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Introduction 

The CRC Concise Encyclopedia of ibfuthemutics is a compendium of mathematical definitions, formulas, 

figures, tabulations, and references. It is written in an informal style intended to make it accessible to a broad 

spectrum of readers with a wide range of mathematical backgrounds and interests. Although mathematics is 

a fascinating subject, it all too frequently is clothed in specialized jargon and dry formal exposition that make 

many interesting and useful mathematical results inaccessible to laypeople. This problem is often further 

compounded by the difficulty in locating concrete and easily unders+ood examples. To give perspective to 

a subject, I find it helpful to learn why it is useful, how it is connected to other areas of mathematics and 

science, and how it is actually implemented. While a picture may be worth a thousand words, explicit 

examples are worth at least a few hundred! This work attempts to provide enough details to give the reader 

a flavor for a subject without getting lost in minutiae. While absolute rigor may suffer somewhat, I hope 

the improvement in usefulness and readability will more than make up for the deficiencies of this approach. 

The format of this work is somewhere between a handbook, a dictionary, and an encyclopedia. It differs 

from existing dictionaries of mathematics in a number of important ways. First,, the entire text and all 

the equations and figures are available in searchable electronic form on CD-ROM. Second, the entries are 
extensively cross-linked and cross-referenced, not only to related entries but also to many external sites 

on the Internet,. This makes locating information very convenient. It also provides a highly efficient way 

to “navigate” from one related concept to another, a feature that is especially powerful in the electronic 

version. Standard mathematical references, combined with a few popular ones, are also given at the end of 

most entries to facilitate additional reading and exploration. In the interests of offering abundant examples, 

this work also contains a large number of explicit formulas and derivations, providing a ready place to locate 

a particular formula, as well as including the framework for understanding where it comes from. 
The selection of topics in this work is more extensive than in most mathematical dictionaries (e.g., 

Borowski and Borwein’s Harper-Collins Dictionary of Mathematics and Jeans and Jeans’ Muthematics Dictio- 

nary). At the same time, the descriptions are more accessible than in “technical” mathematical encyclopedias 

(e.g., Hazewinkel’s Encyclopaedia of Mathematics and Iyanaga’s Encyclopedic Dictionary of Mathematics). 

While the latter remain models of accuracy and rigor, they are not terribly useful to the undergraduate, 

research scientist, or recreational mathematician. In this work, the most useful, interesting, and entertaining 

(at least t o my mind) aspects of topics are discussed in addition to their technical definitions. For example, 

in my entry for pi (n), the definition in terms of the diameter and circumference of a circle is supplemented 
by a great many formulas and series for pi, including some of the amazing discoveries of Ramanujan. These 

formulas are comprehensible to readers with only minimal mathematical background, and are interesting to 

both those with and without formal mathematics training. However, they have not previously been collected 
in a single convenient location. For this reason, I hope that, in addition to serving as a reference source, this 

work has some of the same flavor and appeal of Martin Gardner’s delightful Scientific American columns. 
Everything in this work has been compiled by me alone. I am an astronomer by training, but have picked 

up a fair bit of mathematics along the way. It never ceases to amaze me how mathematical connections 

weave their way through the physical sciences. It frequently transpires that some piece of recently acquired 

knowledge turns out, to be just what I need to solve some apparently unrelated problem. I have therefore 

developed the habit of picking up and storing away odd bits of information for future use. This work has 

provided a mechanism for organizing what has turned out to be a fairly large collection of mathematics. I 

have also found it very difficult to find clear yet accessible explanations of technical mathematics unless I 

already have some familiarity with the subject. I hope this encyclopedia will provide jumping-off points for 

people who are interested in the subjects listed here but who, like me, are not necessarily experts. 

The encyclopedia has been compiled over the last 11 years or so, beginning in my college years and 

continuing during graduate school. The initial document was written in Microsoj? Word@ on a Mac Plus@ 

computer, and had reached about 200 pages by the time I started graduate school in 1990. When Andrew 
Treverrow made his OLQX program available for the Mac, I began the task of converting all my documents 

to 7&X, resulting in a vast improvement in readability. While undertaking the Word to T&X conversion, I also 

began cross-referencing entries, anticipating that eventually I would be able to convert, the entire document 



to hypertext. This hope was realized beginning in 1995, when the Internet explosion was ifi full swing and 
I learned of Nikos Drakes’s excellent 7QX to HTML converter, UTG2HTML. After some additional effort, 
I was able to post an HTML version of my encyclopedia to the World Wide Web, currently located at 
www.astro.virginia.edu/-eww6n/math/. 

The selection of topics included in this compendium is not based on any fixed set of criteria, but rather 
reflects my own random walk through mathematics. In truth, there is no good way of selecting topics in such 
a work. The mathematician James Sylvester may have summed up the situation most aptly. According to 
Sylvester (as quoted in the introduction to Ian Stewart’s book From Here to Inj%ity), “Mathematics is not 
a book confined within a cover and bound between brazen clasps, whose contents it needs only patience to 
ransack; it is not a mine, whose treasures may take long to reduce into possession, but which fill only a limited 
number of veins and lodes; it is not a soil, whose fertility can be exhausted by the yield of successive harvests; 

it is not a continent or an ocean, whose area can be mapped out and its “contour defined; it is as limitless as 

that space which it finds too narrow for its aspiration; its possibilities are as infinite as the worlds which are 
forever crowding in and multiplying upon the astronomer’s gaze; it is as incapable of being restricted within 
assigned boundaries or being reduced to definitions of permanent validity, as the consciousness of life.” 

Several of Sylvester’s points apply particularly to this undertaking. As he points out, mathematics itself 
cannot be confined to the pages of a book. The results of mathematics, however, are shared and passed 
on primarily through the printed (and now electronic) medium. While there is no danger of mathematical 
results being lost through lack of dissemination, many people miss out on fascinating and useful mathematical 
results simply because they are not aware of them. Not only does collecting many results in one place provide 
a single starting point for mathematical exploration, but it should also lessen the aggravation of encountering 

explanations for new concepts which themselves use unfamiliar terminology. In this work, the reader is only 
a cross-reference (or a mouse click) away from the necessary background material. As to Sylvester’s second 
point, the very fact that the quantity of mathematics is so great means that any attempt to catalog it 
with any degree of completeness is doomed to failure. This certainly does not mean that it’s not worth 
trying. Strangely, except for relatively small works usually on particular subjects, there do not appear to 
have been any substantial attempts to collect and display in a place of prominence the treasure trove of 
mathematical results that have been discovered (invented?) over the years (one notable exception being 
Sloane and Plouffe’s Encyclopedia of Integer Sequences). This work, the product of the “gazing” of a single 
astronomer, attempts to fill that omission. 

Finally, a few words about logistics. Because of the alphabetical listing of entries in the encyclopedia, 
neither table of contents nor index are included. In many cases, a particular entry of interest can be located 
from a cross-reference (indicated in SMALL CAPS TYPEFACE in the text) in a related article. In addition, 
most articles are followed by a “see also” list of related entries for quick navigation. This can be particularly 
useful if yolv are looking for a specific entry (say, ‘LZeno’s Paradoxes”), but have forgotten the exact name. 
By examining the “see also” list at bottom of the entry for “Paradox,” you will likely recognize &no’s name 
and thus quickly locate the desired entry. 

The alphabetization of entries contains a few peculiarities which need mentioning. All entries beginning 
with a numeral are ordered by increasing value and appear before the first entry for “A.” In multiple-word 
entries containing a space or dash, the space or dash is treated as a character which precedes “a,” so entries 
appear in the following order: Yum,” “Sum P.. . ,” “Sum-P.. . ,” and “Summary.” One exception is that 
in a series of entries where a trailing “s” appears in some and not others, the trailing %” is ignored in the 
alphabetization. Therefore, entries involving Euclid would be alphabetized as follows: “Euclid’s Axioms,” 
“Euclid Number ,” ” Euclidean Algorithm.” Because of the non-standard nomenclature that ensues from 
naming mathematical results after their discoverers, an important result, such as the “Pythagorean Theorem” 
is written variously as “Pythagoras’s Theorem,” the “Pythagoras Theorem,” etc. In this encyclopedia, I have 
endeavored to use the most, widely accepted form. I have also tried to consistently give entry titles in the 
singular (e.g., “Knot” instead of “Knots”). 

In cases where the same word is applied in different contexts, the context is indicated in parentheses or 
appended to the end. Examples of the first type are “Crossing Number (Graph)” and “Crossing Number 
(Link).” Examples of the second type are “Convergent Sequence” and “Convergent Series.” In the case of 
an entry like “Euler Theorem,” which may describe one of three or four different formulas, I have taken the 
liberty of adding descriptive words (‘4Euler’s Something Theorem”) to all variations, or kept the standard 



name for the most commonly used variant and added descriptive words for the others. In cases where specific 

examples are derived from a general concept, em dashes (-) are used (for example, “Fourier Series,” “Fourier 

Series-Power Series,” “Fourier Series-Square Wave,” “ Fourier Series--Triangle”). The decision to put a 

possessive ‘s at the end of a name or to use a lone trailing apostrophe is based on whether the final “s” 
is pronounced. ‘LGauss’s Theorem” is therefore written out, whereas “Archimedes’ Recurrence Formula” is 
not. Finally, given the absence of a definitive stylistic convention, plurals of numerals are written without 

an apostrophe (e.g., 1990s instead of 1990’s). 

In an endeavor of this magnitude, errors and typographical mistakes are inevitable. The blame for these 

lies with me alone. Although the current length makes extensive additions in a printed version problematic, 

I plan to continue updating, correcting, and improving the work, 

Eric Weisstein 

Charlottesville, Virginia 

August 8, 1998 



Acknowledgments 

Although I alone have compiled and typeset this work, many people have contributed indirectly and 
directly to its creation. I have not yet had the good fortune to meet Donald Knuth of Stanford University, 
but he is unquestionably the person most directly responsible for making this work possible. Before his 
mathematical typesetting program TEX, it would have been impossible for a single individual to compile such 
a work as this. Had Prof. Bateman owned a personal computer equipped with T@, perhaps his shoe box of 
notes would not have had to await the labors of Erdelyi, Magnus, and Oberhettinger to become a three-volume 
work on mathematical functions. Andrew TTevorrow’s shareware implementation of QX for the Macintosh, 
OQjX (www . kagi . com/authors/akt/oztex. html), was also of fundamental importance. Nikos Drakos and 
Ross Moore have provided another building block for this work by developing the uTEX2HTML program 
(www-dsed.llnl.gov/files/programs/unix/latex2htm~/m~ual/m~ual .html),whichhasallowedmeto 
easily maintain and update an on-line version of the encyclopedia long before it existed in book form. 

I would like to thank Steven Finch of MathSoft, Inc., for his interesting on-line essays about mathemat- 
ical constants (www.mathsoft l  com/asolve/constant/constant .html), and also for his kind permission to 
reproduce excerpts from some of these essays. I hope that Steven will someday publish his detailed essays 
in book form. Thanks also to Neil Sloane and Simon Plouffe for compiling and making available the printed 
and on-line (www l  research. att . corn/-njas/sequences/) versions of the Encyclopedia of Integer Sequences, 

an immensely valuable compilation of useful information which represents a truly mind-boggling investment 
of labor. 

Thanks to Robert Dickau, Simon Plouffe, and Richard Schroeppel for reading portions of the manuscript 
and providing a number of helpful suggestions and additions. Thanks also to algebraic topologist Ryan Bud- 
ney for sharing some of his expertise, to Charles Walkden for his helpful comments about dynamical systems 
theory, and to Lambros Lambrou for his contributions. Thanks to David W. Wilson for a number of helpful 
comments and corrections. Thanks to Dale Rolfsen, compiler James Bailey, and artist Ali Roth for permis- 
sion to reproduce their beautiful knot and link diagrams. Thanks to Gavin Theobald for providing diagrams 
of his masterful polygonal dissections. Thanks to Wolfram Research, not only for creating an indispensable 
mathematical tool in A&uthematica @, but also for permission to include figures from the A&zthematica@ book 
and MuthSource repository for the braid, conical spiral, double helix, Enneper’s surfaces, Hadamard matrix, 
helicoid, helix, Henneberg’s minimal surface, hyperbolic polyhedra, Klein bottle, Maeder’s ccow1” minimal 
surface, Penrose tiles, polyhedron, and Scherk’s minimal surfaces entries. 

Sincere thanks to Judy Schroeder for her skill and diligence in the monumental task of proofreading 
the entire document for syntax. Thanks also to Bob Stern, my executive editor from CRC Press, for 
his encouragement, and to Mimi Williams of CRC Press for her careful reading of the manuscript for 
typographical and formatting errors. As this encyclopedia’s entry on PROOFREADING MISTAKES shows, the 
number of mistakes that are expected to remain after three independent proofreadings is much lower than 
the original number, but unfortunately still nonzero. Many thanks to the library staff at the University of 
Virginia, who have provided invaluable assistance in tracking down many an obscure citation. Finally, I 
would like to thank the hundreds of people who took the time to e-mail me comments and suggestions while 
this work was in its formative stages. Your continued comments and feedback are very welcome. 



0 10 1 

Numerals 3 

0 

see ZERo 

1 
The number one (1) is the first POSITIVE INTEGER. It 
is an ODD NUMBER. Although the number I used to be 
considered a PRIME NUMBER, it requires special treat- 
ment in so many definitions and applications involving 
primes greater than or equal to 2 that it is usually placed 
into a class of its own. The number 1 is sometimes also 
called “unity,” so the nth roots of 1 are often called the 
nth RENTS OF UNITY. FRACTIONS having 1 as a Nu- 
MERATOR are called UNIT FRACTIONS. Ifonly one root, 
solution, etc., exists to a given problem, the solution is 
called UNIQUE. 

The GENERATING FUNCTION have all COEFFICIENTS 1 
is given by 

1 
- 1  + x  + x2  + x3  + x4  + . . l  l  

l -x - 

see also 2, 3, EXACTLY ONE, ROOT OF UNITY, UNIQUE, 
UNIT FRACTION, ZERO 

2 
The number two (2) is the second POSITIVE INTEGER 
and the first PRIME NUMBER. It is EVEN, and is the only 
EVEN PRIME (the PRIMES other than 2 are called the 
ODD PRIMES). The number 2 is also equal to its FAC- 
TORIAL since 2! = 2. A quantity taken to the POWER 2 

is said to be SQUARED. The number of times k a given 
BINARY number b, . . l  b2 b& is divisible by 2 is given 
by the position of the first bk = 1, counting from the 
right, For example, 12 = 1100 is divisible by 2 twice, 
and 13 = 1101 is divisible by 2 0 times. 

see also 1, BINARY, 3, SQUARED, 2~~0 

2x mod 1 Map 
Let x0 be a REAL NUMBER in the CLOSED INTERVAL 
[0, 11, and generate a SEQUENCE using the MAP 

Xn+l s 2x, (mod 1). (1) 

Then the number of periodic ORBITS of period p (for p 
PRIME) is given by 

Since a typical ORBIT visits each point with equal prob- 
ability, the NATURAL INVARIANT is given by 

p(x) = 1. (3) 

see also TENT MAP 

References 
Ott, E. Chaos in Dynamical Systems. Cambridge: Cam- 

bridge University Press, pp. 26-31, 1993. 

3 is the only INTEGER which is the sum of the preceding 
POSITIVE INTEGERS (1 + 2 = 3) and the only number 
which is the sum of the FACTORIALS of the preceding 
POSITIVE INTEGERS (l! + 2! = 3). It is also the first 
ODD PRIME. A quantity taken to the POWER 3 is said 
tobe CUBED. 

see also 1, 2, 3~ + 1 MAPPING, CUBED, PERIOD THREE 
THEOREM, SUPER-~ NUMBER, TERNARY, THREE- 
COLORABLEJERO 

3x + 1 Mapping 
see COLLATZ PROBLEM 

10 
The number 10 (ten) is the basis for the DECIMAL sys- 
tem of notation. In this system, each “decimal place” 
consists of a DIGIT O-9 arranged such that each DIGIT 
is multiplied by a POWER of 10, decreasing from left to 
right, and with a decimal place indicating the 10° = 1s 
place. For example, the number 1234.56 specifies 

The decimal places to the left of the decimal point 
are 1, 10, 100, 1000, 10000, 10000, 100000, 10000000, 
100000000,  * . l  (Sloane’s AO11557), called one, ten, 
HUNDRED, THOUSAND, ten thousand, hundred thou- 
sand, MILLION, 10 million, 100 million, and so on. The 
names of subsequent decimal places for LARGE NUM- 
BERS differ depending on country. 

Any POWER of 10 which can be written as the PRODUCT 
of two numbers not containing OS must be of the form 
2”*5” I, 10n for n an INTEGER such that neither 2” nor 
5n contains any ZEROS. The largest known such number 

1033 = 233 l  533 

= 8,589,934,592 m 116,415,321,826,934,814,453,125. 

A complete list of known such numbers is 

lo1 = 2l l  5l 

lo2 = 22 - 52 

103 = 23 l  53 

lo4 = 24 ’ 54 

lo5 = 25 ’ 55 

lo6 = 26 - 56 

lo7 = 27 - 57 

log = 2g l  5g 

1018 = 21s . 518 

1033 = 233 .533 

(Madachy 1979). S ince all POWERS of 2 with exponents 
n 5 4.6 x lo7 contain at least one ZERO (M. Cook), no 



2 12 1 B-Point Problem 

other POWER of ten less than 46 million can be written’ 
as the PRODU CT of two numbers not cant aining OS. 

see also BILLION, DECIMAL, HUNDRED, LARGE NUM- 
BER, MILLIARD, MILLION, THOUSAND, TRILLION, ZERO 

References 
Madachy, J. S. Mudachy’s Mathematical Recreations. New . 

York: Dover, pp. 127-128, 1979. 
Pickover, C. A, Keys to Infinity. New York: W. H. Freeman, 

p* 135, 1995. 
Sloane, N. J. A. Sequence A011557 in “An On-Line Version 

of the Encyclopedia of Integer Sequences.” 

12 
One DOZEN, or a twelfth of a GROSS. 

see also DOZEN, GROSS 

13 
A NUMBER traditionally associated with bad luck. A 
so-called BAKER'S DOZEN is equal to 13. Fear of the 
number 13 is called TRISKAIDEKAPHOBIA. 

see UZSO BAKER'S DOZEN, FRIDAY THE THIRTEENTH, 
TRISKAIDEKAPHOBIA 

15 

see 15 PUZZLE, FIFTEEN THEOREM 

15 Puzzle 

A puzzle introduced by Sam Loyd in 1878. It consists of 
15 squares numbered from 1 to 15 which are placed in a 
4 x 4 box leaving one position out of the 16 empty. The 
goal is to rearrange the squares from a given arbitrary 
starting arrangement by sliding them one at a time into 
the configuration shown above. For some initial arrange- 
ments, this rearrangement is possible, but for others, it 
is not. 

To address the solubility of a given initial arrangement, 
proceed as follows. If the SQUARE containing the num- 
ber i appears “before” (reading the squares in the box 
from left to right and top to bottom) 12 numbers which 
are less than i, then call it an inversion of order 72, and 
denote it ~2i. Then define 

N$ 

15 

ni = 
lx ni, 

i=l I- z- 2 

where the sum need run only from 2 to 15 rather than 
1 to 15 since there are no numbers less than 1 (so n1 

must equal 0). If Iv is EVEN, the position is possible, 
otherwise it is not. This can be formally proved using 
ALTERNATING GROUPS. For example, in the following 
arrangement 

n2 = 1 (2 precedes 1) and all other ni = 0, so N = 1 
and the puzzle cannot be solved. 

References 
Ball, W. W. R. and Coxeter, H. S. M. Mathematical Recm- 

ations and Essays, 13th ed. New York: Dover, pp. 312- 
316, 1987. 

Bogomolny, A. “Sam Loyd’s Fifteen.” http: //www. cut-the- 
knot.com/pythagoras/fiftean.html. 

Bogomolny, A. “Sam Loyd’s Fifteen [History].” http://www. 
cut-the-knot.com/pythagoras/historyl5.html. 

Johnson, W. W. “Notes on the ‘15 Puzzle. I.“’ Amer. J. 
Math. 2, 397-399, 1879. 

Kasner, E. and Newman, J. R. Mathematics and the Imagi- 
nation. Redmond, WA: Tempus Books, pp. 177-180,1989. 

Kraitchik, M. “The 15 Puzzle.” 512.2.1 in MathematicaZ 
Recreations. New York: W. We Norton, pp* 302-308, 1942. 

Story, W. E. “Notes on the ‘15 Puzzle. II.“’ Amer. J. Math. 
2, 399-404, 1879. 

16-Cell 
A finiteregular4-D POLYTOPE with SCHL~FLI SYMBOL 
(3, 3, 4) and VERTICES which are the PERMUTATIONS 
of (fl, 0, 0, 0). 

see also 24-CELL, 120-CELL, 600-CELL, CELL, POLY- 
TOPE 

l? 
17 is a FERMAT PRIME which means that the 17-sided 
REGULAR POLYGON (the HEPTADECAGON) is CON- 

STRUCTIBLE using COMPASS and STRAIGHTEDGE (as 
proved by Gauss). 

see aho CONSTRUCTIBLE POLYGON , FERMAT PRIME, 
HEPTADECAGON 

References 
Carr, M. “Snow White and the Seven(teen) Dwarfs.” 

http:// www + math . harvard . edu / w  hmb/ issueZ.l/ 
SEVENTEEN/seventeen.html. 

Fischer, R. “Facts About the Number 17.” http: //tsmpo. 
harvard. edu/ - rfischer/hcssim/l7facts /kelly/ 
kelly. html. 

Lefevre, V. “Properties of 17.” http : //www . ens-lyon. f r/ 
-vlef evre/dlXeng . html. 

Shell Centre for Mathematical Education. “Number 
17.” http://acorn.educ.nottingham.ac.uk/ShellCent/ 
Number/Numl7.html. 

18-Point Problem 
Place a point somewhere on a LINE SEGMENT. Now 
place a second point and number it 2 so that each of the 
points is in a different half of the LINE SEGMENT. Con- 
tinue, placing every Nth point so that all N points are 
on different (l/N)th of the LINE SEGMENT. Formally, 
for a given N, does there exist a sequence of real num- 
bers xl, x2, . . . , ZN such that for every n E {l, . . . , IV} 
and every k E (1,. . . , n), the inequality 

k-l k 
-<Xi<- 

n - n 



24- Cell 196-Algorithm 3 

holds for some i E { 1, . . . , n}? Surprisingly, it is only 
possible to place 17 points in this manner (Berlekamp 
and Graham 1970, Warmus 1976). 

Steinhaus (1979) gives a 14-point solution (0.06, 0.55, 

0.77, 0.39, 0.96, 0.28, 0.64, 0.13, 0.88, 0.48, 0.19, 0.71, 

0.35, 0.82), and Warmus (1976) gives the 17-point solu- 
tion 

Warmus (1976) states that there are 768 patterns of 17- 
point solutions (counting reversals as equivalent) l  

see also DISCREPANCY THEOREM, POINT PICKING 

References 
Berlekamp, E. R. and Graham, R. L. “Irregularities in the 

Distributions of Finite Sequences.” J. Number Th. 2, 152- 
161, 1970. 

Gardner, M. The Last Recreations: Hydras, Eggs, and Other 
Mathematical Mystifications. New York: Springer-Verlag, 
pp* 34-36, 1997. 

Steinhaus, H. “Distribution on Numbers” and “Generaliza- 
tion.” Problems 6 and 7 in One Hundred Problems in 
Elementary Mathematics. New York: Dover, pp. 12-13, 
1979. 

Warmus, M. “A Supplementary Note on the Irregularities of 
Distributions.” J. Number Th. 8, 260-263, 1976. 

24-Cell 
A finite regular 4-D POLYT~PE with SCHL~FLI SYMBOL 
{3,4,3}. Coxeter (1969) gives a list of the VERTEX po- 

sitions. The EVEN coefficients of the Lid lattice are 1, 
24, 24, 96, . . . (Sloane’s AOU4011), and the 24 shortest 
vectors in this lattice form the 24-cell (Coxeter 1973, 
Conway and Sloane 1993, Sloane and Plouffe 1995). 

see also 16-CELL, 120-CELL, 600-CELL, CELL, POLY- 
TOPE 

References 
Conway, J. H, and Sloane, N. J. A. Sphere-Packings, Lattices 

and Groups, 2nd ed. New York: Springer-Verlag, 1993. 
Coxeter, H. S. M. Introduction to Geometry, 2nd ed. New 

York: Wiley, p. 404, 1969. 
Coxeter, I-l. S. M. Regular Polytopes, 3rd ed. New York: 

Dover, 1973. 
Sloane, N. J. A. Sequences A004011/M5140 in “An On-Line 

Version of the Encyclopedia of Integer Sequences.” 
Sloane, N. J. A. and Plouffe, S. Extended entry in The Ency- 

clopedia of Integer Sequences. San Diego: Academic Press, 

42 
According to Adams, 42 is the ultimate answer to life, 
the universe, and everything, although it is left as an 
exercise to the reader to determine the actual question 
leading to this result. 

Reterences 
Adams, D. The Hitchhiker’s Guide to the Galaxy. New York: 

Ballantine Books, 1997. 

72 Rule 

see RULE OF 72 

120~Cell 
A finite regular4-D P~LYTOPE with SCHL~~FLI SYMBOL 
{5,3,3} (Coxeter 1969). 

see also 16- 
TOPE 

CELL, 24-CELL, 600~CELL, CELL, POLY- 

FLeferences 
Coxeter, H. S. M. Introduction to Geometry, 2nd ed. New 

York: Wiley, p. 404, 1969. 

144 
A DOZEN DOZEN, also called a GROSS. 144 is a SQUARE 
NUMBER and a SUM-PRODUCT NUMBER. 

see also DOZEN 

196.Algorithm 
Take any POSITIVE INTEGER of two DIGITS or more,re- 
verse the DIGITS, and add to the original number. Now 
repeat the procedure with the SUM so obtained. This 
procedure quickly produces PALINDROMIC NUMBERS for 
most INTEGERS. For example, starting with the num- 
ber 5280 produces (5280, 6105, 11121, 23232). The end 
results of applying the algorithm to 1, 2, 3, . . . are 1, 2, 
3, 4, 5, 6, 7, 8, 9, 11, 11, 33, 44, 55, 66, 77, 88, 99, 121, 
. l  . (Sloane’s A033865). The value for 89 is especially 
large, being 8813200023188. 

The first few numbers not known to produce PALIN- 
DROMES are 196, 887, 1675, 7436, 13783, . . . (Sloane’s 
A006960), which are simply the numbers obtained by 
iteratively applying the algorithm to the number 196. 
This number therefore lends itself to the name of the 
ALGORITHM. 

