEOMETROGRAPHY 
symbol 8S1 + 452 + 22c1 + UC3 and SIMPLICITY 45. 
The construction problem has now been automated to 
some extent (Bishop 1978). 

see also 257-GON, 65537420~, COMPASS, CON- 
STRUCTIBLE POLYGON, FERMAT NUMBER, FER- 
MAT PRIME, REGULAR POLYGON, STRAIGHTEDGE, 
TRIGONOMETRY VALUES-r/17 
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Heptagon 

0 
The unconstructible regular seven-sided POLYGON, il- 
lustrated above, has SCHL~FLI SYMBOL (7). 

Although the regular heptagon is not a CONSTRUCTIBLE 
POLYGON, Dixon (1991) gives several close approxima- 
tions. While the ANGLE subtended by a side is 360”/7 E 
51.428571”, Dixon gives constructions containing an- 
gles of 2sinB1(fi/4) ==: 51.317812”, tan-l(5/4) z 
51.340191”, and 30° + sirP((J3 - Q/2) $=: 51.470701”. 

Madachy (1979) illustrates how to construct a heptagon 
by folding and knotting a strip of paper. 

see also EDMONDS' MAP, TRIGONOMETRY VALUES- 

n17 
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Heptagonal Number 

A FIGURATE NUMBER of the form n(5n.-3)/2. The first 
few are 1, 7, 18, 34, 55, 81, 112, . . . (Sloane’s A000566). 
The GENERATING FUNCTION for the heptagonal num- 
bers is 

Heptagonal Pyramidal Number 
A PYRAMIDAL NUMBER of the form n(n+ 1)(5n-2)/6, 
The first few are 1, 8, 26, 60, 115, . . . (Sloane’s 
A002413). The GENERATING FUNCTION for the hep- 
tagonal pyramidal numbers is 

2(4x + 1) 
(x - 1)” 

= x + 8x2 + 26x3 + 60x4 + l  l  l  . 

References 
Sloane, N. J. A. Sequence A002413/M4498 in “An On-Line 

Version of the Encyclopedia of Integer Sequences.” 

Heptahedron 
The regular heptahedron is a one-sided surface made 
from four TRIANGLES and three QUADRILATERALS. It is 
topologically equivalent to the ROMAN SURFACE (Wells 
1991). While all of the faces are regular and ver- 
tices equivalent, the heptahedron is self-intersecting and 
is therefore not considered an ARCHIMEDEAN SOLID. 

There are three semiregular heptahedra: the pentago- 
nal and pentagrammic PRISMS, and a FACETED OCTA- 
HEDRON (Holden 1991). 

References 
Holden, A. Shupes, Space, and Symmetry. New York: Dover, 

p. 95, 1991. 
Wells, D. The Penguin Dictionary of Curious and Interesting 

Geometry. New York: Viking Penguin, p. 98, 1992. 

Heptakaidecagon 

see HEPTADECAGON 

Heptaparallelohedron 

see CUBOCTAHEDRON 

Heptomino 
The heptominoes are the 7-POLYOMINOES. There are 
108 different heptominoes. 

see also HERSCHEL, PI HEPTOMINO, POLYOMINO 

Herbrand’s Theorem 
Let an ideal class be in d if it contains an IDEAL whose 
Zth power is PRINCIPAL. Let i be an ODD INTEGER 
15 i 5 I and definej by i+j = 1. Then CA1 = (e). If 
i 2 3 and Z{Bj, then CAi = (e) . 

References 
Ireland, K. and Rosen, M. “Herbrand’s Theorem.” §15,3 in 

A Classical Introduction to Modern Number Theory, 2nd 
ed, New York: Springer-Verlag, pp. 241-248, 1990. 

x(4x + 1) 

(1 
= x + 7x2 + 18x3 + 34x4 + , , . , - 

X)3 
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Hereditary Representation 
The representation of a number as a sum of powers of a 
BASE b, followed by expression of each of the exponents 
as a sum of powers of b, etc., until the process stops. For 
example, the hereditary representation of 266 in base 2 
is 

266 = 28 + 23 + 2 
22+1 

=2 +22+1+2* 

see aho G~ODSTEIN SEQUENCE 

Heredity 
A property of a SPACE which is also true of each of 
its SUBSPACES. Being “COUNTABLE" is hereditary, but 
having a given GENUS is not. 

Hermann’s Formula 
The MACHIN-LIKE FORMULA 

+7r = 2tan-l(i) -tan-l(+). 

The other 2-term MACHIN-LIKE FORMULAS are Eu- 
LER'S MACHIN-LIKE FORMULA, HUTTON'S FORMULA, 
and MACHIN'S FORMULA. 

A regular 2-D arrangement of squares separated by ver- 
tical and horizontal “canals.” Looking at the grid pro- 
duces the illusion of gray spots in the white AREA be- 
tween square VERTICES. The illusion was noted by Her- 
mann (1870) while reading a book on sound by J. Tyn- 
dall. 

References 
Fineman, M. The Nature of Visual 

Dover, pp. 139-240, 1996. 
illusion. New York: 

Hermann-Hering Illusion 

WrnrnMrn 

n n n n n 
n n q h n 
rnHHBrn 
rnrnUBrn 

The illusion in view by staring at the small black dot 
for a half minute or so, then switching to the white dot. 
The black squares appear stationary when staring at 
the white dot, but a fainter grid of moving squares also 
appears to be present. 

Hermite Differential Equation 

Hermann-Mauguin Symbol 
A symbol used to represent the point and space groups 
(e.g., 2/m3). Some symbols have abbreviated form. The 
equivalence between Hermann-Mauguin symbols (“crys- 
tallographic symbol”) and SCH~~NFLIES SYMBOLS for the 
POINT GROUPS is given by Cotton (1990). 

see ah POINT GROUPS 

References 
Cotton, F. A. Chemical Applications of Group Theory, 3rd 
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Hermit Point 

see ISOLATED POINT 

Hermite Constants 
N.B. A detailed on-line essay by S. Finch was the start- 
ing point for this entry. 

The Hermite constant is defined for DIMENSION n as the 
value 

+yn = 
supfmin,, f(x1,~2,...~~~) 

[discriminant ( f)lll” 

(Le Lionnais 1983). In other words, they are given by 

where S, is the maximum lattice PACKING DENSITY for 
HYPERSPHERE PACKING and Vn. is the CONTENT of the 
n-HYPERSPHERE. The first few values of (~71)~ are 1, 
4/3, 2, 4, 8, 64/3, 64, 256, . . l  . Values for larger n are 
not known. 

For sufficiently large n, 

1 1.744. l  . 
&~S- 2ne ’ 

see also HYPERSPHERE PACKING, KISSING NUMBER, 
SPHERE PACKING 
-  I  
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Hermite Differential Equation 

d2Y - - 
dx2 

2xdy &+xy=o. (1) 

This differential equ .at ion has an irregular singularity at 
00. It can be solved using the series method 

~(n+2)(n+l)a,+25zn -F 2na,xn +TXa,l” = 0 
r&=0 n=l n=O 

(2) 
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(2az+Xa4)+~,(n+2)(nfl)a,+a-2rLa,+Xa,lt” = 0. 
n=l 

(3) 

Therefore, 
Xa0 a2=-- 

2 (4 

and 
2n - X 

an+2 = (n + 2)(n + l)an (5) 

for n = 1, 2, . l  . . Since (4) is just a special case of (5)) 

272 - X /a\ . 
an+2 = (n + 2)(n + 1) an w 

Hermite-Gauss Quadrature 
Also called HERMITE QUADRATURE. A GAUSSIAN 
QUADRATURE overtheinterval (-oo,oo) with WETGHT- 
ING FUNCTION W(Z) = eBx2* The ABSCISSAS for quad- 
rature order n are given by the roots of the HERMITE 
POLYNOMIALS Hn(z), which occur symmetrically about 
0. The WEIGHTS are 

A n+l’Yn A, Yn-1 
wi = - 

AnHA(xi)Hn+l(xi) = An-1 Hn-l(xi)Hk(xi)’ 

(1) 

where An is the COEFFICIENT of xn in Hn(x)* For HER- 
MITE POLYNOMIALS, 

An = 2”, (2) 
for n =o, 1, . . . . The linearly independent solutions are 
then 

[ 

x (4-W 4 
Yl =a0 1--x2 

2! -TX 

(8 - X)(4 - -x)x - 
6! 

x6 - .*. 1 (7) 
Y2 

[ 

(2 -4 x3 + =a1 x+- 
3! 

(6 - w2 - N x5 + 

5! 1 .** . 

(8) 
If X G 4n = 0, 4, 8, . . . , then Yr terminates with the 
POWER xA, and yl (normalized so that the COEFFI- 
CIENT of xn is 2n) is the regular solution to the equation, 
known as the HERMITE POLYNOMIAL. If X G 4n+2 = 2, 
6, 10, . . . , then y2 terminates with the POWER x’, and 
y2 (normalized so that the COEFFICIENT of xn is zn) 
is the regular solution to the equation, known as the 
HERMITE POLYNOMIAL. 

so 

Addit ionally, 

so 

Using the RECURRENCE RELATION 

H:,(X) = 2nHn-x(x) = ~xH~(x) - Hn+l(x) (6) 

yields 

Y’l - 22y’ = 0, (9) 

which is of the form Pz(x)Y” + 
solution 

s 

dx 
Y = Cl 

=P (J 3 dx) 

s 

dx 
= Cl 

expJ--2xdx 
P *  

+ c2 

+ c2 

P 

/ 

ClX 
= Cl - + c2 = Cl 

e-X* 
J 

eX2dx+c2. (10) 

Pl WY = 0 and so has 

A n+l - = 2. 
A, 

(3) 

Tyn= r 0 nn!, (4 

If X = 0, then Hermite’s differential equation becomes 
and gives 

2 “+ln!fi 
wi = - 

Hn+l (xi)HA(xi) 

_ 2n(n - l)!+ 

- H,-l(xi)H:,(xi) * 
(5) 

The error term is 

E = 2”(2n)! 
n!fi f cw (C) 

’ 

(8) 

(9) 

Beyer (1987) gives a table of ABSCISSAS and weights up 
to n=12. 

n 2; wi 

2 Zto.707107 0.886227 
3 0 1.18164 

$1.22474 0.295409 
4 &0.524648 0.804914 

k1.65068 0.0813128 
5 0 0.945309 

ho.958572 0.393619 
h2.02018 0.0199532 
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The ABSCISSAS and weights can be computed analyti- 
cally for small 72. 

n Xi wi 

2 *ifi $fi 

3 0 “fi 
3 

*f& +J;; 

4 * 
J- 

q fi - 

It 
d- 

3+6 J;; 2 ~ 
4(3+A) 
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Hermite Interpolation 

see HERMITE'S INTERPOLATING FUNDAMENTAL POLY- 
NOMIAL 

Hermite’s Interpolating F’undamental 

Polynomial 
Let Z(x) be an nth degree POLYNOMIAL with zeros at 
Xl, l  l  l  , xm.  Then the fundamental POLYNOMIALS are 

h@)( ) i x = [+I [L(x)12 (1) 

and 
hc2)(x) = (x - ~&(a:)]~ u . 

They have the properties 

(2) 

h(‘)(x,) = S 

h+(xp) z Oup 

(3) 

(4) 

hC2)(xp) = 0 (5) 

h(2)‘(xp) = a,,. (6) 

Now let fl, l  . . , fn and fi, . . . , f: be values. Then the 
expansion 

Wn(x) = 2 &h:)(x) + c f;ht2)(x) (7) 
l/=1 U=l 

gives the unique HERMITE% INTERPOLATING FUNDA- 
MENTAL POLYNOMIAL for which 

Wn(xu) = fu (8) 

W&) = fL* (9) 

If f: = 0, these are called STEP POLYNOMIALS. The 

fundamental POLYNOMIALS satisfy 

hi(x) +. . . + hn(x) = 1 (10) 

Hermi te Polynomial 

and n n 

x xvh:)(x) + x h:)(x) = x. (11) 
U=l 

Also, 

s b 

h@)(x) da(x) = A Y Y 
a 

(12) 

s b 

h@)(x) da(x) - 0 Y - (13) 
a 

J 
b 

xh;(x) da(x) = 0 (14) 
a 

s b 

ho(x) da(x) = 0 u (15) 
a 

b 

hc2): da(x) = X, (16) 
Ja 

b 

xhc2):(x) dx = Xvxy, (17) 

for Y = 1, . . . , 72. 

References 
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York: McGraw-Hill, pp. 314-319, 1956. 
Szegij, G. Orthogonal Polynomials, 4th ed. Providence, RI: 

Amer. Math. Sot., pp. 330-332, 1975. 

Hermite-Lindemann Theorem 
The expression 

&ea1 + Azea2 + Asea -I-. . . ) 

in which the COEFFICIENTS Ai differ from zero and in 
which the exponents ai are ALGEBRAIC NUMBERS dif- 
fering from each other, cannot equal zero. 

see UZSO ALGEBRAIC NUMBER, CONSTANT PROBLEM, 

INTEGER RELATION, LINDEMANN-WEIERSTRA~ THEO- 
REM 
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Hermite 

40- 

30 - 

20- 

Polynomial 



Hermit e Polynomial 

A set of ORTHOGONAL POLYNOMIALS. The Hermite 
polynomials &Jx) are illustrated above for II: E [0, l] 
and n = 1, 2, . . . , 5. 

The GENERATING FUNCTION for Hermite polynomials 
iS 

exp(2zt - t”) E js: y!z, 
. 

n=O 

Using a TAYLOR SERIES shows that, 

Hn(x) = [(g)” exP(2Xt - t2)] t=O 

= [ex” ( -f)n e-~~-~)2]t=o l  

Since af (x - t)l& = -$f (5 - t)/ax, 

&(x) = (-qnp2 $ ne-(x-t)2] 
K > X t=o 

- - - ( 1) 
n ,2 d” -,2 

e Ge l  

Now define operators 

It follows that 

elf = -ex2&[femx2] = 2xf - g 

of 2 
= ex2/2 

cx-a If e 
-x2/2 1 

df df = xf +xf - -& = 2xf - G’ 

so 
6, = 62, 

and 
,2 d -,2 

-e dze 
= ex212 (x - it) emx212, 

which means the following definitions are equivalent: 

exp(2xt - t2) = jl; H,yn 
. 

n=O 

Hn(x) z (-l)nex2 --&eBx2 (11) 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

Hn(x) E ex2’2 -x2/2 ne . (12) 

The Hermite POLYNOMIALS are related to the derivative 
ofthe ERROR FUNCTION by 

H&z) ‘= (-l)2$eZ2 g erf(z). (13) 
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They have a contour integral representation 

Hn(x) = J& 
s 

e-t2+2txtdn-1 &. (14) 

They are orthogonal in the range (-oo, oo) with respect 

to the WEIGHTING FUNCTION ewx2 

H,(x)H,(x)eBx2 da: = 6,,2”n!fi. 

Define the associated functions 

Un(X) S J~H,Oe-“2221z 

These obey the orthogonality conditions 

dum a 
Un(X)xdX= 

d F m=n+l 
-a T m=n-1 

J 
0 otherwise 

urn (X>%(X) dx = Smn L d-- n+! 

um(x)xun(x) dx = 4 

0” 
d- 

t2 
m =n+l 
m -n-l 
otherwise 

(15) 

(16) 

(17) 

(‘18) 

(19) 

2n+l 

Sm 

2a2 
m=n 

um(x)22Un (x) dx = J=mx m=n+2 
2s 

-cm 
0 m#n#nf2 

(20) 

sm 

2%!P!y! 
e -x2HaHoH,dx = 1/;; 

-m (s - a)!(s - p>qs - r)!’ 

(21) 

ifa+P+y = 2s is EVEN and s 2 cy, s 2 p, and s 2 y. 
Otherwise, the last integral is 0 (Szegb 1975, p. 390). 

They also satisfy the RECURRENCE RELATIONS 

H n+l. = 2xHn(x) - 2nHn-l(x) 

H;(X) = 2nHn-l(x). 

The DISCRIMINANT is 

(22) 

(23) 

n 

Dn 
= 237-+4)/2 

rI 

Vu (24) 
U=f 

(SzegB 1975, p. 143). 

An interesting identity is 

Hy(x)Hn-y(y) = 2n’2Hn[2-1’2(x + y)]. (25) 
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The first few POLYNOMIALS are 

Ho(x) = 1 

HI(x) = 2x 

Hz(x) = 4x2 - 2 

Hz(x) = 8x3 - 12x 

H4(x) = 16x4 - 48x2 + 12 

H5(x) = 32x5 - 160x3 + 120x 

H6(x)= 64x6 -480x4 +720x2 -120 

NT(x) = 128x7 - 1344x5 + 3360x3 - 1680x 

H*(x) = 256x8 -3594x6 +13440x4 -13440x2 

+160 

Erg(x)= 512x9 -9216x7 +48384x5 -80640x3 

+30240x 

HlO(X) = 1024x1’ -23040x8 +161280x" -403200x4 

+302400x2 - 30240. 

A class of generalized Hermite POLYNOMIALS m"(x) sat- 
isfying 

00 

e mxt-tm 
= x m”(4tn (26) 

n=O 

was studied by Subramanyan (1990). A class of related 
POLYNOMIALS defined by 

h nm 

and with GENERATING FUNCTION 

e 2xt-tm = x hn,m(x)tn 

n=O 

(28) 

was studied by Djordjevie (1996). They satisfy 

H,(x) = n!h,,z(x). (29) 

A modified version of the HERMITE POLYNOMIAL is 
sometimes defined by 

(30) 

see also MEHLER’S H 
WEBER FUNCTION S 

ERMITE POLYNOMIAL FORMULA, 
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Hermite Quadrature 

see HERMITE-GAUSS QUADRATURE 

Hermite’s Theorem 
e is TRANSCENDENTAL. 

Hermitian Form 
A combination of variables x and y given by 

axx* + bxy* + b’x’y + cyy’, 

where x* and y* are COMPLEX CONJUGATES. 

Hermitian Matrix 
If a MATRIX is SELF-ADJOINT, it is said to be a Hermi- 
tian matrix. Therefore, a Hermitian MATRIX is defined 
as one for which 

A=A+, (1) 

where t denotes the ADJOINT MATRIX. Hermitian MA- 
TRICES have REAL EIGENVALUES with ORTHOGONAL 
EIGENVECTORS. For REAL MATRICES, Hermitian is the 
same as symmetrical. Any MATRIX C which is not Her- 
mitian can be expressed as the sum of two Hermitian 
matrices 

C = +<c + c+> + $(C - c+>. (2) 

Let U be a UNITARY MATRIX and A be a Hermitian 
matrix. Then the ADJOINT MATRIX of a SIMILARITY 
TRANSFORMATION is 

(MU-‘)+ = [(UA)(U-‘)I+ = (U-l)+(UA)+ 
= (U+)+(A+U+) - UAU+ = UAU-1 - . (3) 
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If EIGENVALUES Xi and Xj are not degenerate, then 

S 
b 

wuiuj * = 0, SO the EIGENFUNCTIONS are ORTHOG- 
O\AL. If the EIGENVALUES are degenerate, the EIGEN- 
FUNCTIONS are not necessarily orthogonal. Now take 
i = j. 

s 

b 

(A 
* 

i - i A> 
* 

wuiui = 0. (11) 
a 

The specific matrix 

H(x,y,z)= 
[ 

zz1:1J “_+,iy 1 =zPI+yPz+ZPQ, (4) 

sometimes called where Pi are PAULI SPIN MATRICES, is 
“the” Hermitian matrix. 

see also ADJOINT MATRIX, HERMIT 
PAULI SPIN MATRICES 

References 
A&en, G. “Hermitian Matrices, Unitary 

Mathematical Methods for Physicists, 
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‘IAN OPERATOR, The integral cannot vanish unless ui = 0, so we have 
xi* = Xi and the EIGENVALUES are real. 

For a Hermitian operator 6, 
Matrices. 31 54.5 in 
3rd ed. Orlando, 

In integral notation, Hermitian Operator 
A Hermitian OPERATOR L is one which satisfies s (&)*$dx = 

s 
$*&dx. (13) s b 

s 

b 

v%dx = uih? dx. 
a a 

(1) 
Given Hermitian operators A and B, 

As shown in STURM-LIOUVILLE THEORY, if i is SELF- 

Because, for a Hermitian operator A with EIGENVALUE 

a, 
(4&q = (Jw) (15) 

ADJOINT and satisfies the boundary conditions 

[v*pU’]e=a = [v*pu’],=b, (2) 

then it is automatically Hermitian. Hermitian operators 
have REAL EIGENVALUES, ORTHOGONAL EIGENFUNC- 
TIONS, and the corresponding EIGENFUNCTIONS form a 
COMPLETE set when z is second-order and linear. In 
order to prove that EICENVALUES must be REAL and 
EIGENFUNCTIONS ORTHOGONAL, consider 

Therefore, either ($I$) = 0 or a = a*. But ($I$) = 0 
IFF G = 0, SO 

Wl2cI> # 07 (17) 

for a nontrivial EIGENFUNCTION. This means that 
a = a*, namely that Hermitian operators produce REAL 
expectation values. Every observable must, therefore 
have a corresponding Hermitian operator. Furthermore, Assume there is a second EIGENVALUE Xj such that 

I&j + XjWUj = 0 (4) 

LLj* + Xj*WUj* = 0. 

Now multiply (3) by uj * and (5) by ui 

(5) 
6-h (*nI$m) = G-L* (*nI*m) = an ($nI$m) 9 (1% 

since an = an* l  Then 

Uj*LUi + Uj*XiWUi = 0 (6) ( am - an) (*n/*m) = 0 . (20) 

UiLUj* + UiXj*WUj* = 0 (7) 

Uj*LUi - UiLUj* = (Xj* - Ai)WUiUj*. (8) 

For G-b # an (i.e., $n # &TJ, 

(*nI+m) = 0. (21) 
Now integrate 

For a m = (2, (i.e., $%I = $h)~ 

[Uj'LUi - [UiiUj* = (Xj* - Xi)lbWUiUj*. (9) 

But because L is Hermitian, the left side vanishes. 

(22) 

(23) 
Therefore, 

(A j *-xi) s b 
* 

WUiUj = 0. (10) 
a 
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so the basis of EIGENFUNCTIUNS corresponding to a Her- 
mitian operator are ORTHONORMAL. Given two Hermi- 
tian operators A and B, 

Heron’s formula then states 

(A&+ = B+A+ = BA = AB + [B,A], (24) 

the operator AB equals (A@ +, and is therefore Hermi- 
tian, only if 

[B,A] = 0. (25) 

Given an arbitrary operator A, 

A = &(s - a)(s - b)(s - c). (2) 

Expressing the side lengths a, b, and c in terms of the 
radii a’, b’, and c’ of the mutually tangent circles cen- 
tered on the TRIANGLE vertices (which define the S~DDY 
CIRCLES), 

(Thl(A + A+)$,) = ((A+ + &hl$z) 

= ((A + A+)$hl$z) 7 (26) 

a = b’ + ct 

b = a’ + c’ 

c=a’+b’, 

gives the particularly pretty form 

(3) 

(4) 

(5) 

so A + A 1s Hermitian. - -to 

(Thli(~ - A+)$z) = (-qA+ - A)$11$2) 

= (i(A - d+)$l /+a) ) 

- -t so i(A - A ) is Hermitian. Similarly, 

(* 1 

so AA 

Define 

(AA+)&) = (A+$1 IA: t $2) = ((AA+)?lllti2) 7 
(28 

is Hermitian. 

the Hermitian conjugate operator kt by 

For a Hermitian operator, A = At. Furthermore, given 
two Hermitian operators A and B, 

(112I(m+@l) = &mhl$h) = (B$,lAt$,) 
- - (+2lB+d+$l) 9 (30) 

so 
(Aq+ = B’A’. (31) 

By further iterations, this can be generalized to 

MM 
W l  . . g>+ = 2 ’  . . . fitA+, 

(32) 

see also ADJOINT OPERATOR, HERMITIAN MATRIX, 
SELF-ADJOINT OPERATOR, STURM-LIOUVILLE THE- 
ORY 
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Heron’s Formula 
Gives the AREA of a TRIANGLE in terms of the lengths 
of the sides a, b, and c and the SEMIPERIMETER 

s=c $(a+b+c). (1) 

A=J atbtct(at + bt + cl> (6) 

The proof of this fact was discovered by Heron (ca. 100 
BC-100 AD), although it was already known to Arch- 
imedes prior to 212 BC (Kline 1972). Heron’s proof 
(Dunham 1990) is ingenious but extremely convoluted, 
bringing together a sequence of apparently unrelated 
geometric identities and relying on the properties of 
CYCLIC QUADRILATERALS and RIGHT TRIANGLES. 

Heron’s proof can be found in Proposition 1.8 of his work 
Metrica. This manuscript had been lost for centuries 
until a fragment was discovered in 1894 and a complete 
copy in 1896 (Dunham 1990, p. 118). More recently, 
writings of the Arab scholar Abu’l Raihan Muhammed 
al-Biruni have credited the formula to Heron’s predeces- 
sor Archimedes (Dunham 1990, p. 127). 

A much more accessible algebraic proof proceeds from 
the LAW OF COSINES, 

Then 

cosA = 
b2 + c2 - a2 

2bc l  

(7) 

sinA = 
-a4 - b4 - c4 + 2b2c2 + 2c2a2 + 2a2b2 

2bc 1 (8) 

giving 

A= +bcsinA (9) 

- b4 - c4 + 2b2c2 + 2c2a2 + 2a2b2 (10) 

= +[(a + b + c)(-a + b + c)(a - b + c)(a + b - c)]li2 

(11) 

s(s - a)(s - b)(s - c) (12) 

(Coxeter 1969). H eron’s formula contains the PYTHAG- 
OREAN THEOREM. 

see &~BRAHMAGUPTA'S FORMULA,BRETSCHNEIDER'S 
FORMULA,HERONIAN TETRAHEDRON,HERONIAN TRI- 
ANGLE,SODDY CIRCLES,SSS THEOREM,TRIANGLE 
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Heron Triangle 

SE HERONIAN TRIANGLE 

Heronian Tetrahedron 
A TETRAHEDRON with RATIONAL sides, FACE AREAS, 
and VOLUME. The smallest examples have pairs of op- 
posite sides (148, 195, 203), (533, 875, 888), (1183, 1479, 
1804), (2175, 2296, 2431), (1825, 2748, 2873), (2180, 
2639, 3111), (1887, 5215, 5512), (6409, 6625, 8484), and 
(8619, 10136, 11275). 

see UZSO HERON'S FORMULA, HERONIAN TRIANGLE 
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Heronian Triangle 
A TRIANGLE with RATIONAL side lengths and RATIO- 
NAL AREA. Brahmagupta gave a parametric solution 
for integer Heronian triangles (the three side lengths and 
area can be multiplied by their LEAST COMMON MULTI- 
PLE to make them all INTEGERS): side lengths c(a2+b2), 
b(a2 + c2), and (b + c)(a2 - bc), giving SEMIPERIMETER 

s=a”(b+c) 

and AREA 
A = abc(a + b)(a2 - bc). 

The first few integer Hernonian triangles, sorted by in- 
creasing maximal side lengths, are (3, 4, 5), (6, 8, lo), (5, 
12, 13), (9, 12, 15), (4, 13, 15), (13, 14, 15), (9, 10, 17), 
. . . (Sloane’s A046128, A046129, and A046130), having 
areas 6, 24, 30, 54, 24, 84, 36, . . . (Sloane’s A046131). 

Schubert (1905) claimed that Heronian triangles with 
two rational MEDIANS do not exist (Dickson 1952). This 
was shown to be incorrect by Buchholz and Rathbun 
(1997), who discovered six such triangles. 

see also HERON'S FORMULA, MEDIAN (TRIANGLE), PY- 
THAGOREAN TRIPLE,TRIANGLE 
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Herschel 

n n n 
n n 

A HEPTOMINO shaped like the astronomical symbol for 
Uranus (which was discovered by William Herschel). 

Herschfeld’s Convergence Theorem 
For real, NONNEGATIVE terms xn and REAL p with 0 < 
p < 1, the expression 

lim x0 +(x1 + (22 + (. ..+(~k)~)~)~)~ 
k+m 

converges IFF (x~)~~ is bounded. 

see also CONTINUED SQUARE ROOT 
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Hesse’s Theorem 
If two pairs of opposite VERTICES of a COMPLETE 

QUADRILATERAL are pairs of CONJUGATE POINTS, then 
the third pair of opposite VERTICES is likewise a pair of 
CONJUGATE Ponws. 

Hessenberg Matrix 
A matrix of the form 

a11 

a21 

0 

a12 

a22 

a32 

a13 

a23 

a33 

. . . 
l  . l  

. . . 

au n-1) 

a2(n-l) 

a3(n-l) 

aln 

a2n 

a3n 

0 0 u43 " ' a4(n-1) a4n 

0 0 0 l  ** 
W 

n-l) a5n 

0 0 0 0 a(,-l)(n-1) a(n-1)n 

0 0 0 0 un(n-l) Can 
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Hessian Covariant 

The nonsingular inflections of a curve are its nonsingular 
int efsect ions with the Hessian. 
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Hessian Determinant 
The DETERMINANT 

a2f a2f 

Hf (x, Y> = as2 dXay 

a2f a2; 
ayax ay 

DERIVATIVE appearing in the SECOND 

HfhY)* 

see &O SECOND DERIVATIVE TEST 

‘r\ P 

TEST as D E 
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Heteroclinic Point 
If intersecting stable and unstable MANIFOLDS (SEP- 
ARATRICES) emanate from FIXED POINTS of different 
families, they are called heteroclinic points. 

see also HOMOCLINIC POINT 

Heterogeneous Numbers 
Two numbers are heterogeneous if their PRIME factors 
are distinct. 

see UZSO DISTINCT PRIME FACTORS, HOMOGENEOUS 

NUMBERS 
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Heterological Paradox 

see GRELLING’S PARADOX 

Heteroscedastic 
A set of STATISTICAL DISTRIBUTIONS having different 
VARIANCES. 

see also HOMOSCEDASTIC, VARIANCE 

Heterosquare 

A heterosquare is an n x n ARRAY of the integers from 
1 to n2 such that the rows, columns, and diagonals have 
different sums. (By contrast, in a MAGIC SQUARE, they 
have the same sum.) There are no heterosquares of order 
two, but heterosquares of every ODD order exist. They 
can be constructed by placing consecutive INTEGERS in 

a SPIRAL pattern (Fults 1974, Madachy 1979). 

An ANTIMAGIC SQUARE is a special case of a het- 
erosquare for which the sums of rows, columns, and main 
diagonals form a SEQUENCE of consecutive integers. 

see UZSO ANTIMAGIC SQUARE, MAGIC SQUARE, TALIS- 

MAN SQUARE 

References 
Duncan, D. “Problem 86.” 1Mafh. Msg. 24, 166, 1951. 
Fults, J. L. Magic Squares. Chicago, IL: Open Court, 1974. 
Madachy, J. S. Madachy’s Mathematical Recreations. New 

York: Dover, pp. 101-103, 1979. 
@ Weisstein, E. W. “Magic Squares.” http://wau.astro. 

virginia.edu/-eww6n/IIlath/notebooks/MagicSqu~es.m* 

Heuman Lambda Function 

A&blm) G + zK(m)Z(411 - m), 
7r 

where q5 is the AMPLITUDE, m is the PARAMETER, 2 is 
the JACOBI ZETA FUNCTION, and F(4lm’) and K(m) 
are incomplete and complete ELLIPTIC INTEGRALS OF 

THE FIRST KIND. 

see also ELLIPTIC INTEGRAL OF THE FIRST KIND, JA- 
COBI ZETA FUNCTION 

References 
Abramowita, M. and Stegun, C. A. (Eds.). Handbook 

of Mathematical Functions with Formulas, Graphs, and 
Mathematical Tables, 9th printing. New York: Dover, 
p* 595, 1972. 

Heun’s Differential Equation 

+ 
QPX - Q 

x(x - 1)(X - a) 
w  = 0, 

where 
a+P-y-8++1=0. 

References 
Erdelyi, A.; Magnus, W.; Oberhettinger, F.; and Tricomi, 

F. G. Higher Banscendental Functions, Vol, 3. Krieger, 
pp. 57-62, 1981. 

Whittaker, E. T. and Watson, G. N. A Course in Modern 
Analysis, 4th ed. Cambridge, England: Cambridge Uni- 
versity Press, p* 576, 1990. 

Heuristic 
(1) Based on or involving trial and error. (2) Convincing 
without being rigorous. 



Hex Game Hexadecimal 835 

Hex Game 
A two-player GAME. There is a winning strategy for 
the first player if there is an even number of cells on 
each side; otherwise, there is a winning strategy for the 
second player. 

References 
Gardner, M. Ch. 8 in The Scientific American Book of Math- 

ematical Puzzles & Diversions. New York, NY: Simon and 
Schuster, 1959. 

Hex Number 
1- w v 

a a 
- - 

The CENTERED HEXAGONAL NUMBER givenby 

Zt = l+ 6% = 2H,4 - Hnm2 + 6 = 3n2 - 3n. + I, 

where T, is the nth TRIANGULAR NUMBER. The first 
few hex numbers are I, 7, 19, 37, 61, 91, 127, 169, . . . 
(Sloane’s A003215). The GENERATING FUNCTION of 
the hex numbers is 

x(x2 + 4X + 1) 

(1 - x)3 
= x + 7x2 + 19x3 + 37x4 + l  . l  l  

The first TRIANGULAR hex numbers are 1 and 91, and 
the first few SQUARE ones are 1,169, 32761, 6355441, l  . . 
(Sloane’s A006051). SQUARE hex numbers are obtained 
by solving the DIOPHANTINE EQUATION 

3x2+1=y2. 

The only hex number which is SQUARE and TRIANGU- 
LAR is 1. There are no CUBIC hex numbers. 

see als OM AGIC HEX AGON, CENTERED SQU 
BER,S TAR NUMBER, TALISMAN HEXAGON 

ARE NUM- 

References 
Conway, J. H. and Guy, R. K. The Book of Numbers. New 

York: Springer-Verlag, p. 41, 1996. 
Gardner, M. “Hexes and Stars." Ch. 2 in Time Travel and 

Other Mathematical Bewilderments. New York: W. H. 
Freeman, 1988. 

Hindin, H. “Stars, Hexes, Triangular Numbers, and Pythag- 
orean Triples.” J. Recr. Math. 16, 191-193, 1983-1984. 

Sloane, N. J. A. Sequences A003215/M4362 and A0060511 
M5409 in “An On-Line Version of the Encyclopedia of In- 
teger Sequences.” 

Hex (Polyhex) 

Hex Pyramidal Number 
A FIGURATE NUMBER which is equal to the CUBIC 
NUMBER n3. The first few are 1, 8, 27, 64, . . . (Sloane’s 
AO00578). 

References 
Conway, J. H. and Guy, R. K. The Book of Numbers. New 

York: Springer-Verlag, pp. 42-44, 1996. 
Sloane, N. J. A. Sequence A000578/M4499 in “An On-Line 

Version of the Encyclopedia of Integer Sequences.” 

Hexa 

see POLYHEX 

Hexabolo 
A 6-P~LYABOLO. 

Hexacontagon 
A 60-sided POLYGON. 

Hexacronic Icositetrahedron 

see GREAT HEXACRONIC ICOSITETRAHEDRON, SMALL 
HEXACRONIC ICOSITETRAHEDRON 

Hexad 
A SET of six. 

see also MONAD,QUARTET,QUINTET,TETRAD,TRIAD 

Hexadecagon 

A 16-sided POLYGON, 
AK AIDECAG ON. 

sometimes also a HEX- 

see ah POLYGON, REGULAR POLYGON, TRIGONOME- 
TRY VALUES--n/l6 

Hexadecimal 
The base 16 notational system for representing REAL 
NUMBERS. The digits used to represent numbers using 
hexadecimal NOTATION are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, 
B, C, D, E, and F. 

see also BASE (NUMBER), BINARY, DECIMAL, META- 
DROME, OCTAL, QWATERNARY, TERNARYJIGESIMAL 

References 
Weisstein, E. W. “Bases." http://www.astro.virginia. 
edu/-eww6n/math/notebooks/Bases.m. 

see POLYHEX 
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Hexaflexagon 
A FLEXAGON made by folding a strip into adjacent 
EQUILATERAL TRIANGLES. The number of states possi- 
ble in a hexaflexagon is the CATALAN NUMBER C4 = 42. 

see also FLEXAGON,FLEXATUBE,TETRAFLEXAGON 

References 
Cundy, H. and Rollett, A. Mathematical Models, 3rd ed. 

Stradbroke, England: Tarquin Pub., pp. 205-207, 1989. 
Gardner, M. Ch* 1 in The Scientific American Book of Math- 

ematical Puzzles & Diversions. New York: Simon and 
Schuster, 1959. 

Gardner, M. Ch. 2 in The Second Scientific American Book 
of Mathematical Puzzles & Diversions: A New Selection. 
New York: Simon and Schuster, 1961. 

Maunsell, F. G. “The Flexagon and the Hexaflexagon.” 
Math. Gazette 38, 213-214, 1954. 

Wheeler, R. F. “The Flexagon Family,” Math. Gaz. 42, 1-6, 
1958. 

Hexagon 

L 
A six-sided POLYGON. In proposition IV. 15, Euclid 
showed how to inscribe a regular hexagon in a CIRCLE. 
The INRADIUS T, CIRCUMRADIU~ R, and AREA A can 
be computed directly from the formulas for a general 
regular POLYGON with side length s and n = 6 sides, 

?T T = iscot - = +fis 0 6 

R= $scsc 5 
0 

=s 

Therefore, for a regular hexagon, 

R - 
T 

so 

(1) 

(2 

(3 

> 

(4) 

(5) 

A PLANE PERPENDICULAR to a Cs axis of a CUBE, 
DODECAHEDRON, or ICOSAHEDRON cuts the solid in 
a regular HEXAGONAL CROSS-SECTION (Holden 1991, 
pp. 22-23 and 27). For the CUBE, the PLANE passes 
through the MIDPOINTS of opposite sides (Steinhaus 
1983, p. 170; Cundy and Rollett 1989, p. 157; Holden 
1991, pp. 22-23). Since there are four such axes for the 
CUBE and OCTAHEDRON, there are four possibly hexag- 
onal cross-sections. Since there are four such axes in 
each case, there are also four possibly hexagonal cross- 
sections. 

Take seven CIRCLES and close-pack them together in a 
hexagonal arrangement. The PERIMETER obtained by 
wrapping a band around the CIRCLE then consists of 
six straight segments of length d (where d is the DIAME- 
TER) and 6 arcs with total length l/6 of a CIRCLE. The 
PERIMETER is therefore 

p = (12 + 24r = 2(6 + n)r. (6) 

see also CUBE, CYCLIC HEXAGON, DISSECTION, Do- 
DECAHEDRON,GRAHAM'S BIGGEST LITTLE HEXAGON, 
HEXAGON POLYIAMOND, HEXAGRAM, MAGIC HEXA- 
GON, OCTAHEDRON, PAPPUS'S HEXAGON THEOREM, 
PASCAL'S THEOREM,TALISMAN HEXAGON 

References 
Cundy, H. and Rollett, A. “Hexagonal Section of a Cube.” 

$3.15.1 in Mathematical Models, 3rd ed. Stradbroke, Eng- 
land: Tarquin Pub., p. 157, 1989. 

Dixon, R. Mathogruphics. New York: Dover, p. 16, 1991. 
Holden, A. Shapes, Space, and Symmetry. New York: Dover, 

1991. 
Pappas, T. ‘&Hexagons in Nature.” The Joy of Mathematics. 

San Carlos, CA: Wide World Publ./Tetra, pp. 74-75, 1989. 
Steinhaus, H. Mathematical Snapshots, 3rd American ed. 

New York: Oxford University Press, 1983. 
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Hexagon Polyiamond 

@ 
A 6-POLYIAMOND. 

see also HEXAGON 

References 
Golomb, S. W. Polyominoes: Puzzles, Patterns, Problems, 

and Packings, 2nd ed. Princeton, NJ: Princeton University 
Press, p. 92, 1994. 

Hexagonal Number 
- 1 w  w  

A FIGURATE NUMBER and ~-POLYGONAL NUMBER of 
the form n(2n - 1). The first few are 1, 6, 15, 28, 45, 
. l  . (Sloane’s A000384). The GENERATING FUNCTION 
of the hexagonal numbers 

2(3x + 1) 
(l-x)3 

= x + 6x2 + 15x3 + 28x4 + , . . . 

Every hexagonal number is a TRIANGULAR NUMBER 
since 

r(2r - 1) = i(2r - 1)[(2T - 1) + 13. 

In 1830, Legendre (1979) proved that every number 
larger than 1791 is a sum of four hexagonal numbers, 
and Duke and Schulze-Pillot (1990) improved this to 
three hexagonal numbers for every sufficiently large in- 
teger. The numbers 11 and 26 can only be represented 
as a sum using the maximum possible of six hexagonal 
numbers: 

11=1+1+1+1+1+6 

26 = 1+1+6+6+6+6. 

see also FIGURATE NUMBER, HEX NUMBER, TRIANGU- 
LARNUMBER 

References 
Duke, W. and Schulze-Pillot, R. “Representations of Integers 

by Positive Ternary Quadratic Forms and Equidistribution 
of Lattice Points on Ellipsoids.” Invent. Math. 99, 49-57, 
1990, 

Guy, R. K. CrSums of Squares.” SC20 in Unsolved Problems 
in Number Theory, 2nd ed. New York: Springer-Verlag, 
pp, 136-138, 1994. 

Legendre, A.-M. The’orie des nombres, 4th ed., 2 vols. Paris: 
A. Blanchard, 1979. 

Sloane, N. J. A. Sequence A000384/M4108 in “An On-Line 
Version of the Encyclopedia of Integer Sequences.” 

Hexagonal Pyramidal Number 
A PYRAMIDAL NUMBER of the form n(n+ 1)(4n - 1)/6, 
The first few are 1, 7, 22, 50, 95, . . . (Sloane’s A002412). 
The GENERATING FUNCTION of the hexagonal pyrami- 
dal numbers is 

x(32 + 1) 
(z - 1)” 

= x -I- 7x2 + 22x3 + 50x4 + , . , , 

References 
Sloane, N. J. A. Sequence A002412/M4374 in “An On-Line 

Version of the Encyclopedia of Integer Sequences.” 

Hexagonal Scalenohedron 

An irregular DODECAHEDRON which is also a TRAPE- 
ZOHEDRON. 

see UZSO DODECAHEDRON, TRAPEZOHEDRON 

References 
Cotton, F. A. Chemical Applications of Group Theory, 3rd 

ed. New York: Wiley, p. 63, 1990. 

Hexagonal Tiling 

see TILING 

Hexagram 

Q 
The STAR POLYGON {6,2}, also known as the STAR OF 
DAVID. 

see UZSO DISSECTION, PENTAGRAM, SOLOMON’S SEAL 
KNOT, STAR FIGURE, STAR OF LAKSHMI 

Hexagrammum Mysticum Theorem 

see PASCAL’S THEOREM 

Hexahedron 
A hexahedron is a six-sided POLYHEDRON. The regu- 
lar hexahedron is the CUBE, although there are seven 
topologically different CONVEX hexahedra (Guy 1994). 

see dso CU%E 

References 
Guy, R. K. Unsolved Problems in Number Theory, 2nd ed. 

New York: Springer-Verlag, p. 189, 1994. 
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Hexahemioctahedron 
The DUAL POLYHEDRON of the CUBOHEMIOCTAHE- 
DRON. 

Hexakaidecagon 

Hexakis Icosahedron 

see DISDYAKIS TRIACONTAHEDRON 

Hexakis Octahedron 

see DISDYAKIS DODECAHEDRON 

Hexlet 
Also called SODDY'S HEXLET. Consider three mutually 
tangent SPHERES A, B, and C. Then construct a chain 
of SPHERES tangent to each of A, B, and C threading 
and interlocking with the A - 13 - C ring. Surprisingly, 
every chain closes into a “necklace” after six SPHERES 
regardless of where the first SPHERE is placed. This is 
a special case of KOLLROS' THEOREM. The centers of 
a Soddy hexlet always lie on an ELLIPSE (Ogilvy 1990, 
p. 63). 

see also COXETER'S LOXODROMIC SEQUENCE o F TAN- 
GENT c: IRCLES, KOLLROS' THEOREM, STEINER CHAIN 

References 
Coxeter, H. S. M. “Interlocking Rings of Spheres.” Scripta 

Math. 18, 113-121, 1952. 
Gosset, T, “The Hexlet.” Nature 139, 251-252, 1937. 
Honsberger, R. Mathematical Gems II. Washington, DC: 

Math. Assoc. Amer., pp. 49-50, 1976. 
Morley, F. ‘(The Hexlet.” Nature 139, 72-73, 1937. 
Ogilvy, C. S. Excursions in Geometry. New York: Dover, 

pp. 60-72, 1990. 
Soddy, F. “The Bowl of Integers and the Hexlet.” Nature 

139, 77-79, 1937. 
Soddy, F* “The Hexlet." Nature 139, 154 and 252, 1937. 

HexLife 
An alternative LIFE game similar to Conway’s, which 
is played on a hexagonal grid. No set of rules has yet 
emerged as uniquely interesting. 

see also HIGHLIFE 

References 
Hensel, A. “A Brief Illustrated Glossary of Terms in Con- 

way’s Game of Life.” http://www.cs.jhu.edu/-Callahan/ 
glossary, html. 

Hexomino 
One of the 35 6-POLYOMINOES. 

References 
Pappas, T. “Triangular, Square & Pentagonal Numbers.” 

The Joy of Mathematics. San Carlos, CA: Wide World 
Publ./Tetra, p. 214, 1989. 

Heyting Algebra 
An ALGEBRA which is a special case of a LOGOS. 

Hh Function 
Let 

a > 
1 Z x - -e -x2/2 

1/z- 7r 

Q(x) G + Sm e-t2’2 dt, 
IT x 

(1) 

(2) 

where 2 and Q are closely related to the NORMAL DIS- 
TRIBUTION FUNCTION, then 

Hh-,(z) = (-l)“-‘&z’“-“(x) (3) 

Hh,(x) = @$HhBl(x)& z l  [ 1 X 

(4) 
l  

see also NORMAL 
CHORIC FUNCTION 

DISTRIBUTION FUNCTION, TETRA- 

Hi-Q 
A triangular version of PEG SOLITAIRE with 15 holes 

remove 

and 14 pegs. Numbering hole 1 at the apex of the tri- 

possible ending pegs 

angle and thereafter from left to right on the next lower 
row, etc., the following table gives possible ending holes 
for a single peg removed (Beeler et al. 1972, Item 76). 
Because of symmetry, only the first five pegs need be 
considered. Also because of symmetry, removing peg 2 
is equivalent to removing peg 3 and flipping the board 
horizontally. 

1 1, 7 = 10, 13 
2 2, 6, 11, 14 
4 3 = 12, 4, 9, 15 
5 13 

References 
Beeler, M.; Gosper, R. W.; and Schroeppel, R. Item 75 in 

HAKMEM. Cambridge, MA: MIT Artificial Intelligence 
Laboratory, Memo AIM-239, Feb. 1972. 

Higher Arithmetic 
An archaic term for NUMBER THEORY. 

Highest Weight Theorem 
A theorem proved by I?. Cartan (1913) which classifies 
the irreducible representations of COMPLEX semisimple 
LIE ALGEBRAS. 

References 
Knapp, A. W. “Group Representations and Harmonic Anal- 

ysis, Part II.” Not. Amer. Math. Sot. 43, 537-549, 1996. 

HighLife 
An alternate set of LIFE rules similar to Conway’s, but 
with the additional rule that six neighbors generate a 
birth. Most of the interest in this variant is due to the 
presence of a so-called replicator. 

see also HEXLIFE, LIFE 

References 
Hensel, A. “A Brief Illustrated Glossary of Terms in 

way’s Game of Life.” http://vww.cs.jhu.edu/-call 
glossary.html. 

Con- 
,ahan/ 

see also LOGOS, TOPOS 
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Highly Abundant Number 

see HIGHLY COMPOSITE NUMBER 

Highly Composite Number 
A COMPOSITE NUMBER (alspcalled ~SUPERABUNDANT 
NUMBER) is a number n which has more FACTORS than 
any other number less than n. In other words, a(n)/n 
exceeds u(k)/k f or all k: < n, where a(n) is the DIVISOR 
FUNCTION. They were called highly composite numbers 
by Ramanujan, who found the first 100 or so, and su- 
perabundant by Alaoglu and Erdk (1944). 

There are an infinite numbers of highly composite num- 
bers, and the first few are 2, 4, 6, 12, 24, 36, 48, 60, 
120, 180, 240, 360, 720, 840, 1260, 1680, 2520, 5040, . . . 
(Sloane’s A002182). Ramanujan (1915) listed 102 up 
to 6746328388800 (but omitted 293, 318, 625, 600, and 
29331862500). Robin (1983) gives the first 5000 highly 
composite numbers, and a comprehensive survey is given 
by Nicholas (1988). 

If 
N = 2a23a3 . . l pap (1) 

is the prime decomposition of a highly composite num- 
ber, then 

1. The PRIMES 2, 3, . l  . 

PRIMES, 

, p form a string of consecutive 

2. The exponents 
up, and 

are nonincreasing, so u2 2 a3 2 . l  . 

3. The final exponent aP is always 1, except for the two 
casesN=4=22andN=36=22.32,whereitis 
2. 

Let Q(z) be the number of highly composite numbers 
2 2. Ramanujan (1915) showed that 

lim Q(x) = 00 
2+00 lnz ’ (2) 

Erdk (1944) showed that there exists a constant cl > 0 
such that 

Q(x) 2 (lnzc)l’cl (3) 

Nicholas proved that there exists a constant c2 > 0 such 
that 

Q(x) << (lnx)c2. (4) 

see also ABUNDANT NUMBER 
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Higman-Sims Group 
The SPORADIC GROUP HS. 

References 
Wilson, R. A. “ATLAS of Finite Group Representation.” 

http://for.mat.bham.ac.uk/atlas/HS.html. 

Hilbert’s Axioms 
The 21 assumptions which underlie the GEOMETRY pub- 
lished in Hilbert’s classic text GrzLndZagen der Geome- 
trie. The eight INC IDEN GE AXIOMS concern collinear- 
ity and intersection and include the first of EUCLID'S 
POSTULATES. The four ORDERING AXIOMS concern the 
arrangement of points, the five CONGRUEN CE AXIOMS 
concern geometric equivalence, and the three CONTINU- 
ITY Ax 
parallel 
LATE. 

IOMS concern continuity. There is also a single 
axiom equival .ent to Euclid’s PARALLEL POSTU- 

see also CONGRUENCE AXIOMS, CONTINUITY AXIOMS, 
INCIDENCE 
POSTULATE 

AXIOMS, ORDERING AXIOMS, PARALLEL 

References 
Hilbert, 13. The Foundations of Geometry, 2nd ed. Chicago, 

IL: Open Court, 1980. 
Iyanaga, S. and Kawada, Y. (Eds.). “Hilbert’s System of Ax- 

ioms.” §163B in Encyclopedic Dictionary of Mathematics. 
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Hilbert Basis Theorem 
If R is a NOETHERIAN RING, then S = R[X] is also a 
NOETHERIAN RING. 

see also 
SYZYGY 

ALGEBRAIC VARIETY,FUNDAMENTAL SYSTEM, 

References 
Hilbert, D. “aber die Theorie der algebraischen Formen.” 

Math. Ann. 36, 473-534, 1890. 
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Hilbert’s Constants 
1 N.B. A detailed on-line essay by S. Finch was the start- 
ing point for this entry. 

Extend HILBERT'S INEQUALITY by letting p, q > 1 and 

11 
-+->l, 
P q- 

so that 
1 1 

O<A=2----<l. 
P Cl- 

(1) 

(2) 

Levin (1937) and St&kin (1949) showed that 

and 

Mitrinovic et al. (1991) indicate that this constant is the 
best possible. 

see also HILBERT’S INEQUALITY 

References 
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Hilbert Curve 

A LINDENMAYER SYSTEM invented by Hilbert (1891) 
whose limit is a PLANE-FILLING CURVE which fills 
a square. Traversing the VERTICES of an n-D HY- 

PERCUBE in GRAY CODE order produces a genera- 
tor for the n-D Hilbert curve (Goetz). The Hilbert 
curve can be simply encoded with initial string 
tt~ll, STRING REWRITING rules qq~‘m -> mm+~~-~~~-~~+Bm, 
“R”->“-LF+RFR+FL-“, and angle 90’ (Peitgen and Saupe 
1988, p. 278). 

A related curve is the Hilbert II curve, shown 
above (Peitgen and Saupe 1988, pa 284). It is 
also a LINDENMAYER SYSTEM and the curve can be 
encoded with initial string IIX'U, STRING REWRIT- 
ING rules “X” -> “XFYFX+F+YFXFY-F-XFYFX” , “Y” -> 
“YFXFY-F-XFYFX+F+YFXFY It, and angle 90”. 

see &O LINDENMAYER SYSTEM, PEANO CURVE, 
PLANE-FILLING CURVE, SIERPI~KI CURVE, SPACE- 
FILLING CURVE 
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man, pp. 198-206, 1991. 

Hilbert Function 
Let r= {PI,... ,pm} c p2 be a collection of m distinct 
points. Then the number of conditions imposed by I? 
on forms of degree d is called the Hilbert function hr of 
r. If curves X1 and X2 of degrees d and e meet in a 
collection I? of d. e points, then for any k, the number 
hr (k) of conditions imposed by r on forms of degree k 
is independent of X1 and X2 and is given by 

hr(k)= (ki2) - (k-;+2) 

-(k-;+2) + (k-d;e+z), 

where the BINOMIAL COEFFICIENT (l) is taken as 0 if 
a < 2 (Cayley 1843). 

References 
Eisenbud, D.; Green, M.; and Harris, J. “Cayley-Bacharach 

Theorems and Conjectures.” Bull. Amer. Math. Sot. 33, 
295-324, 1996. 

Hilbert Hotel 
Let a hotel have a DENUMERABLE set of rooms num- 
bered 1, 2, 3, . . . . Then any finite number n of 
guests can be accommodated without evicting the cur- 
rent guests by moving the current guests from room i 
to room i + n. Furthermore, a DENUMERABLE number 
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of guests can be similarly accommodated by moving the 
existing guests from i to 2i, freeing up a DENUMERABLE 
number of rooms 2i - 1. 

References 
Lauwerier , H. “Hilbert Hotel.” In Fractals: Endlessly Re- 

peated Geometric Figures. Princeton, NJ: Princeton Wni- 
versity Press, pm 22, 1991. 

Pappas, T. “Hotel Infinity.” The Joy of Mathematics. San 
Carlos, CA: Wide World Publ./Tetra, p. 37, 1989. 

Hilbert ‘s Inequality 
Given a POSITIVE SEQUENCE {a,}, 

where the a,s are REAL and %quare summable.” 

Another INEQUALITY known as Hilbert’s applies to 
NONNEGATIVE sequences {a,} and {b,}, 

cc% 
m=ln=l 

< 7r csc 
(;) (gp)‘:” (~~~q)l’q 

unless all an or all bn are 0. If f(z) and g(x) are NON- 
NEGATIVE integrable functions, then the integral form 
is 

r r f(x)g(y) -dxdy < 7Tcsc z 
0 0 x+Y 0 P 

x (pw1q’* (~mIswl’q. 

The constant K CSC(~@‘) is the best possible, in the sense 
that counterexamples can be constructed for any smaller 
value. 

References 
Hardy, G. H.; Littlewood, J. E.; and P6lya, G. Inequalities, 

2nd ed. Cambridge, England: Cambridge University Press, 
pp+ 308-309, 1988, 

Hilbert Matrix 
A MATRIX H with elements 

Hij = (i + j - 1)-l 

for i,j = 1, 2, . . n , n. Although the MATRIX INVERSE is 
given analytically by 

. . 
(H-l)ij = (-l)“+” (n + i - l)!(n +j - I)! 

i +j - 1 [(i - l)!(j - l)!]“(n - i)!(n - j)!’ 
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Hilbert matrices are difficult to invert numerically. The 
DETERMINANTS for the first few values of H, are given 
in the following table. 

n det(H,) 
1 1 
2 8.33333 x 1o-2 
3 4.62963 x 1O-4 
4 1.65344 x 10T7 
5 3.74930 x lo-l2 
6 5.36730 x 10-l* 

Hilbert’s Nullstellansatz 
Let K be an algebraically closed field and let I be an 
IDEAL in K(X), where x = (xl, 22, . . . , 2,) is a finite set 
of indeterminates. Let p E K(x) be such that for any 

(Cl,-*, c,) in K”, if every element of I vanishes when 
evaluated if we set each (xi = ci), then p also vanishes. 
Then pj lies in 1 for some j. Colloquially, the theory of 
algebraically closed fields is a complete model. 

Hilbert Number 

see GELFOND-SCHNEIDER CONSTANT 

Hilbert Polynomial 
Let I? be an ALGEBRAIC CURVE in a projective space of 
DIMENSION n, and let p be the PRIME IDEAL defining r, 
and let x(p, m) be the number of linearly independent 
forms of degree m modulo p. For large m, x(p, m) is a 
POLYOOMAAL known as the Hilbert polynomial. 

References 
Iyanaga, S. and Kawada, Y. (Eds,). Encyclopedic Dictionary 

of Mathematics. Cambridge, MA: MIT Press, p. 36, 1980. 

Hilbert’s Problems 
A set of (originally) unsolved problems in mathematics 
proposed by Hilbert. Of the 23 total, ten were presented 
at the Second International Congress in Paris in 1900. 
These problems were designed to serve as examples for 
the kinds of problems whose solutions would lead to the 
furthering of disciplines in mathematics. 

la. Is there a transfinite number between that of a 
DENUMERABLE SET and the numbers of the CON- 
TINUUM? This question was answered by Gijdel 
and Cohen to the effect that the answer depends 
on the particular version of SET THEORY as- 
sumed. 

lb . 

2 . 

Can the CONTINWUM of numbers be considered a 
WELL-ORDERED SET ? This question is related 
to Zermelo’s AXIOM OF CHOICE. In 1963, the 
AXIOM OF CHOICE was demonstrated to be inde- 
pendent of all other AXIOMS in SET THEORY, so 
there appears to be no universally valid solution 
to this question either. 

Can it be proven that the AXIOMS of logic are con- 
sistent? G~DEL'S INCOMPLETENESS THEOREM 
indicated that the answer is “no,” in the sense 
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that any formal system interesting enough to for- 
mulate its own consistency can prove its own con- 
sistency IFF it is inconsistent. 

14. Show the finiteness of systems of relatively inte- 
gral functions. 

15. 
3. Give two TETRAHEDRA which cannot be de- 

composed into congruent TETRAHEDRA directly 
or by adjoining congruent TETRAHEDRA. Max 
Dehn showed this could not be done in 1902. 
W. F. Kagon obtained the same result indepen- 
dently in 1903. 

Justify Schubert’s ENUMERATIVE GEOMETRY 
(Bell 1945). 

16. Develop a topology of REAL algebraic curves and 
surfaces. The SHIMURA-TANIYAMA CONJECTURE 
postulates just this connection, See Ilyashenko 
and Yakovenko (1995) and Gudkov and Utkin 
(1978). 

4. 

5. 

Find GEOMETRIES whose AXIOMS are closest to 
thoseof EUCLIDEAN GEOMETRY ifthe ORDERING 
and INCIDENCE AXIOMS are retained, the CON- 
GRUENCE AXIOMS weakened, and the equivalent 
of the PARALLEL POSTULATE omitted. This prob- 
lem was solved by G. Hamel. 

Can the assumption of differentiability for 
functions defining a continuous transformation 
GROUP be avoided? (This is a generalization of 
the CAUCHY FUNCTIONAL EQUATION.) Solvedby 
John von Neumann in 1930 for bicompact groups. 
Also solved for the ABELIAN case, and for the solv- 
able case in 1952 with complementary results by 
Montgomery and Zipin (subsequently combined 
by Yamabe in 1953). Andrew Glean showed in 
1952 that the answer is also “yes” for all locally 
bicompact groups. 

Can physics be axiomized? 

17. Find a representation of definite form by 
SQUARES. 

18. 

19. 

Build spaces with congruent POLYHEDRA. 

Analyze the analytic character of solutions to vari- 
ational problems. 

20. 

21. 

22. 

23. 

Solve general BOUNDARY VALUE PROBLEMS. 

Solve differential equations given a MONODROMY 
GROUP. More technically, prove that there always 
exists a FUCHSIAN SYSTEM with given singular- 
ities and a given MONODROMY GROUP. Several 
special cases had been solved, but a NEGATIVE so- 
lution was found in 1989 by B. Bolibruch (Anasov 
and Bolibruch 1994). 

Uniformization. 

Extend the methods of CALCULUS OF VARIA- 
TIONS. 

6. 

7. Let QI # 1 # 0 be ALGEBRAIC and p IRRATIONAL. 
Is a@ then TRANSCENDENTAL? Proved true in 
1934 by Aleksander Gelfond (GELFOND'S THEO- 
REM; Courant and Robins 1996). 

References 

8. 

9. 

10. 

Prove the RIEMANN HYPOTHESIS. The CONJEC- 
TURE has still been neither proved nor disproved. 

Construct generalizations of the RECIPROCITY 
THEOREM of NUMBER THEORY. 

Anasov, D. V. and Bolibruch, A. A. The Riemann-Hilbert 

Problem. Braunschweig, Germany: Vieweg, 1994. 
Bell, E. T. The Development of Mathematics, 2nd ed. New 

York: McGraw-Hill, p. 340, 1945. 
Borowski, E. J. and Borwein, J. M. (Eds.). “Hilbert Prob- 
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1Mu&ematics. New York: Harper-Collins, p. 659, 1991. 

Boyer, C. and Merzbach, W. “The Hilbert Problems.” His- 
tory of Mathematics, 2nd ed. New York: Wiley, pp. 610- 
614, 1991. 

Does there exist a universal algorithm for solving 
DIOPHANTINE EQUATIONS? The impossibility of 
obtaining a general solution was proven by Ju- 
lia Robinson and Martin Davis in 1970, following 
proof of the result that the equation n = Fzm 
(where Fzm is a FIBONACCI NUMBER) is Dio- 
phantine by Yuri Matijasevich (Matijasevie 1970, 
Davis 1973, Davis and Hersh 1973, Matijasevie 
1993). 

Browder, Felix E. (Ed.). Mathematical Developments Aris- 
ing jkom Hilbert Problems. Providence, RI: Amer. Math. 
SOL, 1976. 

11. 

12. 

Extend the results obtained for quadratic fields to 
arbitrary INTEGER algebraic fields. 

Extend a theorem of Kronecker to arbitrary alge- 
braic fields by explicitly constructing Hilbert class 
fields using special values. This calls for the con- 
structionof HOLOMORPHIC FUNCTIONS in several 
variables which have properties analogous to the 
exponential function and elliptic modular func- 
tions (Holtzapfel 1995). 

Show the impossibility of solving the general sev- 
enth degree equation by functions of two variables. 

Courant, R. and Robbins, H. What is Mathematics?: An Ek- 
ementary Approach to Ideas and Methods, 2nd ed. Oxford, 
England: Oxford University Press, p. 107, 1996. 
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Holtzapfel, R.-P. The Ball and Some Hilbert Problems. 
Boston, MA: Birkhtiuser, 1995. 

Ilyashenko, Yu. and Yakovenko, S. (Eds.). Concerning the 
Hilbert 16th ProbZem. Providence, RI: Amer. Math. SOL, 
1995. 

Matijasevi?, Yu. V. “Solution to of the Tenth Problem of 
Hilbert .” Mat. Lapok 21, 83-87, 1970. 

Matijasevich, Yu. V. Hilbert’s Tenth Problem. Cambridge, 
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Hilbert-Schmidt Norm 
The Hilbert-Schmidt norm of a MATRIX A is defined as 

IAl 2E 

d >: Uij l  

i , j  

Hilbert-Schmidt Theory 
The study of linear integral equations of the Fredholm 
type with symmetric kernels 

K(x, t) = K(t,x). 

References 
A&en, G. “Hilbert-Schmidt Theory.” 516.4 in lMuthematica2 

Methods for Physicists, 3rd ed. Orlando, FL: Academic 
Press, pp. 890-897, 1985. 

Hilbert Space 
A Hilbert space is VECTOR SPACE H- with an INNER 
PRODUCT (f,g) such that the NORM defined by 

turnsHintoa COMPLETE METRIC SPACE. Ifthe INNER 
PRODUCT does not so define a NORM, it is instead known 
asan INNER PRODUCT SPACE. 

Examples of FINITE-dimensional Hilbert spaces include 

1. The REAL NUMBERS R” with (ZI,U) the vector DOT 
PRODUCT of 21 and u. 

2. The COMPLEX NUMBERS Cn with (v, U) the vector 
DOT PRODUCT ofv andthe COMPLEX CONJUGATE 
of u. 

An example of an INFINITE-dimensional Hilbert space is 
L2, the SET of all FUNCTIONS f : Iw + Iw such that the 
INTEGRAL of f" over the whole REAL LINE is FINITE. 
In this case, the INNER PRODUCT is 

(f&l) = s f (x)9(x) dx. 
A Hilbert space is always a BANACH SPACE, but the 
converse need not hold. 

see also BANACH SPACE, &-NORM, Lz-SPACE, LIOU- 
VILLE SPACE,~ARALLELOGRAM LAW,VECTOR SPACE 

References 
Sansone, G. “Elementary Notions of Hilbert Space,” $1.3 in 

Orthogonal Functions, rev. English ed. New York: Dover, 
pp. 5-10, 1991. 

Stone, M. H. Linear Trunsfomations in Hilbert Space and 
Their Applications Analysis. Providence, RI: Amer. Math. 
sot., 1932. 

Hilbert’s Theorem 
Every MODULAR SYSTEM has a MODULAR SYSTEM 
BASIS consisting of a finite number of POLYNOMIALS. 
Stated another way, for every order n there exists a non- 
singular curve with the maximum number of circuits and 
the maximum number for any one nest. 

References 
Coolidge, J. L. A Treatise on Algebraic Plane Curves. New 

York: Dover, p. 61, 1959. 

Hilbert Transform 

1 O” 
S(Y) = ; 

s 

f (4 dx 
-m X-Y 

1 O” 
f( > x =- S(Y) dY 

7T s Y -x ’ --oo 

see also TITCHMARSH THEOREM 

References 
Bracewell, R. The Fourier Transform and Its Applications. 

New York: McGraw-Hill, pp. 267-272, 1965. 

Hill Determinant 
A DETERMINANT which arises in the solution of the 
second-order ORDINARY DIFFERENTIAL EQUATION 

x2d2$ d$ h2 
d22$xz+ $h2x2++h2-bfs $=O. (1) 

Writing the solution as a POWER SERIES 

(2) 
/ 4 

n=--00 

gives a RECURRENCE RELATION 

h2an+l + [2h2 - 4b+ 16(n+ is)2]an + h2a,-1 = 0. (3) 

The value of s can be computed using the Hill determi- 
nant 

A(s) = 

where 

. . . 

. l  . 

. . . 

. 
(m+2)-d 

4--aa 

0 
0 

. . 
4-u’ 0 

Da 2-U 2 -- -- u= 0 -- ;: 
l--a2 

l  l  . 

m  . . 

, . . 

9 (4) 

(5) 

(6) 
(7) 
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and 0 is the variable to solve for. The determinant can 

be given explicitly by the amazing formula 

A(s) = A(O) - 
sin2 (7rs/2) 

sin2( +rdw) ’ 
(8) 

where 

. . . . . . . . . 

i h-2 
;I 

;, 

. 
l  . . 

144+2ha--4b 

. . . 

ha h’ . . . 
m 

1 
64-t2ha 0 m * . 

. . . 

. . . 

0 
0 

ha ha 
16+2h2 

1 ~ .a. 
16+2ha--4b 

0 ha 

2h2 -4b 
1 . . . 

* . . 0 0 0 ha 
16+2hZ ‘-- 

. . . . . . 
. . . . . 