The number of terms a(n) in the iteration sequence re- 
quired to produce a PALINDROMIC NUMBER from n (i.e., 

44 = 1 for a PALINDROMIC NUMBER, a(n) = 2 if a 
PALINDROMIC NUMBER is produced after a single iter- 
ation of the 196-algorithm, etc.) for n = 1, 2, . l  . are 

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 3, 
2, 2, 1, l  . . (Sloane’s A030547). The smallest numbers 
which require n = 0, 1, 2, . . . iterations to reach a palin- 
drome are 0, 10, 19, 59, 69, 166, 79, 188, l  . . (Sloane’s 
A023109). 

see also ADDITIVE PERSISTENCE, DIGITADTTION, MUL- 
TIPLICATIVE PERSISTENCE, PALINDROMIC NUMBER, 
PALINDROMIC NUMBER CONJECTURE, RATS SE- 
QUENCE, RECURRING DIGITAL INVARIANT 

References 
Gardner, M. Mathematical Circus: More Puzzles, Games, 

Paradoxes and Other Mathematical Entertainments from 
Scientific American. New York: Knopf, pp. 242-245,1979. 

Eruenberger, F. “How to Handle Numbers with Thousands 
of Digits, and Why One Might Want to.” Sci. Amer. 250, 
19-26, Apr. 1984. 

Sloane, N. J* A. Sequences A023109, A030547, A033865, and 
A006960/M5410 in “An On-Line Version of the Encyclo- 
pedia of Integer Sequences.” 
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239 600-Cell 
Some interesting properties (as well as a few arcane ones A finite regular 4-D POLYTOPE with SCHL;~FLI SYMBOL 
not reiterated here) of the number 239 are discussed in {3,3,5}. For VERTICES, see Coxeter (1969). 

Beeler et al. (1972, Item 63). 239 appears in MACHIN’S see also 16-CELL, 24-CELL, 120-CELL, CELL, POLY- 
FORMULA TOPE 

$7r = 4tan(i) -tan-l(&), 

which is related to the fact that 

2 ’ 134 - 1 = 23g2, 

which is why 239/169 is the 7th CONVERGENT of a. 
Another pair of INVERSE TANGENT FORMULAS involv- 
ing 239 is 

tan-l(&) = tan-‘($) -tan-l(&) 

= tan-l(&) + tan-l(&). 

239 needs 4 SQUARES (the maximum) to express it, 9 
CUBES (the maximum, shared only with 23) to express 
it, and 19 fourth POWERS (the maximum) to express it 
(see WARING’S PROBLEM). However, 239 doesn’t need 
the maximum number of fifth POWERS (Beeler et al, 
1972, Item 63). 

References 
Beeler, M.; Gosper, R. W.; and Schroeppel, R. HAKMEM. 

Cambridge, MA: MIT Artificial Intelligence Laboratory, 
Memo AIM-239, Feb. 1972. 

257~gon 
257 is a FERMAT PRIME, and the 257-gon is there- 
fore a CONSTRUCTIBLE POLYGON using, COMPASS and 
STRAIGHTEDGE, as proved by Gauss. An illustration 
of the 257-gon is not included here, since its 257 seg- 
ments so closely resemble a CIRCLE. Richelot and 

Schwendenwein found constructions for the 257-gon in 
1832 (Coxeter 1969). De Temple (1991) gives a con- 
struction using 150 CIRCLES (24 of which are CAR- 
LYLE CIRCLES) which has GEOMETROGRAPHY symbol 
94S1 + 47& + 275C1 + OC2 + 150C3 and SIMPLICITY 
566. 

see dso 65537-CON, CONSTRUCTIBLE POLYGON, FER- 
MAT PRIME, HEPTADECAGON, PENTAGON 

References 
Coxeter, H. S. M. Introduction to Geometry, 2nd 

York: Wiley, 1969. 
De Temple, D, W. “Carlyle Circles and the Lemoine 

ity of Polygonal Constructions.” Amer. Math. MO 
97-108, 1991. 

Dixon, R. Mathographics. New York: Dover, p. 53, 
Rademacher, H. Lectures on Elementary Number 

New York: Blaisdell, 1964. 

ed. New 

Simplic- 
mnthly 98, 

1991. 
Theory. 

fteierences 
Coxeter, H. S. M. Introduction to Geometry, 2nd ed. New 

York: Wiley, p. 404, 1969. 

666 
A number known as the BEAST NUMBER appearing in 
the Bible and ascribed various numerological properties. 

see ah APOCALYPTIC NUMBER, BEAST NUMBER, LE- 
VIATHAN NUMBER 

References 
Hardy, G. H. A Mathematician’s Apology, reprinted with a 

foreword by C. P. Snow. New York: Cambridge University 
Press, p. 96, 1993. 

2187 
The digits in the number 2187 form the two VAMPIRE 
NUMBERS: 21 x 87 = 1827 and 2187 = 27 x 81. 

References 
Gardner, M. “Lucky Numbers and 2187.” Math. Intell. 19, 

26-29, Spring 1997. 

65537-gon 
65537 is the largest known FERMAT PRIME, and the 
65537-gonistherefore a CONSTRUCTIBLE POLYGON us- 
ing COMPASS and STRAIGHTEDGE, as proved by Gauss. 
The 65537-gon has so many sides that it is, for all in- 
tents and purposes, indistinguishable from a CIRCLE us- 
ing any reasonable printing or display methods. Her- 
mes spent 10 years on the construction of the 65537-gon 
at Giittingen around 1900 (Coxeter 1969). De Temple 
(1991)notesthata GEOMETRIC CONSTRUCTION canbe 
done using 1332 or fewer CARLYLE CIRCLES. 

see U~SO 257-GON, CONSTRUCTIBLE POLYGON, HEP- 
TADECAGON,~ENTAGON 

Keterences 
Coxeter, H. S. M. Introduction to Geometry, 2nd ed. New 

York: Wiley, 1969. 
De Temple, D. W. “Carlyle Circles and the Lemoine Simplic- 

ity of Polygonal Constructions.” Amer. Math. Monthly 98, 
97-108, 1991. 

Dixon, R. Mathographics. New York: Dover, p. 53, 1991. 
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A 
A-Integrable 
A generalization of the LEBESGUE INTEGRAL. A MEA- 
SURABLEFUNCTION f( z is called A-integrable over the ) 
CLOSED INTERVAL [a$] if 

Erdiis, P. “Remarks on Number Theory III. Some Problems 
in Additive Number Theory.” 1Mut. Lupok 13, 28-38, 1962. 

Finch, S. “Favorite Mathematical Constants.” http : //www. 
mathsoft.com/asolve/constant/erdos/erdos,html* 

Guy, R. K. “&-Sequences.” §E28 in Unsolved Problems 

irt Number Theory, 2nd ed. New York: Springer-Verlag, 
pp. 228-229, 1994. 

m{z : If(z)1 > n} = O(n-l), 

where m is the LEBESGUE MEASURE, and 

(1) 

Levine, E. and O’Sullivan, J. “An Upper Estimate for the 
Reciprocal Sum of a Sum-Free Sequence.” Acta Arith. 34, 
9-24, 1977. 

Zhang, 2. X. “A S urn-Free Sequence with Larger Reciprocal 
Sum.” Unpublished manuscript, 1992. 

exists, whel 

References 
Titmarsch, 1 

fb)ln = 
1 

f(z) if If(z)I L n 0 if if(s)1 > 73. 

(2) 

(3) 

. G. “On Conjugate Functions.” Proc. London 
Math. Sot. 29, 49-80, 1928. 

A-Sequence 
N.B. A detailed on-line essay by S. Finch was the start- 
ing point for this entry. 

An INFINITE SEQUENCE of POSITIVE INTEGERS a; sat- 
isfying 

1 5 a1 < a2 < u3 < -. . (1) 

is an A-sequence if no ak is the SUM of two or more 
distinct earlier terms (Guy 1994). Erdk (1962) proved 

S(A) = SUP (2) 
all A sequences 

k=l 

Any A-sequence satisfies the CHI INEQUALITY (Levine 
and O’Sullivan 1977)) which gives S(A) < 3.9998. Ab- 
bott (1987) and Zhang (1992) have given a bound from 
below, so the best result to date is 

2.0649 < S(A) < 3.9998. (3) 

Levine and O’Sullivan (1977) conjectured that the sum 
of RECIPROCALS of an A-sequence satisfies 

OQ 1 
S(A) 2 x - = 3.01 l  l  l  , 

k=l ” 

(4) 

where xi are given by the LEVINE-O’SULLIVAN GREEDY 
ALGORITHM. 

see dso &-SEQUENCE, MIAN-CHOWLA SEQUENCE 

References 
Abbott, II. L. “On Sum-Free Sequences.” Acta Arith. 48, 

93-96, 1987. 

AAA Theorem 

Specifying three ANGLES A, B, and C does not uniquely 
define a TRIANGLE, but any two TRIANGLES with the 
same ANGLES are SIMILAR. Specifying two ANGLES of 
a TRIANGLE automatically gives the third since the sum 
of ANGLES in a TRIANGLE sums to 180” (r RADIANS), 
i.e., 

C=n-A-B. 

see also AAS THEOREM, ASA THEOREM, ASS THEO- 
REM, SAS THEOREM, SSS THEOREM, TRIANGLE 

AAS Theorem 

/ \ 

Specifying two angles A and B and a side a uniquely 
determines a TRIANGLE with AREA 

K= 
a2 sin B sin C u2 sin 13 sin@ - A - B) 

2sinA = 2 sin A 
l  (1) 

The third angle is given by 

C=n-A-B, (2) 

since the sum of angles of a TRIANGLE is 180’ (K RA- 
DIANS). Solving the LAW OF SINES 

U b 
-=- 

sin A sin B (3) 

for b gives 
sin B 

b=Um* (4) 

Finally, 

c=bcosA+ucosB=u(sinBcotA+cosB) (5) 

=usinB(cotA+cotB). (6) 

see also AAA THEOREM, ASA THEOREM, ASS THEO- 
REM, SAS THEOREM,SSS THEOREM,TRIANGLE 
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Abacus Abelian 

Abel’s Functional Equation 

A mechanical counting device consisting of a frame hold- 
ing a series of parallel rods on each of which beads are 
strung. Each bead represents a counting unit, and each 
rod a place value. The primary purpose of the abacus 
is not to perform actual computations, but to provide 
a quick means of storing numbers during a calculation. 
Abaci were used by the Japanese and Chinese, as well 
as the Romans. 

see also ROMAN NUMERAL, SLIDE RULE 

References 
Bayer, C. B. and Merzbach, U. C. “The Abacus and Decimal 

Fractions.” A History of Mathematics, 2nd ed. New York: 
Wiley, pp. 199-201, 1991. 

Fernandes, L. “The Abacus: The Art of Calculating with 
Beads ,” http://www.ee.ryerson.ca:8080/-elf/abacus. 

Gardner, M. “The Abacus.” Ch. 18 in Mathematical Circus: 

More Puzzles, Games, Paradoxes and Other Mathemati- 
cal Entertainments from Scientific American. New York: 
Knopf, pp. 232-241, 1979. 

Pappas, T. “The Abacus.” The Joy of Mathematics. San 
Carlos, CA: Wide World Publ./Tetra, p. 209, 1989. 

Smith, D. E. “Mechanical Aids to Calculation: The Abacus.” 
Ch. 3 31 in History of Mathematics, Vol. 2. New York: 
Dover, pp+ 156-196, 1958. 

abc Conjecture 
A CONJECTURE due to J. Oesterlk and D. W. Masser. 
It states that, for any INFINITESIMAL E > 0, there exists 
a CONSTANT C, such that for any three RELATIVELY 
PRIME INTEGERS a,b, c satisfyi % 

U+b=C, 

the INEQUALITY 

max{lal, 1% ICI} 5 CE l-I Pl+” 

pbbc 

holds, where p[abc indicates that the PRODUCT is Over 
PRIMES p which DIVIDE the PRODUCT abc. If this 
CONJECTURE were true, it would imply FERMAT'S 
LAST THEOREM for sufficiently large POWERS (Goldfeld 
1996). This is related to the fact that the abc conjecture 
implies that there are at least C In z WIEFERICH PRIMES 
< z for some constant C (Silverman 1988, Vardi 1991). - 

see UZSO FERMAT'S LAST THEOREM, MASON'S THEO- 
REM,~IEFERICH PRIME 

Heferences 
Cox, D. A. “Introduction to Fermat’s Last Theorem.” Amer. 

Math. Monthly 101, 3-14, 1994. 
Goldfeld, De “Beyond the Last Theorem.” The Sciences, 34- 

40, March/April 1996. 
Guy, R. K. Unsolved Problems in Number Theory, 2nd ed. 

New York: Springer-Verlag, pp. 75-76, 1994. 
Silverman, J. “Wieferich’s Criterion and the abc Conjecture.” 

J. Number Th. 30, 226-237, 1988. 
Vardi, I. Computational Recreations in Mathematics. Read- 

ing, MA: Addison-Wesley, p+ 66, 1991. 

see ABELIAN CATEGORY, ABELIAN DIFFERENTIAL, 
ABELIAN FUNCTION, ABELIAN GROUP, ABELIAN IN- 
TEGRAL, ABELIAN VARIETY, COMMUTATIVE 

Abelian Category 
An Abelian category is an abstract mathematical CAT- 
EGORY which displays some of the characteristic prop- 
erties of the CATEGORY of all ABELIAN GROUPS. 

see also ABELIAN GROUP, CATEGORY 

Abel’s Curve Theorem 
The sum of the values of an INTEGRAL of the “first” or 
“second” sort 

s 

x1 3Yl 

Pdx+ + 

XNTYN Pdx 
-= 

x0 *YU Q 
. . . 

J Q F( > z 
x0 1YO 

P(Xl,Yl) da + 
+ p( 

xN,yN) dxN dF 

Q(xl,yl) dz  l  ** 

-=- 

Q(xm YN) dz  
dz ’ 

from a FIXED POINT to the points of intersection with a 
curve depending rationally upon any number of param- 
eters is a RATIONAL FUNCTION of those parameters. 

References 
Coolidge, J. L. A Treatise on Algebraic Plane Curves. New 

York: Dover, p. 277, 1959. 

Abelian Differential 
An Abelian differential is an ANALYTIC or MEROMOR- 
PHIL DIFFERENTIAL on a 
SURFACE. 

COMPACT or RIEMANN 

Abelian Function 
An INVERSE FUNCTION of an ABELIAN INTEGRAL. 
Abelian functions have two variables and four periods. 
They are a generalization of ELLIPTIC FUNCTIONS, and, 
are also called HYPERELLIPTIC FUNCTIONS. 

see ~2s~ ABELIAN INTEGRAL, ELLIPTIC FUNCTION 

References 
Baker, H. F. Abelian Functions: Abel’s Theorem and the Al- 

lied Theory, Including the Theory of the Theta Functions. 
New York: Cambridge University Press, 1995. 

Baker, I% F. An Introduction to the Theory of Multiply Pe- 
riodic Functions. London: Cambridge University Press, 
1907. 

Abel’s Functional Equation 
Let Liz(x) denote the DILOGARITHM, defined by 

Liz(x) = 2 5, 
n=f 
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Li&c) + Lip(y) + Li2(xy) + Li2 
x(1- Y> 

( > p 
1 - xy 

$-Liz e = 3Li$). 
( > 

see also DILOGARITHM, POLYLOGARITHM, RIEMANN 
ZETA FUNCTION 

Abelian Group 
N.B. A detailed on-line essay by S. Finch was the start- 
ing point for this entry. 

A GROUP for which the elements COMMUTE (i.e., A13 = 
BA for all elements A and B) is called an Abelian group. 
All CYCLIC GROUPS are Abelian, but an Abelian group 
is not necessarily CYCLIC. All SUBGROUPS of an Abelian 
group are NORMAL. In an Abelian group, each element 
is in a CONJUGACY CLASS by itself, and the CHARACTER 
TABLE involves POWERS of a single element known as a 
GENERATOR. 

No general formula is known for giving the number 
of nonisomorphic FINITE GROUPS of a given ORDER. 
However, the number of nonisomorphic Abelian FINITE 
GROUPS a(n) of any given ORDER n is given by writing 
n as 

n = (1) 

where the p; are distinct PRIME FACTORS, then 

a(n) = p(w), (2) 
i 

where P is the PARTITION FUNCTION. This gives 1, 1, 
1, 2, 1, 1, 1, 3, 2, . l  l  (Sloane’s AOOOSSS) . The smallest 
orders for which n = 1, 2, 3, . . . nonisomorphic Abelian 
groups exist are 1, 4, 8, 36, 16, 72, 32, 900, 216, 144, 
64, 1800, 0, 288, 128, . . . (Sloane’s A046056), where 0 
denotes an impossible number (i.e., not a product of 
partition numbers) of nonisomorphic Abelian, groups. 
The “missing” values are 13, 17, 19, 23, 26, 29, 31, 34, 
37, 38, 39, 41, 43, 46, . . . (Sloane’s A046064). The 
incrementally largest numbers of Abelian groups as a 
function of order are 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 
77, 101, . . . (Sloane’s A046054), which occur for orders 
1, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 

l  l  l  (Sloane’s A046055). 

The KRONECKER DECOMPOSITION THEOREM states 
that every FINITE Abelian group can be written as a DI- 
RECT PRODUCT of CYCLIC GROUPS of PRIME POWER 
ORDERS. Ifthe ORDERS ofa FINITE GROUP isa PRIME 
p, then there exists a single Abelian group of order p 
(denoted Zp) and no non-Abelian groups. If the OR- 
DERS is a prime squared p2, then there are two Abelian 
groups (denoted Zp2 and Zp @I Zp. If the ORDERS is 

a prime cubed p3, then there are three Abelian groups 
(denoted Zp @ Zp @ Zp, Zp @ Z*Z, and Zp3 ), and five 
groups total. If the order is a PRODUCT of two primes 
p and Q, then there exists exactly one Abelian group of 
order pq (denoted Zp @ Zp). 

Another interesting result is that if a(n) denotes the 
number of nonisomorphic Abelian groups of ORDER r~, 

n=l 

where c(s) is the RIEMANN ZETA FUNCTION. Srinivasan 
(1973) has also shown that 

i: 0 an = A~lV+A2N1/2+A~N1’3+O[z105/407(ln x)~], 

n=l 

(4) 
where 

and (is again the RIEMANN ZETA FUNCTION. [Richert 
(1952) incorrectly gave A3 = 114.1 DeKoninck and Ivic 
(1980) showed that 

N 

x 

1 

44 
= BN + 0[fi(lnN)-1/2], (6) 

n=f. 

1 
F@zj- 

(7) 
is a product over PRIMES. Bounds for the number of 
nonisomorphic non-Abelian groups are given by Neu- 
mann (1969) and Pyber (1993). 

see UZSO FINITE GROUP, GROUP THEORY, KRONECKER 
DECOMPOSITION THEOREM, PARTITION FUNCTION P, 
RING 

References 
DeKoninck, J.-M. and Ivic, A. Topics in Arithmetical Func- 

tions: Asymptotic Formulae for Sums of Reciprocals of 

Arithmetical Functions and Related Fields. Amsterdam, 
Netherlands: North-HollaGd, 1980. 

Erdiis, P. and Szekeres, G. “Uber die Anzahl abelscher Grup- 
pen gegebener Ordnung und fiber ein verwandtes zahlen- 
theoretisches Problem.” Acta Sci. Math. (Szeged) 7, 95- 
102,1935. 

Finch, S. "Favorite Mathematical Constants.” http: //www. 
mathsof t . com/asolve/constant/abel/abel . html,. 

Kendall, D. G. and Rankin, R. A. “On the Number of Abelian 
Groups of a Given Order.” Quart. J. Oxford 18, 197-208, 
1947. 

Kolesnik, G. “On the Number of Abelian Groups of a Given 
Order.” J. Reine Angew. Math. 329, 164-175, 1981. 



8 A be1 k Identity 

Neumann, P. M. “An Enumeration Theorem for Finite 
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Abel’s Identity 
Given a homogeneous linear SECOND-ORDER ORDI- 
NARY DIFFERENTIAL EQUATION, 

y" + P(x)y' + Q(x)y = 0, (1) 

call the two linearly independent solutions y1 (z) and 
y&c)- Then 

Y:(X) +P(x>~:(rc) + Q(X)YI = 0 (2) 

Y:(X) + P(x>Y;(x> + Q(X)YZ = 0. (3) 

Now, take yl x (3) - y2 x (2), 

YI[Y~’ + P(x>Y; + Q(4~21 

-Yz[YY + +>y: + Q(X)Yl] = 0 (4) 

(Y~Y; -Y~Y:~)+P(Y~Y; -Y;Y~)+Q(YIY~ -YIYZ) = 0 (5) 

(Y Y 1; - yzy:')+P(Yly; - y5y2) = 0. (6) 

Now, use the definition of the WRONSKIAN and take its 
DERIVATIVE, 

w 5 y1y; -y:y2 (7) 

w' = (YiYh +YlYY) - (YiYb +Y:Y2) 
= y1y; - y;Iy2* (8) 

Plugging W and W’ into (6) gives 

W’+PW=O. (9) 

This can be rearranged to yield 

dW -=- 
W 

P(x) dx (10) 

which can then be directly integrated to 

1nW = -Cl 
s 

p(x) dx, (11) 

where lna: is the NATURAL LOGARITHM. A second in- 
tegration then yields Abel’s identity 

W(x) = Cze- s P( 5) da: 
1 (12) 

where Cl is a constant of integration and C2 = ccl. 

see ~1~0 ORDINARY DIFFERENTIAL EQUATION-SEC- 
OND-ORDER 

References 
Boyce, W. E. and DiPrima, R. C. EZementary DQferentiul 

Equations and Boundary Value Problems, 4th ed. New 
York: Wiley, pp+ 118, 262, 277, and 355, 1986. 

Abel’s Irreducibility Theorem 

Abel’s Impossibility Theorem 
In general, POLYNOMIAL equations higher than fourth 
degree are incapable of algebraic solution in terms of 
a finite number of ADDITIONS, MULTIPLICATIONS, and 
ROOT extractions. 

see also CUBIC EQUATION, GALOIS'S THEOREM,POLY- 
NOMIAL, QUADRATIC EQUATION, QWARTIC EQUATION, 
QUINTIC EQUATION 

References 
Abel, N. H, “DBmonstration de I’impossibilitG de la &solution 

alghbraique des kquations g&&ales qui dhpassent le qua- 
trikme degr&” Crelle ‘s J. 1, 1826. 

Abel% Inequality 
Let {fn} and {a,} be SEQUENCES with fn 2 fn+l > 0 
for n = 1, 2, . . . , then 

m 

Yd 
Gafn 

n=l 

where 

< Ah - 

Abelian Integral 
An INTEGRAL of the form 

where R(t) is a POLYNOMIAL of degree > 4. They are 
also called HYPERELLIPTIC INTEGRALS. 

see UZSO ABELIAN FUNCTION, ELLIPTIC INTEGRAL 

Abel’s Irreducibility Theorem 
If one ROOT of the equation f(x) = 0, which is irre- 
ducible over a FIELD K, is also a ROOT of the equation 

F(x) = 0 in K, then all the ROOTS of the irreducible 
equation f(x) = 0 are ROOTS of F(x) = 0. Equivalently, 
F(x) can be divided by f(x) without a REMAINDER, 

F(x) = f(x)Fl(x>, 

where FI(x) is also a POLYNOMIAL over K. 

see ah ABEL'S LEMMA, KRONECKER'S POLYNOMIAL 
THEOREM,SCHOENEMANN'S THEOREM 

References 
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r&solubles alghbraiquement.” Crelle ‘s J. 4, 1829. 
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Abel’s Lemma 
The pure equation 

xp = c 

The Abel transform is used in calculating the radial 
mass distribution of galaxies and inverting planetary ra- 
dio occultation data to obtain atmospheric information. 

of PRIME degree p is irreducible over a FIELD when C 
is a number of the FIELD but not the pth POWER of an 
element of the FIELD. 
see also ABEL'S IRREDUCIBILITY THEOREM, GAUSS'S 
POLYNOMIAL THEOREM, KRONECKER'S POLYNOMIAL 
THEOREM,SCHOENEMANN'S THEOREM 
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Abel’s Uniform Convergence Test 
Let {'all} be a SEQUENCE of functions. If 

1. tin(x) can be written Us = a&(x), 

2. CUE is CONVERGENT, 

3. fn(x) is a MONOTONIC DECREASING SEQUENCE 
(i.e., &+1(x) < fn(x)) for all 72, and 

4. fn(x) is BOUNDED in some region (i.e., 0 < fn(x) < - - 
M for all II: E [a, b]) 

Diirrie, H. 100 Great 

Their History and 
1965. 

Problems of Elementary Mathe 
Solutions . New York: Dover, 

,matics: 
p. 118, 

Abel’s Test 
see ABEL'S UNIFORM CONVERGENCE TEST 

Abel’s Theorem 
Given a TAYLOR SERIES 

00 00 then, for all x E [u,b], the SERIES &Jx) CONVERGES 
UNIFORMLY. F(x) = c Cn;sn = x C,rneinO, (1) 

n=O n=O see also CONVERGENCE TESTS 
wherethe COMPLEX NUMBER z has been w 

polar form z = TeiB, examine the REAL and 
PARTS 

u(r, 0) = 2 C/ cos(n0) 

.ritten in the 
IMAG INARY 

References 
Bromwich, T. J. I'a and MacRobert, T. M. A 

tion to the Theory of Infinite Series, 3rd ed. 
Chelsea, p. 59, 1991. 

Whittaker, E. T. and Watson, G. N. A Course 
Analysis, 4th ed. Cambridge, England: Cam 
versity Press, p. 17, 1990. 

n Introduc- 
New York: 

(2) in Modern 
bridge Uni- 

M 

v(r, 0) = x C,rn sin(&). (3) 
Abelian Variety 
An Abelian variety is an algebraic GROUP which is a 
complete ALGEBRAIC VARIETY. An Abelian variety of 
DIMENSION 1 is an ELLIPTE CURVE. 

n=O 

Abel’s theorem states that, if u&8) and v&0) are 
CONVERGENT, then 

U(1,0) + iv(l, 0) = lim f(rP), 
T-b1 (4) see also ALBANESE VARIETY 

Stated in words, Abel’s theorem guarantees that, if a 
REAL POWER SERIES CONVERGES for some POSITIVE 
value of the argument, the DOMAIN of UNIFORM CON- 
VERGENCE extends at least up to and including this 
point. Furthermore, the continuity of the sum function 
extends at least up to and including this point. 

References 
Murty, V. K. Introduction to Abelian Varieties. Providence, 

R1: Amer. Math. Sot., 1993. 

Abhyankar’s Conjecture 
For a FINITE GROUP G, let p(G) be the SUBGROUP gen- 
erated by all the SYLOW P-SUBGROUPS of G. If X is a 
projective curve in characteristic p > 0, and if 20, . . . , xt 
are points of X (for t > 0), then a NECESSARY and SUF- 
FICIENT condition that G occur as the GALOIS GROUP 
of a finite covering Y of X, branched only at the points 

x0, l **) xt, is that the QUOTIENT GROUP G/p(G) has 
2g + t generators. 

References 
A&en, G. Mathematical Methods for Physicists, 3rd ed. Or- 

lando, FL: Academic Press, p. 773, 1985. 

Abel Transform 
The following INTEGRAL TRANSFORM relationship, 
known as the Abel transform, exists between two func- 
tions f(z) and g(;t) for 0 < Q < 1, Raynaud (1994) solved the Abhyankar problem in the 

crucial case of the affine line (i.e., the projective line 
with a point deleted), and Harbater (1994) proved the 
full Abhyankar conjecture by building upon this special 
solution. 

f(x) = Jx g@$ 
0 

(1) 

sin(m) d 
g(t) = --- J t f(x) dx 7l- di o (x - t)l--a 

(2) 
see also FINITE GROUP, GALOXS GROUP, QUOTIENT 
GROUP,SYLOW~-SUBGROUP sin(rar) --- t df dx f(O) - 

7T [J o dx (t - x)I-~ + 1 pa l  
(3) 
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Absolute Error 
The DIFFERENCE between the measured or inferred 
value of a quantity ~0 and its actual value x, given by 

References 
Abhyankar, S. “Coverings of Algebraic Curves,” Amer. J. 

Math. 79, 825-856,1957. 
American Mathematical Society. “Notices of the AMS, April 

1995, 1995 Frank Nelson Cole Prize in Algebra.” http: // 
WWW.~S.Org/nOtiC8S/~995~~/priZ8-CO~8.htm~. 

Harbater, D l  “Abhyankar’s Conjecture on Galois Groups 
Over Curves.” Invent. Math. 117, l-25, 1994. 

Raynaud, M. “Revetements de la droite affine en car- 
actkristique p > 0 et conjecture d’Abhyankar.” Invent. 
Math. 116, 425-462,1994. 

Ax= X0 - x 

(sometimes with the ABSOLUTE VALUE taken) is called 
the absolute error. The absolute error of the SUM or 
DIFFERENCE of a number of quantities is less than or 
equal to the SUM of their absolute errors. 

Ablowitz-Ramani-Segur Conjecture 
The Ablowitz-Ramani-Segur conjecture states that a 
nonlinear PARTIAL DIFFERENTIAL EQUATION is solv- 

able by the INVERSE SCATTERING METHOD onlyifev- 
ery nonlinear ORDINARY DIFFERENTIAL EQUATION ob- 
tained by exact reduction has the PAINLEVI? PROPERTY. 

see also INVERSE SCATTERING METHOD 

see also ERROR 
RELATIVE ERRO 

PROPAGATION, PERCEN 
R 

TAGE ERROR, 

References 
Abramowitz, M. and Stegun, C. A. (Eds.). Handbook 

of Mathematical Functions with Formulas,. Graphs, and 
Mathematical Tables, 9th printing. New York: Dover, 
p* 14, 1972. 

References 
Tabor, M. Chaos and Integrability in IVonlinear Dynamics: 

An Introduction. New York: Wiley, p. 351, 1989. 

Absolute Geometry 
GEOMETRY which depends only on the first four of EU- 
CLID'S POSTULATES and notonthe PARALLEL POSTU- 
LATE. Euclid himself used only the first four postulates 
for the first 28 propositions of the Elements, but was 
forced to invoke the PARALLEL POSTULATE on the 29th. 

Abscissa 
The CC- (horizontal) axis of a GRAPH. 

see also AXIS, ORDINATE, REAL LINE, X-AXIS, ~-AXIS, 
Z-AXIS 

see also AFFINE GEOMETRY, Cements, EUCLID'S Pos- 
T~LATES, GEOMETRY, ORDERED GEOMETRY, PARAL- 
LEL POSTULATE 

Absolute Convergence 
A SERIES c, un is said to CONVERGE absolutely if the 

SERIES c, /Us/ CONVERGES, where 1~~1 denotes the 
ABSOLUTE VALUE. Ifa SERIES~~ absolutely convergent, 
then the sum is independent of the order in which terms 
are summed. Furthermore, if the SERIES is multiplied by 

References 
Hofstadter, D. R. Giidel, Escher, Bach: An Eternal Golden 

Braid. New York: Vintage Books, pp. 90-91, 1989. 

Absolute Pseu doprime 

see CARMICHAEL NUMBER another absolutely convergent 
will also converge absolutely. 

series, the product series 

Absolute Square 
Also known as the squared NORM. The absolute square 
of a COMPLEX NUMBER x is written ]tl2 and is defined 
as 

I I 
2 

x = zx*, (1) 

see also CONDITIONAL CONVERGENCE, CONVERGENT 
SERIES, RIEMANN SERIES THEOREM 

References 
Bromwich, T. J. I’a and MacRobert, T. M. “Absolute Con- 

vergence.” Ch. 4 in An Introduction to the Theory of In- 
finite Series, 3rd ed. New York: Chelsea, pp. 69-77, 1991. where z* denotes the COMPLEX CONJUGATE ofx. For 

a REAL NUMBER,(~) simplifies to 
Absolute Deviation 
Let G denote the MEAN of a SET of quantities ui, then 
the absolute deviation is defined by 

1 I 2 
x = z2. (2) 

If the COMPLEX NUMBER is written 
the absolute square can be written 

X= x + iy, then 

12 + iy12 = x2 + y2. (3) see ah DEVIATION, MEAN DEVIATION, SIGNED DEVI- 
ATION, STANDARD DEVIATION 

An important identity involving the absolute square is 
given by 

la&be -“I2 = (a 41 be-ib)(a zk beis) 

= a2 + b2 & ab(ei6 + eBi6) 

= a2 + b2 k 2abcos6. (4 



Absolute Value 

If a = 1, then (4) becomes 

[1* Wi8/2 = 1+b2f2bcosd 

= 1 + b2 & 2b[l - 2sin2($)] 

= 1f2b+b2F4bsin2(+6) 

= (1* b)2 “f: 4bsin2(3). (5) 

If a = 1, and b = 1, then 

11 - e-ib(2 = (1 - 1)" + 4. 1sin2($) = 4sin2@). (6) 

Finally, 

I e Wl + p212 = (,ih + p2)p' +e-i#2) 

= 2 + ,i(#2-h) + e-i(#2-411 

= 2 + 2442 - 41) = 2[1+ cos(q52 - 41)] 

= 4cOS2(& - 41). (7) 

Absolute Value 

I 
-2 -1 1 2 

Re[Abs 21 

-"o 

121 I21 [Z 

The absolute value of a REAL NUMBER x is denoted Ia: 
and given by 

1 
X 
I 

= x sgn(x) = 
1 -x for 2 < 0 

X for x 5 - 0, 

where SGN is the sign function. 

The same notation is used to denote the MODULUS of 
a COMPLEX NUMBER x = x+iy, 1~1 E dx2+y2, a 
p-ADIC absolute value, or a general VALUATION. The 
NORM of a VECTOR x is also denoted 1x1, although f 1x1 I 
is more commonly used. 

Other NOTATIONS similar to the absolute value are the 
FLOOR FUNCTION 1x1, NINT function [x], and CEILING 
FUNCTION [zl* 

see &SO ABSOLUTE SQUARE, CEILING FUNCTION, 
FLOOR FUNCTION, MODULUS (COMPLEX NUMBER), 
NINT, SGN, TRIANGLE FUNCTION, VALUATION 

Abundance 11 

Absolutely Continuous 
Let p be a POSITIVE MEASURE on a SIGMA ALGEBRA 
M and let X be an arbitrary (real or complex) MEASURE 
on M. Then X is absolutely continuous with respect to 
~1, written X << ~1, if X(E) = 0 for every E E i'W for 
which p(E) = 0. 

see also CONCENTRATED,MUTUALLY SINGULAR 

References 
Rudin, W. Functional Analysis. New York: McGraw-Hill, 

pp. 121-125, 1991. 

Absorption Law 
The law appearing in the definition of a BOOLEAN AL- 
GEBRA which states 

aA(aVb)=aV(aAb)=a 

for binary operators V and A (which most commonly are 
logical OR and logical AND). 

see also BOOLEAN ALGEBRA, LATTICE 

References 
Birkhoff, G. and Mac Lane, S. A Survey of Modern Algebra, 

3rd ed. New York: Macmillian, p. 317, 1965. 

Abstraction Operator 

see LAMBDA CALCULUS 

Abundance 
The abundance of a number n is the quantity 

44 s a(n) - 2n, 

where o(n) is the DIVISOR FUNCTION. Kravitz has con- 
jectured that no numbers exist whose abundance is an 
ODD SQUARE (Guy 1994). 

The following table lists special classifications given to 
a number n based on the value of A(n). 

A(n) Number 

< 0 deficient number 
-1 almost perfect number 

0 perfect number 
1 quasiperfect number 

> 0 abundant number 

see also DEFICIENCY 

References 
Guy, Et. K. Unsolved Problems in Number Theory, 2nd ed. 

New York: Springer-Verlag, pp. 45-46, 1994. 
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Abundant Number 
An abundant number is an INTEGER 12 which is not a 
PERFECT NUMBER and for which 

s(n) E u(n) - n > 72, (1) 

where o(n) is the DIVISOR FUNCTION. The quantity 

+4 - 2n is sometimes called the ABUNDANCE. The 
first few abundant numbers are 12, 18, 20, 24, 30, 36, . . . 
(Sloane’s A005 101) l  Abundant numbers are sometimes 
called EXCESSIVE NUMBERS. 

There are only 21 abundant numbers less than 100, and 
they are all EVEN. The first ODD abundant number is 

(2) 

That 945 is abundant can be seen by computing 

s(945) = 975 > 945. (3) 

Any multiple of a PERFECT NUMBER or an abundant 
number is 
20161 can 
bers. 

also abundant l  Every number greater than 
be expressed as a sum of two abundant num- 

Define the density function 

for a POSITIVE REAL NUMBER x, then Davenport (1933) 
proved that A(x) exists and is continuous for all x, 
and ErdCs (1934) gave a simplified proof (Finch). Wall 
(1971) and Wall et al. (1977) showed that 

0.2441 < A(2) < 0.2909, (5) 

and DelGglise showed that 

0.2474 < A(2) < 0.2480. (6) 

see also ALEQUOT SEQUENCE, DEFICIENT NUMBER, 
HIGHLY ABUNDANT NUMBER, MULTIAMICABLE NUM- 
BERS,PERFECT NUMBER,~RACTICAL NUMBER, PRIM- 
ITIVE ABUNDANT NUMBER,~EIRD NUMBER 

References 
Delkglise, M. “Encadrement de la densitk des nombres abon- 

dams.” Submitted. 
Dickson, L. E. History of the Theory of Numbers, Vol. 1: 

Divisibility and Primality. New York: Chelsea, pp. 3-33, 
1952. 

Erdiis, P. “On the Density of the Abundant Numbers.” J. 
London Math. Sot. 9, 278-282, 1934. 

Finch, S. “Favorite Mathematical Constants.” http: //uww , 
mathsoft.com/asolve/constant/abund/abund,html. 

Guy, R. K. Unsolved Problems in Number Theory, 2nd ed, 
New York: Springer-Verlag, pp. 45-46, 1994. 

Singh, S. Fermat’s Enigma: The Epic Quest to Solve 
the World’s Greatest Mathematical Problem. New York: 
Walker, pp. 11 and 13, 1997. 

Sloane, N. J. A. Sequence A005101/M4825 in “An On-Line 
Version of the Encyclopedia of Integer Sequences.” 

Wall, C. R. “Density Bounds for the Sum of Divisors F’unc- 
tion.” In The Theory of Arithmetic Functions (Ed. 
A. A. Gioia and D. L. Goldsmith). New York: Springer- 
Verlag, pp. 283-287, 1971. 

Wall, C. R.; Crews, P. L.; and Johnson, D. B. “Density 
Bounds for the Sum of Divisors Function.” Math. Comput. 
26, 773-777, 1972. 

Wall, C. R.; Crews, P. L.; and Johnson, D. B. “Density 
Bounds for the Sum of Divisors Function.” Math. Comput. 
31, 616, 1977. 

Acceleration 
Let a particle travel a distance s(t) as a function of time 
t (here, s can be thought of as the ARC LENGTH of 
the curve traced out by the particle). The SPEED (the 
SCALAR NORM of the VECTORVELOCITY) isthengiven 

bY 

&//. (1) 

The acceleration is defined as the time DERIVATIVE of 
the VELOCITY, SO the SCALAR acceleration is given by 

a= 

- - 

- - 

- - 

- - 

dv 
2T 
d2 S 

dt2 

dx d2x dY d2Y dz d2z -- -- 
ds dt2 + ds dt2 + 

-- 
ds dt2 

dr d2r 
ds’dtz’ 

The VECTOR acceleration is given by 

(2) 

(3) 

(4) 

(5) 

(6) 

where ?k is the UNIT TANGENT VECTOR, K the CURVA- 
TURE, s the ARC LENGTH, and 3 the UNIT NORMAL 
VECTOR. 

Let a particle move along a straight LINE so that the 
positions at times tl, t2, and t3 are ~1, ~2, and ~3, re- 
spectively. Then the particle is uniformly accelerated 
with acceleration a IFF 

a-2 
[ 

(s2 - S3)h + (s3 - s1)tz +(a - s2)t3 

(t 1 - t2)(t2 - t3)(t3 - t1) 1 (8) 
is a constant (Klamkin 1995, 1996). 
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Consider the measurement of acceleration in a rotating 
reference frame. Apply the ROTATION OP ERATOR 

Accumulation Point 
An accumulation point is a POINT which is the limit 
of a SEQUENCE, also called a LIMIT POINT. For some 
MAPS, periodic orbits give way to CHAOTIC ones beyond 
a point known as the accumulation point. 

see UZSO CHAOS, LOGISTIC MAP, MODE LOCKING, PE- 
RIOD DOUBLING 

4-0X 
body 

(9) 

twice to the RADIUS VECTOR r and suppress the body 
notation, 

Achilles and the Tortoise Paradox 

see 2~~0% PARADOXES &pace =R2r= ($+wx)2r 

=(-$+wx) ($+wxr) Ackermann Function 
The Ackermann function is the simplest example of a 
well-defined TOTAL FUNCTION which is COMPUTABLE 
but not PRIMITIVE RECURSIVE, providing a counterex- 
ample to the belief in the early 1900s that every COM- 
PUTABLE FUNCTION was also PRIMITIVE RECURSIVE 
(D&e1 1991). It grows faster than an exponential func- 
tion, or even a multiple exponential function. The Ack- 
ermann function A(z,y) is defined by 

d2r d dr - - &2 +z(wXr)+wx gwx(wxr) 

d2r dr dw dr - - ~+wx~+rX 
dt+WXdt 

+wx(wxr). (10) 

Grouping terms and using the definitions of the VELOC- 
ITY v E dr/dt and ANGULAR VELOCITY a E dwldt 
give the expression Y+l ifx=O 

A(X,Y) = A(z - 1,l) if y =o 
A(z - l,A(x,y - 1)) otherwise 

(1) 

(2) 
(3) 
(4) 
(5) 

(6) 

d2 
&pace = &I-ZWXv+wx(wxr)+rxa. (11) 

Special values for INTEGER x include 
Now, we can identify the expression as consisting of 
three terms 4% Y) = Y + 1 

A(l,Y) = Y +2 

A(2, y) = 2y + 3 

A(3,y) = 2y+3 - 3 

d2r 
abody = &2 1 

aCori0Iis z 2w x v, 

(12) 

(13) 

hzntrifugal =wx(wxr), (14) .2 
A(4, y) = G-3. 

Y+3 a “body” acceleration, centrifugal acceleration, and 
Coriolis acceleration. Using these definitions finally 
gives Expressions of the latter form are sometimes called 

POWER TOWERS. A(O,y) follows trivially from the def- 
inition. A(1, y) can be derived as follows, &pace = abody + acoriolis + acentrifugal + r X a, (15) 

A(17 Y> = A(O,A(l,y - 1)) = A&y - 1) + 1 

= A(O,A(l,Y - 2)) + 1 = A&Y - 2, + 2 

= .*. = A(1, 0) + y = $0, 1) + Y = Y + 2. 

(7) 

where the fourth term will vanish in a uniformly ro- 
tating frame of reference (Le., .a = 0). The centrifugal 
acceleration is familiar to riders of merry- b4 J-rounds, and 
the Coriolis acceleration is responsible for the motions 
of hurricanes on Earth and ilecessitates large trajectory 
corrections for intercontin~~** KJ Mlistic missiles. 

A( 2, Y) has a similar derivation, 
see also ANGULAR ACCELEREION, ARC LENGTH, 
JERK,~ELOCITY 42, y) = A(1,42, y - 1)) = 42, y - 1) + 2 

= A(1, A(2, y - 2)) + 2 = A(2, y - 2) + 4 = . . . 

= A(2,O) + 2y = A(l, 1) + 2y = 2y + 3. (8) 

References 
Klamkin, M. S. "Problem 1481." 1Math. Msg. 68, 307, 1995. 
Klamkin, M. S. “A Characteristic of Constant Acceleration.” 

Solution to Problem 1481. IMath. Msg. 69, 308, 1996. 

Buck (1963) defines a related function using the same 
fundamental RECURRENCE RELATION (with arguments 
flipped from Buck’s convention) 

Accidental Cancellation 

see ANOMALOUS CANCELLAT 

F(x, Y> = F(x - 1, F(x, Y - l)), (9) 



14 Ackermann Number Acute lliangle 

but with the slightly different boundary values 

F(O, Y) = Y + 1 

F(l,O) = 2 

F(2,0) = 0 

F(x,O) = 1 for x=3,4,.... 

Buck’s recurrence gives 

F(L Y> =2-t-y 

q&Y) = 2Y 

F(3,y) = 2’ 
.2 

F(4,y) =Ga 

(4 
(15) 
(16) 

(17) 

Taking F(4,n) gives the sequence 1, 2, 4, 16, 65536, 
2 65536 ) ..*. Defining e(x) = F(x, x) for IL: = 0, 1, . . . 

.2 
then gives 1, 3, 4, 8, 65536, 2” 

v’ ’ ’ ’ 
(Sloane’s A001695), 

: 
where m. = 22 

v’ 
a truly huge number! 

65536 

see also ACKERM 
TION, GOODSTEIN SEQUENCE, POWER TOWER, 

TIVE RECURSIVE FUNCTION, TAK FUNCTION, 

ANN NUMBER, COMPUTABLE FUNC- 
P RIMI- 
TOTAL 

FUNCTION 

References 
Buck, R. C. “Mathematical Induction and Recursive Defini- 
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Rose, H, E. Subrecursion, FzLnctions, and Hierarchies. New 
York: Clarendon Press, 1988. 
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Version of the Encyclopedia of Integer Sequences.” 

Smith, H. J. “Ackermann’s Function.” http: //www.netcom. 
corn/-hjsmith/Ackerman.html. 

Spencer, 3. “Large Numbers and Unprovable Theorems.” 
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Ackermann Number 
A number of the form n where ARROW NOTA- 

TION has been used. The fi?st few Ackermann nymbers 

see ~SO ACKERMANN FUNCTION, ARROW NOTATION, 
POWER TOWER 

References 
Ackermann, W, ‘Zum hilbertschen Aufbau der reellen 

Zahlen.” Math. Ann. 99, 118-133, 1928. 
Conway, J. H. and Guy, R. K. The Book of Numbers. New 

York: Springer-Verlag, pp. 60-61, 1996. 
Crandall, R. E. “The Challenge of Large Numbers.” Sci. 

Amer. 276, 74-79, Feb. 1997. 
Vardi, I. Computational Recreations in Muthemutica. Red- 

wood City, CA: Addison-Wesley, pp, 11, 227, and 232, 
1991. 

Acnode 
Another name for an ISOLATED POINT. 

see also CRUNODE, SPINODE, TACNODE 

Acoptic Polyhedron 
A term invented by I3. Griinbaum in an attempt to pro- 
mote concrete and precise POLYHEDRON terminology. 
The word “coptic” derives from the Greek for “to cut,” 
and acoptic polyhedra are defined as POLYHEDRA for 
which the FACES do not intersect (cut) themselves, mak- 
ingthem Z-MANIFOLDS. 

see also HONEYCOMB, NOLID, POLYHEDRON, SPONGE 

Action - 
Let M(X) denote the GROUP of all invertible MAPS 

X +X and let G be any GROUP. A HOMOMORPHISM 
B : G + M(X) is called an action of G on X. Therefore, 
0 satisfies 

1. For each g E G, 0(g) is a MAP X + X : x t+ $(g)x, 

2. O(gh)x = wP(h)4~ 

3. B(e)x = x, where e is the group identity in G, 

4. 8(g-l)x = qg>-‘x. 

see also CASCADE, Flow, SEMXFLOW 

Acute Angle 
An ANGLE of less than r/2 RADIANS (90”) is called an 
acute angle. 

see also ANGLE, 
STRAXGH T ANGLE 

OBTUSE ANGLE, RIGHT ANGLE, 

Acute Triangle 

A TRIANGLE in which allthree ANGLES are ACUTE AN- 
GLES. A TRIANGLE which is neither acute nor a RIGHT 
TRIANGLE (i.e., it has an OBTUSE ANGLE) is called an 
OBTUSE TRIANGLE. A SQUARE canbe dissectedinto as 
few as 8 acute triangles. 

see also OBTUSE TRIANGLE, RIGHT TRIANGLE 
are1~1=1,2~~2=4,and3~~~3= & . 

7,625,597,484,987 
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Adams-Bashforth-Moulton Method 

see ADAMS’ METHOD 

see also GILL’S METHOD, MILNE’S METHOD, PREDIC- 
TOR-CORRECTOR METHODS, RUNGE-KUTTA METHOD 

Adams’ Method 
References 
Abramowita, M. and Stegun, C. A. (Eds.). Handbook 

Adams’ method is a numerical METHOD for solving 
linear FIRST-ORDER ORDINARY DIFFERENTIAL EQUA- 
TIONS of the form 

of Mathematical Functions with Fo~&las,~ Graphs, and 
Mathematical Tables, 9th printing. New York: Dover, 
p. 896, 1972. 

Beyer, W. H. CRC Standard Mathematical Tables, 28th ed. 

Let 

2 = f(X,Y>. 

h= X:n+l-Xn 

(1) 

(2) 

be the step interval, and consider the MACLA~RIN SE- 
RIES of y about xn, 

Boca Raton, FL: CRC Press, p. 455, 1987. 
K&r&n, T. von and Bid, M. A. Mathematical Methods in 

Engineering: An Introduction to the Mathematical Treat- 
ment of Engineering Problems. New York: McGraw-Hill, 
pp. 14-20,194O. 

Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetter- 
ling, W. T. Numerical Recipes in FORTRAN: The Art of 
Scientific Computing, 2nd ed. Cambridge, England: Cam- 
bridge University Press, p. 741, 1992. 

(X- Xrb) 
Addend 

n A quantity to be ADDED to another, also called a SUM- 

(x - xrJ2 + “0 (3) 
MAND. For example, in the expression a+b+c, a, b, and 
c are all addends. The first of several addends, or “the 
one to which the others are added” (a in the previous 
example), is sometimes called the AUGEND. 

see also ADDITION, AUGEND, PLUS, RADICAND 

Here, the DERIVATIVES of y are given by the BACKWARD Addition 
DIFFERENCES 

= qn - Qn-1 

1 1 +carries 
1 5 84addend 1 

+ 2 4 geaddend2 

4u7+sum 

The combining of two or more quantities using the PLUS 
operator. The individual numbers being combined are 
called ADDENDS, and the total is called the SUM. The 
first of several ADDENDS, or “the one to which the oth- 
ers are added,” is sometimes called the AUGEND. The 
opposite of addition is SUBTRACTION. 

etc. Note that by (l), qn. is just the value of f(xn,yn). 

For first-order interpolation, the method proceeds by 
iterating the expression 

Yn+l = $/n + qnh (8) 

where qn G f(xn,yn)* Th e method can then be ex- 
tended to arbitrarv order using the finite difference in- 
tegration formula kom Beyer fi987) 

While the usual form of adding two n-digit INTEGERS 

(which consists of summing over the columns right to 
left and “CARRYING” a 1 to the next column if the sum 
exceeds 9) requires n. operations (plus carries), two n- 
digit INTEGERS can be added in about 2 lgn steps by 
n processors using carry-lookahead addition (McGeoch 
1993). Here, lg x is the LG function, the LOGARITHM to 

the base 2. 

see also ADDEND, AMENABLE NUMBER, AUGEND, 
CARRY, DIFFERENCE, DIVISION, MULTIPLICATION, 

s 

1 

fPdp = (I+ $V + &,V2 + iv3 
PLUS, SUBTRACTION, SUM 

0 References 

+E v4 + g&v5 + ggy  + l  l  n )fp (9) McGeoch, C. C. “Parallel Addition.” Amer. Math, Monthly 
100, 867-871, 1993. 

to obtain Addition Chain 

Yn+l - Yn =h(qn + $Vqn-1 + &V2qn-2 + gQ3qn-3 
An addition chain for a number n is a SEQUENCE 1 = 

a0 < a1 < l  l  l  < a, = n, such that each member after a0 
+zv4q,-4 + gv5qn-5 -t'..). (10) is the SUM of the two earlier (not necessarily distinct) 

ones. The number T is called the length of the addition 
Note that von K&m&n and Biot (1940) confusingly use chain. For example, 
the symbol normally used for FORWARD DIFFERENCES 
A to denote BACKWARD DIFFERENCES V. 1,1+1 =2,2+2=4,4+2=6,6+2=8,8+6=14 
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is an addition chain for 14 of length T = 5 (Guy 1994). 

see also BRAUER CHAIN, HANSEN CHAIN, SCHOLZ CON- 
JECTURE 

References 
Guy, R. K. “Addition Chains. Brauer Chains. Hansen 

Chains.” SC6 in Unsolved Problems in Number Theory, 
2nd ed. New York: Springer-Verlag, pp. 111-113, 1994. 

(Sloane’s A031286). The smallest numbers of ad- 
ditive persistence n for n = 0, 1, .** are 0, 10, 19, 
199,19999999999999999999999,. . . (Sloane’s AOOSOSO). 
There is no number < 105’ with additive persistence 
greater than 11. 

It is conjectured that the maximum number lacking the 
DIGIT 1 with persistence 11 is 

Addition-Multiplication Magic Square 

A square which is simultaneously a MAGIC SQUARE and 
MULTIPLICATION MAGIC SQUARE. The three squares 
shown above (the top square has order eight and the 
bottom two have order nine) have addition MAGIC CON- 
STANTS (840, 848, 1200) and multiplicative magic con- 
stants (2,058,068,231,856,000; 5,804,807,833,440,000; 
1,619,541,385,529,760,000), respectively (Hunter and 
Madachy 1975, Madachy 1979). 

see also MAGIC SQUARE 

References 
Hunter, J. A. H. and Madachy, J. S. “Mystic Arrays.” Ch. 3 

in Mathematical Diversions. New York: Dover, pp. 30-31, 
1975. 