. . . . . 

leading to the implicit equation for S, 

/ -1 

sin2( $,) = A(0) sin2 ($+- $h2). 

(9) 

see also HILL’S DIFFERENTIAL EQUATION 

References 
Morse, P. M. and Feshbach, H. Methods of Theoretical Phys- 

ics, Part L New York: McGraw-Hill, pp- 555-562, 1953. 

Hill’s Differential Equation 

d2x -- 
&2 - (P(t) x7 

where 4 is periodic. It can be written as 

d2Y 
s+ [8D+9~&cos(2nz)] =o, 

?I= 1 

where 0, are known constants. A solution can be given 
by taking the “DETERMINANT” of an infinite MATRIX. 

see ~2~0 HILL DETERMINANT 

Hillam’s Theorem 
If f : [a, b] + [a, b] (where [a, b] denotes the CLOSED 
INTERVAL from a to b on the REAL LINE) satisfies a 
LIPSCHITZ CONDITION with constant K, i.e., if 

If(x) - f(Y)1 i Klx - YI 

for all x, y E [a, b], then the iteration scheme 

G-L+1 = (I- X)x, + Af(xn), 

where X = l/(K+ l), converges to a FIXED POINT of f. 

References 
Falkowski, B l - J m “On the Convergence of Hillam’s Iteration 

Scheme.” Math. Msg. 69, 299-303, 1996. 
Geist, R.; Reynolds, R.; and Suggs, D. “A Markovian Frame- 

work for Digital Halftoning.” ACM Trans. Graphics 12, 
136-159, 1993. 

Hillam, B. P. “A Generalization of Krasnoselski’s ‘Theorem 
on the Real Line.” Math. Msg. 48, 167-168, 1975. 

Krasnoselski, M. A. “Two Remarks on the Method of Suc- 
cessive Approximations.” Uspehi Math. lVuuk (IV. S.) 10, 
123-127, 1955. 

Hindu Check 

see CASTING OUT NINES 

Hinge 
1 M 4n+5 

150 895 1895 

250 895 1099 1775 

688 895 1166 1699 

795 795 1333 1693 

795 1499 

I-I1 H2 

The upper and lower hinges are descriptive statistics of 
a set of N data values, where N is of the form Iv = 
4n+ 5 with n = 0, 1, 2, . l  . l  The hinges are obtained by 
ordering the data in increasing order al, l  . . , UN, and 
writing them out in the shape of a “w” as illustrated 
above. The values at the bottom legs are called the 
hinges HI and Hz (and the central peak is the MEDIAN). 

In this ordering, 

HI = an+2 = U(Iv+3)/4 

For N of the form 4n + 5, the hinges are identical to 
the QUARTILES. The difference Hz - HI is called the 
H-SPREAD. 

see also H-SPREAD, HABERDASHER'S PROBLEM, ME- 
DIAN (STATISTICS), ORDER STATISTIC, QUARTILE, 
TRIMEAN 

References 
Tukey, J. W+ Explanatory Data Analysis. Reading, MA: 

Addison-Wesley, pp. 32-34, 1977. 

Hippias’ Quadratrix 

see QUADRATRIX OF HIPPIAS 

Hippopede 



Histogram 

A curve also known as a HORSE FETTER and given by 
the polar equation 

r2 = 4b(a - bsin2 0). 

References 
Lawrence, J. D. A Catalog of Special 

York: Dover, pp. 144-146, 1972. 

Histogram 

14 

12 

10 

a 

6 

4 

2 

0 

Plane Curves. New 

1 2 3 5 6 8 9 10 

The grouping of data into bins (spaced apart by the so- 
called CLASS INTERVAL) plotting the number of mem- 
bers in each bin versus the bin number. The above his- 

togram shows the number of variates in bins with CLASS 
INTERVAL 1 for a sample of 100 real variates with a UN- 
IFORM DISTRIBUTION from 0 and lOa Therefore, bin 1 
gives the number of variates in the range O-l, bin 2 gives 
the number of variates in the range I-2, etc. 

see also OGIVE 

Hitch 
A KNOT that secures a rope to a post, ring, another 
rope, etc., but does not keep its shape by itself. 

see also CLOVE HITCH, KNOT, LINK, LOOP (KNOT) 

References 
Owen, P. Knots. Philadelphia, PA: Courage, p. 17, 1993. 

Hitting Set 
Let S be a collection S of subsets of a finite set X. The 
smallest subset Y of X that meets every member of S 

is called the hitting set or VERTEX COVER. Finding the 
hitting set is an NP-COMPLETE PROBLEM. 

Hjelmslev’s Theorem On a compact oriented FINSLER MANIFOLD without 

When all the points P on one line are related by an boundary, every COHOMOLOGY class has a UNIQUE har- 

ISOMETRY to all points P' on another, the MIDPOINTS monic representative. The DIMENSION of the SPACE of 

of the segments PP' are either distinct and collinear or all harmonic forms of degree p is the Pth BETTI NUMBER 

coincident + of the MANIFOLD. 
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HJLS Algorithm 
An algorithm for finding INTEGER RELATIONS whose 
running time is bounded by a polynomial in the num- 
ber of real variables. It is much faster than other algo- 
rithms such as the FERGUSON-FORCADE ALGORITHM, 
LLL ALGORITHM, andPSOS ALGORITHM. 

Unfortunately, it is numerically unstable and therefore 

requires extremely high precision. The cause of this in- 
stability is not known (Ferguson and Bailey 1992), but is 
believed to derive from its reliance on GRAM-SCHMIDT 
ORTHONORMALIZATION, which is know to be numeri- 

cally unstable (Golub and van Loan 1989). 

see also FERGUSON-FORCADE ALGORITHM, INTEGER 
RELATION, LLL ALGORITHM, PSLQ ALGORITHM, 
PSOS ALGORITHM 

References 
Ferguson, H. R. P. and Bailey, D, H, “A Polynomial Time, 

Numerically St able Integer Relation Algorithm.” RNR 
Techn. Rept. RNR-91-032, Jul. 14, 1992. 
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“Polynomial Time Algorithms for Finding Integer Rela- 
tions Among Real Numbers.” SIAM J. Comput. 18, 859- 
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HK Integral 
Named after Henstock and Kurzweil. Every LEBESGUE 
INTEGRABLE function is HK integrable with the same 
value. 

References 
Shenitzer, A. and Steprans, J. “The Evolution of Integra- 

tion” Amer. Math. Monthly 101, 66-72, 1994. 

Hodge Star 
Onanoriented n-D RIEMANNIAN MANIFOLD, the Hodge 
star is a linear FUNCTION which converts alternating 
DIFFERENTIAL ~-FORMS to alternating (n - k)-forms. 
If w is an alternating ~-FORM, its Hodge star is given 

bY 
w(u1, =. . , vk) = (*w)(vk+l, . . . 1 vn) 

whenvl, . . . . wn. is an oriented orthonormal basis. 

see also STOKES' THEOREM 

Hedge’s Theorem 

see also BETTI NUMBER, COHOMOLOGY, DIMENSION, 
FINSLER MANIFOLD 

References 
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Hoehn’s Theorem 
v2 

A geometric theorem related to the PENTAGRAM and 
also called the PRATT-KASAPI THEOREM. 

In general, it is also true that 

Iwi+lvi+ZI - lVifi+lVi+2Vi+41 IK+2fi+3vi+ll ’ 

This type of identity was generalized to other figures in 
the plane and their duals by Pinkernell (1996). 

References 
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drecht, Netherlands: Reidel, 1987. 
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Hoffman’s Minimal Surface 
A minimal embedded surface discovered in 1992 con- 
sisting of a helicoid with a HOLE and HANDLE (Science 
News 1992). It has the same topology as a punctured 
sphere with a handle, and is only the second complete 
embedded minimal surface of finite topology and infi- 
nite total curvature discovered (the HELICOID being the 
first) l  

A three-ended minimal surface GENUS 1 is sometimes 
also called Hoffman’s minimal surface (Peterson 1988). 

see also HELICOID 

References 
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Hoffman-Singleton Graph 
The only GRAPH of DIAMETER 2, GIRTH 5, and VA- 
LENCY 7. It contains many copies of the PETERSEN 
GRAPH. 

Hofstadter-Conway $10,000 Sequence 
The INTEGER SEQUENCE defined by the RECURRENCE 
RELATION 

44 = a(a(n - 1)) + a(n - a(n - l)), 

with a(1) = a(2) = 1. The first few values are 1, 1, 
2, 2, 3, 4, 4, 4, 5, 6, . . . (Sloane’s AO04OOl). Plotting 
a(n)/n against n gives the BATRACHION plotted below. 
Conway (1988) showed that limn,, a(n)/n = l/2 and 
offered a prize of $10,000 to the discoverer of a value of n 
for which Iu(i)/i - l/21 < l/20 for i > n. The prize was 
subsequently claimed by Mallows, after adjustment to 
Conway’s “intended” prize of $1,000 (Schroeder 1991), 
who found n = 1489. 

a(n)/n takes a value of l/2 for 12 of the form 2” with 
k = 1, 2, . . . . Pickover (1996) g ives a table of analogous 
values of n corresponding to different values of /a(n)/n- 
l/21 < e. 

0 200 400 600 800 1000 

see ~2s~ BLANCMANGE FUNCTION, HOFSTADTER'S Q- 
SEQUENCE, MALLOW'S SEQUENCE 
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Hofstadter Figure-Figure Sequence 
Define F(1) = 1 and S(1) = 2 and write 

F(n) = F(n - 1) + S(n - l), 

where the sequence {S(n)} consists of those integers 
not already contained in {F(n)}. For example, F(2) = 

F(l) + S(1) = 3, so the next term of S(n) is S(2) = 4, 
giving F(3) = F(2) + S(2) = 7. The next integer is 5, 
so S(3) = 5 and F(4) = F(3) + S(3) = 12. Continuing 
in this manner gives the “figure” sequence F(n) as 1, 3, 
7, 12, 18, 26, 35, 45, 56, . . . (Sloane’s AOO5228) and the 
“space” sequence as 2, 4, 5, 6, 8, 9, 10, 11, 13, 14, l  . . 
(Sloane’s A030124). 

References 
Hofstadter, D. R. CXdeZ, Escher, Bach: An Eternal Golden 

Braid. New York: Vintage Books, p. 73, 1989. 
Sloane, N. J. A. Sequences A030124 and A005288/M2629 in 

“An On-Line Version of the Encyclopedia of Integer Se- 
quences m” 

Hofstadter G-Sequence 
The sequence defined by G(0) = 0 and 

G(n) = n - G(G(n - l))* 

The first few terms are 1, 1, 2, 3, 3, 4, 4, 5, 6, 6, 7, 8, 8, 
9) 9, l  . . (Sloane’s A005206). 

References 
Hofstadter, D. R. Godel, Escher, Bach: An Eternal Golden 

Braid. New York: Vintage Books, p. 137, 1989. 
Sloane, N+ J. A. Sequence A005206/M0436 in “An On-Line 

Version of the Encyclopedia of Integer Sequences.” 

Hofstadter H-Sequence 
The sequence defined by H(0) = 0 and 

H(n) = n - H(H(H(n - 1))). 

The first few terms are 1, 1, 2, 3, 4, 4, 5, 5, 6, 7, 7, 8, 9, 
10, 10, 11, 12, 13, 13, 14, . . . (Sloane’s AO05374). 

References 
Hofstadter, D. R. Glidel, Escher, Bach: An Eternal Golden 

Braid. New York: Vintage Books, p. 137, 1989. 
Sloane, N. J. A. Sequence A005374/M0449 in “An On-Line 

Version of the Encyclopedia of Integer Sequences.” 

Hofstadter Male-Female Sequences 
The pair of sequences defined by F (0) = 1, M( 0) = 0, 
and 

F(n) = n - M(F(n - 1)) 

M(n) = n - F(M(n - 1)). 

The first few terms of the “male” sequence M(n) are 
0, 1, 2, 2, 3, 4, 4, 5, 6, 6, 7, 7, 8, 9, 9, . . . (Sloane’s 
A005379), and the first few terms of the “female” se- 
quence F(n) are 1, 2, 2, 3, 3, 4, 5, 5, 6, 6, 7, 8, 8, 9, 9, 
. . . (Sloane’s A005378). 
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References 
Hofstadter, D. R. Godel, Escher, Bach: An Eternal Golden 

Braid. New York: Vintage Books, p* 137, 1989. 
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MO278 in “An On-Line Version of the Encyclopedia of In- 
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Hofstadter Point 
The T-HOFSTADTER TRIANGLE of a given TRIANGLE 
AABC is perspective to AABC, and the PERSPECTIVE 
CENTER is called the Hofstadter point. The TRIANGLE 
CENTER FUNCTION is 

Q= 
sin( rA) 

sin@ - TA)’ 

AS r + 0, the TRIANGLE CENTER FUNCTION ap- 
proaches 

A 
a= -, 

a 

and as T + l,the TRIANGLE CENTER FUNCTION ap- 
proaches 

see also HOFSTADTER TRIANGLE 

References 
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Monthly 104, 431-438, 1997. 
Kimberling, C. “Hofstadter Points.” http://wuw. 

evansville,edu/-ck6/tcenters/recent/hofstad.html. 

Hofstadter’s Q-Sequence 

I 

The INTEGER SEQUENCE given by 

Q(n) = Q(n - Q(n - 1)) + Q(n - Q(n - 2>>, 

with Q(1) = Q(2) = 1. The first few values are 1, 1, 2, 3, 
3, 4, 5, 5, 6, 6, . . . (Sloane’s A005185; illustrated above). 
These numbers are sometimes called Q-NUMBERS. 

see also HOFSTADTER-CONWAY $10,000 SEQUENCE, 
MALLOW'S SEQUENCE 

References 
Conolly, B. W. “Meta-Fibonacci Sequences.” In Fibonacci 
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Guy, R. “Some Suspiciously Simple Sequences.” Amer. 
Math. Monthly 93, 186-191, 1986. 

Hofstadter, D. R. Giidel, Escher Bach: An Eternal Golden 
Braid. New York: Vintage Books, pp. 137-138, 1980. 

Pickover, C. A. “The Crying of fiactal Batrachion 1,489.” 
Ch. 25 in Keys to Infinity. New York: W. H. F’reeman, 
pp. 183-191, 1995. 

Sloane, N. J. A. Sequence A005185/M0438 in ‘&An On-Line 
Version of the Encyclopedia of Integer Sequences.” 

Hofstadter Sequences 
Let bl = 1 and 62 = 2 and for n > 3, let b, be the least - 
INTEGER > b,- 1 which can be expressed as the SUM of 
two or more consecutive terms. The resulting sequence 
is 1, 2, 3, 5, 6, 8, 10, 11, 14, 16, . l  . (Sloane’s AO05243). 
Let cl = 2 and c2 = 3, form all possible expressions of 
the form cicj - 1 for 1 5 i 5 j 5 n, and append them. 
The resulting sequence is 2, 3, 5, 9, 14, 16, 17, 18, . . . 
(Sloane’s A05244). 

see &O HOFSTADTER-CONWAY $10,000 SEQUENCE, 
HOFSTADTER'S Q-SEQUENCE 
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Hofstadter Triangle 
For a NONZERO REAL NUMBER 1” and a TRIANGLE 

AABC, swing LINE SEGMENT BC about the vertex B 
towards vertex A through an ANGLE rB. Call the line 
along the rotated segment L. Construct a second line L’ 
by rotating LINE SEGMENT BC about vertex C through 
an ANGLE rC. Now denote the point of intersection of L 
and L’ by A(r). Similarly, construct B(T) and C(T). The 
TRIANGLE having these points as vertices is called the 
Hofstadter r-triangle. Kimberling (1994) showed that 
the Hofstadter triangle is perspective to AABC, and 
calls PERSPECTIVE CENTER the HOFSTADTER POINT. 

see also HOFSTADTER POINT 
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Hijlder Condition 
A function 4(t) satisfies the Hijlder condition on two 
points tl and i2 on an arc L when 

]#(t2) - &)I < 42 - h[', - 

with A and p POSITIVE REAL constants. 

HGlder Sum Inequality 

Hijlder Integral Inequality 
If 

1 1 
-+-=I 
P 4 

with p, q > 1, then 

s b 

If (XMX) I dx 

a 

with equality when 

Ifp = q = 2, this inequality becomes SCHWARZ'S IN- 
EQUALITY. 
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Hijlder Sum Inequality 
If 

1 

with p, q > 1, then 

n / n 

k=l \k=l 

with equality when lbk 1 

1 
+-=1 

4 

ak,p)‘;’ ( $bk,q)‘;q. 
= +kIPB1. If p = q = 2, this 

becomes the CAUCHY INEQUALITY. 
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Hole 
A hole in a mathematical object is a TOPOLOGICAL 
structure which prevents the object from being contin- 
uously shrunk to a point. When dealing with TOPO- 
LOGICAL SPACES, a DISCONNECTIVITY is interpreted as 
a hole in the space. Examples of holes are things like 
the hole in the “center” of a SPHERE or a CIRCLE and 
the hole produced in EUCLIDEAN SPACE cutting a KNOT 

out from it. 

Home Plate 

Homeomorphic 849 

Singular HOMOLOGY GROUPS form a MEASURE of the 
hole structure of a SPACE, but they are one particu- 
lar measure and they don’t always pick up everything. 
HOMOTOPY GROUPS of a SPACE are another measure 
of holes in a SPACE, as well as BORDISM GROUPS, k- 
THEORY,~OHOMOTOPY GROUPS, and SO on. 

There are many ways to measure holes in a space. 
Some holes are picked up by HOMOTOPY GROUPS that 
are not picked up by HOMOLOGY GROUPS, and some 
holes are picked up by EIOMOLOGY GROUPS that are 
not picked up by HOMOT~PY GROUPS. (For example, 
in the TORUS, HOMOTOPY GROUPS “miss” the two- 
dimensional hole that is given by the TORUS itself, but 
the second HOMOLOGY GROUP picks that hole up.) In 
addition, HOMOLOGY GROUPS don’t pick up the vary- 
ing hole structures of the complement- of KNOTS in 3- 
space, but the first HOMOTOPY GROUP (the fundamen- 
tal group) does. 

see also BRANCH CUT, BRANCH POINT, CORK PLUG, 
CROSS-CAP, GENUS (SURFACE), SINGULAR POINT 
(FUNCTION), SPHERICAL RING, TORUS 

Holomorphic Function 
A synonym for ANALYTIC FUNCTION. 

see UZSO ANALYTIC FUNCTION, HOMEOMORPHIC 

Holonomic Constant 
A limiting value of a HOLONOMIC FUNCTION near a SIN- 
GULAR POINT. Holonomic constants include API~RY’S 
CONSTANT, CATALAN'S CONSTANT, P~LYA'S RANDOM 
WALK CONSTANTS for d > 2, and PI. 

Holonomic Function 
A solution of a linear homogeneous ORDINARY DIFFER- 
ENTIAL EQUATION with POLYNOMIAL COEFFICIENTS. 

see also HOLONOMIC CONSTANT 

References 
Zeilberger, D. “A Holonomic Systems Approach to Special 

Function Identities.” J. Comput. Appl. Math. 32, 321- 
348,1990. 

Holonomy 
A general concept in CATEGORY THEORY involving the 
globalization of topological or differential structures. 

see also MONODROMY 

Home plate in the game of BASEBALL is an irregular 
PENTAGON. However, the Little League rulebook’s spec- 
ification of the shape of home plate (Kreutzer and Ker- 
ley 199O), illustrated above, is not physically realizable, 
since it requires the existence of a (12, 12, 17) RIGHT 
TRIANGLE, whereas 

122 + 122 = 288 # 289 = 172 

(Bradley 1996). 

see also BASEBALL COVER 

References 
Bradley, M. J. “Building Home Plate: Field of Dreams or 

Reality?” Math. Mug. 69, 44-45, 1996. 
Kreutzer, P. and Kerley, T. Little League’s O&id How-to- 

Play Baseball Book. New York: Doubleday, 1990. 

Homeoid 
A shell bounded by two similar ELLIPSOIDS having a 
constant ratio of axes. Given a CHORD passing through 
a homeoid, the distance between inner and outer inter- 
sections is equal on both sides. Since a spherical shell 
is a symmetric case of a homeoid, this theorem is also 
true for spherical shells (CONCENTRIC CIRCLES in the 
PLANE), for which it is easily proved by symmetry ar- 
guments. 

see also CHORD, ELLIPSOID 

Homeomorphic 
There are two possible definitions: 

1. Possessing similarity of form, 

2. Continuous, ONE-TO-ONE, 
tinuous inverse. 

ONTO, and having a con- 

The most common meaning is possessing intrinsic topo- 
logical equivalence. Two objects are homeomorphic if 
they can be deformed into each other by a continuous, 
invertible mapping. Homeomorphism ignores the space 
in which surfaces are embedded, so the deformation can 
be completed in a higher dimensional space than the 
surface was originally embedded. MIRROR IMAGES are 
homeomorphic, as are MOBIUS BANDS with an EVEN 
number of half twists, and MOBIUS BANDS with an ODD 
number of twists. 

In CATEGORY THEORY terms, homeomorphisms are 
ISOMORPHISMS in the CATEGORY of TOPOLOGICAL 
SPACES and continuous maps. 

see also HOMOMORPHIC, POLISH SPACE 
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Homeomorphic Group 
If the ELEMENTS of two GROUPS are n to 1 and the 
correspondences satisfy the same GROUP multiplication 
table, the GROUPS are said to be homeomorphic. 

see ah ISOMORPHIC GROUPS 

Homeomorphic Type 
The following three pieces of information completely de- 
termine the homeomorphic type of the surface (Massey 
1967): 

1. Orientability, 

2. Number of boundary components, 

3. EULER CHARACTERISTIC. 

see also ALGEBRAIC TOPOLOGY, EULER CHARACTER- 
ISTIC 

References 
Massey, W. S. Algebraic Topology: An Introduction. New 
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Homeomorphism 

~~~HOMEOMORPHIC, HOMEOMORPHIC GROUP,HOME- 
OMORPHIC TYPE,TOPOLOGICALLY CONJUGATE 

HOMFLY Polynomial 
A 2-variable oriented KNOT POLYNOMIAL PL(a,z) mo- 

tivated by the JONES POLYNOMIAL (fieyd et al. 1985). 
Its name is an acronym for the last names of its co- 
discoverers: Hoste, Ocneanu, Millett, Freyd, Lickorish, 
and Yetter (Freyd et al. 1985). Independent work re- 
lated to the HOMFLY polynomial was also carried out 
by Prztycki and naczyk (1987). HOMFLY polynomial 
is defined by the SKEIN RELATIONSHIP 

a-lP~+ (a, z) - aPL_ (a, x) = ZPL, (a, z) (1) 

(Doll and Hoste 1991), where 2t is sometimes written in- 
stead of a (Kanenobu and Sumi 1993) or, with a slightly 
diBerent relationship, as 

cyPL+ (111, x) - a-lPL- (a, z) = XP& (a, 2) (2) 

(Kauffman 1991). It is also defined as pL(& m) in terms 
of SKEIN RELATIONSHIP 

!PL+ + !-lp,- + mPL, = 0 (3) 

(Lickorish and Millett 1988). It can be regarded as a 
nonhomogeneous POLYNOMIAL in two variables or a ho- 
mogeneous POLYNOMIAL in three variables. In three 
variables the SKEIN RELATIONSHIP is written 

x~L+(x,Y,z)+ YPL-(X&Z) + ~PL&,Y,~) = 0. (4) 

HOMFLY Polynomial 

It is normalized so that &&not = 1. Also, for n unlinked 
unknotted components, 

PL(X, y,z) = (-yn-l l  (5) 

This POLYNOMIAL usually detects CHIRALITY but does 
not detect the distinct ENANTIOMERS of the KNOTS 
09042, 10048, 10071, 10091, 10104, and 10125 (Jones 1987). 
The HOMFLY polynomial of an oriented KNOT is the 
same if the orientation is reversed. It is a generalization 
of the JONES POLYNOMIAL V(t), satisfying 

v(t) = P(a = t, z = tli2 - t-1’2) (6) 

v(t) = P@ = it-l,m = i(t-1’2 - t’/“))* (7) 

It is also a generalization of the ALEXANDER POLYNOM- 
IAL v(z), satisfying 

A(Z) = P(a = 1, z = t1’2 - t 
-l/2 

). (8) 

TheHOMFLY POLYNOMIAL of the MIRROR IMAGEK* 
of a KNOT K is given by 

Pp (e, m) = P&e-‘, m), (9) 

so P usually but not always detects CHIRALITY. 

A split union of two links (i.e., bringing two links to 
gether without intertwining them) has H0MFLY poly 
nomial 

P(L1 U L2) = -(t + C-l)mD1P(L1)P(L2). (10 

Also, the composition of two links 

P(L#Lz) =P(L1)P(L2), (11) 

so the POLYNOMIAL of a COMPOSXTE KNOT factors into 
POLYNOMIALS of its constituent knots (Adams 1994). 

MUTANTS have the same HOMFLY polynomials. In 
fact, there are infinitely many distinct KNOTS with 
the same HOMFLY POLYNOMIAL (Kanenobu 1986). 
Examples include (05001, l&32), (08008, 10129) (08016, 

10156), and (10025, 10056) (Jones 1987). Incidentally, 
these also have the same JONES POLYNOMIAL. 

M. B. Thistlethwaite has tabulated the HOMFLY poly- 
nomial for KNOTS up to 13 crossings. 

see also ALEXANDER POLYNOMIAL, JONES POLYNOM- 
IAL, KNOT POLYNOMIAL 
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Homoclinic Point 
A point where a stable and an unstable separatrix (in- 
variant manifold) from the same fixed point or same 
family intersect. Therefore, the limits 

lim f”(X) 
k+oo 

and 
lim f”(X) 

k-+-m 

exist and are equal. 

Refer to the above figure. Let X be the point of in- 
tersection, with X1 ahead of X on one MANIFOLD and 
X2 ahead of X of the other. The mapping of each of 
these points TX1 and TX2 must be ahead of the map- 
ping of X, TX. The only way this can happen is if the 
MANIFOLD loops back and crosses itself at a new homo- 
clinic point. Another loop must be formed, with T2X 
another homoclinic point. Since T2X is closer to the hy- 
perbolic point than TX, the distance between T2X and 
TX is less than that between X and TX. Area preser- 
vation requires the AREA to remain the same, so each 
new curve (which is closer than the previous one) must 
extend further. In effect, the loops become longer and 
thinner. The network of curves leading to a dense AREA 
of homoclinic points is known as a homoclinic tangle or 
tendril. Homoclinic points appeal where CHAOTIC re- 
gions touch in a hyperbolic FIXED POINT. 

A small DISK centered near a homoclinic point in- 
cludes infinitely many periodic points of different pe- 
riods. Poincare showed that if there is a single homo- 
clinic point, there are an infinite number. More specifi- 
cally, there are infinitely many homoclinic points in each 
small disk (Nusse and Yorke 1996). 

see also HETEROCLINIC POINT 

Homogeneous Coordinates 

see TRILINEAR COORDINATES 

Homogeneous Function 
A function which satisfies 

f (tx, ty> = t” f (XI Y) 

for a fixed 72. MEANS, the WEIERSTRAJ~ ELLIPTIC 
FUNCTION, and TRIANGLE CENTERFUNCTIONS areho- 
mogeneous functions. A transformation of the variables 
of a TENSOR changes the TENSOR into another whose 
components are linear homogeneous functions of the 
components of the original TENSOR. 

see ~ZSOEULER'S HOMOGENEOUS FUNCTION THEOREM 

Homogeneous Numbers 
Two numbers are homogeneous if they have identical 
PRIME FACTORS. An example of a homogeneous pair is 
(6, 36), both of which share PRIME FACTORS 2 and 3: 

6=2a3 

36 = 22 n 3’. 

see ~ZSOHETEROGENEOUS NUMBERS,PRIME FACTORS, 
PRI ME NUMBER 

References 
Le Lionnais, F. 
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Homogeneous Polynomial 
A multivariate polynomial (i.e., a POLYNOMIAL in more 
than one variable) with all terms having the same de- 
gree. For example, x3 + xyz + y2n + z3 is a homogeneous 
polynomial of degree three. 

see also POLYNOMIAL 

Homographic 

see MOBIUS TRA NSFORMATION 

Homography 
A CIRCLE-preserving transformation composed of an 
EVEN number of inversions. 

see also ANTXHOMOGRAPHY 
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Homological Algebra 
An abstract ALGEBRA concerned with results valid for 
many different kinds of SPACES. 

Rererences 
Hilton, P. and Stammbach, U. A Course in Homological AZ- 

g&u, 2nd ed. New York: Springer-Verlag, 1997. 
Weibel, C. A. An Introduction to Homological Algebra. New 

York: Cambridge University Press, 1994. 

Homologous Points 
The extremities of PARALLEL RAPII of two CIRCLES are 
called homologous with respect to the SIMILITUDE CEN- 
TER collinear with them. 

SE UZSO ANTIHOMOLOGOUS POINTS 

References 
Johnson, R. A. Modern Geometry: An Elementary Treatise 
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Homolographic Equal Area Projection 

see MOLLWEIDE PROJECTION 

Homology (Geometry) 
A PERSPECTIVE COLLINEATION inwhichthecenterand 
axis are not incident. 

see dso ELATION, HARMONIC HOMOLOGY, 
TIVE COLLINEATION 

PERSPEC- 

Homology Group 
The term “homology group” usually means a singular 
homology group, which is an ABELIAN GROUP which 
partially counts the number of HOLES in a TOPOLOG- 
ICAL SPACE. In particular, singular homology groups 
form a MEASURE of the HOLE structure of a SPACE, but 
they are one particular measure and they don’t always 
pick up everything. 

In addition, there are “generalized homology groups” 
which are not singular homology groups. 

Homology (Topology) 
Historically, the term “homology” was first used in a 
topological sense by Poincar6. To him, it meant pretty 
much what is now called a COBORDISM, meaning that 
a homology was thought of as a relation between MAN- 
IFOLDS mapped into a MANIFOLD. Such MANIFOLDS 
form a homology when they form the boundary of a 
higher-dimensional MANIFOLD inside the MANIFOLD in 
question. 

To simplify the definition of homology, Poincar6 sim- 
plified the spaces he dealt with. He assumed that all 
the spaces he dealt with had a triangulation (i.e., they 
were “SIMPLICIAL COMPLEXES"). Then instead oftalk- 
i,ng about general “objects” in these spaces, he restricted 
himself to subcomplexes, i.e., objects in the space made 
up only on the simplices in the TRIANGULATION of the 
space. Eventually, PoincarG’s version of homology was 

dispensed with and replaced by the more general SINGU- 
LAR HOMOLOGY. SINGULAR HOMOLOGY istheconcept 
mathematicians mean when they say “homology.” 

In modern usage, however, the word homology is used to 
mean HOMOLOGY GROUP. For example, if someone says 
“X did Y by computing the homology of 2,” they mean 
“X did Y by computing the HOMOLOGY GROUPS of 2.” 
l3ut sometimes homology is used more loosely in the 
context of a “homology in a SPACE," which corresponds 
to sing&r homology groups. 

Singular homology groups of a SPACE measure the ex- 
tent to which there are finite (compact) boundaryless 
GADGETS in that SPACE, suchthatthese GADGETS are 
not the boundary of other finite (compact) GADGETS in 
that SPACE. 

A generalized homology or cohomology theory must sat- 
isfy all of the EILENBERG-STEENROD AXIOMS with the 
exception of the DIMENSION AXIOM. 

see also COHOMOLOGY, DIMENSION AXIOM, EILEN- 
BERG-STEENROD AXIOMS, GADGET, HOMOLOGICAL 
ALGEBRA,HOMOLOGY GROUPSIMPLICIAL COMPLEX, 
SIMPLICIAL HOMOLOGY, SINGULAR HOMOLOGY 

Homomorphic 
Related to one another by a HOMOMORPHISM. 

Homomorphism 
A term used in CATEGORY THEORY to mean a general 
MORPHISM. 

see UZSO HOMEOMORPHISM, MORPHISM 

Homoscedastic 
A set of STATISTICAL DISTRIBUTIONS having the same 
VARIANCE. 
see also HETEROSCEDASTIC 

Homothecy 

see DILATION 

Homothetic 
Two figures are homothetic if they are related by a DILA- 
TION (a dilation is also known as a HOMOTHECY). This 
means that they lie in the same plane and correspond- 
ing sides are PARALLEL; such figures have connectors 
of corresponding points which are CONCURRENT at a 
point known as the HOMOTHETIC CENTER. The HO- 
MOTHETIC CENTER divides each connector in the same 
ratio k, known as the SIMILITUDE RATIO. For figures 
which are similar but do not have PARALLEL sides, a 
SIMILITUDE CENTER exists. 
see UZSO DILATION, HOMOTHETIC 
TIV 'E, SIMILITUDE RATIO 

CENTER, PERSPEC- 

References 
Johnson, R. A. Modern Geometry: An Elementary Treatise 

and the Circle. Boston, on the Geometry of the Triangle 
MA: Houghton Mifflin, 1 929. 
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Homothetic Center 

B 

0 

c 

The meeting point of lines that connect corresponding 
points from HOMOTHETIC figures. In the above figure, 
0 is the homothetic center of the HOMOTHETIC figures 
ABCDE and A’B’C’D’E’. For figures which are similar 
but do not have PARALLEL sides, a SIMILITUDE CENTER 
exists (Johnson 1929, pp. 16-20). 

Given two nonconcentric CIRCLES, draw RADII PARAL- 
LEL and in the same direction. Then the line joining the 
extremities of the RADII passes through a fixed point 
on the line of centers which divides that line externally 

in the ratio of RADII. This point is called the exter- 

nal homothetic center, or external 
(Johnson 1929, pp. 19-20 and 41). 

center of similitude 

If RADII are drawn PARALLEL but instead in opposite 
directions, the extremities of the RADII pass through a 
fixed point on the line of centers which divides that line 
internally in the ratio of RADII (Johnson 1929, ppm 19- 
20 and 41). This point is called the internal homothetic 
center, or internal center of similitude (Johnson 1929, 
pp. 19-20 and 41). 

The position of the homothetic centers for two circles of 
radii pi, centers (zi, yi), and segment angle 0 are given 
by solving th+z simultaneous equations 

y-y2 = =q, -22) 
x2 - Xl 

f f 

y - y; = a(" - x,') 

22 --Xl 

for (x,y), where 

x’ E xi + (-l)%i cos0 

y+ = yi + (-l)%i sin@, 

and the plus signs give the external homothetic center, 
while the minus signs give the internal homothetic cen- 
ter. 

As the above diagrams show, as the angles of the paral- 
lel segments are varied, the positions of the homothetic 
centers remain the same. This fact provides a (slotted) 
LINKAGE for converting circular motion with one radius 
to circular motion with another. 

0 
33 0 

0 OG 
The six homothetic centers of three circles lie three by 
three on four lines (Johnson 1929, p. 120), which “en- 
close” the smallest circle. 

The homothetic center of triangles is the PERSPECTIVE 
CENTER of HOMOTHETIC TRIANGLES. It is also called 
the SIMILITUDE CENTER (Johnson 1929, pp. 16-17). 

see also APOLLONIUS’ PROBLEM, PERSPECTIVE, SIMIL- 
ITUDE CENTER 

References 
Johnson, R. A. Modern Geometry: An Elementary Treatise 

on the Geometry of the Triangle and the Circle. Boston, 
MA: Houghton Mifflin, 1929. 
Weisstein, E. IV. “Plane Geometry.” http: //uuw. astro. 
virginia.edu/~euu6n/math/notebooks/PlaneGeometry.m~ 

Homot het ic Posit ion 
TWO similar figures with PARALLEL homologous LINES 
andconnectorsof HOMOLOGOUS POINTS CONCURRENT 
at the HOMOTHETIC CENTER are said to be in homo- 
thetic position. If two SIMILAR figures are in the same 
plane but the corresponding sides are not PARALLEL, 
there exists a self-HOMOLOGOUS POINT which occupies 
the same homologous position with respect to the two 
figures. 
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Homot hetic Triangles Hook 
Nonconcurrent TRIANGLES with PARALLEL sides are al- 
ways HOMOTHETIC. Homothetic triangles are always 
PERSPECTIVE TRIANGLES. Their PERSPECTIVE CEN- 
TER is called their HOMOTHETXC CENTER. A 6-POLYIAMOND. 

Homotopy 
A continuous transformation from one FUNCTION to an- 
other. A homotopy between two functions f and g 
from a SPACE X to a SPACE Y is a continuous MAP 
G from X E [O, I] e Y such that C(z, 0) = f(s) and 

G(x, 1) = g(x)* Another way of saying this is that a 
homotopy is a path in the mapping SPACE Map(X, Y) 
from the first FUNCTION to the second. 

see also ~-C~B~RDI~M 

Homotopy Axiom 
One of the EILENBERG-STEENROD AXIOMS which states 
that, if f : (X, A) -+ (Y, B) is homotopic to g : (X, A) -+ 
(Y,B), then their INDUCED MAPS f* : H,(X,A) + 
H,(Y,B) and g* : H,(X,A) -+ H,(Y,B) are the same. 

Homotopy Group 
A GROUP related to the HOMOTOPY classes of MAPS 
from SPHERES S”into a SPACE X. 

see also COHOMOTOPY GROUP 

Homotopy Theory 
The branch of ALGEBRAIC TOPOLOGY which deals with 
HOMOTOPY GROUPS. 

References 
Aubry, M. Homotopy Theory and Models. Boston, MA: Birk- 

h&user, 1995. 

Honeycomb 
A TESSELLATION in n-D, for 71 > 3. The only regular 
honeycomb in 3-D is {4,3,4}, which consists of eight 
cubes meeting at each VERTEX. The only quasiregular 
honeycomb (with regular cells and semiregular VERTEX 
FIGURES) has each VERTEX surrounded by eight TET- 

RAHEDRA andsix OCTAHEDRA and is denoted 

There are many semiregular honeycombs, such as 

, in which each VERTEX consists of two OCTA- 

HEDRA {3,4) and four CUBOCTAHEDRA 

see also SPONGE, TESSELLATION 

References 
Bulatov, V. “Infinite Regular Polyhedra.” http://vww. 

physics.orst.edu/-bulatov/polyhedra/infinite/. 

References 
Golomb, S. W* Polyominoes: Puzzles, Patterns, Problems, 

and Packings, 2nd ed. Princeton, NJ: Princeton University 
Press, p. 92, 1994. 

Hook Length Formula 
A FORMULA for the number of YOUNG TABLEAUX 
associated with a given YOUNG DIAGRAM. In each 
box, write the sum of one plus the number of boxes 
horizontally to the right and vertically below the 
box (the “hook length”). The number of tableaux 
is then n! divided by the product of all “hook 
lengths”. The Combinatorica’NumberOfTableaux func- 
tion in Mathematics@ implements the hook length for- 
mula. 

see U~YCKJNG DIAGRAM, YOUNG TABLEAU 

References 
Jones, V. “Hecke Algebra Represent ations of Braid Groups 

and Link Polynomials .” Ann. Math. 126, 335-388, 1987. 
Skiena, S. Implementing Discrete Mathematics: Gombina- 

tories and Graph Th eory with Mathematics. 
MA: A .ddison- Wesley, 1990. 

Reading, 

Hopf Algebra 
Let a graded module A have a multiplication 4 and a 
co-multiplication $J. Then if 4 and $J have the unity of 
JC as unity and ‘1c, : (A, 4) + (A, 4) @ (A, $) is an algebra 
homomorphism, then (A, $, $J) is called a Hopf algebra. 

Hopf Bifurcation 
The BIFURCATION ofa FIXED POINT~O a LIMIT CYCLE 
(Tabor 1989). 

Applications. New York: Springer-Verlag, 1976. 
Tabor, M. Chaos and Integrability in Nonlinear Dynamics: 

An Introduction. New York: Wiley, p. 197, 1989. 

Hopf Circle 

see HOPF MAP 

Hopf Link 

* 
Hoof 

see CYLINDRICAL WEDGE 
The LINK 2: which has JONES POLYNOMIAL 

VW = -t - t-l 



Hopf Map Homer’s Method 

and HOMFLY POLYNOMIAL The inversion of a HORN TORUS. If the inversion center 

P(z,a) = z-l(a-l - c3) + za-1. 
lies on the torus, then 
PARABOLIC HORN CY 

cyclide degenerates to a the horn 
‘CLIDE. 

It has BRAID WORD o12* 
see also CYCLIDE, HORN TORUS, PARABOLIC CYCLIDE, 
RING CYCLIDE, SPINDLE CYCLIDE, TORUS 

Hopf Map 
The first example discovered of a MAP from a higher- 
dimensional SPHERE to a lower-dimensional SPHERE 
which is not null-HOMOTOPIC. Its discovery was a shock 
to the mathematical community, since it was believed at 
the time that all such maps were null-HOMOTOPIC, by 
analogy with HOMOLOGY GROUPS. The Hopf map takes 
points (Xl, X2, X3, X4) on a 3-sphere to points on a 
Z-sphere (~1, 52, 53) 

Horn Torus 

STANDARD TORI given by the para- One of the three 
metric equations 

X’ (c+acosv)cosu 

Xl = 2(X1X2 +X3X4) 

x2 = 2(X1X4 -X2X3) 

x3 = (Xl2 +Xs2)- (x22 +xd2)* 

y= (c+acosv)sinu (2) 

x= asinv (3) 

Every point on the two SPHERES corresponds to a CIR- 
CLE called the HOPF CIRCLE on the ~-SPHERE. 

Hopf’s Theorem 
A NECESSARY and SUFFICIENT condition for a MEA- 
SURE which is quasi-invariant under a transformation to 
be equivalent to an invariant PROBABILITY MEASURE is 
that the transformation cannot (in a measure theoretic 
sense) compress the SPACE. 

with a = c. The inversion of a horn torus is a HORN 
CYCLIDE (or PARABOLIC HORN CYCLIDE). The above 
left figure shows a horn torus, the middle a cutaway, 
and the right figure shows a CROSS-SECTION of the horn 
torus through the xz-plane. 

see also CYCLTDE, HORN CYCLIDE, RING TORUS, SPIN- 
DLE TORUS, STANDARD TORI,TORUS 

References 
Gray, A. “Tori.” 511.4 in Modern Differential Geometry 

of Curves and Surfaces. Boca Raton, FL: CRC Press, 
pp. 218-220, 1993. 

Horizontal 
Oriented in position PERPENDICULAR to up-down, and 
therefore PARALLEL to a flat surface. 

see also VERTICAL 

Pinkall, U. “Cyclides of Dupin.” 53.3 in Mathematical Models 
from the Collections of Universities and Museums (Ed. 
G. Fischer). Braunschweig, Germany: Vieweg, pp. 28-30, 
1986. 

Horned Sphere 

see ALEXANDER’S HORNED SPHERE, ANTOINE’S 
HORNED SPHERE 

Horizontal-Vertical Illusion 

see VERTICAL-HORIZONTAL ILLUSION 

Horn Angle 
The configuration formed by two curves starting at a 
point, called the VERTEX V, in a common direction. 
They are concrete illustrations of non-Archimedean ge- 
ometries. 

References 
Kasner, E. “The Recent Theory of the Horn Angle.” Scripta 

Muthll, 263-267, 1945. 

Horn Cyclide 

855 

(1) 

Homer’s Method 
Let 

P(x) = a,x” + . . . + a0 

and b, E a,. If we then define 

(1) 

bk E ak + brc-lzo (2) 

btain bo = P(xo). It for k = n - 1, n - 2, . , . , 0, we 01 
therefore follows that 

P(x) = (x - xo)Q(x 

where 

Q(X) E bnxnsl + bn-1xnB2 + n l  l  + b2~ + bl. 

In addition, 

(4) 

P’(x) = Q(x) + (x - x0)&'(x) 

P'(xo) = Q(xo). 

(5) 

(6) 



856 Homer’s Rule Hundred 

Homer’s Rule Hub 
A rule for POLYNOMIAL computation which both re- 
duces the number of necessary multiplications and re- 
sults in less numerical instability due to potential sub- 
traction of one large number from another. The rule 
simply factors out POWERS of z, giving 

The central point in a WHEEL GRAPH IV,. The hub has 
DEGREE n- 1. 

see also WHEEL GRAPH 

Huffman Coding 
A lossless data compression algorithm which uses a small 
number of bits to encode common characters. Huffman 
coding approximates the probability for each character 
as a POWER of l/2 to avoid complications associated 
with using a nonintegral number of bits to encode char- 
acters using their actual probabilities. 

a~xn+u,- lxn-l+. l  *+a0 = ((a,x+a,-1)x+.. l )x+ao* 

References 
Vardi, I. Computational Recreations in Mathematics. Read- 

ing, MA: Addison-Wesley, pa 9, 1991. 

Horocycle 
The LOCUS of a point which is derived from a fixed point 
Q by continuous parallel displacement. 

References 
Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetter- 

ling, W. T. “Huffman Coding and Compression of Data.” 
Ch. 20.4 in Numerical Recipes in FORTRAN: The Art of 
Scientific Computing, 2nd ed. Cambridge, England: Cam- 
bridge University Press, pp. 896-901, 1992. 

References 
Coxeter, H. S. M. Introduction 

York: Wiley, p. 300, 1969. 
to Geometry, 2nd ed. New 

Hull. 
Horse Fetter 

see AFFINE HULL, CONVEX HULL 
see HIPP~PEDE 

Humbert’s Theorem 
The NECESSARY and SUFFICIENT condition that an al- 
gebraic curve has an algebraic INVOLUTE is that the ARC 
LENGTH is a two-valued algebraic function of the coor- 
dinates of the extremities. Furthermore, this function 
is a ROOT of a QUADRATIC EQUATION whose COEFFI- 
CIENTS are rational functions of x and y. 

Horseshoe Map 

see SMALE HORSESHOE MAP 

Hough Transform 
A technique used to detect boundaries in digital images. 

Householder’s Method 
A ROOT-finding algorithm based on the iteration for- 
mula 

References 
Coolidge, J. L. A Treatise on Algebmic Plane Curves. New 

York: Dover, p* 195, 1959. 

f(xn> 1 x,+1 = xn - - 
{ 

[f W12f “(4 
f’(xn) - 2[f’(xJ2 

1 

l  

Hundkurve 

see TRACTRIX 
This method, like NEWTON'S METHOD, has poor con- 
vergence properties near any point where the DERXVA- 
TIVE f’(x) = 0. 
see also NEWTON'S METHOD 

Hundred 
100 = 10’. Madachy (1979) gives a number of algebraic 
equations using the digits 1 to 9 which evaluate to 100, 
such as 

References 
Householder, A. S. The Numerical Treatment of a Single 

Nonlinear Equation. New York: McGraw-Hill, 1970. (7 - 5)2 + 96 + 8 - 4 - 3 - 1 = 100 

32+91+7+8-6-5-4=100 

&i - 6 + 72 - (1)(3!) - 8 + 45 = 100 

123 - 45 - 67 + 89 = 100, 

Howell Design 
Let S be a set of n + 1 symbols, then a Howell design 
H(s, 2n) on symbol set S is an s x s array IY such that 

1. Every cell of H is either empty or contains an un- 
ordered pair of symbols from S, 

S occurs once in each row and col- 2. Every symbol of 
umn of H, and 

and so on. 

see also 10, BILLI 

LION,THOUSAND 
ON, Hu D,LARGE NUMBER, MIL- 

3. Every unordered pair of symbols occurs in at most 
one cell of IX 

References 
Madachy, J. S. Madachy’s Mathematical Recreations. New 

York: Dover, pp. 156459, 1979. 

References 
Colbourn, C. J. and Dinitz, J. H. (Eds.) “Howe11 Designs.” 

Ch. 26 in CRC Handbook of Combinatorial Designs. Boca 
Raton, FL: CRC Press, pp. 381-385, 1996. 
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Hunt’s Surface 

An ALGI equation 

4(X2 + y2 + z2 - 13)3 + 27(3x2 + y2 - 4z2 - 12)2 = 0. 

References 
Hunt, B. “Algebraic Surfaces.” http://www.mathematik. 

uni-kl.de/-wwwagag/Galerie.html. 
Nordstrand, T. “Hunt’s Surface.” http://www.uib.no/ 

people/nfytn/hunttxt.htm. 

Huntington Equation 
An equation proposed by Huntington (1933) as part of 
his definition of a BOOLEAN ALGEBRA, 

n(n(x) + y) + n(n(x) + n(y)) = x. 

see UZSO ROBBINS ALGEBRA, ROBBINS EQUATION 

References 
Huntington, E. V. ‘$New Sets of Independent Postulates for 

the Algebra of Logic, with Special Reference to White- 
head and Russell’s Principia Muthematica.” Trans. Amer. 
Math. Sot. 35, 274-304, 1933. 

Huntington, E. V. “Boolean Algebra. A Correction.” Trans. 

Amer. Math. Sot. 35, 557-558, 1933. 

Hurwitz Equation 
The DIOPHANTINE EQUATION 

Xl2 + xz2 + . . . + xn2 = axlx2 . . . xn 

which has no INTEGER solutions for a > n. 

see also LAGRANGE NUMBER (DIOPHANTINE EQUA- 
TION) 

References 
Guy, R. K. ‘&Markoff Numbers.” SD12 in Unsolved Problems 

in Number Theory, 2nd ed. New York: Springer-Verlag, 
pp. 166-168, 1994. 

Hurwitds Irrational Number Theorem 
As Lagrange showed, any IRRATIONAL NUMBER Q! has 
an infinity of rational approximations p/q which satisfy 

P I I 1 
a-- <- 

4 al 
2’ 

Similarly, if a # $(l+ J5), 

I I 1 
p <- a-- 
cl Js!? 2’ 

andifa#$(l+&)#&, 

P I I 5 1 
--q <Z& 

In general, even tighter bounds of the form 

(1) 

(2) 

(3) 

can be obtained for the best rational approximation pos- 
sible for an arbitrary irrational number a, where the L, 
are called LAGRANGE NUMBERS and get steadily larger 
for each “bad” set of irrational numbers which is ex- 
cluded. 

see &O HURWITZ’S IRRATIONAL NUMBER THEO- 
REM, LIOUVILLE'S RATIONAL APPROXIMATION THEO- 
REM, LIOUVILLE-ROTH CONSTANT,MARKOV NUMBER, 
ROTH'S THEOREM,~EGRE'S THEOREM,THUE-SIEGEL- 
ROTH THEOREM 

Rererences 
Ball, W. W. R. and Coxeter, H. S. M. Mathematical Recre- 

ations and Essays, 13th ed. New York: Dover, p, 40, 1987. 
Chandrasekharan, K. An Introduction to Analytic Number 

Theory. Berlin: Springer-Verlag, p* 23, 1968. 
Conway, J. H. and Guy, R. K. The Book of Numbers. New 

York: Springer-Verlag, pp. 187-189, 1996. 

Hurwita Number 
A number with a continued fraction whose terms are the 
values of one or more POLYNOMIALS evaluated on con- 
secutive INTEGERS and then interleaved. This property 
is preserved by M~BWS TRANSFORMATIONS (Beeler et 
al. 1972, p. 44). 

References 
Beeler, M.; Gosper, R. W.; and Schroeppel, R. WAKMEM. 

Cambridge, MA: MIT Artificial Intelligence Laboratory, 
Memo AIM-239, Feb. 1972. 

Hurwita Polynomial 
A POLYNOMIAL with REAL POSITIVE COEFFICIENTS 
and ROOTS which are either NEGATIVE or pairwise con- 
jugate with NEGATIVE REAL PARTS. 
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Hurwita-Radon Theorem 
Determined the- possible values of T and n for which 
there is an IDENTITY of the form 

(Xl2 + 0 ’  ’  + XT2)(Y12 + l  ’  l  + yr2) = Xl2 + . l  . + zn2.  

Hurwitz’s Root Theorem 

Let Lf(xH b e a SEQUENCE of ANALYTIC FUNCTIONS 
REGULAR in a region G, and let this sequence be UNI- 
FORMLY CONVERGENT in every CLOSED SUBSET of G. 
If the ANALYTIC FUNCTION 

lim f&) = f(x) 
n+ca 

does not vanish identically, then if x = a is a zero of 
f(x) of order k, a NEIGHBORHOOD Ix-al < 6, ofx = a 
and a number iV exist such that if n > IV, fn (x) has 
exactly /C zeros in 12 - al < S. 

References 
SaegB, G. Orthogonal Polynomials, 4th ed. Providence, RI: 

Amer. Math. Sot., p. 22, 1975. 

Hurwitz Zeta Function 
A generalization ofthe RIEMANN ZETA FUNCTION with 
a FORMULA 00 

where any term with k + a = 0 is excluded. The Hur- 
witz zeta function can also be given by the functional 
equation 

c P 
( > 
5 - Q 

= 2r(l-s)(2~q)s-1 esin (y + y) c (1 - S, f) 

n=l 

(2) 

(Apostol 1976, Miller and Adamchik), or the integral 

c(s,a) = fal” + 2 

+2 
s 0 

05(a2+~2)-s’2 {sin [star? (:)I} A. 

(3) 

If !I+] < 0, then 

[(z, a) = 2~~)~s~) 
O” cos( 27ran) 

sin (7) x nl-2 
n-l 

+cos (7) fy sin;;:;) . (4) 

n=l I 

The Hurwitz zeta function satisfies 

[(O, a) = + - a (5) 

$0, a) = ln[l?(a)] - + ln(27r) 

$C(a 0) - Lln(27r), ' -2 

(6) 

(7) 

where I?(Z) isthe GAMMA FUNCTION. The POLYGAMMA 
FUNCTION$J,( ) z can be expressed in terms of the Hur- 
witz zeta function by 

*mk) = (4 m+lm!c( 1 + m, z). (8) 

For POSITIVE integers k, p, and q > p, 

cf (-2k+l,9 = 
[Q( 2k) - wmz)l~2~ (P/4) 

2k  

[$@) - In&)]B2k 

qZk2k 

+(--1)“+12(2k - l)! q-1 
(zrq)2’” 5”’ (T) ” (“‘a> 

+C’(-2k + 1) 

q2k 
7 (9) 

where B, is a BERNOULLI NUMBER, B&c) a BER- 
NOULLI POLYNOMIAL, &-&) is a POLYGAMMA FUNC- 
TION, and [( z is a RIEMANN ZETA FUNCTION (Mil- ) 
ler and Adamchik). Miller and Adamchik also give the 
closed-form expressions 

<‘(-2k + 1, ;) = -!k$? - (2 2k-1 - l)C’(-2k + 1) 
22k-1 

(10) 

5’ (-2k+ ‘7 5> = +&j?y2;;8k - ($f-$ 
(--l)k$‘2k--l(;) 

=F 2d(6~)~“-~ - 
(32k-1 - l)c’(-2k + 1) 

Zk-1 w > (11) 

++I, 3> =f(4k~~~~2k~+(4k-1~~~~k1n2 

(--l)k$2k--l(-$) 

’ 4(8~)~“-l - 
(22k-1 - l)<‘(-2k + 1) 

24"-1 (12) 

+&b(321i-’ - l)h2 + &&2k-1 - l)h3 

(62k-1)4k (62k-1)4k 

‘F 
(-l)k(22k-1 + l)$Zk-l(i) 

2J3 (12n)2”-1 

(2 2k-1 
+ 

- 1)(32k-1 - l)c’(-2k + 1) 
2k-1 

v > 
. (13) 



Hut ton ‘s Formula 

see UZS~KHINTCHINE'S CONSTANT,POLYGAMMA FUNC- 
TION, PSI FUNCTION, RIEMANN ZETA FUNCTION, ZETA 
FUNCTION 
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Hutton’s Formula 
The MACHIN-LIKE FORMULA 

$7~ = 2tan-l(i) + tan-l(+). 

The other two-term MACHIN-LIKE FORMULAS are Eu- 
LER'S MACHIN-LIKE FORMULA,HERMANN'S FORMULA, 
and MACHHN'S FORMULA. 

Hutton’s Method 

see LAMBERT’S METHOD 

Hyperbola 
/’ \ \ / 

\ \ 1’ 
\ / \ 1’ 
\ / \ 
\ ’ \,’ \\ // 

\ ‘\ \ 
/ i \ 1’ \ 

/ \ \ \ /I \ 
1’ 

\ \ \ 
/ ‘. /’ ? 

In general, a hyperbola is defined as the LOCUS of all 
points in the PLANE the difference of whose distance 
from two fixed points (the FOCI Fl and Fz) separated 
by a distance 2c, where 

Hyperbola 859 ’ 

Unlike the ELLIPSE, no points of the hyperbola actually 
lie on the SEMIMINOR AXIS, but rather the ratio b/a 
determined the vertical scaling of the hyperbola. The 
ECCENTRICITY of the hyperbola is defined as 

C 62 
e----z I$--* 

a J- a2 (3) 

In the standard equation of the hyperbola, the center is 
located at (~0, yo), the FOCI are at (50 * c, yo), and the 
vertices are at (~0 41 a, 30). The so-called ASYMPTOTES 
(shown as the dashed lines in the above figures) can be 
found by substituting 0 for the 1 on the right side of the 
general equation (2), 

b 
Y = k-(x - x0) + yo, 

a 

and therefore have SLOPES &b/a. 

The special case a = b (the left diagram above) is known 
as a RIGHT HYPERBOLA because the ASYMPTOTES are 
PERPENDICULAR. 

In POLA R COORDINATES, the equation . of a hyperbola 
centered at the ORIGIN (Le., with zco = yo = 0) is 

T2 = 
a2b2 

b2 cos2 0 - a2 sin2 8’ 

In POLAR COORDINATES centered at a FOCUS, 

The two-center BIPOLA 
origin at a FOC US is 

a(e2 - 1) 
Tz l-ecod 

R COORDINATES equation with 

Tl - r2 = *2a. 

(6) 

(7) 

The parametric equations for the hyperbola are 

it: = &acosht (8) 

y = bsinh t. (9) 

The CURVATURE and TANGENTIAL ANGLE are 

tc(t) = - [cosh( 2t)] -3’2 

(P(t) = - tan-‘(tanh t). 
(10) 

(11) 

C= t/a2 + b2, (1) 

is a given POSITIVE constant. By analogy with the defi- 
nition of the ELLIPSE, the equation for a hyperbola with 
SEMIMAJOR AXIS a parallel to the X-AXIS and SEMIMI- 
NOR AXIS b parallel to the ~-AXIS is given by 

(z - a>2 (Y - Yd2 = l 
a2 - b2 ' (2) 

The special case of the RIGHT HYPERBOLA was first 
studied by Menaechmus. Euclid and Aristaeus wrote 
about the general hyperbola, but only studied one 
branch of it. The hyperbola was given its present name 
by Apollonius, who was the first to study both branches. 
The FOCUS and DIRECTRIX were considered by Pappus 
(MacTutor Archive). The hyperbola is the shape of an 
orbit of a body on an escape trajectory (i.e., a body 
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with positive energy), such as some comets, about a 
fixed mass, such as the sun. 

The LOCUS of the apex of a variable CONE containing 
an ELLIPSE fixed in 3-space is a hyperbola through the 
FOCI of the ELLIPSE. In addition, the LOCUS of the 
apex of a CONE containing that hyperbola is the origi- 
nal ELLIPSE. Furthermore, the ECCENTRICITIES of the 
ELLIPSE and hyperbola are reciprocals. 

see also CONIC SECTION, ELLIPSE, HYPERBOLOID, 
JERABEK'S HYPERBOLA, KIEPERT'S HYPERBOLA, 
PARABOLA, QUADRATIC CURVE, RECTANGULAR HY- 
PERBOLA, REFLECTION PROPERTY, RIGHT HYPER- 
BOLA 
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Hyperbola Evolute 
The EVOLUTE of a RECTANGULAR HYPERBOLA is the 
LAMP CURVE 

( > 
213 ax - (bYI 2/3 = (a + b)2/3a 

From a point between the two branches of the EVOLUTE, 
two NORMALS can be drawn to the HYPERBOLA. HOW- 
ever, from a point beyond the EVOLUTE, four NORMALS 
can be drawn. 

Hyperbola Inverse Curve 

For a HYPERBOLA with a = b with INVERSION CENTER 
at the center, the INVERSE CURVE 

2k cost 

x = a[3 - cos(Zt)] 

k sin( 2) 

(1) 

y = cL[3 - cos(2t)l (2) 

Foran INVERSION CENTER at the VERTEX, the INVERSE 
CURVE 

x=a+ 
4k cos t sin2 (i t) 

a[5 - 4cost + cos(2t) - 2sin(2t)] (3) 

Y =a+ 
k(tant - 1) 

a[(sect - 1)” + (tant - l)“] (4) 

is a RIGHT STROPHOID. 

For an INVERSION CENTER at the Focus,the INVERSE 
CURVE 

X = ae = 
k cos t(l - e cos t) 

a(cos t - e)2 

y = @-? k sin( 2t) 

Za(cost - e)2 

(5) 

(6) 

is a LIMA~ON, where eis the ECCENTRICITY. 

For a HYPERBOLA with a = fib and INVERSION CEN- 
TER at the VERTEX, the INVERSE CURVE 

x=b+ 
2k cos t(fi - cos t) 

b[9 - ~&OS t + cos(2t) - 2 sin(2t)] 
(7) 

y=b+ 
k(tant - 1) 

b[(&sect - 1)2 + (tant - 1)2] 
(8) 

is a MACLAURIN TRISECTRIX. 
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York: Dover, p. 203, 1972. 

Hyperbola Pedal Curve 
The PEDAL CURVE of a HYPERBOLA with the PEDAL 
POINT at the Focus is a CIRCLE. The PEDAL CURVE 
ofa RECTANGULARHYPERBOLA with PEDAL POINT at 
the center is a LEMNISCATE. 

Hyperbolic Automorphism 

see ANOSOV AUTOMORPHISM 

is a LEMNISCATE. 
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Hyperbolic Cosecant 

2 

1 

-1 

0: 0. 1. 

18. -0. 0. 
121 

The hyperbolic cosecant is defined as 

1 2 
cschx- - - - 

sinha: - ex - e-x’ 

see also BERNOULLI NUMBER, BIPOLAR COORDINATES, 

BIPOLAR CYLINDRICAL COORDINATES, COSECANT, 
HELMHOLTZ DIFFERENTIAL EQUATION-T• ROIDAL 
COORDINATES,HYPERBOLIC SINE,POINSOT'S SPIRALS, 
SURFACE OF REVOLUTION, TOROIDAL FUNCTION 
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Hyperbolic Cosine 

4 6 

]Cosh zI 

The hyperbolic cosine is defined as 

This function describes the shape of a hanging cable, 
known as the CATENARY. 

see ah BIPOLAR COORDINATES, BIPOLAR CYLIN- 
DRICAL COORDINATES, BISPHERICAL COORDINATES, 
CATENAW, CATENOID, CHI, CONICAL FUNCTION, 
CORRELATION COEFFICIENT-GAUSSIAN BIVARIATE 
DISTRIBUTION, COSINE, CUBIC EQUATION, DE MOIV- 
R&S IDENTITY, ELLIPTIC CYLINDRICAL COORDI- 
NATES, ELSASSER FUNCTION, FIBONACCI HYPER- 
BOLIC COSINE, FIBONACCI HYPERBOLIC SINE, HYPER- 
BOLIC GEOMETRY, HYPERBOLIC LEMNISCATE FUNC- 
TION, HYPERBOLIC SINE, HYPERBOLIC SECANT, 
HYPERBOLIC TANGENT, INVERSIVE DISTANCE, LA- 
PLACE'S EQUATION-BIPOLAR COORDINATES, LA- 
PLACE’S EQUATION- BISPHERICAL COORDINATES, LA- 
PLACE'S EQUATION-T• ROIDAL COORDINATES, LEM- 
NISCATE FUNCTION, LORENTZ GROUP, MATHIEU DIF- 

FERENTIAL EQUATION, MEHLER'S BESSEL FUNCTION 
FORMULA, MERCATOR PROJECTION, MODIFIED BES- 
SEL FUNCTION OF THE FIRST KIND, ABLATE SPHER- 
OIDAL COORDINATES,PROLATE SPHEROIDAL COORDI- 
NATES, PSEUDOSPHERE, RAMANUJAN COS/COSH IDEN- 

TITY, SINE-GORDON EQUATION, SURFACE OF REVOLU- 
TION, TOROIDAL COORDINATES 
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Hyperbolic Cotangent 

7.5 

5 

2.5 

Re[Coth z] 

The hyperbolic cotangent is defined as 

cothz G 
ex + e-” e2x + 1 -=- 
eX - e-X e2X - 1’ 

coshx E f(e” + emx). 
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see also BERNOULLI NUMBER, BIPOLAR COORDINATES, 
BIPOLAR CYLINDRICAL COORDINATES, COTANGENT, 
FIBONACCI HYPERBOLIC COTANGENT, HYPERBOLIC 
TANGENT, LAPLACE’S EQUATION-T• ROIDAL COOR- 
DINATES, LEBESGUE CONSTANTS (FOURIER SERIES), 
PROLATE SPHEROIDAL COORDINATES, SURFACE OF 
REVOLUTION, TOROIDAL COORDINATES, TOROIDAL 
FUNCTION 

References 
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Hyperbolic Cube 

A hyperbolic version of the Euclidean CUBE. 

see aLso HYPERBOLIC DODECAHEDRON, HYPERBOLIC 
OCTAHEDRON,HYPERBOLIC TETRAHEDRON 
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Hyperbolic Cylinder 

A QUADRATIC SURFACE givenbythe equation 

x2 y2 ---- 
a2 b2 - -lm 

see also ELLIPTIC PARABOLOID, PARABOLOID 

Hyperbolic Dodecahedron 

A hyperbolic version of the Euclidean DODECAHEDRON. 

see also HYPERBOLIC CUBE, HYPERBOLIC OCTAHE- 
DRON, HYPERBOLIC TETRAHEDRON 

References 
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Hyperbolic Fixed Point (Differential 

Equations) 
A FIXED POINT for which the STABILITY MATRIX has 
EIGENVALUES X1 < 0 < X2, also called a SADDLE 
POINT. 

see AOELLIPTIC FIXED POINT (DIFFERENTIAL EQUA- 
TIONS), FIXED POINT,~TABLE IMPROPER NODE, STA- 
BLE SPIRAL POINT, STABLE STAR, UNSTABLE IM- 
PROPER NODE, UNSTABLE NODE, UNSTABLE SPIRAL 
POINT,~NSTABLE STAR 

References 
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Hyperbolic Fixed Point (Map) 
A FIXED POINT of a LINEAR TRANSFORMATION (MAP) 
for which the resealed variables satisfy 

(S - a)2 + 4py > 0. 

see also ELLIPTIC FIXED POINT (MAP), LINEAR 
TRANSFORMATION, PARABOLIC FIXED POINT 



Hyperbolic Auctions Hyperbolic Functions 863 

Hyperbolic Fund ions 
The hyperbolic functions sinh, cash, tanh, csch, sech, 
coth (HYPERBOLIC SINE, HYPERBOLIC COSINE, etc.) 
share many properties with the corresponding CIRCW- 
LAR FUNCTIONS. The hyperbolic functions arise in 
many problems of mathematics and mathematical phys- 
ics in which integrals involving Jm arise (whereas 
the CIRCULAR FUNCTIONS involve di??). 

For instance, the HYPERBOLIC SINE arises in the grav- 
itational potential of a cylinder and the calculation of 
the Roche limit. The HYPERBOLIC COSINE function is 
the shape of a hanging cable (the so-called CATENARY). 
The HYPERBOLIC TANGENT arises in the calculation of 
magnetic moment and rapidity of special relativity. All 
three appear in the Schwarzschild metric using exter- 
nal isotropic Kruskal coordinates in general relativity. 
The HYPERBOLIC SECANT arises in the profile of a lam- 
inar jet. The HYPERBOLIC COTANGENT arises in the 
Langevin function for magnetic polarization. 

The hyperbolic functions are defined by 

sinh z E 
e% -e-x 
- - - sinh(-z) 

2 - (1) 

coshz e 
ez + i? 

2 
= cosh( -2) (2) 

tanhz= er-e 
--E e2’ -1 -=- 

ez + e-% e2% + 1 
2 

cschz = - 
e z - e-z 

(3) 

(4) 
2 

sechz = P 
ex; + eez (5) 

cothz E 
ex + e+ e2’ + 1 -=- 
e% - e-2 e22 - 1’ 

For purely IMAGINARY arguments, 

(6) 

sinh( ;z) = isinz (7) 

cosh(iz) = cosx. (8) 

The hyperbolic functions satisfy many identities anoma- 
lous to the trigonometric identities (which can be in- 
ferred using OSBORNE'S RULE) such as 

cosh2 x - sinh2 x = 1 

cash II: + sinh x = eX 

coshx - sinhx = e? 

(9) 

(10) 

(11) 

See also Beyer (1987, p. 168). Some half-angle FORMU- 
LAS are 

tanh g = 
0 

sinhx + isiny 
coshx + cos y (12 

z 
coth z = 

0 

sinhx - isin y 

coshx - cosy ’ 

Some double-angle FORMULAS are 

sinh(2x) = 2 sinh x cash x (14) 
cosh(2x) = 2 cosh2 x - 1 = 1 + 2 sinh2 x. (15) 

Identities for COMPLEX arguments include 

sinh( x + iy) = sinh x cos y + i cash x sin y (16) 

cosh(x + iy) = cash x cos y + i sinh x sin yV (17) 

The ABSOLUTE SQUARES for COMPLEX arguments are 

1 sinh(r = sinh2 x + sin2 y 

1 cosh(a)12 = sinh2 x + cos2 y. 

Integrals involving hyperbolic functions include 

s 

dx 

X&iTZ 

=In dG=-Ja 

dGG+fi 

=ln c--m2 
(a + bx) - a 

=ln (a+bx)-2&T@+a 

bX 

If b > 0, then 

=ln 2a+bx-2&FLj 

bX 

(18) 
(19) 

. 

(20) 

Let z E 2a/bx + 1, and a/bx = (z - 1)/2 and 

s 

dx =ln [Z-2&5Zq 
XJ- 

-1n Z-&Z- - 
[ 

l)(z + 1)] 

= In (z - &CX) = cash-l(z) 

. (22) 

see &O HYPERBOLIC COSECANT, HYPERBOLIC Co- 
SINE, HYPERBOLIC COTANGENT, GENERALIZED HY- 
PERBOLIC FUNCTIONS, HYPERBOLIC INVERSE FUNC- 
TIONS, HYPERBOLIC SECANT, HYPERBOLIC SINE, HY- 
PERBOLIC TANGENT, HYPERBOLIC INVERSE FUNC- 
TIONS, OSBORNE'S RULE 
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Hyperbolic Geometry 
A NON-EUCLIDEAN GEOMETRY, also called LOBACHEV- 
SKY-BOLYAI-GAUSS GEOMETRY, having constant SEC- 
TIONAL CURVATURE -1. This GEOMETRY satisfies all 
of EUCLID'S POSTULATES except the PARALLEL POSTU- 
LATE, which is modified to read: For any infinite straight 
LINE L and any POINT P not on it, there are many other 
infinitely extending straight LINES that pass through P 
and which do not intersect L. 

In hyperbolic geometry, the sum of ANGLES of a TRI- 
ANGLE is less than 180”, and TRIANGLES with the same 
angles have the same areas. Furthermore, not all TRI- 
ANGLES have the same ANGLE sum (c.f. the AAA THE- 
OREM for TRIANGLES in Euclidean 2-space). The best- 
known example of a hyperbolic space are SPHERES in 
Lorentzian 4-space. The POINCAR~ HYPERBOLIC DISK 
is a hyperbolic 2-space. Hyperbolic geometry is well un- 
derstood in 2-D, but not in 3-D. 

Geometric models of hyperbolic geometry include the 
KLEIN-BELTRAMI MODEL, which consists of an OPEN 
DISK in the Euclidean plane whose open chords corre- 
spond to hyperbolic lines. A 2-D model is the POINCAR~ 

HYPERBOLIC DISK. Felix Klein constructed an analytic 
hyperbolic geometry in 1870 in which a POINT is repre- 
sented by a pair of REAL NUMBERS (~1, ~2) with 

Xl2 + 222 < 1 

(i.e., points ofan OPEN DISK in the COMPLEX PLANE) 
and the distance between two points is given by 

4x9 x> = acosh-’ 

The geometry generated by this formula satisfies all of 
EUCLID'S POSTULATES except thefifth. The METRIC of 
this geometry is given by the CAYLEY-KLEIN-HILBERT 
METRIC, 

911 = 
a2(1 - xz2) 

(1 -x1 2 - x2q2 
a2x1x2 

$12 = 
(1 - Xl2 - x2q2 

g22 = 
a2(1 - X12) 

(1 - Xl2 - x,2)2 ' 

Hilbert extended the definition to general bounded sets 
in a EUCLIDEAN SPACE. 
see also ELLIPTIC GEOMETRY, EUCLIDEAN GEOME- 
TRY, HYPERBOLIC METRIC,KLEIN-BELTRAMI MODEL, 
NON-EUCLIDEAN GEOMETRY,~CHWARZ-PICK LEMMA 
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Hyperbolic Inverse Fhctions 

sinh-’ (5) =ln (a+ Jazfbz) 

cash-’ z = In x & J/Z 
( > 

tanh-’ (5) = $n (2) 

csch-’ z = 
> 

(1) 

(2) 

(3) 

(4) 

sech-’ z = In 
( 

(5) 

(6) 
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Hyperbolic Knot 
A hyperbolic knot is a KNOT that has a complement that 
can be given a metric of constant curvature -1. The 
only KNOTS which are not hyperbolic are TORUS KNOTS 

and SATELLITE KNOTS (including COMPOSITE KNOTS), 
as proved by Thurston in 1978. Therefore, all but six of 
the PRIME KNOTS with 10 or fewer crossings are hyper- 
bolic. The exceptions with nine or fewer crossings are 
03001 (the(3, 2)-TORUS KNOT), 05001, 07001, 08019 (the 
(4, 3)-TORUS KNOT), and OQOOl. 

Almost all hyperbolic knots can be distinguished by 
their hyperbolic volumes (exceptions being 05002 and a 
certain 12-crossing knot; see Adams 1994, p. 124). It has 
been conjectured that the smallest hyperbolic volume is 
2.0298.. . , that of the FIGURE-OF-EIGHT KNOT. 

MUTANT KNOTS have the same hyperbolic knot volume. 
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Hyperbolic Lemniscate Fkmction 
By analogy with the LEMNISCATE FUNCTIONS, hyper- 
bolic lemniscate functions can also be defined 

arcsinhlemn II: = 
s 

x(l + t4y2 dt (1 
0 

I 
1 

arccoshlemn x s (1 + t4)1’2 dt. (2) 
X 

Let 0 < 0 < x/2 and 0 < v < 1, and write - - - - 

e/A v dt 2= s om’ (3) 

where ~1 is the constant obtained by setting 0 = n/2 and 
w  = 1. Then 

(4) 

where K(k) i .S a complete ELLIPTIC IN 
FIRST KIND, and Ramanujan showed 

‘TEGRAL OF THE 

sin( 27x0) 

n cosh(nr) ’ (5) 

$7r - i tanB1(v2) = F 
(-1)” cos[(2n + 1)0] 

n-o (2n + 1) cosh[i(2n + l)~]’ 
(6) 

- 

and 

= ln[tan(+n + +0)] 

00 

+4x 
(-l)n sin[(2n + 1)0] 

n=O (2n + l)[e(2”+1)r - 11 

(Berndt 1994) l  

see also LEMNISCATE FUNCTION 
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Hyperbolic Map 
A linear MAP Iw” is hyperbolic if none of its EIGENVAL- 

UES have modulus 1. This means that Rn can be written 
as a direct sum of two A-invariant SUBSPACES ES and 
EU (where s stands for stable and u for unstable). This 
means that there exist constants C > 0 and 0 < A < 1 
such that 

[[A-“zI~/ < CX”llvlI if v E E” - 

for n = 0, 1, . . . . 

see also PESIN THEORY 

Hyperbolic Metric 
The METRIC for the POINCARI? HYPERBOLIC DISK, a 
model for HYPERBOLIC GEOMETRY. The hyperbolic 
metric is invariant under conformal maps of the disk 
onto itself. 

see &O HYPERBOLIC GEOMETRY, POINCAR~ HYPER- 
BOLIC DISK 
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Hyperbolic Octahedron 

A hyperbolic version of the Euclidean OCTAHEDRON, 
which is a special case of the ASTROIDAL ELLIPSOID 
with a = b = c = 1. It is given by the parametric 
equations, 

X= (cos u cos w)3 

y = (sin u cos v)~ 

z = sin3 21 

for u E [-n/2,~/2] and v E [-n,~]. 

see also ASTROIDAL ELLIPSOID, HYPERBOLIC CUBE, 
HYPERBOLIC DODECAHEDRON, HYPERBOLIC TETRA- 
HEDRON 

References 
Gray, A. Modern Differential Geometry of Curves and Sur- 

faces. Boca Raton, FL: CRC Press, pp. 305-306, 1993. 
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Hyperbolic Paraboloid 

A QUADRATIC SURFACE given by the Cartesian equation 

y2 x2 x=--- 
b2 a2 (1) 
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(left figure). This form has parametric equations 

4% 4 = u(u + v) 

y(u, v) = zkbv 

z(u,v) = u2 + 2uw 

(Gray 1993, p. 336). An alternative form is 

(2) 

(3) 

(4 

x = xy (5) 

(right figure; Fischer 1986), which has parametric equa- 
tions 

x(u,v) = u (6) 

Y(W v) = v (7) 

t(u,v) = uv. (8) 

see UZSO ELLIPTIC PARABOLOID, PARABOLOID, RULED 
SURFACE 
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Hyperbolic Partial Differential Equation 
A PARTIAL DIFFERENTIAL EQUATION of second-order, 
i.e., one of the form 

Auxx -t 2Bu,, -i- Cuyy -t Dux + Euy + F = 0, (1) 

is called hyperbolic if the MATRIX 

(2) 
satisfies det(Z) < 0. The WAVE EQUATION is an exam- 
ple of a hyperbolic partial differential equation. Initial- 
boundary conditions are used to give 

u(x,y,t)=g(x,y,t) forxEdS2,t >0 (3) 

u(x, y,O) = 210(x, y) in 0 (4) 

4x7 Y7 0) = ~(2, y) in 0, (5) 

where 

uxy = f(‘LLx,‘11t,X,Y) (6) 

holds in s1. 

see also ELLIPTIC PARTIAL DIFFERENTIAL EQUATION, 
PARABOLIC PARTIAL DIFFERENTIAL EQUATION, PAR- 
TIAL DIFFERENTIAL EQUATION 

Hyperbolic Plane 
In the hyperbolic plane H2, a pair of LINES can be PA&- 
ALLEL (diverging from one another in one direction and 
intersecting at an IDEAL POINT at infinity in the other), 
can intersect, or can be HYPERPARALLEL (diverge from 
each other in both directions). 

see also EUCLIDEAN PLANE, RIGID MOTION 

Hyperbolic Point 
A point p on a REGULAR SURFACE M E Iw3 is said to 
be hyperbolic if the GAUSSIAN CURVATURE K(p) < 0 
or equivalently, the PRINCIPAL CURVATURES &1 and ~2, 
have opposite signs. 

see U~SO ANTICLASTIC, ELLIPTIC POINT, GAUSSIAN 
CURVATURE, HYPERBOLIC FIXED POINT (DIFFEREN- 
TIAL EQUATIONS), HYPERBOLIC FIXED POINT (MAP), 
PARABOLIC POINT,PLANAR POINT, SYNCLASTIC 

References 
Gray, A. Modern Diflerential Geometry of Curves and Sur- 

faces. Boca Raton, FL: CRC Press, p. 280, 1993. 

Hyperbolic Polyhedron 
A POLYHEDRON ina HYPERBOLIC GEOMETRY, 