Madachy, J. S. Mudachy’s Mathematical Recreations. New 
York: Dover, pp. 89-91, 1979. 

Additive Persistence 
Consider the process of taking a number, adding its DIG- 
ITS, then adding the DIGITS of number derived from it, 
etc., until the remaining number has only one DIGIT. 
The number of additions required to obtain a single 
DIGIT from a number n is called the additive persis- 
tence of n, and the DIGIT obtained is called the DIGITAL 
ROOT of 7~. 

For example, the sequence obtained from the starting 
number 9876 is (9876, 30, 3), so 9876 has an additive 
persistence of 2 and a DIGITAL ROUT of 3. The ad- 
ditive persistences of the first few positive integers are 

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 17 2, 1, 

77777733332222222222222222222 

There is a stronger conjecture that there is a maximum 
number lacking the DIGIT 1 for each persistence 2 2. 

The maximum additive persistence in base 2 is 1. It is 
conjectured that all powers of 2 > 215 contain a 0 in base 
3, which would imply that the maximum persistence in 
base 3 is 3 (Guy, 1994). 

see also DIGITADITION, DIGITAL ROOT, MULTIPLICA- 

TIVE PERSISTENCE, NARCISSISTIC NUMBER, RECUR- 
RING DIGITAL INVARIANT 

References 
Guy, R. K. “The Persistence of a Number.” SF25 in Unsolved 

Problems in Number Theory, 2nd ed. New York: Springer- 
Verlag, pp. 262-263, 1994. 

Hinden, H. J. “The Additive Persistence of a Number.” J. 
Recr. Math. 7, 134-135, 1974. 

Sloane, N. 5. A. Sequences A031286 and A006050/M4683 in 
“An On-Line Version of the Encyclopedia of Integer Se- 
quences +” 

Sloane, N. J. A. “The Persistence of a Number.” J. Recr. 
Math. 6, 97-98, 1973. 

Addle 
An element of an ADELE GROUP, sometimes called a 
REPARTITION in older literature. Addles arise in both 
NUMBER FIELDS and FUNCTION FIELDS. The addles of 
a NUMBER FIELD are the additive SUBGROUPS of all ele- 
ments in fl k,, where v is the PLACE, whose ABSOLUTE 

VALUE is < 1 at all but finitely many VS. 

Let F be a FUNCTION FIELD of algebraic functions of 
one variable. Then a MAP T which assigns to every 
PLACE P of F an element r(P) of F such that there are 
only a finite number of PLACES P for which U&T(P)) < 
0. 

see also IDELE 

References 
Chevalley, C. C. Introduction to the Theory of Algebraic 

Functions of One Variable. Providence, RI: Amer. Math. 
sot., p* 25, 1951. 

Knapp, A. W. “Group Representations and Harmonic Anal- 
ysis, Part II.” Not. Amer. Math. Sot. 43, 537-549, 1996. 

Addle Group 
The restricted topological DIRECT PRODUCT of the 
GROUP Gk, with distinct invariant open subgroups Go,. 

References 
Weil, A. Ade’les and Algebraic Groups. Princeton, NJ: 

Princeton University Press, 1961. 
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Adem Relations 
Relations in the definition of a STEENR~D ALGEBRA 
which state that, for i < Zj, 

sqi 0 Q(x) = p, (j ;_k2;l)sqi+‘-’ 0 Q”(x), 
k=O 

where f o g denotes function COMPOSITION and LiJ is 
the FLOOR FUNCTION. 
see also STEENROD ALGEBRA 

Adequate Knot 
A class of KNOTS containing the class of ALTERNATING 
KNOTS. Let c(K) be the CROSSING NUMBER. Then for 
KNOT SUM KI#& which is an adequate knot, 

@I#&) = c(K) + c(&). 

This relationship is postulated to hold true for all 
KNOTS. 
see also ALTERNATING KNOT, CROSSING NUMBER 
(LINK) 

Adiabatic Invariant 
A property of motion which is conserved to exponential 
accuracy in the small parameter representing the typical 
rate of change of the gross properties of the body. 

see also ALGEBRAIC 
TERISTIC NUMBER 

INVARIANT, LYAPUNOV CHARAC- 

Adjacency Matrix 
The adjacency matrix of a simple GRAPH is a MATRIX 
with rows and columns labelled by VERTICES, with a 1 
or 0 in position (vi+)) according to whether zli and w~j 
are ADJACENT or not. 
see also INCIDENCE MATRIX 

References 
Chartrand, G. Introductory Gmph Theory. New York: 

Dover, p. 218, 1985. 

Adjacency Relation 
The SET E of EDGES of a GRAPH (V, E), being a set 
of unordered pairs of elements of V, constitutes a RE- 
LATION on V. Formally, San adjacency relation is any 
RELATION which is IRREFLEXIVE and SYMMETRIC. 

see also IRREFLEXIVE, RELATION, SYMMETRIC 

Adjacent F’raction 
Two FRACTIONS are said to be adjacent if their differ- 
ence has a unit NUMERATOR. For example, I/3 and 1/4 
are adjacent since l/3 - l/4 = l/12, but l/2 and l/5 
are not since l/2 - l/5 = 3/10. Adjacent fractions can 
be adjacent in a FAREY SEQUENCE. 

see also FAREY SEQUENCE, FORD CIRCLE, FRACTION, 
NUMERATOR 

References 
Pickover, C. A. Keys to Infinity. New York: W. H. F’reeman, 

p. 119, 1995. 

Adjacent Value 
The value nearest to but still inside an inner FENCE. 

References 
Tukey, J. W. Explanatory Data Analysis. Reading, MA: 

Addison-Wesley, p. 667, 1977. 

Adjacent Vertices 
In a GRAPH G, two VERTICES are adjacent if they are 
joined by an EDGE. 

Adjoint Curve 
A curve which has at least multiplicity pi - 1 at each 
point where a given curve (having only ordinary singu- 
lar points and cusps) has a multiplicity Q is called the 
adjoint to the given curve. When the adjoint curve is of 
order 72 - 3, it is called a special adjoint curve. 

References 
Coolidge, J. L. A Treatise 012 Algebraic Plane Curves. New 

York: Dover, p. 30, 1959. 

Adjoint Matrix 
The adjoint matrix, sometimes also called the ADJU- 
GATE MATRIX, is defined by 

A+ E (AT)*, (1) 

where the ADJOINT OPERATOR is denoted t and T de- 
notes the TRANSPOSE. If a MATRIX is SELF-ADJOINT, 
it is said to be HERMITIAN. The adjoint matrix of a 
MATRIX product is given by 

( b) a + ;j G [(OLb>'],'j m  
(2) 

Using the property of transpose products that 

[(ab)T]Tj = (bTaT)rj = (bzaEj)* = (b’)Ik(aT>;j 

= bt at = (btat)ij 1 ik kj (3) 

it follows that 
(AB)+ = B+A+. (4 

Adjoint Operator 
Given a SECOND-ORDER ORDINARY DIFFERENTIAL 
EQUATION 

du2 du 
C,(x) -pop +pl& +p2% (1) 

where pi E pi(x) and u E U(X), the adjoint operator Lt 
is defined by 

L+ uz 

d2u du 
= PO@ -+ (@of -PI)& -+- (PO!! - P1’ fP217.4. 

(2) 
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Write the two LINEARLY INDEPENDENT solutions as 

y&) and YZ(X). Then the adjoint operator can also 
be written 

2+u z s (Y&I - y&) dx = ;(YltY2 - YlY2’ 
see also SELF-ADJOINT OPERATOR, STURM-LIOUVI 
THEORY 

Adjugate Matrix 

see ADJOINT MATRIX 

Adjunction 

1 l  

(3) 

LLE 

If a is an element of a FIELD F over the PRIME FIELD 
P, then the set of all RATIONAL FUNCTIONS of a with 
COEFFICIENTS in P is a FIELD derived from P by ad- 
junction of a. 

Adleman-Pomerance-Rumely Primality Test 
A modified MILLER’S PRIMALITY TEST which gives a 
guarantee of PRIMALITY or COMPOSITENESS. The AL- 
GORITHM'S running time for a number N has been 
proved to be as O((InN)c’nln’nN) for some c > 0. It was 
simplified by Cohen and Lenstra (1984), implemented by 
Cohen and Lenstra (1987), and subsequently optimized 
by Bosma and van der Hulst (1990). 

References 
Adleman, L. M.; Pomerance, C.; and Runlely, R. S. “On 

Distinguishing Prime Numbers from Corn] %osite Number.” 
Ann. Math. 117, 173-206,1983. 

Bosma, W. and van der Hulst, M.-P. “Faster Primality Test,- 
ing.” In Advances in Cryptology, Proc. Eurocrypt ‘89, 
Houthalen, April 10-13, 1989 (Ed. J.-J. Quisquater). New 
York: Springer-Verlag, 652-656, 1990. 

Brillhart, J.; Lehmer, D. H.; Selfridge, J.; Wagstaff, S. S. Jr.; 
and Tuckerman, B. Factorizations of b” zk 1, b = 2, 
3,5,6,7,10,11,12 Up to High Powers, rev. ed. Providence, 
RI: Amer. Math. Sot., pp* lxxxiv-lxxxv, 1988. 

Cohen, K and Lenstra, A. K. “Primality Testing and Jacobi 
Sums? Math. Comput. 42, 297-330, 1984. 

Cohen, H. and Len&a, A. K. “Implementation of a New 
Primality Test .” Math. Comput. 48, 103-121, 1987. 

Mihailescu, P. “A Primality Test Using Cyclotomic Exten- 
sions.” In Applied Algebra, Algebraic Algorithms and 
Error-Correcting Codes (Proc. AAECC-6, Rome, July 
1988). New York: Springer-Verlag, pp. 310-323, 1989. 

Adleman-Rumely Primality Test 

see ADLEMAN-POMERANCE-RUMELY PRIMALITY TEST 

Admissible 
A string or word is said to be admissible if that word 
appears in a given SEQUENCE. For example, in the SE- 
QUENCE aabaabaabaabaab . . ., a, aa, baab are all admis- 
sible, but bb is inadmissible. 

see also BLOCK GROWTH 

Affine Hull 

Affine Complex Plane 
The set A2 of all ordered pairs of COMPLEX NUMBERS. 

see also AFFINE CONNECTION, AFFINE EQUATION, 
AFFINE GEOMETRY, AFFINE GROUP, AFFINE HULL, 
AFFINE PLANE, AFFINE SPACE, AFFINE TRANSFORMA- 
TION, AFFINITY, COMPLEX PLANE,COMPLEXPROJEC- 
TIVE PLANE 

Affine Connection 
see CONNECTION COEFFICIENT 

Affine Equation 
A nonhomogeneous LINEAR EQUATION or system of 
nonhomogeneous LINEAR EQUATIONS is said to be 
affine. 

see UZSO AFFINE COMPLEX PLANE, AFFINE CONNEC- 
TION, AFFINE GEOMETRY, AFFINE GROUP, AFFINE 
HULL,AFFINE PLANE,AFFINE SPACE,AFFINE TRANS- 
FORMATION, AFFINITY 

Affine Geometry 
A GEOMETRY in which properties are preserved by PAR- 
ALLEL PROJECTION from one PLANE to another. In an 
affine geometry, the third and fourth of EUCLID’S POS- 
TULATES become meaningless. This type of GEOMETRY 
was first studied by Euler. 

see also ABSOLUTE GEOMETRY, AFFINE COMPLEX 
PLANE, AFFINE CONNECTION, AFFINE EQUATION, 
AFFINE GROUP,AFFINE HULL, AFFINE PLANE,AFFINE 
SPACE, AFFINE TRANSFORMATION, AFFINITY, OR- 
DERED GEOMETRY 

References 
Birkhoff, G. and Mac Lane, S. %Fme Geometry.” 59.13 in A 

Survey of Modern Algebra, 3rd ed. New York: Macmillan, 
pp. 268-275, 1965. 

Affine Group 
The set of all nonsingular AFFINE TRANSFORMATIONS 
of a TRANSLATION in SPACE constitutes a GROUP known 
as the affine group. The affine group contains the full 
linear group and the group of TRANSLATIONS as SUB- 
GROUPS. 

see also AFFINE COMPLEX PLANE, AFFINE CONNEC- 
TION, AFFINE EQUATION, AFFINE GEOMETRY, AFFINE 
HULL,AFF~NE PLANE, AFFINE SPACE,AFFINE TRANS- 
FORMATION, AFFINITY 

References 
Birkhoff, G. and Mac Lane, S. A Survey of Modern Algebra, 

3rd ed. New York: Macmillan, p. 237, 1965. 

Affine Hull 
The IDEAL generated by a SET in a VECTOR SPACE. 

see also AFFINE COMPLEX PLANE, AFFINE CONNEC- 
TION, AFFINE EQUATION, AFFINE GEOMETRY, AFFINE 
GROUP, AFFINE PLANE, AFFINE SPACE, AFFINE 
TRANSFORMATION, AFFINITY, CONVEX HULL,HULL 
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Affine Plane Affine Transformat ion 
A 2-D AFFINE GEOMETRY constructed over 8 FINITE 

FIELD. For a FIELD F of size n, the affine plane consists 
of the set of points which are ordered pairs of elements in 
F and a set of lines which are themselves a set of points. 
Adding a POINT AT INFINITY and LINE AT INFINITY 
allows a PROJECTIVE PLANE to be constructed from an 
affine plane. An affine plane of order n is a BLOCK 
DESIGN of the form (n2, 12, 1). An affine plane of order 
n exists IFF a PROJECTIVE PLANE of order n exists. ’ 

Any TRANSFORMATION preserving COLLINEARITY (i.e., 
all points lying on a LINE initially still lie on a LINE 
after TRANSFORMATION). An affine transformation is 

also called an AFFINITY. An affine transformation of 
R” is a MAP F : R” --+ Ik” of the form 

F(p)=Ap+q 

for all p f IV, where A is a linear transformation of 
Rn. If det(A) = 1, the transformation is ORTENTATION- 

PRESERVING; if det(A) = -1, it is ORIENTATION- 

REVERSING. 

see also AFFINE COMPLEX PLANE, AFFINE CONNEC- 
TION, AFFINE EQUATION, AFFINE GEOMETRY, AFFINE 

GROUP, AFFINE HULL, AFFINE SPACE, AFFINE TRANS- 
FORMATION, AFFINITY, PROJECTIVE PLANE 

References 
Lindner, C. C. and Rodger, C. A. Design Theory. Boca 

Raton, FL: CRC Press, 199% 

(1) 

DILATION (CONTRACTION, HOMOTHECY), EXPANSION, 

REFLECTION, ROTATION, and TRANSLATION are all 
affine transformations, as are their combinations. A par- 
ticular example combining ROTATION and EXPANSION is 
the rotation-enlargement transformation 

Affine Scheme 
A technical mathematical object defined as the SPEC- 

TRUM o(A) of a set of PRIME IDEALS of a commutative 
RING A regarded as a local ringed space with a structure 
sheaf. 

see also SCHEME 

X1 [I [ cos a sina! 

Yl 
=S 

x - x0 
- sin Q cos a I[ 1 Y - Yo 

=S 

[ 

cos a(z - x0) + sin a(y - yo) - sinClr(x - 20) + cosa(y - yo) 1 ’ (2) 
References 

Separating the equations, 

Iyanaga, S. and Kawada, Y. (Eds.). “Schemes.” 518E in En- 
cyclopedic Dictionary of Mathematics. Cambridge, MA: 

2’ f= (scosa)x + (ssina)y - s(x0 cos a + y0 sin a) (3) 

MIT Press, p. 69, 1980. Yt = ( -ssina)x + (scosa)y + ~(50 sina - yo cow). 

Affine Space 
Let V be a VECTOR SPACE over a FIELD K, and let A 
be a nonempty SET. Now define addition p + a f A for 
any VECTOR a E V and element p E A subject to the 
conditions 

(4) 

This can be also written as 

xJ = ax+by+c 

yt z bx + uy + d, 

(5) 

(6) 
1, p + 0 = p, 

2. (p + a) + b = p + (a + b), where 

3. For any q E A, there EXISTS a unique VECTOR a E V 
such that Q = p + a. 

Here, a, b E V. Note that (1) is implied by (2) and (3). 
Then A is an affine space and K is called the COEFFI- 
CIENT FIELD. 

a= scosa 

b= -s sin a. 

The scale factor s is then defined by 

(7) 

($1 

In an affine space, it is possible to fix a point and co- s E 2/a2 + b2 1 (9) 

ordinate axis such that every point in the SPACE can 
be represented as an n-tuple of its coordinates. Every 
ordered pair of points A and B in an affine space is then 
associated with a VECTOR AB. 

and the rotation ANGLE by 

a 
(10) 

see also AFFINE COMPLEX PLANE, AFFINE CONNEC- 
TION, AFFINE EQUATION, AFFINE GEOMETRY, AFFINE 
GROUP, AFFINE HULL, AFFINE PLANE, AFFINE SPACE, 
AFFINE TRANSFORMATION, AFFINITY 

see also AFFINE COMPLEX PLANE, AFFINE CONNEC- 
TION, AFFINE EQUATION, AFFINE GEOMETRY, AFFINE 

GROUP, AFFINE HULL, AFFINE PLANE, AFFINE SPACE, 
AFFINE TRANSFORMATION, AFFINITY, EQUIAFFINITY, 
EUCLIDEAN MOTION 

References 
Gray, A. Modern Differential Geometry of Curves and Sur- 

faces. Boca Raton, FL: CRC Press, p. 105, 1993. 
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Affinity Specializing to the “conventional” Airy differential equa- 
tion occurs by taking the MINUS SIGN and setting 
k2 = 1. Then plug (4) into 

see AFFINE TRANSFORMATION 

Affix 
In the archaic terminology of Whittaker and Watson 
(1990), the COMPLEX NUMBER z representing ~1: + iy. 

y” - xy = 0 (5) 

to obtain 

~(~+2)(n+l)a,+21”-x~a,ln=0 (6) 

nd n=O 

References 
Whittaker, E. T. and Watson, G. N. A Course in Modern 

Analysis, 4th ed. Cambridge, England: Cambridge Uni- 
versity Press, 1990. 

Aggregate 
An archaic word for infinite SETS such as those consid- 
ered by Georg Cantor. 

see also CLASS (SET), SET 

?(?2+2)(n+ l)Un+2Xn - eUnz"+l=O (7) 

n=O 

00 

2a2 -+ F(n + 2)(n + l)an+2Xn - x an-d = 0 (8) 

AGM n=l n=l 

see ARITHMETIC-GEOMETRIC MEAN 
2a2 +)[(n+z)(n+ 1)%+2 - Un-l]Xn = 0. (9) 

/  4 

n=l Agnesi’s Witch 

see WITCH OF AGNESI In order for this equality to hold for all 3, each term 
must separately be 0. Therefore, 

A&sienne 

see WITCH OF AGNESI a2 =0 

(n + 2)(n + l)an+2 = G-l- 

(10) 

(11) 

Agonic Lines 

see SKEW LINES 
Starting with the n = 3 term and using the above RE- 
CURRENCE RELATION, we obtain 

Ahlfors-Bers Theorem 
The RIEMANN’S MODULI SPACE gives the solution to 
RXEMANN’S MODULI PROBLEM, which requires an AN- 
ALYTIC parameterization of the compact R~EMANN SUR- 
FACES in a fixed HOMEOMORPHISM. 

5 .4as = 20~5 = a2 = 0. (12) 

Continuing, it follows by INDUCTION that 

u2 = a5 = (28 = a l l  = . l  . U3n-1 = 0 
(13) 

Airy Differential Equation 
Some authors define a general Airy differential equation 
as 

y” 31 k2zy = 0. (1) 

for n = 1, 2, l  . . Now examine terms of the form a3n. 

a0 
u3 = - 

3.2 
a3 a0 @3=-= 

6*5 (6~5)(3*2) 
a6 a0 -- 

as = 94 - (9a8)(64)(3m2)’ 

This equation can be solved by series solution using the 
expansions 

Again by INDUCTION, 

a0 

a3n = [(3n)(3n - 1)][(37113)(3n - 4)] l  . v [6 l  5][3.2] 
yt = 

1 
n=O 

00 

- - 
x 
n-0 

00 

n-l 
72&X 

(n-t- I)& 

IfI n-l - - ?lanX 

n=l (17) 
for n = 1, 2, . l  . Finally, look at terms of the form 

+d co a3n+lt 

a4 = 

a7 = 

a10 = 

00 al 
4*3 * (18) 

a4 al - - 

7 l  6 - (7.6)(4 l  3) (19) 

a7 a1 

%% = (10 . 9)(7 l  6)(4 l  3) - (20) 

y” = x(n+ l)?lUn+lXn-' 

n=O 

= F(7-i + 2>(n + 1)&a+ 

n=O 

- - x 
n=l 

(n+ l)nUn+~Xn-l 

(4) 
n 

2x l  
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By INDUCTION, Airy Functions 

a3n+l = 
al 

[(3n + 1)(3n)][(3n - 2)(3n - 3)] - 4 - [7. 6][4 - 31 
(21) 

for n = 1, 2, . l  . . The general solution is therefore 

X3 
n 

Y=ao 
[ 
‘+I? (3n)(3n- 1)(3n-3)(3n-4)d~~3 . 2 

n=l I 

[ O" 

E 

x3n+l 

+a1 x+ 

n=l 1 (3n+1)(3n)(3n-22)(3n-3)mmm4a3 ’ 

For a general k2 with a MINUS SIGN, equation (1) is 

Ytt - k2xy = 0, (23) 

and the solution is 

Y( > x- i& [AI-1,3 ($kx3j2) - BIljJ (zkx3i”)] , 

(24) 
where I is a MODIFIED BESSEL FUNCTION OF THE 
FIRST KIND. This is usually expressed in terms of the 
AIRY FUNCTIONS Ai and Bi(x) 

y(x) = A’ Ai(k2’3x) +- B’ Bi(Fi2/“2). (25) 

If the PLUS SIGN is present instead, then 

ytt + k2xy = 0 (26) 

and the solutions are 

y(x) = +fi [AJ-1,3 ($kx3’2) + 13Jli3 (;kx”‘“)] , 

(27) 
where J(z) is a BESSEL FUNCTION OF THE FIRST KIND. 

see also AIRY-F• CK FUNCTIONS, AIRY FUNCTIONS, 
BESSEL FUNCTION OF THE FIRST KIND, MODIFIED 
BESSEL FUNCTION OF THE FIRST KIND 

Airy-Fock Functions 
The three Airy-Fock functions are 

v(z) = $fiAi(z) 

w1 (z) = 2ei"%(wa) 

wz(z) = 2e-i”l”v(w-1z), 

(1) 

(2) 

(3) 

where Ai is an AIRY FUNCTION. These functions 
satisfy 

Y(Z) = 
w(z) - w2(4 

2i (4) 

Twl b41* = w2(z7, (5) 

where Z* is the COMPLEX CONJUGATE ofz. 

see also AIRY FUNCTIONS 

References 
Hazewinkel, M. (Managing Ed.). Encyclopaedia of Math- 

ematics: An Updated and Annotated Translation of the 
Soviet ‘IMathematical Encyclopaedia. ” Dordrecht, Nether- 
lands: Reidel, p. 65, 1988. 

Watson’s (1966, pp. 188-190) definition of an Airy func- 
tion is the solution to the AIRY DIFFERENTIAL EQUA- 
TION 

at’ dz k2+x = 0 (1) 

which is FINITE at the ORIGIN, where a’ denotes the 
DERIVATIVE d@/dx, k2 = l/3, and either SIGN is per- 
mitted. Call these solutions (l/n)@(*k2, x), then 

cos(t3 +m xt) dt (2) 

*($x> = $6 [J--1,3 (g) + J1/3 ($)I 

(3) 

a(-+;x> = $fi [I-,/, ($) -h/3 ($)I 1 

(4 

where J(Z) is a BESSEL FUNCTION OF THE FIRST KIND 
and I(Z) is a MODIFIED BESSEL FUNCTION OF THE 
FIRST KIND. Using the identity 

K,(x) = ;‘-dx) - ‘dx), 
sin(rm) (5) 

where K(z) is a MODIFIED BESSEL FUNCTION OF THE 
SECOND KIND, the second case can be re-expressed 

a(-+; 

(7) 

(8) 

A more commonly used definition of Airy functions is 
given by Abramowitz and Stegun (1972, pp, 446-447) 
and illustrated above. This definition identifies the 
Ai and Bi(x) functions as the two LINEARLY INDE- 
PENDENT solutions to (1) with k2 = 1 and a MINUS 
SIGN, 

y” - yz = 0. (9) 
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The solutions are then written 

y(z) = A Ai + B Bi(z), (10) 

Airy Projection 
A MAP PROJECTION. The inverse equations for 4 are 
computed by iteration. Let the ANGLE of the projection 
plane be &. Define 

where 

In the above plot, Ai is 
dashed l  For zero argument 

Ai E I+(-1, z) 

= ;J;;[I-&$r3/2) - r&~3’2)] 

Bi(z) E & [I-&z~‘~) + I&Z3’2)] 

the solid curve and 

3-213 
Ai = -2, 

r(-1 3 

(11) 

. (12) 

Bi(z) is 

(13) 

where r(z) is the GAMMA FUNCTION. This means that 
Watson’s expression becomes 

(3 1 a -1/3.1r Ai(*(3a)-l/“2) = cos(at3 fxt) dt. (14) 

A generalization has been constructed by Hardy. 

The ASYMPTOTIC SERIES of Ai has a different form 
indifferent QUADRANTS ofthe COMPLEX PLANE, a fact 
known as the STOKES PHENOMENON. Functions related 
to the Airy futictions have been defined as 

Gi(z) E 1 
7T 0 

sin( $t3 + zt) dt (15) 

Hi(z) = 1 

1; 

s 
exp(+t3 + zt) 6%. (16) 

7r 0 

see ah AIRY-F• CK FUNCTIONS 
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otherwise. (1) 

For proper convergence, let xi = 7r/6 and compute the 
initial point by checking 

xi = lexp[-(@TjF+atanxi)tanxi]~ n (2) 

AS long as zi > 1, take xi+1 = x&2 and iterate again. 
The first value for which xi < 1 is then the starting 
point. Then compute 

xi = cos -‘{exp[-(dm+atanxi)tanzi]} (3) 

until the change in zi between evaluations is smaller 
than the acceptable tolerance. The (inverse) equations 
are then given by 

4 -1 - zn - 2xi (4 

X = tan-l -Z l  

( > 
Y 

(5) 

Aitken’s S2 Process 
An ALGORITHM which extrapolates the partial sums So 
of a SERIES c, a72 whose CONVERGENCE is approxi- 
mately geometric and accelerates its rate of CONVER- 
GENCE. The extrapolated partial sum is given by 

%t 
I- 

= &+1- 
(&a+1 - h-J2 

s-&+3. - 2s, + sn-1 l  

see dso EULER’S SERIES TRANSFORMATION 
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Aitken Interpolation 
An algorithm similar to NEVILLE’S ALGORITHM for con- 
structing the LAGRANGE INTERPOLATING POLYNOM- 
IAL. Let f(zlzo, ~1,. . . , zk) be the unique POLYNOMIAL 
of kth ORDER coinciding with f(z) at ~0, . . . , zk. Then 

1 
f(4~0,22) = - 

x2 - x0 

1 
f(41C0,51,x2)= - 

52 -Xl 

1 
f(Z120,Xl,X2,X3) = - 

x3 -22 

f 0 20 - x 
f 2 x2 -x 

f(zlzo,x1) Xl - x 

f(x[xo,x2) x2 - x 

f(+o, Xl? 4 x2 - x 
f (2~113o,X1,~3) x3 - x * 

see ~SCI LAGRANGE INTERPOLATING POLYNOMIAL 
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A.jima-Malfatti Points 

c 

A 

The lines connecting the vertices and corresponding 
circle-circle intersections in MALFATTI'S TANGENT TRI- 
ANGLE PROBLEM coincide in a point Y called the first 
Ajima-Malfatti point (Kimberling and MacDonald 1990, 
Kimberling 1994). Similarly, letting A”, B”, and C” be 
the excenters of ABC, then the lines A’A”, BIB”, and 
C’C” are coincident in another point called the second 
Ajima-Malfatti point. The points are sometimes simply 
called the MALFATTI POINTY (Kimberling 1994). 
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Albanese Variety 
An ABELIAN VARIETY which is canonically attached to 
an ALGEBRAIC VARIETY which is the solution to a cer- 
tain universal problem. The Albanese variety is dual to 
the PICARD VARIETY. 
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Albers Conic Projection 

see ALBERS EQUAL-AREA CONIC PROJECTION 

Albers Equal-Area Conic Projection 

Let, &-, be the LATITUDE for the origin of the CARTESIAN 
COORDINATES and X0 its LONGITUDE. Let $1 and $2 
be the standard parallels. Then 

x = pin0 (1) 

Y = PO - pose, (2) 

where 

P=J 
C - 2nsin# 

8 = n(A - TO) 

po= d 
C - 2nsin$o 

n 

C = cos2 41 + 272 sin 41 

72 = +n@l + sin&$ 

(3) 
(4) 

(5) 

(6) 
(7) 

The inverse FORMULAS are 

$=sin-l (C-2fnZ) 

8 
A=&+-, 

n 

where 

(8) 

(9) 

p = dx2 + (PO - Y)” 

(J = tan-l z 
( > PO-Y * 

(10) 

(11) 
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Alcuin’s Sequence 
The INTEGER SEQUENCE 1, 0, 1, 1, 2, 1, 3, 2, 4, 3, 5, 4, 
7, 5, 8, 7, 10, 8, 12, 10, 14, 12, 16, 14, 19, 16, 21, 19, . . m 
(Sloane’s A005044) given by the COEFFICIENTS of the 
MACLAURIN SERIES for l/(l-~~)(l--~~)(l--~~). The 
number of different TRIANGLES which have INTEGRAL 
sides and PERIMETER n is given by 

{ 

n2 

- [ I 
48 

- (n+3j2 [ 1 48 
for n even 

for n odd, 

(2) 

(3) 

where Pz(n) and P3(n) are PARTITION FUNCTIONS, with 
Pk (n) giving the number of ways of writing n as a sum of 
k terms, [z] is the NINT function, and 1x1 is the FLOOR 
FUNCTION (Jordan et al. 1979, Andrews 1979, Hons- 
berger 1985). Strangely enough, T(n) for n = 3, 4, . . . 
is precisely Alcuin’s sequence. 

see U~SO PARTITION FUNCTION P, TRIANGLE 
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Aleksandrov-Tech Cohomology 
A theory which satisfies all the EILENBERG-STEENROD 
AXIOMS with the possible exception of the LONG EX- 

ACT SEQUENCE OF A PAIR AXIOM, as well as a certain 
additional continuity CONDITION. 

References 
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Aleksandrov’s Uniqueness Theorem 
A convex body in EUCLIDEAN n-space that is centrally 
symmetric with center at the ORIGIN is determined 
among all such bodies by its brightness function (the 
VOLUME of each projection). 

see also TOMOGRAPHY 
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Aleph 
The SET THEORY symbol (N) for the CARDINALITY of 
an INFINITE SET. 

see UZSO ALEPH-0 (No), ALEPH-1 (N1), COUNTABLE 
SET, COUNTABLY INFINITE SET, FINITE, INFINITE, 
TRANSFINITE NUMBER, UNCOUNTABLY INFINITE SET 

Aleph-0 (Ho) 
The SET THEORY symbol for a SET having the same 
CARDINAL NUMBER as the “small” INFINITE SET ofIN- 
TEGERS. The ALGEBRAIC NUMBERS also belong to No* 
Rather surprising properties satisfied by No include 

NOT = No (1) 

TN0 = No (2) 

No+f =No, (3) 

where f is any FINITE SET. However, 

No fro - c - > (4) 

where C is the CONTINUUM. 

see also ALEPH-1, CARDINAL NUMBER, CONTINUUM, 
CONTINUUM HYPOTHESIS, COUNTABLY INFINITE SET, 
FINITE, INFINITE, TRANSFINITE NUMBER, UNCOUNT- 
ABLY INFINITE SET 

Aleph-1 (Ni) 
The SET THEORY symbol for the smallest INFINITE SET 
larger than ALPHA-O (NO). The CONTINUUM HYPOTH- 
ESIS asserts that & = c, where c is the CARDINALITY 
of the “large” INFINITE SET of REAL NUMBERS (called 
the CONTINUUM in SET THEORY). However, the truth 
of the CONTINUUM HYPOTHESIS depends on the version 
of SET THEORY you are using and so is UNDECIDABLE. 

Curiously enough, n-D SPACE has the same number of 
points (c) as 1-D SPACE, or any FINITE INTERVAL ofl- 
D SPACE (a LINE SEGMENT), as was first recognized by 
Georg Cantor. 

see also ALEPH-0 (No), CONTINUUM, CONTINUUM HY- 
POTHESIS, CWNTABLY INFINITE SET, FINITE, INFI- 
NITE, TRANSFINITE NUMBER, UNCOUNTABLY INFINITE 
SET 

Alet hit 
A term in LOGIC meaning pertaining to TRUTH and 
FALSEHOOD. 

see also FALSE, PREDICATE, TRUE 

Alexander-Conway Polynomial 

see CONWAY POLYNOMIAL 
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Alexander’s Horned Sphere 

The above solid, composed of a countable UNION of 
COMPACT SETS, is called Alexander’s horned sphere. 

It is HOMEOMORPHIC with the BALL B3, and its bound- 
ary is therefore a SPHERE. It is therefore an example of 

a wild embedding in E3. The outer complement of the 

solid is not SIMPLY CONNECTED, and its fundamental 
GROUP is not finitely generated. Furthermore, the set 
of nonlocally flat (“bad”) points of Alexander’s horned 
sphere is a CANTOR SET. 

The complement in Iw3 of the bad points for Alexan- 
der’s horned sphere is SIMPLY CONNECTED, making it 
inequivalent to ANTOINE'S HORNED SPHERE. Alexan- 

der’s horned sphere has an uncountable infinity of WILD 
POINTS, which are the limits of the sequences of the 
horned sphere’s branch points (roughly, the “ends” of 
the horns), since any NEIGHBORHOOD of a limit con- 

tains a horned complex. 

A humorous drawing by Simon Frazer (Guy 1983, 
Schroeder 1991, Albers 1994) depicts mathematician 
John H. Conway with Alexander’s horned sphere grow- 
ing from his head, 

see also ANTOINE’S HORNED SPHERE 
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Alexander Ideal 
The order IDEAL in A, the RING of integral LAURENT 
POLYNOMIALS, associatedwithan ALEXANDER MATRIX 
for a KNOT K. Any generator of a principal Alexander 
ideal is called an ALEXANDER POLYNOMIAL. Because 
the ALEXANDER INVARIANT of a TAME KNOT in s3 
has a SQUARE presentation MATRIX, its Alexander ideal 
is PRINCIPAL and it has an ALEXANDER POLYNOMIAL 

w  l  

see UZS~ALEXANDERINVARIANT,ALEXANDERMATRIX, 
ALEXANDER POLYNOMIAL 
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Alexander Invariant 
The Alexander invariant H, (2) of a KNOT K is the HO- 
MOLOGY of the INFINITE cyclic cover of the complement 

of K, considered as a MODULE over A, the RING of inte- 
gral LAURENT POLYNOMIALS. The Alexander invariant 
for a classical TAME KNOT is finitely presentable, and 

only HI is significant. 

For any KNOT Kn in s”+’ whose complement has the 
homotopy type of a FINITE COMPLEX, the Alexander 
invariant is finitely generated and therefore finitely pre- 
sentable. Because the Alexander invariant of a TAME 
KNOT in s3 has a SQUARE presentation MATRIX, its 
ALEXANDER IDEAL is PRINCIPAL and it has an ALEX- 
ANDER POLYNOMIAL denoted a(t). 

see also A LEXANDERIDEAL,ALEXANDERMATRIX, AL- 

EXANDE R POLYNOMIAL 
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Alexander Matrix 
A presentation matrix for the ALEXANDER INVARIANT 
HI(z) of a KNOT K. If V is a SEIFERT MATRIX for 
a TAME KNOT K in s3, then VT - tV and V - tVT 
are Alexander matrices for K, where VT denotes the 
MATRIX TRANSPOSE. 

see also ALEXANDER IDEAL, 
ALEXAN 'DER POLYNOMIAL, S 

ALEXA 
EIFERT 

.NDER IN 
MATRIX 

VARIANT, 
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Alexander Polynomial 
A POLYNOMIAL invariant of a KNOT discovered in 1923 
by J. W. Alexander (Alexander 1928). In technical lan- 

guage, the Alexander polynomial arises from the HO- 
MOLOGY of the infinitely cyclic cover of a KNOT'S com- 
plement Any generator of a PRINCIPAL ALEXANDER 
IDEAL is called an Alexander polynomial (Rolfsen 1976)* 

Because the ALEXANDER INVARIANT of a TAME KNOT 
in s3 has a SQUARE presentation MATRIX, its ALEX- 
ANDER IDIZAL is PRINCIPAL and it has an Alexander 
polynomial denoted A(t). 

Let q be the MATRIX PRODUCT of BRAID WORDS of a 
KNOT, then 

det(I - Xl?) 

1+ t + l  l  l  + P-l 

= AL, (1) 

where AL is the Alexander polynomial and det is the 

DETERMINANT. The Alexander polynomial of a TAME 
KNOT in s3 satisfies 

A(t) = det(VT - tV), (2) 

where V is a SEIFERT MATRIX, det is the DETERMI- 
NANT, and VT denotes the MATRIX TRANSPOSE. The 

Alexander polynomial also satisfies 

A(1) = *l. (3) 

The Alexander polynomial of a split table link is always 

0. Surprisingly, there are known examples of nontrivial 
KNOTS with Alexander polynomial 1. An example is 
the (-3,5,7) PRETZEL KNOT. 

The Alexander polynomial remained the onEy known 
KNOT POLYNOMIAL until the JONES POLYNOMIAL was 

discovered in 1984. Unlike the Alexander polynomial, 
the more powerful JONES POLYNOMIAL does, in most 
cases, distinguish HANDEDNESS. A normalized form of 

the Alexander polynomial symmetric in t and t-l and 
satisfying 

A(unknot) = 1 (4) 

was formulated by 3. H. Conway and is sometimes de- 
noted VL. The NOTATION [a + b + c + . . . is an abbrevi- 
ation for the Conway-normalized Alexander polynomial 
ofa KNOT 

a + b(x + x-l) + c(x” + x-“) + . . . . (5) 

For a description of the NOTATION for LINKS, see Rolf- 

sen (1976, p. 389). E xamples of the Conway-Alexander 

polynomials for common KNOTS include 

v~K=[l-l=-Z-l+l-x (6) 

VFEK = [3 - 1 = -X-l + 3 - X (7) 

&SK = [l - 1 + 3. = X-2 - x-l + 1 - x +x2 (8) 

for the TREFOIL KNOT, FIGURE-OF-EIGHT KNOT, and 

SOLOMON'S SEAL KNOT, respectively. Multiplying 

through to clear the NEGATIVE POWERS gives the usual 

Alexander polynomial, where the final SIGN is deter- 
mined by convention. 

\ 

f 

/ 

L + Lo L - 
Let an Alexander polynomial be denoted A, then there 
exists a SKEIN RELATIONSHIP (discovered by J. H. Con- 

way) 

AL+ (t) - AL- (t) + (t-1'2 - t1’2)AL,(t) = o (9) 

corresponding to the above LINK DIAGRAMS (Adams 
1994). A slightly different SKEIN RELATIONSHIP con- 

vention used by Doll and Hoste (1991) is 

VL+ -VL- = zv+ (10) 

These relations allow Alexander polynomials to be con- 
structed for arbitrary knots by building them up as a 
sequence of over- and undercrossings. 

Rx a KNOT, 

A&-l) s 
1 (mod 8) if Arf(K) = 0. 
5 (mod 8) if Arf(K) = 1, (11) 

where Arf is the ARF INVARIANT (Jones 1985). If K is 
a KNOT and 

iAK@>l > 3, (12) 
then K cannot be represented as a closed S-BRAID. Also, 

if 

h(e 245) > y , (13) 

then K cannot be represented as a closed 4-braid (Jones 
1985). 

The HOMFLY POLYNOMIAL P(a, Z) generalizes the Al- 

exander polynomial (as well at the JONES POLYNOMIAL) 
with 

V(z) = P(l,Z) (14) 

(Doll and Hoste 1991). 

Rolfsen (1976) gives a tabulation of Alexander polyno- 

mials for KNOTS up to 10 CROSSINGS and LINKS up to 

9 CROSSINGS. 

see UZSO 

KN OT D 
BRAID GROU 
ETERM INANT, 
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Alexander-Spanier Cohomology 
A fundamental result of DE RHAM COHOMOLOGY 
is that the kth DE RHAM COHOMOLOGY VECTOR 
SPACE of a MANIFOLD M is canonically isomorphic 

to the Alexander-Spanier cohomology VECTOR SPACE 
H” (M; IQ (also called cohomology with compact sup- 
port). In the case that A4 is COMPACT, Alexander- 

Spanier cohomology is exactly “singular” COHOMOL- 
OGY. 

Alexander’s Theorem 
Any LINK can be represented by a closed BRAID. 

Algebra 
The branch of mathematics dealing with GROUP THE- 
ORY and CODING THEORY which studies number sys- 
tems and operations within them. The word “algebra” 
is a distortion of the Arabic title of a treatise by Al- 

Khwarizmi about algebraic methods. Note that mathe- 
maticians refer to the “school algebra” generally taught 
in middle and high school as “ARITHMETIC," reserving 

the word 
subject. 

“algebra” for the more advanced aspects of the 

Formally, an algebra is a VECTOR SPACE V, over a 

FIELD F with a MULTIPLICATION which turns it into 
a RING defined such that, if f f F and X, y E 7V, then 

f (XY> = (fX)Y = X(fY)- 

In addition to the usual algebra of REAL NUMBERS, 
there are ==: 1151 additional CONSISTENT algebras which 
can be formulated by weakening the FIELD AXIOMS, at 

least 200 of which have been rigorously proven to be 
self-CONSISTENT (Bell 1945). 

Algebras which have been investigated and found to be 
of interest are usually named after one or more of their 
investigators. This practice leads to exotic-sounding 

(but unenlightening) names which algebraists frequently 
use with minimal or nonexistent, explanation. 

see also ALTERNATE ALGEBRA, ALTERNATING ALGE- 
BRA,B*-ALGEBRA,BANACH ALGEBRA,BOOLEAN AL- 
GEBRA, BOREL SIGMA ALGEBRA, C*-ALGEBRA, CAY- 
LEY ALGEBRA, CLIFFORD ALGEBRA, COMMUTATIVE 
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ALGEBRA, EXTERIOR ALGEBRA,FUNDAMENTAL THE- 
OREM OF ALGEBRA, GRADED ALGEBRA, GRASSMANN 
ALGEBRA,HECKEALGEBRA,HEYTING ALGEBRA, Ho- 
MOLOGICAL ALGEBRA, HOPF ALGEBRA, JORDAN AL- 
GEBRA, LIE ALGEBRA, LINEAR ALGEBRA, MEASURE 
ALGEBRA, NONASSOCIATIVE ALGEBRA, QUATERNION, 
ROBBINS ALGEBRA, SCHURALGEBRA,SEMISIMPLE AL- 
GEBRA, SIGMA ALGEBRA, SIMPLE ALGEBRA, STEEN- 
ROD ALGEBRA,VON NEUMANN ALGEBRA 
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Algebraic Closure 
The algebraic closure of a FIELD K is the “smallest” 
FIELD containing K which is algebraically closed. For 
example, the FIELD of COMPLEX NUMBERS c is the 
algebraic closure of the FIELD of REALS Iw. 

Algebraic Coding Theory 

see CODING THEORY 

Algebraic Curve 
An algebraic curve over a FIELD K is an equation 
f(X,Y) = 0,where f(X,Y) ~~~POLYNOMIAL~~ X and 
Y with COEFFICIENTS in K. A nonsingular algebraic 
curve is an algebraic curve over K which has no SIN- 
GULAR PRINTS over K. A point on an algebraic curve 
is simply a solution of the equation of the curve. A K- 
RATIONAL POINT is a point (X, Y) on the curve, where 
X and Y are in the FIELD K. 

see U~SOALGEBRAIC GEOMETRY, ALGEBRAIC VARIETY, 
CURVE 

References 
Griffiths, P. A. Introductz’on to Algebraic Curves. Provi- 

dence, RI: Amer. Math. Sot., 1989. 

Algebraic Function 
A function which can be constructed using only a finite 
number of ELEMENTARY FUNCTION-S together with the 
INVERSES of functions capable of being so constructed. 

see U&W ELEMENTARY FUNCTION, TRANSCENDENTAL 
FUNCTION 

Algebraic Function Field 
A finite extension K = Z(Z)(W) of the FIELD c(z) of 
RATIONAL FUNCTIONS in the indeterminate z, Le., w  is 
aR00~ofapOLYNOM1ALa~+~~a+u~a~+...+a,a~, 
where ai f c(z). 

see UZSO ALGEBRAIC NUMBER FIELD, RIEMANN SUR- 
FACE 

Algebraic Geometry 
The study of ALGEBRAIC CURVES, ALGEBRAIC VARI- 
ETIES, and their generalization to n-D. 

see also ALGEBRAIC CURVE, ALGEBRAIC VARIETY, 
COMMUTATIVE ALGEBRA, DIFFERENTIAL GEOMETRY, 
GEOMETRY,~LANE CURVE,SPACE CURVE 
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Algebraic Integer 
If T is a ROOT of the POLYNOMIAL equation 

xn  + an-lxn--l + . l  l  + UlX + a0 = 0, 

where the ais are INTEGERS and T satisfies no similar 
equation of degree < n, then T is an algebraic INTEGER 
of degree rz. An algebraic INTEGER is a special case of 
an ALGEBRAIC NUMBER, for which the leading COEF- 
FICIENT a, need not equall. RADICAL INTEGERS are a 
subring ofthe ALGEBRAIC INTEGERS. 

A SUM or PRODUCT of algebraic integers is again an al- 
gebraic integer. However, ABEL'S IMPOSSIBILITY THE- 
OREM shows that there are algebraic integers of degree 
> 5 which are not expressible in terms of ADDITION, 
SUBTRACTION, MULTIPLICATION, DIVISION, andtheex- 
traction of ROOTS on REAL NUMBERS. 

The GAUSSIAN INTEGER are are algebraic integers of 
Q(dT), since a + bi are roots of 

2 - 2az + u2 + b2 = 0. 

see also ALGEBRAIC NUMBER, EUCLIDEAN 
RADICAL INTEGER 
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Algebraic Invariant 
A quantity such as a DISCRIMINANT which remains un- 
changed under a given class of algebraic transforma- 
tions. Such invariants were originally called HYPERDE- 
TERMINANTS by Cayley. 

see also DISCRIMINANT (POLYNOMIAL), INVARIANT, 
QUADRATIC INVARIANT 
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Algebraic Knot 
A single component ALGEBRAIC LINK. 

see also ALGEBRAIC LINK, KNOT, LINK 

Algebraic Link 
A class of fibered knots and links which arises in AL- 
GEBRAIC GEOMETRY. An algebraic link is formed by 
connecting the NW and NE strings and the SW and SE 
strings of an ALGEBRAIC TANGLE (Adams 1994). 

see also ALGEBRAIC TANGLE, FIBRATION, TANGLE 
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Algebraic Number 
If T is a ROOT ofthe POLYNOMIAL equation 

aoxn + UlX n-l +... + an--12 + a, = 0, (1) 

where the ais are INTEGERS and T satisfies no similar 
equation of degree < n, then T is an algebraic number of 
degree n. If T is an algebraic number and a0 = 1, then 
it is called an ALGEBRAIC INTEGER. It is also true that 
if the c;s in 

coxn  + c lxn- l  + l  l  l  + en-12 + cn  = 0 
(2) 

are algebraic numbers, then 
is also an algebraic number. 

any ROOT of this equation 

If a is an algebraic number of degree n satisfying the 
POLYNOMIAL 

a(x - cy)(x - p)(x - y) ’ * a, (3) 

then there are n - 1 other algebraic numbers p, y, . . . 
called the conjugates of or. Furthermore, if a satisfies 
any other algebraic equation, then its conjugates also 
satisfy the same equation (Conway and Guy 1996). 

Any number which is not algebraic is said to be TRANS- 
CENDENTAL. 
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Algebraic Number Field 

see NUMBER FIELD 

Algebraic Surface 
The set of ROOTS of a POLYNOMIAL f(z,v,x) = 0. An 
algebraic surface is said to be of degree n = max(i + j + 
k), where n is the maximum sum of powers of all terms 
umx~myjmZkm, The following table lists the names of 
algebraic surfaces of a given degree. 

Order Surface 

3 cubic surface 
4 quartic surface 
5 quintic surface 
6 sextic surface 
7 heptic surface 
8 octic surface 
9 nonic surface 

10 decic surface 

see also BARTH DECIC,BARTH SEXTIC, BOY SURFACE, 
CAYLEY CUBIC, CHAIR, CLEBSCH DIAGONAL CUBIC, 
CUSHION,DERVISH,ENDRASS OCTIC,HEART SURFACE, 
KUMMER SURFACE, ORDER (ALGEBRAIC SURFACE), 
ROMAN SURFACE,SURFACE,TOGLIATTI SURFACE 
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Algebraic Tangle 
Any TANGLE obtainedby ADDITIONS and MULTIPLICA- 
TIONS of rational TANGLES (Adams 1994). 

see also ALGEBRAIC LINK 
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Algebraic Topology 
The study of intrinsic qualitative aspects of spatial 
objects (e.g., SURFACES, SPHERES, TORI, CIRCLES, 
KNOTS, LINKS, configuration spaces, etc.) that re- 
main invariant under both-directions continuous ONE- 
TO-ONE (HOMEOMORPHIC) transformations. The dis- 
cipline of algebraic topology is popularly known as 
'&RUBBER-SHEET GEOMETRY" and can also be viewed 
as the study of DISCONNECTIVITIES. Algebraic topology 
has a great deal of mathematical machinery for studying 
different kinds of HOLE structures, and it gets the prefix 
“algebraic” since many HOLE structures are represented 
best by algebraic objects like GROUPS and RINGS. 

A technical way of saying this is that algebraic topol- 
ogy is concerned with FUNCTORS from the topological 
CATEGORY of GROUPS and HOMOMORPHISMS. Here, 
the FUNCTORS are a kind of filter, and given an “input” 
SPACE, they spit out something else in return. The re- 
turned object (usually a GROUP or RING) is then a rep- 
resentation of the HOLE structure of the SPACE, in the 
sense that this algebraic object is a vestige of what the 
original SPACE was like (i.e., much information is lost, 
but some sort of “shadow” of the SPACE is retained- 
just enough of a shadow to understand some aspect of its 
HOL&structure, but no more). The idea is that FUNC- 
TORS give much simpler objects to deal with. Because 
SPACES by themselves are very complicated, they are 
unmanageable without looking at particular aspects. 

C~MBINAT~RI AL TOPOLOGY is a special type of alge- 
braic topology th .at uses COMBINATORIAL methods. 

see also CATEGORY, COMBINATORIAL TOPOLOGY, DIF- 
FERENTIAL TOPOLOGY, FUNCTOR, HOMOTOPY THE- 

ORY 
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Algebraic Variety 
A generalization to n-D of ALGEBRAIC CURVES. More 
technically, an algebraic variety is a reduced SCHEME of 
FINITE type over a FIELD K. An algebraic variety V is 
defined as the SET of points in the REALS Iw" (or the 
COMPLEX NUMBERS (Cn) satisfying a system of POLY- 
NOMIAL equations fi(~cr, l  l  . ,xn) = 0 for i = 1, 2, + +, , 
According to the HILBERT BASIS THEOREM, a FINITE 
number of equations suffices. 

see also ABELIAN VARIETY, ALBANESE VARIETY, 
BRAUER-SEVERI VARIETY, CHOW VARIETY, PICARD 
VARIETY 
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Algebroidal Function 
An ANALYTIC FUNCTION f(z) satisfying the irreducible 
algebraic equation 

Ao(qfk + Al(Z)f 
k-l 

+... + A&) = 0 

with single-valued MEROMORPHIC functions Aj(z) in a 
COMPLEX DOMAIN G is called a k-algebroidal function 
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Algorithm 
A specific set of 
dure or solving a 

instructions for carrying out a proce- 
problem, usually with the requi .rement 

that the procedure terminate at some point. Specific 
algorithms sometimes also go by the name METHOD, 
PROCEDURE, or TECHNIQUE. The word “algorithm” is 
a distortion of Al-Khwarizmi, an Arab mathematician 
who wrote an influential treatise about algebraic meth- 
ods. 

see u~so~~~-ALGORITHM, ALGORITHMIC COMPLEXITY, 
ARCHIMEDES ALGORITHM, BHASKARA-BROUCKNER 
ALGORITHM, BORCHARDT-PFAFF ALGORITHM, BRE- 
LAZ'S HEURISTIC ALGORITHM, BUCHBERGER'S ALGO- 
RITHM, BULIRSCH-STOER ALGORITHM, BUMPING AL- 

GORITHM, CLEAN ALGORITHM, COMPUTABLE FUNC- 
TION, CONTINUED FRACTION FACTORIZATION ALGO- 
RITHM, DECISION PROBLEM, DIJKSTRA'S ALGORITHM, 
EUCLIDEAN ALGORITHM, FERGUSON-FORCADE AL- 
GORITHM, FERMAT'S ALGORITHM, FLOYD'S ALGO- 
RITHM, GAUSSIAN APPROXIMATION ALGORITHM, GE- 
NETIC ALGORITHM, GOSPER'S ALGORITHM, GREEDY 
ALGORITHM, HASSE'S ALGORITHM, HJLS ALGO- 
RITHM, JACOBI ALGORITHM, KRUSKAL'S ALGORITHM, 
LEVINE-O'SULLIVAN GREEDY ALGORITHM, LLL AL- 

GORITHM, MARKOV ALGORITHM, MILLER'S ALGO- 
RITHM, NEVILLE'S ALGORITHM, NEWTON'S METHOD, 
PRIME FACTORIZATION ALGORITHMS, PRIMITIVE RE- 

CURSIVE FUNCTION, PROGRAM, PSLQ ALGORITHM, 
PSOS ALGORITHM, QUOTIENT-DIFFERENCE ALGO- 
RITHM, RISCH ALGORITHM, S~HRAGE'S ALGORITHM, 
SHANKS'ALGORITHM,SPIGOT ALGORTTHM,SYRACUSE 
ALGORITHM, TOTAL FUNCTION, TURING MACHINE, 
ZASSENHAUS-BERLEKAMP ALGORITHM, ZEILBERGER'S 
ALGORITHM 

References 
Aho, A. V.; Hopcroft, J* E.; and Ullman, J.D. The De- 

sign and Analysis of Computer Algorithms. Reading, MA: 
Addison-Wesley, 1974. 