~~~HYPERBOLICCUBE,HYPERBOLICDODECAHEDRON, 
HYPERBOLIC OCTAHEDRON, HYPERBOLIC TETRAHE- 
DRON 

Hyperbolic Rotation 
Also knownasthe LORENTZ TRANSFORMATION or PRO- 
CRUSTIAN STRETCH. Leaveseachbranchofthe HYPER- 
BOLA x’y’ = xy invariant and transforms CIRCLES into 
ELLIPSES with the same AREA. 

-1 
x'=p 2 

Yt = PY- 

Hyperbolic Rotation (Crossed) 
Exchanges branches of the HYPERBOLA x/y' = xy. 

Xt = p-lx 

yt = -py. 

Hyperbolic Secant 
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Re[Sech z] Im[Sech zl ISech z] 

9 

0. 
8: 1. 

-0. -8: 0. 
4 ORDINATES, LEBESGUE CONSTANTS (FOURIER SE- 

‘Im[zl RIES), LORENTZ GROUP, MERCATOR PROJECTION, 
MILLER CYLINDRICAL PROJECTION, MODIFIED .BEs- 

COSECANT,LAPLACE'S EQUATION-BISPHERICAL Co- 
ORDINATES, LAPLACE'S EQUATION-T• ROIDAL Co- 

The hyperbolic secant is defined as 
SEL FUNCTION OF THE SECOND KIND, MODIFIED 
SPHERICAL BESSEL FUNCTION, MODIFIED STRUVE 

1 2 FUNCTION, NICHOLSON'S FORMULA, ABLATE SPHER- 
sech II: E --- 

coshx - ex+edx’ OIDAL COORDINATES, PARABOLA INVOLUTE, PARTI- 
TION FUNCTION P, POINSOT'S SPIRALS, PROLATE 

It has a MAXIMUM at x = 0 and inflection Doints at SPHEROIDAL COORDINATES,RAMANUJAN'S TAW FUNC- 
GL: = * sech-1(l/J2) F=: 0.881374. 

\ , I 

see also BENSON'S FORMULA, CATENARY, CATENOID, 
EULER NUMBER, HYPERBOLIC COSINE, C&LATE 

SPHEROIDAL COORDINATES, PSEUDOSPHERE, SECANT, 
SURFACE OF REVOLUTION,TRACTRIX,TRACTROID 
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Hyperbolic Sine 

Hyperbolic Space 

~~~HYPERBOLIC GEOMETRY 

TION, SCHL;I;FLI'S FORMULA, SW, SINE, SINE-GORDON 
EQUATION, SURFACE OF REVOLUTION, TOROIDAL Co- 
ORDINATES, TOROIDAL FUNCTION, TRACTRIX, WAT- 
SON'S FORMULA 

References 

Hyperbolic Spiral 

[Sinh z[ An ARCHIMEDEAN SPIRAL with POLAR equation 

1 r2 
0’ 

[zl 

The hyperbolic sine is defined as 

sinhz E $(ex - eBx). 

- The hyperbolic spiral originated with Pierre Varignon 
in 1704 and was studied by Johann Bernoulli between 
1710 and 1713, as well as by Cotes in 1722 (MacTutor 
Archive). 

see also ARCHIMEDEAN SPIRAL, SPIRAL 
see also BETA FUNCTION (EXPONENTIAL), BIPO- 

LAR COORDINATES, BIPOLAR CYLINDRICAL COOR- 
DINATES, BISPHERICAL COORDINATES, CATENARY, 
CATENOID, CONICAL FUNCTION, CUBIC EQUATION, DE 
MOIVRE'S IDENTITY, DIXON-FERRAR FORMULA, EL- 
LIPTIC CYLINDRICAL COORDINATES, ELSASSER FUNC- 
TION, FIBONACCI HYPERBOLIC COSINE, FIBONACCI 
HYPERBOLIC SINE, GUDERMANNIAN FUNCTION, HE- 
LICOID, HELMHOLTZ DIFFERENTIAL EQUATION- 
ELLIPTIC CYLINDRICAL COORDINATES, HYPERBOLIC 
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Gray, A. Modewl Differential Geometry of Curves and Sur- 

faces. Rota Raton, FL: CRC Press, pp. 69-70, 1993. 
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ral.” http: //wuu-groups . dcs. St-and. ac. uk/#history/ 
Curves/Hyperbolic.html. 
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Hyperbolic Spiral Inverse Curve 
Taking the pole as the INVERSION CENTER, the HYPER- 
BOLIC SPIRAL inverts to ARCHIMEDES' SPIRAL 

T = a& 

Hyperbolic Spiral Roulette 
The ROULETTE of the pole of a HYPERBOLIC SPIRAL 
rolling on a straight line is a TRACTRIX. 

Hyperbolic Substitution 
A substitution which can be used to transform integrals 
involving square roots into a more tractable form. 

see aZso TRIGONOMETRIC SUBSTITUTION 

Hyperbolic Tangent 

RelTanh zl 

By way of analogy with the usual TANGENT 

sin x 
tanx S - 

cosx’ 

the hyperbolic tangent is defined as 

sinhx ex - e-Z e2x - 1 
tanhx = - - - - - 

coshx - ex + e-= - e2x + 1’ 

where sinhx is the HYPERBOLIC SINE and cash x is the 
HYPERBOLIC COSINE. The hyperbolic tangent can be 
written using a CONTINUED FRACTION as 

tanhx = 
X 

X2 
. 

l+T 
3+2 

5-t-... 

see also BERNOULLI NUMBER, CATENARY, CORRELA- 
TION COEFFICIENT -GAUSSIAN BIVARIATE DISTRIBU- 
TION, FIBONACCI HYPERBOLIC TANGENT, FISHER’S z’- 
TRANSFORMATION, HYPERBOLIC COTANGENT, LOR- 
ENTZ GROUP, MERCATOR PROJECTION, OBLATE 

SPHEROIDAL COORDINATES, PSEUDOSPHERIZ, SURFACE 
OF REVOLUTION, TANGENT, TRACTRIX, TRACTROID 

References 
Abramowitz, M. and Stegun, C. A. (Eds.). “Hyperbolic 

Functions .” $4.5 in Handbook of Mathematical Functions 
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printing. New York: Dover, pp. 83-86, 1972. 
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An Atlas of Functions. Washington, DC: Hemisphere, 
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Hyperbolic Tetrahedron 

A hyperbolic version of the Euclidean TETRAHEDRON. 

see also HYPERBOLIC CUBE, HYPERBOLIC DODECAHE- 
DRON, HYPERBOLIC OCTAHEDRON 

References 
Rivin, I. “Hyperbolic Polyhedron Graphics.” http: // www . 

mathsource.com/cgi -bin/MathSource/Applications/ 
Graphics/3D/0201-788. 

Hyperbolic Umbilic Catastrophe 
A CATASTROPHE which can occur for three control fac- 
tors and two behavior axes. 

see also ELLIPTIC UMBILIC CATASTROPHE 

Hyperboloid 
A QUADRATIC SURFACE which may be one- or two- 
sheeted. 

The one-sheeted circular hyperboloid is a doubly RULED 
SURFACE. When oriented along the X-AXIS, the one- 
sheeted circular hyperboloid has CARTESIAN COORDI- 

NATES equation 

X2 
~+$-$l, (1) 
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and parametric equation and parametric equations 

x = q/G-&osv (2) 

y = adssinv co 
z = cu (4) 

X = &a cash u cash w  

Y = a sinh u cash v (17) 
x = csinhv (18) 

(16) 

(Gray 1993, p. 313). Again, an obvious generalization 
gives the two-sheeted ELLIPTIC HYPERBOLOID. 

for w  E [0,27r) (left figure). Other parameterizations 
include 

The SUPPORT FUNCTION of the hyperboloid of one sheet 

x(u, 4 = a(cos u F v sinu) (5) 
X2 
--+&$1 Y (u, 4 = a(sinu III v cosu) (6) 

4% 4 = *cv, (7) 

(19) 

is 

( 
-l/2 

h= $+ b4 
“‘+E.Tj 

> 1 (middle figure), or 
(20) 

4% 4 = acoshucosu (8) and the GAUSSIAN CURVATURE is 
y(u, v) = a cash v sin u 

4% 4 = csinhv 

(9) 

(10) 
h4 

K=---- 
a2b2c2 ’ (21) 

(right figure). An obvious generalization 
sheeted ELLIPTIC HYPERBOLOID. 

gives the one- The SUPPORT FUNCTION of the hyperboloid of two 
sheets 

x2 y2 z2 ----- 
a2 b2 c2 = l (22) 

is 

and the GAUSSIAN CURVATURE is 

(Gray 1993, pp. 296-297). 

see UZSO CATENOID, ELLIPSOID, ELLIPTIC HYPER- 
BOLOID, HYPERBOLOID EMBEDDING, PARABOLOID, 
RULED SURFACE 

A two-sheeted circular hyperboloid oriented along 
Z-AXIS has CARTESIAN COORDINATES equati .on 

the 
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Gray, A. “The Hyperboloid of Revolution.” $18.5 in Modern 
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X2 
--+$-$1. 

The parametric equations are 

(11) 

X = asinhucosv (12) 

Y = asinhusinv (13) 
z = zkccoshu (14) 

Hyperboloid Embedding 
A ~-HYPERBOLOID has NEGATIVE CURVATURE, with 

for w  E [O, Zn), Note that the plus and minus signs in 
z correspond to the upper and lower sheets. The two- 
sheeted circular hyperboloid oriented along the Z-AXIS 
has Cartesian equation 

R2 = x2 + y2 + t2 - u~2 (1) 

dx dy dz 
22&+2ydw+2zdw-2W=o. (2) 

Since 
r = xk + y3 + zi, (3) 

X2 
y2 z2 = 1 --- 

2 - a2 C2 (15) 

dw = 
xdx+ydy+zd;z r l  dr - - 

w  Jm’ 
(4) 
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To stay on the surface of the HYPERBOLOID, 

ds2 = dz2 + dy2 + dz2 - dw2 

r2 d? 
= dx2 + dy2 + dz2 - r2 

dr2 
= dr2 + r2dR2 + - 

l-5’ 
(5) 

Hypercomplex Number 
A number having properties departing from those of 
the REAL and COMPLEX NUMBERS. The most com- 
mon examples are BIQUATERNIONS, EXTERIOR ALGE- 
BRAS, GROUP algebras, MATRICES, OCTONIONS, and 
QUATERNIONS. 

References 
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Hypercube 

*GO 
The generalization of a 3-CUBE to n-D, also called a 
MEASURE POLYTOPE. It is a regular POLYTOPE with 
mutually PERPENDICULAR sides, and is therefore an OR- 
THOTOPE. It is denoted yn and has SCHL~FLI SYMBOL 
(4, 3,3 }. The number of k-cubes contained in an n- 

n-2 

cube can be found from the COEFFICIENTS of (2k + 1)“. 

Y 

The l-hypercube is a LINE SEGMENT, the 2-hypercube 
is the SQUARE, and the 3-hypercube is the CUBE. The 
hypercube in R4, calleda TESSERACT, hasthe SCHL~FLI 
SYMBOL {4,3,3} and VERTICES (fl, &l, &l, hl). The 
above figures show two visualizations of the TESSERACT. 
The figure on the left is a projection of the TESSERACT 
in 3-space (Gardner 1977), and the figure on the right is 
the GRAPH of the TESSERACT symmetrically projected 
into the PLANE (Coxeter 1973). A TESSERACT has 16 
VERTICES, 32 EDGES, four SQUARES, and eight CUBES. 

see ~2s~ CROSS POLYTOPE, CUBE, HYPERSPHERE, 
ORTHOTOPE, PARALLELEPIPED, POLYTOPE, SIMPLEX, 
TESSERACT 
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Hyperdeterminant 
A technically defined extension of the ordinary DE- 

TERMINANT to “higher dimensional” HYPERMATRICES. 
Cayley (1845) originally coined the term, but subse- 
quently used it to refer to an ALGEBRAIC INVARIANT of 
a multilinear form. The hyperdeterminant of the 2 x 2 x 2 
HYPERMATRIX A= U;jk (for i,j, k = 9, 1) is given by 

de@) = (~ooo2~1112 + ~OM~~HO’ + UOIO~~HH~ + ~o~~~uIoo~) 
- a ~000~001~110~111 + ~000~010~101~111 + ~OOO~Oll~lOO~lll 

+ ~001~010~101~110 + ~001~011~110~100 + ~010~011~101~100 > 

+4( ~000~011~101~110 + ~001~010~100~111 )- 

The above hyperdeterminant vanishes IFF the following 
system of equations in six unknowns has a nontrivial 
solution, 

~ooo~oyo + aolo~oyl +~looxlyo +alloxlyl = 0 

~ool~oyo + ao11Ir:oy1 + ~lolmyo + mlla:lyl = 0 

~000~0~0 +aoo1zox1 +a1ooz1xo +ams1z1 = 0 

~010~0~0 +ao11zox1 +~lloslzo + alllzlx~ = 0 

~oooyo~o +aoo1yox1 +ao1oy1xo +ao11ym = 0 

~looyo~o +~lolyoxl +a11oy1xo +a1ny1a = 0. 

see UZSU DETERMINANT, HYPERMATRIX 
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Hyperellipse 

I I 

n/m 
Y nlm+c : -cc(-), 

U 

with n/m > 2. If n/m < 2, the curve is a EIYPOELLIPSE. 

see UZSU ELLIPSE, HYPOELLIPSE, SUPERELLIPSE 

References 
von Seggern, D. CRC Standard Curves and Surfaces. Boca 
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Hyperelliptic Function 

see ABELIAN FUNCTION 
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The ith selection has an equal likelihood of being in any 
trial, so the fraction of acceptable selections p is 

Hyperelliptic Integral 

see ABELIAN INTEGRAL 

n 
ps- 

n-km 
(3) 

(4) 

(5) 

(6) 

Hyperfactorial 
The function defined by 

P(Xi = 1) = -IL- 
n+m 

E p. 
H(n) E K(n + 1) E 112233 l  l  l  nn, 

The expectation value of x is 

p z (2) = 

N 
- - 

z 

n nN -=- 
n+m n+m 

= Np. 
*- z- 1 

where K is the K-FUWTION and the first few val- 
ues for n = 1, 2, . . l  are 1, 4, 108, 27648, 86400000, 
4031078400000, 3319766398771200000, l  . . (Sloane’s 
AOO2109), and these numbers are called hyperfactorials 
by Sloane and Plouffe (1995). 

see also G-FUNCTION, GLAISHER-KINKELIN CON- 

STANT,K-FUNCTION 

References 
Sloane, N. J. A. Sequence A002109/M3706 in “An On-Line 

Version of the Encyclopedia of Integer Sequences.” 

The VARIANCE~~ 

N N N 

var(x) E ): var(xi) + x x cov(xi, Xj)m 
Hypergeometric Differential Equation 

*- 2- 1 $=l j=l 
j#i 

x(x - 1,3 & 
+[(l+(Y+P)x-Ylda:+apy=O. Since xi is a BERNOULLI variable, 

var(xi) = p(1 - p) = * 
( 

1 - --L 
n+m > 

It has REGULAR SINGULAR POINTS at 0, 1, and 00. 
Every ORDINARY DIFFERENTIAL EQUATION ofsecond- 
order with at most three REGULAR SINGULAR POINTS 
can be transformed into the hypergeometric differential 
equation. 

~~~~ZS~CONFLUENTHYPERGEOMETRICDIFFERENTIAL 
EQUATION, CONFLUENTHYPERGEOMETRTC FUNCTION, 
HYPERGEOMETRIC FUNCTION 

n - -- 
( 

1-L 
n-4-m n+m > 

n /n+m-n\ nm - -- 
n-km \ n+m I = (n+m)2’ (7) 

so 

5 var(xi) = (nyz)2. 
i=l 

(8) 
References 
Morse, P. M. and Feshbach, EL Methods of Theoretical Phys- 

ics, Part I. New York: McGraw-Hill, pp. 542-543, 1953. For i < j, the COVARIANCE is 

Hypergeometric Distribution 
Let there be n ways for a successful and m ways for an 
unsuccessful trial out of a total of 
Take N samples and let xi equal 1 
cessful and 0 if it is not. Let x be 
successful selections, 

n + m possibilities. 
if selection i is suc- 
the total number of 

COV(Xi,Xj) = (XiXj) - (Xi)(Xj)* (9) 

The probability that both i and j are successful for i # j 
is 

p(Xi = l,Xj = I)= P(Xi = l)P(Xj = l[Xi = 1) 

n n-l - -- 
n+mn+m-1 (1) 

n(n - 1) - 
- (n+m)(n+m-1)’ (10) 

The probability of i successful selections is then 
But since xi and xj are random BERNOULLI variables 
(each 0 or l), their product is also a BERNOULLI variable. 
In order for xixj to be 1, both xi and xj must be 1, 

P(x = i) = 

I# ways for i successes] I# ways for N - i unsuccesses] 

[total number of ways to select] 
P(XiXj = 1) = P(Xi = 1, Xj = 1) 

_ (1) (N:i) & (n+i-;;!(N-i)! - - 
n+m - 

( > 
(n+m)! 

N N!(N-n-m)! 

n!m!N!(N - m - n)! - - 
i!(n - i)!(m + i - N)!(N - i)!(n + m)! l  

(2) 

n n-l 

n+mn+m-1 
n(n - 1) 

(11) 
(n+m)(n+m- 1)’ 
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Combining (11) with 

(Xi) (Xj) = 2LL - 
n2 

nSmn+m- (nfm)2’ (12) 

gives 

COV(Xi, Xj) = 
(n + m)(n2 - n) - n2(n + m - 1) 

(n + m)2(n + m - 1) 

n3 -j- mn2 - n2 --n-n’ -n2m+n2 - - 
(n + m)2(n t- m - 1) 

- 
- - (n + m)2;“n”t m - 1) ’ (13) 

There are a total of N2 terms in a double summation 
over N. However, i = j for N of these, so there are a 
total of IV2 -IV = N(N- 1) terms in the C~VARIANCE 
summation 

i=l j=l 

j#i 

Combining equations (6), (8), (1 l), and (14) gives the 
VARIANCE 

var(x) = 
Nmn N(N - 1)mn 

(n+m)2 - (n + m)2(n + m - 1) 

Nmn 
(m+n)2 I- ( 

N-l 

n+m-1 ) 
Nmn 

( 

N+m-l-N+1 

(n + m)2 n+m-1 > 

Nmn(n + m - N) 

(n + m)2(n + m - 1)’ (15) 

so the final result is 

(4 = NP (16) 

and, since 
l-p=rn 

n-km 
(17) 

and 

np(l - P> = (n TL12 ) 

we have 

tT2 = var(x) =NP(l-P)(l--pl) 

mnN(m + n - N) - - 
(m$n)2(m$n- 1)’ 

The SKEWNESS is 

(18) 

(19) 

m-n)(m+n-2N) m+n-1 - ( - 
m+n-2 J mnN(m+n-N)’ 

PO 

Hypergeometric Function 

and the KURTUSIS 

Fb, n, N) 
“= mnN(-3+m+n)(-2+m+n)(-m-n+N)’ 

(21) 
where 

F(m,n, N) = m3 - rn’ +- 3m2n - 6m3n + m4n + 3mn2 

- 12m2n2 + 8m3n2 + n3 - 6mn3 + 8m2n3 

+ mn4 - n5 - 6m3N + 6m4N + 18m’nN 

- 6m3nN -/- 18mn2N - 24m2n2N - 6n3N 

- 6mn’N + 6n4N + 6m2N2 - 6m3N2 

- 24mnN2 + 12m2nN2 + 6n2N2 

+ 12mn2N2 - 6n3N2. (22) 

The GENERATING FUNCTION is 

(P(t) ( > F - - -2Fl(-N, -n;m - N + 1; eit), 
( > 

(23) 
N 

where &(a,b;c;z) is the HYPERGEOMETRIC FUNC- 
TION. 

If the hypergeometric distribution is written 

qx 
7 3 (24) 

then 

~h~(x,s)ux = AzFl(-s,-np;nq-s+l;u). (25) 
x=0 
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Hypergeometric F’unct ion 
A GENERALIZED HYPERGEOMETRIC FIJNCTI~N 
p&(w,...,~,;h,... , b,; x) is a function which can be 
definedinthe form ofa HYPERGEOMETRIC SERIES, i.e., 
a series for which the ratio of successive terms can be 
written 

ak+l P(k) (k+al)(k+a&*~(k+a,) 

- = m = (k + h)(k + bz) g l  n  (k + b,)(k + I)~* ak 

(1) 

(The factor of k + 1 in the DENOMINATOR is present 
for historical reasons of notation.) The function 
&(a, b; c; x) corresponding to p = 2, q = I is the first 
hypergeometric function to be studied (and, in general, 
arises the most frequently in physical problems), and so 
is frequently known as “the” hypergeometric equation. 



Hypergeometric Function 

To confuse matters even more, the term “hypergeomet- 
ric function” is less commonly used to mean CLOSED 
FORM. 

The hypergeometric functions are solutions to the HY- 
PERGEOMETRIC DIFFERENTIAL EQUATION, whichhas a 
REGULAR SINGULAR POINT at the ORIGIN. To derive 
the hypergeometric function based on the HYPERGEO- 
METRIC DIFFERENTIAL EQUATION, plug 

y=5A,z” 
n=O 

n=O 

y” = 2 n(n - l)AnXnm2 
n=O 

into 

~(1 - 25)~” + [c - (a + b + l)a]y’ - aby = 0 

to obtain 00 00 
x n(n - l)A,z”-’ - y4n(n - l)Anx” 
n=O n=O 

+c c nAnZnB1 +(a+b+l)FnA,z” 
n=O n=rO 

00 

-ab x Anzn = 0 
n- -0 

00 

xn(n - l)Anr”-’ - x n(n - I)Anz” 
n=z2 

00 00 

+CxnAnZnel -(a+b+l)xnA,z” 
n- -1 n=l 

cm 

In 
n 

n=O 00 
+a 

n=O 

+ l)nAn+ 

(n+ 1)An 

00 

n 
1x - 

IE 
n=O 

+d - (a 

-ab 
c 

Anzn = 0 (7) 

n(n - l)Anz” 

+b+l)FnA, 
n-0 

00 

-ab 
x 

A,nn = 

n=O 

zn 

0 

F[n(n + l)An+l - n(n - 1)An + c(n + l)An-1 

n=O 

-(a + b + l)nA, - abAn]x” = 0 

(2) 

(3) 

(4) 

(5) 

(6) 

(8) 

(9) 
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2 ((n + l)(n + @,+I 
n=O 

-nn-l+a+b+l)+ab]A,}z”=O (10) i ( 

F{(n + l)(n + c)&+l 

T-b=0 

-[n2 + (a + b)n + ab]An}r” = 0, (11) 

SO 

A (-4Wb)A 
n+l= (n+l)(n+c) n (12) 

and 

Y = A0 

[ 

ab 
1+ & --+ 

a@+ l)b(b+qz2 + 

2!c(c+ 1) 1 “* l  

(13) 
This is the regular solution and is denoted 

ab 
&(a,b;c;z) = l+ I~,X + 

++ 1)b(b+ II22 + 

2!c(c + 1) ’ ’ l  

- O" (i)n(b), Zn 
- 

Iz  -2 

n=O 
( > Cn 

(14) 

where (a), are POCHHAMMER SYMBOLS. The hyperge- 
ometric series is convergent for REAL -1 < z < 1, and 
for z = kl if c > a + b. The complete solution to the 
HYPERGEOMETRIC DIFFERENTIAL EQUATION~S 

y = A2fi(a,b; c; z)+Bxl-C 2Fl(a+l-c, b+l-c; 2-c; r). 

(15) 

Derivatives are given by 

d 31 (a, b; c; 2) 
$Fl(a+l,b+ l;c+l;z) (16) 

dz =c 

d2 2F1 (a, b; c; z) a(a + l)b(b+ 1) 

dz2 = c(c -5 1) 

x 2F~(a+2,b+2;c+2;z) (17) 

(Magnus and Oberhettinger 1949, pa 8). An integral 
giving the hypergeometric function is 

2F1(a, 6; c; z) = r( 1 l c 

I W)r(c - b) 0 

p-1(1 - ty-1 dt 

(1 - tz)” 

(18) 
as shown by Euler in 1748. 

A hypergeometric function can be written using EU- 

LER'S HYPERGEOMETRIC TRANSFORMATIONS 

t+t (19) 

t-+1-t (20) 

t + (1 - z - tx)-l (21) 
1-t 

t+- 
1 - tz (22) 
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in any one of four equivalent forms 

2Fl(a, 6; c; z) = (1 - z)-” &(a,~ - b; c; z/(.z - 1)) 

(23) 

= (1 - z)-” ZFl(C - a, b; c; Z/(% - 1)) 

(24) 
= (1 - z)~--~ zFl(c - a, c - b; c; x). 

(25) 

It can also be written as a linear combination 

Iyc)r(c - a - b) - - 
Iyc - a)Iyc - b) 

2Fl (a, b; a + b + 1 - c; 1 - z) 

+ r(c)r(u + b - c) 

w  W) 
(1 - q-a-b 

x&(c-a,c-b;l+c-a-b;l-2). (26) 

Kummer found all six solutions (not necessarily regular 
at the origin) to the HYPERGEOMETRIC DIFFERENTIAL 
EQUATION, 

w(x) = &(a, b; c; 4 (1+ z.)” = zFl (-n, b; b; -z) (28) 
uz(x)=~F~(a,b;a+b+l-c;l-z) 

us(x) = z-“2Fl(a,a+l--;a+1 - b;l/z) 

q(x) = d’zFl(b + I - c, b; b + 1 - a; l/z) 

u~(x)=z1~c~FI(b+1-c,a+l-c;2-c;z) 

us(x) = (1 - z)~-~-‘~F~(c - a,c - b;c+ 1 - a - 6; 1 - z). 

ln(l + Z) = z &(I, 1; 2; -Z) (29) 

Complete ELLIPTIC INTEGRALS and the RIEMANN P- 
SERIES can also be expressed in terms of 2 Fl (a, b; c; z), 
Special values include 

Applying EULER’S HYPERGEOMETRIC TRANSFORMA- 
TIONS to the Kummer solutions then gives all 24 possi- 
ble forms which are solutions to the HYPERGEOMETRIC 
DIFFERENTIAL EQUATION 

?p(x) = 2h(a, b; c; 2) 

q(2) = (1 - Z)-a zF,(a, c - b; c; Z/(% - 1)) 

tp(2) = (1 - z)-” 2 F,(c - a, b; c; z/(z - 1)) 

@(x)=(1-z)c-“-b2F~(c-u,c-b;c;t) 

U;)(Z) =2F~(a,b;a+b+l-c;l-z) 

u~)(z)=z-a2F~(a,a+l-c;a+b+l-c;l-l/z) 

zp(2) = Lb 2 Fl(b + 1 - c, b; a + b + 1 - C; 1 - l/z) 
(4) x 

U2 I > =Z lBc 2F,(b + 1 - c, a + 1 - c; a + b + 1 - c; 1 - z) 

uf)(cc) = 2-O 2Fl (a, a + 1 - c; a + 1 - b; l/z) 

Us) = ~~“(1 - l/l~)-“~F~(a,c - b;a + 1 - b; l/(1 - 2)) 

up(“) = X+ (1 - l/z)c-u--l 

x aF1(l - b, a + 1 - c;a + 1 - b; l/(1 - x)) 

up(z) = x- (I - I/z)~-~-~ zFl(l - by c - bi U*+ 1 - b; l/x) 

up(x) = %-= 2 Fl(b + 1 - c, b; b + 1 - a; l/z) 

q(2) = z-y1 - l/z)e-b-l 

x 2Fl(bl - c, 1 - a; b + 1 - a; l/(1 - z)) 

$)(x) = Cb(l - l/~)-~~F,(c - a, b; b + 1 - a; l/(1 - 2)) 

lp(z) = cb (1 - l/~)‘-~-~ ,F~(c - a, 1 - ai b + 1 - a; 11~) 

uil)(z) = x1-’ ,Fl(b + 1 - c, a + 1 - c; 2 - c; .t) 

ZL~‘(~) = ~l-‘(l - z)=-~-’ ~F~(b + 1 - C, 1 - a; 2 - ci z/(2 - 1)) 

U:‘(X) = ~‘-“(l - x)‘-~-’ ,Fl(l - b, a + 1 - C; 2 - ci %/(% - 1)) 

U:)(X) = ~~~“(1 - z)~-~-~ ,FI(l - b, 1 - a; 2 - c; z) 

~l:l)(~) = (1 - z)~-“-~~F~(c - u,c - b;c+ 1 - a - b; I - z) 
qfz) = g-y1 - Z)=-Q-b 

x ,Fl(c - a, 1 - a; c + I - a - b; 1 - l/z) 
$‘@) = g-(1 - Z)--b 

x ,F,(l - b,c - b;c+ 1 - a - b; 1 - I/z) 

$y2) = y-b(l _ q-a--b 

x zFl(1 - b, 1 - a; c + 1 - a - b; 1 - x). 

Coursat (1881) gives many hypergeometric transforma- 
tion FORMULAS, including several cubic transformation 
FORMULAS. 

Many functions of mathematical physics can be ex- 
pressed as special cases of the hypergeometric functions. 
For example, 

~F,(4,2 + 1,l; (1 - x)/2) = 8(-z), (27) 

where P&z) is a LEGENDRE POLYNOMIAL. 

zFl(a, b; a - b + 1; -1) 

= 2yG 
r(l + a + b) 

r(i + fa - b)r(; + &z) 
(3~) 

2FI(l, -a; a; -1) = -p 1/;; r(a) + 1 
2 r(a+$> 

2Fl(a, b; c; 3) = 2” &(a, c - b; c; -1) (32) 

&(a, b; $(a+b+l); ;) = 
r($x+(1+ a + VI (33) 

I’[$(1 + a)]#(1 + b)] 

#r(a,l- a;c; +) = 
r($)r[; (c + 1>] 

#(a + c)]~[$(I + c - a)] 
(34) 

2Fl(a,b;c; 1) = 
qc)r(c - u - b) 

r( c- a)r(c - b) l  

(35) 

KUMMER'S FIRST FORMULA gives 

#I($ + m - k, -n; 2m + 1; 1) 

I?(% + l)r(m + i + k + n) - - 
r(m + i + k)l?(2m + I+ n)’ 

(36) 

where m # -l/2, -1, -3/2, . . . , Many additional 
identities are given by Abramowitz and Stegun (1972, 
p. 557). 
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Hypergeometric functions can be generalized to GENER- 
ALIZED HYPERG ,EOMETRI c FUNCTIONS 

A function of the form IF&; b; Z) is called a CONFLU- 
ENT HYPERGEOMETRIC FUNCTION, and a function of 
the form &(; b; Z) is called a CONFLUENT HYPERGEO- 
METRIC LIMIT FUNCTION. 

see also APPELL HYPERGEOMETRIC FUNCTION, 
BARNES) LEMMA, BRADLEY'S THEOREM, CAYLEY'S 
HYPERGEOMETRIC FUNCTION THEOREM, CLAUSEN 
FORMULA, CLOSED FORM, CONFLUENT HYPERGEO- 
METRIC FUNCTION, CONFLUENT HYPERGEOMETRIC 
LIMIT FUNCTION, CONTIGUOUS FUNCTION,DARLING'S 
PRODUCTS, GENERALIZED HYPERGEOMETRIC FUNC- 
TION,GOSPER'SALGORITHM, HYPERGEOMETRIC~DEN- 
TITY, HYPERGEOMETRIC SERIES, JACOBI POLYNOM- 
IAL, KUMMER'S FORMULAS, KUMMER'S QUADRATIC 
TRANSFORMATION,KUMMER'S RELATION, ORR'S THE- 
OREM, RAMANUJAN'S HYPERGEOMETRIC IDENTITY, 
SAALSCH~~TZIAN, SISTER CELINE'S METHOD, ZEILBER- 
GER'S ALGORITHM 

see also GENERALIZED HYPERGEOMETRIC FUNCTION, References 
Abramowitz, M. and Stegun, C. A. (Eds.). “Hypergeometric 

Ch. 15 in Handbook of Mathematical Func- 
GOSPER'S ALGORITHM, HYPERGEOMETRIC SERIES; 
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tions with Formulas, Graphs, and Mathematical Tables, SISTER CELINE'S METHOD, WOLF-ZEILBERGER PAIR, 
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Hypergeometric Identity 
A relation expressing a sum potentially involving BINO- 
MIAL COEFFICIENTS, FACTORIALS, RATIONAL FUNC- 
TIONS, and power functions in terms of a simple re- 
sult. Thanks to results by Fasenmyer, Gosper, Zeil- 
berger, Wilf, and Petkovgek, the problem of determin- 
ing whether a given hypergeometric sum is expressible 
in simple closed form and, if so, finding the form, is now 
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gorithm which does so has been implemented in several 
computer algebra packages and is called ZEILBERGER'S 
ALGORITHM. 
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Hypergeometric Polynomial 

see JACOBI POLYNOMIAL 

Hypergeometric Series 
A hypergeometric series XI, ak is a series for which 
a0 = 1 and the ratio of consecutive terms is a RATIONAL 
FUNCTION of the summation index k, i.e., one for which 

ak+l P(k) - - - 

ak Q(k) ’ 

with P(k) and Q(k) POLYNOMIALS. The functions gen- 
erated by hypergeometric series are called HYPERGEO- 
METRIC FUNCTIONS or, more generally, GENERALIZED 
HYPERGEOMETRIC FUNCTIONS. If the polynomials are 
completely factored, the ratio of successive terms can be 
written 

ak+l P(k) (k+al)(k++(k+a,) 
- = Q(k) = (k + bl)(k + b2) l  l  l  (k + bq)(k + l j x ’  ak 

where the factor of k + 1 in the DENOMINATOR is present 
for historical reasons of notation, and the resulting GEN- 
ERALIZED HYPERGEOMETRIC FUNCTION is written 

F 

al a2 l  - ap 
P 9 bl b2 . . l  b, ; a: 1 = 

akxk. 
k=O 
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Ifp = 2 and q = 1, the functi .on becomes a 
HYPERGEOMETRIC FUN CTION 2Fl (a, b; c; 2). 

traditional 

Many sums can be written as GENERALIZED HYPER- 
GEOMETRIC FUNCTIONS by inspections of the ratios of 
consecutive terms in the generating hypergeometric se- 
ries. 

see &O GENERALIZED HYPERGEOMETRIC FUNCTION, 
GEOMETRIC SERIES, HYPERGE~METRIC FUNCTION, 
HYPERGEOMETRIC IDENTITY 

References 
Petkovgek, M.; Wilf, H. S.; and Zeilberger, D. “Hyperge- 
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ometric,” and “Software That Identifies Hypergeometric 
Series.” $3.2-3.4 in A=B. Wellesley, MA: A. K. Peters, 
pp. 34-42, 1996. 

Hypergroup 
A MEASURE ALGEBRA which has many properties as- 
sociated with the convolution MEASURE ALGEBRA of a 
GROUP, but no algebraic structure is assumed for the 
underlying SPACE. 

References 
Bloom, W. R.; and Heyer, H. The Harmonic Analysis of 

Probability Measures on Hypergroups. Berlin: de Gruyter, 
1995. 

Jewett, R. I. “Spaces with an Abstract Convolution of Mea- 
sures.” Adv. Math. 18, l-101, 1975. 

Hypermatrix 
A generalization of the MATRIX to an ni x n2 x . . l array 
of numbers. 

see also HYPERDETERMINANT 

References 
Gel’fand, I. M.; Kapranov, M. M.; and Zelevinsky, A. V. 

“Hyperdeterminants.” Adu. Math. 96, 226-263, 1992. 

Hyperparallel 
Two lines in HYPERBOLIC GEOMETRY which diverge 
from each other in both directions. 

see also ANTIPARALLEL, IDEAL POINT, PARALLEL 

Hyperperfect Number 
A number n is called k-hyp ,erp erfect if 

n=l+kxdi, 

where the summation is over the PROPER DIVISORS 
1 < di < n, giving 

b(n) = (k + 1)n + k + 1, 

with 

where o(n) is the DIWSOR FUNCTION. The first few 
hyperperfect numbers are 21, 301, 325, 697, 1333, . . l 

(Sloane’s AOO7592). 2-hyperperfect numbers include 21, 
2133, 19521, 176661, . ,. (Sloane’s AOO7593), and the 
first 3-hyperperfect number is 325. 

Hypersphere 

References 
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Hyperplane 
Let al, a2, . . . , a, be SCALARS not all equal to 0. Then 
the SET S consisting of all VEC ORS 

r x1 

x2 
x- * 

. 

1 
. 

Xn 

in IV such that 

am + a222 + l .  .  - I -  UnXn = 0 

is a SUBSPACE of R” called a hyperplane. More gen- 
erally, a hyperplane is any co-dimension 1 vector SUB- 
SPACE of a VECTOR SPACE. Equivalently, a hyperplane 
V in a VECTOR SPACE W is any SUBSPACE such that 

W/V is l-dimensional. Equivalently, a hyperplane is the 
KERNEL ofanyN0~~ ERO linear 
SPACE to the underly ing FIELD. 

MAP fromthe VECTOR 

Hyperreal Number 
Hyperreal numbers are an extension of the REAL NUM- 
BERS to include certain classes of infinite and infinites- 
imal numbers. A hyperreal number is said to be finite 
IFF 1x1 < n for some INTEGER n. x is said to be in- 
finitesimal IFF 1x1 < l/n for all INTEGERS n. 

see UZSO AX-KOCHEN ISOMORPHISM THEOREM, NON- 
STANDARD ANALYSIS 

References 
APPS, p- “The Hyperreal Line.” http: //www *math. wise. 

edu/-apps/line.html. 
Keisler, H. 3. “The Hyperreal Line.” In Real Numbers, Gen- 

eralizations of the Reals, and Theories of Continua (Ed. 
P. Ehrlich). Norwell, MA: Kluwer, 1994. 

Hyperspace 
A SPACE havin .g DIMENSION n > 3. 

Hypersphere 
The n-hypersphere (often simply called the n-sphere) 
is a generalization of the CIRCLE (n = 2) and SPHERE 

(n = 3) to dimensions n > 4. It is therefore defined as - 
the set of n-tuples of points (x1, x2, . . . , xn) such that 

xl2 + ~2~ + .  .  l + xn2 = R2, 
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where R is the RADIUS of the hypersphere. The CON- 
TENT (i.e., n-D VOLUME) of an n-hypersphere of RADIUS 
R is given by 

R 

V., = 
S,R” 

&r--l dr = - 
n ’ (2) 

where S, is the hyper-SURFACE AREA of an n-sphere of 
unit radius. But, for a unit hypersphere, it must be true 
that 

Sn e-r2~n-1 dr 

n 

But the GAMMA FUNCTION can be defined by 

f(m) = 2 
r 

--T e 2 r2m--1 
d? 

0 

so 
$-J( in) = [I?( $)ln = (7r1’2)n 

2rnj2 
sn = - 

r( +a) ’ 

This gives the RECURRENCE RELATION 

2rs, 
s - n+2 = 

n . 

Using r(n + 1) = nr(n) then gives 

SnR” 
vn=-- 

n - 

(Conway and Sloane 1993). 

5 10 15 20 

Dimension 

. (3) 

(4) 

(5) 

(6) 

(7) 

(8) 

35 

3 3O 
b 25 

5 10 15 : 

Dimension 

Strangely enough, the hyper-SURFACE AREA and COW 
TENT reach MAXIMA and then decrease towards 0 as n 
increases. The point of MAXIMAL hyper-SURFACE AREA 
satisfies 

dsn 
-= 
dn 

@2[lnn - Go(+)] = o 

r( +4 
I (9) 

where $0 (2) = q(z) is the DIGAMMA FUNCTION. The 
point of MAXIMAL CONTENT satisfies 

d’lr, -= 
dn 

7Pi2[ln7r - $o(l+ +)I = o 
2r(1+ +) 

. (10) 

Neither can be solved analytically for n, but the numer- 
ical solutions are n = 7.25695.. , for hyper-SURFACE 
AREA and n = 5.25695.. . for CONTENT. As a result, 
the 7-D and 5-D hyperspheres have MAXIMAL hyper- 
SURFACE AREA and CONTENT, respectively (Le Lion- 
nais 1983). 

In 4-D, the generalization of SPHERICAL COORDINATES 
is defined by 

Xl = Rsin*sin$cosO (11) 

x2 = Rsin+sin@sinO (12) 

x3 = Rsin$cos@ (13) 

54 = Rcoqb. (14) 

The equation for a 4-sphere is 

xl2 +xz2 +x32 +xd2 = R2, (15) 

and the LINE ELEMENT is 

ds2 = R2 [dQ2 + sin2 $(dqS2 + sin2 4 de”)]. (16) 

By defining T = Rsin$, the LINE ELEMENT can be 
rewritten 

ds2 = 
dr2 

( 1-S) 
+ F2(dqb2 + sin2 #de”). (17) 

The hyper-SURFACE AREA is therefore given by 

S4 = ~~Rd$~~Rsin$d#~2~Rsin$sin~d0 

= 2T2R3* (18) 
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~~~U~S~CIRCLE,HYPERC~BE,HYPERSPHERE PACKING, Hypervolume 
MAZUR'S THEOREM, SPHERE, TESSERACT seeCoNTENT 
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Hypersphere Packing 
Draw unit n-spheres in an n-D space centered at all kl 
coordinates. Then place an additional HYPERSPHERE at 
the origin tangent to the other HYPERSPHERES. Then 
the central HYPERSPHERE is contained with the HY- 

PERSPHERE with VERTICES at the center of the other 
spheres for n between 2 and 8. However, for n = 9, the 
central HYPERSPHERE just touches the bounding HY- 
PERSPHERE, and for n > 9, the HYPERSPHERE is par- 
tially outside the hypercube. This can be seen by finding 
the distance from the origin to the center of one of the 
HYPERSPHERES 

&&1)2 + . . . + (f1)2 = fi. 
L / Y 

The radius of the central sphere is therefore fi- 1. The 
distance from the origin to the center of the bounding 
hypercube is always 2 (two radii), so the center HYPER- 
SPHERE is tangent when fi - 1 = 2, or n = 9, and 
outside for n > 9. 

The analog of face-centered cubic packing is the densest 
lattice in 4- and 5-D. In 8-D, the densest lattice packing 
is made up of two copies of face-centered cubic. In 6- and 
7-Q the densest lattice packings are cross-sections of the 
8-D case. In 24-Q the densest packing appears to be 
the LEECH LATTICE. For high dimensions (- 1000-D), 
the densest known packings are nonlattice. The densest 
lattice packings in n-D have been rigorously proved to 
have PACKING DENSITY 1, r/(2&), 7t-/(3fi), x2/16, 

n”/(lSfi), n3/(48ti), n3/105, and r4/384 (Finch). 

Hypocycloid 

The curve produced by a small C IRCLE of RADIUS b 
rolling aro und the inside of a large CIRCLE of RADIUS 
a > b. A hypocycloid is a HYPOTROCHOID with h = 
b. To derive the equations of the hypocycloid, call the 
ANGLE by which a point on the small CIRCLE rotates 
about its center 0, and the ANGLE from the center of 
the large CIRCLE to that of the small CIRCLE 4. Then 

(a - b)qb = 629, (1) 

Call p E a - 2b. If z(O) = p, then the first point is 
at minimum radius, and the Cartesian parametric equa- 
tions of the hypocycloid are 

x=(u-b)cosqLbcos6 

=(a-b)cos+bcos (3) 

y=(a-b)sin#+bsin# 

= (a-b)sin4+bsin(q@). (4) 

If x(0) = a instead so the first point is at maximum ra- 
dius (on the CIRCLE), then the equations of the hypocy- 
cloid are 

The largest number of unit CIRCLES which can touch 
another is six. For SPHERES, the maximum number is 
12. Newton considered this question long before a proof 
was published in 1874. The maximum number of hyper- 
spheres that can touch another in n-D is the so-called 
KISSING NUMBER. 

x= (a-b)cos~+6cos 
Lb > 

- 4 (5) 

y=(a-b)sin+-bsin l  
(6) 

References 

see also KISSING NUMBER, LEECH LATTICE, SPHERE 

Finch, S. “Favorite Mathematical Constants.” http: //uww. 

PACKING 

mathsoft.com/asolve/constant/hermit/hermit.html. 

An n-cusped non-self-intersecting hypocycloid has 

and noting that the equations simplify to 

u/b = n. A 2-cusped hypocycloid is a LINE SEGMENT, 
as can be seen by setting a = b in equations (3) and (4) 

Gardner, M. Martin Gardner’s lvew Mathematical Diver- 
sions from Scient$c American. New York: Simon and 
Schuster, pp. 89-90, 1966. 

X = asin@ (7) 

Y = 0. (8) 
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A 3-cusped hypocycloid is called a DELTOID or TRICUS- 
POID, and a 4-cusped hypocycloid is called an ASTROID. 
If a/b is rational, the curve closes on itself and has b 
cusps. If a/b is IRRATIONAL, the curve never closes and 
fills the entire interior of the CIRCLE. 

n-hypocycloids can also be constructed by beginning 
with the DIAMETER of a CIRCLE, offsetting one end by 
a series of steps while at the same time offsetting the 
other end by steps n times as large in the opposite di- 
rection and extending beyond the edge of the CIRCLE. 
After traveling around the CIRCLE once, an n-cusped 
hypocycloid is produced, as illustrated above (Madachy 
1979). 

Let T be the radial distance from a fixed point. For RA- 
DIUS OF TORSION p and ARC LENGTH s,ahypocycloid 
can given by the equation 

s2 + p2 = 16r2 (9) 

(Kreyszig 1991, pp. 63-64). A hypocycloid also satisfies 

2 a2 2 

sin2 $ = ’ m+-j w 

where 
dr 

rde = tan+ (11) 

and *1c, is the ANGLE between the RADIUS VECTOR and 
the TANGENT to the curve. 

The ARC LENGTH of the hypocycloid can be computed 
as follows 

xt = -(a - b) sin@ - (a - b) sin 
( > 

~~ 

= (a-b) [sinO+sin(q$)] (12) 

y’= (a-b)cos+ (a-b) cos (yb) 

=(a--) [cos+~os(~~)] (13) 

xl2 + yt2 = (a - b)2 [sin2 4 + &in&in (v4) 

+sin2 (qg5) +C0s24-2COS$COS(5-3 

+ cos2 (+)I 

= (a-b)2 {2+2 [sin4sin (q#) 

cos cp cos WI > 
=2(a-q2 ,l-cos(;+vd), 

= 4(a - b)2$ [I-cos@)] =4(a-b)2sin2 ($), 

(14) 

so 

ds= dSy’Zdq5=2(a-b)sin d4 (15) ’ 

for 6 < (b/Za)z Integrating, - 

44) = 
- - 

- - 
(16) 

The length of a single cusp is then 

8b(a - b) 
sin’ 

a (17) 

If rz E a/b is rational, then the curve closes on itself 
without intersecting after n cusps. For n E a/b and 
with x(0) = a, the equations of the hypocycloid become 

1 
2 = -[(n - 1) cos$ - cos[(n - l)qqa, 

n (18) 

Y = l[(n - 1) sin 4 + sin[(72 - l)qb]~, 
n (19) 

and 

Sn =n 
8b(bn - b) 

nb 
= 8b(n - 1) = 

8a(n - 1) 

n ’ W) 

Compute 

xy’ - yx’ = (a - b) cos$ + bcos ($4)] (b-a) 

x sin q5 + sin 

- [(a--b)sin@-bsin(q$)] (a-b) 

x 
[ 
cos $ - cos 

WI 

= 2(a2 - 3ab + 2b2) sin2 (21) 
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The AREA of one cusp is then 

A+ 
/ 

(XY’ - YX’> d4 
0 

= a2 ( -3ab+2b2) 
at - bsin (e) 

2a 

= a2 ( 
a (274 

- 3ab + 2b2) 7 [ 1 
b( a2 - 3ab + 2b2) - - 7T. 

a 

If n = a/b is rational, then after n cusps, 

(22) 

91 

b( u2 
- 3ab + 2b2) E 

u2 -3a; + 25 

A, = nr = nr J 
a a 

1 
2mb/a 

a 

n2 
- - 

- 3n + zmU2 

n2 = 

(n - l)(n - 2) nU2 

n2 ’ (23) 

The equation of the hypocycloid can be put in a form 
which is useful in the solution of CALCULUS OF VARI- 
ATIONS problems with radial symmetry. Consider the 
case x(0) = p, then 

T2 = x2 + y2 

= (a - b)2 cos2 qh - 2(a - b)bcoqhos 
[ cabb > 

- 0 

+ b2 ~0s~ 
rib > 

- 4 

+(a - b)2 sin2 4 + 2(u - b)bsin4sin 

+b2 sin2 w91 
= {(a - b)2 + b2 - 2(u - b)b 

x [cos$cos &-Q) - sin$sin (q$)]} 

= (a - b)2 + b2 - 2(u - b)bcos (24) 

But p = a - 24 so b = (a - p)/2, which gives 

(U - b)2 + b2 = [a - i(u - p)12 + [+(a - P)l2 

= [+(a + p)12 + [;<a - PII2 
= J$(u” +2up+P2 +a2 -2aP+P2) 

= +(u” +p2) (25) 
2(u - b)b = 2[u - $(u - P)l+(a - P> 

= f(a + p)(U - p) = $(a” - p”). (26) 

Now let 

4 nt -=- 
u-p a’ 

then 

(29) 

f2 = ;(a” +p2) - +(U” -p’)COS f(6 

( > 

= +(u” + p”) - ;(a” - p”) cos(2Rt). 

The POLAR ANGLE is 

tan0 = g = 
(a- b)sin4+bsin(y#) 

x (a-b)cos+bcos(+$)’ 

But 

b= +<a- P) 

u-b= fb+ PI 

a-b a+P 
-=u-p’ b 

so 

tan0 = 
$(a+p)sin&+ $(a-P)sin(z$) 

$(a+p)cos+ ~(U-P)COS(~~) 

(a+p)sin(yOt) +(a-p)sin(+Ot) 
= 

(u+p)cos(y2t) -((a-p)cos(=ylt) 

a [sin (ynt) + sin (Fnt>] 

+p [sin (ynt) - sin (*CM)] 
= 

a [cos (yt) - cos (yx)] 
+p [co, (ynt) + cos (yt)] 

2asin(Gt) cos tS2t - 2pcos(Rt) sin (tstt) 
( > = 

26 sin(flt) sin a ( > em + 2pcos(flt) cos p ( > 

a tan(flt) - p tan 
( > 

tstt 
= * (35) 

atan tan !!2t + p 
( ) 

Computing 

[ a tan(W) - p tan (fflt) + tan (fC!t)] 

tan (@+ Ei2t) = ,,,..(,t)t~~~~~~~~~‘~~t’ +‘I 
a 

- 
[ a tan(CH) - p tan (fClt>] tan (f$ht) 

a tan(stt) [l + tan’ ($Cit)] 
= 

p 1+ tan2 [ b-4 

= ” tan(flt), 
P 

(36) 

then gives 

0 = tan-l a tan(W) - ht. [ 1 P U 
SO (37) 
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Finally, plugging back in gives 

8 = tan-l [Ftan (&4)] - E-$4 

= tan-l [%t,n (&4)] - &4* (38) 

This form is useful in the solution of the SPHERE WITH 
TUNNEL problem, which is the generalization of the 
BRACHJSTOC~IRONE PROBLEM, to find the shape of a 
tunnel drilled through a SPHERE (with gravity varying 
according to Gauss’s law for gravitation) such that the 
travel time between two points on the surface of the 
SPHERE under the force of gravity is minimized. 

see ~2s~ CYCLOID, EPICYCLOID 
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Hypocycloid-3-Cusped 

see DELTOID 

Hypocycloid-4-Cusped 

see ASTROID 

Hypocycloid Evolute 

For x(O) = a, 

=I:= 2- [(a-b)cos+bcos(y$5)] 
a - 2b 

Y= --!!- [(a-b)sinti+bsin(v$)]. 
a - 2b 

If a/b = n, then 

1 
xc- 

n-2 K n - 1) cos 4 - cos[(n - l)qS]u 

1 
‘= n-2 -[(n - 1) sin4 + sin[(n - l)+ 

This is just the original HYPOCYCLOID scaled by the 
factor (n - 2)/ n and rotated by 1/(2n) of a turn. 

Hypocycloid Involute 

The HYPOCYCLOID 

x= a [(a-b)cosqLbcos(ff-Q)] 
a - 2b 

y=a 
a - 2b 

[(a- b)sin4+bsin (q+)] 

has INVOLUTE 

X= a [(a-b)cosq5+bcos(+)] 
a 

Y= e [(a - b)sind - bsin (qqb)] , 

which is another HYPOCYCLOID. 

Hypocycloid Pedal Curve 

The PEDAL CURVE for a PEDAL POINT at the center is 
a ROSE. 



882 Hypoellipse Hyzer ‘s 111 usion 

Hypo’ellipse 

I 1 

n/m 
Y n’m+c : --=(-Jo, 

a 

with n/m < 2. If n/m > 2, the curve is a HYPEREL- 
LIPSE. 

see also ELLIPSE, HYPERELLIPSE, SUPERELLIPSE 

References 
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Hypotenuse 
The longest LEG of a RIGHT TRIANGLE (which is the 
side opposite the RIGHT ANGLE). 

Hypot he& 
A proposition that is consistent with known data, but 
has been neither verified nor shown to be false. It is 
synonymous with CONJECTURE. 

see also BOURGET'S HYPOTHESIS, CHINESE HYPOTH- 
ESIS, CONTINUUM HYPOTHESIS, HYPOTHESIS TEST- 

ING,NESTED HYPOTHESIS,NULL HYPOTHESIS,POSTU- 
LATE,RAMANUJAN'S HYPOTHESIS,RIEMANN HYPOTH- 
ESIS, SCHINZEL'S HYPOTHESIS, SOUSLIN'S HYPOTHESIS 

Hypothesis Testing 
The use of statistics to determine the probability that a 
given hypothesis is true. 

see UZSOBONFERRONI CORRECTION,ESTIMATE,FISHER 
SIGN TEST, PAIRED &TEST, STATISTICAL TEST, TYPE 
I ERROR, TYPE II ERROR, WILCOXON SIGNED RANK 
TEST 

References 
Heel, P. G.; Port, S. C.; and Stone, C. J. “Testing Hypothe- 

ses .” Ch. 3 in Introduction to Statistical Theory. New 
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Hypotrochoid 

The ROULETTE traced by a point P attached to a CIR- 
CLE of radius b rolling around the inside of a fixed CIR- 
CLE of radius a. The parametric equations for a hy- 
potrochoid are 

x = ncost + hcos (1) 

y = nsint - hsin (2) 

where n E a - b and h is the distance from P to the 
center of the rolling CIRCLE. Special cases include the 
HYPOCYCLOID with h = b, the ELLIPSE with a = 2b, 
and the ROSE with 

2nh 
a=- 

n+l 

( n - l)h 
b=- 

n-l-1 ’ 

(3) 

(4) 

see UZSO EPITROCHOID, HYPOCYCLOID, SPIROGRAPH 
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Hypotrochoid Evolute 

The EVOLUTE of the HYPOTROCHOID is illustrated 
above. 

Hyzer’s Illusion 

see FREEMISH CRATE 
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I Ice Fkactal 

The IMAGINARY NUMBER iisdefinedasi E &i. How- 
ever, for some reason engineers and physicists prefer the 
symbol j to i. Numbers of the form z = 2 + iy where 
rcandyare REAL NUMBERS arecalled COMPLEX NUM- 
BERS, and when z is used to denote a COMPLEX NUM- 
BER, it is sometimes (in older texts) called an “AFFIX." 