Baase, S. Computer Algorithms. Reading, MA: Addison- 
Wesley, 1988+ 

Brassard, G. and Bratley, P. Fundamentals of Algorithmics. 
Englewood Cliffs, NJ: Prentice-Hall, 1995. 

Cormen, T. H.; Leiserson, C. E.; and Rivest, R. L. Introduc- 
tion to Algorithms. Cambridge, MA: MIT Press, 1990. 



Algorithmic Complexity Aliquant Divisor 

Greene, D. H. and Knuth, D. E. Mathematics for the Analysis 
of Algorithms, 3rd ed. Boston: Birkhauser, 1990. 

Harel, D. Algorithmicsr The Spirit of Computing, 2nd ed. 
Reading, MA: Addison-Wesley, 1992. 

Knuth, D. E. The Art of Computer Programming, Vol. 1: 
Fundamental Algorithms, 2nd ed. Reading, MA: Addison- 
Wesley, 1973. 

Knuth, D. E. The Art of Computer Programming, Vol. 2: 
Seminumerical Algorithms, 2nd ed. Reading, MA: 
Addison- Wesley, 1981. 

Knuth, D. E. The Art of Computer Programming, Vol. 3: 
Sorting and Searching, 2nd ed. Reading, MA: Addison- 
Wesley, 1973. 

Kozen, D. C. Design and Analysis and Algorithms. New 
York: Springer-Verlag, 1991. 

Shen, A. Algorithms and Programming. Boston: Birkhguser, 
1996. 

Skiena, S. S. The Algorithm Design Manual. New York: 
Springer-Verlag, 1997. 

Wilf, H. Algorithms and Complexity. Englewood Cliffs, NJ: 
Prentice Hall, 1986, http://www.cis.upenn.edu/-uilf/. 

Algorithmic Complexity 

see BIT COMPLEXITYJOLMOGOROV COMPLEXITY 

Alhazen’s Billiard Problem 
In agiven CIRCLE, find an ISOSCELES TRIANGLE whose 
LEGS pass through two given POINTS inside the CIRCLE. 
This can be restated as: from two POINTS in the PLANE 
of a CIRCLE, draw LINES meeting at the POINT of the 
CIRCUMFERENCE and making equal ANGLES with the 
NORMAL at that POINT. 

The problem is called the billiard problem because it cor- 
responds to finding the POINT on the edge of a circular 
“BILLIARD" table at which a cue ball at a given POINT 
must be aimed in order to carom once off the edge of the 
table and strike another ball at a second given POINT. 
The solution leads to a BIQUADRATIC EQUATION of the 
form 

H(x2 - y”) - 2Kxy + (x2 + y2)(hy - kx) = 0. 

The problem is equivalent to the determination of the 
point on a spherical mirror where a ray of light will re- 
flect in order to pass from a given source to an observer. 
It is also equivalent to the problem of finding, given two 
points and a CIRCLE such that the points are both inside 
or outside the CIRCLE, the ELLIPSE whose FOCI are the 
two points and which is tangent to the given CIRCLE. 

The problem was first formulated by Ptolemy in 150 
AD, and was named after the Arab scholar Alhazen, 
who discussed it in his work on optics. It was not until 
1997 that Neumann proved the problem to be insoluble 
using a COMPASS and RULER construction because the 
solution requires extraction of a CUBE ROOT. This is 
the same reason that the CUBE DUPLICATION problem 
is insoluble. 
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Alhazen’s Problem 

see ALHAZEN’S BILLIARD PROBLEM 

Alias’ Paradox 
Choose between the following two alternatives: 

1. 90% chance of an unknown amount SL: and a 10% 
chance of $1 million, or 

2. 89% chance of the same unknown amount x, 10% 
chance of $2.5 million, and 1% chance of nothing. 

The PARADOX is to determine which choice has the 
larger expectation value, 0.9x + $100,000 or 0.89x + 
$250,000. However, the best choice depends on the un- 
known amount, even though it 
This appears to violate the IN 

is the same in 
DEPENDENCE 

both cases! 
AXIOM. , 

see also INDEPENDENCE Axr 
LEM, NEWCOMB’S PARA .DOX 

OM, MONTY HALL PROB- 

Aliasing 
Given a power spectrum (a plot of power vs. frequency), 
aliasing is a false translation of power falling in some fre- 
quency range (-fc, &) outside the range. Aliasing can 
be caused by discrete sampling below the NYQUIST FRE- 
QUENCY. The sidelobes of any INSTRUMENT FUNCTION 

(including the simple SINC SQUARED function obtained 
simply from FINITE sampling) are also a form of alias- 
ing. Although sidelobe contribution at large offsets can 
be minimized with the use of an APODIZATION FUNC- 
TION, the tradeoff is a widening of the response (i.e., a 
lowering of the resolution). 

see also 
QUENCY 

APODIZATION FUNCTION, NYQUIST FRE- 

Aliquant Divisor 
A number which does not DIVIDE another exactly. For 
instance, 4 and 5 are aliquant divisors of 6. A num- 
ber which is not an aliquant divisor (i.e., one that does 
DIVIDE another exactly) is said to be an ALIQUOT DI- 
VISOR. 

see UZSO BILLIARDS, BILLIARD TABLE PROBLEM, CUBE 
DUPLICATION 

see UZSO ALIQUOT DIVISOR, DIVISOR, PROPER DIVISOR 
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Aliquot Cycle 

see SOCIABLE NUMBERS 

Aliquot Divisor 
A number which DIVIDES another exactly. For instance, 
1, 2, 3, and 6 are aliquot divisors of 6. A number which 
is not an aliquot divisor is said to be an ALIQUANT DI- 
VISOR. The term “aliquot” is frequently used to specif- 
ically mean a PROPER DIVISOR, i.e., a DIVISOR of a 
number other than the number itself. 

see also ALIQUANT DIVISOR, DIVISOR, PROPER DIVI- 
SOR 

Aliquot S equence 

s(n) E u(n) - n, 

where a(n) is the DIVISOR FUNCTION and s(n) is the 
RESTRICTED DIVISOR FUNCTION. Then the SEQUENCE 
of numbers 

s’(n) = n, 2(n) = s(n), s2(n) = s(s(n)), q . . 

is called an 
given n is bo 
periodic. 

aliquot sequence. If the SEQUEN GE for a 
unded, i t either end s at s(l) = 0 or becom .es 

If the SEQUENCE reaches a constant, the constant is 
knownasa PERFECT NUMBER. 

If the SEQUENCE reaches an alternating pair, it is 
called an AMICABLE PAIR. 

If, after Fz iterations, the SEQUENCE yields a cycle 
of minimum length t of the form skS1 (n), s’+~ (n), 

sk+t(n), then th ese numbers form a group of 
~&ABLE NUMBERS oforder t. 

It has not been proven that all aliquot sequences eventu- 
ally terminate and become period. The smallest number 
whose fate is not known is 276, which has been computed 
up to ~~‘~(276) (Guy 1994). 

ERSISTENCE, 

NUMBERS, 

see also 196-ALGO 
AMICABLE NUMBE 

RITHM, ADDITIVE P 

w  MULTIAMICABLE 

MULTIPERFECT NUMBER, MULTIPLICATIVE PERSIS- 
TENCE, 
TARY A 

PERFECT N 
LIQU~T SEQ 

UMBER, 
UENCE 

SOCIABLE NUMBERS, UNI- 
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Alladi-Grinstead Constant 
N.B. A detailed on-line essay by S. Finch was the start- 
ing point for this entry. 

Let N(n) be the number of ways in which the FACTO- 
RIAL n! can be decomposed into n FACTORS of the form 

pkbk arranged in nondecreasing order. Also define 

m(n) = max(pl bl), (1) 

i.e., m(n) is the LEAST PRIME FACTO R raised to its 
appropriat e POWER in the factorization. Then define 

In m(n) 
a(n) G - 

Inn (2) 

where In(z) is the NATURAL LOGARITHM. For instance, 

so 
In3 In3 1 a(g) z fi = - - - 
n 2ln3 - 2’ (4) 

For large n, 

lim a(n) = 2-l = 0.809394020534. . . , (5) n+m 

where 

.&ln($---). (6) 

References 
Alladi, K. and Grinstead, C. “On the Decomposition of n! 

into Prime Powers.” J. Number Th. 9, 452-458, 1977. 
Finch, S. “Favorite Mathematical Constants.” http : //wua. 

mathsoft.com/asolve/constant/aldgms/aldgrns.html. 
Guy, R. K. “Factorial n as the Product of n Large Factors.” 

§B22 in Unsolved Problems in Number Theory, 2nd ed. 
New York: Springer-Verlag, p. 79, 1994. 

Allegory 
A technical mathematical object which bears the same 
resemblance to binary 
FUNCTIONS and SETS. 

see also CATEGORY 

relations as CATEGORIES do to 

All-Poles Model References 

~~~MAXIMUM ENTROPY METHOD 
F’reyd, P. J. and Scedrov, A. Categories, Allegories. Amster- 

dam, Netherlands: North-Holland, 1990. 
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Allometric 
Mathematical growth in which oue population grows at 
a rate PROPORTIONAL to the POWER of another popu- 

lation. 

References 
Cofrey, W. J. Geography Towards a General Spatial Systems 

Approach. London: Routledge, Chapman & Hall, 1981. 

Almost All 
Given a property P, if P(z) N x as z -+ 00 (so the num- 
ber of numbers less than x not satisfying the property 
P is o(z)), then P is said to hold true for almost all 
numbers. For example, almost all positive integers are 
COMPOSITE NUMBERS (which is not in conflict with the 
second of EUCLID'S THEOREMS that there are an infinite 
number of PRIMES). 

see also FOR ALL,NORMAL ORDER 

References 
Hardy, G. H. and Wright, E. M. An Introduction to the The- 

ory of Numbers, 5th ed. Oxford, England: Clarendon 
Press, p. 8, 1979. 

Almost Alternating Knot 
An ALMOST ALTERNATING LINK with a single compo- 
nent. 

Almost Alternating Link 
Call a projection of a LINK an almost alternating pro- 
jection if one crossing change in the projection makes it 
an alternating projection. Then an almost alternating 
link is a LINK with an almost alternating projection, but 
no alternating projection. Every ALTERNATING KNOT 

has an almost alternating projection. A PRIME KNOT 
which is almost alternating is either a TORUS KNOT or 
a HYPERBOLIC KNOT. Therefore, no SATELLITE KNOT 

is an almost alternating knot. 

All nonalternating g-crossing PRIME KNOTS are almost 
alternating. Of the 393 nonalternating with 11 or fewer 
crossings, all but five are known to be nonalternating (3 
of these have 11 crossings). The fate of the remaining 
five is not known. The (2, q), (3,4), and (3,5)-TORUS 
KNOTS are almost alternating. 

see also ALTERNATING KNOT, LINK 

References 
Adams, C. C. The Knot Book: An Elementary Introduction 

to the Mathematical Theory of Knots. New York: W. H. 
Freeman, pp* 139-146, 1994. 

Almost Everywhere 
A property of X is said to hold almost everywhere if 
the SET of points in X where this property fails has 
MEASURE 0. 

see ah MEASURE 

References 
Sansone, G. Orthogonal Functions, rev. English ed. New 

York: Dover, p. 1, 1991. 

Almost Integer 
A number which is very close to an INTEGER. One sur- 
prising example involving both e and PI is 

elr - 7T = 19.999099979. l  l  , 
(1) 

which can also be written as 

(7T + 20)i = -0.9999999992 - 0.0000388927i E -1 (2) 

cos(ln(7r + 20)) $=: -0.9999999992. (3) 

Applying COSINE a few more times gives 

cos(7r cos(7r cos(ln(n + 20)))) 

z -1 + 3.9321609261 x 10-35. (4) 

This curious near-identity was apparently noticed al- 
most simultaneously around 1988 by N. J. A. Sloane, 
J. H. Conway, and S. Plouffe, but no satisfying explana- 
tion as to “why” it has been true has yet been discov- 
ered. 

An interesting near-identity is given by 

= 1+2.480... x lo-l3 (5) 

(W. Dubuque). Other remarkable near-identities are 
given by 

5(1 + d>[r(~)12 = I+ 4 5422,. . x IO-14 
e5T/6 fi 

l  
7  (6) 

where IT(z the GAMMA FUNCTION (S. Plouffe), and 

e6 -7T4 - r5 = 0.000017673.. . (7) 

(D. Wilson). 

A whole class of IRRATIONAL “almost integers” can be 
found using the theory of MODULAR FUNCTIONS, and a 
few rather spectacular examples are given by Ramanu- 
jan (1913-14). Such approximations were also stud- 
ied by Hermite (1859), K ronecker (1863), and Smith 
(1965). They can be generated using some amazing (and 
very deep) properties of the ~-FUNCTION. Some of the 
numbers which are closest approximations to INTEGERS 

are eTm (sometimesknown as the RAMANUJAN CON- 
STANT and which corresponds to the field Q(dm) 
which has CLASS NUMBER 1 and is the <IMAGINARY 
quadratic field of maximal discriminant), exm, I?~, 

and I?~, the latter three of which have CLASS NUM- 
BER 2 and are due to Ramanujan (Berndt 1994, Wald- 
Schmidt 1988). 



34 Almost Integer Almost Prime 

The properties of the ~-FUNCTION also give rise to the 
spectacular identity 

1n(6403203 + 744) 1 ’ = 163 + 2 
l  

32167 
l  l  l  

n- 
x 1O-2g (8) 

(Le Lionnais 1983, p. 152). 

The list below gives numbers of the form x = erfi for 
rz 2 1000 for which 1x1 - z 2 0.01. 

e?rvG = 2,197.990869543... 
+Tvfn e = 422,150.997675680... 

7Tx.43 e = 614,551.992885619... 
,d5T = 2,508,951.998257553... 

rrJ25 e = 6,635,623.999341134... 

,.Im = 199,148,647.999978046551... 

evm = 884,736,743.999777466... 

rrvm e =24,591,257,751.999999822213... 

Trl.m e = 30,197,683,486.993182260... 

rrvm e =147,197,952,743.999998662454... 
TTJ74 e = 54,551,812,208.999917467885... 

ediz = 45,116,546,012,289,599.991830287... 
lrdi33 e ZT 262,537,412,640,768,743.999999999999250072... 

,die = 1,418,556,986,635,586,485.996179355... 
exvm = 604,729,957,825,300,084,759.999992171526... 

7rvm7 e = 19,683,091,854,079,461,001,445.992737040... 

edm = 4,309,793,301,730,386,363,005,719.996011651... 

edm = 639,355,180,631,208,421,..~ 

- - -212,174,016.997669832... 

wJ522 e = 14,871,070,263,238,043,663,567,. - v 

.~.627,879,007.999848726... 

e”m = 288,099,755,064,053,264,917,867,--- 

.,.975,825,573.993898311... 

mm e = 28,994,858,898,043,231,996,779,**. 

~.~771,804,797,161.992372939... 

ewm = 3,842,614,373,539,548,891,490,.~. 

.~~294,277,805,829,192.999987249... 

e7f%m = 223,070,667,213,077,889,794,379,--- 

--.623,183,838,336,437.992055118... 

7tv?a e = 249,433,117,287,892,229,255,125,.’. 

.~~388,685,911,710,805.996097323... 

e”xm = 365,698,321,891,389,219,219,142,-m- 

~..531,076,638,716,362,775.998259747... 
x%/m8 e = 6,954,830,200,814,801,770,418,837,--. 

940,281,460,320,666,108.994649611.... 

Gosper noted that the expression 

1 - 262537412640768744Crm - 196884e-2”m 

+103378831900730205293632e-3”J163. (9) 

differs from an INTEGER by a mere 10m5’. 

see also CLASS NUMBER, ~-FUNCTION, PI 
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and R. A. Rankin). New York: Academic Press, pp. 57-76, 
1988. 

Almost Perfect Number 
A number n for which the DIVISOR FUNCTION satisfies 
c(n) = 2n - 1 is called almost perfect. The only known 
almost perfect numbers are the POWERS of 2, namely 
1, 2, 4, 8, 16, 32, l  l  . (Sloane’s AOOOO79). Singh (1997) 
calls almost perfect numbers SLIGHTLY DEFECTIVE. 

see also QUASIPERFECT NUMBER 

References 
Guy, R. K. “Almost Perfect, Quasi-Perfect, Pseudoperfect, 

Harmonic, Weird, Multiperfect and Hyperperfect Num- 
bers.” §B2 in Unsolved Problems in Number Theory, 2nd 
ed. New York: Springer-Verlag, pp. 16 and 45-53, 1994. 

Singh, S, Fermat’s Enigma: The Epic Quest to Solve 
the WorZd’s Greatest Mathematical Problem. New York: 
Walker, p. 13, 1997. 

Sloane, N. 3. A. Sequence A000079/M1129 in “An On-Line 
Version of the Encyclopedia of Integer Sequences.” 

Almost Prime 
A number n with prime factorization 

n= rI Pi 
*i 

i=l 

is called k-almost prime when the sum of the POWERS 

c 
r 
i--l ai = Ic. The set of k-almost primes is denoted Pk. - 

The PRIMES correspond to the “l-almost prime” num- 
bers 2, 3, 5, 7, 11, . . . (Sloane’s AOO0040). The 2-almost 
prime numbers correspond to SEMIPRIMES 4, 6, 9, 10, 
14, 15, 21, 22, l  l  . (Sloane’s A001358). The first few 
3-almost primes are 8, 12, 18, 20, 27, 28, 30, 42, 44, 
45, 50, 52, 63, 66, 68, 70, 75, 76, 78, 92, 98, 99, l  . . 

(Sloane’s A014612). The first few 4-almost primes are 
16, 24, 36, 40, 54, 56, 60, 81, 84, 88, 90, 100, . . . (Sloane’s 
A014613). The first few 5-almost primes are 32, 48, 72, 
80, . . . (Sloane’s A014614). 
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see als 
PRIME 

o CHEN'S THEOREM, PRIME NUMBER, SEMI- 

References 
Sloane, N. J+ A. Sequences A014612, A014613, A014614, 

A000040/M0652, and A001358/M3274 in “An On-Line 
Version of the Encyclopedia of Integer Sequences.” 

Alpha 
A financial measure giving the difference between a 
fund’s actual return and its expected level of perfor- 
mance, given its level of risk (as measured by BETA). 
A POSITIVE alpha indicates that a fund has performed 
better than expected based un its BETA, whereas a NEG- 
ATIVE alpha indicates poorer performance 

see also BETA, SHARPE RATIO 

Alpha Function 

r n 

an(z) = 
zk 

t”e-%t = n!z-(n+lkz x F;r’ 
. 

The alpha function satisfies the RECURRENCE RELA- 
TION 

see also BETA FUNCTION (EXPONENTIAL) 

Alpha Value 
An alpha value is a number 0 < QI < 1 such that P(z > - - - 
zobserved) < a is considered WGNIFICANT,” where P is 
a P-VALUE. 

see also CONFIDENCE INTERVAL, P-VALUE, SIGNIFI- 
CANCE 

Alphabet Then A is said to be alternate if, for all x,y E A, 
A SET (usually of letters) from which a SUBSET is drawn. 
A sequence of letters is called a WORD, and a set of 
WORDS is called a CODE. 

(a: . Y) ’ Y = x . (Y . Y> co 

see also CODE, WORD (x.x)*y=x*(x-y). (4 

Alphamagic Square 
A MAGIC SQUARE for which the number of letters in 
the word for each number generates another MAGIC 
SQUARE. This definition depends, of course, on the lan- 
guage being used. In English, for example, 

5 22 18 4 9 8 
28 15 2 11 7 3, 
12 8 25 6 5 10 

where the MAGIC SQUARE on the right corresponds to 
the number of letters in 

five twenty-two eighteen 
twenty-eight fifteen two 

twelve eight twenty-five ’ 

References 
Sallows, L. C. F. “Alphamagic Squares.” Abacus 4, 28-45, 

1986. 
Sallows, L. C. F. “Alphamagic Squares. 2.” Abacus 4, 20-29 
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Washington, DC: Math. Assoc. Amer., 1994. 

Alphametic 
A CRYPTARITHM in which the letters used to represent 
distinct DIGITS are derived from related words or mean- 
ingful phrases. The term was coined by Hunter in 1955 
(Madachy 1979, p. 178). 

References 
Brooke, Me One Hundred & Fifty Puzzles in Crypt- 

Arithmetic. New York: Dover, 1963. 
Hunter, J. A, H. and Madachy, J. S. “Alphametics and the 

Like .” Ch. 9 in Mathematical Diversions, New York: 
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Alternate Algebra 
Let A denote an R-ALGEBRA, so that A is a VECTOR 
SPACE over R and 

AxA+A (1) 

Here, VECTOR 
BILINEAR. 

MULTIPLICATION x l  y is assumed to be 

References 
Finch, S. “Zero Structures in Real Algebras.” http://www. 
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Alternating Algebra 

~~~EXTERIOR ALGEBRA 

Erdener, K. and Flynn, R. “Rolfsen’s Table of all Alter- 
nating Diagrams through 9 Crossings.” f tp : //chs . cusd. 
claremont.edu/pub/knot/Rolfsen_table.final. 

Kauffman, L. LLNew Invariants in the Theory of Knots.” 

Alternating Group Amer. Math. MonthEy 95, 195-242, 1988. 

EVEN PERMUTATION GROUPS A, which are NORMAL Murasugi, K. “Jones Polynomials and Classical Conjectures 

SUBGROUPS of the PERMUTATION GROUP of ORDER 
in Knot Theory.” Topology 26, 297-307, 1987. 

n!/Z, They are FINITE analogs of the families of sim- 
Sloane, N, J, A. Sequence A002864/M0847 in “An On-Line 

Version of the Encyclopedia of Integer Sequences.” 
ple LIE GROUPS. The lowest order alternating group is 
60. Alternating groups with n > 5 are non-ABELIAN - 

Thistlethwaite, M. “A Spanning Tree Expansion for the Jones 
Polynomial.” Topology 26, 297-309, 1987. 

SIMPLE GROUPS. The number of conjugacy classes in 
the alternating groups A, for n = 2, 3, . . . are 1, 3, 4, 
5, 7, 9, l  l  1  (Sloane’s AUO0702), 

see also 15 PUZZLE, FINITE GROUP, GROUP, LIE 
GROUP,~IMPLE GROUP,~YMMETRIC GROUP 

Alternating Knot Diagram 
A KNOT DIAGRAM which has alternating under- and 
overcrossings as the KNOT projection is traversed. The 
first KNOT which does not have an alternating diagram 
has 8 crossings. 

References 
Sloane, N. J. A. Sequence A000702/M2307 in “An On-Line 

Version of the Encyclopedia of Integer Sequences.” 
Wilson, R. A. “ATLAS of Finite Group Representation.” 

http://for.mat.bham.ac.uk/atlas#alt. 

Alternating Link 
A LINK which has a LINK DIAGRAM with alternating 
underpasses and overpasses. 

Alternating Knot 
see also ALMOST ALTERNATING LINK 

An alternating knot is a KNOT which possesses a knot 
diagram in which crossings alternate between under- and 
overpasses. Not all knot diagrams of alternating knots 

References 
Menasco, W. and Thistlethwaite, M. “The Classification of 

Alternating Links.” Ann. Math. 138, 113-171, 1993. 

need be alternating diagrams. 

The TREFOIL KNOT and FIGURE-OF-EIGHT KNOT are 
alternating knots. One of TAIT'S KNOT CONJECTURES 
states that the number of crossings is the same for 
any diagram of a reduced alternating knot. Further- 
more, a reduced alternating projection of a knot has 

Alternating Permutation 
An arrangement of the elements cl, . . . , C~ such that 
no element ci has a magnitude between ci-1 and ci+l is 
called an alternating (or ZIGZAG) permutation. The de- 
termination of the number of alternating permutations 
for the set of the first n INTEGERS {1,2, . q . , n} is known 

the least number of crossings for any projection of that 
knot. Both of these facts were proved true by Kauffman 

as ANDRI?S PROBLEM. An example of an alternating 
permutation is (1, 3, 2, 5, 4). 

(1988)) Thistlethwaite (1987), and Murasugi (1987). 

If K has a reduced alternating projection of n crossings, 
then the SPAN of K is 4n. Let c(K) be the CROSSING 

As many alternating permutations among n elements 
begin by rising as by falling. The magnitude of the ens 
does not matter; only the number of them. Let the 

NUMBER. Then an alternating knot &#I& (a KNOT 
SUM) satisfies 

number of alternating permutations be given by Zn. = 
2A,. This quantity can then be computed from 

QG#Kz) = @I) + c(K2). 2rmn = 
Ix Gas, (1) 

In fact, this is true as well for the larger class of ADE- 

QUATE KNOTS and postulated for all KNOTS. The num- 
where T and s pass through all INTEGRAL numbers such 
that 

ber of PRIME alternating knots of n crossing for n = 1, 
2 9 ..’ are 0, 0, 1, 1, 2, 3, 7, 18, 41, 123, 367, l  l  + (Sloane’s 

r+s --n-l, (2) 

A002864). a0 = a1 = 1, and 

see also ADEQUATE KNOT, ALMOST ALTERNATING 
LINK, ALTERNATING LINK, FLYPING CONJECTURE 

A, = n!an. (3) 
The numbers A, are sometimes called the EULER 

References 
Adams, C. C. The Knot Book: An Elementary Introduction 
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ZIGZAG NUMBERS, and the first few are given by 1, 1, 
1, 2, 5, 16, 61, 272, . . l  (Sloane’s AOOOlll). The ODD- 
numbered A,s are called EULER NUMBERS, SECANT 

Freeman, pp. 159-164, 1994. 
Arnold, B.; Au, M.; Candy, C.; Erdener, K.; Fan, J.; Flynn, 

NUMBERS, or ZIG NUMBERS, and the EVEN-numbered 

R.; Muir, J.; Wu, D.; and Ho&e, J. “Tabulating Alter- ones are sometimes called TANGENT NUMBERS or ZAG 
nating Knots through 14 Crossings.” ftp://chs.cusd. NUMBERS. 
claremont.edu/pub/knot/paper.TeX.txtand ftp://chs. 
cusd.claremont.edu/pub/knot/AltKnots/. 
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Curiously enough, the SECANT and TANGENT MAC- 
LAURIN SERIES can be written in terms of the A,s as 

secr=Ao+A&+Aq g+*** 
. . 
X3 X5 

tanx=Alx+Ag~+&gr+..., 
l  l  

(4 

(5) 

or combining them, 

secx + tanx 

=Ao+Alz+A~~+A3~+Aq~+A~~+.,., (6) . . l  l  

see also ENTRINGER NUMBER, EULER NUMBER, Eu- 

LER ZIGZAG NUMBER, SECANT NUMBER, SEIDEL- 
ENTRINGER-ARNOLD TRIANGLE,TANGENT NUMBER 
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Alternating Series 
A SERIES of the form 

00 

IE ( 1) k-f1 - ak 

k=l 

Or 
00 

x(-l)“ake 

k=l 

References 
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Alternating Series Test 
Also known as the LEIBNIZ CRITERION. An ALTERNAT- 
ING SERIES CONVERGES if al > a2 > . l  . and - - 

lim ak = 0. 
k-+m 

see UZSO CONVERGENCE TESTS 

Alternative Link 
A category of LINK encompassing both ALTERNATING 
KNOTS and TORUS KNOTS. 

see UZSO ALTERNATING KNOT, LINK, TORUS KNOT 

References 
Kauffman, L. “Combinatorics and Knot Theory.” Contemp. 
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Altitude 
A3 

The altitudes of a TRIANGLE are the CEVIANS A&& 
which are PERPENDICULAR to the LEGS A& opposite 
Ai. They have lengths hi s A& given by 

hi = ai+l sin ai+ = ai+ sin ai+l (1) 

hl = 22/ ( s s - al)(s - a~)(5 - a3) 

> 
a1 

(2) 

where s is the SEMIPERIMETER and ai = A+&. Another 
interesting FORMULA is 

hlh2h3 = 2s~l (3) 

(Johnson 1929, p. 191), where a is the AREA of the TRI- 
ANGLE. The three altitudes of any TRIANGLE are CON- 
CURRENT at the ORTHOCENTER IS. This fundamental 
fact did not appear anywhere in Euclid’s Elements. 

Other formulas satisfied by the altitude include 
see also SERIES 

1 1 1 1 
G+h+h=- 

2 3 T  
(4) 
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1 1 I 1 -= 
Tl 

h,+--r 
h3 1 

1 1 1 1 2 -+-=---=--, 
T2 r3 T  Tl 

where T is the INRADIUS and ri are the EXRADII 
son 19.29, p. 189). In addition, 

HA1 9 HH1 = HA2 l  HH2 = HA3 l  HH3 

HA1 l  HH1 = +(al” + az2 + as2) - 4R2, 

where R is the CIRCUMRADIUS. 

(5) 

(6) 

(J h 0 n- 

(7) 

(8 

The points Al, AS, HI, and & (and their permuta- 
tions with respect to indices) all lie on a CIRCLE, as 

do the points AS, H3, H, and HI (and their permuta- 
tions with respect to indices). TRIANGLES aA1A2A3 
and AAlHzH3 are inversely similar. 

The triangle HlHzH3 has the minimum PERIMETER 
of any TRIANGLE inscribed in a given ACUTE TRIAN- 
GLE (Johnson 1929, pp. 161-165). The PERIMETER of 

~lHlHzH3 is 2A/R (Johnson 1929, p. 191). Additional 
properties involving the FEET of the altitudes are given 

by Johnson (1929, pp. 261-262). 

see also CEVIAN, FOOT, ORTHOCENTER, PERPENDICU- 
LAR, PERPENDICULAR FOOT 
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Alysoid 

see CATENARY 

Ambient Isotopy 
An ambient isotopy from an embedding of a MANIFOLD 
Min Nto another is a HOMOTOPY ofself DIFFEOMOR- 
PHISMS (or ISOMORPHISMS, or piecewise-linear transfor- 
mations, etc.) of N, starting at the IDENTITY MAP, such 
that the “last” DIFFEOMORPHISM compounded with the 
first embedding of M is the second embedding of AL 
In other words, an ambient isotopy is like an ISOTOPY 
except that instead of distorting the embedding, the 
whole ambient SPACE is being stretched and distorted 

and the embedding is just “coming along for the ride.” 

Amicable Numbers 

For SMOOTH MANIFOLDS, a MAP is ISOTOPIC TFF it is 
ambiently isotopic. 

For KNOTS, the equivalence of MANIFOLDS under con- 
tinuous deformation is independent of the embedding 
SPACE. KNOTS of opposite CHIRALITY have ambient 
isotopy, but not REGULAR ISOTOPY. 

see also ISOTOPY, REGULAR ISOTOPY 

References 
Hirsch, M. W. Diflerential Topology. New York: Springer- 

Verlag, 1988. 

Ambiguous 
An expression is said to be ambiguous (or poorly de- 
fined) if its definition does not assign it a unique inter- 
pretation or value. An expression which is not ambigu- 
ous is said to be WELL-DEFINED. 

see also WELL-DEFINED 

Ambrose-Kakutani Theorem 
For every ergodic FLOW on a nonatomic PROBABILITY 

SPACE, there is a MEASURABLE SET intersecting almost 
every orbit in a discrete set. 

Amenable Number 
A number n which can be built up from INTEGERS al, 

a2, . ..) Uk by either ADDITION or MULTIPLICATION such 
that 

f)i = fiai = 72. 

i=l i=l 

The numbers {al, . . . , a,} in the SUM are simply a PAR- 
TITION of n. The first few amenable numbers are 

2+2=2x2=4 

1+2+3=1x2x3=6 

1+1+2+4=1x1x2x4=8 

1+1+2+2+2 =1x1x2x2x2=8. 

In fact, all COMPOSITE NUMBERS are amenable. 

see also COMPOSITE NUMBER, PARTITION, SUM 
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Amicable Numbers 

see AMICABLE PAIR, AMICABLE QUADRUPLE, AMICA- 
BLE TRIPLE, MULTIAMICABLE NUMBERS 
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Amicable Pair 
An amicable pair consists of two INTEGERS m, n for 
which the sum of PROPER DIVISORS (the DIVISORS ex- 
cluding the number itself) of one number equals the 
other. Amicable pairs are occasionally called FRIENDLY 
PAIRS, although this nomenclature is to be discouraged 
since FRIENDLY PAIRS are defined by a different, if re- 
lated, criterion. Symbolically, amicable pairs satisfy 

where s(n) is 
equivalently, 

s(m) = n (1) 

s(n) = m, (2) 

the RESTRICTED DIVISOR FUNCTION or, 

a(m) = a(n) = s(m) + s(n) = m -/- n, (3) 

where c(n) is the D~WSOR FUNCTION. The smallest 
amicable pair is (220, 284) which has factorizations 

220= 11.5.22 (4 

284 = 71 l  22 (5) 

giving RESTRICTED DIVISOR FUNCTIONS 

s(220) = ~{1,2,4,5,10,11,20,22,44,55,110} 

= 284 (6) 

~(284) = x(1,2,4,71,142} 

= 220. (7) 

The quantity 

44 = o(n) = s(m) -I- s(n), (8) 

in this case, 220 + 284 = 504, is called the PAIR SUM. 

In 1636, Fermat found the pair (17296, 18416) and in 
1638, Descartes found (9363584, 9437056). By 1747, 
Euler had found 30 pairs, a number which he later ex- 
tended to 60. There were 390 known as of 1946 (Scott 
1946). There are a total of 236 amicable pairs below 
lo8 (Cohen 1970), 1427 below lOlo (te Ri-?l + 1 ‘cj), 3340 
less than 1011 (Moews and MoewF 1”-3j, ,I ’ .ess than 
2.01 x loll (Moews and Moe: A , : .d 5ir:cjl ress than 
=2: 3.06 x 1011 (Moews and Moews). 

The first few amicable pairs are (2. 0, 284), (1184, 1210), 
(2620, 2924) (5020, 5564), <6232, 6368), (10744, 10856), 
(12285, 14595), (17296: C-I?6j, (63020, 76084), . . . 
(Sloane’s A002025 and A002046). AFT exhaustive tab- 
ulation is maintained by D. Moe*,,. 

Let an amicable pair be denoted h 4 with m < n. 

is called a regular amicable pair of type (i, j) if 

where g = GCD(m,n) is the GREATEST COMMON Dr- 
VISOR, 

GCD(g, 111) = GCD(g, N) = 1, (10) 

iW and N are SQUAREFREE, then the number of PRIME 
factors of A& and N are i and j. Pairs which are not 
regular are called irregular or exotic (te Riele 1986). 
There are no regular pairs of type (1, j) for j > 1. If - 
m = 0 (mod 6) and 

n = a(m) -m (11) 

is EVEN, then (m,n) cannot be an amicable pair (Lee 
1969). The minimal and maximal values of m/n found 
by te Riele (1986) were 

938304290/1344480478 = 0.697893577.. . (12) 

and 

4000783984/4001351168 = 0.9998582519.. . . (13) 

te Riele (1986) also found 37 pairs of amicable pairs hav- 
ing the same PAIR SUM. The first such pair is (609928, 
686072) and (643336, 652664), which has the PAIR SUM 

a(m) = o(n) = m + n = 1,296,OOO. (14) 

te Riele (1986) found no amicable n-tuples having the 
same PAIR SUM for n > 2. However, Moews and 
Moews found a triple in 1993, and te Riele found 
a quadruple in 1995. In November 1997, a quin- 
tuple and sextuple were discovered. The sextuple 
is (1953433861918, 2216492794082), (1968039941816, 
2201886714184), (1981957651366, 2187969004634), 
(1993501042130, 2176425613870), (2046897812505, 
2123028843495), (2068113162038, 2101813493962), all 
having PAIR SUM 4169926656000. Amazingly, the sex- 
tuple is smaller than any known quadruple or quintuple, 
and is likely smaller than any quintuple. 

On October 4, 1997, Mariano Garcia found the largest 
known amicable pair, each of whose members has 4829 
DIGITS. The new pair is 

Nl=CM[(P+Q)p89 -13 (15) 

Nz = CQ[(P - M)P8’ - 11, (16) 

where 

c = plpg (17) 
M= 287155430510003638403359267 (18) 

P= 574451143340278962374313859 (19) 

Q = 136272576607912041393307632916794623. 

(20) 

P, Q1 (P + Q)pBg - 1, and (P- M)Pgg - 1 are PRIME. 
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Pomerance (1981) has proved that 

[amicable numbers 2 n] < ne-[‘nC”)l 
l/3 

(21) 

for large enough n (Guy 1994). No nonfinite lower 
bound has been proven. 

see also AMICABLE QUADRUPLE, AMICABLE TRIPLE, 
AUGMENTED AMICABLE PAIR,BREEDER,CROWD, Eu- 
LER'S RULE, FRIENDLY PAIR, MULTIAMICABLE NUM- 
BERS, PAIR SUM, QUASIAMICABLE PAIR, SOCIABLE 
NUMBERS, UNITARY AMICABLE PAIR 
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Amicable Quadruple 
An amicable quadruple as a QUADRUPLE (a, b, c, d) such 
that 

u(a) = a(b) = u(c) = u(d) = a + b + c + d, 

where a(n) is the DIVISOR FUNCTION. 
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Amicable Triple 
Dickson (1913, 1952) defined an amicable triple to be a 
TRIPLE of three numbers (Z,m,n) such that 

s(l) = m + n 

s(m)=lfn 

s(n) = I+ m, 

where s(n) is the RESTRICTED DIVISOR FUNCTION 
(Madachy 1979). Dickson (1913, 1952) found eight sets 
of amicable triples with two equal numbers, and two 
sets with distinct numbers. The latter are (123228768, 
103340640, 124015008), for which 

)=103340640+124015008 = 227355648 

)= 123228768+124015008 = 24724377 

)= 123228768+10334064 = 226569408, 
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and (1945330728960, 2324196638720, 2615631953920), 
for which 

s(1945330728960) = 2324196638720+2615631953920 

Amphichiral 
An object is amphichiral (also called REFLEXIBLE) if it 
is superposable with its MIRROR IMAGE (i.e., its image 
in a plane mirror). 

= 4939828592640 

s(2324196638720) = 1945330728960 + 2615631953920 

see also AMPI-IICHIRAL KNOT, CHIRAL, DISYMMETRIC, 

HANDEDNESS, MIRROR IMAGE 

= 4560962682880 

s(2615631953920) = 1945330728960 + 2324196638720 

= 4269527367680. 

A second definition (Guy 1994) defines an amicable 
triple as a TRIPLE (a, b, c) such that 

da> = a(b) = o(c) =a++++, 

where o(n) is the DIVISOR FUNCTION. An example is 
(22325. 11, 25327, 223271). 

see also AMICABLE PAIR, AMICABLE QUADRUPLE 
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Amphichiral Knot 
An amphichiral knot is a KNOT which is capable of be- 
ing continuously deformed into its own MIRROR IMAGE. 
The amphichiral knots having ten or fewer crossings are 
04001 (FIGURE-OF-EIGHT KNOT), 06003, 08003, 08009, 

08012, 08017, 08018, 10017J0033, 10037, 10043, 10045, 

10079, 10081, 10 088, 10099, 10109, 10115, 10118, and 10123 

(Jones 1985). The HOMFLY POLYNOMIAL is good at 
identifying amphichiral knots, but sometimes fails to 
identify knots which are not. No complete invariant (an 
invariant which always definitively determines if a KNOT 
is AMPHICHIRAL) is known. 

Let b+ be the SUM of POSITIVE exponents, and b- the 
SUM of NEGATIVE exponents in the BRAID GROUP B,. 

If 

b+ - 3b- - n + 1 > 0, 

then the KNOT corresponding to the closed BRAID b is 
not amphichiral (Jones 1985) g 

New York: Springer-Verlag, p. 59, 1994. 
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York: Dover, p. 156, 1979. 
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notebooks/Sociable.m. 

Amortization 
The payment of a debt plus accrued INTEREST by regu- 
lar payments. 

Ampersand Curve 

see also AMPHICHIRAL, BRAID GROUP, INVERTIBLE 
KNOT, MIRROR IMAGE 
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Amplitude 
The variable 4 used in ELLIPTIC FUNCTIONS and EL- 
LIPTIC INTEGRALS, which can be defined by 

4 =amu= 
s 

dn IL du, 

where dn(u) is a JACOBI ELLIPTIC FUNCTION. The term 
“amplitude” is also used to refer to the maximum offset 
of a function from its baseline level. 

The PLANE CURVE with Cartesian equation 

see UZSO ARGUMENT (ELLIPTIC INTEGRAL), CHARAC- 

TERISTIC (ELLIPTIC INTEGRAL), DELTA AMPLITUDE, 
ELLIPTIC FUNCTION, ELLIPTIC INTEGRAL, JACOBI EL- 

LIPTIC FUNCTIONS, MODULAR ANGLE, MODULUS (EL- 

(Y 
2 

LIPTIC INTEGRAL), NOME, PARAMETER 
- x2)(x - 1)(2x - 3) = 4(x2 + y2 - 2x)2. 
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Anallagmatic Curve 
A curve which is invariant under’ INVERSION Exam- 
ples include the CARDIOID, CARTESIAN OVALS, CASSINI 
OVALS, LIMA~ON, STROPHOID, and MACLAURIN TRI- 

SECTRRIX. 

Anallagmatic Pavement 

see HADAMARD MATRIX 

Analogy 
Inference of the TRUTH of an unknown result obtained 
by noting its similarity to a result already known to be 
TRUE. In the hands of a skilled mathematician, anal- 
ogy can be a very powerful tool for suggesting new and 
extending old results. However, subtleties can render re- 
sults obtained by analogy incorrect, so rigorous PROOF 
is still needed. 

see also INDUCTION 

Analysis 
The study of how continuous mathematical structures 
(FUNCTIONS) vary around the NEIGHBORHOOD of a 
point on a SURFACE. Analysis includes CALCULUS, DIF- 
FERENTIAL EQUATIONS, etc. 

see UZSO ANALYSIS SITUS, CALCULUS, COMPLEX ANAL- 
YSIS, FUNCTIONAL ANALYSIS, NONSTANDARD ANALY- 
SIS, REAL ANALYSIS 
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Analysis Sit us 
An archaic name for TOPOLOGY. 

Analytic Continuation 
A process of extending the region in which a COMPLEX 
FUNCTION is defined. 

~~~~ESOMONODROMYTHEOREM,PERMANENCEOF AL- 
GEBRAIC FORM, PERMANENCE OF MATHEMATICAL RE- 
LATIONS PRINCIPLE 
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Analytic Function 
A FUNCTION in the COMPLEX NUMBERS C is analy- 
tic on a region R if it is COMPLEX DIFFERENTIABLE 
at every point in R. The terms HOLOMORPHIC FUNC- 
TION and REGULAR FUNCTION are sometimes used in- 
terchangeably with “analytic function.” If a FUNCTION 
is analytic, it is infinitely DIFFERENTIABLE. 

see UZSOBERGMAN SPACE$OMPLEX DIFFERENTIABLE, 
DIFFERENTIABLE, PSEUDOANALYTIC FUNCTION, SEMI- 
ANALYTIC, SUBANALYTIC 
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Analytic Geometry 
The study of the GEOMETRY of figures by algebraic rep- 
resent ation and manipulation of equations describing 
their positions, configurations, and separations. Ana- 
lytic geometry is also called COORDINATE GEOMETRY 
since the objects are described as n-tuples of points 
(where n = 2 in the PLANE and 3 in SPACE) in some 
COORDINATE SYSTEM. 

see UZSOARGAND DIAGRAM,~ARTESIAN COORDINATES, 
COMPLEX PLANE, GEOMETRY, PLANE, QUADRANT, 
SPACE, X-AXIS, Y-AXIS, Z-AXIS 
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Analytic Set 
A DEFINABLE SET, also called a SOUSLIN SET. 

see also COANALYTIC SET, SOUSLIN SET 

Anarboricity 
Given a GRAPH G, the anarboricity is the maximum 
number of line-disjoint nonacyclic SUBGRAPHS whose 
UNION is G. 

see also ARBORICITY 

Anchor 
Ananchoristhe BUNDLE MAP pfroma VECTOR BUN- 
DLE A to the TANGENT BUNDLE Wsatisfying 

1. W>,P(Y)l = P~w7) and 
2. [x7 WI = WL yl + (P(X) ’ W? 

where X and Y are smooth sections of A, 4 is a 
smooth function of B, and the bracket is the “Jacobi-lie 
bracket” ofa VECTOR FIELD. 

see also LIE ALGEBROID 
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Anchor Ring 
An archaic name for the TORUS. 
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And 
A term (PREDICATE) in LOGIC which yields TRUE ifone 
or more conditions are TRUE, and FALSE if any condi- 
tion is FALSE. A AND B is denoted A&B, A /\ B, or 
simply AB. The BINARY AND operator has the follow- 
ing TRUTH TABLE: 

A B AAB 

FF F 
FT F 
TF F 
TT T 

A PRODUCT of ANDs (the AND of 72 conditions) is 
called a CONJUNCTION, and is denoted 

Andr@s Reflection Method 
A technique used by Andre (1887) to provide an elegant 
solution to the BALLOT PROBLEM (Hilton and Pederson 
1991). 
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Andrew’s Sine 
The function 

*c > z = 
1 

sin (f) 1~51 < CT 

0, 121 > CT 

which occurs in estimation theory. 

see also SINE 
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n 

A 
Ak* 

Andrews Cube 

Two binary numbers can have the operation AND per- 
formed bitwise with 1 representing TRUE and 0 FALSE. 
Some computer languages denote this operation on A, 
B, and c as A&&B&&C orlogand(A,B,C). 

see also BINARY OPERATORJNTERSECTION, NOT, OR, 
PREDICATEJ'RUTH TABLE, XOR 

Anderson-Darling Statistic 
A statistic defined to improve the KOLMOGOROV- 
SMIRNOV TEST in the TAIL of a distribution. 

see &O KOLMOGOROV-SMIRNOV TEST, KUIPER 
STATISTIC 
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Scientific Computing, 2nd ed. Cambridge, England: Cam- 
bridge University Press, p. 621, 1992. 

Andr& Problem 
The determination of the number of ALTERNATING PER- 
MUTATIONS having elements (1, 2, , , . , n} 

see SEMIPERFECT MAGIC CUBE 

Andrew+Curtis Link 
The LINK of 2-spheres in Iw4 obtained by SPINNING in- 
tertwined arcs. The link consists of a knotted 2-sphere 
and a SPUN TREFOIL KNOT. 

see UZSO SPUN KNOT, TREFOIL KNOT 

References 
Rolfsen, D. Knots and Links. Wilmington, DE: Publish or 

Perish Press, p. 94, 1976. 

Andrew+Schur Identity 

n 

Q 
k2+ak 

E [ 

8.x - k + a 

k I 
03 

c 
10k2+(4a-l)k 2n + 2a + 2 - - Q n - 5k 

k=-m I [IOk + 2a + 21 

[zn + 2a + 21 

see also ALTERNATING PERMUTATION 
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where [x] is a GAUSSIAN POLYNOMIAL. It is a POLY- 

NOMIAL identity for a = 0, 1 which implies the ROGERS- 
RAMANUJAN IDENTITIES by taking n + 00 and apply- 
ing the JACOBI TRIPLE PRODUCT identity. A variant of 
this equation is 

n 

c 

k2f2ak n-kk+a 

1451 
- 

Ix 
15k2+(6a+l)k - 4 

- l(n+za+z)/sJ 

[lOk+2a+2] 

x [2n+2a+2] ' (2) 

where the symbol 1x1 in the SUM limits is the FLOOR 
FUNCTION (Paule 1994). The RECIPROCAL of the iden- 
tity is 

00 

r I  

1 

-  

-  

j=O (' -  ' 

%+')(I - q 20j+4a+4)( 1 - q20j-4a+16) (3) 

for a = 0, 1 (Paule 1994). For q = 1, (1) and (2) become 

n+k+a 

n-k > 

- - (4) 
- l(n+2a+2)/5J 

References 
Andrews, G. E. “A Polynomial Identity which Implies the 

Rogers-Ramanujan Identities.” Scripta Math. 28, 297- 
305, 1970. 

Paule, P. “Short and Easy Computer Proofs of the Rogers- 
Ramanujan Identities and of Identities of Similar Type.” 
Electronic J. Combinatorics 1, RlO, 1-9, 1994. http: // 
uww.combinatorics.org/Volumel/volurnel.html#RlO. 

Andrica’s Conjecture 
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Andrica’s conjecture states that, for pn the nth PRIME 
NUMBER, the INEQUALITY 

holds, where the discrete function A, is plotted above. 
The largest value among the first 1000 PRIMES is for 
n = 4, giving J11 - fi z 0.670873. Since the Andrica 
function falls asymptotically as n increases so a PRIME 
GAP of increasing size is needed at large n, it seems 
likely the CONJECTURE is true. However, it has not yet 
been proven. 
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An bears a strong resemblance to the PRIME DIFFER- 

ENCE FUNCTION, plotted above, the first few values of 
which are 1, 2, 2, 4, 2, 4, 2, 4, 6, 2, 6, . . . (Sloane’s 
A001223). 

see also BROCARD’S CONJECTURE, GOOD PRIME, FOR- 
TUNATE PRIME, P~LYA CONJECTURE, PRIME DIFFER- 
ENCE FUNCTION, TWIN PEAKS 

References 
Golomb, S. W+ “Problem E2506: Limits of Differences of 

Square Roots.” Amer. Math. Monthly 83, 60-61, 1976. 
Guy, R. K. Unsolved Problems in Number Theory, 2nd ed. 

New York: Springer-Verlag, p, 21, 1994. 
Rivera, C. “Problems & Puzzles (Conjectures): An- 

drica’s Conjecture.” http://www.sci.net.mx/-crivera/ 
ppp/conj ,008. htm. 

Sloane, N. J. A. Sequence A001223/M0296 in “An On-Line 
Version of the Encyclopedia of Integer Sequences.” 

Anger Function 
A generalization of the BESSEL FUNCTION OF THE 
FIRST KIND defined by 

s 

7r 
cos(v0 - z sin 0) d& 

0 

If v is an INTEGER n, then Jn(z) = Jn(Z), where Jn(Z) 
is a BESSEL FUNCTION OF THE FIRST KIND. Anger’s 
original function had an upper limit of 275 but the cur- 
rent NOTATION was standardized by Watson (1966). 

see also BESSEL FUNCTION, MODIFIED STRUVE FUNC- 
TION, PARABOLIC CYLINDER FUNCTION, STRUVE 
FUNCTION, WEBER FUNCTIONS 

References 
Abramowitz, M. and Stegun, C. A. (Eds.). “Anger and We- 

ber Functioris.” $12.3 in Handbook of Mathematical Func- 

tions with Formulas, Graphs, and Mathematical Tables, 
9th printing. New York: Dover, pp* 498-499, 1972. 

Watson, G. N. A Treatise on the Theory of Bessel Functions, 

2nd ed. Cambridge, England: Cambridge University Press, 
1966. 



Angle Angle Bracket 45 

Angle Angle Bisector 

exterior angle 
‘. bisection Given two intersecting LINES or LINE SEGMENTS, the 

amount of ROTATION about the point of intersection 
(the VERTEX) required to bring one into correspondence 
with the other is called the angle 8 between them. An- 
gles are usually measured in DEGREES (denoted “), RA- 
DIANS (denoted rad, or without a unit), or sometimes 

GRADIANS (denoted grad). 

-\ \ \ \ 
The (interior) bisector of an ANGLE is the LINE or LINE 
SEGMENT which cuts it into two equal ANGLES on the 

same “side” as the ANGLE. 

One full rotation in these three measures corresponds to 
360”, 2~ rad, or 400 grad. IIalf a full ROTATION is called 
a STRAIGHT ANGLE, and a QUARTER of a full rotation 
is called a RIGHT ANGLE. An angle less than a RIGHT 
ANGLE is called an ACUTE ANGLE, and an angle greater 
than a RIGHT ANGLE is called an OBTUSE ANGLE. 

The use of DEGREES to measure angles harks back to 

the Babylonians, whose SEXAGESIMAL number system 

was based on the number 60. 360” likely arises from the 
Babylonian year, which was composed of 360 days (12 
months of 30 days each). The DEGREE is further divided 
into 60 ARC MINUTES, and an ARC MINUTE into 60 
ARC SECONDS. A more natural measure of an angle is 
the RADIAN. It has the property that the ARC LENGTH 
around a CIRCLE is simply given by the radian angle 
measure times the CIRCLE RADIUS. The RADIAN is also 
the most useful angle measure in CALCULUS because the 
DERIVATIVE of TRIGONOMETRIC functions such as 

Al T3 A2 

The length of the bisector of ANGLE Al in the above 

TRIANGLE nA1A2A3 is given by 

[ 

a1 
2 

t1 
2 

= a2a3 l- (a2 +a3)2 ' 
I 

where ti E AiTi and ai s Aj Ak. The angle bisectors 
meet at the INCENTER 1, which has TRILINEAR COOR- 
DINATES l&l. 

see also ANGLE BISECTOR THEOREM, CYCLIC QUAD- 
RANGLE, EXTERIOR ANGLE BISECTOR, ISODYNAMIC 
POINTS, ORTHOCENTRIC SYSTEM, STEINER-LEHMUS d 

da: sina: = cost THEOREM,TRISECTION 

References 
Coxeter, H. S. M. and Greitzer, S. L. Geometry Revisited. 

Washington, DC: Math. Assoc. Amer., pp. 9-10, 1967. 
Dixon, R. Mathogruphics. New York: Dover, p. 19, 1991. 
Mackay, J. S. “Properties Concerned with the Angular Bi- 

sectors of a Triangle.” Proc. Edinburgh Math. Sot. 13, 
37-102,1895, 

does not require the insertion of multiplicative constants 
like r/180. GRADIANS are sometimes used in surveying 
(they have the nice property that a RIGHT ANGLE is ex- 

actly 100 GRADIANS), but are 
if at all, in mathematics. 

encountered infrequently, 

The concept of an angle can be generalized from the 
CIRCLE to the SPHERE. The fraction of a SPHERE sub- 

tended by an object is measured in STERADIANS, with 
the entire SPHERE corresponding to 4n STERADIANS. 

Angle Bisector Theorem 
The ANGLE BISECTOR ofan ANGLE ina TRIANGLE di- 
vides the opposite side in the same RATIO as the sides 
adjacent to the ANGLE. A ruled SEMICIRCLE used for measuring and drawing 

angles is caXled a PROTRACTOR. A COMPASS can also 

be used to draw circular ARCS of some angular extent. 

see dso ACUTE ANGLE, ARC MINUTE, ARC SECOND, 
CENTRAL ANGLE, COMPLEMENTARY ANGLE,DEGREE, 
DIHEDRAL ANGLE,DIRECTED ANGLE,EULERANGLES, 
GRADIAN, HORN ANGLE, INSCRIBED ANGLE, OBLIQUE 
ANGLE, OBTUSE ANGLE, PERIGON, PROTRACTOR, 
RADIAN, RIGHT ANGLE, SOLID ANGLE, STERADIAN, 
STRAIGHTANGLE,SUBTEND,SUPPLEMENTARYANGLE, 
VERTEX ANGLE 

Angle Bracket 
The combination of a BRA and KET (bra+ket = 
bracket) which represents the INNER PRODUCT of two 

functions or vectors, 

(VI4 =v*w. 

By itself, the BRA is a COVARIANT ~-VECTOR, and the 
KET isa COVARIANT ONE-FORM. Thesetermsarecom- 
monly used in quantum mechanics. 

see &OBRA,DIFFERENTIAL ~-FORM, KET,ONE-FORM 

- n  

References 
Dixon, R. Mathographics. New York: Dover, pp. 99-100, 

1991. 
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Angle of Parallelism 
P 

A C D B 

Given a point P and a LINE AB, draw the PERPENDIC- 
ULAR through P and call it PC. Let PD be any other 
line from P which meets CB in D. In a HYPERBOLIC 
GEOMETRY, as D moves off to infinity along CB, then 
the line PD approaches the limiting line PE, which is 
said to be parallel to CB at P. The angle LCPE which 
PE makes with PC is then called the angle of paral- 
lelism for perpendicular distance z, and is given by 

II(x) = 2 tan-‘(P). 

This is knownas LOBACHEVSKY'S FORMWLA. 

see also HYPERBOLIC GEOMETRY, LOBACHEVSKY'S 
FORMULA 

References 
Manning, H. P. Introductory Non-Euclidean Geometry. New 

York: Dover, pp. 31-32 and 58, 1963. 

Angle FIXsection 

see TRISECTION 

Angular Acceleration 
The angular acceleration CII is defined as the time DE- 
RIVATIVE of the ANGULAR VELOCITY w, 

dw d2B, a 
-= a= dt -@z=;. 

see also ACCELERATION, ANGULAR DISTANCE, ANGU- 
LAR VELOCITY 

Angular Defect 
The DIFFERENCE between the SUM offace ANGLES Ai 
at a VERTEX ofa POLYHEDRON and 2n, 

S=27v- Ai. x 

see also DESCARTES TOTAL ANGULAR DEFECT, JUMP 
ANGLE 

Angular Distance 
The angular distance traveled around a CIRCLE is the 
number of RADIANS the path subtends, 

c e 
tk G2R= -. 

T 

see also ANGULAR ACCELERATION, ANGULAR VELOC- 
ITY 

Angular Velocity 
The angular velocity w  is the time DERIVATIVE of the 
ANGULAR DISTANCE 8 with direction & PERPENDICU- 
LAR to the plane of angular motion, 

d0, v 
WE-Z=-. 

dt r 

see also ANGULAR ACCELERATION, ANGULAR DIS- 
TANCE 

Anharmonic Ratio 

see CROSS-RATIO 

Anisohedral Tiling 
A Lanisohedral tiling is a tiling which permits no n- 
ISOHEDRAL TILING with n < k. 

References 
BerElund, J. “Is There a k-Anisohedral Tile for k 2 5?” 

Amer. Math. Monthly 100, 585-588, 1993. 
Klee, V. and Wagon, S. Old and New Unsolved Problems in 

Plane Geometry and Number Theory. Washington, DC: 
Math. Assoc. Amer., 1991. 

Annihilator 
The term annihilator is used in several different ways in 
various aspects of mathematics. It is most commonly 
used to mean the SET of all functions satisfying a given 
set of conditions which is zero on every member of a 
given SET. 

Annulus 
The region in common to two concentric CIRCLES of 
RADII a and b. The AREA of an annulus is 

A annulus = n(b2 - a”). 

An interesting identity is as follows. In the figure, 

Cl 

C2 

@ 
A 

the AREA of the shaded region A is given by 

A=C1+C2. 

see also CHORD, CIRCLE, CONCENTRIC CIRCLES,LUNE 
(PLANE),~PHERICAL SHELL 

References 
Pappas, T. “The Amazing Trick.” The Joy of Mathematics. 

San Carlos, CA: Wide World Publ./Tetra, p. 69, 1989. 

Annulus Conjecture 