The SQUARE ROOT of i is 

since 

= ;<i2 + 2i + 1) = i. (2) 

This can be immediately derived from the EULER FOR- 
MULA with x = 7r/2, E i=e e/2 

(3) 
A FRACTAL (square, triangle, etc.) based on a simple 
generating motif. The above plots show the ice triangle, 
antitriangle, square, and antisquare. The base curves 
and motifs for the fractals illustrated above are shown 
below, A- a- 

& = Jm = eimi4 1+i 
= cos($) + isin = -. 

a 
(4 

The PRINCIPAL VALUE of ii is 

-i 2-e ( 
ix/2 i 

> =e A/2 =e --T/2 = 0.207879.. . . (5) 

see also COMPLEX NUMBER, IMAGINARY IDENTITY, 
IMAGINARY NUMBER,REAL NUMBER,~URREAL NUM- 
BER 
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see also FRACTAL 
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II 

see Z 

I-Signature 

see SIGNATURE (RECURRENCE RELATION) 

Iamond 

see POLYIAMOND 

Icosagon 
A 20-sided POLYGON. The SWASTIKA is an irregular 
icosagon. 

see also SWASTIKA 

Icosahedral Equation 
Hunt (1996) gives the ‘Ldehomogenixed” icosahedral 
equation as 

[(x2’ + 1) - 228(z15 - z5) + 494z’“)3 

+1728tiz5(z1’ + 11~~ - 1)” = 0. 
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0 t her forms include 

I(u, v, 2) = u5v5(u10 + 11USV5 - v10)5 

-[u30 + v30 - 10005(u20v10 + U10V20) 

+522(u25v5 - u5v25)12Z = 0 

and 

I(% l,Z> = z5(-1 + 11z5 + z10)5 

- P + 2 3o - 10005(~~~ + z”“) + 522(-z5 + z~~)]“Z = 0. 

References 
Hunt, B. The Geometry of Some Special Arithmetic Quo- 
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Icosahedral Graph 

A POLYHEDRAL GRAPH. 

see also CUBICAL GRAPH, D~DECAHEDRAL GRAPH, 
OCTAHEDRAL GRAPH,TETRAHEDRAL GRAPH 

Icosahedral Group 
The GROUP Ih of symmetries of the ICOSAHEDRON and 
DODECAHEDRON. The icosahedral group consists of the 
symmetry operations E, l2C5, 12C,2, 2OC3, 15C2, i, 
12&o, 12Sfo, 2OS6, and 150 (Cotton 1990). 

~~~UZ~~DODECAHEDRON,ICOSAHEDRON,OCTAHEDRAL 
GROUP,TETRAHEDRAL GROUP 

References 
Cotton, F. A. Chemical Applications of Group Theory, 3rd 

ed. New York: Wiley, p. 48-50, 1990. 
Lomont, J. S. “Icosahedral Group.” §3.lO.E in Applications 

of Finite Groups. New York: Dover, p+ 82, 1987. 

Icosahedron 

A PLATONIC SOLID (P5) with 12 VERTICES, 30 EDGES, 
and 20 equivalent EQUILATERAL TRIANGLE faces 20{3}. 
It is described by the SCHL~FLI SYMBOL {3,5}. It is 
also UNIFORM POLYHEDRON U22 and has WYTHOFF 
SYMBOL 5 123. The icosahedron has the ICOSAHEDRAL 
GROUP Ih of symmetries. 

A plane PERPENDICULAR to a Cs axis of an icosahedron 
cuts the solid in a regular DECAGONAL CROSS-SECTION 
(Holden 1991, pp, 24-25). 

A construction for an icosahedron with side length a = 

d-/5 places the end vertices at (O,O, IN) and 
the central vertices around two staggered CIRCLES of 
RADII i fi and heights &$. 6, giving coordinates 

for i = 0, 1, l  . l  , 4, where all the plus signs or minus 
signs are taken together. Explicitly, these coordinates 
are 

By a suitable rotation, the VERTICES of an icosahe- 
dron of side length 2 can also be placed at (0, IQ, H), 
(~411~0, *$), and (@, &l, 0), where 4 is the GOLDEN 
RATIO. These points divide the EDGES of an OCTAHE- 
DRON into segments with lengths in the ratio 4 : 1. 

The DUAL POLYHEDRON of the icosahedron is the Do- 
DECAHEDRON. There are 59 distinct icosahedra when 
each TRIANGLE is colored differently (Coxeter 1969). 

To derive the VOLUME of an icosahedron having edge 
length a, consider the orientation so that two VERTICES 
are oriented on top and bottom. The vertical distance 
betweenthetopandbottom PENTAGONAL DIPYRAMIDS 
is then given by 

where 
e-$&z (8) 
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* is the height of an ISOSCELES TRIANGLE, and the 
SAGITTA 2 = R’ - T’ of the pentagon is 

x= $a& d25 - 10&a, (9) 

giving 
2 x = $d5-2&a2. (10) 

Plugging (8) and (10) into (7) gives 

- &d50 + 10&a, - (11) 

which is identical to the radius of a PENTAGON of side 
a. The CIRCUMRADWS is then 

where 

h=$ &o - 10&a (13) 

is the height of a PENTAGONAL DIPYRAMID. Therefore, 

R2 = (h+ $>” 

= (&da+ ~&TGz)2a2 

5 3 a - - 
s--+ 10 8& 

a2 = i(5 + &)a. (14) 

Taking the square root gives the CIRCUMRADIUS 

R= Jma = +daa z o.951o5a. 
(15) 

The INRADIUS is 

r= &(3& + &)a $=: 0.75576~. (16) 

The square of the INTERRADIUS is 

p2 = (iz,, + xi2 

= [(a)(&)(50 + lo&) + A(25 + 10h)]a2 

- i(3 + &)a2, - (17) 

so 

p= d-a- ~(l+~)u~0.80901a. (18) 

The AREA of one face is the AREA of an EQUILATERAL 
TRIANGLE 

A= +a”& (19) 

The volume can be computed by taking 20 pyramids of 
height T 

V = 20[(+A)r] = 20+atia2&(3&+ &)a 

- A(3 + &)a3. - (20) 

Apollonius showed that 

v lcosahedron A* lcosahedron - - 
V dodecahedron A dodecahedron ’ 

where V is the volume and A the surface area. 

(21) 

see also AUGMENTED TRIDIMINISHED ICOSAHEDRON, 
DECAGON, DODECAHEDRON, GREAT ICOSAHEDRON, 
IC~SAHEDRON 
STELLATIONS, METABIDIMINISHED ICOSAHEDRON, TRI- 
DIMINISHED ICOSAHEDRON, TRIGONOMETRY VALUES- 

d5 
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Icosahedron Stellations 
Applying the STELLATION process to the ICOSAHEDRON 
gives 

20 + 30 + 60 + 20 + 60 + 120 + 12 + 30 + 60 + 60 

cells of ten different shapes and sizes in addition to the 
ICOSAHEDRON itself. After application of five restric- 
tions due to 5. C. P. Miller to define which forms should 
be considered distinct, 59 stellations are found to be 
possible. Miller’s restrictions are 

1. The faces must lie in the twenty bounding planes of 
the icosahedron. 

2. The parts of the faces in the twenty planes must be 
congruent, but those parts lying in one place may be 
disconnected. 

3. The parts lying in one plane must have threefold 
rotational symmetry with or without reflections, 

4. All parts must be accessible, i.e., lie on the outside 
of the solid. 

5. Compounds are excluded that can be divided into 
two sets, each of which has the full symmetry of the 
whole. 

Of these, 32 have full icosahedral symmetry and 27 are 
ENANTIOMERIC forms. Four are POI;YHEDRON COM- 
POUNDS, one is a KEPLER-P• INSOT SOLID, and one is 
the DUAL POLYHEDRON of an ARCHIMEDEAN SOLID. 
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The only STELLATIONS of PLATONIC SOLIDS which are 
UNIFORM POLYHEDRA are the three DODECAHEDRON 
STELLATIONS the GREAT ICOSAHEDRON (stellation # 
11). 

n name 
1 icosahedron 
2 triakisicosahedron 
3 octahedron Scornpound 
4 echidnahedron 

11 great icosahedron 
18 tetrahedron lo-compound 
20 deltahedron-60 
36 tetrahedron 5-compound 

04 05 06 

16 17 18 

22 23 

25 26 27 

28 29 30 

d- 

c  

34 35 36 

37 38 39 
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46 

42 

48 

52 53 54 

Bulatov, V. “St ellations of Icosahedron.” http://wuw. 
physics.orst.edu/-bulatov/polyhedra/icosahedron/. 

Coxeter, H. S. M. The Fifty-Nine Icosahedru. New York: 
Springer-Verlag, 1982. 

Hart, G. W. “59 Stellations of the Icosahedron.” http: // 
www.li.net/~george/virtual-polyhedra/stella~ions- 
icosahedron-index .html. 

Maeder, R. E. 1cosahedra.m notebook. http://www.inf. 
ethz.ch/department/TI/rm/programs.html. 

Maeder, R. E. “The Stellated Icosahedra.” Mathemutica in 
Education 3, 1994. ftp://f tp .inf.ethz.ch/doc/papers/ 
ti/scs/icosahedra94.ps.gz. 

Maeder, R. E. “Stellated Icosahedra.” http://vvw+ 
mathconsult.ch/showroom/icosahedra/. 

Wang, P. “Polyhedra.” http://www.ugcs.caltech.edu/ 
-peterw/portfolio/polyhedra/. 

Wenninger, M. J. Polyhedron Models. New York: Cambridge 
University Press, pp. 41-65, 1989. 

Wheeler, A. H, “Certain Forms of the Icosahedron and a 
Method for Deriving and Designating Higher Polyhedra.” 
Proc. Internat. Math. Congress 1, 701-708, 1924. 

Icosian Game 
The problem of finding a HAMILTONIAN CIRCUIT along 
the edges of an ICOSAHEDRON, i.e., a path such that 
every vertex is visited a single time, no edge is visited 
twice, and the ending point is the same as the starting 
point. 

see also HAMILTONIAN CIRCUIT, ICOSAHEDR~N 

References 
Herschel, A. S. “Sir Wm. Hamilton’s Icosian Game.” Quart. 

J. Pure Applied Math. 5, 305, 1862. 

Icosidodecadodecahedron 

The UNIFORM POLYHEDRON iZJd4 whose DUAL POLY- 

HEDRON is the MEDIAL ICOSACRONIC HEXECONTAHE- 
DRON. It has WYTHOFF SYMBOL g 5 13. Its faces are 
20{6} + 12{ $} + 12{5}. Its CIRCUMRADIUS for unit edge 
length is 

References 
Wenninger, M. J. Polyhedron Models. Cambridge, England: 

Cambridge University Press, pp. 128-129, 1989. 

58 59 

see UZSO ARCHIMEDEAN SOLID STELLATION, DODECA- 
HEDRON STELLATIONS,STELLATION 

References 
Ball, W. W, R. and Coxeter, H. S. M. Mathematical Recre- 

ations and Essays, 13th ed. New York: Dover, pp. 146- 
147. 1987. 
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Icosidodecahedron Icositruncated Dodecadodecahedron 

An ARCHIMEDEAN SOLID whose DUAL POLYHEDRON is 
the RHOMBIC TRIACUNTAHEDRON. It is one of the two 
convex QUASIREGULAR POLYHEDRA and has SCHLAFLI 
SYMBOL {;}. It is also UNIFORM POLYHEDRON U24 
and has WYTHOFF SYMBOL 2 13 5. Its faces are 20{3} + 
12{5}. The VERTICES of an icosidodecahedron of 
EDGE length 24-l are (w 0, o), (0, *2, o), (o,o, -), 
(fl, AI&~, AA), (fl, 4$, A$‘), (dqb-‘, &l, &qb), The 
30 VERTICES of an OCTAHEDRON 5-Cowoum form an 
icosidodecahedron (Ball and Coxeter 1987). FACETED 
versions include the SMALL ICOS~HEMIDODECAHEDRON 
and SMALL D~DECAHEMIDODECAHEDRON. 

The faces of the icosidodecahedron consist of 20 trian- 
gles and 12 pentagons. Furthermore, its 60 edges are bi- 
sected perpendicularly by those of the reciprocal RHOM- 
BIC TRIACONTAHEDRON (Ball and Coxeter 1987). 

The INRADIUS, MIDRADIUS, and CIRCUMRADIUS for Peterson, I. Islands of Truth: A Mathematical Mystery 

unit edge length are Cruise. New York: W. H. Freeman, pp. 44-45, 1990. 

r = ;(5+3&) ==: 1.46353 

p = id5 + 2J5 = 1.53884 

R= f(l+ v%) = 4 ==: 1.61803. 

see also ARCHIMEDEAN SOLID, GREAT ICOSIDODECA- 
HEDRON,QUASIREGULAR POLYHEDRON,%ALL ICOSI- 
HEMIDODECAHEDRON, SMALL DODECAHEMID~DECA- 
HEDRON 

References - 
Ball, W. W. R. and Coxeter, H. S. M. Mathematical Recre- 

ations and Essays, 13th ed. New York: Dover, p. 137, 
1987. 

Wenninger, M. 3. Polyhedron Models. Cambridge, England: 
Cambridge University Press, p. 73, 1989. 

Icosidodecahedron Stellation 
The first stellation is a DODECAHEDRON-ICOSA 
COMPOUND. 

References 
Wenninger, M. J. Polyhedron Models. Cambridge, 

Cambridge University Press, pp. 73-96, 1989. 

.HEDRON 

England: 

Icosidodecatruncated Icosidodecahedron 

The UNIFORM POLYHEDRON Ud5 also called the 
IC~SIDODECATR~NCATED ICOSIDODECAHEDRON whose 
DUAL POLYHEDRON is the TRIDYAKIS ICOSAHEDRON. 
It has WYTHOFF SYMBOL 3 5 5 I. Its faces are 20{6} + 
12{10}+12{ y}m Its CIRCUMRADIUS for unit edge length 
is 

R = 2. 

References 
Wenninger, M. J. Polyhedron Modek. Cambridge, England: 

Cambridge University Press, pp. 130-131, 1989. 

Ida Surface 
A 3-D shadow of a 4-D KLEIN BOTTLE. 

see also KLEIN BOTTLE 

References 

Ideal 
A subset 1 of elements in a RING R which forms an 
additive GROUP and has the property that, whenever II: 
belongs to R and y belongs to 1, then ~:y and ylt: belong 
to 1. For example, the set of EVEN INTEGERS is an ideal 
in the RING of INTEGERS. Given an ideal I, it is possible 
to define a FACTOR RING R/I. 

An ideal may be viewed as a lattice and specified as the 
finite list of algebraic integers that form a basis for the 
lattice. Any two bases for the same lattice are equiva- 
lent. Ideals have multiplication, and this is basically the 
Kronecker product of the two bases. 

For any ideal I, there is an ideal 1i such that 

-- 
l& = 2, 

where z is a PRINCIPAL IDEAL, (i.e., an ideal of rank 
1). Moreover there is a finite list of ideals pi such that 
this equation may be satisfied for every I. The size of 
this list is known as the CLASS NUMBER. In effect, the 
above relation imposes an EQUIVALENCE RELATION on 
ideals, and the number of ideals modulo this relation 
is the class number. When the CLASS NUMBER is 1, 
the corresponding number RING has unique factoriza- 
tion and, in a sense, the class number is a measure of 
the failure of unique factorization in the original number 
ring. 



Ideal Number 

Dedekind (1871) showed that every NONZERO ideal in 
the domain of INTEGERS of a FIELD is a unique product 
of PRIME IDEALS. 

see also CLASS NUMBER, DIVISOR THEORY, IDEAL 
NUMBER, MAXIMAL IDEAL, PRIME IDEAL, PRINCIPAL 
IDEAL 

References 
Malgrange, B. Ideals of Differentiable Functions. London: 

Oxford University Press, 1966. 

Ideal Number 
A type of number involving the ROOTS OF UNITY which 
was developed by Kummer while trying to solve FER- 
MAT'S LAST THEOREM. Although factorization over the 
INTEGERS is unique (the FUNDAMENTAL THEOREM OF 
ALGEBRA), factorization is not unique over the COM- 
PLEX NUMBERS. Over the ideal numbers, however, fac- 
torization in terms of the COMPLEX NUMBERS becomes 
unique. Ideal numbers were so powerful that they were 
generalized by Dedekind into the more abstract IDEALS 
in general RINGS which are a key part of modern ab- 
stract ALGEBRA. 

see also DIVISOR THEORY, FERMAT'S LAST THEOREM, 
IDEAL 

Ideal (Partial Order) 
An ideal I of a PARTIAL ORDER P is a subset of the 
elements of P which satisfy the property that if y E I 
and II: < y, then II: E I. For k disjoint chains in which the 
ith chain contains ni elements, there are (1 + nl)(l + 
na> l  l  l  (1 + nk> ideals. The number of ideals of a n- 

element FENCE POSET is the FIBONACCI NUMBER Fn* 

References 
Ruskey, F. “Information on Ideals of Partially Ordered 

Sets.” http://sue.csc.uvic.ca/-cos/inf/pose/ 
Ideals. html. 

Steiner, G. “An Algorithm to Generate the Ideals of a Partial 
Order.” Operat. Res. Let. 5, 317-320, 1986. 

Ideal Point 
A type of POINT AT INFINITY in which parallel lines 
in the HYPERBOLIC PLANE intersect at infinity in one 
direction, while diverging from one another in the other. 

see also HYPERPARALLEL 

Idele 
The multiplicative subgroup of all elements in the prod- 
uct of the multiplicative groups k,” whose absolute value 
is 1 at all but finitely many V, where TG is a number FIELD 
and Y~PLACE. 

see also ADI~LE 

References 
Knapp, A. W. ‘Group Representations and Harmonic Anal- 

ysis, Part II.” Not. Amer. Math. Sot. 43, 537-549, 1996. 

Idemfactor 

see DYADIC 

Idempotent 

Identity Amc tion 889 

An OPERATOR A such that A2 = A or an element of an 
ALGEBRA x such that x2 = 5. 

see ~~AUTOMORPHIC NUMBER,BOOLEAN ALGEBRA, 
GROUP, SEMIGROUP 

Identity 
An identity is a mathematical relationship equating one 
quantity to another (which may initially appear to be 
different). 

see also ABEL'S IDENTITY, ANDREWS-SCHUR IDEN- 
TITY, BAC-CAB IDENTITY, BEAUZAMY AND D& 
GOT'S IDENTITY, BELTRAMI IDENTITY, BIANCHI IDEN- 
TITIES, BOCHNER IDENTITY, BRAHMAGUPTA IDEN- 
TITY, CASSINI'S IDENTITY, CAUCHY-LAGRANGE IDEN- 
TITY, CJJRISTOFFEL-DARBOUX IDENTITY, CHU-VAN- 
DERMONDE IDENTITY, DE MOIVRE'S IDENTITY, Dou- 
GALL-RAMANUJAN IDENTITY, EULER FOUR-SQUARE 
IDENTITY, EULER IDENTITY, EULER POLYNOMIAL 
IDENTITY,FERRARI'S IDENTITY,FIBONACCI IDENTITY, 
FROBENIUS TRIANGLE IDENTITIES, GREEN'S IDENTI- 
TIES, HYPERGEOMETRIC IDENTITY, IMAGINARY IDEN- 
TITY, JACKSON'S IDENTITY, JACOBI IDENTITIES, JA- 
COBI'S DETERMINANT IDENTITY, LAGRANGE'S IDEN- 
TITY, LE CAM'S IDENTITY, LEIBNIZ IDENTITY, LIOU- 
VILLE POLYNOMIAL IDENTITY, MATRIX POLYNOMIAL 
IDENTITY, MORGADO IDENTITY, NEWTON'S IDENTI- 
TIES, QUINTUPLE PRODUCT IDENTITY, RAMANUJAN 
6-10-8 IDENTITY, RAMANUJAN COS/COSH IDENTITY, 
RAMANUJAN'S IDENTITY, RAMANUJAN'S SUM IDEN- 
TITY,REZNIK'S IDENTITY,ROGERS-RAMANUJAN IDEN- 
TITIES, SCHAAR'S IDENTITY, STREHL IDENTITY, SYL- 
VESTER'S DETERMINANT IDENTITY, TRINOMIAL IDEN- 
TITY, VISIBLE POINT VECTOR IDENTITY, WATSON 
QUINTUPLE PRODUCT IDENTITY,~ORPITZKY'S IDEN- 
TITY 

Identity Element 
The identity element 1 (also denoted E, e, or 1) of 
a GROUP or related mathematical structure S is the 
unique elements such that IA = AI = I for every ele- 
ment A E S. The symbol “E” derives from the German 
word for unity, “Einheit.” 

see ~2~0 BINARY OPERATOR, GROUP, INVOLUTION 
(GROUP), MONOID 

Identity Function 
10 

/ 
5 10 
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Iff 
If and only if (i.e., NECESSARY and SUFFICI 
terms “JUST 1~” or “EXACTLY WHEN” we 
used instead. A iff B is written symbolically 
A iff B is also equivalent to A + B, together 
A, where the symbol +- denotes “IMPLIES.” 

IIdent zI 

ENT). The 
some times 
as A * B. 
m with B* 

The function f(z) = II: which assigns every REAL NUM- 
BER z to the same REAL NUMBER x. It is identical to 
the IDENTITY MAP. 

J. H. Conway believes that the word originated with 
P. Halmos and was transmitted through Kelley (1975). 
Halmos has stated, “To the best of my knowledge, I 
DID invent the silly thing, but I wouldn’t swear to it in 
a court of law. So there-give me credit for it anyway” 
(Asimov 1997). 

Identity Map 
The MAP which assigns every REAL NUMBER to the 
same REAL NUMBER idR. It is identical to the IDEN- 
TITY FUNCTION. 

see als 0 EQUIVALENT, EXACTLY ONE,IMPLIES,NECES- 
SARY, S UFFICIENT 

Identity Matrix 
The identity matrix is defined as the MATRIX 1 (or I) 
such that 

1(X)=X 

References 
Asimov, D. “Hf.” math-fun@cs.arizona.edu posting, Sept. 19, 

1997. 
Kelley, J. L. General Z%p&gy. New York: Springer-Verlag, 

1975. for all VECTURS X. The identity matrix is 

Iij = 6ij Ill-Conditioned 

for i,j = 1,2, . . . . n, where 6ij is the KRONECKER 
DELTA. Written explicitly, 

A system is ill-conditioned if the CONDITION NUMBER 
is too large (and singular if it is INFINITE). 

see also CONDITION NUMBER 

[ 

1 
0 
. 
l  

. 

0  

0 
1 

0 
0 
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. . . 
Illumination Problem 
In the early 195Os, Ernst Straus asked I= 

1. Is every POLYGONAL region illuminable 
point in the region? 

from every 
0 . . . 

2. Is every POLYGONAL region illuminable 
one point in the region? 

from at least 

Identity Operator 
The OPERATOR fwhichtakes a REAL NUMBER to the Here, illuminable means that there is a path from every 

point to every other by repeated reflections. Tokarsky 
(1995) showed that unilluminable rooms exist in the 
plane and 3-Q but question (2) remains open. The 
smallest known counterexample to (1) in the PLANE has 
26 sides. 

see also IDENTITY FUNCTION, IDENTITY MAP 

Idoneal Number 
A POSITIVE value of D for which the fact that a number 
is a MONOMORPH (i.e., the number is expressible in only 
one way as xz+Dy2 or x2 - Dy2 where 5c2 is RELATIVELY 
PRIME to Dy2) guarantees it to be a PRIME, POWER 
of a PRIME, or twice one of these. The numbers are 
also called EULER'S IDONEAL NUMBERS, or SUITABLE 
NUMBERS. 

see also ART GALLERY THEOREM 

References 
Klee, V. “Is Every Polygonal Region Illuminable from Some 

Point?” Math. Msg. 52, 180, 1969. 
Tokarsky, G. W. “Polygonal Rooms Not Illuminable from 

Every Point .” Amer. Math. Monthly 102, 867-879, 1995+ 

The 65 idoneal numbers found by Gauss and Euler and 
conjectured to be the only such numbers (Shanks 1969) 
are 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 15, 16, 18, 21, 
22, 24, 25, 28, 30, 33, 37, 40, 42, 45, 48, 57, 58, 60, 70, 
72, 78, 85, 88, 93, 102, 105, 112, 120, 130, 133, 165, 168, 
177, 190, 210, 232, 240, 253, 273, 280, 312, 330, 345, 
357, 385, 408, 462, 520, 760, 840, 1320, 1365, and 1848 
(Sloane’s A000926). 

Illusion 
An object or drawing which appears to have properties 
which are physically impossible, deceptive, or counter- 
intuitive. 

see also BENHAM'S WHEEL, FREEMISH CRATE, GOB- 
LET ILLUSION, HERMANN GRID ILLUSION, HERMANN- 
HERING ILLUSION, HYZER'S ILLUSION, IMPOSSIBLE 
FIGURE, IRRADIATION ILLUSION, KANIZSA TRIAN- 
GLE, MUELLER-LYER ILLUSION, NECKER CUBE, ORBI- 
SON'S ILLUSION, PARALLELOGRAM ILLUSION, PENROSE 

References 
Shanks, D. “On 

Comput. 23, 1 
Sloane, N. J. A. 

Version of the 

Gauss’s Class Number 
.51-163, 1969. 
Sequence A000926/M04 
Encyclopedia of Integer 

Problems.” 

:76 in “An 0 
Sequences .” 

n-Line 
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LUSION, Z~LLNER’S ILLUSION 

References 
Ausbourne, B. “A Sensory Adventure.” http: //uuw. lainet. 

corn/illusions/. 
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Woods, F. S. Higher Geometry: An Introduction to Advanced 

Methods in Analytic Geometry. New York: Dover, p. 2, 
1961. 

Ausbourne, B. “Optical Illusions: A Collection.” http : // 
www.lainet,com/-ausbourn/. 

Ernst, B. Optical IZlusions. New York: Taschen, 1996. 
Fineman, M. The Nature of Visual Illusion. New York: 

Imaginary Quadratic Field 
A QUADRATIC FIELD Q(a) with D < 0. 

Dover, 1996. 
Gardner, M. “Optical Illusions.” Ch. 1 in Mathematical Cir- 

cus: More Puzzles, Games, Paradoxes and Other Math- 
ematical Entertainments from Scientific American. New 
York: Knopf, 1979. 

Gregory, R. L. Eye and Brain, 5th ed. Princeton, NJ: Prince- 
ton University Press, 1997. 

“Illusions: Central Station.” http://www.heureka.fi/i/ 
Illusions-ctrl-station.html.en. 

Landrigad, D. “Gallery of Illusions.” http : //valley. urn1 . 
edu/psychology/illusion. html. 

Luckiesh, M. Visual Illusions: Their Causes, Characteris- 

see also QUADRATIC FIELD 

Immanant 
For an n x n matrix, let S denote any permutation el, e2, 

’  l  l  7  
e, of the set of numbers 1, 2, . . . , 12, and let x(‘) (S) 

tics, and Applications. New York: Dover, 1965. 
Pappas, T. “History of Optical Illusions.” The Joy of 

Mathematics. San Carlos, CA: Wide World Publ./Tetra, 
pp. 172-173, 1989. 

where the summation is over the n! permutations of the 
SYMMETRIC GROUP and 

Tolansky, S. Optical IZlusions. New York: Pergamon Press, 
1964. 

Image see also DETERMINANT, PERMANENT 

see RANGE (IMAGE) References 
Littlewood, D. E. and Richardson, A. R. “Group Characters 

Imaginary Identity and Algebra.” Philos. Trans. Roy. Sot. London A 233, 
99-141,1934. 

see i 

Imaginary Number 
A COMPLEX NUMBER which has zero REAL PART, SO 

that it can be written as a REAL NUMBER multiplied by 
the “imaginary unit” i (equal to fl)* 

Littlewood, D. E. and Richardson, A. R. “Immanants of 

282, 1934. 
Some Special Matrices.” 

Wybourne, B. G. “Immanants of Matrices.” $2.19 in Symme- 

Quart. J. Math. (Oxford) 5, 269- 

try Principles and Atomic Spectroscopy. New York: Wiley, 
pp. 12-13, 1970. 

see also COMPLEX NUMBER, GALo1s IMAGINARY, 
GAUSSIAN INTEGER, i, REAL NUMBER 

Immersed Minimal Surface 

see ENNEPER’S SURFACES 

References 
Conway, J. H. and Guy, R. K. The Book of Numbers. New 

York: Springer-Verlag, pp. 211-216, 1996. 

Imaginary Part 
The imaginary part % 
isthe REAL NUMBER 
terms of z itself, 

ofa COMPLEXNUMBERZ=X+~~ 
multiplying i, so %[z + iy] = y. In 

where z* is the COMPLEX CONJUGATE ofz. 

Immersion 
A special nonsingular MAP from one MANIFOLD to an- 
other such that at every point in the domain of the map, 
the DERIVATIVE is an injective linear map. This is equiv- 
alent to saying that every point in the DOMAIN has a 
NEIGHBORHOOD such that, UP to DIFFEOMORPHISMS of 
the TANGENT SPACE, the map looks like the inclusion 
map from a lower-dimensional EUCLIDEAN SPACE to a 
higher-dimensional EUCLIDEAN SPACE. 

see also SOY SURFACE, EVERSION, SMALE-HIRSCH 
THEOREM 

see also ABSOLUTE SQUARE, COMPLEX CONJUGATE, 
REAL PART , 
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Impartial Game 
A GAME in which the possible moves are the same for 
each player in any position. All positions in all impartial 
GAMES form an additive ABELIAN GROUP. For impar- 
tial games in which the last player wins (normal form 
games), the nim-value of the sum of two GAMES is the 
nim-sum of their nim-values. If the last player loses, the 
GAME is said to be in mis&re form and the analysis is 
much more difficult. 

Implies 
The symbol + means “implies” in the mathematical 
sense. Let A be true. If this implies that B is also true, 
then the statement is written symbolically as A + B, 
or sometimes A c B. If A + B and B I A (i.e, A a 
B A B +- A), then A and B are said to be EQUIVALENT, 
a relationship which is written symbolically as A ti B 
or A + B. 

see also EQUIVALENT 
see also FAIR GAME, GAME, PARTISAN GAME 

Impossible Figure 
Implicit Function 
A function which is not defined explicitly, but rather is 
defined in terms of an algebraic relationship (which can 
not, in general, be “solved” for the function in question). 
For example, the ECCENTRIC ANOMALY E of a body 
orbiting on an ELLIPSE with ECCENTRICITY e is defined 
implicitly in terms of the mean anomaly M by KEPLER'S 
EQUATION 

A4 = E - esinE. 

Implicit Function Theorem 
Given 

Ji(X,Y,~,ww) = 0 

F~(~,Y,~,~,v,'uI) = 0 

F3(~,Y,v,v,4 = 0, 

if the JACOBIAN 

JF(u, v, w) = 
~(FI, Fz, F3) 

a(% 21, 4 
#O f 

then U, V, and w  can be solved for in terms of x, y, and 
z and PARTIAL DERIVATIVES of u, v, w  with respect to 
zc, y, and z can be f ound by differentiating implicitly. 

More generally, let A be an OPEN SET in IKnfk and let 
f : A -+ Iw" be a C’ FUNCTION. Write f in the form 
f(x, y), where x and y are elements of R” and R”. Sup- 
pose that (a, b) is a point in A such that f(a, b) = 0 and 
the DETERMINANT of the n x n MATRIX whose elements 
are the DERIVATIVES of the n component FUNCTIONS of 
f with respect to the n variables, written as y, evalu- 
ated at (a, b), is not equal to zero. The latter may be 
rewritten as 

rank(Df (a, b)) = n. 

Then there exists a NEIGHBORHOOD B of a in Iw” and 
a unique C’ FUNCTION g : B -+ Iw” such that g(a) = b 
and f(x,g(x)) = 0 for all x E B. 

see also CHANGE OF VARIABLES THEOREM,JACOBIAN 
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A class of ILLUSION in which an object which is physi- 
cally unrealizable is apparently depicted. 

see also FREEMISH CRATE, HOME PLATE, ILLUSION, 
NECKER CUBE,PENROSE STAIRWAY,TRIBAR 
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Impredicative 
Definitions about a SET which depend on the entire SET. 

Improper Integral 
An INTEGRAL which has either or both limits INFINITE 
or which has an INTEGRAND which approaches INFINITY 
at one or more points in the range of integration. 

see also DEFINITE I NTEGRAL, 
INTEGRAL,~ROPER INTEGRAL 

INDEFINITE INTEGRAL, 
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References 
Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vet- 

terling, W. T. “Improper Integrals.” $4.4 in Numerica 
Recipes in FORTRAN: The Art of Scientific Computing, 
2nd ed. Cambridge, England: Cambridge University Press, 
pp. 135-140, 1992. 

Improper Node 
A FIXED PRINT for which the STABILITY MATRIX has 
equalnonzero EIGENVECTORS. 

see also STABLE IMPROPER NODE, UNSTABLE IM- 
PROPER NODE 

Improper Rotation 
The SYMMETRY OPERATION corresponding to a a Ro- 
TATION followed by an INVERSION OPERATION, also 
called a ROTOINVERSION. This operation is denoted fi 
for an improper rotation by 360*/n, so the CRYSTAL- 
LOGRAPHY RESTRICTION gives only i, 2, 3, 4, 6 for 
crystals. The MIRROR PLANE symmetry operation is 
(EC, y, z) --+ (IC, y, -x), etc., which is equivalent to Z. 

Impulse Pair 

The even impulse pair is the FOURIER TRANSFORM of 
cos(d), 

II(x) E $(a: + +) + ;s<x - i). 

It satisfies 

(1) 

(2) 

(3) 

II(x) 4 f(x) = if (5 + ;) + if (x - $), 

where * denotes CONVOLUTION, and 

II(x) dx = 1. 

Y 

112 
x 

-112 

The odd impulse pair is the FOURIER TRANSFORM of 
2 sin(ns), 

Incenter 

Impulse Symbol 
Bracewell’s term for the DELTA FUNCTION. 

see also IMPULSE PAIR 
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References 
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In-and-Out Curve 

0 63 etc. 

A curve created by starting with a circle, dividing it into 
six arcs, and flipping three alternating arcs. The process 
is then repeated an infinite number of times. 

Inaccessible Cardinal 
An inaccessible cardinal is a CARDINAL NUMBER which 
cannot be expressed in terms of a smaller number of 
smaller cardinals. 

Inaccessible Cardinals Axiom 

see also LEBESGUE MEASURABILITY PROBLEM 

Inadmissible 
A word or string which is not ADMISSIBLE. 

Incenter 
The center I of a TRIANGLE'S INCIRCLE. It can be found 
as the intersection of ANGLE BISECTORS, and it is the 
interior point for which distances to the sidelines are 
equal. Its TRILINEAR COORDINATES are 1:l:l. The 
distance between the incenter and CIRCUMCENTER is 
@(KZJ. 

The incenter lies on the EULER LINE only for an ISOS- 
CELES TRIANGLE. It does, however, lie on the SODDY 
LINE. For an EQUILATERAL TRIANGLE, the CIRCUM- 
CENTERO,CENTROIDG,NINE-POINT CENTERF,OR- 
THOCENTER H,and DE LONGCHAMPS POINT 2 all CO- 

incide with I. 

The incenter and EXCENTERS of a TRIANGLE are an 
ORTHOCENTRIC SYSTEM. The POWER of the incenter 
with respect to the CIRCUMCIRCLE is 

(Johnson 1929, p. 190). If the incenters of the TRIAN- 
GLES AAlHzH3, AAaHaAl, and AAaHlH2 are X1, X2, 
and X3, then X2X3 is equal and parallel to 1213, where 
Hi are the FEET of the ALTITUDES and Ii are the in- 
centers of the TRIANGLES. Furthermore, X1, X2, X3, 
are the reflections of I with respect to the sides of the 
TRIANGLE AIJ2X3 (Johnson 1929, pa 193). 
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If four points are on a CIRCLE (i.e., they are CON- 
CYCLIC), the incenters of the four TRIANGLES form a 
RECTANGLE whose sides are parallel to the lines con- 
necting the middle points of opposite arcs. Furthermore, 
the connectors pass through the center of the RECTAN- 
GLE (Fuhrmann 1890, p* 50; Johnson 1929, pp. 254- 
255). More generally, the 16 incenters and excenters of 
the TRIANGLES whose VERTICES are four points on a 
CIRCLE, are the intersections of two sets of four PARAL- 
LEL lines which are mutually PERPENDICULAR (Johnson 
1929, p* 255). 

see also CENTROID (ORTHOCENTRIC SYSTEM), CIR- 
CUMCENTER, EXCENTER, GERGONNE POINT, INCIR- 
CLE,~NRADIUS, ORTHOCENTER 
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-ck6/tcenters/class/incenter,html.- 

Incidence Axioms 
The eight of HILBERT'S AXIOMS which concern 
collinearity and intersection; they include the first four 
of EUCLID'S POSTULATES. 

see also ABSOLUTE GEOMETRY, CONGRUENCE Jlx- 
IOMS, CONTINUITY AXIOMS, EUCLID'S POSTULATES, 
HILBERT'S AXIOMS, ORDERING AXIOMS, PARALLEL 
POSTULATE 

References 
Hilbert, D. The Foundations of Geometry, 2nd ed. Chicago, 

IL: Open Court,1980. 
Iyanaga, S. and Kawada, Y. (Eds.). “Hilbert’s System of Ax- 
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Incidence Matrix 
For a k-D POLYTOPE IIk, the incidence matrix is defined 

bY 

k 
7jij = 

1 if IIiS1 belongs to II; 

0 if II;-1 does not belong to I$ 

The ith row shows which IIks surround II:-,, and the 

jth column shows which n&Is bound II: l  Incidence 
matrices are also used to specify ,PROJECTIVE PLANES. 
The incidence matrices for a TETRAHEDRON ABCD are 

Incenter-Excenter Circle 

v1 AD BD CD BC AC AB 
A 1 0 0 0 1 1 
B 0 1 0 1 0 1 
c 0 0 1 1 1 0 
D 1 1 1 0 0 0 

Given a triangle AAlA:!Aa, the points Al, 1, and J1 lie 
on a line, where I is the INCENTER and J1 is the EX- 
CENTER corresponding to Al. Furthermore, the CIRCLE 
with IJI as the DIAMETER has P as its center, where P 
is the intersection of A1 J1 with the CIRCUMCIRCLE of 
AA~A~AJ, and passes through AZ and Aa* This CIRCLE 
has RADIUS 

r = ial sec($,,> = 2Rsin(&). 

It arises because IJI JZ J3 forms an ORTHOCENTRIC SYS- 
TEM. 

see also CIRCUMCIRCLE, EXCENTER, EXCENTER- 
EXCENTER CIRCLE, XNCENTER, ORTHOCENTRIC SYS- 
TEM 

v2 
AD 

BD 
CD 
BC 
AC 
AB I 

BCD ACD ABD ABC 
0 1 1 0 
1 0 1 0 
1 1 0 0 
1 0 0 1 
0 1 0 1 
0 0 1 1 

see also ADJACENCY MATRIX, &CHAIN, ~-CIRCUIT 

Incident 
Two objects which touch each other are said to be inci- 
dent. 

see also INCIDENCE MATRIX 

References 
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Incircle 
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Incommensurate 

The INSCRIBED CIRCLE of a TRIANGLE AABC. The 
center I is called the INCENTER and the RADIUS T the 
INRADIUS. The points of intersection of the incircle with 
Tare the VERTICES of the PEDAL TRIANGLE of5Y with 
the INCENTER as the PEDAL POINT (cf. TANGENTIAL 
TRIANGLE). This TRIANGLE is called the CONTACT . 
TRIANGLE. 

The AREA K of the TRIANGLE AABC is given by 

K = AAIC + ACIB + AAIB 

= @r + +ar + +- = +(a + b + c)r = sr, 

where s is the SEMIPERIMETER. 

Usingtheincircleofa TRIANGLE as the INVERSION CEN- 
TER, the sides of the TRIANGLE and its CIRCUMCIRCLE 
are carried into four equal CIRCLES (Honsberger 1976, 
p. 21). Pedoe (1995, p. xiv) gives a GEOMETRIC CON- 
STRUCTION for the incircle. 

see also CIRCUMCIRCLE, CONGRUENT INCIRCLES 
POINT, CONTACT TRIANGLE, INRADIUS, TRIANGLE 
TRANSFORMATION PRINCIPLE 
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Inclusion-Exclusion Principle 
If Al, . . . . Ak are finite sets, then 

where & is the sum of the CARDINALITIES of the inter- 
sections of the sets taken i at a time. 

Inclusion Map 
Given a SUBSETB ofa SET A, the INJECTION~:B + A 
defined by f(b) = b for all b E B is called the inclusion 
map. 

see also LONG EXACT SEQUENCE OF A PAIR AXIOM 

Two lengths are called incommensurate or incommensu- 
rable if their ratio cannot be expressed as a ratio of whole 
numbers. IRRATIONAL NUMBERS and TRANSCENDEN- 
TAL NUMBERS are incommensurate with the integers. 

see also IRRATI ONAL NUMBER, PYTHAGORAS'S CON- 
STANT,TRANSC ENDENTAL NUMBER 

Incomplet e Gamma Function 

see GAMMA FUNCTION 

Incompleteness 
A formal theory is said to be incomplete if it contains 
fewer theorems than would be possible while still retain- 
ing CONSISTENCY. 

see also CONSISTENCY, G~DEL'S INCOMPLETENESS 
THEOREM 

References 
Chaitin, G. J. “G. 3. Chaitin’s Home Page.” http: //www , 

cs.auckland,ac.nz/CDMTCS/chaitin. 

Increasing Function 
A function f( LC increases on an INTERVAL I if f(b) > ) 
f(a) for all b > a, where a, b f 1. Conversely, a function 
f(z) decreases on an INTERVAL 1 if f(b) < f(a) for all 
b > a with a,b E I. 

If the DERIVATIVE f'(z) of a CONTINUOUS FUNCTION 
f(z) satisfies f’(z) > 0 on an OPEN INTERVAL (u,b), 
then f(z) is increasing on (a, b). However, a function 
may increase on an interval without having a derivative 
defined at all points. For example, the function xl/3 
is increasing everywhere, including the origin x = 0, 
despite the fact that the DERIVATIVE is not defined at 
that point. 

see also DECREASING FUNCTION, DERIVATIVE, NONDE- 
CREASING FUNCTION, NONINCREASING FUNCTION 

Increasing Sequence 
For a SEQUENCE {a,), if a,+l-a, > 0 for n 2 2, then a 
is increasing for 72 > 2. Conversely, if a,+1 - a, < 0 for 
n 2 2, then a is DECREASING for n 2 2. If u,+l/a, > 1 
for all n > 2, then a is increasing for rz > X. Conversely, - - 
if a,+l/a, < 1 for all 12 > 2, then a is decreasing for 
n > x. - 

Indefinite Integral 
An INTEGRAL 

s 
f (4 dx 

without upper and lower limits, also called an AN- 
TIDERIVATIVE. The first FUNDAMENTAL THEOREM OF 
CALCULUS allows DEFINITE INTEGRALS tobecomputed 
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in terms of indefinite integrals. If F is the indefinite in- 
tegral for f(z), then 

I 

b 

f(x) dx = F(b) - F(a). 
a 

see also ANTIDERIVATIVE, CALCULUS, DEFINITE INTE- 
GRAL,FUNDAMENTAL THEOREMSOF CALCULUS,~NTE- 
GRAL 

Indefinite Quadratic Form 
A QUADRATIC FORMQ( x is indefinite if it is less than ) 
0 for some values and greater than 0 for others. The 
QUADRATIC FORM, written in the form (x, Ax), is in- 
definite if EIGENVALUES of the MATRIX A are of both 
signs. 

see also POSITIVE DEFINITE QUADRATIC FORM, POSI- 
TIVE SEMIDEFINITE QUADRATIC FURM 

References 
Gradshteyn, I, S. and Ryzhik, I. M. Tables of Integrals, Se- 

ries, and Products, 5th ed. San Diego, CA: Academic 
Press, p. 1106, 1979. 

Indegree 
The number of inward directed EDGES from a given 
VERTEX ina DIRECTED GRAPH. 

see also LOCAL DEGREE, OUTDEGREE 

Independence Axiom 
A rational choice between two alternatives should de- 
pend only on how they differ. 

Independence Complement Theorem 
If sets E and F are INDEPENDENT, then so are E and 
F’, where F’ is the complement of F (i.e., the set of all 
possible outcomes not contained in F). Let U denote 
“or” and n denote “and.” Then 

P(E) = P(EF u EF’) (1) 

= P(EF) + P(EF’) - P(EF n EF’), (2) 

where AB is an abbreviation for A n B. But E and F 
are independent, so 

P(EF) = P(E)P(F). (3) 

Also, since F and F’ are complements, they contain no 
common elements, which means that 

P(EF n EF’) = 0 (4) 

for any E. Plugging (4) and (3) into (2) then gives 

P(E) = P(E)P(F) + P(EF’). (5 

Rearranging, 

P(EF’) = P(E)[l - P(F)] = P(E)P(F’), (6 

Q.E.D. 

see UZSO INDEPENDENT STATISTICS 

Index 

Independence Number 
The number 

a(G) = max(luf : U c V independent) 

for a GRAPH G. The independence number of the DE 
BRUIJN GRAPH of order n is given by 1, 2, 3, 7, 13, 28, 
. . l  (Sloane’s A006946). 

References 
Sloane, N. J. A. Sequence A006946/M0834 in “An On-Line 

Version of the Encyclopedia of Integer Sequences.” 

Independent Equations 

see LINEARLY INDEPENDENT 

Independent Sequence 

see STRONGLY INDEPENDENT, WEAKLY INDEPENDENT 

Independent Statistics 
Two variates A and B are statistically independent IFF 
the CONDITIONAL PROBABILITY P(AIB) of A given B 
satisfies 

P(AIB) = P(A), 

in which case the probability of A and B is just 

(1) 

P(AB) = P(A n B) = P(A) 

Similarly, 72 events AI, AZ, . l  . , A, are 

n 

rI( 
P Ai 

i=l 

‘W (2) 

ndependent IFF 

Statistically independent variables are always UNCOR- 
RELATED, but the converse is not necessarily true. 

see also BAYES' FORMULA, CONDITIONAL PROBABIL- 
ITY,INDEPENDENCECOMPLEMENTTHEOREM, UNCOR- 
RELATED 

Independent Vertices 
A set of VERTICES A of a GRAPH with EDGES V is 
independent if it contains no EDGES. 

see ~2~0 INDEPENDENCE NUMBER 

Indeterminate Problems 

see DIOPHANTINE EQUATION-LINEAR 

Index 
A statistic which assigns a single number to several in- 
dividual statistics in order to quantify trends. The best- 
known index in the United States is the consumer price 
index, which gives a sort of “average” value for infla- 
tion based on the price changes for a group of selected 
products. 
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Let pn be the price per unit in period n, qn be the quan- 
tity produced in period n, and vn. G p,q, be the value of 
the n units. Let qa be the estimated relative importance 
of a product. There are several types of indices defined, 
among them those listed in the following table. 

Index Abbr. Formula 

Bowley index 

Fisher index 

pl3 i(PL + PP) 

PF dEG 

Geometric mean index PG 

Harmonic mean index 
L Pn 

Laspeyres’s index 

Marshall-Edgeworth index Pn/r~ 
c Pn(!lO+Qn~ 

~(vg+%d 

Mitchell index PM 

Paasche’s index 

Walsh index 

PP 
nn 

!e P09n 

pw 
C &iiKPn 

C &iiKPO 

see also BOWLEY INDEX, FISHER INDEX, GEOMETRIC 
MEAN INDEX, HARMONIC MEAN INDEX, LASPEYRES' 
INDEX, MARSHALL-EDGEWORTH INDEX, MITCHELL IN- 
DEX, PAASCHE’S INDEX, RESIDUE INDEX, WALSH IN- 

DEX 
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Index Set 
A STOCHASTK PROCESS is a family of RANDOM VARI- 
ABLES {z(t,a),t E 3) from some PROBABILITY SPACE 
(S,S, P) into a STATE SPACE (S’, s'), where 3 is the 
index set of the process. 

References 
Doob, J. L. “The Development of Rigor in Mathematical 

Probability (1900-1950) .” Amer. Math. Monthly 103, 
586-595, 1996. 

Index Theory 
A branch of TOPOLOGY dealing with topological invari- 
ants of MANIFOLDS. 

References 
Roe, J. Index Theory, Coarse Geometry, and Topology of 

Manifolds. Providence, RI: Amer. Math. Sot., 1996. 
Upmeier, H. Toeplitz Operators and Index Theory in Several 

Complex Variables. Boston, MA: Birkhguser, 1996. 

Indicatrix 
A spherical image of a curve. The most common indi- 
catrix is DuPIN’s INDICATRIX. 

see &O DUPIN’S INDICATRIX 

Indicial Equation 
The RECURRENCE RELATION obtained during applica- 
tion of the FROBENIUS METHOD of solving a second- 
order ordinary differential equation. The indicial equa- 
tion (also called the CHARACTERISTIC EQUATION) is 
obtained by noting that, by definition, the lowest or- 
der term zk (that corresponding to n = 0) must have a 
COEFFICIENT of zero. For an example of the construc- 
tion of an indicial equation, see BESSEL DIFFERENTIAL 
EQUATION. 

1. If the two ROOTS are equal, only one solution can be 
obtained. 

2. If the two ROOTS differ by a noninteger, two solu- 
tions can be obtained. 

3. If the two ROOTS differ by an INTEGER, the larger 
will yield a solution. The smaller may or may not. 

References 
Morse, P. M. and Feshbach, H. Methods of Theoretical Phys- 
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Indifference Principle 

see INSUFFICIENT REASON PRINCIPLE 

Induced Map 
If f : (X, A) -+ (Y,B) is homotopic to g : (X,A) -+ 

(Y,B), then f* : Hn(X,A) + H,(Y,B) and g, : 

Hn(X, A) --+ &(Y, B) are said to be the induced maps. 

see &O EILEN~ERG-STEENROD AXIOMS 

Induced Norm 

NONNATURAL NORM 

Induct ion 
The use of the INDUCTION PRINCIPLE~~ a PROOF. In- 
duction used in mathematics is often called MATHEMAT- 
ICAL INDUCTION. 

References 
Buck, R. C. “Mathematical Induction and Recursive Defini- 

tions.” Amer. Math. Monthly 70, 128435, 1963. 

Induction Axiom 
The fifth of PEANO'S AXIOMS, which states: If a SET S 
of numbers contains zero and also the successor of every 
number in S, then every number is in S. 

see &SO PEANO'S AXIOMS 
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Induct ion Principle 
The truth of an INFINITE sequence of propositions Pi for 
i= 1, “.) 00 is established if (1) pl is true, and (2) Pk 
IMPLIES pk+I for all k. 

References 
Courant, R. and Robbins, H. “The Principle of Mathematical 

Induction” and “Further Remarks on Mathematical Induc- 
tion.” $1.2.1 and 1.7 in What is Mathematics?: An Ele- 
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England: Oxford University Press, pp. 9-11 and 18-20, 
1996. 

Inequality 
A mathematical statement that one quantity is greater 
than or less than another. “a is less than b” is denoted 
a < b, and “a is greater than b” is denoted a > b. “a 
is less than ur equal to b” is denoted a < b, and “u 
is greater than or equal to b” is denoted a 2 b. The 
symbols a << b and a >> b are used to denote ‘5~ is much 
less than b” and “a is much greater than b,” respectively. 

Solutions to the inequality IX - al < b consist of the set 

{ x : -b<x- a < b}, or equivalently {z : a - b < x < 
a + b}. Solutions to the inequality Ix - al > b consist of 
the set {x : x - a > b} U {x : 2 - a < -b}. If a and b 
are both POSITIVE or both NEGATIVE and a < b, then 
l/a > l/b. 

see also ABC CONJECTURE, ARITHMETIC-L• GARITH- 
MIC-GEOMETRIC MEAN INEQUALITY, BERNOULLI IN- 
EQUALITY, BERNSTEIN'S INEQUALITY, BERRY-OSSEEN 
INEQUALITY, BIENAYM~XHEBYSHEV INEQUAL- 
ITY, BISHOP'S INEQUALITY, BOGOMOLOV-MIYAOKA- 
YAU INEQUALITY, BOMBIERI'S INEQUALITY, BONFER- 
RONI'S INEQUALITY, BUOLE'S INEQUALITY, CARLE- 
MAN'S INEQUALITY, CAUCHY INEQUALITY, CHEBY- 
SHEV INEQUALITY, CHI INEQLJMJTY, C0~s0~'s IN- 
EQUALITY, ERD~S-MORDELL THEOREM, EXPONEN- 
TIAL INEQUALITY, FISHER'S BLOCK DESIGN INEQUAL- 
ITY, FISHER'S ESTIMATORINEQUALITY, G~RDING'S IN- 

EQUALITY, GAUSS'S INEQUALITY, GRAM's INEQUAL- 
ITY, HADAMARD'S INEQUALITY, HARDY'S INEQUAL- 
ITY, HARNACK'S INEQUALITY, HOLDER INTEGRAL IN- 
EQUALITY, H~LDER'S SUM INEQUALITY, ISOPERIMET- 
RIC INEQUALITY,JARNICK'S INEQUALITY,JENSEN'S IN- 
EQUALITY, JORDAN'S INEQUALITY, KANTROVICH IN- 
EQUALITY, MARKOV'S INEQUALITY, MINKUWSKI IN- 
TEGRAL INEQUALITY, MINKOWSKI SUM INEQUALITY, 
MORSE INEQUALITIES, NAPIER'S INEQUALITY, No- 
SARzEwsWs INEQUALITY, OSTROWSKI'S INEQUAL- 
ITY, PTOLEMY INEQUALITY, ROBBIN’S INEQUALITY, 
SCHR~DER-BERNSTEIN THEOREM, SCHUR'S INEQUAL- 
ITIES, SCHWARZ'S INEQUALITY, SQUARE ROUT IN- 
EQUALITY, STEFFENSEN'S INEQUALITY, STOLARSKY'S 
INEQUALITY, STRONG SUBADDITIVITY INEQUALITY, 
TRIANGLE INEQUALITY, TUR~;N'S INEQUALITIES, WEI- 
ERSTRAB PRODUCT INEQUALITY, WIRTINGER'S IN- 
EQUALITY,~OUNG INEQUALITY 
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Inexact Differential 
An infinitesimal which is no 
function and which cannot 

t the differential of an actual 
be expressed as 

the way an EXACT DIFFERENTIAL can. Inexact differ- 
enti .als are denoted with a bar through the d. The most 
common example of an inexact differential is 
in heat JQ encountered in thermodynamics. 

the change 

see also EXACT DIFFERENTIAL, PFAFFTAN FORM 

References 
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Inf 

see INFIMUM, INFIMUM LIMIT 

Infimum 
The greatest lower bound of a set. It is denoted 

inf . 

see also INFIMUM LIMIT, SUPREMUM 

Infimum Limit 
The limit infimum 
ofthe CLOSURE of 

of a set 
a set. It 

is 
1s 

the greatest 
denoted 

lower bound 

lim inf . 

see also INFIMUM, SUPREMUM 
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Infinary Divisor 
p” is an infinary divisor of pY (with y > 0) if p” 1 g- lpY. 
This generalizes the concept of the /GARY DIVISOR. 

see also INFINARY PERFECT NUMBER, LARY DIVISOR 
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Infinary Multiperfect Number 
Let g-(n) be the SUM of the INFTNARY 
a number 72. An infinary k-multiperfect 
number n such that u-(n) = kn. Cohen 

DIVISORS of 
number is a 
(1990) found 

13 infinary 3-multiperfects, seven 4-multiperfects, and 
two 5-multiperfects. 

see also INFINARY PERFECT NUMBER 

References 
Cohen, G. L. “On an Integer’s Infinary Divisors.” Math. 

Comput. 54, 395-411, 1990. 
Guy, R. K. Unsolved Problems in Number Theory, 2nd ed. 

New York: Springer-Verlag, p. 54, 1994. 

Infinary Perfect Number 
Let a,(n) be the SUM of the INFINARY DIVISORS of 
a number n. An infinary perfect number is a number 
n such that a,(n) = 2n. Cohen (1990) found 14 such 
numbers. The first few are 6, 60, 90, 36720, l  . . (Sloane’s 
A007257). 

see &O INFINARY MULTIPERFECT NUMBER 

References 
Cohen, G. 1;. “On an Integer’s Infinary Divisors.” Math. 

Cumput. 54, 395-411, 1990. 
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Infinite 
Greater than any assignable quantity of the sort in ques- 
tion. In mathematics, the concept of the infinite is made 
more precise through the notion of an INFINITE SET. 

see ~2s~ COUNTABLE SET, COUNTABLY INFINITE SET, 
FINITE, INFINITE SET, INFINITESIMAL, INFINITY 

Infinite Product 
N.B. A detailed on-line essay by S. Finch was the start- 

ing point for this entry. 

A PRODUCT involving an INFINITE number of terms. 
Such products can converge. In fact, for POSITIVE a,, 
the PRODUCT n,“=l a, converges to a NONZERO num- 
ber IFF crx1 Ina, converges. 
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Infinite products can be used to define the COSINE 

cosx = 
nl 

l- 

n=l 

4x2 1 7r2(2n - 1)2 ’ (1) 

GAMMA FUNCTION 

SINE, and SINC FUNCTION. They also appear in the 
POLYGON CIRCUMSCRIBING CONSTANT 

00 4 

K=n’-. 

n=3 
cos ; 

( > 

(3) p 

An interesting infinite product formula due to Euler 
which relates n and the nth PRIME p, is 

2 
7T= 

00 

n 1 

sin{ +wp,) 
i=n l+T 

1 

(Blatner 1997). 

The product 

rl L - - 
n [ 

m 1 + (-l)h---1)/2 
i=n Pn 1 

fi(1+$) 
n=l 

(4) 

(5) 

(6) 

has closed form expressions for small POSITIVE integral 

P> 2, 

fi(l+ll)=qz (7) 
n=l 

n=l 

n=l 

f&+$)=1 r[exp( $i)]I?[exp( +i)] I-’ . (10) 

The &ANALOG expression 

[W!]d = fi (1- 5). 

n=3 ’ / 

(11) 
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also has closed form expressions, 

fi(l-E-)=e&) 
n=3 

(12) 

(13 

fi (1 - $) = Ir[exp(;~ri)]r[2exp(+)]1-~ .(I5 

see also COSINE, DIRICHLET ETA FUNCTION, Eu 
LER IDENTITY, GAMMA FUNCTION, ITERATED Ex- 
PON ENTIAL CoN STANTS, POLYGON CIRCUMSCRIBING 

CONSTANT, POLYGON INSCRIBING CONSTANT, Q- 
FUNCTION, SINE 
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Infinite Series 
A SERIES with an INFINITE number of terms. 

see ah SERIES 

Infinite Set 
A SET of S elements is said to be infinite if the ele- 
ments of a PROPER SUBSET S’ can be put into ONE- 
TO-ONE correspondence with the elements of S. An 
infinite set whose elements can be put into a ONE-TO- 
ONE correspondence with the set of INTEGERS is said 
to be COUNTABLY IN ‘FINIT E; otherwise, it is called UN- 
COUNTABLY INFINITE. 

see also ALEPH-0, ALEPH-I, CARDINAL NUMBER, 
COUNTABLY INFINITE SET, CONTINUUM, FINITE, IN- 
FINITE, INFINITY, ORDINAL NUMBER, TRANSFINITE 
NUMBER, UNCOUNTABLY INFINITE SET 

References 
Courant, R. and Robbins, H. What is Mathematics?: An El- 

ementary Approach to Ideas and Methods, 2nd ed. Oxford, 
England: Oxford University Press, p. 77, 1996. 

Infinitesimal Rotation 

Infinitesimal 
A quantity which yields 0 after the application of some 
LIMITING process. The understanding of infinitesimals 
was a major roadblock to the acceptance of CALCULUS 
and its placement on a firm mathematical foundation. 

see &U INFINITE, INFINITY, NONSTANDARD ANALYSIS 

Infinitesimal Analysis 
An archaic term for CALCULUS. 

Infinitesimal Matrix Change 
Let B, A, and e be square matrices with e small, and 
define 

B = A(1 + e), (1) 

where 1 is the IDENTITY MATRIX. Then the inverse of 
I3 is approximately 

B -’ = (I - e)A? 

This can be seen by multiplying 

(2) 

BB -’ = (A + Ae)(A-1 - eA-‘) 
z AA--l - AeA-1 + AeA-1 - Ae2AB1 
= I - Ae2Am1 z I. (3) 

Note that if we instead let B’ E A + e, and look for an 
inverse of the form B’-’ = A-’ + C, we obtain 

B’B ‘-’ = (A + e)(A-’ + C) = AAD1 + AC + eA-’ + eC 

= I + AC + e(C + A-‘) E I. (4 

In order to eliminate the e term, we require C = -A? 
However, then AC = -I, so BB-l = 0 so there can be 
no inverse of this form. 

The exact inverse of B can be found as follows. 

6 = A(l + e ) = A(1 + A-‘e), (5) 

so 
6-l = [A (I + A-‘e)]? (6) 

Using a general MATRIX INVERSE identity then gives 

6 -’ = (I + A-le)-lA-l. (7) 

Infinitesimal Rotation 
An infinitesimal transformation of a VECTOR r is given 

bY 
r’ = (I + e)r, (1) 

where the MATRIX e is infinitesimal and 1 is the IDEN- 

TITY MATRIX. (Note that the infinitesimal transforma- 
tion may not correspond to an inversion, since inversion 
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is a discontinuous process.) The C~MMUTATTVITY of in- 
finitesimal transformations el and e2 is established by 
the equivalence of 

(I + el)(l+ e2) = 12+eJ+le2+ele2 4+el+e2 (2) 

(I +ea)(l+ el) = 12+e21+lel+e2el ==: I+ez+el. (3) 

Now let 
Ad+e. (4) 

The inverse A-’ is then I - e, since 

AA-l = (I + e)(l - e) = I2 - e2 ==: I. (5) 

Since we are defining our infinitesimal transformation to 
be a rotation, ORTHOGONALITY of ROTATION MATRI- 
CES requires that 

AT = A-l, (6 

but 
A -1 =I-e (7 

(I + e)T = IT + eT = I + eT, (8 

SO e = -eT and the infinitesimal rotation is ANTISYM 
METRIC. It must therefore have a MATRIX of the form 

0 d% -d& 
e= -df& 0 dSll . 1 (9 dfb -doI 0 

The differential change in a vector 
the ROTATION MATRIX is then 

r upon application of 

dr G r’ - r = (I + e)r - r = er. (10) 

Writing in MATRIX form, 
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to that of the observer in the frame of the rotating body, 
so 

(15) 

This can be written as an operator 
the ROTATION OPERATOR ,, defined 

equation, known as 

see aho ACCELERATION, EULER ANGLES, 
ROTATION MATRIX, ROTATION OPERATOR 

(16) 

ROTATION, 

Infinitive Sequence 
A sequence {xn} is called an infinitive sequence if, for 
every i, xn. = i for infinitely many 12. Write u(;,j) for 
the jth index n for which X~ = i. Then as i and j range 
through N, the array A = a(Q), called the associative 
array of x, ranges through all of hr. 

see also FRACTAL SEQUENCE 

References 
Kimberling, C. Tractal Sequences and Interspersions.” Ars 
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Infinitude of Primes 

see EUCLID’S THEOREMS 

Infinity 
An unbounded number greater than every REAL NUM- 
BER, most often denoted as 00. The symbol 00 had been 
used as an alternative to M (1,000) in ROMAN NUMER- 
ALS until 1655, when John Wallis suggested it be used 

= (ydfh - z df-iz)ji: + (z dill - x d&)f 

+ (x dSla - ydS2+i 

= r x dC2. (12) 

Therefore, 

instead for infinity. 

(11) 

Infinity is a very tricky concept to work with, as ev- 
idenced by some of the counterintuitive results which 
follow from Georg Cantor’s treatment of INFINITE SETS. 
Informally, l/o0 = 0, a statement which can be made 
rigorous using the LIMIT concept, 

1 
lim - = 0. 

rotation, body 

dS2 
(13) 

dS1 d@ 
w~-~+--* 

dt dt (14) 

The total rotation observed in the stationary frame will 
be a sum of the rotational velocity and the velocity in the 
rotating frame. However, note that an observer in the 
stationary frame will see a velocity opposite in direction 

x-F00 x 

Similarly, 
I 

lim - = 00, 
x+0+ x 

where the notation O+ indicates that the LIMIT is taken 
from the POSITIVE side of the REAL LINE. 

see also ALEPH, A LEPH-0, ALEPH-1, CARDIN AL NUM- 
BER, CONTINUUM, CONTIN UUM HYPOTHESIS, HILBERT 
HOTEL, INFINITE, INFINITE SET, INFINITESIMAL, LINE 
AT INFINITY, L'HOSPITAL'S RULE, POINT AT INFINITY, 
TRANS 
ZERO 

FINITE NUMBER, UNCOUNTABLY INFINITE SET, 
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Inflection Point 
A point on a curve at which the SIGN of the CURVATURE 

( i.e., the concavity) changes. The FIRST DERIVATIVE 
TEST can sometimes distinguish inflection points from 
EXTREMA for DIFFERENTIABLE functions f(s). 

see also CURVATURE, DIFFERENTIABLE, EXTREMUM, 
FIRST DERIVATIVE TEST, STATIONARY POINT 

Information Dimension 
Define the ‘Ynformation function” to be 

I E - 5 Pi(e) ln[P&)], (1) 
i=l 

where pi(c) is the NATURAL MEASURE, or probability 
that element i is populated, normalized such that 

i: 0 PiE =l. (2) 
i=l 

The information dimension is then defined by 

I 
di*f G - lim - 

HO+ In(e) 

= lim 
N Pi(e) I@&)] 

E+O+ IE 
*- ln(i5) * 
%- 1 

If every element is equally likely to be visited, then P& 
is independent of i, and 

hjec tion 

and 

d- mf = lim '=I ln E 
E-O+ 

= lim 
ln(N-I) - - _ lim - 

E-ho+ lne - 
lnN =d 

WO+ In(E) 
cap 7 (6) 

where dcap is the CAPACITY DIMENSION. 

see U~SO CORRELATION EXPONENT 

References 
Farmer, J. II. “Chaotic Attractors of an Infinite-dimensional 

Dynamical System.” Physica D 4, 366-393, 1982. 
Nayfeh, A. H. and Balachandran, B. Applied Nonlinear 

Dynamics: Analytical, Computational, and Experimental 
Methods. New York: Wiley, pp. 545-547, 1995. 

Informat ion Entropy 

see ENTROPY 

Information Theory 
The branch of mathematics dealing with the efficient 
and accurate storage, transmission, and representation 
of information. 

see also CODING THEORY, ENTROPY 
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Initial Value Problem 
An initial value problem is a problem that has its condi- 
tions specified at some time t = to. Usually, the problem 
is an ORDINARY DIFFERENTIAL EQUATION or a PAR- 
TIAL DIFFERENTIAL EQUATION. For example, 

{ 

-$ - V2u = f in 0 
u = uo t = to 
u = u1 on d!2, 

where dS2 denotes the boundary of s2, is an initial value 
problem. 

see UZSO BOUNDARY CONDITIONS, BOUNDARY VALUE 
PROBLEM,~ARTIAL DIFFERENTIAL EQUATION 
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so 

Pi(C) = $ (5) 
Injection 

see ONE-TO-ONE 
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Inject ive 
A MAP is injective when it is ONE-TO-ONE, i.e., f is 
injective when 5 # y IMPLIES f(z) # f(y). 

see UZSO ONE-TO-ONE, SURJECTIVE 

Injective Patch 
An injective patch is a PATCH such that x(ul, ~1) = 
~(~2,212) implies that u1 = u2 and ‘~1 = 212. An example 
of a PATCH which is injective but not REGULAR is the 
function defined by ( u3,v3,uv) for u,v E (-1,1)* How- 
ever, if x : U -+ IWn is an injective regular patch, then x 
maps U diffeomorphically onto x(U). 

see UZSO PATCH,REGULAR PATCH 

References 
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Inner Automorphism Group 
A particular type of AUTOMORPHISM GROUP which ex- 
ists only for GROUPS. For a GROUP G, the inner auto- 
morphism group is defined by 

Inn(G) = {a, : a E G} c Aut(G) 

where ga is an AUTOMORPHISM of G defined by 

a,(x) = axa? 

see also AUTOMORPHISM, AUTOMORPHISM GROUP 

Inner Product 

see DOT PRODUCT 

Inner Product Space 
An inner product space is a VECTOR SPACE which has 
an INNER PRODUCT. If the INNER PRODUCT defines a 
NORM, then the inner product space is called a HILBERT 
SPACE. 

see also HILBERT SPACEJNNER PRODUCT, NORM 

Inradius 
The radius of a TRIANGLE'S INCIRCLE or of a POLYHE- 
DRON'S INSPHERE, denoted T. For a TRIANGLE, 

1 
TX- 

2 J 

(b + c - a)(c + a - b)(a + b - c) - 
a+b+c 

A c1j -- 
S 

= 4Rsin( +I) sin( +) sin( +g), (2) 

where A is the AREA of the TRIANGLE, a, b, and c are 
the side lengths, s is the SEMIPERIMETER, and R is the 
CIRCUMRADIUS (Johnson 1929, p. 189). 

Equation (1) can be derived easily using TRILINEAR CO- 
ORDINATES. Since the INCENTER is equally spaced from 
all three sides, its trilinear coordinates are l:l:l, and its 
exact trilinear coordinates are T : T : T. The ratio k of 

the exact trilinears to the homogeneous coordinates is 
given by 

k= 
2A A -=- 

a+b+c s’ (3) 

But since k = T in this case, 

(4) 

Q. E. D. 

Other equations involving the inradius include 

abc 
RT = - 

4s (5) 

A2 = TTlT2T3 (6) 

cosA+cosB+cosC=1+~ 

T = 2RcosAcosBcos C 

a2 + b2 + c2 =4rR+8R2, 

(7) 

(8) 

(9) 

where ri are the EXRADII (Johnson 1929, pp. 189-191). 

As shown in RIGHT TRIANGLE, the inradius of a RIGHT 
TRIANGLE of integral side lengths x, y, and z is also 
integral, and is given by 

T= 
XY 

x+y+z’ 
(10) 

where x is the ~HYPOTENUSE. Let d be the distance be- 
tween inradius T and CXRCUMRADIUS R, d = rR. Then 

R2 - d2 = %T (11) 

1 1 1 

R-d+-=; (12) 

(Mackay 1886-87). These and many other identities are 
given in Johnson (1929, pp. 186-190). 

Expressing the MIDRADIUS p and CIRCUMRADIUS R in 
terms of the midradius gives 

T=&2 (13) 

R2 - iu2 
T- 

R4 (14) 

for an ARCHIMEDEAN SOLID. 

see also CARNOT'S THEOREM,CIRCUMRADIUS,MIDRA- 
DWS 
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Inscribed lnt 
A geometric figure which touches only the sides (or in- 
terior) of another figure. 

see INTEGER PART 

see ~2s~ CIRCUMSCRIBED, INCENTER, INCIRCLE, INRA- 

Inscribed Angle 

% 

@ 

‘i 

The ANGLE with VERTEX on a CIRCLE'S CIRCUMFER- 
ENCE formed by two points on a CIRCLE'S CIRCUMFER- 
ENCE. For ANGLES with the same endpoints, 

0, = 2&, 

where 8, is the CENTRAL ANGLE. 

see ~1s~ CENTRAL ANGLE 

References 
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Inside-Outside Theorem 
Let P(z) and Q(z) be POLYNOMIALS with COMPLEX 
arguments and deg(Q) 2 deg(P + 2). Then 

where Res are the RESIDUES. 

Insphere 
A SPHERE INSCRIBED in a given solid. 

see ~2s~ CIRCUMSPHERE, MIDSPHERE 

Instrument Function 
The finite FOURIER COSINE TRANSFORM of an APO- 
DIZATION FUNCTION, also known as an APPARATUS 
FUNCTION. The instrument function I(k) correspond- 
ing to a given APODIZATION FUNCTION A(x) is then 
given by 

s 
a 

w - - cos(2nkx)A(x) dx. 
-a 

see UZSU APODIZATION FUNCTION, FOURIER COSINE 
TRANSFORM 

Insufficient Reason Principle 
A principle also called the INDIFFERENCE PRINCIPLE 
which was first enunciated by Johann Bernoulli. The 
insufficient reason principle states that, if we are igno- 
rant of the ways an event can occur and therefore have 
no reason to believe that one way will occur preferen- 
tially to another, it will occur equally likely in any way. 

Integer 
One of the numbers . . . , -2, - 1, 0, 1, 2, . . . . The SET 
of INTEGERS forms a RING which is denoted Z. A given 
INTEGER 12 maybe NEGATIVE (n E Z-),N~NNEGATIVE 
(n E Z*), ZERO (n = 0), or POSITIVE (n E z+ = IV). 
The RINGS has CARDINALITY of No. The GENERATING 
FUNCTION for the POSITIVE INTEGERS is 

1 
fCx) = (1- = x + 2x2 + 3x3 + 4x4 + l  . . . 

There are several symbols used to perform operations 
having to do with conversion between REAL NUMBERS 
and integers. The symbol 1x1 (“FLOOR 2”) means “the 
largest integer not greater than x,” i.e., int (x) in com- 
puter parlance. The symbol [x] means “the nearest in- 
teger to x” (NINT), i.e., nint (x) in computer parlance. 
The symbol [xl ("CEILING 2”) means “the smallest in- 
teger not smaller x,” or -int (-x), where int(x) is the 
INTEGER PART ofx. 

see UZSU ALGEBRAIC INTEGER, ALMOST INTEGER, 
COMPLEX NUMBER, COUNTING NUMBER, CYCLO- 
TOMIC INTEGER, EISENSTEIN INTEGER, GAUSSIAN IN- 
TEGER, N, NATURAL NUMBER, NEGATIVE, POSITIVE, 
RADICAL INTEGER, REAL NUMBER, WHOLE NUMBER, 
Z,Z-,Z+,Z*,ZER~ 

Integer Division 
DIVISION in which the fractional part (remainder) is dis- 
carded is called integer division and is sometimes de- 
noted \. Integer division can be defined as a\b G Lu/b], 
where “/I’ denotes normal division and 1x1 is the FLOOR 
FUNCTION. For example, 

1013 = 3 + 113 

10\3 = 3. 

Integer Factorization 

see PRIME FACTORIZATION 

Integer-Matrix Form 
Let Q(x) E Q(x) = $(x1, x2,. . . ,IC~) be an integer- 
valued n-ary QUADRATIC FORM, i.e., a POLYNOMIAL 
with integer COEFFICIENTS which satisfies Q(x) > 0 for 
REAL x # 0. Then Q(x) can be represented by 

Q(x) = xTAx, 

A 1 @Q(x) - -- - 
2 dXiaXj 
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is a POSITIVE symmetric matrix (Duke 1997). If A has 
PUNITIVE entries, then Q(X) is called an integer matrix 
form. Conway et al. (1997) have proven that, if a POS- 

ITIVE integer matrix quadratic form represents each of 
1, 2, 3, 5, 6, 7, 10, 14, and 15, then it represents all 
POSITIVE INTEGERS. 

see also FIFTEEN THEOREM 
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Integer Module 

see ABELIAN GROUP 

Integer Part 
The function int(z) gives the INTEGER PART of zc. 
In many computer languages, the function is denoted 
int (x), but in mathematics, it is usually called the 
FLOOR FUNCTION and denoted LX]. 

see U&O CEILING FUNCTION, FLOOR FUNCTION, NINT 

Integer Relation 
A set of REAL NUMBERS zl, . l  . , zn is said to possess 
an integer relation if there exist integers ai such that 

a1z1+azx2 + a** +u7&xn = 0, 

with not all ai = 0. An interesting example of such 
a relation is the IT-VECTOR (1, X, x2, . . l  , z16) with 
x = 3V4 - p/4, which has an integer relation (1, 0, 0, 
0, -3860, 0, 0, 0, -666, 0, 0, 0, -20, 0, 0, 0, l), i.e., 

1 - 3860x4 - 666x8 - 20x12 + x1’ = 0. 
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Integer Sequence 
A SEQUENCE whose terms are INTEGERS. The most 
complete printed references for such sequences are 
Sloane (1973) and its update, Sloane and Plouffe (1995). 
Sloane also maintains the sequences from both works to- 
gether with many additional sequences in an on-line list- 
ing. In this listing, sequences are identified by a unique 
~-DIGIT A-number. Sequences appearing in Sloane and 
Plouffe (1995) are ordered lexicographically and identi- 
fied with a d-DIGIT M-number, and those appearing in 
Sloane (1973) are identified with a d-DIGIT N-number. 

Sloane’s huge (and enjoyable) database is accessible bY 
either e-mail or web browser. To look up sequences bY 
e-mail, send a message to either sequences@research. 
att . corn or superseekeraresearch. att . corn containing 

lines of the form lookup 5 14 42 132 . . . . To use the 
browser version, point to http : //www . research. att . 
corn/-njas/sequences/eisonline.html. 

~~~~ZSOARONSON'S SEQUENCE,~OMBINATORICS$ON- 
SECUTIVE NUMBER SEQUENCES, CONWAY SEQUENCE, 
EBAN NUMBER, HOFSTADTER-CONWAY $10,000 SE- 
QUENCE,HOFSTADTER'S Q-SEQUENCE,LEVINE-O'SUL- 
LIVAN SEQUENCE, LOOK AND SAY SEQUENCE, MAL- 
LOW'S SEQUENCE,MIAN-CHOWLA SEQUENCE,MORSE- 
THUE SEQUENCE, NEWMAN-CONWAY SEQUENCE, 
NUMBER, PADOVAN SEQUENCE, PERRIN SEQUENCE, 
RATS SEQUENCE, SEQUENCE, SMARANDACHE SE- 
QUENCES 

References 

This is a special case of finding the polynomial of degree 
n = TS satisfied by x = 3l/’ - 2? 

Algorithms for finding integer relations include the 
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LLL ALGORITHM, PSLQ ALGORITHM, PSOS ALGO- 
RITHM, and the algorithm of Lagarias and Odlyzko 
(1985). Perhaps the simplest (and unfortunately most 
inefficient) such algorithm is the GREEDY ALGORITHM. 
Plouffe’s “Inverse Symbolic Calculator” site includes a 
huge 54 million database of REAL NUMBERS which are 
algebraically related to fundamental mathematical con- 

stants. 
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Integrable 
A function for which the INTEGRAL can be computed is 
said to be integrable. 

see ah DIFFERENTIABLE, INTEGRAL, INTEGRATION 

Integral 
An integral is a mathematical object which can be in- 
terpreted as an AREA or a generalization of AREA. Inte- 
grals, together with DERIVATIVES, are the fundamental 
objects of CALCULUS. Other words for integral include 
ANTIDERIVATIVE and PRIMITIVE. The RIEMANN IN- 

TEGRAL is the simplest integral definition and the only 
one usually encountered in elementary CALCULUS. The 
RIEMANN INTEGRAL of the function f(x) over x from a 
to b is written 

s 

b 

f (4 dx* (1) 
a 

Every definition of an integral is based on a particu- 
lar MEASURE. For instance, the RIEMANN INTEGRAL is 
based on JORDAN MEASURE, and the LEBESGUE INTE- 
GRAL is based on LEBESGUE MEASURE. The process of 
computing an integral is called INTEGRATION (a more 
archaic term for INTEGRATION is QUADRATURE), and 
the approximate computation of an integral is termed 
NUMERICAL INTEGRATION. 

There are two classes of (Riemann) integrals: DEFINITE 
INTEGRALS 

I 

b 

f (4 dx, (2) 
a 

Integral 

INTEGRALS, since if F is the INDEFINITE INTEGRAL for 

f (4, then 

s 

b 

f(x) dx = F(b) - F(a). (3) 
a 

Wolfram Research (http: //www. integrals. corn) main- 
tains a web site which will integrate many common (and 
not so common) functions. However, it cannot solve 
some simple integrals such as 

/ [$(x&&)1 dx 

- - 
J( 

xcosx 
- + d= 
z&G > 

dx (4) 

1 [$Lz(xlnx)] da: 

- -- 
I[ 

(lnx + l)ln(l- xlnx) 

x In x 1 dx ‘) (5) 

where L2 is the DILOGARITHM. Furthermore, it gives 

an incorrect answer of r ‘-2d/(& l  4q to 

I(A) = 
I 

+ dx 
(6) 

0 1 + (tanx)fi = +’ 

7 in fact, the generalized integral for This integral and 
arbitrary a 

42 

Ita - 

) s 

dx 
- 

0 1 + (tan x)a ’ (7) 

have a “trick” solution which takes advantage of the 
trigonometric identity 

tan( $77 - x) = cot x. 

Letting z = (tanx)a, 

(8) 

I( > 
I 

r’4 dx 

I 

T’2 dx 
a= -+ - 

7r/4 l+ l 

;i-/41+z s dx m’4 dx 
-+ - 
1+z 0 1+: 

44 
- - 

s ( 

1 1 

0 l+z +1++ > I 

44 

= o 
dx 

- $L - (9) 

which have upper and lower limits, and INDEFINITE IN- 
TEGRALS, which are written without limits. The first 
FUNDAMENTAL THEOREM OF CALCULUS allows DEFI- 
NITE INTEGRALS tobecomputedintermsof INDEFINITE 
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Here is a list of common INDEFINITE INTEGRALS: 
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s 

X 1 
sin2 (ax) dx = 2 - 4a sin&x) + C (33) 

s 
dx 

s- X 
= In 1x1 + C 

s 
ax dx = 

s 
snudu = k?n(dnu - kcnu) + C (34) (10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

s sn2udu= u - E(u) + c 
k2 (35) 

s 
cnudu = k-l sin-‘(ksnu) + C (36) 

s 

sinxdx= -cosx+C 

s 
cosxdx = sinx + C 

s 
tanxdx = InIsecxl +C 

s 
cscxdx=ln[cscx-cotxj+C 

= In [tan(+x)] + C 

=iln(z)+C 

s 
secxdx = lnlsecx + tanxl+ C 

= gd-l(x) + C 

s 
cot x dx = lnIsinx[ +C 

s 
sec’xdx = tanx+C 

I 
csc2xdx= -cotx+C 

s 
secx tanxdx = secx + C 

F 

s 
dnudu = sir?(snu) + C, (37) 

where sinx is the SINE; cosx is the COSINE; tanx is the 
TANGENT; cscx is the COSECANT; secxis the SECANT; 
cotx is the COTANGENT; COS-~X is the INVERSE Co- 
SINE; sin -lx is the INVERSE SINE; tan-‘is the INVERSE 
TANGENT; sn u, cnu, and dnu are JACOBI ELLIPTIC 
FUNCTIONS; E(u) is acomplete ELLIPTIC INTEGRAL OF 
THE SECOND KIND; and gd(x) is the GUDERMANNIAN 
FUNCTION. 

To derive (15), let u G cosx, so du = -sinxdx and 

- -1nlul +C= -lnIcosx~+C - 

=ln]cosxl-‘+C=lnIsecx~+C. (38) 

To derive (18), let u E csc x - cot x, SO du = 
(- csc x cot x + csc2 x) dz and 

J 

csc2 2 + cot x csc x - - dx 
cscx+cotx 

cos -lxdx=xcos-lx- 7 l-x +c (24) 

sin -‘xdx = xsin -lx+ dD+C (25) 

- - 
s 

e = In ]uI + C 
u 

= lnlcscx -ccotx[ +C. (39) 

I tan-’ x dx = x tan -1 
x - + ln(1 + x2) + C 

(26) 

To derive (19), let 

(40) 

(41) 

uzsecx+tanx, 

sin -1 x 

0 
- +c 
a 

(27) 
so 

du = (set x tan x + sec2 x) dx -1 
cos 

0 
: +c 
a (28) 

and 

s 

dx - = 
a2 +x2 

J dx - - 
a2 + x2 - 

1 
- tan-l 

0 
E +c 

a a (29) 

1 
- - cot-l 

( > 
: +c 

a a (30) 
- - 

s 

sec2x+secx+tanxdx 

secx + tanx 

s 

dx - 
xds=T - 

s 

dx - - 
X@TP 

1 -1 x 
- set 

0 
- +c 

a a (31) 
du - - I- U 

= In 1211 + C 
1 -1 x -- csc 

0 
- +c 

a a (32) =LIsecx+tanxl+C. (42) 
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To derive (20), let u E sin z, so du = cos x dz and 

Integral 

Integrals of the form 

/cotzdx=/zdz=/$ 

= In 1~1 + C = In 1 sina: + C. (43) 

Differentiating integrals leads to some useful and pow- 
erful identities, for instance 

d x 

-s dx 
f(x) dx = f (49 

a 

(44) 

whichisthefirst FUNDAMENTAL THEOREM OF CALCU- 
LUS. 

d b 

-s dx 
f (2) dx = -f(x) X (45) 

d b 

s 
f(x, t) dt = 

s 

ba 

dz 
d,f (x4> dt (46) 

a a 

d x 

dz s 
f (x, t) dt = f(x, t) + 

s 
x Ef(x,t)dt. (47) 

a a 

If f (2, t) is singular or INFINITE, then 

f (x, t> dx 

( X 
af - “1% + (t-a) & af + f] dt. (48) 

The LEIBNIZ IDENTITY is 

d 

s 

44 

dz 
f (x1 t) dt = v’(x)f (x7 v(x)) - u’f (x, u(x)) 

44 

s VW + &f (x1 t) dt. (49) 
44 

Other integral identities include X ss xf(t)dtdx= 
s 

x(x - t)f(t)dt (50) 
a a a 

lxdt., ~ndt,-r~3dtz lt2f(tl)dtl 

1 - -- 
s (n-l)! 0 

x(x - t>,-1 f (t) dt (51) 

&(xjJk) = BjkJk + xj$Jk = J + rV .J (52) 
k k 

-- - s rV - J d3r. (53) 
V 

s b 

f (4 dx (54) 
a 

with one INFINITE LIMIT and the other NONZERO may 
be expressed as finite integrals over transformed f&c- 
tions. If f(x) d ecreases at least as fast as 1/x2, then 
let 

1 
it=- 

X 
(55) 

dx 
dt=-cZ 

dt 
dx = -x2dt = -t2, 

(56) 

(57) 

and 

s b 

a 

f(x)dx=-l)/b$f (f) dt=l;;$f(;) dt. 

(58) 
If f(x) diverges as (x - a)? for y f [0, 11, let 

x  = tw-7) + a 

- 
(59) 

1 
dx = - &l/l-7)-1 dt _ - ’ t[l-(l-Y)j/(l-d & 

1-Y 1-Y 
1 -- - 
-1 

@-7) & 
Y 

t = (x - a)l-‘, 

and 

s b 

f(x) dx = & - 
a 

- - s (b-a)lmY 

trlw-Y) 
f@ 

l/O-d + a) dt. (62) 
0 

If f(x) diverges as (x + b)Y for y E [O, 11, let 

’ dx=-- 
Y-l 

tY/@-7) & 
(64) 

t = (b - xp, (65) 
and 

I 
b 

f(x)dx = & - 
a 

s 

(b-a)lmY 

- - @-7)f(b _ t’/(‘-7)) dt. (66) 
0 

If the integral diverges exponentially, then let 

t E eBx 

dt = -e-” dx 
(67) 
(68) 
(69) x = -lnt, 
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and 

f(x) dx = 
s 

e-a f (- 1nt)$. (70) 
0 

Integrals with rational exponents can often be solved 
by making the substitution u = x~/~, where n is the 
LEASTCOMMON MULTIPLE ofthe DENOMINATOR ofthe 
exponents . 

Integration rules include 

s a 

f(x) dx = 0 
a 

s b 
f(x)dx = - af(x)dx. 

a s b 

(71) 

(72) 

For c E (a, b), 

If g’ is continuous on [a, b] and f is continuous and has 
an antiderivative on an INTERVAL containing the values 
of g(z) for a < 51: < b, then 

s 

b 

s 

db) 

f (9W9W dx = g(a) f (4 du- (74) 
a 

Liouville showed that the integrals 

s e -x2 dx 
s 

c dx 
X s * dx 

X 
s 

dx 

lnx (75) 

cannot be expressed as terms of a finite number of ele- 
mentary functions. Other irreducibles include 

/xxdx /x-xdx /&dxe (76) 

Chebyshev proved that if U, V, and W are RATIONAL 
NUMBERS," then 

SIMPSON'S RULE, respectively. The 5-point formula is 
called BODE'S RULE. A generalization of the TRAPE- 
ZOIDAL RULE is ROMBERG INTEGRATION, which can 
yield accurate results for many fewer function evalua- 
tions. 

If the analytic form of a function is known (instead 
of its values merely being tabulated at a fixed number 
of points), the best numerical method of integration is 
called GAUSSIAN QUADRATURE. By picking the optimal 
ABSCISSAS at which to compute the function, Gaussian 
quadrature produces the most accurate approximations 
possible. However, given the speed of modern comput- 
ers, the additional complication of the GAUSSIAN QUAD- 
RATURE formalism often makes it less desirable than 
the brute-force method of simply repeatedly calculat- 
ing twice as many points on a regular grid until conver- 
gence is obtained. An excellent reference for GAUSSIAN 
QUADRATURE is Hildebrand (1956). 

see also A-INTEGRABLE, ABELIAN INTEGRAL, CAL- 
CULUS, CHEBYSHEV~A~SS QUADRATURE, CHEBY- 
SHEV QUADRATURE, DARBOUX INTEGRAL, DEFINITE 
INTEGRAL, DENJOY INTEGRAL, DERIVATIVE, Dou- 
BLE EXPONENTIAL INTEGRATION, EULER INTEGRAL, 
FUNDAMENTAL THEOREM OF GAUSSIAN QUADRA- 
TURE, GAUSS-JACOBI MECHANICAL QUADRATURE, 
GAUSSIAN QUADRATURE, HAAR INTEGRAL, HERMITE- 
GAUSS QUADRATURE, HERMITE QUADRATURE, HK 
INTEGRAL, INDEFINITE INTEGRAL, INTEGRATION, 
JACOBI-GAUSS QUADRATURE, JACOBI QUADRATURE, 
LAGUERRE~AUSS QUADRATURE, LAGUERRE QUAD- 
RATURE, LEBESGUE INTEGRAL, LEBESGUE-STIELTJES 
INTEGRAL, LEGENDRE~AUSS QUADRATURE, LEGEN- 
DRE QUADRATURE, LOBATTO QUADRATURE, ME- 

CHANICAL QUADRATURE, MEHLER QUADRATURE, 
NEWTON-C• TES FORMULAS, NUMERICAL INTEGRA- 
TION,PERONINTEGRAL,QUADRATURE,RADAUQUAD- 
RATURE, RECURSIVE MONOTONE STABLE QUADRA- 
TURE, RIEMANN-STIELTJES INTEGRAL, ROMBERG IN- 
TEGRATION, RIEMANN INTEGRAL, STIELTJES INTE- 
GRAL 

. 
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x”(A + BxV)W dx (77) 

is integrable in terms of elementary functions IFF (U + 
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Integral Brick 

see EULER BRICK 

Integral Calculus A Fredholm equation of the second kind is of the form 
That portion 
GRALS. 

of “the” CALCULUS 

see also CAKuLus, DIFF 
GRAL 

Integral Cuboid 

see EULER BRICK 

with 

INTE- ERENTIA L CALCULUS, 

Integral Current 
A RECTIFIABLE CURRENT whose boundary is also a 
RECTIFIABLE CURRENT. 

Integral Curvature 
Given a GEODESIC TRIANGLE (a triangle formed by the 
arcs of three GEODESICS on a smooth surface), 

I Kda=A+B+C-r. 
ABC 

Given the EULER CHARACTERISTIC x, 

ss 

K da = 2~35 

so the integral curvature of a closed surface is not altered 
by a topological transformation. 

see &O GAUSS-BONNET FORMULA, GEODESIC TRIAN- 
GLE 

Integral Domain 
A RING that is COMMUTATIVE under multiplication, has 
a unit element, and has no divisors of 0. The INTEGERS 
form an integral domain. 

see also FIELD, RING 

Integral Drawing 
A GRAPH drawn such that the EDGES have only IN- 
TEGER lengths. It is conjectured that every PLANAR 
GRAPH has an integral drawing. 

References 
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Integral Equation 
If the limits are fixed, an integral equation is called a 
XlEedholm integral equation. If one limit is variable, it 
is called a Volterra integral equation. If the unknown 
function is only under the integral sign, the equation is 
said to be of the “first kind.” If the function is both 
inside and outside, the equation is called of the “second 
kind.” A Fredholm equation of the first kind is of the 
form 

f (4 = Jb K(x, +P(t) dt. (1) 
a 

4(x) = f (4 + x I” K(x, W(t> dt* (2) 

A Volterra equation of the first kind is of the form 

f (4 = IX K(Xl t>w dt- 
a 

(3) 

A Volterra equation of the second kind is of the form 

s 

2 

4(x) = f (4 + K(x, tM> & (4 
a 

where the functions K(z, t) are known as KERNELS. In- 
tegral equations may be solved directly if they are SEP- 
ARABLE. Otherwise, a NEUMANN SERIES must be used. 

A KERNEL~~ separable if 

K(x, t) = AkMj(x)Nj(t). (5) 

j=l 

This condition is satisfied by all POLYNOMIALS and 
many TRANSCENDENTAL FUNCTIONS. A FREDHOLM 
INTEGRAL EQUATION OF THE SECOND KIND with sep- 
arable KERNEL may be solved as follows: 

4(x> = f (4 + /b KW)?w) dt 
Ja 

= f(x) + X F: Mj(x) lb Nj(t)#(t) dt 
j=l a 

= f (2) + X F)jJG(X), (6) 
j=l 

where 

s 

b 

Cj S Nj (W(t> dt- (7) 
a 

Now multiply both sides of (7) by Ni(x) and integrate 
over dz. 

I 
b 

@(x)X(x) d=r: 

a , 
- - Ib f (x)Ni(x) dx + X k cj Ib Mj(x)Ni(x) dx. (8) 

j=l JU 
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By (7), the first term is just ci. Now define 

s b 

bi E Ni(x)f (2) dx 

a 

b 

aij = 

s 

Ni(x)Mj(x) dx, 

a 

so (8) becomes 

Ci = bi +XTaijCj. 

j=l 

Writing this in matrix form, 

C = B + XAC, 

so 
(I - XA)C = B 

C = (1 - XA)-lB. 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

see also FREDHOLM INTEGRAL EQUATION OF THE 
FIRST KIND, FREDHOLM INTEGRAL EQUATION OF THE 
SECOND KIND, VOLTERRA INTEGRAL EQUATION OF 
THE FIRST KIND,~OLTERRA INTEGRAL EQUATION OF 
THE SECOND KIND 
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Tricomi, F. G. Integral Equutions. New York: Dover, 1957. 

Integral of Motion 
A function of the coordinates which is constant along a 
trajectory in PHASE SPACE. The number of DEGREES 
OF FREEDOM of a DYNAMICAL SYSTEM such as the 
DUFFING DIFFERENTIAL EQUATION can be decreased 

by one if an integral of motion can be found. In general, 
it is very difficult to discover integrals of motion. 

Integral Sign 
The symbol s used to denote an INTEGRAL s f(x) dx. 
The symbol was chosen to be a stylized script “S” to 
stand for “summation.” 

see also INTEGRAL 

Integral Test 
Let c ?& be a series with POSITIVE terms and let f(x) 
be the function that results when k is replaced by x in 
the FORMULA for I& If f is decreasing and continuous 
for x > 1 and - 

lim f(z) = 0, 
X+00 

then 00 

x uk 

k=l 

Sm f (4 dJ: 
t 

both converge or diverge, where 1 < t < 00. The test is - 
alsocalledthe CAUCHY INTEGRAL TEST or MACLAURIN 
INTEGRAL TEST. 

see also CONVERGENCE TESTS 

References 
Arfken, G. Mathematical Methods for Physicists, 3rd ed. Or- 

lando, FL: Academic Press, pp. 283-284, 1985. 

Integral Transform 
A general integral transform is defined by 

s b 

da> = f (tpqa, t> & 

a 

where K(a,t) is called the KERNEL of the transform. 

see also FOURIER TRANSFORM, FOURIER-STIELTJES 
TRANSFORM, H-TRANSFORM, HADAMARD TRANS- 
FORM, HANKEL TRANSFORM, HARTLEY TRANSFORM, 
HOUGH TRANSFORM, OPERATIONAL MATHEMATICS, 
RADON TRANSFORM, WAVELET TRANSFORM, Z- 
TRANSFORM 

References 
Arfken, G* “Integral Transforms.” Ch. 16 in Mathematical 

Methods for Physicists, 3rd ed. Orlando, FL: Academic 
Press, pp. 794-864, 1985. 

Carslaw, H. S. and Jaeger, J. C. Operational Methods in Ap- 

plied Mathematics. 
Davies, B. Integral Transforms and Their Applications, 2nd 

ed. New York: Springer-Verlag, 1985. 
Poularikas, A. D. (Ed.). The Transforms and Applications 

Handbook. Boca Raton, FL: CRC Press, 1995. 
Zayed, A. I. Handbook of Function and Generalized Function 

Transformations. Boca Raton, FL: CRC Press, 1996. 

Integrand 
The quantity being INTEGRATED, also called the KER- 
NEL. For example, in s f(x) dz, f(x) is the integrand. 

see also INTEGRAL, INTEGRATION 
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Integrating Factor 
A FUNCTION by which an ORDINARY DIFFERENTIAL 
EQUATION is multiplied in order to make it integrable. 

see ulso ORDINARY DIFFERENTIAL EQUATION 

Rererences 
Morse, P. M. and Feshbach, H. Methods of Theoretical Phys- 

ics, Part I. New York: McGraw-Hill, pp. 526-529, 1953. 

Integration 
The process of computing or obtaining an INTEGRAL. A 
more archaic term for integration is QUADRATURE. 

SW UZSO CONTOUR INTEGRATION,~NTEGRAL,~NTEGRA- 
TION BY PARTS,MEASURE THEORY, NUMERICAL INTE- 
GRATION 

Integration Lattice 
A discrete subset of IV which is closed under addition 
and subtraction and which contains Z" as a SUBSET. 

see also LATTICE 

References 
Sloan, I. H. and Joe, S. Lattice Methods for Multiple Integra- 

tion. New York: Oxford University Press, 1994. 

Integration by Parts 
A first-order (single) integration by parts uses 

d(uv) =udv+vdu (1) 

s d(uv)=uv=/udv+/vdu> (2) 

s udv=uv- 
s 

vdu 

s b f(b) 

udv= uv;- 
[I s 

v du. 
a f(a) 

(3) 

(4) 

Now apply this procedure n, times to 1 f’“)(x)g(x) dx. 

u = &> dv = f(“)(x) dx (5) 

du = g’(x) dx v = f ‘“-l’(x). (6) 

Therefore, 

J f (n)g(x) dx = g(x) f b-‘1 (4 - J f ‘“-“(x)g’(x) dx. 

(7) But 

s f’“-“‘(x)g”(x) dx 

= g"(X) f k-3) x - 0 /f (n-3)(x)g(3)(x) dx, (9) 

s f yx)g(x) dx = g(x) f ‘“-“(X) - g’(x) f ‘“-“‘(x) 

+g”(x) f’“-“‘(x) - . . . + (-1)” 
s 

f (x)g’“‘(x) dx. (10) 

Now consider this in the slightly different form 
s f (x)g(x) dx. Integrate by parts a first time 

u= x f( ) dv = g(x) dx (11) 

du = f’(x) dx v = 
s 

g(x) dx, (12) 

I f (4d4 dx = f(x) /g(x) dx 

- 1 [s9(5) dx] f)(x) dx* (13) 

Now integrate by parts a second time, 

u= f’(x) dv= 
s 

dw42 (14) 

so 

du = f”(x) dx v = 

s f (XMX) dx = f(x) 
s 

g(x) dx - f’(x) 
ss 

dw42 

+ / [~~daw~] f”(x) dxa (16) 

Repeating a third time, 

s f (x)9(x) dx = f(x) 
s 

g(x) dx - f’(x) y/ g(x)(dx)2 

+f w  
sss 

g(x) WI3 

- / [j’/Jmw] f/w dx. ~7) 

s f’“-“‘(x)g’(x) dx 

‘“-2’(x)g”(x) dx (8) 
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Therefore, after n applications, Interior 

I f (x)dx) dx 

+&f”(x) 
Ill 

g(x)(dx)3 - . l  . 

+(-l)“+‘f(“)(x) g(x)(dx)“+’ 

n+l 

(x)(dx)“+’ fen+‘)(x) dx. (18 

If fcn+ll(x) = 0 (e.g., for an nth degree POLYNOMIAL), 
the last term is 0, so the sum terminates after n terms 
and 

s f (x)9(x> dx = f (4 syo dx 

- fOll IX mw2 + f”(X) 
Ill 

g(x)(dx)3 - . . . 

+(-l)“+‘f’“‘(x) 
I I 

9 l  l  g(x)(dx)“+‘. (19) 

n+l 

References 
Abramowitz, M. and Stegun, C. A. (Eds,). Handbook 

of Mathematical Functions with Formulas, Graphs, and 
Mathematical Tables, 9th printing. New York: Dover, 
p* 12, 1972. 

Intension 
A definition of a SET by mentioning a defining property. 

see also EXTENSION 

References 
Russell, 13. “Definition of Number.” Introduction to Mathe- 

matical Philosophy. New York: Simon and Schuster, 1971. 

Interchange Graph 

see LINE GRAPH 

Interest 
Interest is a fee (or payment) made for the borrowing 
(or lending) of money. The two most common types 
of interest are SIMPLE INTEREST, for which interest is 
paid only on the initial PRINCIPAL, and COMPOUND IN- 
TEREST, for which interest earned can be re-invested to 
generate further interest. 

see also COMPOUND INTEREST, CONVERSION PERIOD, 
RULE OF 72, SIMPLE INTEREST 

That portion of a region lying “inside” a specified 
boundary. For example, the interior of the SPHERE is a 
BALL. 

see also EXTERIOR 

Interior Angle Bisector 

see ANGLE BISECTOR 

Intermediate Value Theorem 
If f is continuous on a CLOSED INTERVAL [a, b] and c is 
any number between f(a) and f(b) inclusive, there is at 
least one number x in the CLOSED INTERVAL such that 

f( > X = c. 

see also WEIERSTRABINTERMEDIATE VALUETHEOREM 

Internal Bisectors Problem 

~~~STEINER-LEHMUS THEOREM 

Internal Knot 
One of the knots tp+l, . . . . tm-p-l of a B-SPLINE with 
control points PO, . . . , Pn and KNOTVECTOR 

T= {~O,~l,**vbn}, 

where 
p=m-n-l. 

see also B-SPLINE, KNOT VECTOR 

Interpolation 
The computation of points or values between ones that 
are known or tabulated using the surrounding points or 
values. 

see also AXTKEN INTERPOLATION, BESSEL'S INTER- 
POLATION FORMULA, EVERETT INTERPOLATION, Ex- 
TRAPOLATION, FINITE DIFFERENCE, GAUSS'S IN- 
TERPOLATION FORMULA, HERMITE INTERPOLATION, 
LAGRANGE INTERPOLATING POLYNOMIAL, NEWTON- 
COTES FORMULAS, NEWTON'S DIVIDED DIFFERENCE 
INTERPOLATION FORMULA, OSCULATING INTERPOLA- 
TION, THIELE'S INTERPOLATION FORMULA 

References 
Abramowitz, M. and Stegun, C. A. (Eds.). “Interpolation.” 

$25.2 in Handbook of Mathematical Functions with Formu- 
las, Graphs, and Mathematical Tables, 9th printing. New 
York: Dover, pp. 878-882, 1972. 

Iyanaga, S+ and Kawada, Y. (Eds,). “Interpolation.” Ap- 
pendix A, Table 21 in Encyclopedic Dictionary of Mathe- 
matics. Cambridge, MA: MIT Press, pp. 1482-1483, 1980. 

Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vet- 
terling, W. T. “Interpolation and Extrapolation.” Ch. 3 
in Numerical Recipes in FORTRAN: The Art of Scien- 
tific Computing, 2nd ed. Cambridge, England: Cambridge 
University Press, pp. 99-122, 1992. 

References 
Kellison, S. G. Theory of Interest, 2nd ed. Burr Ridge, IL: 

Richard D. Irwin, 1991. 
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Interquartile Range 
Divide a set of data into two groups (high and low) of 
equal size at the MEDIAN if there is an EVEN number of 
data points, or two groups consisting of points on either 
side of the MEDIAN itself plus the MEDIAN if there is 
an ODD number of data points. Find the MEDIANS of 
the low and high groups, denoting these first and third 
quartiles by Q1 and Q3. The interquartile range is then 
defined by 

IQR G Q3 - Q1. 

see ah H-SPREAD, HINGE, MEDIAN (STATISTICS) 

Int erradius 

see MIDRADIUS 

Intersection 
The intersection of two sets A and B is the set of ele- 
ments common to A and B. This is written A II B, and 
is pronounced, “A intersection B” or “A cap B.” The in- 
tersection of sets A1 through A, is written nyz, Ai. The 
intersection of lines AB and CD is written Al3 n CD. 

see also AND, UNION 

Interspersion 
An ARRAY A = aij, i,j 2 1 of POSITIVE INTEGERS is 
called an interspersion if 

The rows of A comprise a PARTITION of the POSI- 

TIVE INTEGERS, 

Every row of A is an increasing sequence, 

Every column of A is a (possibly FINITE) increasing 
sequence, 

If (uj) and (vj) are distinct rows of A and if p and 
4 are any indices for which U, < wq < ++I, then 

up+1 < 2.‘q+1 < up+2’ 

If an array A = aij is an interspersion, then it is a DIS- 
PERSION. If an array A = u(& j) is an interspersion, 
then the sequence {zn} given by {xn = i : n = (i,j)} 
for some j is a FRACTAL SEQUENCE. Examples of in- 
terspersion are the STOLARSKY ARRAY and WYTHOFF 
ARRAY. 

see 

QUE 

also 
NCE, 

DISPERSION 
STOLARSKY A 

(SEQ 
.RRAY 

UENCE), FRACTAL SE- 

References 
Kimberling, C. 

Amer. Math. 
Kimberling, C. 

Combin. 45, 

“Interspersions and Dispersions.” Proc. 
Sot. 117, 313-321, 1993. 
“Fractal Sequences and Interspersions.” Ars 
157-168, 1997. 

Intersphere 

see MIDSPHERE 

Intrinsic Curvature 

Interval 
A collection of points on a LINE SEGMENT. If the end- 
points a and b are FINITE and are included, the interval 
is called CLOSED and is denoted [a, b]. If one of the end- 
points is 4~00, then the interval still contains all of its 
LIMIT POINTS, so [a, 00) and (--00, b] are also closed in- 
tervals. If the endpoints are not included, the interval 
is called OPEN and denoted (a, b). If one endpoint is 
included but not the other, the interval is denoted [a, b) 
or (~$1 and is called a HALF-CLOSED (or HALF-OPEN) 
interval. 

see also CLOSED INTERVAL, HA .LF-CLOSED INTERVA 
LIMIT P OINT, OPEN INTERVAL, PENCIL 

Interval Graph 
A GRAPH G= (V,E) is an interval graph if it captures 
the INTERSECTION RELATION forsomesetof INTERVALS 
on the REAL LINE. Formally, P is an interval graph 
provided that one can assign to each 21 E V an interval 
Iv such that Iu n Iv is nonempty precisely when uu f E. 

see also COMPARABILITY GRAPH 

References 
Booth, K. S. and Lueker, G. S. “Testing for the Consecu- 

tive Ones Property, Interval Graphs, and Graph Planarity 
using PQ-Tree Algorithms.” J. ‘Cornput. System Sci. 13, 

335-379, 1976. 
Fishburn, P. C. Interval Orders and Interval Graphs: A 

Study of Partially Ordered Sets. New York: Wiley, 1985. 
Gilmore, P. C. and Hoffman, A. J. “A Characterization of 

Comparability Graphs and of Interval Graphs.” Canad. J, 
Math. 16, 539-548, 1964. 

Lekkerkerker, C. G. and Boland, J. C. “Representation of a 
Finite Graph by a Set of Intervals on the Real Line.” Fund. 
Math. 51, 45-64, 1962. 

Interval Order 
A POSET P = (X,5) is an interval order if it is ISO- 
MORPHIC to some set of INTERVALS on the REAL LINE 

ordered by left-to-right precedence. Formally, P is an in- 
terval order provided that one can assign to each x E X 
an INTERVAL [XL, x~] such that XR < ye in the REAL 
NUMBERS IFF 2 < y in P. 

see also PARTIALLY ORDERED SET 

References 
Fishburn, P, C. Interval Orders and Interval Graphs: A 

Study of Partially Ordered Sets. New York: Wiley, 1985. 
Wiener, N. “A Contribution to the Theory of Relative Posi- 

tion.” Proc. Cambridge Philos. SW. 17, 441-449, 1914. 

Intrinsic Curvature 
A CURVATURE such as GAUSSIAN CURVATURE which 
is detectable to the “inhabitants” of a surface and not 
just outside observers. An EXTRINSIC CURVATURE, on 
the other hand, is not detectable to someone who can’t 
study the 3-dimensional space surrounding the surface 
on which he resides. 

RVATU see also CURVATURE, EXTRINSIC Cu 
SIAN CURVATURE 

RE, GAUS- 
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Intrinsic Equation 
An equation which specifies a CURVE in terms of intrin- 
sic properties such as ARC LENGTH, RADIUS OF CVR- 
VATURE, and TANGENTIAL ANGLE instead of with ref- 
erence to artificial coordinate axes. Intrinsic equations 
are also called NATURAL EQUATIONS. 

see also CES~~RO EQUATION, NATURAL EQUATION, 
WHEWELL EQUATION 

References 
Yates, R. C. “Intrinsic Equations.” A Handbook on Curves 

and Their Properties. Ann Arbor, MI: J. W. Edwards, 
pp. 123-126, 1952. 

Intrinsically Linked 

A GRAPH is intrinsically linked if any embedding of it 
in 3-D contains a nontrivial LINK. A GRAPH is intrinsi- 
cally linked IFF it contains one of the seven PETERSEN 
GRAPHS (Robertson et al. 1993). 

The COMPLETE GRAPH KS (left) is intrinsically linked 
because it contains at least two linked TRIANGLES. The 
COMPLETE k-PARTITE GRAPH K3 3 1 (right) is also in- , 1 
trinsically linked. 

see also COMPLETE GRAPH, COMPLETE Ic-PARTITE 
GRAPH,~ETERSEN GRAPHS 

References 
Adams, C. C. The Knot Book: An Elementary Introduction 

to the Mathematical Theory of Knots. New York: We H. 
Freeman, pp. 217-221, 1994. 

Robertson, N.; Seymour, P. D,; and Thomas, R. “Linkless 
Embeddings of Graphs in 3-Space.” Bull. Amer. Math. 
Sot. 28, 84-89, 1993. 

Invariant 
A quantity which remains unchanged under certain 
classes of transformations. Invariants are extremely use- 
ful for classifying mathematical objects because they 
usually reflect intrinsic properties of the object of study. 

see ADIABATIC INVARIANT, ALEXANDER INVARIANT, 
ALGEBRAIC INVARIANT, ARF INVARIANT, INTEGRAL OF 
MOTION 

References 
Hunt, B l  “Invariant s ,” Appendix B.1 in The Geometry of 

Some Special Arithmetic Quotients. New York: Springer- 
Verlag, pp. 282-290, 1996. 

Invariant Density 

see NATURAL INVARIANT 

Invariant (Elliptic Function) 
The invariants of a WEIERSTRAB ELLIPTIC FUNCTION 
are defined by 

g2 E 60Ctf2,,-4 

g3 E 140c~n7/6. 

Here, 

where WI and w2 are the periods of the ELLIPTIC FUNC- 
TION. 

Invariant Manifold 
When stable and unstable invariant MANIFOLDS inter- 
sect, they do so in a HYPERBOLIC FIXED POINT (SAD- 
DLE POINT). The invariant MANIFOLDS are then called 
SEPARATRICES. A HYPERBOLIC FIXED POINT is char- 
acterized by two ingoing stable MANIFOLDS and two 
outgoing unstable MANIFOLDS. In integrable systems, 
incoming Tiv” and outgoing Tis/" MANIFOLDS all join up 
smoothly. 

A stable invariant MANIFOLD Tiv' of a FIXED POINT Y* 
is the set of all points Yo such that the trajectory passing 
through Yo tends to Y* as j + 00. 

An unstable invariant MANIFOLD w" of a FIXED POINT 
Y* is the set of all points Yo such that the trajectory 
passing through YO tends to Y* as j + -moo. 

see ah HOMOCLINIC POINT 

Invariant Point 

see FIXED POINT (TRANSFORMATION) 

Invariant Subgroup 

see NORMAL SUBGROUP 

Inverse Cosecant 

1.5 

1.25 t I 

0.5 

0.25 
-- 

I 

2 4 6 8 10 

Re[ArcCsc z] Im[ArcCsc z 1 IArcCsc zI - 

0. 0. 0. 
-0. 

-0. 
0. 
0. 

121 [zl (21 

The function csc-’ LC, also denoted arccsc(z), where csc LC 
is the COSECANT and the SUPERSCRIPT -1 denotes an 
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INVERSE FUNCTION, not the multiplicative inverse. The 
inverse cosecant satisfies 

-1 
csc x = SW 

-l * 
( > 

for POSITIVE or NEGATIVE x, and 

-1 -1 
csc x=r+csc (-2) (2) 

for 2 > 0. The inverse cosecant is given in terms of other - 
inverse trigonometric functions by 

-1 -1 m=i 
csc = cos - 

( > 2 
(3) 

= cot-l cd x2 - 1) (4) 
-1 -1 - pv--set x= -+ - set -Y-x> (5) 

-1 1 
= sin - 

0 
(6) 

X 

for x > 0. - 

see also COSECANT INVERSE SINE, SINE 

References 
Beyer, W. H. CRC Standard Mathematical Tables, 26th ed. 

Boca Raton, FL: CRC Press, pp. 142-143, 1987. 

Inverse Cosine 

-1 -0.5 0.5 1 

Re[ArcCos 21 ImtArcCos z 1 lArcCos 21 - 

The function cos-1 x, also denoted arccos(x), where 
cos x is the COSINE and the superscript -1 denotes 
an INVERSE FUNCTION, not the multiplicative inverse. 
The MACLAURIN SERIES for the inverse cosine range 
-l<x<lis 

-1 cos 2 = +x- 6 Lx3- &x5-~x7- 
&x9-. l  . . (1) 

The inverse cosine satisfies 

-1 -1 
cos x =7T-cos -x ( > (2) 

for POSITIVE and NEGATIVE x, and 

--1_ 1 -1 
cos - pv-cos cd1 - x2 > (3) 

for x > 0. The inverse cosine is given in terms of other - 
inverse trigonometric functions by 

-1 
cos 2 = cot 

-l + 
( > 

= Zp + sin 
-1 (-2) = + - sin 

-1 x 

- $7r- tan - 
-l gy2 ( > 

for POSITIVE or NEGATIVE x, and 

-1 -1 1 
cos x = csc 

( > m 

-1 1 
= set - 

( > 

= sin -l(&) 

&=T = tan-l -- 
( > X 

for 2 > 0. - 

see also COSINE, INVERSE SECANT 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

References 
Abramowitz, M. and Stegun, C. A. (Eds.). “Inverse Circu- 

lar Functions.” $4.4 in Handbook of Mathematical Func- 
tions with Formulas, Graphs, and Mathematical Tables, 
9th printing. New York: Dover, pp. 79-83, 1972. 

Beyer, W. H. CRC Standard Mathematical Tables, 28th ed. 
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Inverse Cotangent 
1.5 

1 

0.5 

IArcCot zI 

The function cot-’ x, also denoted arccot (x), where 
cot x is the COTANGENT and the superscript -1 denotes 
an INVERSE FUNCTION and not the multiplicative in- 
verse. The MACLAURIN SERIES is given by 

cot-l X= +T - x+ ix” - ix5 + Gx7 - 
ix” + l  l  l  , (1) 
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and POWER SERIES by with 1x1 the FLOOR FUNCTION, and 

cot-1 x = x-l- ix-3+ ix-” - +x-7 +;x-g+.... (2) 

Euler derived the INFINITE series 

244 

+3.5(x2+1)3 +*** (3) 
(Wetherfield 1996). 

The inverse cotangent satisfies 

cot-l x = 7T - cot-y-x) (4) 

for POSITIVE and NEGATIVE x, and 

for x > 0. The inverse cotangent is - 
other inverse trigonometric functions 

given in terms of 

bY 

(6) 

-1 - Zn-sin 
-1 

( > 
p 
& 

(7) 

= $r + tan-‘(-2) = $7r - tan-’ x (8) 

for POSITIVE or NEGATIVE x, and 

cot-l x = cs? (@=) 
-1 dm = set - 

( > X 

= sin -1 1 

( > m 

1 
= tan-’ - 

0 2 

(9) 

(10) 

(11) 

02) 

for x > 0. - 

A number 

t, = cot-l 2, (13) 

where x is an INTEGER or RATIONAL NUMBER, is some- 
times called a GREGORY NUMBER. Lehmer (1938a) 
showed that cot-r (u/b) can be expressed as a finite sum 
of inverse cotangents of INTEGER arguments 

cot-l (;) = 2(-l)“-’ cot-17&, (14) 
i=l 

where 

ai+ = ain + i + bi (16) 

bn x+1 = ai - nibi, (17) 

with a0 = a and bo = b, and where the recurrence is 
continued until &+I = 0. If an INVERSE TANGENT sum 
is written as 

tan-r n = fk tan -‘nk + f tm?, (18) 
k=l 

then equation (14) becomes 

c0Pn = fk cot -‘nk + ccot-1 1, (19) 

k=l 

where 
c=2-f-2X& (20) 

k=l 

Inverse cotangent sums can be used to generate 
MACHIN-LIKE FORMULAS. 

An interesting inverse cotangent identity attributed to 
Charles Dodgson (Lewis Carroll) by Lehmer (1938b; 
Bromwich 1965, Castellanos 1988ab) is 

Cot-‘@ + r) + tan-l@ + a) = tan-‘p, (21) 

where 

1+p2 =qr. (22) 

Other inverse cotangent identities include 

2 cot-l(2x) - cot-l x = cot-l(4x3 + 32) (23) 

3cot-l(32) - cot-l 2 = cot-l 
27x” + 18x2 - 1 

8x > 
1 

(24) 
as well as many others (Bennett 1926, Lehmer 1938b). 

see also COTANGENT, INVERSE TANGENT, MACHIN% 
FORMULA, MACHIN-LIKE FORMULAS,TANGENT 
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Inverse Curve 
Given a CIRCLE C with CENTER 0 and RADIUS k, then 
two points P and Q are inverse with respect to C if OF 
OQ = k2. If P describes a curve Cl, then Q describes 
a curve Cz called the inverse of Cl with respect to the 
circle C (with INVERSION CENTER 0). If the POLAR 

equation of C is r(O), then the inverse curve has polar 
equation 

k2 

r = r(e)’ 

If 0 = (~0, yo) and P = (f(t), g(t)), then the inverse has 
equations 

x=x0+ k2(f - 4) 
(f - xoJ2 + (9 - Yd2 

y=yo+ 
k”(g - Yo> 

(f - xo)2 + (9 - Yo)2 - 

Inversion 

Curve Center Inverse Curve 

Archimedean spiral 

cardioid 

circle 

cissoid of Diocles 

cochleoid 

epispiral 

Fermat’s spiral 

hyperbola 

hyperbola 

hyperbola with 

a= 43 
lemniscate 

lituus 

logarithmic spiral 

Maclaurin trisectrix 

parabola 

parabola 

quadratrix of Hippias 

right strophoid 

sinusoidal spiral 

Tschirnhausen cubic 

origin Archimedean spiral 

cusp parabola 

any pt another circle 

cusp parabola 

origin quadratrix of Hippias 

origin Rose 

origin lituus 

center lemniscate 

vertex right strophoid 

vertex Maclaurin trisectrix 

center 

origin 

origin 

focus 

focus 

vertex 

origin 

origin 

hyperbola 

Fermat spiral 

logarithmic spiral 

Tschirnhausen’s cubic 

cardioid 

cissoid of Diocles 

cochleoid 

the same right strophoid 

sinusoidal spiral inverse 

curve 

sinusoidal spiral 

see UZSO INVERSION, INVERSION CENTER, INVERSION 
CIRCLE 
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Inverse Function 
Given a FUNCTION f(s), its inverse f-‘(x) is defined by 

f(f-w> E x:. Therefore, f(z) and f-‘(z) are reflec- 
tions about the line y = x. 

Inverse Hyperbolic Cosecant 

-I 
5 

4 
r 

3- 

I  2 4 6 8 10 

ReLArcCsch zl Im[ArcCsch zl IArcCsch z[ - 

0. 0. 0. 
-0 

-0. 
0. 
0. 

[zl 

The INVERSE FUNCTION of the HYPERBOLIC COSE- 

CANT, denoted csch-1 x. 

see ~2~0 HYPERBOLIC C~SECANT 

Inverse Hyperbolic Cosine 

I ,.I. .I. .I...I,..I 

2 4 6 8 10 

IArcCosh zI 

The INVERSE FUNCTION of the HYPERBOLIC COSINE, 

denoted cash-’ CL 

see UZSO HYPERBOLIC COSINE 

Inverse Filter 
A linear DECONVOLUTION ALGORITHM. 



Inverse Hyperbolic Cotangent 

Inverse Hyperbolic Cotangent 

s I 

(ArcCoth zI 

The INVERSE FUNCTION of the HYPERBOLIC COTAN- 
GENT, denoted coth-’ 2. 

see UZSO HYPERBOLIC COTANGENT 

Inverse Hyperbolic F’unctions 
The INVERSE of the HYPERBOLIC FUNCTIONS, denoted 
cash-1 x, coth-l zc, csch-‘5, sech-’ x:, sinh-’ 2, and 
tanh-l z 

see also HYPERBOLIC FUNCTIONS 

Inverse Points 

Inverse Hyperbolic Sine 

[ArcSinh 21 

The INVERSE FUNCTION of the HYPERBOLIC SINE, de- 
noted sinh-’ z 

see also HYPERBOLIC SINE 

Inverse Hyperbolic Tangent 

References 
Spanier, J. and Oldham, K. B. “The Inverse Hyperbolic Func- 

tions.” Ch. 31 in An Atlas of Functions, Washington, DC: 
Hemisphere, pp. 285-293, 1987. 

Inverse Hyperbolic Secant 

Im[ArcTanh z] IArcTanh z[ 

The INVERSE FUNCTION of the HYPERBOLIC TANGENT, 
denoted tanh-’ x. 

see UZSO HYPERBOLIC TANGENT 

Im[ArcSech z] 

The INVERSE FUNCTION of the HYPERBOLIC SECANT, 
denoted sech-1 x. 

see also HYPERBOLIC SECANT 

Inverse Matrix 

see also MATRIX INVERSE 

Inverse Points 
Points which are transformed into each other through 
INVERSION about a given INVERSION CIRCLE. The point 
P' which is the inverse point of a given point P with re- 
spect to an INVERSION CIRCLE C may be constructed 
geometrically using a COMPASS only (Courant and Rob- 
bins 1996). 

see ~SO GEOMETRIC CONSTRUCTION, INVERSION, Po- 
LAR,POLE (GEOMETRY) 
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References 
Courant, R. and Robbins, H. “GeOmetrical Construction of 

Inverse Points .” s3.4.3 in What is Mathematics?: An Ele- 
mentary Approach to Ideas and Methods, 2nd ed. Oxford, 
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Inverse Quadratic Interpolation 
The use of three prior points in a ROOT-finding ALGO- 
RITHM to estimate the zero crossing. 

Inverse Scattering Method 
A method which can be used to solve the initial value 
problem for certain classes of nonlinear PARTIAL DIF- 
FERENTIAL EQUATIONS. The method reduces the ini- 
tial value problem to a linear INTEGRAL EQUATION in 
which time appears only implicitly. However, the solu- 
tions u(x, t) and various of their derivatives must ap- 
proach zero as x + 3100 (Infeld and Rowlands 1990). 

see UZSO ABLOWITZ-RAMANGSEGUR CONJECTURE, 
B~CKLUND TRANSFORMATION 

References 
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Inverse Secant 

I’ 

3 

. 5 

2 

1.5 

1 

0.5 

-10 -5 
;: 

5 10 

Re[ArcSec z] ImlArcSec zl IArcSec zI - 

The function set-’ x, where secx is the SECANT and the 
superscript -1 denotes the INVERSE FUNCTION, not the 
multiplicative inverse. The inverse secant satisfies 

-1 
set x = csc 

--I & ( > 
(1) 

Inverse Sine 

for x > 0. The inverse secant is given in terms of other - 
inverse trigonometric functions by 

-1 -1 1 

set 51: = cos 0 - (3) 
X 

= cot-l 
1 

( > m 
(4) 

-1 -1 
- p-csc x=-2 1, L csc -1(-4 (5) 

-1 &?=i 
= sin - 

( > X (6) 

= tan-l(Jx2 - 1) (7) 

for 51: > 0. - 

see also INVERSE COSECANT, SECANT 

References 
Beyer, W. H. CRC Standard Mathematical Tables, 28th ed. 

Boca Raton, FL: CRC Press, pp. 141-143, 1987. 

Inverse Semigroup 
The abstract counterpart of a PSEUDOGROUP formed by 
certain subsets of a GROUPOID which admit a MULTI- 
PLICATION. 

References 
Weinstein, A. “Groupoids: Unifying Internal and External 

Symmetry.” Not. Amer. Math. Sot. 43, 744-752, 1996. 

Inverse Sine 

Re [ArcSin zj Im[ArcSin z] IArcSin 21 

121 [Zl 121 

The function sin-’ x, where sinx is the SINE and the 
superscript -1 denotes the INVERSE FUNCTION, not the 
multiplicative inverse. The inverse sine satisfies 

sin 
-1 

2 = -sin -y-x) (1) 

for POSITIVE and NEGATIVE x, and 
for POSITIVE or NEGATIVE x, and 

-1 set -lx = 7r + set (-2) (2) 
sin -1 = + -sin-l W-x2) (2) 
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A more rapidly converging form due to Euler is given by 

tan-l x= 
O” pyn!)2 xQn+l 

x (2n + l)! (+x2)n+1 (2) 
n=O 

(Castellanos 1988). The inverse tangent satisfies 

for x > 0. The inverse sine is given in terms of other - 
inverse trigonometric functions by 

sin -1 
x = cos-‘(-x) - fr x & - -1 

cos x 

-1 - 
P 

-cot-l - 

( > > - x2 

c tan-l - 

( > + - x2 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

tan-l x = - tan-l(-x) 

for POSITIVE and NEGATIVE X, and 

(3) 

(4) 

terms of other 

for POSITIVE or NEGATIVE 2, and 

1 tan-l = ix - tan-l - 0 X 
Cd1 - X2 > sin-’ x = cos-1 

Ji=T 
( > X 

= cot-l 
for x > 0. The inverse tangent is given in - 
inverse trigonometric functions by 1 

0 - X 

-1 
= csc 

tan-’ x = $T - co? 
( > 

p 
&i 

1 
( > m (5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

02) 

(13) 

= set 
-1 

= cot-y-x) - +T = + - cot-l x 

for x > 0. - -1 =sin P 
( > & see also INVERSE COSINE, SINE 

References 
Abramowitz, M. and Stegun, C. A. (Eds.). “Inverse Circu- 

lar hnct ions .” $4.4 in Handbook of Mathematical Func- 
tions with Formulas, Graphs, and Mathematical Tables, 
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for POSITIVE or NEGATIVE X, and 

1 
( > @x 
1 

0 - X 

d2T-i 

( > X 

tar? x = co? 

= cot -1 

-1 
= csc 

Inverse Tangent 

= set -‘(dx2 + 1) 

for x > 0. - 

In terms of the HYPERGEOMETRIC FUNCTION, 

tan-l x = x&(1, $; $; -x2) 

X - -- 
1 + x2 > 

IArcTan 21 - (Castellanos 1988). Castellanos (1986, 1988) also gives 
some curious formulas in terms of the FIBONACCI NUM- 

BERS, 

Re[ArcTan z] 

tan-l x = 
O” (-l)v2*+lt2n+1 

x 5”(2n + 1) (14) 
n=O 

The inverse tangent is also called the arctangent and is 
denoted either tan-’ x or arctan x. It has the MAC- 
LAURIN SERIES 

00 
- - 

5x 
n=O 

05) 
(2n + l)(u + &Tij2n+1 00 

tan-lx = - x ( 1) nx2n+1 

29-a -I- 1 
zx- ~x3+~x5-~x7+.... 

00 

Ix 
(-l)n5n+2F2n+13 - - 

n=O (272 + l)(w + JiTQ2n+1 (“) n=O 

(1) 



922 Inverse Tangent Inverse Tangent 

where To find tan-’ x numerically, the following ARITHMETXC- 
GEOMETRIC MEAN-like ALGORITHM can be used. Let 

(17) 22 -l/2 

(18) Thencompute “I’,‘+ ) 

(29) 

(30) 

and w  is the largest POSITIVE ROOT of 
ai+l = +(ai + bi) (31) 

8x1~~ -100~1~ -450~~~ +875v+625x= 0. (19) b i+1 = Jai+lbi, (32) 

The inverse tangent satisfies the addition FORMULA 
and the inverse tangent is given by 

tan-l 
tan-l =1: + tan-l y = tan -1 (33) 

(20) 

(Acton 1990). 
as well as the more complicated FORMULAS 

= tan-l (i) + tan-1 (a2 -‘ib+ 1) 

An inverse tangent tan-’ n with integral n is called re- 
ducible if it is expressible as a finite sum of the form 

(21) 1 
tan-l - = 2 tan-l 2a - tan-l 0 

1 

a ( > k&J (22) ’ 

tax? 
-1 

n= fk tan nk, 

k=l 

(34 

tan-l (i) =tan-l($---) +tar? (,+zq+l), 

(23) 
the latter of which was known to Euler. The inverse 
tangent FORMULAS are connected with many interesting 
approximations to PI 

tari’(1 +x) = +K + ix - $x2 + &x3 + &xs 

+-&x6+&x7+.... (24) 

Euler gave 

where frc are POSITIVE or NEGATIVE INTEGERS and ni 
are iINTEGERS < n. tan-’ m is reducible IFF all the 
PRIME factors of 1 + m2 occur among the PRIME factors 
of l+n2 for n = 1, l  e ‘7 m - 1. A second NECESSARY 
and SUFFICIENT condition is that the largest PRIME fac- 
tor of 1 + m2 is less than 2m. Equivalent to the second 
condition is the statement that every GREGORY NUM- 
BER t, = cot-’ x can be uniquely expressed as a sum 
in terms of t,s for which m is a STORMER NUMBER 
(Conway and Guy 1996). To find this decomposition, 
write 

arg(1 + in) = arg n(l + nki)jk, (35) 

tan-l 

where 

2*4*6 3 
+ mY + -. . 

2 

so the ratio 

k=l 

T I Ilk& -t- dfk - 
1 + in (36) 

& 

y- l+x2' (26) is a RATIONAL NUMBER. Equation (36) can also be 
written 

The inverse tangent has CONTINUED FRACTION repre- 
sentations 

r2(l + n2) = n(l + nk2)fk. 

k=l 

tar? x = 
X 

2 (27) 
Writing (34) in the form 

dJ 

1+ 
4x2 

3+ 

5+ 
9x2 

16x2 e I 

(37) 

tan-l n= fk tan -’ nk + ftan-’ 1 (38) 

k=f 

allows a direct conversion to a corresponding INVERSE 

(-I- 9-l-... COTANGENTFORMULA 

- - 
2 

. (28) cot-l n= fk cot -’ nk + ccot-’ 1, (39) 

k=l 

3-x"+ 

5-3x2+ 
25x2 

7- 5x2 +..* 

where 

k=l 

(40) 



Inverse Trigonometric Functions 

Todd (1949) gives a table of decompositions of tan-’ n 
for n 5 342. Conway and Guy (1996) give a similar 
table in terms of STQ)RMER NUMBERS. 

Arndt and Gosper give the remarkable inverse tangent 
identity 

sin [z tar? ak) 

( 1) n - 
-- - 

2n+ 1 
J 

n51T1(aj2 + 1) 

see UZSO INVERSE COTANGENT, TANGENT 
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Inverse Trigonometric finct ions 
INVERSE FUNCTIONS of the TRIGONOMETRIC FUNC- 
TIONS written cos-1 2, cot-’ x, csc -1 5, set -3 2, sin-l 5, 
and tan-’ 2. 

see also INVERSE COSECANT, INVERSE COSINE, IN- 
VERSE COTANGENT, INVERSE SECANT, INVERSE SINE, 
INVERSE TANGENT 
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Inversely Similar 

Inversion 923 

Two figures are said to be SIMILAR when all correspond- 
ing ANGLES are equal, and are inversely similar when all 
corresponding ANGLES are equal and described in the 
opposite rotational sense. 

see also DIRECTLY SIMILAR, SIMILAR 

Inversion 
T 

r 

P 
Q 3 

s 

Inversion is the process of transforming points to their 
INVERSE POINTS. This sort of inversion was first sys- 
tematically investigated by Jakob Steiner. Two points 
are said to be inverses with respect to an INVERSION 
CIRCLE with INVERSION CENTER 0 = (x0,& and IN- 
VERSION RADIUS k if PT and PS are line segments sym- 
metric about OP and tangent to the CIRCLE, and Q is 
the intersection of OP and ST. The curve to which a 
given curve is transformed under inversion is called its 
INVERSE CURVE. 

Note that a point on the CIRCUMFERENCE of the IN- 
VERSION CIRCLE is its own inverse point. The inverse 
points obey 

OP k --- 
k -0Q’ (1) 

or 
k2 =OPxOQ, (2) 

where k2 is called the POWER. The equation for the in- 
verse of the point (z, y) relative to the INVERSION CIR- 
CLE with INVERSION CENTER (~0, ~0) and inversion ra- 
dius k is therefore 

x1 = x0 + 
k2(x-x0) 

( 2 - xo)2 + (y - yo)” (3) 

Yl = yo + k”(Y - Yo) 
(x - xo)2 + (y - yo)2 l  

(4) 

In vector form, 

k2(X-X0) 
x’ = x0 + -‘-- 

Ix  - x()12 l  

(5) 

Any ANGLE inverts to an opposite ANGLE. 

in versely similar 
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Treating LINES as CIRCLES of INFINITE RADIUS, all CIR- 
CLES invert to CIRCLES. Furthermore, any two nonin- 
tersecting circles can be inverted into concentric circles 
by taking the INVERSION CENTER at one of the two lim- 
iting points (Coxeter 1969), and ORTHOGONAL CIRCLES 
invert to ORTHOGONAL CIRCLES (Coxeter 1969). 

The inverse of a CIRCLE of RADIUS a with CENTER (2, y) 
with respect to an inversion circle with INVERSION CEN- 
TER (U,O) and INVERSION RADIUS k is another CIRCLE 
with CENTER (z’,y’) = (sx, sy) and RADIUS T’ = Isla, 
where 

k2 
SE 

x2  + y2  - u2 l  

(6) 

The above plot shows a checkerboard centered at (0, 0) 
and its inverse about a small circle also centered at (0, 
0) (Dixon 1991). 

see also ARBELOS, HEXLET, INVERSE CURVE, INVER- 

SION CIRCLE, INVERSION OPERATION, INVERSION RA- 
DIUS, INVERSIVE DISTANCE, INVERSIVE GEOMETRY, 
MIDCIRCLE, PAPPUS CHAIN, PEAUCELLIER INVERSOR, 
POLAR, POLE (GEOMETRY), POWER (CIRCLE), RADI- 
CAL LINE, STEINER CHAIN, STEINER’S PORISM 
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Inversion Center 
The point that INVERSION OF A CURVE is performed 
with respect to. 

see UZSO INVERSE POINTS, INVERSION CIRCLE, INVER- 
SION RADIUS, INVERSIVE DISTANCE, POLAR, POLE 
(GEOMETRY), POWER (CIRCLE) 

Inversion Circle 
The CIRCLE with respect to which a INVERSE CURVE 
is computed or relative to which INVERSE POINTS are 
computed. 

see also INVERSE POINTS, INVERSION CENTER, INVER- 
SION RADIUS, INVERSIVE DISTANCE, MIDCIRCLE, Po- 
LAR, POLE (GEOMETRY), POWER (CIRCLE) 

Inversion Operation 
The SYMMETRY OPERATION (x,y,z) -+ (-X, -9, -z). 
When used in conjunction with a ROTATION, it becomes 
an IMPROPER ROTATION. 

Inversion Radius 
The RADIUS used in performing an INVERSION with re- 
spect to an INVERSION CIRCLE. 

see UZSO INVERSE POINTS, INVERSION CENTER, IN- 
VERSION CIRCLE, INVERSIVE DISTANCE, POLAR, POLE 
(GEOMETRY), POWER (CIRCLE) 

Inversive Distance 
The inversive distance is the NATURAL LOGARITHM of 
the ratio of two concentric circles into which the given 
circles can be inverted. Let c be the distance between 
the centers of two nonintersecting CIRCLES of RADII a 
and b < a. Then the inversive distance is 

(Coxeter and Greitzer 1967). 

The inversive distance between the SODDY CIRCLES is 
given by 

S = Zcosh-’ 2, 
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and the CIRCUMCIRCLE and INCIRCLE of a TRIANGLE 

with CIRCUMRADIUS R and1 NRADIUS T are at inversive 
distance 

s- 2 sinh-’ 

(Coxeter and Greitzer 1967, pp. 130-131). 
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Coxeter, H. S. M. and Greitaer, S. L. Geometry Revisited. 

Washington, DC: Math. Assoc. Amer., pp+ 123-124 and 
127-131, 1967. 

Inversive Geometry 
The GEOMETRY resulting from the application of the 
INVERSION operation. It can be especially powerful for 
solving apparently difficult problems such as STEINER'S 
PURISM and APOLLONIUS' PROBLEM. 

see UZSO HEXLET, INVERSE CURVE, INVERSION, PEAU- 
CELLIER INVER~~R, POLAR, POLE (GEOMETRY), 
POWER (CIRCLE), RADICAL LINE 

References 
Ogilvy, C. S. “Inversive Geometry” and “Applications of In- 

versive Geometry.” Chs. 3-4 in Excursions in Geometry. 

New York: Dover, pp. 24-55, 1990. 

Inverted Funnel 

see also FUNNEL, SINCLAIR’S SOAP FILM PROBLEM 

Inverted Snub Dodecadodecahedron 

The UNIFORM POLYHEDRON Us0 whose DUAL POLYHE- 
DRON is the MEDIAL INVERTED PENTAGONAL HEXE- 
CONTAHEDRON. It has WYTHOFF SYMBOL ] 2$5. Its 
faces are 12{ $} + 60{3} + U(5). It has CIRCUMRADIUS 
for unit edge length of 

R = 0.8516302. 

References 
Wenninger, M. J. Polyhedron Models. Cambridge, England: 

Cambridge University Press, pp. 180-182, 1989. 
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Involuntary 
A LINEAR TRANSFORMATION of period two. 
LINEAR TRANSFORMATION has the form, 

applying the transformation a second time gives 

ax+p (“2+Py)X+P(a+S) A” = - - 
yX’+J - (a + 6)7X + py  + h2 l  

For an involuntary, X” = X, so 

-y(a + 6)X2 + (a2 - a2)X - (a + 6)p = 0. 

Since each &EFFICIENT must vanish separately, 

ay+yd=O 

a2 - cy2 = 0 

Crp+pS=O. 

Since a 

(1) 

(2) 

(3) 

(4 

(5) 

(6) 

1 1 The first equation gives S = 3~. Taking 6 = a woula 
require y = p = 0, giving X = X’, the identity transfor- 
mation. Taking 6 = -a gives S = -QI, so 

the general form of an INVOLUTION. 

see also CROSS-RATIO, INVOLUTION (LINE) 

References 
Woods, F. S. Higher Geometry: An Introduction to A 

Methods in Analytic Geometry. New York: Dover, 
15, 1961. 

Involute 

dvanced 
pp. 14- 

Invertible Knot 
A knot which can be deformed into itself but with the 
orientation reversed. The simplest noninvertible knot is 
08017. No general technique is known for determining 
if a KNOT is invertible. Burde and Zieschang (1985) 
give a tabulation from which it is possible to extract the 
invertible knots up to 10 crossings. 

see also AMPHICHIRAL KNOT 

Attach a string to a point on a curve. Extend the string 
so that it is tangent to the curve at the point of at- 
tachment. Then wind the string up, keeping it always 
taut. The LOCUS of points traced out by the end of 
the string is the involute of the original curve, and the 
original curve is called the EVOLUTE of its involute. Al- 
though a curve has a unique EVOLUTE, it has infinitely 
many involutes corresponding to different choices of ini- 
tial point. An involute can also be thought of as any 



926 Involute Irradiation III usion 

curve ORTHOGONAL to all the TANGENTS to a given 
curve. 

The equation of the involute is 

ri = IT - S*j (1) 

where 7@ is the TANGENT VECTOR 

dr 

+= dt 
dr 

I I dt 

(2) 

and s is the ARC LENGTH 

This can be written for a parametrically represented 
function (f(t), g(t)) as 

x(t) = f - sf’ 
pTp 

(4) 
I 

y(t) = g - d+ + gt2 ’ 
(5) 

Involution (Group) 
An element of order 2 in a GROUP (i.e., an element A 
of a GROUP such that A2 = I, where 1 is the IDENTITY 
ELEMENT). 

see also GROUP, IDENTITY ELEMENT 

Involution (Line) 
Pairs of points of a line, the product of whose distances 
from a FIXED POINT is a given constant. This is more 
concisely defined as a PROJECTIVITY of period two. 

see UZSO INVOLUNTARY 

Involution (Operator) 
An OPERATOR of period 2, i.e., an OPERATOR * which 
satisfies ((a)*)* = a. 

Involution (Set) 
An involution of a SET S is a PERMUTATION of S which 
does not contain any cycles of length > 2. The PER- 
MUTATION MATRICES of an involution are SYMMETRIC. 
The number of involutions I(n) of a SET containing the 
first n integers is given by the RECURRENCE RELATION 

Curve 

astroid 
cardioid 

Involute 

astroid l/2 as large 
cardioid 3 times as large 

catenary 
circle catacaustic 

for a point source 
circle 
cycloid 
deltoid 
ellipse 
epicycloid 
hypocycloid 
logarithmic spiral 
Neile’s parabola 
nephroid 

tractrix 
limaqon 

circle involute (a spiral) 
equal cycloid 
deltoid l/3 as large 
ellipse involute 
reduced epicycloid 
similar hypocycloid 
equal logarithmic spiral 
parabola 
Cayley’s sextic 

nephroid neDhroid 2 times as 1arEe 

I(n) = I(n - 1) -j- (7-t - l)I(n - 2). 

For n = 1, 2, . .*, the first few values of I(n) are 1, 2, 
4, 10, 26, 76, . . . (Sloane’s A000085). The number of 
involutions on n symbols cannot be expressed as a fixed 
number of hypergeometric terms (Petkovgek et al, 1996, 
p. 160). 

see UZSO PERMUTATION 
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see also EVOLUTE, HUMBERT'S THEOREM 
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Lee, X. “Involute.” http://www.best.com/-xah/Special 
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Lockwood, E. H. “Evolutes and Involutes.” Ch. 21 in A Book 
of Cumres. Cambridge, England: Cambridge University 
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Pappas, T. “The Involute.” The Joy of Mathematics. San 
Carlos, CA: Wide World Publ./Tetra, p. 187, 1989. 
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Involution (Transformation) 
A TRANSFORMATION of period 2. 

Irradiation Illusion 

The ILLUSION shown above which was discovered by 
Helmholtz in the 19th century. Despite the fact that 
the two above figures are identical in size, the white 
hole looks bigger than the black one in this ILLUSION. 

References 
Pappas, T. “Irradiation Optical Iliusion.” The Joy of Mathe- 

matics. San Carlos, CA: Wide World Publ./Tetra, p. 199, 
1989. 
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hat ional Number 
A number which cannot be expressed as a FRACTION p/q 

for any INTEGERS p and q. Every TRANSCENDENTAL 
NUMBER is irrational. Numbers of the form nllm are 
irrational unless n is the nzth POWER of an INTEGER. 

Numbers of the form log, nz, where log is the LOGA- 
RITHM, are irrational if ~2 and n are INTEGERS, one of 
which has a PRIME factor which the other lacks. er is 
irrational for rational T # 0. The irrationality of e was 
proven by Lambert in 1761; for the general case, see 
Hardy and Wright (1979, p. 46). rTTn is irrational for 
POSITIVE integral n. The irrationality of x was proven 
by Lambert in 1760; for the general case, see Hardy and 
Wright (1979, p. 47). AP~RY'S CONSTANT c(3) (where 
c(z) is the RIEMANN ZETA FUNCTION) was provedirra- 
tional by Ap&y (Ap&y 1979, van der Poorten 1979). 

From GELFOND'S THEOREM, a number of the form ab 
is TRANSCENDENTAL (and therefore irrational) if a is 
ALGEBRAIC # 0, 1 and bis irrational and ALGEBRAIC. 
This establishes the irrationality of em (since (-l)Bi = 

( > e ix -i = em), 2\/2, and err. Nesterenko (1996) proved 
that 7r + err is irrational. In fact, he proved that r, en 
and r(l/4) are algebraically independent, but it was not 
previously known that x + er was irrational. 

Given a POLYNOMIAL equation 

x m  + cm_lxm-- l  + l  ’  l  + co,  
(1) 

where ci are INTEGERS, the roots x:i are either integral 
or irrational. If cos(28) is irrational, then so are co&, 
sin@, and tan& 

Irrationality has not yet been established for 2”, re, @, 
ory (where y is the EULER-MASCHERONI CONSTANT). 

QUADRATIC SURDS are irrational 
periodic CONTINUED FRACTIONS. 

numbers which 

HURWITZ'S IRRATIONAL NUMBER THEOREM gives 
bounds of the form 

I I 1 
a- p_ <- 

Q Lq2 
(2) 

for the best rational approximation possible for an ar- 
bitrary irrational number a, where the L, are called 
LAGRA NGE NUMBERS and get steadily larger for each 
“bad” set of irrational numbers which is excluded. 

The SERIES 

where uk(n) is the DIVISOR FUNCTION,~~ 
JC = 1 and 2. The series 

O” a(n) 
): n! ’ 
n=l 

irrational 

(3) 

for 

00 00 x - 1 - x d( n 1 = 
2n 1 2n 7 (4) 

n=l n=l 

where d(n) is the number of divisors of n, is also irra- 
tional, as are 

00 
n 

x 
1 O” ( for Z--- 1) 

qn + T >: 
n=l n=l Q” -I- T 

for q an INTEGER other than p, &l, and T a RATIONAL 
NUMBER other than 0 or -qn (Guy 1994). 

see also 
ALMOST 

ALGEBRAIC 
INTEGER,D 

IN 
IRI 

TEGER 
CHLET 

, ALGEBRAIC NUMBER, 
FUNCTION,FERGUSON- 

FORCADE ALGORITHM, GELFOND'S THEOREM, HWR- 

WIT& IRRATIONAL NUMBER THEOREM,NEARNOBLE 
NUMBER, 
QUADRAT 

NOBLENUMBER 
~c IRRATIONAL 

,PYTHAG 
NUMBER, 

ORAS'S THEOREM, 
RATIONAL NUM- 

BER,~EGRE'S THEOREM, TRANSCENDENTAL NUMBER 
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Irrationality Measure 

see LIOUVILLE-ROTH CONSTANT 

Irrationality Sequence 
A sequence of POSITIVE INTEGERS {an} such that 
C l/(anbn) is IRRATIONAL for all integer sequences 

{b,}. Erdiis showed that { 22”} is an irrationality se- 
quence. 

References 
Guy, R. K. “Irrationality Sequence.” SE24 in Unsolved Prob- 

lems in Number Theory, 2nd ed. New York: Springer- 
Verlag, p. 225, 1994. 

Irreducible Matrix 
A SQUARE MATRIX which is not REDUCIBLE is said to 
be irreducible. 
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Irreducible Polynomial 
A POLYNOMIAL or polynomial equation is said to be 
irreducible if it cannot be factored into polynomials of 
lower degree over the same FIELD. 

The number of binary irreducible polynomials of degree 
n is equal to the number of n-bead fixed NECKLACES 
of two colors: 1, 2, 3, 4, 6, 8, 14, 20, 36, . . . (Sloane’s 
AO00031), the first few of which are given in the follow- 
ing table. 

n Polynomials 

1 2 
2 x,x+1 
3 x,X2+x+1,2+1 
4 x, x3 + x + 1, X3 + EC2 + 1, X + 1 

see U~SO FIELD, GALUIS FIELD, NECKLACE, POLYNOM- 
IAL, PRIMITIVE IRREDUCIBLE POLYNQMIAL 

References 
Sloane, N. J. A. Sequences A000031/M0564 in “An On-Line 

Version of the Encyclopedia of Integer Sequences.” 
Sloane, N. J. A. and ‘Plouffe, S. Extended entry in 2%~ Ency- 

clopedia of Integer Sequences. San Diego: Academic Press, 
1995* 

Irreducible Represent at ion 
An irreducible representation of a GRoUP is a represen- 
tation for which there exists no UNITARY TRANSFORMA- 
TION which will transform the representation MATRIX 
into block diagonal form. The irreducible representa- 
tion has a number of remarkable properties. 

see also GROUP, IT& THEOREM, UNITARY TRANSFOR- 

MATION 

Irreducible Semiperfect Number 

see PRIMITIVE PSEUDOPERFECT NUMBER 

Irreducible Tensor 
Given a general second RANK TENSOR Aij and a MET- 
RIC go, define 

0 E Aijgij = Ai (1) 

W 
i- = pAjk 

(2) 

Oij E i(A;j + Aji) - $gtijAt, (3) 

where 6ij is the KRONECKER DELTA and eijk is the 
LEVI-CIVITA SYMBOL. Then 

cij + i6gij -t +Eijkw’ 

= [i(A;j + Aji) - +gijAk] + iA;gij + iEijk[eXpkAAp] 

= i(Aij + Aji) + $ (S?dT - 6rJt)A~p 

= $(A;j + Aji) + $(A;j - Aji) = Aij, (4 

where 8, wi, and gij are TENSORS of RANK 0, 1, and 2. 

see also TENSOR 

I s 

s(q1,..* dlt) < wll,~-,~t)* 

For a summary, see Mynhardt (1992). 

Bounds Reference 
6 Brewster et al. 1989 
8 Brewster et al. 1989 

12 Brewster et al. 1989 
15 Brewster et al. 1990 
18 Chen and Rousseau 1995, 

Cockayne et al. 1991 
13 Cockayne ei! al. 1992 
13 Cockayne and Mynhardt 1994 

4393) 
SC4 4) 
4% 5) 
s(3,6> 
4% 7) 

References 

Irregular Pair 

Irredundant Ramsey Number 
Let GI, G2, . . . . Gt be a ~-EDGE coloring of the COM- 
PLETE GRAPH K,, where for each i = 1, 2, , . . , t, Gi is 
the spanning SUBGRAPH of Km consisting of all EDGES 
colored with the ith color. The irredundant Ramsey 
number s(ql,. . . , qt) is the smallest INTEGER n such 
that for any ~-EDGE coloring of Kn, the COMPLEMENT 
GRAPH Gi has an irredundant set of size pi for at least 
one i = 1, . . . . t. Irredundant Ramsey numbers were 
introduced by Brewster et al. (1989) and satisfy 

Brewster, R. C.; Cockayne, E. J.; and Mynhardt, C. M. “Irre- 
dundant Ramsey Numbers for Graphs.” J. Graph Theory 
13, 283-290,1989. 

Brewster, R. C.; Cockayne, E. J.; and Mynhardt, C. M. “The 
Irredundant Ramsey Number s(3,6).” Quaest. 1Muth. 13, 
141-157, 1990. 

Chen, G. and Rousseau, C. C. “The Irredundant Ramsey 
Number s(3,7)? J. Gruph. Th. 19, 263-270, 1995. 

Cockayne, E. J.; Exoo, G.; Hattingh, 5. H.; and Mynhardt, 
C. M. “The Irredundant Ramsey Number s(4,4).” Util. 
IMath. 41, 119-128, 1992. 

Cockayne, E. J.; Hattingh, J. H.; and Mynhardt, C. M. “The 
Irredundant Ramsey Number s(3,7)? Util. Math. 39, 
145-160, 1991. 

Cockayne, E. J. and Mynhardt, C. M. “The Irredundant 
Ramsey Number s(3,3,3) = 13.” J. Graph. Th. 18, 595- 
604, 1994. 

Hattingh, J. H. “On Irredundant Ramsey Numbers for 
Graphs.” J. Graph Th. 14, 437-441, 1990. 

Mynhardt, C. M. ‘Irredundant Ramsey Numbers for Graphs: 
A Survey.” Congres. Numer. 80, 65-79, 1992. 

Irreflexive 
A RELATION R on a SET S is irreflexive provided that 
no element is related to itself; in other words, xRx for 
no x in S. 

see also RELATION 

Irregular Pair 
If p divides the NUMERATOR of the BERNOULLI NUMBER 
&k for 0 < 2k < p- 1, then (p, 2k) is called an irregular 
pair. For p < 30000, the irregular pairs of various forms 
are p = 16843 for (p, p - 3), p = 37 for (p, p - 5), none 
for (p, p - 7), and p = 67,877 for (p, p - 9). 

see also BERNOULLI NUMBER, IRREGULAR PRIME 

References 
Johnson, W. “Irregular Primes and Cyclotomic Invariants.” 

Math. Cornput. 29, 113-120, 1975. 
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Irregular Prime 
PRIMES for which Kummer’s theorem on the unsolvabil- 
ity of FERMAT'S LAST THEOREM does not apply. An 
irregular prime p divides the NUMERATOR of one of the 
BERNOULLI NUMBERS Blo, B12, . . . . &-2, as shown 
by Kummer in 1850. The FERMAT EQUATION has no 
solutions for REGULAR PRIMES. 

0 20 40 60 80 100 120 

Number of Irregular Primes 

An INFINITE number of irregular PRIMES exist, as 
proven in 1915 by Jensen. The first few irregular primes 
are 37, 59, 67, 101, 103, 131, 149, 157, . l  l  (Sloane’s 
A000928). Qf the 283,145 PRIMES less than 4 x 106, 
111,597 (or 39.41Y) 0 are regular. The conjectured FRAC- 

TION is 1 - e-l/’ = 39.35% (Ribenboim 1996, p. 415). 

see UZSO BERNOULLI NUMBER, FERMAT'S LAST THEO- 
REMJRREGULAR PAIR,REGULAR PRIME 

References 
Buhler, J.; Crandall, R.; Ernvall, R.; and Metsankyla, T. “IT- 

regular Primes and Cyclotomic Invariants to Four Million.” 
Math. Comput. 60, 151-153, 1993. 
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ory of Numbers, 5th ed. Oxford, England: Clarendon 
Press, p. 202, 1979. 

Johnson, W. “Irregular Primes and Cyclotomic Invariants.” 
Math. Comput. 29, 113-120, 1975. 
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Version of the Encyclopedia of Integer Sequences.” 

Stewart, C. L. “A Note on the Fermat Equation.” Mathe- 
matika 24, 130-132, 1977. 

Irregular Singularity 
Consider a second-order ORDINARY DIFFERENTIAL 
EQUATION 

Y” + p(x)y’ + Q(x)y = 0, 

If P(x) and Q(x) remain FINITE at x = x0, then 
x0 is called an ORDINARY POINT. If either P(s) or 
Q(s) diverges as x --+ x0, then x0 is called a singular 
p,oint. If P(x) diverges more quickly than l/(x - x0), 
so (x - ZO) P(z) approaches INFINITY as CI: -+ ~0, or 
Q(x) diverges more quickly than l/(x - xo)‘Q so that 
(x - x~)~Q(x) goes to INFINITY as z + x0, then 20 is 
called an IRREGULAR SINGULARITY (or ESSENTIAL SIN- 
GULARITY). 

see also ORDINARY POINT,REGULAR SINGULAR POINT, 
SINGULAR POINT (DIFFERENTIAL EQUATION) 

References 
Arfken, G. “Singular Points.” $8.4 in Mathematical Meth- 

ods for Physicists, 3rd ed. Orlando, FL: Academic Press, 
pp. 451-453 and 461-463, 1985. 

Irrotational Field 
A VECTOR FIELD v for which the CURL vanishes, 

vxv=o. 

see also BELTRAMI FIELD, CONSERVATIVE FIELD, 
SOLENOIDAL FIELD,~ECTOR FIELD 

Isarit hm 

see EQUIPOTENTIAL CURVE 

ISBN 
Publisher Digits 

Addison-Wesley 0201 
Amer. Math. Sot. 0821 
Cambridge University Press 0521 
CRC Press 0849 
Dover 0486 
McGraw-Hill 0070 
Oxford University Press 0198 
Springer-Verlag 0387 
Wilev 0471 

The International Standard Book Number (ISBN) is a 
lo-digit CODE which is used to identify a book uniquely. 
The first four digits specify the publisher, the next five 
digits the book, and the last digit &o is a check digit 
which may be in the range O-9 or X (where X equals 
10). The check digit is computed from the equation 

1Odr + 9d2 + 8d3 + . . . + 2dg + dlo E 0 (mod 11). 

For example, the number for this book is o-8493-9640-9, 
and 

as required. 

see also CODE 

References 
Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetter- 

ling, W. T. Numerical Recipes in FORTRAN: The Art of 
Scientific Computing, 2nd ed. Cambridge, England: Cam- 
bridge University Press, p* 894, 1992. 
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Island 

Isodynamic Points 

Reierences 
K&m&n, T. von and Biot, M. A. lMuthematica2 1Methds in 

Engineering: An Introduction to the Mathematical Treat- 
ment of Engineering Problems. New York: McGraw-Hill, 
pp. 3 and 7, 1940. 

Isoclinic Groups 
Two GROUPS G and H are said to be isoclinic if there 
are isomorphisms G/Z(G) + H/Z(H) and G’ -+ H’, 
where Z(G) is the CENTER of the group, which identify 
the two commutator maps. 

References 
Conway, J. H.; Curtis, R. T.; Norton, S. P.; Parker, R. A.; 

and Wilson, R. A. “Isoclinism.” 56.7 in Atlas of Fi- 
nite Groups: Maximal Subgroups and Ordinary Characters 
for SimpEe Groups. Oxford, England: Clarendon Press, 
pp. xxiii-xxiv, 1985. If an integrable QUASIPERIODIC system is slightly per- 

turbed so that it becomes nonintegrable, only a finite 
number of ~-CYCLES remain as a result of MODE LOCK- 
ING. One will be elliptical and one will be hyperbolic. 

Isodynamic Points 

Surrounding the ELLIPTIC FIXED POINT is a region of 
stable ORBITS which circle it, as illustrated above in the 
STANDARD MAP with K = 1.5. As the map is iteratively 
applied, the island is mapped to a similar structure sur- 
rounding the next point of the elliptic cycle. The map 
thus has a chain of islands, with the FIXED PRINT alter- 
nating between ELLIPTIC (at the center of the islands) 
and HYPERBOLIC (between islands). Because the un- 
perturbed system goes through an INFINITY of rational 
values, the perturbed system must have an INFINITE 
number of island chains. 

see also MODE LOCKING, ORBIT (MAP), QUASIPERI- 
ODIC FUNCTION The first and second isodynamic points of a TRIANGLE 

AABC can be constructed by drawing the triangle’s 
ANGLE BISECTORS and EXTERIOR ANGLE BISECTORS. 
Each pair of bisectors intersects a side of the triangle 
(or its extension) in two points Dil and Daz, for i = 1, 
2, 3. The three CIRCLES having DllD12, DzlD22, and 
D~lD32 as DIAMETERS are the APOLLONIUS CIRCLES 
Cl, Cz, and C3. The points S and S’ in which the three 
APOLLONIUS CIRCLES intersect are the first and second 
isodynamic points, respectively. 

Isobaric Polynomial 
A POLYNOMIAL in which the sum O~SUBSCRIPTS is the 
same in each term. 

see also HOMOGENEOUS POLYNOMIAL 

Isochronous Curve 

see S 
LEM 

EMICU BICAL PARABOLA, TAUTOCHRONE PROB- 

Sand S’have TRIANGLE CENTER FUNCTIONS 

Isoclinal 0 = sin(A rt: in), 
see ISOCLINE 

respectively. The ANTIPEDAL TRIANGLES of both 
points are EQUILATERAL and have AREAS Isocline 

A graphical method of solving an ORDINARY DIFFER- 
ENTIAL EQUATION ofthe form A’ = 2A[cot w  cot( in)], 

2 =fhd 
where w is the BROCARD ANGLE. 

The isodynamic points are ISOGONAL CONJUGATES of 
the ISOGONIC CENTERS. They lie on the BROCARD by plotting a series of curves f(z, y) = [const], then 

drawing a curve PERPENDICULAR to each curve such AXIS. The distances from either isodynamic point to 
the VERTICES are inversely proportional to the sides. 
The PEDAL TRIANGLE of either isodynamic point is an 
EQUILATERAL TRIANGLE. An INVERSION with either 

that it satisfies the initial condition. This curve is the 
solution to the ORDINARY DIFFERENTIAL EQUATION. 



hoenergetic Nondegeneracy Isogonal Line 931 

isodynamic point as the INVERSION CENTER transforms SECTIONS that CIRCUMSCRIBE the TRIANGLE. Thetype 
the triangle into an EQUILATERAL TRIANGLE. of CYNIC SECTION is determined by whether the line d 

The CIRCLE which passes through both the isodynamic 
Doints and the CENTROID of a TRIANGLE is known as 

meets the CIRCUMCIRCLE C’, 

1. If d does not intersect C’, the isogonal transform is 

the PARRY CIRCLE. an ELLIPSE; 

see UZSO APOLLONXUS CIRCLES, BRUCARD AXIS, CEN- 2. If d is tangent to C’, the transform is a PARABOLA; 

TROID (TRIANGLE), ISOGONIC CENTERS, PARRY CIR- 3. If d cuts C’, the transform is a HYPERBOLA, which 

CLE is a RECTANGULAR HYPERBOLA if the line passes 

References 
Gallatly, W. The Modern Geometry of the Triangle, 2nd ed. 

London: Hodgson, p+ 106, 1913. 
Johnson, R. A, Modern Geometry: An Elementary Treatise 

on the Geometry of the Triangle and the Circle. Boston, 
MA: Houghton Mifflin, pp. 295-297, 1929. 

through the CIRCUMCENTER 

(Casey 1893, Vandeghen 1965). 

The isogonal conjugate of a point on the CIRCUMCIRCLE 
is a POINT AT INFINITY (and conversely). The sides of 
the PEDAL TRIANGLE of a point are PERPENDICULAR to 

Kimberling, C. “Central Points and Central Lines in the 
Plane of a Triangle.” Math. kfag. 67, 163-187,1994. 

the connectors of the corresponding VERTICES with the 
isogonal conjugate. The isogonal conjugate of a set of 

Isoenergetic Nondegeneracy 
points is the LOCUS of their isogonal conjugate points. 

The condition for isoenergetic nondegeneracy for a Ham- The product of ISOTOMIC and isogonal conjugation is a 

iltonian COLLINEATION which transforms the sides of a TRIAN- 

ff = Ho(I) + &(I,@) GLE to themselves (Vandeghen 1965). 

see UZSO ANTIPEDAL TRIANGLE, COLLINEATION, Iso- 
is 

a2H d 

lo I 

GONAL LINE, ISOTOME CONJUGATE POINT, LINE AT 
sIiaIj aIi INFINITY, SYMMEDIAN LINE 
E!l 0 

#O 9 
aIj References 

which guarantees the EXISTENCE on every energy level 
Casey, J. A Treatise on the Analytical Geometry of the Point, 

surface of a set of invariant tori whose complement has 
Line, Circle, and Conic Sections, Containing an Account 
of Its Must Recent Extensions with Numerous Examples, 

asmall MEASURE. 2nd rev. en2. ed. Dublin: Hodges, Fig@, & Co., 1893. 

References 
Johnson, R. A. Modern Geometry: An Elementary Treatise 

on the Geometry of the Sangle and the Circle. Boston, 
Tabor, M. Chaos and Integrubility in Nonlinear Dynamics: MA: Houghton Mifflin, pp. 153-158, 1929. 

An Introduction. New York: Wiley, pp. 113-124, 1989. Vandeghen, A. “Some Remarks on the Isogonal and Cevian 

Isogonal Conjugate 

A R 

The isogonal conjugate X-l of a point X in the plane of 
the TRIANGLE AABC is constructed by reflecting the 
lines AX, BX, and CX about the ANGLE BISECTORS 
at A, B, and C. The three reflected lines CONCUR at 
the isogonal conjugate. The TRILINEAR COORDINATES 

Transforms. Alignments of Remarkble Points of a Trian- 
gle.” Amer. Math. Monthly 72, 1091-1094, 1965. 

Isogonal 

A B 

The line L’ through a TRIANGLE VERTEX obtained by 
reflecting an initial line L (also through a VERTEX) 
about the ANGLE BISECTOR. If three lines from the 

of the isogonal conjugate of the point with coordinates VERTICES of a TRIANGLE AABC are CONCURRENT at 
X = L1 LzL3, then their isogonal lines are also CON- 

a:p:y CURRENT, and the point of concurrence X’ = L’, LkL$ 

is called the ISOGONAL CONJUGATE point. 

-1 -1 
a :p : y-l* 

see &O ISOGONAL CONJUGATE 

References 

Isogonal conjugation maps the interior of a TRIANGLE 
Johnson, R* A. Modern Geometry: An Elementary Treatise 

on the Geometry of the Triangle and the Circle. Boston, 
onto itself. This mapping transforms lines onto CONIC MA: Houghton Mifflin, pp. 153-157, 1929. 
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Isogonic Centers Isolated Point 
The first isogonic center Fl of a TRIANGLE is the FER- 

MAT POINT. The second isogonic center & is con- 
structed analogously with the first isogonic center ex- 
ceptthatfor &, the EQUILATERAL TRIANGLES are con- 
structed on the same side of the opposite VERTEX. The 
second isogonic center has TRIANGLE CENTER FUNC- 
TION 

A point on a curve, also known as an ACNODE or HER- 
MIT POINT, which has no other points in its NEIGHBOR- 
HOOD. 

Isolated Singularity 

a = csc(A - ;T). 

Its ANTIPEDAL TRIANGLE is EQUILATERAL and has 
AREA 

An isolated singularity is a SINGULARITY for which there 
exists a (small) REAL NUMBER E such that there are no 
other SINGULARITIES withina NEIGHBORHOOD ofradius 
c centered about the SINGULARITY. 

2A = [-I + cotwcot($r)], 

where w is the BROCARD ANGLE. 

The first and second isogonic centers are ISOGONAL 
CONJUGATES of the ISODYNAMIC POINTS. 

The types of isolated singularities possible for CUBIC 
SURFACES have been classified (SchMi 1864, Cayley 
1869, Bruce and Wall 1979) and are summarized in the 
following table from Fischer (1986). 

Double Pt, Symbol Normal Form 

see also BROCARD ANGLE, EQUILATERAL TRIANGLE, 
FERMAT POINT,~SODYNAMIC POINTS,~SOGONAL CON- 
JUGATE 

Name 

conic c2 

References 
Gallatly, W. The Modern Geometry of the Triangle, 2nd ed. 

London: Hodgson, p. 107, 1913. 
Kimberling, C. “Central Points and Central Lines in the 

Plane of a Triangle.” Math. Msg. 67, 163-187, 1994. 

Isograph 
The substitution of reie for z in a POLYNOMIAL p(z). 

p(z) is then plotted as a function of B for a given T in 
the COMPLEX PLANE. By varying T so that the curve 
passes through the ORIGIN, it is possible to determine a 
value for one ROOT of the POLYNOMIAL. 

biplanar 
biplanar 
biplanar 
biplanar 
uniplanar 
uniplanar 
uniplanar 
elliptic cone pt 

see also CUBIC SURFACE, RATIONAL DOUBLE POINT, 
SINGULARITY 

References 

Isohedral Tiling 
Let S(T) be the group of symmetries which map a 
MONOHEDRAL TILING T onto itself. The TRANSITIV- 
ITY CLASS of a given tile T is then the collection of all 
tiles to which T can be mapped by one of the symmetries 
of S(T). If T has k TRANSITIVITY CLASSES, then T is 
said to be Ic-isohedral. Berglund (1993) gives examples 
of k-isohedral tilings for k = 1, 2, and 4. 

see also ANISOHEDRAL TILING 

Bruce, J. and Wall, C. T. C. “On the Classification of Cubic 
Surfaces.” J. London Math. Sot. 19, 245-256, 1979. 

Cayley, A. “A Memoir on Cubic Surfaces.” Phil. Trans. Roy. 
Sot. 159, 231-326, 1869. 

Fischer, G. (Ed.). Mathematical Models from the Collections 
of Universities and Museums. Braunschweig, Germany: 
Vieweg, pp. 12-13, 1986. 

Morse, P. M. and Feshbach, H. Methods of Theoretical Phys- 
ics, Part I. New York: McGraw-Hill, pp. 380-381, 1953. 

Schl%li, L. “On the Distribution of Surfaces of Third Order 
into Species.” Phil. Trans. Roy. Sot. 153, 193-247, 1864. 

References 
Berglund, J. “IS There a k-Anisohedral Tile for k > 5?” - 

Amer. Math. Monthly 100, 585-588, 1993. 
Griinbaum, B. and Shephard, G. C. “The 81 Types of Isohe- 

dral Tilings of the Plane.” Math. Proc. Cambridge Philos. 
Sot. 82, 177-196, 1977. 

Isolating Integral 
An integral of motion which restricts the PHASE SPACE 
available to a DYNAMICAL SYSTEM. 

Isometry 
A BIJECTIVE MAP between two METRIC SPACES that 

Isohedron preserves distances, i.e., 

A convex POLYHEDRON with symmetries acting transi- 
tively on its faces. Every isohedron has an EVEN number 
of faces (Griinbaum 1960). 

References 
Griinbaum, B. “On Polyhedra in E3 Having All Faces Con- 

gruent .” Bull. Research Council Israel 8F, 215-218, 1960. 
Griinbaum, B. and Shepard, G. C. “Spherical Tilings with 

Transitivity Properties.” In The Geometric Vein: The 
Coveter Festschrifi (Ed. C. Davis, B. Griinbaum, and 
F. Shenk). New York: Springer-Verlag, 1982. 

where f is the MAP and d(l 
tion. 

An isometry of the PLANE is a linear transformation 
which preserves length. Isometries include ROTATION, 
TRANSLATION, REFLECTION, GLIDES, and the IDEN- 
TITY MAP. If an isometry has more than one FIXED 

Isometry 

Coxeter 

x2 + y2 + x2 
Diagram 

Al 
B3 x2 + y2 + z3 
B4 x2 + y2 + z4 

B5 x2 + y2 + z5 

B6 x2 + y2 + 2 

u6 x2 + “(Y2 + z2) 
u7 x2 + z(y2 + z3) 
us x2 + y3 + z4 

XY2 - 4x3 

-g2x2y +93x3 

A2 

A3 

A4 

~45 

D4 

D5 

E6 

Es 

,b) is the DISTANCE func- 
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POINT, it must be either the identity transformation or 
a reflection. Every isometry of period two (two appli- 
cations of the transformation preserving lengths in the 
original configuration) is either a reflection or a half turn 
rotation. Every isometry in the plane is the product of 
at most three reflections (at most two if there is a FIXED 
POINT), Every finite group of isometries has at least one 
FIXED POINT. 

see dso DISTANCE, EUCLIDEAN MOTION,HJELMSLEV'S 
THEOREM, LENGTH (CURVE), REFLECTION, ROTA- 
TION, TRANSLATION 

References 
Gray, A. “Isometrics of Surfaces.” $13.2 in IModerlz Difleren- 

tial Geometry of Curves and Surfaces. Boca Raton, FL: 
CRC Press, pp. 255-258, 1993. 

Isometric Latitude 
An AUXILIARY LATITUDE which is directly proportional 
to the spacing of parallels of LATITUDE from the equator 
on an ellipsoidal MERCATOR PROJECTION. It is defined 

bY 

where the symbol 7 is sometimes used instead of $. The 
isometric latitude is related to the CONFORMAL LATI- 
TUDE by 

$ = In tan( $r + ix). (2) 

The inverse is found by iterating 

4=2tan (3) 

with the first trial as 

40 = Ztan-l(e’) - +. 

SE UZSO LATITUDE 

(4 

References 
Adams, 0. S. “Latitude Developments Connected with 

Geodesy and Cartography with Tables, Including a Table 
for Lambert Equal-Area Meridional Projections.” Spec. 
Pub. No. 67. U. S. Coast and Geodetic Survey, 1921. 

Snyder, J. P. Map Projections-A Working Manual. U. S. 
Geological Survey Professional Paper 1395. Washington, 
DC: U. S. Government Printing Office, p. 15, 1987. 

Isomorphic Graphs 
Two GRAPHS which contain the same number of VER- 
TICES connected in the same way are said to be isomor- 
phic. Formally, two graphs G and H with VERTICES 
vn = (1, 2, . . . , n} are said to be isomorphic if there is 
a PERMUTATION p of Vn such that {u,w} is in the set 
of EDGES E(G) IFF {p(&p(v)} is in the set of EDGES 

E(H). 

Isomorphic Groups 
Two GROUPS are isomorphic if the correspondence be- 
tween them is ONE-TO-ONE and the “multiplication” 
table is preserved. For example, the POINT GROUPS C2 
and D1 are isomorphic GROUPS, written C2 Z D1 or 
c 2+ D1 (Shanks 1993). Note that the symbol .N is 
also used to denote geometric CONGRUENCE. 

References 
Shanks, D. Solved and Unsolved Problems in Number Theory, 

4th ed. New York: Chelsea, 1993. 

Isomorphic Posets 
Two POSETS are said to be isomorphic if their %truc- 
tures” are entirely analogous. Formally, POSETS P = 

(X, 5) and Q = (X’, <‘> are isomorphic if there is a 
BIJECTION f from X to X’ such that x < x’ precisely - 
when f(z) 2’ f(z’). 

Isomorphism 
Isomorphism is a very general concept which appears in 
several areas of mathematics. Formally, an isomorphism 
is BIJECTIVE MORPHISM. Informally, an isomorphism 
is a map which preserves sets and relations among ele- 
ments. 

A space isomorphism is a VECTOR SPACE in which ad- 
dition and scalar multiplication are preserved. An iso- 
morphism of a TOPOLOGICAL SPACE is called a HOME- 
OMORPHISM. 

Two groups G1 and Gz with binary operators + and x 
are isomorphic if there exists a map f : G1 e G2 which 
satisfies 

f(x+y) = f(x) x f(Yb 

An isomorphism preserves the identities and inverses of 
a GROUP. A GROUP which is isomorphic to itself is 
called an AUTOMORPHISM. 

see 
TH 

also A 
EOREM, 

UTOMORP HISM, Ax-K 
HOMEOM ORPHISM, M 

CHEN ISOMORPHISM 
RPHIS ,M 

Isoperimetric Inequality 
Let a PLANE figure have AREA A and PERIMETER p. 

Let the CIRCLE of PERIMETERS have RADIUS T. Then 

where the quantity on the left is 
METRIC QUOTIENT. 

known as the ISOPERI- 

References 
Chartrand, G. “Isomorphic Graphs.” 52.2 in Introductory 

Graph Theory. New York: Dover, pp. 32-40, 1985. 
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Isoperimetric Point 

/,~~~--~~~\,,, 

1 0 
. / 

--- / 

The point S’ which rnaiei the PERIMETERS of the TRI- 

ANGLES ABS’C, ACS’A, and AAS’B equal. The 

isoperimetric point exists IFF the largest ANGLE of the 
triangle satisfies 

max(A, B, C) < 2sin-I( 6) = 1.85459 rad = 106.26*, 

or equivalently 

a+b+c>4R+r, 

where a, b, and c are the side lengths of OABC, T is the 
INRADIUS, and R is the CIRCUMRADIUS. The isoperi- 
metric point is also the center of the outer S~DDY CIR- 

CLE of AABC and has TRIANGLE CENTER FUNCTION 

a=l- 
2A 

a(b + c - a) 
= sec($A) cos(@) cos(@) - 1. 

see also EQUAL DETOUR POINT, PERIMETER, SODDY 
CIRCLES 

References 
Kimberling, C. ‘Central Points and Central Lines in the 

Plane of a Triangle.” Math. Mug. 67, 163-187, 1994. 
Kimberling, C. “Isoperimetric Point and Equal Detour 

Point +” http://www.evansville.edu/-ck6/tcenters/ 

recent/isoper, html. 
Kimberling, C. and Wagner, Rt. W. “Problem E 3020 and 

Solution.” Amer. Math. Monthly 93, 650-652, 1986. 
Veldkamp, G. R. “The Isoperimetric Point and the Point(s) of 

Equal Detour.” Amer. Math. Monthly 92, 546-558, 1985. 

Isoperimetric Problem 
Find a closed plane curve of a given length which en- 
closes the greatest AREA. The solution is a CIRCLE. If 
the class of curves to be considered is limited to smooth 
curves, the isoperimetric problem can be stated symbol- 
ically as follows: find an arc with parametric equations 
x = z(t), y = y(t) for t E [i~!z] such that rc(tl) = ST(&), 

Y(h) = YW ( w h ere no further intersections occur) con- 
strained by 

such that 

s t2 

A = + (xy’ - x’y) dt 
t1 

is a MAXIMUM. 

see also DIDO'S PROBLEMJSOVOLUME PROBLEM 

References 
Bogomolny, A. “Isoperimetric Theorem and 

Inequality.” http://www.cut-the-kot.com/do-you_knov/ 
isoperimetric.html. 

Isenberg, C. Appendix V in The Science of Soap Films and 
Soup Bubbles. New York: Dover, 1992. 

Isoperimetric Quotient 
A quantity definedinthe ISOPERIMETRIC INEQUALITY 

Q 
47rA - - - 
P2 - 

see ~2~0 I~~~ERIMETRIC INEQUALITY 

Isoperimetric Theorem 
Of all convex n-gons of a given PERIMETER, the one 
which maximizes AREA is the regular n-gon. 

see also ISOPERXMETRIC: INEQUALITY, I~OPERIMETRI~ 
PROBLEM 

Isopleth 

see EQ~IP~TENTIAL CURVE 

Isoptic Curve 
For a given curve C, consider the locus of the point P 
from where the TANGENTS from P to C meet at a fixed 
given ANGLE. This is called an isoptic curve of the given 
curve. 

Curve Isoptic 

cycloid curtate or prolate cycloid 
epicycloid epitrochoid 
hypocycloid hypotrochoid 
parabola hyperbola 
sinusoidal spiral sinusoidal spiral 

see also ORTHOPTIC CURVE 

References 
Lawrence, J. D. A Catalog of Special Plane Curves. New 

York: Dover, pp. 58-59 and 206, 1972. 
Yates, R. C. “Isoptic Curves.” A Handbook on Curves and 

Their Properties. Ann Arbor, MI: J. W. Edwards, pp. 13% 
140, 1952. 

Isosceles Tetrahedron 
A nonregular TETRAHEDRON in which each pair of op- 
posite EDGES are equal such that all triangular faces are 
congruent. A T~~~~~~~~~~isisosceles IFF the sum of 
the face angles at each VERTEX is 180”, and IFF its IN- 
SPHERE and CIRCUMSPHERE are concentric. 

The only way for all the faces of a TETRAHEDRON to 
have the same PERIMETER or to have the same AREA is 
for them to be fully congruent, in which case the tetra- 
hedron is isosceles. 



Isosceles Wangle 

see &O CIRCWMSPHERE, INSPHERE, ISOSCELES TRIAN- 
GLE,TETRAHEDRON 
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Isoscelizer 

References 
Brown,” B. H. “Theorem of Bang. Isosceles 

Amer. Math. Monthly 33, 224-226, 1926. 
Honsberger, R. “A Theorem of Bang and the 

rahedron.” Ch. 9 in Mathematical Gems II 
DC: Math. Assoc. Amer., pp. 90-97, 1976. 

Isosceles Tkiangle 

Q b b 

Tetrahedra.” 

Isosceles Tet - 
‘. Washington, 

A TRIANGLE with two equal sides (and two equal AN- 
GLES). The name derives from the Greek iso (same) and 
skelos (LEG). The height of the above isosceles triangle 
canbefound from the PYTHAGOREAN THEOREM as 

h z b2 - p* 

The AREA is therefore given by 

(1) 

A = $ah = ia 
J 

b2 - ia2, (2) 

a 

There is a surprisingly simple relationship between the 
AREA and VERTEX ANGLE 8. As shown in the above 
diagram, simple TRIGONOMETRY gives 

h = Rcos(+B) 

a = Rsin($), 

(3) 

(4) 

SO the AREA is 

A= $(Za)h = ah = R2 cos( $) sin( 3s) = i R2 sin 8. 

(5) 

No set of n > 6 points in 
ISOS~ELE~ TRIANGLES. 

the PLANE can determine only 

see also ACUTE TRIANGLE, EQUILATERAL TRIANGLE, 
INTERNALBISECTORSPROBLEM,ISOSCELES TETRAHE- 
DRON, ISOSCELIZER, OBTUSE TRIANGLE, POINT PICK- 
ING, PUNS ASINORUM, RIGHT TRIANGLE, SCALENE 
TRIANGLE,~TEINER-LEHMUS THEOREM 

isoscelizer -b A 

c 
An isoscelizer of an ANGLE A in a TRIANGLE AABC 
is a LINE SEGMENT IABIAC where IAB lies on AB and 
IAC on AC such that AAIABIAC is an ISOSCELES TRI- 
ANGLE. 

see also CONGRUENT ISOSCELIZERS POINT, ISOSCELES 
TRIANGLE,YFF CENTER OF CONGRUENCE 

Isospectral Manifolds 

A--L-, 
DRUMS that sound the same, i.e., have the same eigen- 
frequency spectrum. Two drums with differing AREA, 
PERIMETER, or GENUS can always be distinguished. 
However, Kac (1966) asked if it was possible to construct 
differently shaped drums which have the same eigenfre- 
quency spectrum. This question was answered in the 
affirmative by Gordon et al. (1992). Two such isospec- 
tral manifolds are shown in the right figure above (Cipra 
1992) l  
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Isothermal Parameterization 
A parameterization is isothermal if, for [ E u + iv and 

the identity 

h"(S) +4z2(C> + 432K> = 0 

holds. 

see also MINIMAL SURFACE, TEMPERATURE 

Isotomic Conjugate Point 
The point of concurrence Q of the IS~T~MIC LINES rel- 
ative to a point P. The isotomic conjugate a’ : pi : y’ 
of a point with TRILINEAR COORDINATES QI :p: y is 

(a2a)-l : (b2p)-l : (c2y)? (1) 

The isotomic conjugate of a LINE d having trilinear 
equation 

la + n--Q + ny (2) 

is a CONIC SECTION circumscribed on the TRIANGLE 
AABC (Casey 1893, Vandeghen 1965). The isotomic 
conjugate of the LINE AT INFINITY having trilinear equa- 
tion 

aa + ap + c”( = 0 (3) 

is STEINER'S ELLIPSE 

py’ + yw a’@ 
a 

b+-=O 
C 

(4 

(Vandeghen 1965). The type of CONIC SECTION to 
which d is transformed is determined by whether the 
line d meets STEINER'S ELLIPSE E. 

1. If d does not intersect E, the isotomic transform is 
an ELLIPSE. 

2. If d is tangent to E, the transform is a PARABOLA. 

3. If d cuts E, the transform is a HYPERBOLA, which 
is a RECTANGULAR HYPERBOLA if the line passes 
through the isotomic conjugate of the ORTHOCEN- 
TER 

(Casey 1893, Vandeghen 1965). 

There are four points which are isotomically self- 
conjugate: the CENTROID M and each of the points 
of intersection of lines through the VERTICES PARAL- 
LEL to the opposite sides. The isotomic conjugate of the 
EULER LINE is called JERABEK'S HYPERBOLA (Casey 
1893, Vandeghen 1965). 

Vandeghen (1965) calls the transformation taking points 
to their isotomic conjugate points the CEVIAN TRANS- 
FORM. The product of isotomic and ISOGONAL is a 
COLLINEATION which transforms the sides of a TRIAN- 

GLE to themselves (Vandeghen 1965). 

see also CEVIAN TRANSFORM, GERGONNE POINT, Iso- 
GONAL CONJUGATE, JERABEK’S HYPERBOLA, NAGEL 
POINT, STEINER’S ELLIPSE 
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Isotomic Lines 
A, 

4 P3 Q3 

Given a point P in the interior of a TRIANGLE 

AAIAZAS, draw the CEVIANS through P from each 
VERTEX which meet the opposite sides at PI, P2, and 
Pa. Now, mark off point QI along side AzA3 such that 
A& = AzQl, etc., i.e., so that Qi and Pi are equidis- 
tance from the MIDPOINT of AjAr,* The lines AlQ1, 
AzQz, and A3Q3 then coincide in a point Q known as 
the ISOTOMIC CONJUGATE POINT. 

see also CEVIAN, ISOTOMIC CONJUGATE POINT, MID- 
POINT 

Isotone Map 
A MAP which is monotone increasing and therefore 
order-preserving. 

Isotope 
To rearrange without cutting or pasting. 

1sotopy 
A HOMOTOPY from one embedding of a MANIFOLD A4 
in 1v to another such that at every time, it is an embed- 
ding. The notion of isotopy is category independent, so 
notions of topological, piecewise-linear, smooth, isotopy 
(and so on) exist. When no explicit mention is made, 
“isotopy” usually means “smooth isotopy.” 

see also AMBIENT ISOTOPY, REGULAR ISOTOPY 
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Isotropic Tensor 
A TENSOR which has the same components in all rotated 
coordinate systems. 

rank isotropic tensors 
0 all 
1 none 
2 Kronecker delta 
3 1 
4 3 

Isovolume Problem 
Find the surface enclosing the maximum volume per 
unit surface AREA 1 G V/S. The solution is a SPHERE, 
which has 

I 
$7Tr3 

sphere = - - 1,. 
4m2 - 3 

see &O DIDO’S PROBLEM, ISOPERIMETRIC PROBLEM 
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Isthmus 

see BRIDGE (GRAPH) 

Iterated Exponential Constants 
N.B. A detailed on-line essay by S. Finch was the start- 
ing point for this entry. 

Euler (Le Lionnais 1983) and Eisenstein (1844) showed 

that the function h(a) = xxx- , where xxx is an ab- 
breviation for II: (XXI converges only for eBe _ 
that is, 0.0659. + + <‘x 5 1.44466.. . . 

< x < elle, _ 
The value it con- 

verges to is the inverse of xlix, which has a closed form 
expression in terms of LAMBERT'S W-FUNCTION, 

h( > x = 
W(- lnz) 

- In.2 (1) 

(Corless et al.). Knoebel (1981) gives 

32 (In z)~ + 43(lnz)3 + 
h(z)=l+lna:+T ~ 4! l  ” 

(2) 

. 

(Vardi 1991). A CONTINUED FRACTION due to Khovan- 
skii (1963) is 

2 l/X =1+ 
2(x - 1) 

1X2 - - ‘I 1)(x 1y 
x&+1- 

- - 3x(x +1) (4x2 1)(x 1)2 - 

(9x2 1)(x - - 5x(x 
+1)- 

1j2 

7x(x + - . 1) . . 

937 

. 

The function g(x) = Al: 
(l,x)‘f/“” l  . 

converges only for 
e -lie < x < eel that is, 0.692.. . 5 x 5 15.154. . . . The - - 
value it converges to is the inverse of xX. 

Some interesting relaxed integrals are 

s 

1 
O” ( 

>: 

n+l - 

xxdx = 1) - = 0.7834305107.. . (4) 
0 

nn 
n=l 

s 

1 
O” 1 

X -x dx = 
x 

- = 1.2912859971.. . 
nn (5) 

0 n-l 

(Spiegel 1968, Abramowitz and Stegun 1972). 

see also LAMBERT'S W-FUNCTION 
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Iterated Function System 
A finite set of contraction maps wi for i = 1, 2, . . . , 
N, each with a contractivity factor s < 1, which map a 
compact METRIC SPACE onto itself. It is the basis for 
FRACTAL image compression techniques. 

see also BARNSLEY’S FERN, SELF-SIMILARITY 
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Iterated Radical 

see NESTED RADICAL 

Iteration Sequence 
A SEQUENCE {ai} of POSITIVE INTEGERS is called an 
iteration sequence if there EXISTS a strictly increasing 
sequence {sk} of POSITIVE INTEGERS such that al = 
s1 > 2 and aj = sajB1 for j = 2, 3, . . . . A NECESSARY 
and SUFFICIENT condition for {aj} to be an iteration 
sequence is 

Uj 2 2Uj-1 - Uj-2 

for all j > 3. - 
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Kimberling, C. “Interspersions and Dispersions .” Proc. 

Amer. ‘Math. Sot. 117, 313-321, 1993. 

It& Lemma 

t vt - vi = s fz(Su,T - u) dSu - 
0 s 

t f,(Su,T-u)du 
0 

s 

t 

++a2 Su2f&L T  - u) du, 

0 

where Vt = f(&,~) for 0 < r E T - t 5 T, and f f 
- C2y1((0,00) x [O,T]). 
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Price, J. F. “Optional Mathematics is Not Optional.” Not. 

Amer. Math. Sot. 43, 964-971, 1996. 

It& Theorem 
The dimension d of any IRREDUCIBLE REPRESENTATION 
of a GROUP G must be a DIVISOR of the index of each 
maximal normal Abelian SUBGROUP of G. 

see also ABELIAN 
TIQN, s UBGROUP 

GROUP,IRREDUCIBLE REPRESENTA- 

Iverson Bracket 
Let, S be a mathematical statement, then the Iverson 
bracket is defined by 

_ 0 if S is true 
ISI { - - 

I if S is false. 

This notation conflicts with the brackets sometimes used 
to denote the FLOOR FUNCTION. For this reason, and 
because of the elegant symmetry of the FLOOR FWNC- 
TION and CEILING FUNCTION symbols 1x1 and [zl, the 
use of [x] to denote the FLOOR FUNCTION should be 
deprecated. 

see also CEILING FUNCTION, FLOOR FUNCTION 
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ing, MA: Addison-Wesley, pm 24, 1990. 
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Iwasawa’s Theorem 
Every finite-dimensional LIE ALGEBRA of characteristic 
p # 0 has a faithful finite-dimensional representation. 
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Jacobson, N. Lie Algebras. New York: Dover, pp. 204-205, 

1979. 
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J 

j 
The symbol used by engineers and some physicists to 
denote i, the IMAGINARY NUMBER &i. 

j-Conductor 

see FREY CURVE 

j-Function 
4000 

iooo 
II 

6000 
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2000 

+ 

0.01 -0.005 0.00s 0.01 

-200 

The j-function is defined as 

j(a) = 1728J(fil, (1) 

where 
4 [l - X(q) + x”k7>1” 

J(q) = 27 P(q)[l - A(q)]” 
is KLEIN'S AEBOLUTE INVARIANT, X(q) the ELLIPTIC 
LAMBDA FUNCTION 

X(q) = k2 

and & a THETA FUNCT 
specified in terms of the 

72) and 73 as 

Ml) 4 4)= - [ 1 63(q) ’ (3) 

ON. This function can also be 
WEBER FUNCTIONS f, fi, fi, 

j(x) _ [f24(~) - 1613 - 
f 24(x> (4) 

_ [fade + 1613 - 
f124(4 (5) 

_ [f2""(4+ 1613 - 
f2”“(4 

= y23(2) 
= ~~‘(2) + 1728 

(Weber 1902, p. 179; Atkin and Morain 1993). 

The j-function is MEROMORPHIC function on the upper 
half of the COMPLEX PLANE which is invariant with 
respect to the SPECIAL LINEAR GROUP SL(2,Z). It has 
a FOURIER SERIES 

j(q) = Ix Wn, (9) 
n=--00 

for the NOME 

j-Function 939 

with %[t] > 0. The coefficients in the expansion of the 
j-function satisfy: 

1. an = 0 for ~2 < -1 and a-1 = 1, 

2. all a,s are INTEGERS with fairly limited growth with 
respect to n, and 

3. j(q) is an ALGEBRAIC NUMBER, sometimes a RA- 
TIONAL NUMBER, and sometimes even an INTEGER 
at certain very special values of q (or t). 

The latter result is the end result of the massive and 
beautiful theory of COMPLEX multiplication and the 
first step of Kronecker’s so-called ‘CJ~~~~~~~~~~." 

Then all of the COEFFICIENTS in LAURENT SERIES 

1 
j(q) = g + 744 + 196884q + 21494760q2 

+864299970q3+20245856256q4+333202640600q5+. . . 

(11) 

(Sloane’s AOOO521) are POSITIVE INTEGERS (Rankin 
1977). Let d be a POSITIVE SQUAREFREE INTEGER, 
and define 

tr iJ2 for d z 1 or 2 (mod 4) 
i(l +i&) for d E 3 (mod 4). (12) 

Then the NOME is 

= i7rr 
q--e = 

1 

,274iJ;j) 

e27ri(l+iJzi)/2 

e-2Td - - 
{ -eBra 

for d s 1 or 2 (mod 4) (13) 

for d E 3 (mod 4). 

It then turns out that j(q) is an ALGEBRAIC INTEGER 
of degree h(A), where h(-d) is the CLASS NUMBER of 
the DISCRIMINANT -dof the QUADRATIC FIELDQ(~~) 
(Silverman 1986). The first term in the LAURENT SE- 
RIES is then q-l = e-2rfi or -Cam, and all the 
later terms are POWERS of q-l, which are small num- 
bers. The larger n, the faster the series converges. If 
h(-d) = l,then j(q) is a ALGEBRAIC INTEGER ofde- 
gree 1, i.e., just a plain INTEGER. Furthermore, the 
INTEGER is a perfect CUBE. 

The numbers whose LAURENT SERIES give INTEGERS 
are those with CLASS NUMBER 1. But these are precisely 
the HEEGNER NUMBERS -1, -2, -3, -7, -11, -19, 
-43, -67, -163. The greater (in ABSOLUTE VALUE) 
the HEEGNER NUMBER d, the closer to an INTEGER is 
the expression exG, since the initial term in j(q) is 
the largest and subsequent terms are the smallest. The 
best approximations with h(-d) = 1 are therefore 

e 7r&i3 = 9603 + 744 - 2.2 x 1O-4 (14) 

e TJiE = 52803 + 744 - 1.3 x lO-6 (15) 
e7Tm = 6403203 + 744 - 7.5 x lo--I”. (16) 
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The exact values of j(q) corresponding to the HEEGNER 
NUMBERS are 

j(-eBT 

Ae 
-27Tl/z 

j(-emna 

d-e 
-7TdT 

j(-e 
-&ii 

I 

= 123 (17) 

= 203 (18) 

= o3 (19) 

= -153 (20) 

- -323 - (21) 

j(-e 
-7rq19 

) = -963 

j(-e -*&i ) = -9603 

j(-e 
-da 

> - -52803 

j( -,-- ) I -6403203. 

(22) 

(23) 

(24) 

(25) 

(The number 5280 is particularly interesting since it is 
also the number of feet in a mile.) The ALMOST IN- 

TEGER generated by the last of these, e &iii3 
( corre- 

sponding to the field Q(dm) and the IMAGINARY 
quadratic field of maximal discriminant), is known as 
the RAMANUJAN CONSTANT. 
e”Jiz, e”d=, and ,flm are also ALMOST INTEGERS. 
These correspond to binary quadratic forms with dis- 
criminants -88, -148, and -232, all of which have 
CLASS NUMBER two and were noted by Ramanujan 
(Berndt 1994). 

It turns out that the j-function also is important in the 
CLASSIFICATION THEOREM for finite simple groups, and 
that the factors of the orders of the SPORADIC GROUPS, 
including the celebrated MONSTER GROUP, are also re- 
lated. 

see &~ALMOST INTEGER, KLEIN'S ABSOLUTE INVARI- 
ANT, WEBER FUNCTIONS 
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j-Invariant 
An invariant of an ELLIPTIC CURVE closely related to 
the DISCRIMINANT and defined by 

j(E) G 
2833a3 

4a3 + 27b2 l  

The determination of j as an ALGEBRAIC INTEGER in 
the QUADRATIC FIELD Q(j) is discussed by Greenhill 
(1891), Weber (1902), B erwick (1928)) Watson (1938), 
Gross and Zaiger (1985), and Dorman (1988). The norm 
of j in Q(j) is the CUBE ofan INTEGER in Z. 

see also DISCRIMINANT (ELLIPTIC CURVE), ELLIPTIC 
CURVE, FREY CURVE 
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Jackson’s Difference Fan 
If, after constructing a DIFFERENCE TABLE, no clear 
pattern emerges, turn the paper through an ANGLE of 
60’ and compute a new table. If necessary, repeat the 
process. Each ROTATION reduces POWERS by 1, so the 
sequence { kn} multiplied by any POLYNOMIAL in n, is 
reduced to OS by a k-fold difference fan. 
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where 

(a): = (1 - a)(1 - aq) l  ** (1 - aq”-I). 

see ah q-SERIES 
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Jackson’s Theorem Jacobi Algorithm 

Jackson’s theorem is a statement about the error E,(f) 
of the best uniform approximation to a REAL FUNCTION 
f(z) on [-1,1] by REAL POLYNOMIALS ofdegreeatmost 
n. Let f(z) be of bounded variation in I-1, l] and let 
M’ and V’ denote the least upper bound of If(z)1 and 
the total variation of f(z) in [-1, 11, respectively. Given 
the function 

s 

X 

F(x) = F(-1) + f (4 dx7 (1) 
-1 

A method which can be used to solve a TRIDIAGONAL 
MATRIX equation with largest absolute values in each 
row and column dominated by the diagonal element l  

Each diagonal element is solved for, and an approximate 
value plugged in. The process is then iterated until it 
converges. This algorithm is a stripped-down version of 
the JACOBI METHOD of matrix diagonalization. 

see also JACOBI METHOD, TRIDIAGONAL MATRIX 

References 
Acton, F. S. Numerical Methods That Work, 2nd printing. 
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then the coefficients 

Jacobi-Anger Expansion s 1 
a, = +@n + 1) F(x)%(x) da: (2) 

-1 iz cos 6 
e = >: inJn(z)eine, 

n=--00 of its LEGENDRE SERIES, where Pn(x) is a LEGENDRE 
POLYNOMIAL, satisfy the inequalities where J&z) is a BESSEL FUNCTION OF THE FIRST 

KIND. The identity can also be written 

-3/2 
I I 

for n 2 1 
an < 

$=(M’+ V’>n 

*(M’ + Vf)n-3/2 for n 2 2. 
(3) iz cos 6 

e = JO(Z) + 2 e inJn(z) cos(n0). 
n=l 

Moreover, the LEGENDRE SERIES of F(z) converges uni- 

formly and absolutely to F(x) in [-1, 11. 
This expansion represents 
into a series of cylindrical 

an expansion of plane waves 
waves. 

Bernstein strengthened Jackson’s theorem to see also BESSEL FUNCTION OF THE FIRST KIND 

(4) 2nE2,(a) I 
4n 2 

r(2n + 1) 
< ; = 0.6366. Jacobi’s Curvature Theorem 

The principal normal indicatrix of a closed space curve 
with nonvanishing curvature bisects the AREA of the 
unit sphere if it is embedded. A specific application of Jackson’s theorem shows that 

it 
a(x) = 1x1, (5) Jacobi’s Determinant Identity 

E&I) < !. - 
n (6) 

A= ; ; [ 1 (1) 
see also LEGENDRE SERIES, PICONE’S THEOREM 

A --I 
wx - [ 1 - Y z ’ (2) 

where B and W are k x k MATRICES. Then 
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rev. English ed. New The proof follows from equating determinants on the 
two sides of the block m .atrices 

Jaco-Shalen-Johannson Torus 

Decomposition 
(4 

Irreducible orientable COMPACT S-MANIFOLDS have a 
canonical (up to ISOTOPY) minimal collection of dis- 
jointly EMBEDDED incompressible TORI such that each 
component of the &MANIFOLD removed by the TORI is 
either “attoroidal” or “Seifert-fibered.” 

where 
trix. 

I is the IDENTITY MATRIX and 0 is the zero ma- 
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Jacobi Differential Equation 

(l-x”)y”f[p --- (CY+P+2)~]y’+n(n+afP+l)y = 0 

(1) 
or 

-&(l - “)a+‘(l + z)O+ly’] 

+n(n + Qr + p + l)(l - 2)“(1+ z)Py = 0. (2) 

The solutions are JACOBI POLYNOMIALS. They can be 
transformed to 

d2u 1 l-a2 

d22+ 4(1-x)2 + 

11-p” -- 
4 (I+ x)2 

+ 
n(n+a+p+l)+++l)(P+l) u-o 

1 - x2 I 
- Y (3) 

u = u(x) = (1 - x)(“+1)‘2(1 + ,)C0+1)‘2@q,), (4) 

and Y = sin4 = sn(u, k). (4) 

d2u 

d82+ 

+ n+a+p+l ( 2 >1 
2 u=O 7 (5) 

where 

U = u(0) = sin”+1’2(+0) c~s~+l~~( $)pp’P)(coso). 

(6) 

Jacobi Differential Equation (Calculus of 

Variations) 

where 

This equations arises in the CALCULUS OF VARIATIONS. 

References 
Bliss, G. A. Calculus of Variations, Chicago, IL: Open 

Court, pp. 162-163, 1925. 

Jacobi Elliptic Functions 
The Jacobi elliptic functions are standard forms of EL- 
LIPTIC FUNCTIONS. The three basic functions are de- 
noted cn(u, k), dn(u, k), and sn(u, k), where k is known 
as the MODULUS. In terms of THETA FUNCTIONS, 

83 &(u63-2) 

sn(u,k) = 194'L94(&3-2) 

84 f12(u293-2) 

cn(u,k) = gg4('2Lg3-2) 

84 63(u'93-2) 

dn(u,k) = K84(ufl3-2) 

(1) 

(2) 

(3) 

(Whittaker and Watson 1990, p. 492), where 29i E 6i (0) 
(Whittaker and Watson 1990, p. 464). Ratios of Jacobi 
elliptic functions are denoted by combining the first let- 
ter of the NUMERATOR elliptic function with the first of 
the DENOMINATOR elliptic function. The multiplicative 
inverses of the elliptic functions are denoted by reversing 
the order of the two letters. These combinations give a 
total of 12 functions: cd, cn, cs, dc, dn, ds, nc, nd, ns, 
SC, sd, and sn. The AMPLITUDE 4 is defined in terms of 
snu by 

The k argument is often suppressed for brevity so, for 
example, sn(ti, k) can be written snu. 

The Jacobi elliptic functions are periodic in K(k) and 
K’(k) as 

sn(u + 2mK + 2&K’, k) = (-1)” sn(u, k) (5) 

cn(u + 2mK + 2niK’, k) = (-1)“‘” cn(u, k) (6) 

dn(u + 2mK + 2niK’, k) = (-1)” dn(u, k), (7) 

where K(F;)isthecomplete ELLIPTIC INTEGRAL OF THE 
FIRST KIND, K’(k) s K(k’), and k’ E dm (Whit- 
taker and Watson 1990, p. 503). 

The cnx, dnz, and sn x functions may also be defined 
as solutions to the differential equations 

d2Y - = 
dx2 

-(l + k2)y + 2k2y3 (8) 

d2Y 
dx2 

= -(I - 2k2)y - 2k2y3 (9) 

2 = (2 - k”)y - 2y3. (10) 

The standard Jacobi elliptic functions satisfy the iden- 
tities 

sn2 u + cn2 u = 1 

k2 sn2 u + dn2 u = 1 

k2 cn2 u + kt2 = dn2 u 

cn2 u + k” sn2 u = dn2 u. 

(11) 

(12) 

(13) 

(14) 
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Special values are 

cn(0) = 1 

dn(0) = 1 

en(K) = 0 

(15) 

(16) 

(17) 

dn(K) = k’ E dl - k2, (18) 

sn(K) = 1, (19) 

where K = K(k) is a complete ELLIPTIC INTEGRAL OF 
THE FIRST KIND and k’ is the complementary MODULUS 
(Whittaker and Watson 1990, pp. 498-499). 

In terms of integrals, 

(1 - t’)‘-/‘(l _ k2t2)-l/’ & 

2 - p2(t2 - z2)-1/2 & 

I 
1 

- - (1 - t2)-1/2(k'2 + k2t2)-li2 & 

Jcnu 

s 

nc u 

- - 

1 

1 

t2 - l)-1/2(k’2t2 + k’)+‘dt 

- - 

s 
( 

dnu 

ynd u 

- t”) -l/2 2 (t - k’2)-1’2 dt 

2 - - 

I (t - 1) 
-l/2(1 _ kt2t2)-li2 & 

1 

U 

- - 

s 

(1 + t2)-1’2(1 + k”t2)-li2 dt 
0 

- - -(t2 + 1)-l”(t2 + kt2)-1/2 dt 
Jcsu 

sd u 

- - 

s 

(1 - kf2t2 
0 

sm 
0 2 - - - k”)- 

ds u 

ycd u 

-1/2(1 + &2)-l/2 & 

“(t’ + k’)-l” dt 

- - 
/ 

(1 - t2)-l/‘(1 - k2t2)-li2 & 

1 
1 

- - 

s 
(t 2 - 1) -l/2 2 (t - k’)-l” dt 

dcu 

(20) 

(21) 

(22) 

(23) 

(24 

(25) 

(26) 

(27) 

(28) 

(29) 

(30) 

(31) 

(Whittaker and Watson 1990, p. 494). 

Jacobi elliptic functions addition formulas include 

sn(u + w) = 
snucnwdnw +snwcnudnu 

1 - k2sn2usn2w (32) 

cn(u + w) = 
cnucnw -snusnwdnudnw 

1 - k2sn2usn2w (33) 

dn(u + v) = 
dnudnw - k’snusnwcnucnw 

l-k2sn2usn2w ’ (34) 

Extended to integral periods, 

sn(u + K) = E 

k’snu 
cn(u+ K) = -- 

dnu 
k’ 

dn(u + K) = z 

sn(u + 2K) = -snu 

cn(u+2K) = -cnu 

dn(u + 2K) = dnu 

For COMPLEX arguments, 

sn(u + iv) = 
sn(u, k) dn(u, k’) 

1 - dn2(u, k) sn2(v, k’) 

943 

(35) 

(36) 

(37) 

(38) 
(39) 
(40) 

+ i cn(u, k) dn(u, k) sn(w, k’) cn(v, k’) 

1 - dn2(u, k) sn2(v, k’) 
(41) 

cn(u + iw) = 
cn(u, k) cn(w, k’) 

1 - dn’(u, k) sn2(w, k’) 

i sn(u, k) dn(u, k) sn(w, k’) dn(w, k’) - 
1 - dn’(u, k) sn2(v, k’) 

(42) 

d 
nu 

( + . ) d&k) cn(v,k’) dn(w, k’) 
2w = 1 - dn2(u,k)sn2(w,k’) 

ik2 sn(u, k) cn(u, k) sn(w, k’) - .,,--., 
1 - dn’(u, k) sn2(w, k’) ’ 

(43) 

DERIVATNES of the Jacobi elliptic functions include 

dsnu 

du 
= cnudnu (44 

dcnu 
du 

= snudnu (45) 

ddnu - - 
du - 

-k2 snucnu. (46) 

Double-period formulas involving the Jacobi elliptic 
functions include 

sn(2u) = 
2snucnudnu 

1 - kc2 sn4 u (47) 

cn(2u) = 
1 - 2 sn2 u + k2 sn4 u 

1 - k2 sn4 u (48) 

dn(2u) = 
1 - 2k2 sn2 u + k2 sn4 u 

1 - k2 sn4 u l  

(49) 

Half-period formulas involving the Jacobi elliptic func- 
tions include 

1 
sn(tK) = - 

l/m 

k’ 
cn(iK) = - 

c 1+-k’ 

dn(iK) = fi. 

(50) 

(51) 

(52) 
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Squared formulas include 

sn2 u = 
1 - cn(274 
1 + dn(2u) (53) 

cn2 u = 
dn(k) + cn(2u) 

1 + dn(2u) (54) 

dn2 u = 
dn(2u) + cn(2u) 

1+ cn(2u) l  

(55) 

see also AMPLITUDE, ELLIPTIC FUNCTION, JACOBI'S 
IMAGINARY TRANSFORMATION, THETA FUNCTION, 
WEIERSTRASS ELLIPTIC FUNCTION 
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Jacobi Function of the First Kind 

see JACOBI POLYNOMIAL 

Jacobi Function of the Second Kind 

Qpp”‘(x) = 2-7~ - 1)-(x + I)- 

I 
1 

x (1 - t)“+“(l + t)“+O(z - t)-,-l dt. 
J-l 

In the exceptional case n = 0, a + p + 1 = 0, a noncon- 
stant solution is given by 

Q(“)(x) = In(z + 1) + 7r-l sin(na)(cc - l)-“(x + l>-” 

X 

s 

l (1 - V(l + tY ln(l + q & 
l  

-1 x-t 

References 
Szegij, G. “Jacobi Polynomials.” Ch. 4 in Orthogonal Polyno- 

mials, 4th ed. Providence, RI: Amer. Math. SOL, pp* 73- 
79. 1975. 

Jacobi-Gauss Quadrature 
Also called JACOBI QUADRATURE or MEHLER QUAD- 
RATURE. A GAUSSIAN QUADRATURE over the interval 
[-l,l]with WEIGHTING FUNCTION W(X) = (1-x)“(l+ 
x)? The ABSCISSAS for quadrature order n are given by 

the roots of the JACOBI POLYNOMIALS Pp7p'(~). The 
weights are 

A 
wi = - n+l% 

A,P~a’P)‘(xi)P~“+‘f)(xi) 

A& Yn-1 - -- 

An-1 p;“-‘f’(xi)ppYa)‘(xi)’ 
(1) 

where An is the COEFFICIENT of xn in PAagP) (x). For 

JACOBI POLYNOMIALS, 

A _ r(2n+a+p+1) 
n- 

2%!lT(n + QC + p + 1) ’ (2) 

where r(a) is a GAMMA FUNCTION. Additionally, 

1 22n+a+P+Q 
77-b = 

22n(n!)2 2n + a + fl +‘I 

X 
r(n + a + l)r(n + P + 1) 

r(n+a+p+l) ’ (3) 

so 

wi = 
2n + a + p + 2 r(n + a + l)r(n + 0 + 1) 

n+a+p+l r(n+a+p+l) 
22nfafPfQ 

’ VA(Xi)V,+l(Xl) 
(4 

- r(n+a+l)r(n+p+ 1) 22n+a+P+1n! 
- 

qn + a + p + 1) (1 - XiZ)[G(2i)]2 ’ 

(5) 

where 
v;n E P?t”‘“‘(,) 2nn! 

( 1) n’ - (6) 

The error term is 

r(n + QI + l)r(n + p + l)r(n + Q + p + 1) 
Un -  

(2n + a + p + l)[r(2n + Q + P + I)]” 
22n+a+P+Q 

X 

(2 > 
n! l  f0 (0 

(Hildebrand 1959). 

(7) 

References 
I-Iildebrand, F. B. Introduction to Numerical Analysis. New 

York: McGraw-Hill, pp. 331-334, 1956. 
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Jacobi Identities 
“The” Jacobi identity is a relationship 

[A, [BY Cl] + PI [C, All + [CT [A, WI = 0, PL 
between three elements A, B, and C, where [A, B] is the 
COMMUTATOR. The elements of a LIE GROUP satisfy 
this identity. 

Relationships between the Q-FUNCTIONS Qi are also 
known as Jacobi identities: 

QlQzQ3 = 1, (2) 

equivalent to the JACOBI TRIPLE PRODUCT (Borwein 
and Borwein 1987, p. 65) and 

Qz8 = 16qQ18 + Qs8, (3) 

where 
qse --rrK’(k)/K(k) 

1 (4 

K = K(k) is the complete ELLIPTIC INTEGRAL OF THE 
FIRST KIND, and K’(k) = K(k’) = K(dCF). Using 
WEBER FUNCTIONS 

fl = q-1/24Q3 (5) 

f2 = 21/2q1/12Q1 (6) 
f = q-1/24Q2, (7) 

(5) and (6) become 

flfif = 1/z (8) 

f8 = fi8 + fiS (9) 

(Borwein and Borwein 1987, p. 69). 

see also COMMUTATOR, JACOBI TRIPLE PRODUCT, Q- 
FUNCTION, WEBER FUNCTIONS 

References 
Borwein, J. M. and Borwein, P. B. Pi & the AGM: A Study in 
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Jacobi’s Imaginary Transformat ion 
For JACOBI ELLIPTIC FUNCTIONS snu, cnu, and dnu, 

sn(u, k’) 
sn(iu, k) = ip 

cn(u, k’) 
1 

cn(iu, k) = - 
cn(u, k’) 

dn(u, k’) 
dn(iu, k) = - 

cn(u, k’) 

(Abramowitz and Stegun 1972, Whittaker and Watson 
1990). 

see also JACOBI ELLIPTIC FUNCTIONS 
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pp. 592 and 595, 1972. 
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Jacobi Matrix 

see JACOBI ROTATION MATRIX, JACOBIAN 

Jacobi Method 
A method of diagonalizing MATRICES using JACOBI 
ROTATION MATRICES. It consists of a sequence of 
ORTHOGONAL SIMILARITY TRANSFORMATIONS, eachof 
which eliminates one off-diagonal element. 

see also JACOBI ALGORITHM, JACOBI ROTATION MA- 
TRIX 

References 
Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetter- 

ling, W. T. “Jacobi Transformation of a Symmetric Ma- 
trix.” s11.1 in Numerical Recipes in FORTRAN: The Art 
of Scientific Computing, 2nd ed. Cambridge, England: 
Cambridge University Press, pp. 456-462, 1992. 

Jacobi Polynomial 
Also known as the HYPERGEOMETRIC POLYNOMIALS, 
they occur in the study of ROTATION GROUPS and in 
the solution to the equations of motion of the symmetric 
top. They are solutions to the JACOBI DIFFERENTIAL 
EQUATION. Plugging 

p=f$(X-l)” (1) 
u=o 

into the differential equation gives the RECURRENCE 
RELATION 

[Y-++a+p+l)] a,-2(v+l)(v+a+l)a,+1 = 0 (2) 

for v = 0, 1, . . . , where 

y = n(n + QI + @ + l)* co 

Solving the RECURRENCE RELATION gives 

ppy,) = W” “nl(1 - $“(1+ x>-p 
. 

x $1 - 2)“+“(1+ #+“I 
n 

(4) 

for a, p > -1. They form a complete orthogonal sys- 
tern in the interval [- 1, l] with respect to the weighting 
function 

wn(x) = (1 - 2)“(1+ x>“, 

and are normalized according to 

pW) 
n (1) 

= n + Q 

( > 
I 

n 

where (z) is ~BINOMIAL COEFFICIENT. Jacobi 
mials can also be written 

pm = r(2n + a + p + 1) 
n 

n!r(n + a + /3 + 1) 

(5) 

(6) 

polyno- 

(7) 
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where l?(z) is the GAMMA FUNCTION and 

Gn(P, Qy x, = q2n + P) 
n!r(n+P~p(P-9,9-l~(2r 

n - 1). (8) 

Jacobi polynomials are ORTHOGONAL satisfying 

s 1 

~~J+$ql- q(l+x)Qx 
-1 

2a+p+1 - - 
2n+a+p+1 

r(n+a!+l)r(n+P+l)S 
n!r(n+a+p+l) nan- (9) 

The COEFFICIENT of the term xn in Pptbeta’ (x) is given 

A, = 
q2n + a + p + 1) 

2%!r(n + a + p + 1) ’ 
(10) 

They satisfy the RECURRENCE RELATION 

2(n+ l)(n+a+p+ 1)(2n+a+P)P$f)(x) 

= [(2n + a + p + l)(a2 - p”) + (2n + Qr + @)3X]Pn 
w3 (x) 

-2(n+a)(n+@)(2n+a+p+2)P~?f’(X), (11) 

where (m), is the RISING FACTORIAL 

( ) Em(m+l)~~~(m+n--1) = cm + n - v mn 
( m-l)! l  

(12) 

The DERIVATIVE is given by 

d [pw 
dx n 

(x)] = +(n+a+P+ l)~~l'p+l'(x). (13) 

The ORTHOGONAL POLYNOMIALS with WEIGHTING 
FUNCTION (b- ~)~(a: - a)O on the CLOSED INTERVAL 
[a, b] can be expressed in the form 

[const.]PF’P1 
( 

2E - 1) (14) 

(Szegij 1975, p. 58). 

Special cases with ctr = p are 

Pp (x) = rp+a+ l)r(v+ 1)p(",-1/2)(2 

r(~+~+l)rp+l) y 
X 

2 -1) 

- - - ( 1) 
u WV + a + 1w + 1) p(-l/2,4(1 _ zx2) 

r(v+a+ l)r(2v+ 1) y 

(15) 
Pz’v*;s’ (2) = r@+Q+ qw+ 1).p(a,l/2)(222 

r(v+~+i)r(2v+2) v - 1) 

- - 
(-l) r(v+a+l)r(2v+2) y -- 

,r(2v+cu+2)r(v+l)x~(l/2,a)(l 2xz) 

m 

(16) 

Jacobi Polynomial 

Further identities are 

p(“+l IP) 
( > 

2 
n X= 

2n+a+P+2 

X 
(n + QI + l)ptta,') - (n + l)p$['(X) 

l-x 

(17) 

p(“,P+l) 
( > 

2 
n x = 2n+a+p+2 

cx) + cn + l,p:;? ('1 
1+x 

(18) 

n 2v+a+p+lr(~+l)r(~+~+p+1) x p+P+l 
u=o 

r(v+a+ l)r(v+p+l) 

_ 1 (y - 1)-&(y + 1)-P + 2-&-P 
-- 

2 Y -X 2n+a+P+2 

r(n + 2)r(n + Q! + P + 2) 
x r(7-b + QI + l)r(n + P + 1) 

(Szeg6 1975, p. 79). 

The KERNEL POLYNOMIAL is 

K$‘)(x, y) = 
2-a-P 

2n+a+p+2 

r(n + 2)+ + Q! + P + 2) 

’ r(n + a + l)r(n + P + 1) 

X 
P$p’(x)Pp’(y) - Pp’(x)P;a;,“‘(y) (20) 

X-Y 

(SzegB 1975, p. 71). 

The DISCRIM~NANT is 

D(~,P) =2-n(n-1) 
n 

rI 

yv-2n+2(y+ a)v-l(y+p)v-l 

v=l 

x (n+v+a+p)n-u (21) 

(Szegii 1975, p. 143). 

For CI = p = 0, Pi”‘) (x)reducesto a LEGENDRE POLY- 

NOMIAL. The GEGENBAUER POLYNOMIAL 

GAP, Qt 4 = 
wn + P) P(p-q,q-l) 
r(2n +p) n 

(2x - 1) (22) 

and CHEBYSHEV POLYNOMIAL OF THE FIRST KIND can 
also be viewed as special cases of the Jacobi POLYNO- 
MIALS. In terms of the HYPERGEOMETRIC FUNCTION, 



Jacobi Polynomial Jacobi Symbol 

Let Nl be the number of zeros in x f (-l,l), Nz the 
number of zeros in x E (-00, -l), and N3 the number 
of zeros in x E (1,oo). Define Klein’s symbol 

E(U 

where 1 

0 ifu<O - 
- - 11 u if u positive and nonintegral (25) 

U-l if u = 1, 2, . . . , 

XJ is the FLOOR FUNCTION, and 

X(aJ) = E[3[2n + a + 0 + 11 - [al - IPI + I)] (26) 

Y(Q) = E[;(-pn + a + p + 11-t Ial - IPI + l)] 

(27) 

Z(a,P) = E[3(42n + Q! + p + 11 - ]&I + IPI + I)]* 

If the cases a = -1, -2, 
and n+a+p = -1, -2, 
number of zeros of pprP’ 

(28) 

l  l  1  
-n, @ = -1, -2, . . , , -n, 

l  l  1 -- are excluded, then 
in the respective intervals 

the 
are 

Nlh P) = 
{ 

2 1+(x + 1) J for (-l)“(nLa) (“I’) > 0 

2 l+XJ + 1. for (-l)n(nia)(nLa) < 0 

(29) 

Nz(%P) = 
{ 

2 li(Y + l)] for (2n+;+0) (n;O) > 0 
2 1SYj + 1 for ( 2n+;+P) (“;P) < 0 

N3(%P) = 1 
2 l+(Z + l)] for (2n+z+P) (“z”) > 0 
2 l;zj + 1 for ( 2n+;+P) (“;a) < 0 

(Szeg8 1975, pp. 144-146). 

The first few POLYNOMIAM are 

p(Qyx) = 1 
p;4 (2) = f[2(cr + 1) + (a + p + 2)(x - l)] 

P2’“‘p’(x) = 34(a + 1)2 + 4(cw + p + 3)(a + 2)(x - 1) 

+(a + p + 2)2(x - I)“], 

where (m), is a RISING FACTORIAL. See Abramowitz 
and Stegun (1972, pp. 782-793) and Szego (1975, Ch. 4) 
for additional identities. 

seealso&~~~~HE~ POLYNOMIAL OF THEFIRSTKIND, 
GEGENBAUERPOLYNOMIALJACOBIFUNCTION OF THE 
SECOND KIND, RISING FACTORIAL, ZERN~KE POLY- 
NOMIAL 
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Jacobi Quadrature 

see JACOBI-GAUSS QUADRATURE 

Jacobi Rotation Matrix 
A MATRIX used in the JACOBI TRANSFORMATION 

method of diagonalizing MATRICES. It contains cos$ 
in p rows and columns and sin 4 in q rows and columns, 

1 0 
. . . 

l  . l  

l  

cos(p . . . 0  ..* 

l  

sin q5 
l  q  - 

0  
. l  . 1 . . . 0 l  . l  

sin@ l  -0 0 .q. cosq5 
. . 

l  

l  . . 

. . 
l  

0  
1 

see also JACOBI TRANSFORMATION 
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Jacobi Symbol 
The product of LEGENDRE SYMBOLS (n/pi) for each of 
the PRIME factors pi such that m, = nipi, denoted 
(n/m). When nz is a PRIME, the Jacobi symbol reduces 
to the LEGENDRE SYMBOL. The Jacobi symbol satisfies 
the same rules as the LEGENDRE SYMBOL 

(nlm>(nlm’) = (nl(mm’>> (1) 

(nlm>(n’lm> = ((nn’)lm) (2) 
(n2/m) = (n/m2) = 1 if (m,n)=l (3) 

if n E n1 (mod m) 

Wm’ = 
for m or n E 1 (mod 4) 

LyL)n) for m n = 3 (mod 4) (7) 
1 - . 

Written another way, for m and n RELATIVELY PRIME 
ODD INTEGERS with n > 3, - 
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nomials, 4th ed. Providence, RI: Amer. Math. SOL, 1975. 

(m/n) = (-l)(m-11cn-1)/4(n/m). (8) 

The Jacobi symbol is not defined if m < 0 or m is EVEN. - 

Bach and Shallit (1996) show how to compute the Jacobi 
symbol in terms of the SIMPLE CONTINUED FRACTION 
of a RATIONAL NUMBER a/b. 

see UZSO KRONECKER SYMBOL 
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Jacobi ‘1Criple Product 
The Jacobi triple product is the beautiful identity 

References 
Bach, E. and Shallit, J. Algorithmic Number Theory, 

Vol. 1: Eficient Algorithms. Cambridge, MA: MIT Press, 
pp. 343-344, 1996. 
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Birkhguser, pp. 281-284, 1994. 

00 

rI 
(1 

- p)(l + 22n-1z2) 

n=l 

(1+7) 

Jacobi Tensor In terms of the Q-FUNCTIONS, (1) is written 

QlQ2Q3 = 1, (2) 

where R is the RIEMANN TENSOR. which is one of the two JACOBI IDENTITIES. For the 
special case of z = 1, (1) becomes see ah RIEMANN TENSOR 

Jacobi’s Theorem 
Let M, be an r-rowed MINOR of the nth order DETER- 
MINANT /AI associated with an 72 x 72 MATRIX A = aij 
in which the rows il, i2, . . . , i, are represented with 
columns I& k2, l  l  . , k,. Define the complementary mi- 
nor to M, as the (n - @-rowed MINOR obtained from 
IAl by deleting all the rows and columns associated with 
A& and the signed complementary minor A&(‘) to A& to 

p(x) c G(1) = n (1 + ~=‘-‘)~(l - x2n) 

- - 
>: 

X m2 = 1+2Cxm2, (3) 
m=-m m=O 

where p(x) is the one-variable RAMANUJAN THETA 
FUNCTION. 

be 

To prove the identity, define the function 

F(z) E fi(1 + xzn-’ 

n=l 

X [complementary minor t 

Let the MATRIX of cofactors be given by 

A11 Al2 l  .- A In 

A21 A22 l  -- A2n 

A=. ., I 
. l  . l  

Ai1 Ai2 l  l  ’ Ain 

= (1+xX2) ( 1+; (1+x3z2) 1+,2 ) X3 

( > 
X5 

x (1+x5r2) 1+,2 l *‘* 
( > 

Then 

with A&- and ML the corresponding r-rowed minors of 
IAl and A, then it is true that F(xz) = (1 + 2”~“) 

(5) 

Taking (5) + (4), References 
Gradshteyn, I. S. and Ryzhik, I. M. Tables of Integrals, Se- 

ries, and Products, 5th ed. San Diego, CA: Academic 
Press, pp. 1109-1100, 1979+ 

xx2 + 1 1 1 - - --= 
XZ2 1+ xx2 xz2 ’ (6) Jacobi Theta Function 

see THETA FUNCTION 
which yields the fundamental relation 

xz2F(xx) = F(z). 

Now define 

00 

(7) 
Jacobi Transformation 

see JACOBI METHOD 

G(z) G F(x) n(l - x2n) (8) 
n=l 
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G(xz) = F(xz) fi(l - xzn). (9) 
n=l 

Using (7)) (9) becomes 

G(xz) = F(a) fi(l - x2n) = G(a) 
XX2 xz2 ’ 

(10) 
7l=l 

so 

W) = xz2G(xz). (11) 

Expand G in a LAURENT SERIES. Since G is an EVEN 
FUNCTION, the LAURENT SERIES contains only even 
terms. 

00 

Equation (11) then requires that 

00 

x 

2r-n - 
UmX - 

m=--oo 

- - 

XZ2 R am(XZ)2m 

m=--oo 

00 

IE 
amx2m+1z2m+2, 

m=-w 

(13) 

This can be re-indexed with m’ E m - 1 on the left side 
of (13) 

7323-w m=-w 

which provides a RECURRENCE RELATION 

Zm--1 
am =a m-lx 1 (15) 

The COEFFICIENT a0 must be determined by going back 
to (4) and (8) and letting z = 1. Then 

n-l 

- rI( 
2n-1 2 - 1+x ) 

n=l 

(22) 

G(1) = F(1) n(l - x2*) 

n=l 

00 00 

Zn-1 2 - - 
rI( 

1+x 
) rI( 

1 - xZn) 

n=l 

00 

n=l 

rI( 13-x Zn-1 2 - 
) (1 

- - xZn), (23) 

n=l 

since multiplication is ASSOCIATIVE. It is clear from this 
expression that the a0 term must be 1, because al other 
terms will contain higher POWERS of 2. Therefore, 

a0 = 1, (24) 

so we have the Jacobi triple product, 

G(x) = fi(l - ~~~)(l +x~~-’ ’ 

?I= 1 

.,(l.$y 

- - )\ X 
m2 z2m 

. , (25) 
/  4 

m=-- 

see also EULER IDENTITY, JACOBI IDENTITIES, Q- 
FUNCTION, QUINTUPLE PRODUCT IDENTITY, RA- 
MANUJAN PSI SUM, RAMANUJAN THETA FUNCTIONS, 
SCHR~TER'S FORMULA,THETA FUNCTION 
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a3 = a2x5 5+4 32 
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The exponent grows greater by (277~ 1) for each increase 
in vz of 1. It is given by 

m 

>( 

m(m + 1) 
2m-i)=2 2 -m=m’. (19) 

n=l 

Therefore, 
m2 

am = aox. . Gw 

This means that 

W 

G(z) = a0 
x 

X 
m2 z2m 

. (21) 
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uct and Some Number Theoretic Applications.” Ch. 3 in 
Pi & the AGM A Study in Analytic Number Theory and 
Computations1 Complexity. New York: Wiley, pp. 62-101, 
1987. 

Jacobi, C. G. J. Fundamentia Nova Theoriae Functionum 
Ellipticarum. Regiomonti, Sumtibus fratrum Borntraeger, 
p* 90, 1829. 

Whittaker, E. T. and Watson, G. N. A Course in Modern 
AnuZysis, 4th ed. Cambridge, England: Cambridge Uni- 
versity Press, p. 470, 1990. 

Jacobi Zeta Function 
Denoted zn(u, k) or Z(u). 

Z(qblm) e E(@jm) - E(m~~~‘m), 
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where 4 is the AMPLITUDE, m is the PARAMETER, and 
F and K are ELLIPTIC INTEGRALS OF THE FIRST KIND, 
and E isan ELLIPTIC INTEGRAL OFTHE SECOND KIND. 
See Gradshteyn and Ryzhik (1980, p. xxxi) for expres- 
sions in terms of THETA FUNCTIONS. 

see ah ZETA FUNCTION 

References 
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p* 595, 1972. 
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Jacobian 
Given a set y = f(x) of n equ 

l  l  l  ?  
x~, written explicitly as 

a 

1 

f 1 
f2 

y- . . . 
f n 

or more explicitly as 

tions in 71 variables 21, 

7 (1) 

1 
y1 = fi(X1,“’ T-- \ 1 -n/ 
l  

l  
(2) 

in  = f&l, l  ‘0, xn), 

the Jacobian matrix, sometimes simply called “the Ja- 
cobian” (Simon and Blume 1994) is defined by 

(3) 

The DETERMINANT of J is the JACOBIAN DETERMI- 
NANT (confusingly, often called ‘%he Jacobian” as well) 
and is denoted 

Taking the different ial 

dy = yX dx (5) 

shows that J is the DETERMINANT of the MATRIX yX, 
and therefore gives the ratios of n-D volumes (CON- 
TENTS) in y and x, 

dyl l  l  9 dy, = d(Y1,*‘*d dxl 
l  . . 

d(Xl j  9  l  l  j  Xn) 

dx 
72’ 

(6) 

The concept of the Jacobian can also be applied to n 
functions in more than n variables. For example, con- 
sidering f (u, V, w) and g(u, V, w), the Jacobians 

Wd7) fu fv - c 
I I qu,v> 9u sv 

%f&> fu fw ~ - 
I I qu,w> - 9u gw 

(7) 

(8) 

can be defined (Kaplan 1984, pa 99). 

For the case of n = 3 variables, the Jacobian takes the 
special form 

aY dY dY 
Jf(x1,x2,x3) E -.- x - , 

ax1 8x2 3x3 
(9) 

where a+b is the DOT PRODUCT and b x c is the CROSS 
PRODUCT, which can be expanded to give 

dyl 
ax3 
BY2 
ax3 ' 

aa 
ax3 

(10) 

see &O CHANGE OF VARIABLES THEOREM, CURVILIN- 
EAR COORDINATESJMPLICIT FUNCTION THEOREM 
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Jacobian Conjecture 
If det[F’(x)] = 1 f or a POLYNOMIAL mapping F (where 
det is the DETERMINANT), then F is BIJECTIVE with 
POLYNOMIAL inverse. 

Jacobian Curve 
The Jacobian of a linear net of curves of order n is a 
curve of order 3(n - 1). It passes through all points 
common to all curves of the net. It is the LOCUS of 
points where the curves of the net touch one another 
and of singular points of the curve. 

see also CAYLEYIAN CURVE, HESSIAN GOVARIANT, 
STEINERIAN CURVE 

References 
Coolidge, J. L. A Treatise on Algebraic Plane Curves. New 

York: Dover, p. 149, 1959. 

Jacobian Determinant 

see JACOBIAN 

Jacobian Group 
The Jacobian group of a 1-D linear series is given by in- 
tersections of the base curve with the JACOBIAN CURVE 
of itself and two curves cutting the series. 

References 
Coolidge, J. L. A Treatise on Algebraic Plane Curves. New 

York: Dover, p. 283, 1959, 
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Jacobsthal-Lucas Number 

see JACOBSTHAL NUMBER 

Interrelationships are 

Jacobst hal-Lucas Polynomial 

~~~JACOBSTHAL POLYNOMIAL 

Jacobsthal Number 
The Jacobsthal numbers are the numbers obtained by 
the C&s in the LUCAS SEQUENCE with P = 1 and 

Q - - -2, corresponding to a = 2 and b = -1. They 
and the Jacobsthal-Lucas numbers (the V,s) satisfy the 
RECURRENCE RELATION 

jdn = J2n (12) 

in = J~+I + 2J,-1 (13) 

9Jn = jn+l + 2jn-1 (14) 

in+1 +jn = 3(Jn+l+ Jn) = 3 l  2n (15) 

in+, - jn = 3( Jn+l - Jn) + 4(-l)“+’ = 2” + 2(-1)“$’ 

(16) 
jr&+1 - 2jn = 3(2Jn - Jn+l) = 3(-l)n+1 (17) 

2jn+l + in-1 = 3(2Jn+l + Jn-I) + 6(~l)~‘l (18) 
Jn = Jn.-1 + 2Jn-2. (1) 

The Jacobsthal numbers satisfy Jo = 0 and J1 = 1 and 
are 0, 1, 1, 3, 5, 11, 21, 43, 85, 171, 341, . . . (Sloane’s 
AOOlO45)* The Jacobsthal-Lucas numbers satisfy jo = 2 
and jl = 1 and are 2, 1, 5, 7, 17, 31, 65, 127, 257, 511, 
1025, . m. (Sloane’s A014551). The properties of these 
numbers are summarized in Horadam (1996). They are 
given by the closed form expressions 

(3) 

where 1x1 is the FLOOR FUNCTION and (1) is a BINO- 
MIAL COEFFICIENT. The Binet forms are 

Jn = $(a” - b”) = $[2n - (-1)“] 
. 

jn = a” + b” = 2” + (-1)“. 

(4 

(5) 

The GENERATING FUNCTIONS are 

00 

IE 
J&l = (1 - x - zx2)-l (6) 

i=l 

00 
x f&l = (1+ 4x)(1 - x - 2X2)? 
-- z- 1 

The Simson FORMULAS are 

(7) 

Jn+lJn-1 - Jn2 = (-l)n2n-1 (8) 

jn+ljn-1 -in2 z 9(-l)n-12n-1 = -9(Jn+l Jn-l- Jn2). 

(9) 
Summation FORMULAS include 

n 

E 
Ji = $(Jn+z - 3) (10) 

i=2 

jn+r + jn-r = 3(Jn+r + Jn-y> + 4(-l)“-’ (19) 

= 2n-r(22r + 1) + 2(-l)n-T (20) 

. 
3n+r - jn-T = 3(Jn+r - Jn-,) = 2n-r(22r - 1) (21) I 

. 
an = 3Jn + 2(-l)” (22) 

3Jn + jn = 2n+1 (23) 

Jn + jn = 2Jn+1 (24) 

ie2i n-2 - in2 =I -9(Jn+2 Jn-2 - Jn)2 = 9(-l)n2n-2 

(25) 

&in -I- 9Jm Jn = 2jm+n (27) 

in2 + 9Jn2 = 2jzn (28) 

Jmjn - J,j, = (-l)n2n+1Jm-, (29) 
* . 

3m3n - 9JmJn = (-l)YP1jmBn (30) 

3n * 2 - 9Jn2 = (4)n,n+2 (31) 

(Horadam 1996). 
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F. “Jacobsthal Representation Numbers.” Fib. 
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A. Sequences A014551 and A001045/M2482 in 
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Jacobst ha1 Polynomial 
The Jacobsthal polynomials are the POLYNOMIALS ob- 
tained by setting p(x) = 1 and q(x) = 2x in the LUCAS 
POLYNOMIAL SEQUENCE. The first few Jacobsthal poly- 
nomials are 

J1(x) = 1 

Jz(x) = 1 

J3 (4 =1+2x 

Jo = I + 4x 

Js(x) = 4x2 + 6x + 1, 
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and the first few Jacobsthal-Lucas polynomials are 

jl(X) = 1 
h (4 =4x+1 

jJ(x)=6x+l 

j4(x)= 8x2+8x+ 1 

j,(x) = 20x2 + 10x + 1. 

Jacobsthal and Jacobsthal-Lucas polynomials satisfy 

Jn(l) = Jn 

jr&(l) = jn 

where Jn. is a JACOBSTHAL NUMBER and j,, is a 
JACOBSTHAL-LUCAS NUMBER. 

Janko Groups 
The SPORADIC GROUPS JI, J2, Ja and J4. The Janko 
group J2 is also known as the HALL-JANKO GROUP. 

see also SPORADIC GROUP 
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Wilson, R. A. “ATLAS of Finite Group Represen- 
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Japanese Triangulation Theorem 
Let a convex CYCLIC POLYGON be TRIANGULATED in 
any manner, and draw the INCIRCLE to each TRIANGLE 
so constructed. Then the sum of the INRADII is a con- 
stant independent of the TRIANGULATION chosen. This 
theorem can be proved using CARNOT'S THEOREM. It is 
also true that if the sum of INRADTI does not depend on 
the TRIANGULATION of a POLYGON, then the POLYGON 
is CYCLIC. 

see UZSO CARNOT'S THEOREM, CYCLIC POLYGON, IN- 
CIRCLE, INRADIUS, TRIANGULATION 
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Lambert, T. “The Delaunay Triangulation Maximizes the 

Mean &radius.” Proc. Sixth Canadian Conf. Comput. Ge- 
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Jarnick’s Inequality 
Given a CONVEX plane region with AREA A and PERI- 
METERS, then 

IN - Al <P, 

where IV is the number of enclosed LATTICE POINTS. 

see UZSO LATTICE POINT,NOSARZEWSKA'S INEQUALITY 

Jeep Problem 
Maximize the distance a jeep can penetrate into the 
desert using a given quantity of fuel. The jeep is allowed 
to go forward, unload some fuel, and then return to its 
base using the fuel remaining in its tank. At its base, 
it may refuel and set out again. When it reaches fuel it 
has previously stored, it may then use it to partially fill 
its tank. This problem is also called the EXPLORATION 
PROBLEM (Ball and Coxeter 1987). 

Given n + f (with 0 5 f < 1) drums of fuel at the 
edge of the desert and a jeep capable of holding one 
drum (and storing fuel in containers along the way), 
the maximum one-way distance which can be traveled 
(assuming the jeep travels one unit of distance per drum 
of fuel expended) is 

f - - a+ 37+2ln2+7h($ +n>], 

where 7 is the EULER-MASCHERONI CONSTANT and 
G&Z) the POLYGAMMA FUNCTION. 

For example, the farthest a jeep with n = 1 drum can 
travel is obviously 1 unit. However, with n = 2 drums of 
gas, the maximum distance is achieved by filling up the 
jeep’s tank with the first, drum, traveling l/3 of a unit, 
storing l/3 of a drum of fuel there, and then returning 
to base with the remaining l/3 of a tank. At the base, 
the tank is filled with the second drum. The jeep then 
travels l/3 of a unit (expending l/3 of a drum of fuel), 
refills the tank using the l/3 of a drum of fuel stored 
there, and continues an additional 1 unit of distance on 
a full tank, giving a total distance of 4/3. The solutions 
for n = 1, 2, . . . drums are 1, 4/3, 23/15, 176/105, 
563/315, . l  . , which can also be written as a(n)/b(n), 
where 

a(n)= 
1 1 
i + 3 +".+ & LCM(1,3,5,... 

> 
,2n- 1) 

b(n) = LCM(l, 3,5,. . l  ,2n - 1) 

(Sloane’s A025550 and A025547). 

see UZSO HARMONIC NUMBER 
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Haurath, A.; Jackson, B.; Mitchem, J.; and Schmeichel, E. 
“Gale’s Round-Trip Jeep Problem.” Amer. Math. Monthly 

102, 299-309,1995. 
Helmer, 0. “A Problem in Logistics: The Jeep Problem,” 

Project Rand Report No. Ra 15015, Dec. 1947, 
Phipps, C. G. “The Jeep Problem, A More General Solution.” 

Amer. Math. Monthly 54, 458-462, 1947. 

Jenkins-Daub Method 
A complicated POLYNOMIAL ROOT-finding algorithm 
which is used in the IiWSL@ (IMSL, Houston, TX) li- 
brary and which Press et al. (1992) describe as “prac- 
tically a standard in black-box POLYNOMIAL ROOT- 
finders .” 
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IMSL, Inc. IMSL Math/Library User’s Manual. Houston, 
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Jensen’s Formula 

/ 

27r 

In Ix + eiel df!? = 2r1n+ IZI, 
Jo 

where 
In + E max(O, In z) 

andlnzisthe NATURAL LOGARITHM. 

Jensen’s Inequality 
For a REAL CONTINUOUS CONCAVE FUNCTION 

CfW < f cxi 
n - ( > n 

if f is concave down, 

CfW > f xxi 
n - ( > n 

if f is concave up, and 

IFF XI = 22 = . l  . = x~. A special case is 

with equality IFF x1 = 22 = .., = xn. 

see also CONCAVE FUNCTION, MAHLER'S MEASURE 

Jensen Polynomial 
Let f(x) be a real ENTIRE FUNCTION ofthe form 

f(x) = &k$, . 

where the yks are POSITIVE and satisfy TUR~N'S IN- 
EQUALITIES 

Yk2 - yk-lTk+l 2 0 

for k: = 1, 2, . . . . The Jensen polynomial g(t) associated 
with f(x) is then given by 

n / \ 

9&) = >: ( ;)%tk, 
k=O 1 ’ 

where E 0 is a BINO~~ML COEFFICIENT. 
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Csordas, G.; Varga, R. S.; and Vincae, I. “Jensen Polynomials 

with Applications to the Riemann @.mction.” J. Math. 
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Jerabek’s Hyperbola 
The ISOGONAL CONJUGATE of the EULER LINE. It 
passes through the the vertices of a TRIANGLE, the 
ORTHOCENTER, CIRCUMCENTER, the LEMOINE POINT, 
and the ISOGONAL CONJUGATE points of the NINE- 
POINT CENTER and DE LONGCHAMPS POINT. 

see also CIRCUMCENTER, DE LONGCHAMPS POINT, Eu- 
LER LINE, ISOGONAL CONJUGATE, LEMOINE POINT, 
NINE-POINT CENTER,~RTHOCENTER 
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Jerk 
The jerk j is defined as the time DERIVATIVE of the 
VECTOR ACCELERATION a, 

da 
jEz. 

see also ACCELERATION, VELOCITY 
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Jinc Function Johnson Solid 
The Johnson solids are the CONVEX POLYHEDRA hav- 
ing regular faces (with the exception of the completely 
regular PLATONIC SOLIDS, the ~~SEMIREGULAR~' AR- 
CHIMEDEAN SOLIDS, and the two infinite families of 
PRISMS and ANTIPRISMS). There are 28 simple (i.e., 
cannot be dissected into two other regular-faced poly- 
hedra by a plane) regular-faced polyhedra in addition 
to the PRISMS and ANTIPRISMS (Zalgaller 1969), and 
Johnson (1966) proposed and Zalgaller (1969) proved 
that there exist exactly 92 Johnson solids in all. 

The jinc function is defined as 

J1b> jinc(z) E - 
x ’ 

where J1(x) is a BESSEL FWNCTION OF THE FIRST 
KIND, and satisfies lim,,o jinc(x) = l/2. The DERIVA- 
TIVE of the jinc function is given by 

J2 (4 jinc’(x) = -- 
x ’ 

The function is sometimes normalized by multiplying by 
a factor of 2 so that jinc(0) = 1 (Siegman 1986, p. 729). 

see also BESSEL FUNCTION OF THE FIRST KIND, SING 
FUNCTION 

References 
Siegman, A. E. 

Books, 1986. 
Lasers. Sausalito, CA: University Science 

Jitter 
A SAMPLING phenomenon produced when a waveform 
is not sampled uniformly at an interval t each time, but 
rather at a series of slightly shifted intervals t + Ati such 
that the average (Ati) = 0. 

see also GHOST, SAMPLING 

Joachimsthal’s Equation 
Using CLEBSCH-ARONHOLD NOTATION, 

References 
Coolidge, J. L. A Treatise on Algebraic Plane Curves. New 

York: Dwer, pe 89, 1959. 

Johnson Circle 
The CIRCU 

see also JO 

‘McIRcLEin JOHNSON 
HNSON'S THEOREM 

3 THEOREM. 

Johnson’s Equation 
The PARTIAL DIFFERENTIAL EQUATION 

d 
- Ut+UU5+;um~+2 ( > 

3aZ 
da: 

+-uyy=o 
2t 2t2 

which arises in the study of water waves. 

References 
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A database of solids and VERTEX NETS of these solids is 
maintained on the l3ell Laboratories Netlib server, but 
a few errors exist in several entries. A concatenated and 
corrected version of the files is given by Weisstein, to- 
gether with Muthematica@ (Wolfram Research, Cham- 
paign, IL) code to display the solids and nets. The fol- 
lowing table summarizes the names of the Johnson solids 
and gives their images and nets. 

1. Square pyramid 

2. Pentagonal pyramid 

@ 
3. Triangular cupola 
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6. Pentagonal rotunda 

7. Elongated triangular pyramid 

E 
8. Elongated square pyramid 

9. Elongated pentagonal pyramid 

E 
10. Gyroelongated square pyramid - 

k 
11. Gyroelongated pentagonal pyramid 

12. Triangular dipyramid 

Johnson Solid 955 

14. Elongated triangular dipyramid 

15. Elongated square dipyramid 

@ 
16. Elongated pentagonal dipyramid 

17. Gyroelongated square dipyramid 

18. Elongated triangular cupola 

19. Elongated square cupola 

13. Pentagonal dipyramid 

20. Elongated pentagonal cupola 
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21. Elongated pentagonal rotunda 

22. Gyroelongated triangular cupola 

28. Square orthobicupola 

29. Square gyrobicupola 

23. Gyroelongated square cupola 

24. Gyroelongated pentagonal cupola 

30. Pentagonal orthobicupola 

3 1. Pentagonal gyrobicupola 

32. Pentagonal orthocupolarontunda 

25. Gyroelongated pentagonal rotunda 

26. Gyrobifastigium 

& 
27. Triangular orthobicupola 

33. Pentagonal gyrocupolarotunda 

34. Pentagonal orthobirotunda 

35. Elongated triangular or t hobicupola 
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36. Elongated triangular gyrobicupola 

37. Elongated square gyrobicupola 

38. Elongated pentagonal orthobicupola 

39. Elongated pentagonal gyrobicupola 

43. Elongated pentagonal gyrobirotunda 

44. Gyroelongated triangular bicupola 

45. Gyroelongated square bicupola 

46. Gyroelongated pentagonal bicupola 

40. Elongated pentagonal orthocupolarotunda 

41. Elongated pentagonal gyrocupolarotunda 

42. Elongated pentagonal orthobirotunda 

47. Gyroelongated pentagonal cupolarotunda 

48. Gyroelongated pentagonal birotunda 

49. Augmented triangular prism 
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50. Biaugmented triangular prism 

51 l  Triaugmented triangular prism 

fi 
52. Augmented pentagonal prism 

& 
53. Biaugmented pentagonal prism 

54. Augmented hexagonal prism 

57. Triaugmented hexagonal prism 

ti 
58. Augmented dodecahedron 

59. Parabiaugmented dodecahedron 

60. Metabiaugmented dodecahedron - 

61. Triaugmented dodecahedron 

ti 
55. Parabiaugmented hexagonal prism 

56. Metabiaugmented hexagonal prism 

* 

62. Metabidiminished icosahedron 

63. Tkidiminished icosahedron 

64. Augmented tridiminished icosahedron 



Johnson Solid Johnson Solid 959 

65. Augmented truncated tetrahedron 

66. Augmented truncated cube 

72. Gyrate rhombicosidodecahedron 

73. Parabigyrate rhombicosidodecahedron 

67. Biaugmented truncated cube 

68. Augmented truncated dodecahedron 

69. Parabiaugmented truncated dodecahedron 

70. XMetabiaugmented truncated dodecahedron 

71. Triaugmented truncated dodecahedron 

74. Metabigyrate rhombicosidodecahedron 

75. Tkigyrate rhombicosidodecahedron 

76. Diminished rhombicosidodecahedron 

77. Paragyrate diminished rhombicosidodecahedron 

78. Metagyrate diminished rhombicosidodecahedron 

79. Bigyrate diminished rhombicosidodecahedron 
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80. Parabidiminished rhombicosidodecahedron 

81. Met abidiminished rhombicosidodecahedron 

82. Gyrate bidiminished rhombicosidodecahedron 

83. Tkidiminished rhombicosidodecahedron 

84. Snub disphenoid 

85. Snub square antiprism 

86. Sphenocorona 

87. Augmented sphenocorona 

88. Sphenomegacorona 

89. Hebesphenomegacorona 

90. Disphenocingulum 

91. Bilunabirotunda 

92. Triangular hebesphenorotunda 

The number of constituent n-gons ({n}) for each John- 
son solid are given in the following table. 
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14 
2 5 
3 4 
4 4 
5 5 
6 10 
7 4 
8 4 
9 5 

10 12 
11 15 
12 6 
13 10 
14 6 
15 8 
16 10 
17 16 
18 4 
19 4 
20 5 
21 10 

22 16 
23 20 
24 25 
25 30 
26 4 
27 8 
28 8 
29 8 
30 10 

31 10 

32 15 
33 15 
34 20 
35 8 
36 8 
37 8 
38 10 

39 10 

40 15 
41 15 
42 20 
43 20 
44 20 
45 24 
46 30 

1 

3 
5 
5 

3 
4 
5 

9 
13 
15 
10 
3 
5 
5 

4 
6 

10 
10 

10 

10 

5 
5 

12 
12 
18 
20 
20 
15 
15 
10 
10 
6 

10 

10 

1 

1 
6 

1 

1 

1 
6 

1 
6 

2 
2 
7 
7 

12 

2 
2 
7 
7 

12 
12 

2 

1 

1 
1 
1 

1 
1 
1 

47 35 
48 40 
49 6 
50 10 
51 14 
52 4 
53 8 
54 4 
55 8 
56 8 
57 12 
58 5 
59 10 
60 10 
61 15 
62 10 
63 5 
64 7 
65 8 
66 12 
67 16 
68 25 
69 30 
70 30 
71 35 
72 20 
73 20 
74 20 
75 20 
76 15 
77 15 
78 15 
79 15 
80 10 
81 10 
82 10 
83 5 
84 12 
85 24 
86 12 
87 16 
88 16 
89 18 
90 20 
91 8 
92 13 

5 7 
12 

2 
1 

4 2 
3 2 
5 
4 
4 
3 

11 
10 
10 
9 
2 
3 
3 

3 
5 

10 
5 1 

10 2 
10 2 
15 3 
30 12 
30 12 
30 12 
30 12 
25 11 
25 11 
25 11 
25 11 
20 10 
20 10 
20 10 
15 9 

2 
2 
1 

2 
3 
4 
2 4 
3 3 

3 
5 
4 

11 
10 
10 
9 

1 

see also ANTIPRISM, ARCHIMEDEAN SOLID, CONVEX 
POLYHEDRON, KEPLER-P• INSOTSOLID,POLYHEDRON, 
PLATONIC SOLID, PRISMJJNIFORM POLYHEDRON 
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Johnson’s Theorem 

Let three equal CIRCLES with centers cl, Cz, and C3 
intersect in a single point 0 and intersect pairwise in 
the points P, Q, and R. Then the CIRCUMCIRCLE J of 
APQR (the so-called JOHNSON CIRCLE) is congruent to 
the original three. 

see also CIRCUMCIRCLE, JOHNSON CIRCLE 
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Join (Graph) 
Let z and y be distinct nodes of G which are not joined 
by an EDGE. Then the graph G/xy which is formed by 
adding the EDGE (x, y) to G is called a join of G. 

Join (Spaces) Joint Theorem 
Let X and Y be TOPOLOGICAL SPACES. Then their join 
is the factor space 

see GAUSSIAN JOINT VARIABLE THEOREM 

where N is the EQUIVALENCE RELATION 

t = t’ = 0 and 61: = x’ 

(GYA - (XI,YW @ or 
t&c 1 and y = y. 

see UZSU CONE (SPACE), SUSPENSION 

- m  

Reterences 
Rolfsen, D. Knots and Links. Wilmington, DE: Publish or 

Perish Press, p. 6, 1976. 

Joint Distribution Function 
A joint distribution function is a DISTRIBUTION FUNC- 

TION in two variables defined by 

D(x7 Y> EP(X<X,YLY) 

D,(x) = D(x,m) 

WY) = DbY) 

so that the joint probability function 

P[(x, y) E C)] = Js ( 
X, 

y> E &YX,Y) dXdY 

P(xeA,yeB)= 
ss 

qx, Y) dx dY 
B A 

P(x, y) = P{x E (--00, xl, Y f (-009 YII 
b 

- - 
s s 

a 

qx, Y) dx dY 
-m -m 

P(a 5 x 5 a + da, b < y 5 b + db) - 
b+db 

s s 

a+da 

- - P(x, y) dx dy =2: P(a, b) dad& 
b a 

A multiple distribution function is of the form 

D(al,..., a,) E P(xl 2 al ,..., xn _ < a,). 

see also DISTRIBUTION FUNCTION 

Joint Probability Density Function 

see JOINT DISTRIBUTION FUNCTION 

(1) 
(2) 
(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

X*Y=(XxYxI)/-, 
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Jonah Formula 
A formula for the generalized CATALAN NUMBER pdpi. 
The general formula is 

where i 0 is a BINOMIAL COEFFICIENT, although 
Jonah’s original formula corresponded to p = 2, q = 0 
(Hilton and Pederson 1991). 
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Jones Polynomial 
The second KNOT POLYNOMIAL discovered. Unlike the 
first-discovered ALEXANDER POLYNOMIAL, the Jones 
polynomial can sometimes distinguish handedness (as 
can its more powerful generalization, the HOMFLY 
POLYNOMIAL) l  Jones polynomials are LAURENT POLY- 
NOMIALS in t assigned to an R3 KNOT. The Jones poly- 
nomials are denoted Vr;(t) for LINKS, V&t) for KNOTS, 
and normalized so that 

where AL is the ALEXANDER POLYNOMIAL, and 

VL(1) = (-2)p-l, (6) 

where p is the number of components of L. For any 
KN~TK, 

VK(e 
24) = 1 

(7) 

$v&) = 0. (8) 

Let K* denote the MIRRUR IMAGE of a KNOT K. Then 

I/K*(t) = VK(t-l). (9) 

For example, the right-hand and left-hand TREFOIL 
KNOTS have polynomials 

tttrefoil (t) = t + t3 - t4 

V trefoiI* (t) = t-l + t-3 - t-4. 

Jones defined a simplified trace invariant for knots by 

1 - VK(t) 
wK(t) = (1 - t3)(1 - t)' 

V unknot(t) = 1. 

The ARF INVARIANT of W” is given by 

For example, the Jones polynomial of the TREFOIL 
KNOT is given by 

Vtrefoil(t) = t + t3 - t4. (2) 

If a LINK has an 00x> number of components, then VL 
is a LAURENT POLYNOMIAL over the INTEGERS; if the 
number of components is EVEN, VL(~) is t1i2 times a 
LAURENT POLYNOMIAL. The Jones polynomial of a 
KNOT SUM L1#L2 satisfies 

V Ll#L2 = wd(fi2)' (3) 

L + Lo L - 
The SKEIN RELATIONSHIP for under- and overcrossings 
1s 

t-lvL+ - tVL- = (t1j2 - t-1/2)vLo. (4) 

Combined with the link sum relationship, this allows 
Jones polynomials to be built up 
links to more complicated ones. 

from simple 

Some interesting identities from Jones (1985) follow. For 
any LINK L, 

VL(-l)= A,(-I), (5) 

(12) 

Arf(K) = wK(i) (13) 

(Jones 1985), where i is &i. A table of the W poly- 
nomials is given by Jones (1985) for knots of up to eight 
crossings, and by Jones (1987) for knots of up to 10 
crossings. (Note that in these papers, an additional 
polynomial which Jones calls V is also tabulated, but 
it is not the conventionally defined Jones polynomial.) 

Jones polynomials were subsequently generalized to the 
two-variable HOMFLY POLYNOMIALS, the relationship 
being 

V(t) = P(a = t,x = c2 - t-lj2) (14) 

V(t) = P(& = it,m = i(H2 - t’l”)). (15) 

They are relatedtothe KAUFFMAN POLYNOMIAL F by 

V(t) = F(-t-3’4, t-1’4 + t1’4). (16) 

Jones (1987) gives a table of BRAID WORDS and W poly- 
nomials for knots up to 10 crossings. Jones polynomi- 
als for KNOTS up to nine crossings are given in Adams 
(1994) and for oriented links up to nine crossings by 
Doll and Hoste (1991). All PRIME KNOTS with 10 or 
fewer crossings have distinct Jones polynomials. It is 
not known if there is a nontrivial knot with Jones poly- 
nomial 1. The Jones polynomial of an (m,n)-TORUS 
KNOT is 

tb--l)b-W(l _ p+l _ p+l + p+y 

1 - t2 (17) 
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Let k be one component of an oriented LINK 1;. Now 
form a new oriented LINK L* by reversing the orienta- 
tion of k. Then 

vL* = K3v(L), 

where V is the Jones polynomial and X is the LINKING 
NUMBER of /C and L - k. No such result is known for 
HOMFLY POLYNOMIALS (Lickorish and Millett 1988). 

Birman and Lin (1993) showed that substituting the 
POWER SERIES for e2 as the variable in the Jones poly- 
nomial yields a POWER SERIES whose COEFFICIENTS 

are VASSILIEV POLYNOMIALS. 

Let L be an oriented connected LINK projection of n 

crossings, then 
n > span V(L), (18) 

with equality if L is ALTERNATING and has no REMOV- 
ABLE CROSSING (Lickorish and Millett 1988). 

There exist distinct KNOTS with the same Jones ply- 
nomial. Examples include (05001, l&32), (08008, 10129), 

(08 016, 104, (10025, 10056), (10022, l0035), @OO41, 

loog4), (10043, loogl), (10059, 10106), (100601 l"083)1 

(10071, 10104)~ (10073, 10086), (10081, 10109), and (lo1377 

10~~~) (Jones 1987). Incidentally, the first four of these 
also have the same HOMFLY POLYNOMIAL. 

Witten (1989) g ave a heuristic definition in terms of 
a topological quantum field theory, and Sawin (1996) 
showed that the “quantum group” U&22) gives rise to 
the Jones polynomial. 

see also ALEXANDER POLYNOMIAL, HOMFLY POLY- 
NOMIAL, KAUFFMAN POLYNOMIAL F, KNOT, LINK, 
VASSILIEV POLYNOMIAL 
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Jonquike’s Function 

see POLYGAMMA FUNCTION 

Jordan Algebra 
A nonassociative algebra with the product of elements 
A and B defined by the ANTICOMMUTATOR {A,B} = 
AB + BA. 

see also ANTICOMMUTATOR 

Jordan Curve 
A Jordan curve is a plane curve which is topologically 
equivalent to (a HOMEOMORPHIC image of) the UNIT 
CIRCLE. 

It is not known if every Jordan curve contains all four 
VERTICES of some SQUARE, but it has been proven 
true for “sufficiently smooth” curves and closed convex 
curves (Schnirelmann). For every TRIANGLE T and Jor- 
dan curve J, J has an INSCRIBED TRIANGLE similar to 
T. 

see also JORDAN CURVE THEOREM,UNIT CIRCLE 

Jordan Curve Theorem 
If J is a simple closed curve in IK2, then lIX2 - J has 
two components (an “inside” and “outside”), with J the 
BOUNDARY of each. 

see also JORDAN CURVE, SCH~NFLIES THEOREM 
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Jordan Decomposition Theorem 
Let V # (0) b e a finite dimensional VECTOR SPACE over 
the COMPLEX NUMBERS, and let A be a linear operator 
on V. Then V can be expressed as a DIRECT SUM of 
cyclic subspaces. 

References 
Gohberg, I. and Goldberg, S. “A Simple Proof of the Jor- 

dan Decomposition Theorem for Matrices.” Amer. Math. 
MonthZy 103, 157-159, 1996. 

Jordan-HSlder Theorem 
The composition quotient groups belonging to two COM- 
POSITION SERIES of a FINITE GROUP G are, apart from 
their sequence, ISOMORPHIC in pairs. In other words, if 

I c  H, c  l  ,* c H2 c H1 c G 

is one COMPOSITION SERIES and 

I c Kt c . . . c K2 c Kl c G 
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is another, then t = s, and corresponding to any compo- 
sition quotient group &/&+I, there is a composition 
quotient group Hi/Hi+1 such that 

JG Hi - - 
K. 33-l - Hi+1 ’ 

This theorem was proven in 1869-1889. 

see also COMPOSITION SERIES, FINITE GROUP, Iso- 
MORPHIC GROUPS 
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Jordan’s Inequality 

I  
0.25 0.5 0.75 1 1.25 1.5 

For 0 < x < n/2, - - 

2 
-x < sinx < 2. 
7T - 

- 

References 
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Jordan’s Lemma 
Jordan’s lemma shows the value of the INTEGRAL 

I= 
I f( > xe iax dx (1) 

along the REAL AXIS is 0 for “nice” functions which 
satisfy limR+, ]f(Reie)] = 0. This is established using 
a CONTOUR INTEGRAL 1~ which satisfies 

(2) 

To derive the lemma, write 

x G Reie = R(cos 0 + i sin 0) (3) 

dx = iReie d0 

anddefinethe CONTOUR INTEGRAL 

(4 

IR = 
s 

7r f(ReiB)eiaRcos8-aRsinO~~eiB de (5 

0 

Then 

IIRI = R 
s 
m jf(Reie)\ leiaRcosBI le-aRsinBI Ii1 IPl d0 

0 
7r 

=R 
s 

~f(ReiS)le-“RSi”e de 
0 

s 

42 
= 2R If (Reie)IemaRSine de. (6) o 

Now, if limR+, [f (Reze)l = 0, choose an E such that 

/f(Reie)I 5 c, so 

s 42 
/IRI 5 ~34~ e -aR sin 0 de. 

(7) 
0 

But, for 8 E [o, 7r/2], 

2 
-0 < sin& 
7r - 

(8) 

so 

s 42 
IIRI 5 2& 

=-2aRB/m &j 

0 

= 2&l ,J”” = !!?(I - ewaR), 
a (9) 

As long as limR+, ] f (z)] = 0, Jordan’s lemma 

lim 11~1 < ’ lim e= 0 
R-m - a R+oo 

then follows. 

(10) 

see also CONTOUR INTEGRATION 
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Jordan Measure 
Let the set A4 correspond to a bounded, NONNEGATIVE 
function f on an interval 0 < f(x) < c for x E [u, b]. The 
Jordan measure, when it exists, is the common value of 
the outer and inner Jordan measures of M. 

The outer Jordan measure is the greatest lower bound of 
the areas of the covering of M, consisting of finite unions 
of RECTANGLES. The inner Jordan measure of A4 is the 
difference between the AREA ~(a- b) of the RECTANGLE 
S with base [a, b] and height c, and the outer measure 
of the complement of M in S. 
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Jordan Polygon 

see SIMPLE POLYGON 
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Josephus Problem 
Given a group of n men arranged in a CIRCLE under the 
edict that every mth man will be executed going around 
the CIRCLE until only one remains, find the position 
L(n, m) in which you should stand in order to be the last 
survivor (Ball and Coxeter 1987). The original problem 
consisted of a CIRCLE of 41 men with every third man 
killed (n = 41, m = 3). In order for the lives of the last 
two men to be spared, they must be placed at positions 
31 (last) and 16 (second-to-last)* 

The following array gives the original position of the last 
survivor out of a group of n = 1, 2, + . l  , if every nzth 
man is killed: 

1 
2 1 
3 32 
4 1 1 2 
53412 
651514 
7742635 
8 1763144 
931187238 
10 5 4 5 3 3 9 1 7 8 

(Sloane’s A032434). The survivor for m = 2 can be 
given analytically by 

Lh2) = 1+2n-p+l*gnJ, 

where In] is the FLOOR FUNCTION and LG is the LOG- 
ARITHM to base 2. The first few solutions are therefore 
1, 1, 3, 1, 3, 5, 7, 1, 3, 5, 7, 9, 11, 13, 15, 1, . . . (Sloane’s 
A006257). 

Mott-Smith (1954) d iscusses a card game called “Out 
and Under” in which cards at the top of a deck are’ 
alternately discarded and placed at the bottom. This is 
a Josephus problem with parameter nz = 2, and Mott- 
Smith hints at the above closed-form solution. 

The original position of the second-to-last survivor is 
given in the following table for n = 2, 3, l  . . : 

1 1 
2 1 1 
3 1 1 2 
4 3 2 1 2 
511514 
6312134 
71463134 
831127137 
9545338164 

(Sloane’s A032435). References 

Another version of the problem considers a CIRCLE of 
two groups (say, “A” and “B”) of 15 men each, with ev- 
ery ninth man cast overboard. To save all the members 
of the “A” group, the men must be placed at positions 

1, 2, 3, 4, 10, 11, 13, 14, 15, 17, 20, 21, 25, 28, 29, giving 
the ordering 

AAAABBBBBAABAAABABBAABBBABBAAB 

which can be remembered with the aid of the 
MNEMICIC ‘Worn numbers’ aid and art, never will fame 
depart.” Consider the vowels only, assign a = 1, e = 2, 
i = 3,0 = 4, u = 5, and alternately add a number of 
letters corresponding to a vowel value, so 4A (o), 5B (u), 
2A (e), etc. (Ball and Coxeter 1987). 

If every tenth man is instead thrown overboard, the men 
from the “A” group must be placed in positions 1, 2, 4, 
5, 6, 12, 13, 16, 17, 18, 19, 21, 25, 28, 29, giving the 
sequence 

AABAAABBBBBAABBAAAABABBBABBAAB 

which can be constructed using the MNEMONIC “Rex 
paphi cum gente bona dat signa serena” (Ball and Cox- 
eter 1987). 

see als 
LACE 

o KIRKCAN'S SCHOOLGIRL P ROBLEM , NECK- 
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~~~THREE JUG PROBLEM 

Jugendtraum 
Kronecker proved that all the Galois extensions of the 
RATI~NALS Q with ABELIAN Galois groups are SUB- 
FIELDS of cyclotomic fields Q(pn), where plz is the group 
of nth ROOTS OF UNITY. He then sought to find a sim- 
ilar function whose division values would generate the 
Abelian extensions of an arbitrary NUMBER FIELD. He 
discovered that the ~-FUNCTION works for IMAGINARY 

quadratic number fields K, but the completion of this 
problem, known as Kronecker’s Jugendtraum (“dream 
of youth”), for other fields remains one of the great un- 
solved problemsin NUMBER THEORY. 

see also ~-FUNCTION 

Shimura, G. Introduction to the Arithmetic Theory of Auto- 
morphic Functions. Princeton, NJ: Princeton University 
Press, 1981 m 



Juggling 

Juggling 
The throwing and catching of multiple objects such that 
at least one is always in the air. Some aspects of jug- 
gling turn out to be quite mathematical. The best ex- 
amples are the two-handed asynchronous juggling se- 
quences known as Y~ITESWAPS." 

see UZSO SITESWAP 
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Julia F’ractal 

see JULIA SET 

Julia Set 
Let R(z) be a rational function 

where z E C*, c* is the RIEMANN SPHERE ~U{m}, ani 
P and Q are POLYNOMIALS without common divisors. 
The “filled-in” Julia set JR is the set of points z which 
do not approach infinity after R(x) is repeatedly applied. 
The true Julia set is the boundary of the filled-in set 
(the set of “exceptional points”). There are two types 
of Julia sets: connected sets and CANTOR SETS. 

For a Julia set& with c < 1, the CAPACITY DIMENSION 
is 

d I I c2 
capacity = 1 + 4 + O(lc13). (2) 

For small c, Jc is also a JORDAN CURVE, although its 
points are not COMPUTABLE. 

Quadratic Julia sets are generated by the quadratic 
mapping 

ha+1 = &a2 + C (3) 

for fixed c. The special case c = -0.123 + 0.745i is 
called DOUADY'S RABBIT FRACTAL, c = -0.75 is called 
the SAN MARCO FRACTAL, and c = -0.391 - 0.587i 
is the SIEGEL DISK FRACTAL. For every c, this trans- 
formation generates a FRACTAL. It is a CONFORMAL 
TRANSFORMATION, so angles are preserved. Let J be 
the JULIA SET, then x’ + x leaves J invariant. If a 
point P is on J, then all its iterations are on J. The 
transformation has a two-valued inverse. If b = 0 and y 
is started at 0, then the map is equivalent to the LOGIS- 
TIC MAP. The set of all points for which J is connected 
is known as the MANDELBROT SET. 

see dso DENDRITE FRACTAL, DOUADY’S RABBIT 
FRACTAL, FATOU SET, MANDELBROT SET, NEWTON’S 
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METHOD, SAN MARCO FRACTAL, SIEGEL DISK FRAC- 
TAL 
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Jump 
A point of DTSCONTINUITY. 

see also DISCONTINUITY, JUMP ANGLE, JUMPING 
CHAMPION 

Jump Angle 
A GEODESIC TRIANGLE with oriented boundary yields 
a curve which is piecewise DIFFERENTIABLE. F’urther- 
more, the TANGENT VECTOR varies continuously at all 
but the three corner points, where it changes suddenly. 
The angular difference of the tangent vectors at these 
corner points are called the jump angles. 

see ~ZSOANGULAR DEFECT,GAUSS-BONNET FORMULA 

Jumping Champion 
An integer n is called a JUMPING CHAMPION if n is 
the most frequently occurring difference between con- 
secutive primes n, 5 N for some N (Odlyzko et al. ). 
This term was coined by J. H. Conway in 1993. There 
are occasionally several jumping champions in a range. 
Odlyzko et al. give a table of jumping champions for 
n 2 1000, consisting mainly of 2, 4, and 6. 6 is the 
jumping champion up to about 72 z 1.74 x 1035, at 
which point 30 dominates. At n E 1O425, 210 becomes 
champion, and subsequent PRIMORIALS are conjectured 
to take over at larger and larger n. Erd& and Straus 
( 1980) proved that the jumping champions tend to in- 
finity under the assumption of a quantitative form of the 
k-tuples conjecture. 

see also PRIME DIFFERENCE FUNCTION, PRIME GAPS, 
PRIME NUMBER, PRIMORIAL 

References 
ErdGs, P.; and Straus, E. G. ‘(Remarks on the Differences 

Between Consecutive Primes.” Elem. Math. 35, 115-118, 
1980. 
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Jung’s Theorem 
Every finite set of points with SPAN d has an enclosing 
CIRCLE with RADIUS no greater than &d/3. 

References 
Le Lionnais, F. Les nombres remarqzlables. Paris: Hermann, 

p. 28, 1983. 
Rademacher, H. and Toeplitz, 0. The Enjoyment of Math- 
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Princeton, NJ: Princeton University Press, pp, 103-110, 

1957. 

Just If 

Just One 

see IFF 

Just One 

see EXACTLY ONE 
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K An extension of the K-function 

k-ary Divisor 
Let a DIVISOR d of n be called a l-ary divisor if d l- n/d. 
Then d is called a k-ary divisor of n, written dlkn, if the 
GREATEST COMMON (k - l)-ary divisor of d and (n/d) 

In this notation, din is written dlon, and d[In is written 
dlln. p" is an INFINARY DIVISOR of pY (with y > 0) if 

P”l y-lpy* 

see also DIVISOR, GREATEST COMMON DIVISOR, INFI- 
NARY DIVISOR 

References 
Guy, R. K, Unsolved Problems in Number Theory, 2nd ed. 

New York: Springer-Verlag, p. 54, 1994. 

k-Chain 
Any sum of a selection of &s, where & denotes a k-D 
POLYTOPE. 

see also k-CIRCUIT 

k-Circuit 
A k-CHAIN whose bounding (k - l)-CHAIN vanishes. 

k-Coloring 
A k-coloring of a GRAPH G is an assignment of one of 
k possible colors to each vertex of G such that no two 
adjacent vertices receive the same color. 

see also COLORING, EDGE-COLORING 

References 
Saaty, T. L. and Kainen, p. C. The Four- Color Problem: 

Assaults and Conquest. New York: Dover, p, 13, 1986. 

K(rz + 1) E O”112233 #*an (1) 

defined by 
K(z) _ [r(z)l” - 

G(z)’ (2) 

Here, G(z) is the G-FUNCTION defined by 

G(n + 1) E ( > n! n 
ifn=O 

K(n+l) I)! ifn>O. 

(3) 

The K-function is given by the integral 

K(x) = (27r)-(“-1)/2 exp [ (;) +~zmlln(t!)dt] (4) 

and the closed-form expression 

K(x) = eXP[C'(-14) - C’(-1>1, (5) 

where S(Z) is the RIEMANN ZETA FUNCTION, c’(z) its 
DERIVATIVE, c( a, Z) is the HURWITZ ZETA FUNCTION, 
and 

(6) 

K(x) also has a STIRLING-like series 

K(z + 1) E (21/341/12~(x:1) 

$z” + & - 
B4 B6 

x exp 2 .3.49 - 4 l  5 l  6# - l  l  ’  
> 

’  
(7) 

where 

nl G [K(i)]’ (8) 
= e-('n2)/3-12C'(-l) 

(9) 

= p/3~e~-1--C’P~/Cw 
7 (10) 

k-Form 

see DIFFERENTIAL k-FORM 

K-Function 

and y is the EULER-MASCHERONI CONSTANT (Gosper). 

The first few values of K(n) for n = 2, 3, . . . are 1, 
4, 108, 27648, 86400000, 4031078400000, . . . (Sloane’s 
A002109). These numbers are called HYPERFACTORI- 
ALS by Sloane and Plouffe (1995). 

see also G-FUNCTION, GLAISHER-KINKELIN CON- 
STANT, HYPERFACTORIAL, STIRLING’S SERIES 

-4 -3 -2 -1 1 2 3 
References 
Sloane, N. J. A. Sequence AO02109/M3706 in “An On-Line 

Version of the Encyclopedia of Integer Sequences.” 
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where nzl is the sample MEAN, 77~ is the sample VARI- 
ANCE, and nzi is the sample ith MOMENT about the 
MEAN (Kenney and Keeping 1951, pp. 109-110, 163- 
165, and 189; Kenney and Keeping 1962). These statis- 
tics are obtained from inverting the relationships 

K-Graph 
The GRAPH obtained by dividing a set of VERTICES (1, 

-.* 1 n} into k - 1 pairwise disjoint subsets with VER- 
TICES of degree n1 , . l  . , n&l, Satisfying 

(4 = P (9) 
N-l 

(m2) = - 
N ” 

(10) 

( 2) * w- l)[(N- G4 + w2 - 2N+3b221(11) m2 = 
N3 

and with two VERTICES joined IFF they lie in distinct 
VERTEX sets. Such GRAPHS are denoted Knl,...,nk. 

see also BIPARTITE GRAPH, COMPLETE GRAPH, COM- 
PLETE k-PARTITE GRAPH, TG-PARTITE GRAPH 

(m3) (N - l)W - 2) - - 
N2 CL3 (12) 

(m4) (N - 1)w2 - 3N + 3)/44 + 3(2N - 3)/4z2] - - 
N3 

. 

k-Matrix 
A k-matr.ix is a kind of CUBE ROOT of the IDENTITY 
MATRIX defined by 

0 4 0 

k= [ 
i 0 0 
010 I 

. 
The first moment (sample MEAN) is 

It satisfies 1 N 
ml = (2) = - 

N Ix Xi, (14 k3 = I, 

I is the 

0 CUBE 

IDENTITY MATRIX. 
and the expectation is see als ROOT,QUATERNIO 

k-Partite Graph 
A k-partite graph is a GRAPH whose VERTICES can be 
partitioned into k disjoint sets so that no two vertices 
within the same set are adjacent. 

see also COMPLETE ~PARTITE GRAPHJ-GRAPH 

(15) 

The second MOMENT (sample STANDARD DEVIATION) 

References 
Saaty, T. L. and Kainen, P. C. The Four-Color Problem: 

Assaults and Conquest. New York: Dover, p. 12, 1986. 

m2 = ((x - p)2) = (x2) - 2p (4 + P2 = (x2) - P2 

k-Statistic . 
An UNBIASED ESTIMATOR of the CUMULANTS pi of 
a DISTRIBUTION. The expectation values of the k- 
statistics are therefore given by the corresponding CU- 
MULANTS 

1 N - -- N 
>: 

xi2 - 
i=l 

(k > 1 = K1 (1) 

(JE > 2 = kc2 (2) 
(k > 3 = K3 (3) 

(k > 4 = K4 (4 

- - XiXj, (16) 
i,j=l 

i#j 

and the expectation value is 

(Kenney and Keeping 1951, p. 189). For a sample of 
size, N, the first few k-statistics are given by 

ml (5) kl = 

k2 = 

k3 = 

k4 = 

i#j 
N-l , w-1) 2 - -- N p2- N2 p 1 (6) 

(N - l)(N - 2)m3 (7) since there are N(N - 1) terms xixj, using 

N’[(N + l)m4 - 3(N - l)mz2] 

(N - l)(N - 2)(N - 3) ’ (8) (Xixj) = (Xi) (Xj) = (Xi)2 7 (18) 
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and where pk is the MOMENT about 0. Using the iden- 
tity 

p; = p2 + p2 (19) 

to convert to the MOMENT ~2 about the MEAN and 
simplifying then gives 

N-l 
(m2) = - 

N ” w  

The factor (N - 1)/N is known as BESSEL'S CORREC- 

TION. 

The third MOMENT is 

m3 = ((x - p)3) = (x3 - 3px2 + 3p2x - p”) 

= (x3) - 3p (x2) + 3p2 (x) - p3 

= (x3) - 3/&(x2) + 3p3 - /A3 

= (x3) - 3p(x2) + z/A3 

1 - -- 
N 

XXi” -3 (k CLCi) ($ CXj'> 

(21) 

Now use the identities 

where it is understood that sums over products of vari- 
ables exclude equal indices. Plugging in 

xixjxk. (24) 

The expectation value is then given by 

(ma) = ($ - $ + $) Np$ 

> 
N(N-l)p;p+$N(N-l)(N-2)p3 

(25) 

where pa is the MOMENT about 0. Plugging in the iden- 
tities 

and simplifying then gives 

(m3) (N - 1w - 2) - - 
N2 P3 (28) 

(Kenney and Keeping 1951, p. 189). 

The fourth MOMENT is 

m4 = ((a: - P)~) = (x” - 4x3p + 6x2p2 - 4xp3 + p”) 

= (x4) - 4p (x3) + 6p2 (x2) - 3p4 

1 - -- N 
x 

xi4 - $2 (Xxi) (Xxj3) 

+ $ (xxi)’ (CXj”) - $ (Cxi)4 (2g) 

Now use the identities 

(xxi) (xXj3) = xxi” + x Xi3Xj (30) 

(xXi)'(xXj"> =~Xi4+2~Xi3Xj 

+2x Xi2Xj2 + 2 x Xi2XjXk (31) 

(xXi)4 = xxi” +4xXi3xj +6)jxi2xj2 

2 

+12 x xjxk + 24 >: xixjxkxl. (32) 
xi 

Plugging in, 

1 4 6 3 
m4 = 3 - + @ --- N3 N4 xi4 

( 

4 6 3 

+ 
-N2+2*W-4mW 

>c 
Xi3Xj 

( 6 3 
+ 2**-6*p 

E 
xi2xj2 

+ 2mN3-12y9 
( 6 3 

E 
Xi2XjXk 

3 
- 24 l  ~4 x  x ; x j xkx l .  

The expectation value is then given by 

(33) 

@u)=(&$+&$)Npi 

4 12 12 + ( -- --- 
N2 + N3 N4 > 

NP - 1)/&P 

( 12 18 --- 
+ N3 N4 > 

@(N - 11~;~ 

+ 5-w 
( 18 36 

> 
+N(N - I)(N - 2jpbp2 

- $&N(N l)(N - - 2)(N - 3)p4, (34) 

where pi are MOMENTS about 0. Using the identities 
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and simplifying gives 

(m4) P - lNNZ - 3N + 3)/~4 + 3(2N - 3)pz23 - - 
Iv3 

(38) 
(Kenney and Keeping 1951, p. 189). 

The square of the second moment is 

2 m2 = ((x2) - p2)2 = (x2)” - 2/L2 (x2) + p4 

= (;xxi”)2 -2($J:Zi)a ($Xx?) 

+ ($XXi), 

= & (xxi”>’ - $ (xxi)’ (xXj2) 

1 

E > 

4 

+ N” 
xi . (39) 

Now use the identities 

(~X~2)2=~Xi4+2~X~2Xj2 w  

(xXi)'(CXj') =~Xi4+2~Xi2Xj2 

+2IE Xi3Xj + 2 x 
Xi2XjXk (41) 

(xxi)' = >)xi” +6))xi2xj2 

+4x 
Xi3Xj + 12 9; XjXk + 24 x XL:XjXkXl. (42) 

xi 

Plugging in, 

yj-J22= -- 
( 

1 2 1 

N2 
jiyy + * 

E 
xi4 

$ + 6 * $) ))xi2xj2 

+ -2 ’ $ + 4 l  +) x  Xi3Xj 

2 1 
+ 

( 

-2. p + 12 l  N4 

E 
Xi2XjXk 

24 

+ N4 IE 
XixjxkxL 

The expectation value is then given by 

(m22) = (& - $ + $) Np: 

( 

2 4 6 -- 
+ N2 pz+s > 

$N(N - I)&~ 

4 4 
+ -m + * N(N - lb&CL > 

I 3 4 12 
+ -F-t% > 

$N(N - I)(N - 2)PiP- 

24 
+ &N(N - l)(N - 2)(N - 3)~~ (44) 

(43) 

k-Statistic 

where p: are MOMENTS about 0. Using the identities 

and simplifying gives 

(m22) = 
cN - l)[(N - l)/Js + (N2 - 2N + 3)/.~2~] 

N3 
(48) 

(Kenney and Keeping 1951, p. 189). 

The VARIANCE of k2 is given by 

var(k2) = x + 
2 

(N - 1)~~~’ 

so an unbiased estimator of var(kz) is given by 

v&r(k2) = 
2k22N + (N - l)k4 

N(N + 1) 

(49) 

(50) 

(Kenney and Keeping 1951, pa 189). The VARIANCE of 
k3 can be expressed in terms of CUMULANTS by 

var(k3) = 
6~2~ 

+ N(N - l)(N - 2)’ 
(51) 

An UNBIASED ESTIMATOR for var(ks) is 

v&r(k3) = 
6k22N(N - 1) 

(N - 2)(N + l)(N + 3) 
(52) 

(Kenney and Keeping 1951, p. 190). 

Now consider a finite population. Let a sample of N 
be taken from a population of M. Then UNBIASED ES- 
TIMATORS A& for the population MEAN p, AI2 for the 
population VARIANCE ~2, G1 for the population SKEW- 
NESS 71, and G2 for the population KURTOSIS 72 are 

Ml = p (53) 
M-N 

M2 = N(J,f- 1)p2 (54) 

G2 CM - 1)(M2 - 6MN + M + 6N2)y2 - - 
N(M - 2)(M - 3)(M - N) 

GM(MN+M-N2-1) 

N(M - 2)(M - 3)(M - N) 

(55) 

(56) 

(Church 1926, p. 357; Carver 1930; Irwin and KendalI 
1944; Kenney and Keeping 1951, p. 143), where y1 is 
the sample SKEWNESS and 72 is the sample KURTOSIS. 

see UZSO GAUSSIAN DTSTRIBUTION, KURTOSIS, MEAN, 
MOMENT, SKEWNESS,~ARIANCE 
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k-Subset 
A k-subset is a SUBSET containing exactly k elements. 

see also SUBSET 

k-Theory 
A branch of mathematics which brings together ideas 
from algebraic geometry, LINEAR ALGEBRA, and NUM- 
BER THEORY. In general, there are two main types of 
K-theory: topological and algebraic. 

Topological k-theory is the “true” k-theory in the sense 
that it came first. Topological Ic-.theory has to do with 
VECTOR BUNDLES over TOPOLOGICAL SPACES. Ele- 
ments of a k-theory are STABLE EQUIVALENCE classes 
of VECTORBUNDLES overa TOPOLOGICAL SPACE. YOU 
can put a RING structure on the collection of STABLY 
EQUIVALENT bundles by defining ADDITION through the 
WHITNEY SUM, and MULTIPLICATION throughthe TEN- 
SOR PRODUCT of VECTOR BUNDLES. This defines “the 
reduced real topological k-theory of a space.” 

“The reduced k-theory of a space” refers to the same 
construction, but instead of REAL VECTOR BUNDLES, 
COMPLEX VECTOR BUNDLES are used. Topological k- 
theory is significant because it forms a generalized CO- 

HOMOLOGY theory, and it leads to a solution to the vec- 
tor fields on spheres problem, as well as to an under- 
standing of the J-homeomorphism of HOMOTOPY THE- 
ORY. 

Algebraic k-theory is somewhat more involved. Swan 
(1962) noticed that there is a correspondence between 
the CATEGORY of suitably nice TOPOLOGICAL SPACES 
(something like regular HAUSDORFF SPACES) and C*- 
ALGEBRAS. The idea is to associate to every SPACE the 
C*-ALGEBRA of CONTINUOUS MAPS from that SPACE 
to the REALS. 

A VECTOR BUNDLE over a SPACE has sections, and 
these sections can be multiplied by CONTINUOUS FUNC- 
TIONS to the REALS. Under Swan’s correspondence, 
VECTOR BUNDLES correspond to modules over the C*- 
ALGEBRA of CONTINUOUS FUNCTIONS, the MODULES 
being the modules of sections of the VECTOR BUNDLE. 
This study of MODULES over C*-ALGEBRA is the start- 
ing point of algebraic k-theory. 

The QUILLEN-LICHTENBAUM CONJECTURE connectsal- 
gebraic k-theory to &ale cohomology. 

see also C*-ALGEBRA 
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k-Tuple Conjecture 
The first of the HARDY-LITTLEWOOD CONJECTURES. 
The k-tuple conjecture states that the asymptotic num- 
ber of PRIME CONSTELLATIONS can be computed ex- 
plicit 1 y. In particular, unless there is a trivial divisi- 
bility condition that stops p, JJ + al, . . . , p + ak from 
consisting of PRIMES infinitely often, then such PRIME 
CONSTELLATIONS will occur with an asymptotic den- 
sity which is computable in terms of al, . . . , ak. Let 
0 <ml < rnz < . . . < rnk, then the k-tuple conjecture 
predicts that the number of PRIMES p 5 2 such that 
p+2ml,p+2mz, . . ..p+2mk areallP~I~~is 

s 

X 
dt 

P(x;ml,m2,.*.,mk)-C(ml,m2,...,mk) - 
2 In"+%! 

(1) 
where 

the product is over ODD PRIMES q, and 

denotes the number of distinct residues of 0, ml, . . . , 
??%k (mod q) (Halberstam and Richert 1974, Odlyzko). 
If k = 1, then this becomes 

q(q-2) 4-l 
c(m)=211,,q,m,_,* rI 

9 
(4) 

This conjecture is generally believed to be true, but has 
not been proven (Odlyzko et al. ). The following spe- 
cial case of the conjecture is sometimes known as the 
PRIME PATTERNS CONJECTURE. Let S be a FINITE 
set of INTEGERS. Then it is conjectured that there ex- 
ist infinitely many k for which {k + s : s f S} are all 
PRIME IFF S does not include all the RESIDUES of any 
PRIME. The TWIN PRIME CONJECTURE is a special 
case of the prime patterns conjecture with S = {0,2}. 
This conjecture also implies that there are arbitrarily 
long ARITHMETIC PROGRESSIONS of PRIMES. 

see UZSO ARITHMETIC PROGRESSION, DIRICHLET'S 
THEOREM, HARDY-LITTLEWOOD CONJECTURES, k- 
TUPLE CONJECTURE, PRIME ARITHMETIC PROGRES- 
SION, PRIME CONSTELLATION, PRIME QUADRUPLET, 
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PRIME PATTERNS CONJECTURE, TWIN PRIME CON- 
JECTURE, TWIN PRIMES 
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Kabon Triangles 
The largest number N(n) of nonoverlapping TRIANGLES 
which can be produced by n straight LINE SEGMENTS. 
The first few terms are 1, 2, 5, 7, 11, 15, 21, . . . (Sloane’s 
A006066). 
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Kac Formula 
The expected number of REAL zeros E, of a RANDOM 
POLYNOMIAL of degree n is 

As n + 00, 

En = 
2 

2 Inn + Cl + - + O(nB2), 
7T m (3) 

where 

= 0.6257358072.... (4) 

The initial term was derived by Kac (1943). 
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Kac Matrix 
The (n + 1) x (n + 1) TRIDIAGONAL MATRIX (also called 
the CLEMENT MATRIX) defined by 

s, = 

On 0 0 l  l  l  0  

lOn-1 0 .**O 
0 2 0 n-2 a.. 0 
. l  . . . l  

. . l  . . . 

00 0 ’  
. . n-l 0 1 . 

,oo 0 0 720 

The EIGENVALUES are 2k -n for k = 0, 1, ..*, n. 

KEhler Manifold 
A manifold for which the EXTERIOR DERIVATIVE of the 
FUNDAMENTAL FORM n associated with the given Her- 
mitian metric vanishes, so do = 0. 
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Kakeya Needle Problem 
What is the plane figure of least AREA in which a line 
segment of width 1 can be freely rotated (where transla- 
tion of the segment is also allowed)? Besicovitch (1928) 
proved that there is no MINIMUM AREA. This can be 
seen by rotating a line segment inside a DELTOID, star- 
shaped 5-oid, star-shaped 7-oid, etc. When the figure 
is restricted to be convex, Cunningham and Schoenberg 
(1965) found there is still no minimum AREA. How- 
ever, the smallest simple convex domain in which one 
can put a segment of length 1 which will coincide with 
itself when rotated by 180” is 

&(5-2h) n- = 0.284258... 

(Le Lionnais 1983). 

see also CURVEOF CONSTANTWIDTH,LEBESGUE MIN- 
IMAL PROBLEM, REULEAUXPOLYGON,REULEAUX TRI- 
ANGLE 
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Kakutani’s Fixed Point Theorem 
Every correspondence that maps a compact convex sub- 
set of a locally convex space into itself with a closed 
graph and convex nonempty images has a fixed point. 

SE also FIXED POINT THEOREM 

Kakutani’s Problem 
see COLLATZ PROBLEM 

Kalman Filter 
An ALGORITHM in CONTROL THEORY introduced by 
R. Kalman in 1960 and refined by Kalman and R. Bucy. 
It is an ALGORITHM which makes optimal use of im- 
precise data on a linear (or nearly linear) system with 
Gaussian errors to continuously update the best esti- 
mate of the system’s current state. 

see also WIENER FILTER 

References 
Chui, C. K. and Chen, G. KaIman Filtering: With Real-Time 

Applications, 2nd ed. Berlin: Springer-Verlag, 1991. 
Grewal, M. S. Kulman Filtering: Theory & Practice. Engle- 

wood Cliffs, NJ: Prentice-Hall, 1993. 

KAM Theorem 

see KOLMOGOROV-ARNOLD-MOSER THEOREM 

Kampyle of Eudoxus 

A curve studied by Eudoxus in relation to the classical 
problem of CUBE DUPLICATION. It is given by the polar 
equation 

r cos2 8 = a, 

and the parametric equations 

X = asect 

Y = atantsect 

with t E [-7r/2,~/2]. 

References 
Lawrence, J. D. A Catalog of Special Plane 

York: Dover, pp. 141-143, 1972. 
MacTutor History of Mathematics Archive. “K 

doxus. ” http://vvu-groups.dcs.st-and.ac 
/Curves/Kampyle. html. 

Curves. New 

ampyle of Eu- 
: .I&/-history 

Kaplan-York Conjecture 

Kanizsa Triangle 
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\ 7 
c V a 

An optical ILLUSION, illustrated above, in which the 
eye perceives a white upright EQUILATERAL TRIANGLE 
where none is actually drawn. 

see also ILLUSION 

References 
Bradley, D. R. and Petry, H. M. “Organizational Determi- 

nants of Subjective Contour.” Amer. J. Psychology 90, 
253-262, 1977. 

Fineman, M. The Nature of Visual Illusion. New York: 
Dover, ppm 26, 137, and 156, 1996. 

Kantrovich Inequality 
Suppose 21 < x2 < . . . < z72. are given POSITIVE num- 
bers. Let X1, . . l  , X, 2 0 and C Xj = 1. Then 

where 

A= $(x1 + xn) 

G=JZ 

are the ARITHMETIC and GEOMETRIC MEAN, respec- 
tively, of the first and last numbers. 

References 
PtAk, V. “The Kantrovich Inequality.” Amer. Math. Monthly 

102, 820-821, 1995. 

Kaplan-Yorke Conjecture 
There are several versions of the Kaplan-Yorke con- 
jecture, with many of the higher dimensional ones re- 
maining unsettled. The original Kaplan-Yorke conjec- 
ture (Kaplan and Yorke 1979) proposed that, for a 
two-dimensional mapping, the CAPACITY DIMENSION D 
equals the KAPLAN-Y• RKE DIMENSION DKY, 

where g1 and 02 are the LYAPUNOV CHARACTERISTIC 
EXPONENTS. This was subsequently proven to be true in 
1982. A later conjecture held that the KAPLAN-Y• RKE 
DIMENSION is generically equal to a probabilistic dimen- 
sion which appears to be identical to the INFORMATION 

DIMENSION (Frederickson et al. 1983). This conjecture 
is partially verified by Ledrappier (1981). For invertible 
2-D maps, v = u = D, where v is the CORRELATION 

EXPONENT, o is the INFORMATION DIMENSION, and D 
is the CAPACITY DIMENSION (Young 1984). 
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see also CAPACITY DIMENSION, KAPLAN-Y• RKE DI- 

MENSION, LYAPUNOV CHARACTERISTIC EXPONENT, 
LYAPUNOV DIMENSION 

References 
Chen, 2. M. “A Note on Kaplan-Yorke-Type Estimates on 

the Fractal Dimension of Chaotic Attractors.” Chaos, Soli- 
tons, and Fractals 3, 575-582, 1994. 

Frederickson, P.; Kaplan, J. L.; Yorke, E. D.; and Yorke, J. A. 
“The Liapunov Dimension of Strange Attractors.” J. D;,fs. 
Eq. 49, 185-207, 1983. 

Kaplan, J. L. and Yorke, J. A. In Functional Differen- 
tial Equations and Approximations of Fixed Points (Ed. 
H.-O. Peitgen and H.-O. Walther). Berlin: Springer- 
Verlag, p. 204, 1979. 

Ledrappier, F. “Some Relations Between Dimension and Lya- 
punov Exponents.” Commun. Math. Phys. 81, 229-238, 

1981. 
Worzbusekros, A. “Remark on a Conjecture of Kaplan and 

Yorke.” Proc. Amer. Math. Sot. 85, 381-382, 1982. 
Young, L. S. “Dimension, Entropy, and Lyapunov Exponents 

in Differentiable Dynamical Systems.” Phys. A 124, 639- 
645, 1984 

Kaplan-Yorke Dimension 

where 01 < on are LYAPUNOV CHARACTERISTIC EXPO- - 
NENTS and j is the largest INTEGER for which 

Xl +... +Aj 2 0. 

If v = 0 = D, where v is the CORRELATION Ex- 
PONENT, 0 the INFORMATION DIMENSION, and D the 
HAWSDORFF DIMENSION, then 

(Grassberger and Procaccia 1983). 

References 
Grassberger, P. and Procaccia, I. “Measuring the Strangeness 

of Strange Attractors.” Physicu D 9, 189-208, 1983. 

Kaplan-Yorke Map 

Xn+l = 22, 

Yn+l = ay, + cos(4rxn), 

where xn, yn are computed mod 1. (Kaplan and Yorke 
1979). The Kaplan-Yorke map with a = 0.2 has COR- 
RELATION EXPONENT 1.42 & 0.02 (Grassberger Procac- 
cia 1983) and CAPACITY DIMENSION 1.43 (Russell et al. 
1980) l  

References 
Grassberger, P. and Procaccia, I. “Measuring the Strangeness 

of Strange Attractors.” Physica D 9, 189-208, 1983. 
Kaplan, J. L. and Yorke, J+ A. In Functional Difleren- 

tial Equations and Approximations of Fixed Points (Ed. 
H.-O. Peitgen and H.-O. Walther). Berlin: Springer- 
Verlag, p. 204, 1979. 

Russell, D. A.; Hanson, J. D.; and Ott, E. “Dimension of 
Strange Attractors.” Phys. Rev. Let. 45, 1175-1178, 1980. 

Kappa Curve 

Kaprekar Routine 

A curve also known as GUTSCHOVEN'S CURVE which 
was first studied by G. van Gutschoven around 1662 
(MacTutor Archive). It was also studied by Newton 
and, some years later, by Johann Bernoulli. It is given 
by the Cartesian equation 

(x2 + y2)y2 = u2x2, 

by the polar equation 

(1) 

r = acoto, 

and the parametric equations 

(2) 

X = acostcot t (3) 

y = acost. (4) 

References 
Lawrence, J. D. A Catalog of Special Plane Curves. New 

York: Dover, pp. 136 and 139-141, 1972. 
MacTutor History of Mathematics Archive. “Kappa Curve.” 

http://www-groups.dcs.st-and.ac.uk/-history/Curves 
/Kappa.html. 

Kaprekar Number 
Consider an n-digit number Ic. Square it and add the 
right n digits to the left n or n - 1 digits. If the resultant 
sum is k, then k is called a Kaprekar number. The first 
few are 1, 9,45, 55, 99, 297, 703, . . l  (Sloane’s A006886). 

g2 = 81 8+1=9 

2972 = 88,209 88 + 209 = 297. 

see also DIGITAL ROOT, DIGITADITION, HAPPY NUM- 
BER, KAPREKAR ROUTINE, NARCISSISTIC NUMBER, 
RECURRING DIGITAL INVARIANT 

References 
Sloane, N. J. A. Sequence A006886/M4625 in “An On-Line 

Version of the Encyclopedia of Integer Sequences.” 

Kaprekar Routine 
A routine discovered in 1949 by D. R. Kaprekar for 4- 
digit numbers, but which can be generalized to k-digit 
numbers. To apply the Kaprekar routine to a numbkr 
n, arrange the digits in descending (n’) and ascending 
(n”) order. Now compute K(n) = n’ - n” and iterate. 
The algorithm reaches 0 (a degenerate case), a constant, 
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or a cycle, dep 
the value of n. 

ending on the number of digits in k and Kapteyn Series 
A series of the form 

For a S-digit number n in base 10, the Kaprekar routine 
reaches the number 495 in at most six iterations. In 
base T, there is a unique number ((r-2)/2, r-l, r/2)r to 
which n converges in at most (~+2)/2 iterations IFF r is 
EVEN. For any $-digit number n in base-lo, the routine 
terminates on the number 6174 after seven or fewer steps 
(where it enters the l-cycle K(6174) = 6174). 

2. 0, 0, 9, 21, {(45), (W, m -- I 

3. 0, 0, (32, 52), 184, (320, 580, 484), . . . . 

4. 0, 30, {201, (126, 138)}, (570, 765), {(2550), (3369), 

(3873)}, "'1 

5. 8, (48, 72), 392, (1992, 2616, 2856, 2232), (7488, 
10712, 9992, 13736, 11432), . m m, 

6. 0, 105, (430, 890, 920, 675, 860, 705), (5600, (4305, 
5180)}, {(27195), (33860), (42925), (16840, 42745, 
35510)}, l  I I, 

7. 0, (144, 192), (1068, 1752, 1836), (9936, 15072, 
13680, 13008, 10608), (55500, 89112, 91800, 72012, 
91212, 77388), . . l  , 

8. 21, 252, {(1589, 3178, 2723), (1022, 3122, 3290, 
2044, 2212)}, ((17892, 20475), (21483, 25578, 26586, 
21987)}, . m l  , 

9. (16, 48), (320, 400), ((2256, 5312, 3856), (3712, 
5168, 5456)}, (41520, (34960, 40080, 55360, 49520, 

42240)}, . . . . 

10. 0, 495, 6174, ((53955, 59994), (61974, 82962, 75933, 
63954), (62964, 71973, 83952, 74943)}, l  . . , 

see UZSO 196~ALGORITHM, KAPREKAR NUMBER, RATS 
SEQUENCE 

References 
Eldridge, K. E. and Sagong, S. “The Determination of 

Kaprekar Convergence -and Loop Convergence of All 3- 
Digit Numbers.” Amer. Math. Monthly 95, 105-112, 1988+ 

Kaprekar, D. R. “An Interesting Property of the Number 
6174.” Scripta Math. 15, 244-245, 1955. 

Trigg, C. W. “All Three-Digit Integers Lead to,. . ” The 
Math. Teacher, 67, 41-45, 1974. 

Young, A. L. “A Variation on the 2-digit Kaprekar Routine.” 
Fibonacci Quart. 31, 138-145, 1993. 

Kaps-Rentrop Methods 
A generalization of the RUNGE-KUTTA METHOD for so- 
lution of ORDINARY DIFFERENTIAL EQUATIONS, also 
called ROSENBROCK METHODS. 

see also RUNGE-KUTTA METHOD 

References 
Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetter- 

ling, W. T. Numerical Recipes in FORTRAN: The Art of 
Scientific Computing, 2nd ed. Cambridge, England: Cam- 
bridge University Press, pp. 730-735, 1992. 

00 

x hJv+n[(~ + n>xl, 
n=O 

where Jn(z) is a BESSEL FUNCTION OF THE FIRST 
KIND. Examples include Kapteyn’s original series 

-+J =1+2EJ,(nz) - 
n=l 

and 
z2 

a(1 - z2) 
n=l 

see also BESSEL FUNCTION OF THE FIRST KIND, NEU- 
MANN SERIES (BESSEL FUNCTION) 

Kererences 
Iyanaga, S. and Kawada, Y. (Eds.). Encyclopedic Dictionary 

of Mathematics. Cambridge, MA: MIT Press, p. 1473, 
1980. 

Karatsuba Multiplication 
It is possible to perform MULTIPLICATION of LARGE 
NUMBERS in (many) fewer operations than the usual 
brute-force technique of “long multiplication.” As dis- 
covered by Karatsuba and Ofman (1962), MULTIPLICA- 
TION of two n-DIGIT numbers can be done with a BIT 
COMPLEXITY of less than n2 using identities of the form 

(a + b ’ 10n)(c + d l  lon> 

=ac+[(a+b)(C+d)-UC-bd]lOn+bd~lOzn. (1) 

Proceeding recursively then gives BIT COMPLEXITY 
O(dg3), where lg3 = 1.58.. . < 2 (Borwein ef al. 
1989). The best known bound is O(nlg n lglg n) steps 
for n > 1 (Schijnhage and Strassen 1971, Knuth 1981). 
However, this ALGORITHM is difficult to implement, but 
aprocedurebasedonthe FAST FOURIERTRANSFORM is 
straightforward to implement and gives BIT COMPLEX- 
ITY O( (lg n> 2%) (Brigham 1974, Borodin and Munro 
1975, Knuth 1981, Borwein et al. 1989). 

As a concrete example, consider MULTIPLICATION of two 
numbers each just two “digits” long in base W, 

Nl = a0 + am 

N2 = bo + hw, 

(2) 

(3) 

then their PRODUCT is 

P E NlN2 
- - aobo + (aoh + wbo)ut + a1b1w2 

=po+plw+p2w2. (4) 
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Instead of evaluating products of individual digits, now 
write 

References 

qo = aobo (5) 

Ql = (a0 + m)(bo +h) (6) 

q2 = ah. (7) 

The key term is ~1, which can be expanded, regrouped, 
and written in terms of the pj as 

Borodin, A. and Mumo, I. The Computational Complexity 
of Algebraic and Numeric problems. New York: American 
Elsevier, 1975. 

Borwein, J. M.; Borwein, P. B.; and Bailey, D. H. W,amanu- 
jan, Modular Equations, and Approximations to Pi, or 
How to Compute One Billion Digits of Pi.” Amer. Math. 
Monthly 96, 201-219, 1989. 

q1 =p1+po+p2. (8) 

However, since po = 40, and p2 = q2, it immediately 
follows that 

Brigham, E. 0. The Fast Fourier Transfom. Englewood 
Cliffs, NJ: Prentice-Hall, 1974. 

Brigham, E. 0. Fast Fourier Transform and Applications. 
Englewood Cliffs, NJ: Prentice-Hall, 1988. 

Cook, S. A. On the Minimum Computation Time of Func- 
tions. Ph.D. Thesis. Cambridge, MA: Harvard University, 
pp. 51-77, 1966. 

PO = qo (9) 

pl = q1 - qo - q2 (10) 

P2 = 42, (11) 

so the three “digits” of p have been evaluated using three 
multiplications rather than four. The technique can be 
generalized to multidigit numbers, with the trade-off be- 
ing that more additions and subtractions are required. 

Now consider four- “digit” numbers 

Hollerbach, U. “Fast Multiplication & Division of Very Large 
Numbers.” sci .math. research posting, Jan. 23, 1996. 

Karatsuba, A. and Ofman, Yu. “Multiplication of Many- 
Digital Numbers by Automatic Computers.” Doklady 
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pp. 278-286, 1981. 
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Grosser Zahlen.” Computing 7, 281-292, 1971. 

Toom, A. L. “The Complexity of a Scheme of Functional 
Elements simulating the Multiplication of Integers.” Dokl. 
Akad. Nauk SSSR 150, 496-498, 1963. English translation 
in Soviet Mathematics 3, 714-716, 1963. 

Zuras, D. “More on Squaring and Multiplying Large Inte- 
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Nl = a0 +alw+a2w2 +a3w3, (12) 

which can be written as a two-“digit” number repre- 
sented in the base w2, 

Katona’s Problem 

Nl = (a0 + alw) + (a2 + asw) * w2. (13) 

Find the minimum number f(n) of subsets in a SEPA- 
RATING FAMILY for a SET of n elements, where a SEPA- 

RATING FAMILY is a SET of SUBSETS in which each pair 
of adjacent elements is found separated, each in one of 
two disjoint subsets. For example, the 26 letters of the 
alphabet can be separated by a family of nine: 

The “digits” in the new base are now 

a; = a0 + alw 

ai = a2 + a3w, 

(14) 

(15) 

(abcdefghi) (jklmnopqr) 
(abcjklstu) (defmnouwx) 

(adgjmpsvy) (behknqtwz) 

(stuuwxyz). 

(MPclTYd l  

(cf ilorux) 

and the Karatsuba algorithm can be applied to Nl and 
& in this form. Therefore, the Karatsuba algorithm 
is not restricted to multiplying two-digit numbers, but 
more generally expresses the multiplication of two num- 
bers in terms of multiplications of numbers of half the 
size. The asymptotic speed the algorithm obtains by re- 
cursive application to the smaller required subproducts 
is 6(nlg3) (Knuth 1981). 

The problem was posed by Katona ( 
C. Mao-Cheng in 1982, 

1973) and solved by 

When this technique is recursively applied to multidigit 
numbers, a point is reached in the recursion when the 
overhead of additions and subtractions makes it more 
efficient to use the usual S(n2) MULTIPLICATION algo- 
rithm to evaluate the partial products. The most effi- 
cient overall method therefore relies on a combination 
of Karatsuba and conventional multiplication. 

see aho COMPLEX MULTIPLICATION, MULTIPLICATION, 
STRASSEN FORMULAS 

f(n) =mirl(2p+3 [log, (5) 1 :P =0,1,2 , 
> 

where [xl is the CEILING FUNCTION. f(n) is nonde- 
creasing, and the values for n = 1, 2, . . . are 0, 2, 3, 
4, 5, 5, 6, 6, 6, 7, . . . (Sloane’s A07600). The values at 
which f(n) increases are 1, 2, 3, 4, 5, 7, 10, 13, 19, 28, 
37, . . . (Sloane’s A007601), so f(26) = 9, as illustrated 
in the preceding example. 

see also SEPARATING FAMILY 
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’ Katona, G. 0. H. “Combinatorial Search Problem.” In A 
Survey of Combinatorial Theory (Ed. J. N. Srivasta et 
al.). Amsterdam, Netherlands: North-Holland, pp. 285- 
308, 1973. 

Kauffman Polynomial X 
A l-variable KNOT POLYNOMIAL denoted X or C. 

Sloane, N. J. A. Sequences A007600/M0456 and AOO7601/ 
MO525 in “An On-Line Version of the Encyclopedia of In- 
teger Sequences.” 

Kauffman Polynomial F 
A semi-oriented 2-variable KNOT POLYNOMIAL defined 

,CL(A) E (-A3)-wtL) (L) , (1) 

where (L) is the BRACKET POLYNOMIAL and w(L) is 
the WRITHE of L. This POLYNOMIAL is invariant under 
AMBIENT ISOTOPY, and relates MIRROR IMAGES by 

LcL* = &(A-I). (2) 

It is identical to the JONES POLYNOMIAL with the 
change of variable 

bY 

(1) 
where L is an oriented LINK DIAGRAM, w(L) is the 
WRITHE of L, IL/ is th e unoriented diagram correspond- 
ing to L, and (L) is the BRACKET POLYNOMIAL. It 
was developed by Kauffman by extending the BLM/Ho 
POLYNOMIAL Q to two variables, and satisfies 

The Kauffman POLYNOMIAL is a generalization of the 
JONES POLYNOMIAL V(t) since it satisfies 

VW = F(-t-3/4, t-li4 + t1j4), (3) 

but its relationship to the HUMFLY POLYNOMIAL is 
not well understood. In general, it has more terms than 
the HOMFLY POLYNOMIAL, and is therefore more pow- 
erful for discriminating KNOTS. It is a semi-oriented 
POLYNOMIAL because changing the orientation only 
changes F by a POWER of a. In particular, suppose 
L* is obtained from 1; by reversing the orientation of 
component k, then 

FL* = a4’FL, (4) 

where X is the LINKING NUMBER of /C with L - k (Lick- 
orish and Millett 1988). F is unchanged by MUTATION. 

FwFL, = F(Ll)F(L2) (5 

F LlUL2 = [(a-’ + a)~-’ - l]FL1FL2. (6 

M. B. Thistlethwaite has tabulated the Kauffman 2 
variable POLYNOMIAL for KNOTS up to 13 crossings. 

References 
Lickorish, W. B. R. and Mill&t, B. R. “The New Polynomial 

Invariants of Knots and Links.” IMath. Mug. 61, l-23, 

1988. 
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L(t-1’4) = V(t)* (3) 

The X POLYNOMIAL of the MIRROR IMAGE K* is the 
same as for JC but with A replaced by A-‘. 

References 
Kauffman, L. H. Knots and physics. Singapore: World Sci- 

entific, p. 33, 1991. 

Kei 
The IMAGINARY PART of 

e -l&/2& (xe7ri/4 ) = ker,(x) + i kei,(x). 

see also BEI, BER, KER, KELVIN FUNCTIONS 

References 
Abramowitz, M. and Stegun, C. A. (Eds.). ‘&Kelvin Func- 
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Keith Number 
A Keith number is an n-digit INTEGER N such that if 
a Fibonacci-like sequence (in which each term in the 
sequence is the sum of the n previous terms) is formed 
with the first 72 terms taken as the decimal digits of 
the number N, then N itself occurs as a term in the 
sequence. For example, 197 is a Keith number since 
it generates the sequence 1, 9, 7, 17, 33, 57, 107, 197, 
. . . (Keith). Keith numbers are also called REPFIGIT 
NUMBERS. 

There is no known general technique for finding Keith 
numbers except by exhaustive search. Keith numbers 
are much rarer than the PRIMES, with only 52 Keith 
numbers with < 15 digits: 14, 19, 28, 47, 61, 75, 197, 
742, 1104, 1537, 2208, 2580, 3684, 4788, 7385, 7647, 
7909, . . . (Sloane’s A007629). In addition, three 15-digit 
Keith numbers are known (Keith 1994). It is not known 
if there are an INFINITE number of Keith numbers. 
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Keith, M. “Repfigit Numbers,” J. Recr. IMath, 19, 41-42, 
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Keller’s Conjecture 
Keller conjectured that tiling an n-D space with n-D 
HYPERCUBES of equal size yields an arrangement in 
which at least two hypercubes have an entire (n - 1)-D 
“side” in common. The CONJECTURE has been proven 
true for n = 1 to 6, but disproven for n 2 10. 
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Kelvin’s Conjecture 
What space-filling arrangement of similar polyhedral 
cells of equal volume has minimal surface AREA? 
Kelvin proposed the 14-sided TRUNCATED OCTAHE- 
DRON. Wearie and Phelan (1994) discovered another 
14-sided POLYHEDRON that has 3% less SURFACE AREA. 
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Kelvin Functions 
Kelvin defined the Kelvin functions BEI and BER ac- 
cording to 

J( Y 3745 3*i/4) = her,(x) + ibe&,( (1) 

where 
KIND, 

Jv(s) is a BESSEL FUNCTION 
and the functions KEI and KER 

OF THE FIRST 

bY 

e -lmi/zKv (xexi/4 ) = ker,(x) + ikei,( (2) 

where K,(x) isaM DIFIED BESSEL F UNCTION OF THE 

SECOND KIN D. For t he spec ial case v = 0, 

J,(i&x) = J,($Jz(i - 1)x) = her(x) + i bei( (3) 

see also BEI, BER, KEI, KER 
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Kelvin Transformation 
The transformation 

w(x;,...,x;) = (;y2u (~,*..,~), 

where 
I2 I 2 

r =x:2+...+x, . 

If ?&(x1,. . . , xn) is a HARMONIC FUNCTION on a DOMAIN 

D of IWn (with n > 3), then w(&. . l  , &) is HARMONIC - 
on D’. 
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Dictionary 
l  623,198O. 

Kempe Linkage 
A double rhomboid LINKAGE which gives rectilinear mo- 
tion from circular without an inversion. 
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Kepler Conjecture 
In 1611, Kepler proposed that close packing (cubic or 
hexagonal) is the densest possible SPHERE PACKING 
(has the greatest q), and this assertion is known as the 
Kepler conjecture. Finding the densest (not necessarily 
periodic) packing of spheres is known as the KEPLER 
PROBLEM. 

A putative proof of the Kepler conjecture was put for- 
ward by W.-Y. Hsiang (Hsiang 1992, Cipra 1993), but 
was subsequently determined to be flawed (Conway et 
al. 1994, Hales 1994). According to J. H. Conway, no- 
body who has read Hsiang’s proof has any doubts about 
its validity: it is nonsense. 
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Kepler’s Equation 
Let M be the mean anomaly and E the ECCENTRIC 
ANOMALY of a body orbiting on an ELLIPSE with Ec- 
CENTRICITY e, then 

M = E - esinE. (1) 

For M not a multiple of r, Kepler’s equation has a 
unique solution, but is a TRANSCENDENTAL EQUATION 
and so cannot be inverted and solved directly for E given 
an arbitrary M. However, many algorithms have been 
derived for solving the equation as a result of its impor- 
tance in celestial mechanics. 

Writing a E as a POWER SERIES in e gives 

E = M+Fanen, (2) 
n=l 

where the coefficients are given by the LAGRANGE IN- 

VERSION THEOREM as 

which is 1.1996678640257734.. . (Goursat 1959, Le Li- 
onnais 1983). 

(Wintner 1941, Moulton 1970, Henrici 1974, Finch). see also ECCENTRIC ANOMALY 
Surprisingly, this series diverges for 

e > 0.6627434193.. . , (4 

a value known as the LAPLACE LIMIT. In fact, E con 
verges as a GEOMETRIC SERIES with ratio 

0 I 

.- 

b 
T= 

l+&T7 
exp(dl + e2 ) (5) 

(Finch). 

There is also a series solution in BESSEL FUNCTIONS OF 

THE FIRST KIND, 

O” 2 
E = M + x - Jn(ne) sin(nM). 

n 
n=l 

(6) 

This series converges for all e < 1 like a GEOMETRIC 

SERIES with ratio 

r= l+;~exP(~)~ (7) 

The equation can also be solved by letting $ be the 
ANGLE between the planet’s motion and the direction 
PERPENDICULAR to the RADIUS VECTOR. Then 

esinE 
tan+ = m. (8) 
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Alternatively, we can define e in terms of an intermedi- 
ate variable 4 

e e sin 4, (9) 

then 

sin[i(w - E)] = 

J 

T sin(f4) sinu (10) 
P 

sin[$ + E)] = 
J 

% cos( $4) sinv. W) 

Iterative methods such as the simple 

E* z+1 = M+esinEi (12) 

with EO = 0 work well, as does NEWTON’S METHOD, 

E- = Ei + 
JU+esinEi-Ei 

zfl l-ecosEi ’ (13) 

In solving Kepler’s equation, Stieltjes required the solu- 
tion to 

e2(2 - 1) = e+(2 + 1), (14) 
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Kepler’s Folium 

The curve with implicit equation 

[(x - q2 + y”][x(x - b) + y”] - 4a(a: - b)y2. 
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Kepler-Poinsot Solid 

The Kepler-Poinsot solids are the four regular CONCAVE 
POLYHEDRA with intersecting facial planes. They are 
composed of regular CONCAVE POLYGONS and were un- 
known to the ancients. Kepler discovered two of them 
about 1619. These two were subsequently rediscovered 
by Poinsot, who also discovered the other two, in 1809. 
As shown by Cauchy, they are stellated forms of the 
DODECAHEDRON and ICOSAHEDRON. 

The Kepler-Poinsot solids, illustrated above, are 
known as the GREAT DODECAHEDRON, GREAT Icos- 
AHEDRON, GREAT STELLATED DODECAHEDRON, and 
SMALL STELLATED DODECAHEDRON. Cauchy (1813) 
proved that these four exhaust all possibilities for regu- 
lar star polyhedra (Ball and Coxeter 1987). 

A table listing these solids, their DUALS, and COM- 
POUNDS is given below. 

Polyhedron . Dual 

great dodecahedron small stellated dodec. 
great Icosahedron great stellated dodec. 
great stellated dodec. great icosahedron 
small stellated dodec. great dodecahedron 

Polyhedron Compound 

great dodecahedron great dodecahedron- 
small stellated dodec. 

great icosahedron great icosahedron- 
great stellated dodec. 

great stellated dodec. great icosahedron- 
great stellated dodec. 

small stellated dodec. great dodecahedron- 
small stellated dodec. 

The polyhedra { !,5} and (5, $} fail to satisfy the POLY- 

HEDRAL FORMULA 

where V is the number of faces, E the number of edges, 
and F the number of faces, despite the fact that formula 
holds for all ordinary polyhedra (Ball and Coxeter 1987). 
This unexpected result led none less than Schlgfli (1860) 
to conclude that they could not exist. 

In 4-D, there are 10 Kepler-Poinsot solids, and in n- 
D with n > 5, there are none. In 4-D, nine of the 
solids have-the same VERTICES as {3,3,5}, and the 
tenth has the same as {5,3,3}. Their SCHLAFLI SYM- 

l3OLS are ($9 5,3), w, $1, (5, $9 51, ig, 3,5), w, $1, 
i&5, $1, (5, ph 13, &5), 1&w, and VA ;I* 

Coxeter et al. (1954) have investigated star “Archimed- 
ean” polyhedra. 

see UZSO ARCHIMEDEAN SOLID, DELTAHEDRON, JOHN- 
SON SOLID, PLATONIC SOLID, POLYHEDRON COM- 
POUNDJJNIFORM POLYHEDRON 
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Kepler Problem 
Finding the densest not necessarily periodic SPHERE 
PACKING. 

see &O KEPLER CONJECTURE, SPHERE PACKING 

Kepler Solid 

see KEPLER-P• INSOT SOLID 

Ker 
The REAL PART of 

e 
- mi/2 K, (&e/4 ) = ker,(x) + i kei,(x), 

where K,(x)is a MODIFIED BESSEL FUNCTION OF THE 
SECOND KIND. 

see also BEI, BER, KEI, KELVIN FUNCTIONS 
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V-E+F=2, 



Kera toid Cusp 

Keratoid Cusp 

The PLANE CUFWE given by the Cartesian equation 

y2 = x2y + x5. 
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Kernel (Integral) 
The function K(~y,t) in an INTEGRAL or INTEGRAL 
TRANSFORM 

s 
b d > a= f (W(Q, t) dt* 

a 

see also BERGMAN KERNEL, POISSON KERNEL 

Kernel (Linear Algebra) 

see NULLSPACE 

Kernel Polynomial 
The function 

K&or x) = Kn(x,xo) = K,(z,z~) 

which is useful in the study of many POLYNOMIALS. 
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Kervaire’s Characterization Theorem 
Let G be a GROUP, then there exists a piecewise linear 
KNOT IPB2 in s” for n > 5 with G = rl(Sn - K) IFF - 
G satisfies 

1. G is finitely presentable, 

2. The Abelianization of G is infinite cyclic, 

3. The normal closure of some single element is all of 

G 

4. Hz(G) = 0; the second homology of the group is 
trivial. 

References 
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Ket 
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A CONTRAVARIANT VECTOR, denoted I$). The ket is 
DUAL to the COVARIANT BRA I-VECTOR ($11. Taken 
together, the BRA and ket form an ANGLE BRACKET 
(bra+ket = bracket) ($l$~). The ket is commonly en- 
countered in quantum mechanics. 

see also ANGLE BRACKET, BRA,BRACKET PRODUCT, 
CONTRAVARIANT VECTOR, COVARIANT VECTOR,DIF- 
FERENTIAL ~-FORM, ONE-FORM 

Khinchin Constant 

see KHINTCHINE'S CONSTANT 

Khintchine’s Constant 
N.B. A detailed on-line essay by S. Finch was the start- 

ing point for this entry. 

3.2- 

2.8- 

- 

2.6- 

2.4- 

0 100 200 300 400 500 

Let 

x = [qo,f&..] = 40 + 
1 

1 (1) 
41 + 

1 
q2 + - 

q3 + l  ’ ’ 

be the SIMPLE CONTINUED FRACTION ofa REAL Nuw 
BER x, where the numbers qi are called PARTIAL QUO- 
TIENTS. Khintchine (1934) considered the limit of the 
GEOMETRIC MEAN 

Gn(x) = (q1q2 l  “qn)l’n (2) 

as n + 00. Amazingly enough, this limit is a constant 
independent of x-except if x belongs to a set of MEA- 
SURE O-given by 

K = 2.685452001.. . (3) 

(Sloane’s A002210), as proved in Kac (1959). The values 
C&(x) are plotted above for n = I to 500 and x = r, 
l/r, sinl, the EULER-MASCHERONI CONSTANT y, and 
the COPELAND-ERD~S CONSTANT. REAL NUMBERS x 
for which limnem G,(x) # K include x = e, a, a, 
and the GOLDEN RATIO 4, all of which have periodic 
PARTIAL QUOTIENTS, plotted below. 
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Khintchine’s constant is also given by the integral 

1 
4- ln2ln(+K) = 

s 
Lln [“5&y] dx. (10) 

0 41+x> 

If P,JQn is the nth CONVERGENT of the CONTINUED 
FRACTION of II:, then 

lim (Qn)lln = lim 3 
( > 

l/n 
= e~2/(12 In 21 = 3.27582 

n+m n+m X 

l- ..,,,.,,.l,,l.l,...l,,,.l- 
(11) 

0 100 200 300 400 500 for almost all REAL 2 (L&y 1936, Finch). This num- 

The CONTINUED FRACTION for K is [2, 1, 2, 5, 1, 1, 2, ber is sometimes called the LI%Y CONSTANT, and the 

1, 1, . . . ] (Sloane’s A002211). It is not known if JC is argument of the exponential is sometimes called the 

IRRATIONAL, let alone TRANSCENDENTAL. Bailey et al. KHINTCHINE-LEVY CONSTANT. 

(1995) have computed K to 7350 DIGITS. Define the following quantity in terms of the kth partial 

Explicit expressions for K include quotient qk, 

K=Q [1+&Jii’1n2 (4) 

In 2 In K = (5) 

1nK = (6) 

. (12) 

m=l 
and 

Then 
lim M(l,n,z) = 00 (13) 

n-km 

for almost all real x (Khintchine, Knuth 1981, Finch), 

where C(Z) is the RIEMANN ZETA FUNCTION and 
M(l,n,x) - o(lnn). (14) 

m ( 
x 

1) 
j-l 

h,= = 

Furthermore, for s < 1, the limiting value 

j=l 
j 

(7) lim M(s,n, x) = K(s) (15) 
n-bm 

(Shanks and Wrench 1959). Gosper gave exists and is a constant K(s) with probability 1 (Rockett 
and Seiise 1992, Khintchine 1997). 

1 O” (-l)j(2 - 2j)C’(j) 
lnK=Ex 

see 
(8) 

also CONTINUED FRACTION, CONVERGENT, 

j 
? KHINTCHINE-LI?VY CONSTANT, LEVY CONSTANT, PAR- 

j=2 TIAL QUOTIENT, SIMPLE CONTINUED FRACTION 

where c'(z) is the DERIVATIVE of the RIEMANN ZETA 
FUNCTION. An extremely rapidly converging sum also 
due to Gosper is 

- ln(k + 1) [ln( k + 3) 

W>“@ - zkf2) - k+2 
w + 1) I f(k + 2 k + 2) 

(k + 1)k+2 1 1 

(9) 

where [(s, a) is the HURWITZ ZETA FUNCTION. 
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Khintchine-L&y Constant 
A constant related to KHINTCHINE'S CONSTANT defined 

bY 

KL= 7T* - ~ = 1.1865691104. q.. 
12ln2 

see aho KHINTCHINE’S CONSTANT, LEVY CONSTANT 
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Khovanski’s Theorem 
If fi.,**.,fm : IR” + R are exponential polynomials, 
then {J: E IV : fi(z) = .. n f&c) = 0) has finitely many 
connected components. 
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Kiepert’s Conies 

see KIEPERT’S HYPERBOLA, KIEPERT’S PARABOLA 

Kiepert’s Hyperbola 
A curve which is related to the solution of LEMOINE'S 
PROBLEM and its generalization to ISOSCELES TRIAN- 
GLES constructed on the sides of a given TRIANGLE. The 
VERTICES of the constructed TRIANGLES are 

A’ = - sin # : sin(C + 4) : sin@ + 4) (1) 
B’ = sin(C + 4) : - sin q5 : sin(A + 4) (2) 
c’ = sin( B + q5) : sin(A + qb) : - sin 4, (3) 

where 4 is the base ANGLE of the ISOSCELES TRIANGLE. 
Kiepert showed that the lines connecting the VERTICES 
of the given TRIANGLE and the corresponding peaks of 
the ISOSCELES TRIANGLES CONCUR. The TRILINEAR 
COORDINATES of the point of concurrence are 

sin(B + q5) sin(C + 4) : sin(C + 4) sin(A + 4) : 

sin(A + qb) sin(B + 4). (4) 

The locus of this point as the base ANGLE varies is given 
by the curve 

sin(B - C) + sin(C - A) + sin(A - B) 

a P Y 

- - 
bc(c2 - c2) 3- ca(c2 - a2) + ab(a2 - b2) 

Q P Y 
= 0. (5) 

Writing the TRILINEAR COORDINATES as 

where di is the distance to the side opposite QC; of length 
si and using the POINT-LINE DISTANCE FORMULA with 

(x0,y0) written as (x,y), 

di = KY i+2 - Yi+1)("L: - Xifl) 

si 

(Xi+2 - Xifl)(Y - Yi+1)l - 
? 

sa 
m 

where y4 G y1 and y5 E y2 gives the FORMULA 

x %+I si+2 ($+I - $+2) 

i=l 

X 
Si 

(Y i+2 -Yi+1)(X - Xi+1)- (Xi+2 - xi+l)(y -yi+1) 

= 0 (8) 

3 

( 
2 2 

IE 

%+1 - %+2 > 

i=l 
(Y i+2 -Yi+1)(X - Xi+1)- (Xi+2 - Xi+1)(Y -yi+1) 

= 0. (9) 

Bringing this equation over a common DENOMINATOR 
then gives a quadratic in x and y, which is a CONIC 

SECTION (in fact, a HYPERBOLA). The curve can also 
be written as csc(A + t) : csc(B + t) : csc(C + t), as t 
varies over [+4,7r/4]. 

Kiepert’s hyperbola passes through the triangle’s CEN- 
TROID iW (# = 0), ORTHOCENTER H (4 = r/2), VER- 
TICES A ($= -crifcusx/2and#=x-arifa>n/2), 

l3 (4 = -PI, c (4 = -~),FERMATPOINT& (4= r/3), 
second ISOGONIC CENTER Fz (4 = -n/3), ISOGONAL 
CONJUGATE of the BROCARD MIDPOINT (4 = w), and 
BROCARD'S THIRD POINT 23 (4 = w), where w is the 
BROCARD ANGLE (Eddy and FYitsch 1994, p 193). 

The ASYMPTOTES of Kiepert’s hyperbola are the SIM- 
SON LINES of the intersections of the BROCARD AXIS 
with the CIRCWMCIRCLE. Kiepert’s hyperbola is a 
RECTANGULAR HYPERBOLA. In fact, all nondegenerate 
tonics through the VERTICES and ORTHOCENTER of a 
TRIANGLE are RECTANGULAR HYPERBOLAS the centers 
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of which lie halfway between the ISOGOWC CENTERS 
and on the NINE-POINT CIRCLE. The Locus of centers 
of these HYPERBOLAS is the NINE-POINT CIRCLE. 

The ISOGONAL CONJUGATE curve of Kiepert’s hyper- 
bola is the BROCARD AXIS. The center of the INCIRCLE 
of the TRIANGLE constructed from the MIDPOINTS of 
the sides of a given TRIANGLE lies on Kiepert’s hyper- 
bola of the original TRIANGLE. 

see UZSO BROCARD ANGLE, BROCARD AXIS, BROCARD 
POINTS, CENTROID (TRIANGLE), CIRCUMCIRCLE, Iso- 
GoNAL CONJUGATE, ISOGONI~ CENTERS, IS~SCELES 

TRIANGLE, LEMOINE’S PROBLEM, NINE-POINT CIR- 
CLE, URTHOCENTER, SIMSON LINE 
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Kiepert’s Parabola 
Let three similar ISOSCELES TRIANGLES AA’BC, 
AAB’C, and AABC’ be constructed on the sides of a 
TRIANGLE AABC. Then the ENVELOPE of the axis 
of the TRIANGLES AABC and AA’B’C’ is Kiepert’s 
parabola, given by 

sin A(sin2 B - sin2 C) 
+ 

sin B(sin2 C - sin’ A) 
7.4 21 

+ sin C( sin2 A - sin2 B) 

W 
=o (1) 

a(b2 - c”) + b(c2 - a2) + c(a2 - b2) = o 
> IL 21 w  (2) 

where [u, U, W] are the TRILINEAR COORDINATES for a 
line tangent to the parabola. It is tangent to the sides 
of the TRIANGLE, the line at infinity, and the LEMOINE 
LINE. The Focus has TRIANGLE CENTER FUNCTION 

a = csc(B - C). (3) 

The EULER LINE of a triangle is the DIRECTRIX of 
Kiepert’s parabola. In fact, the DIRECTRICES of all 
parabolas inscribed in a TRIANGLE pass through the 
ORTHOCENTER. The BRIANCHON POINT for Kiepert’s 
parabola is the STEINER POINT. 

see also BRIANCHON POINT, ENVELOPE, EULER 
LINE, ISOSCELES TRIANGLE, LEMOINE LINE, STEINER 

POINTS 

Kieroid 
Let the center B of a CIRCLE of RADIUS a move along 
a line BA. Let 0 be a fixed point located a distance c 
away from AB. Draw a SECANT LINE through 0 and 
D, the MIDPOINT of the chord cut from the line DE 
(which is parallel to AB) and a distance b away. Then 
the LOCUS of the points of intersection of OD and the 
CIRCLE PI and P2 is called a kieroid. 

St,ecial Case Curve 

b=O conchoid of Nicomedes 
b=a cissoid plus asymptote 
b=a=-c strophoid plus asymptote 

References 
Yates, R. C “Kieroid.” A Handbook on Curves and Their 

Properties. Ann Arbor, MI: J. W. Edwards, pp. 141-142, 
1952. 

Killing’s Equation 
The equation defining KILLING VECTORS. 

LX&b = Xa;b + Xb;a = ={,;b) = 0, 

where C is the LIE DEFWATIVE. 

see also KILLING VECTORS 

Killing Vectors 
If any set of points is displaced by Xidzi where all dis- 
tance relationships are unchanged (i.e., there is an ISOM- 
ETRY), then the VECTOR field is called a Killing vector. 

axtC axtd 
gab = - -gcd@), 

axa dxb 
(1) 

so let 
ta 

X = xa + ma 

dXta 

8Xb 
= 6,” + EXU,b (2) 

gab(x) = (6: + ==,a) (66” + ,xd,b) &d(xe + Exe) 

= (6: + EXC,a) (6,” + Exd,b) [&d(x) + EX=gcd(x),e + . l  l ] 
= gab(x) + +adxd,b + gbdXd,a + Xeg,b,e] + O(E2) 

= Lxgab, (3) 

where C is the LIE DERIVATIVE. An ordinary deriva- 
tive can be replaced with a covariant derivative in a LIE 

DERIVATIVE, so we can take as the definition 

gab;c = 0 (4 

gabgbc = s:, 

which gives KILLING’S EQUATION 

(5) 

CXgab = Xa;b + xb;a = 2x(,$) = 0. (6) 



Kimberling Sequence Kings Problem 987 

A Killing vector Xb satisfies 

gbcXc;ab - RabXb = 0 (7) 

X a;bc = R&dxd (8) 

X “b;b + RZX” = 0, (9) 

where Rab is the RICCI TENSOR and Rabcd is the RIE- 
MANN TENSOR. 

A 2-sphere with METRIC 

ds2 = d02 + sin2 0 d$2 (10) 

has three Killing vectors, given by the angular momen- 
tum operators 

d d 
L, = -cos4~ +cotQsin4- 

a4 

Ly = 
d d 

sin$@ + cot Qcos4- 
a$ 

d 
L, = -. 
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The Killing vectors in Euclidean 3-space are 

u 
x1 = - 

da: 
(14 

d 
x2 z - 

dY 
d 

x3 = - 
dz 

d d 
x4=y--p 

dz 8Y 

(15) 

(16) 

(17) 

d d x5r=z- 
dX -xz (18) 
d d 

x6=xly-y~* (19) 

In MINKOWSKI SPACE, there are 10 Killing vectors 

x; = sip for i = 1,2,3,4 (20) 

x,” = 0 (21) 

XL = kkmxm for k = 1,2,3 (22) 

X” CL = dp[oxkl for /C = 1,2,3. (23) 

The first group is TRANSLATION, the second ROTATION, 
and the final corresponds to a “boost.” 

Kimberling Sequence 
A sequence generated by beginning with the POSITIVE 
integers, then iteratively applying the following algo- 
rit hm: 

1. In iteration i, discard the ith element, 

2. Alternately write the i + JC and i - I&h elements until 
k = i, 

3. Write the remaining elements in order. 

The first few iterations are therefore 

0 12345678 9 10 11 

2m4 5 678 9 10 11 12 

4 2B6 7 8 9 10 11 12 13. 

6 2 7 q 8 9 10 11 12 13 14 

8 7 9 2 [1016 11 12 13 14 15 

The diagonal elements form the sequence 1, 3, 5, 4, 10, 
7, 15, . l  . (Sloane’s A007063). 

References 
Guy, R. K. “The Kimberling Shuffle.” SE35 in Unsolved 

Problems in Number Theory, 2nd ed, New York: Springer- 
Verlag, pp. 235-236, 1994. 

Kimberling, C. “Problem 16 15 .” Crua: Math. 17, 44, 1991. 
Sloane, N. J. A. Sequence A007063/M2387 in “An On-Line 

Version of the Encyclopedia of Integer Sequences.” 

Kimberling Shuffle 

see UZSO KIMBERLING SEQUENCE 

Kings Problem 

The problem of determining how many nonattacking 
kings can be placed on an 72 x n CHESSBOARD. For 
TI = 8, the solution is 16, as illustrated above (Madachy 
1979). In general, the solutions are 

K(n) = 
an2 n even 
$(n+1)2 n odd (1) 

(Madachy 1979), g iving the sequence of doubled squares 
1, 1, 4, 4, 9, 9, 16, 16, . . . (Sloane’s A008794). This 
sequence has GENERATING FUNCTION 

1+ x2 
(1 - x2)2(1 - 2) 

=1+x+4x2+4x3+9x4+9x5+.... 

(2) 



988 King Walk Kirkman l!Yiple System 

The minimum number of kings needed to attack or oc- 
cupy all squares on an 8 x 8 CHESSBOARD is nine, illus- 
trated above (Madachy 1979). 

see also BISHOPS PROBLEM, CHESS, HARD HEXAGON 
ENTROPY CONSTANT, KNIGHTS PROBLEM, QUEENS 
PROBLEM,ROOKS PROBLEM 

References 
Madachy, J. S. Madachy’s lMathematica1 Recreations. New 

York: Dover, pa 39, 1979. 

King Walk 

see DELANNOY NUMBER 

Kinney’s Set 
A set of plane MEASURE 0 that contains a CIRCLE of 
every RADIUS. 

References 
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Kinoshita-Terasaka Knot 
The KNOT with BRAID WORD 

Its JONES POLYNOMIAL is 

f-4 (- 1 + 2t - 2t2 + 2t3 + t6 - 2t7 + 2t8 - 2tg + PO), 

the same as for CONWAY’S KNOT. It has the same AL- 
EXANDER POLYNOMIAL as the UNKNOT. 

References 
Kinoshita, S. and Terasaka, H. “On Unions of Knots.” Osaka 
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Kinoshita-Terasaka Mutants 

References 
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to the Mathematical Theory of Knots. New York: W. H. 
Freeman, pp. 49-50, 1994. 

Kirby Calculus 
The manipulation of DEHN SURGERY descriptions by a 
certain set of operations. 

References 
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Kirby’s List 
A list of problems in low-dimensional TOPOLOGY main- 
tained by R. C. Kirby. The list currently runs about 380 
pages l  

References 
Kirby, R. “Problems in Low-Dimensional Topology.” 
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Kirkman’s Schoolgirl Problem 
In a boarding school there are fifteen schoolgirls who al- 

Sun 

ways take their daily walks in rows of threes. How can 

Mon Tue 

it be arranged so that each schoolgirl walks in the same 

Wed 

row with every other schoolgirl exactly once a week? 

Thu Fri Sat 

Solution of this problem is equivalent to constructing a 
KIRKMAN TRIPLE SYSTEM oforder n = 2. The follow- 
ing table gives one of the 7 distinct (up to permutations 
of letters) solutions to the problem. 

ABC ADE AFG AH1 AJK ALM AN0 
DHL BIK BHJ BEG CDF BEF BDG 
EJN CM0 CLN BMN CL0 CIJ CHK 
FIO FHN DIM DJO EHM DKN EIL 

GKM GJL EKO FKL GIN GHO FJM 

(The table of DSrrie 1965 contains a misprint in which 
the al = B and ~7, = C entries for Wednesday and 
Thursday are written simply as a.) 

see UZSO JOSEPHUS PROBLEM, KIRKMAN TRIPLE SYS- 

TEM,STEINER TRIPLE SYSTEM 
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Kirkman Triple System 
A Kirkman triple system of order zt = 6n + 3 is a 
STEINER TRIPLE SYSTEM with parallelism (Ball and 
Coxeter 1987), i.e., one with the following additional 
stipulation: the set of b = (272 + 1) (3n + 1) triples is 
partitioned into 3n + 1 components such that each com- 
ponent is a (2n + l)-subset of triples and each of the w  
elements appears exactly once in each component. The 