~~~ANNULUS THEOREM 



Annulus Theorem 

Annulus Theorem 
Let K,” and K,” be disjoint bicollared knots in IF1 or 
s n+l and let U denote the open region between them. 
Then the closure of U is a closed annulus s” x [O, 11. 

Except for the case n = 3, the theorem was proved by 
Kirby (1969). 

References 
Kirby, R. C. “Stable Homeomorphisms and the Annulus Con- 

jecture.” Ann. Math. 89, 575-582, 1969. 
Rolfsen, D. Knots and Links. Wilmington, DE: Publish or 

Perish Press, p. 38, 1976. 

Anomalous Cancellation 
The simplification of a FRACTION a/b which gives a cor- 
rect answer by “canceling” DIGITS of a and b. There 
are only four such cases for NUMERATOR and DENOM- 
INATORS of two DIGITS in base 10: 64/16 = 4/l = 4, 

98149 = 814 = 2, 95119 = 511 = 5, and 65126 = 512 

(Boas 1979). 

The concept of anomalous cancellation can be extended 
to arbitrary bases. PRIME bases have no solutions, but 
there is a solution corresponding to each PROPER DWI- 
SOR of a COMPOSITE b. When b - 1 is PRIME, this type 
of solution is the only one. For base 4, for example, 
the only solution is 3241134 = 24. Boas gives a table of 
solutions for b < 39. The number of solutions is EVEN - 
unless b is an EVEN SQUARE. 

3-r 

4 1 

6 2 
8 2 
9 2 

10 4 
12 4 
14 2 

15 6 
16 7 
18 4 

20 4 
21 10 

22 6 
24 6 

b N 

26 4 
27 6 
28 10 
30 6 
32 4 
34 6 
35 6 
36 21 
38 2 
39 6 

REDUCED 

Mathemat- 
DC: Math. 
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Anonymous 
A term in SOCIAL CHOICE THEORY meaning invariance 
of a result under permutation of voters. 

see also DUAL VOTING, MONOTONIC VOTING 

Anosov Automorphism 
A HYPERBOLIC linear map Iw" -3 IIB" with INTEGER en- 

tries in the transformation MATRIX and DETERMINANT 
*l is an ANOSOV DIFFEOMORPHISM of the ~-TORUS, 
called an Anosov automorphism (or HYPERBOLIC AU- 
TOMORPHISM). Here, the term automorphism is used in 
the GROUP THEORY sense. 

Anosov Diffeomorphism 
An Anosov diffeomorphism is a C1 DIFFEOMORPHISM 4 
suchthatthe MANIFOLD ik! is HYPERBOLIC withrespect 

to 4. Very few classes of Anosov diffeomorphisms are 
known. The best known is ARNOLD'S CAT MAP. 

A HYPERBOLIC linear map Iw” + Ik” with INTEGER 
entries in the transformation MATRIX and DETERMI- 
NANT *l is an Anosov diffeomorphism of the ~-TORUS. 
Not every MANIFOLD admits an Anosov diffeomorphism. 

Anosov diffeomorphisms are EXPANSIVE, and there are 
no Anosov diffeomorphisms on the CIRCLE. 

It is conjectured that if 4 : M + M is an Anosov dif- 
feomorphism on a COMPACT RIEMANNIAN MANIFOLD 
and the NONWANDERING SET O(4) of 6 is AI, then $ 
is TOPOLOGICALLY CONJUGATE to a FINITE-TO-ONE 
FACTOR of an ANOSOV AUTOMORPHISM of a NILMAN- 
IFOLD. It has been proved that any Anosov diffeomor- 
phismonthe ~-TORUS is TOPOLOGICALLY CONJUGATE 
to an ANOSOV AUTOMORPHISM, and also that Anosov 
diffeomorphisms are C1 STRUCTURALLY STABLE. 

see UZSO ANOSOV AUTOMORPHISM, AXIOM A DIFFEO- 
MORPHISM,DYNAMICAL SYSTEM 

References 
Anosov, D, V. “Geodesic Flow on Closed Riemannian Man- 

ifolds with Negative Curvature.” Proc. Steklov Inst., 
A. M. S. 1969. 

Smale, S. “Different iable Dynamical Systems.” Bull. Amer. 
Math. Sm. 73, 747-817, 1967. 

Anosov Flow 
A FLOW defined analogously to the ANOSOV DIFFEO- 
MORPHISM, except that instead of splitting the TAN- 
GENT BUNDLE into two invariant sub-BUNDLES, they 
are split into three (one exponentially contracting, one 
expanding, and one which is l-dimensional and tangen- 

tial to the flow direction). 

see also DYNAMICAL SYSTEM 

Anomalous Number 

see BENFORD'S LAW 
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Anosov Map 
Animportantexampleofa AN~S~V DIFFEOMORPHISM. 

[z:] = [f :] [::: 

where zn+l,yn+l are computed mod 1 

see U~SO ARNOLD'S CAT MAP 

References 
Toussaint , G. “Anthropomorphic Polygons.” Amer. Math. 

Monthly 122, 31-35, 1991. 

. 
Anthyphairetic Ratio 
An archaic word for a CONTINUED FRACTION. 

ANOVA References 
“Analysis of Variance .” A STATISTICAL TEST for het- 
erogeneity of MEANS by analysis of group VARIANCES. 
To apply the test, assume random sampling of a vari- 
ate y with equal VARIANCES, independent errors, and a 
NORMAL DISTRIBUTION. Let nbethenumberof REPLI- 
CATES (sets of identical observations) within each of K 
FACTOR LEVELS (treatment groups), and yij be the jth 
observation within FACTOR LEVEL i. Also assume that 
the ANOVA is “balanced” by restricting n to be the 
same for each FACTOR LEVEL. 

Now define the sum of square terms 

k n 

SST E )\ )‘(y;j - 5)” (1) 

2 

yij - 
(ce, c;=1 Yij)a 

Kn (2 > 
i=l j=l 

> 

k n 

SSE E x y,(yij - gi)’ (4 
i=l j=l 

= SST - SSA, (5) 

which are the total, treatment, and error sums of 
squares. Here, & is the mean of observations within 
FACTOR LEVEL i, and 5 is the ‘Lgroup” mean (i.e., mean 
of means). Compute the entries in the following table, 
obtaining the P-VALUE corresponding to the calculated 
F-RATIO of the mean squared values 

Category SS O Freedom Mean Squared F-Ratio 

treatment SSA K-l MSA=s E 

error SSE K(n - 1) MSE= & 

total SST Kn - 1 MST- & 

If the P-VALUE is small, reject the NULL HYPOTHESIS 
that all MEANS are the same for the different groups. 

see also FACTOR LEVEL, REPLICATE, VARIANCE 

An ticlas tic 

Anthropomorphic Polygon 
A SIMPLE POLYGON with precisely two EARS and one 
MOUTH. 

Fowler, D. H. The Mathematics of Plato’s Academy: A New 
Reconstruction. New York: Oxford University Press, 1987. 

Antiautomorphism 
If a MAP f:G-+ G’from a GROUP Gto a GROUP G’ 
satisfies f(ab) = f(cz)f(b) for all a, b e G, then f is said 
to be an antiautomorphism. 

see UZSO AUTOMORPHISM 

Anticevian Triangle 
Given a center c~ : p : y, the anticevian triangle is 
defined as the TRIANGLE with VERTICES -a : p : y, 
QI : -0 : y, and CY : p : -7. If A’B’C’ is the CEVIAN 
TRIANGLE of X and A”B”C” is an anticevian trian- 
gle,thenXand A” are HARMONIC CONJUGATE POINTS 
with respect to A and A’. 

see also CEVIAN TRIANGLE 

References 
Kimberling, C. “Central Points and Central Lines in the 

Plane of a Triangle.” Math. Mug. 67, 163487, 1994. 

Antichain 
Let P be a finite PARTIALLY ORDERED SET. An an- 
tichain in P is a set of pairwise incomparable elements 
(a family of SUBSETS such that, for any two members, 
one is not the SUBSET of another). The WIDTH of P is 
themaximum CARDINALITY ofan ANTICHAIN in P. For 
a PARTIAL ORDER, the size of the longest ANTICHAIN 
is called the WIDTH. 

see also CHAIN, DILWORTH'S LEMMA, PARTIALLY OR- 
DERED SET,WIDTH (PARTIAL ORDER) 

References 
Sloane, N. J. A. Sequence A006826/M2469 in “An On-Line 

Version of the Encyclopedia of Integer Sequences.” 

Anticlastic 
Whenthe GAUSSIAN CURVATURE K is everywhere NEG- 
ATIVE, a SURFACE is called anticlastic and is saddle- 
shaped. A SURFACE on which K is everywhere POSI- 
TIVE is called SYNCLASTIC. A point at which the GAGS- 
SIAN CURVATURE is NEGATIVE is called a HYPERBOLIC 
POINT. 

see also ELLIPTIC POINT, GAUSSIAN QUADRATURE, 
HYPERBOLIC POINT, PARABOLIC POINT, PLANAR 
POINT, SYNCLASTIC 
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Anticommutative 
An OPERATOR * for which a * b = -b * a is said to be 
anticommutative. 

see also COMMUTATIVE 

Anticommutator 
For OPERATORS A and fi, the anticommutator is defined 

bY 

see also COMMUTATORJORDAN ALGEBRA 

Ant icomplementary Triangle 

A TRIANGLE AA’B’C’ which has a given TRIANGLE 
AABC as its MEDIAL TRIANGLE. The TRILINEAR Co- 
ORDINATES of the anticomplementary triangle are 

see also MEDIAL TRIANGLE 

Antiderivative 

see INTEGRAL 

Antidifferentiation 

see INTEGRATION 

Ant igonal Points 

B 

Given LAXB + LAYB = 71” RADIANS in the above fig- 
ure, then X and Y are said to be antigonal points with 
respect to A and B. 

Antihomography 
A CIRCLE-preserving TRANSFORMATION composed of 
an ODD number of INVERSIONS. 

see also HOMOGRAPHY 

Antihomologous Points 
Two points which are COLLINEAR with respect to 
a SIMILITUDE CENTER but are not HOMOLOGOUS 
POINTS. Four interesting theorems from Johnson (1929) 
follow. 

1. Two pairs of antihomologous points form inversely 
similar triangles with the HOMOTHETIC CENTER. 

2. The PRODUCT of distances from a HOMOTHETIC 
CENTER to two antihomologous points is a constant. 

3. Any two pairs of points which are antihomologous 
with respect to a SIMILITUDE CENTER lie on a CIR- 
CLE. 

4. The tangents to two CIRCLES at antihomologous 
points make equal ANGLES with the LINE through 
the points. 

see also H0~0~0G0u 
SIMILIT UDE CENTER 

s POINTS, HUMOTHETIC CENTER, 

References 
Johnson, R. A. Modern Geometry: An Elementary Treatise 

on the Geometry of the Triangle and the Circle. Boston, 
MA: Houghton Mifflin, pp. 1941, 1929. 

Antilaplacian 
The antilaplacian of u with respect to 2 is a function 
whose LAPLACIAN with respect to x equals u. The an- 
tilaplacian is never unique. 

see also LAPLACIAN 

Antilinear Operator 
An antilinear OPERATOR satisfies the following two 
properties: 

A[fl(X) + fi(X>] = Afl(X> + Afd4 
Acf (2) = c*Af (x)7 

where C* is the COMPLEX CONJUGATE of c. 

see UZSO LINEAR OPERATOR 

Antilogarithm 
The INVERSE FUNCTION of the LOGARITHM, defined 
such that 

logb(antilogb z) = x = antilog&og, 2). 

The antilogarithm in base b of z is therefore b’. 

see also COLOGARITHM, LOGARITHM, POWER 

Antimagic Graph 
A GRAPH with e EDGES labeled with distinct elements 

(1 2 e} so that the SUM of the EDGE labels at each 
VJL&X hiffer . 

see also MAGIC GRAPH 

References 
Hartsfield, N. and Ringel, G. Pearls in Graph Theory: A 

Comprehensive Introduction. San Diego, CA: Academic 
Press, 1990. 
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Ant imagic Square Antinomy 

An antimagic square is an n x n ARRAY of integers from 
1 to n2 such that each row, column, and main diago- 
nal produces a different sum such that these sums form 
a SEQUENCE of consecutive integers. It is therefore a 
special case of a HETEROSQUARE. 

A PARADOX or contradiction. 

Antiparallel 

A2 

4 

A pair of LINES B1, B2 which make the same ANGLES 
but in opposite order with two other given LINES A1 and 
Aa, as in the above diagram, are said to be antiparallel 
to A1 and AZ. 

Antimagic squares of orders one and two are impossi- 
ble, and it is believed that there are also no antimagic 
squares of order three. There are 18 families of an- 
timagic squares of order four. Antimagic squares of or- 
ders 4-9 are illustrated above (Madachy 1979). 

see UZW HYPERPARALLEL, PARALLEL 

References 
Phillips, A. W. and Fisher, I. Elements of Geometry. New 

York: American Book Co., 1896. 

see also HETEROSQUARE, MAGIC SQUARE, TALISMAN 
SQUARE 

References 
Abe, G. “Unsolved Problems on Magic Squares.” Disc. 

Math. 127, 3-13, 1994. 
Madachy, J* S. “Magic and Antimagic Squares." Ch. 4 in 

Madachy’s Mathematical Recreations. New York: Dover, 
pp, 103~113,1979. 

s Weisstein, E. W. “Magic Squares.” http : //www , astro . 
virginia.edu/-eww6n/math/notebooks/MagicSqu~es.m. 

Antimorph 
A number which can be represented both in the form 

X02 - Dyo2 and in the form Dxr2 - y12. This is only 
possible when the PELL EQUATION 

X2 - Dy2 = -1 

The antipedal triangle A of a given TRIANGLE T is the 
TRIANGLE of which T is the PEDAL TRIANGLE. For 
a TRIANGLE with TRILINEAR COORDINATES QI : p : y 
and ANGLES A, B, and C, the antipedal triangle has 
VERTICES with TRILINEAR COORDINATES 

is solvable. Then - (~+acosC)(y+a~~~B) : (y+acosB)(a+~cosC) : 

X2 - Dy2 = -(x0 - Dyo2)(xn2 - Dyn2) 
(~+acosC)(a+yosB) 

= qxoyn - YoGJ2 - (x0&L - Qoy7J2* 
(y+~cosA)(~+acosC) : -(y+pcosA)(cu+pcosC) : 

(a+~cosC)(/3+~cosA) 

see also IDONEAL NUMBER, POLYMORPH 
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inal TRIANGLE. Furthermore, the PRODUCT of their 

Antimorphic Number 
AREAS equals the SQUARE of the AREA of the original 

see ANTIMORPH 
TRIANGLE (Gallatly 1913). 

see also PEDAL TRIANGLE 
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References 
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Antipersistent Process 
A FRACTAL PROCESS for which H < l/2, SO T < 0. 

see UZSO PERSISTENT PROCESS 

Antipodal Map 
The MAP which takes points on the surface of a SPHERE 
s2 to their ANTIPODAL POINTS. 

Antipodal Points 
Two points are antipodal (i.e., each is the ANTIPODE of 
the other) if they are diametrically opposite. Examples 
include endpoints of a LINE SEGMENT, or poles of a 
SPHERE. Given a point on a SPHERE with LATITUDE 6 
and LONGITUDE X, the antipodal point has LATITUDE 
-6 and LONGITUDE X & 180” (where the sign is taken 
so that the result is between -180” and +1800). 

see also ANTIPODE, DIAMETER, GREAT CIRCLE, 
SPHERE 

Antipode 
Given a point A, the point B which is the ANTIPODAL 
POINT of A is said to be the antipode of A. 

see also ANTIPODAL POINTS 

Antiprism 

A SEMIREGULAR POLYHEDRON constructed with 2 n- 
gons and 2n TRIANGLES. The 3-antiprism is simply the 
OCTAHEDRON. The DUALS are the TRAPEZOHEDRA. 
The SURFACE AREA of a n-gonal antiprism is 

S = 2An-gon + 2nAn 

= 2 [$a2cot (z)] +2n(~dL2) 

= +a2 [cot (E) +fi] . 

see also OCTAHEDRON,PRISM,PRISMOID,TRAPEZOHE- 
DRoN 
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see GEOMETRIC PROBLEMS OF ANTIQUITY 

Antisnowflake 

see KOCH ANTISNOWFLAKE 

Antisquare Number 
A number of the form p” . A is said to be an antisquare 
if it fails to be a SQUARE NUMBER for the two reasons 
that a is ODD and A is a nonsquare modulo p. 

see also SQUARE NUMBER 

Antisymmetric 
A quantity which changes SIGN when indices are re- 
versed. For example, Aij E ai - aj is antisymmetric 
since Aij = -Aji+ 

see also ANTISYMMETRIC MATRIX, ANTISYMMETRIC 
TENSOR,~YMMETRIC 

Antisymmetric Matrix 
An antisymmetric matrix is a MATRIX which satisfies 
the identity 

AC-AT (1) 

where AT is the MATRIX TRANSPOSE. In component 
notation, this becomes 

t&j = -Oiji* 

Letting k = i = j, the requirement becomes 

(2) 

akk = -akk, (3) 

so an antisymmetric matrix must have zeros on its diag- 
onal. The general 3 x 3 antisymmetric matrix is of the 
form 

[ 

0 a12 a3 

-a12 0 a23 9 1 (4) 
-a13 -a23 0 

Applying A-’ to both sides of the antisymmetry condi- 
tion gives 

-A-lAT = 1. (5) 

Any SQUARE MATRIX can be expressed as the sum of 
symmetric and antisymmetric parts. Write 

A= +(A + AT) + +(A - AT). (6) 

I  c 
d c ; .  I I  

A= 

a11 a12 '*' ah 

(7) 



52 Antisymmetric Relation 

a11 a21 -* l  ad 

AT = “‘” 

an2 
““” ; ’  l  , , 

. * l  . 
1  

Apeirogon 

Antoine’s Horned Sphere 
A topological 2-sphere in 3-space whose exterior is not 
SIMPLY CONNECTED. The outer complement of An- 

1 
. . . l  

a in  a2n ” ’ arm 1 
toine’s horned sphere is not SIMPLY CONNECTED. Fur- 
thermore, the group of the outer complement is not 
even finitely generated. Antoine’s horned sphere is in- so 

A+AT= 

2Ull al2 + a21 l  l  l  aln + &xl 
equivalent to ALEXANDER'S HORNED SPHERE since the 

WJ + a21 2a22 “’ a2n + an2 

1 

complement in Iw3 of the bad points for ALEXANDER'S 

j HORNED SPHERE is SIMPLY CONNECTED. 

1 see ~SO ALEXANDER'S HORNED SPHERE 

/fi\ m I- 

which is symmetric, and 

A-AT= 

[ 

0 a12 - a21 l  . . ain - ani 
-(al2 - ~21) 0 . . . 

a27-b - an2 

. . 
l  

. 

l  l  . l  

. . l  . 

--(al, - Gl) -(a2n -Gt2) *” 0 1 1 
which is antisymmetric. 

see also SKEW SYMMETRIC MATRIX, SYMMETRIC MA- 
TRIX 

Antisymmetric Relation 
A RELATION R on a SET S is antisymmetric provided 
that distinct elements are never both related to one an- 
other. In other words zRy and yRz together imply that 
z = y. 

Antisymmetric Tensor 
An antisymmetric tensor is defined as a TENSOR for 
which 

A rnn 
= -A”“. 

(1) 

Any TENSOR can be written as a sum of SYMMETRIC 
and antisymmetric parts as 

A 77x72 _ 1 - &4”” + An,) + $(A”” - An,)* (2) 

The antisymmetric part is sometimes denoted using the 
special notation 

nererences 
Alexander, J. W. “An Example of a Simply-Connected Sur- 

face Bounding a Region which is not Simply-Connected.” 
PTOC. Nat. Acad. Sci. 10, 8-10, 1924. 

Rolfsen, D. Knots and Links. Wilmington, DE: Publish or 
Perish Press, pp. 76-79, 1976. 

Antoine’s Necklace 

Construct a chain C of 2n components in a solid TORUS 
V. Now form a chain Cl of 2n solid tori in V, where 

m(V - Cl) %1(V-C) 

via inclusion. In each component of Cl, construct a 
smaller chain of solid tori embedded in that component. 
Denote the union of these smaller solid tori Cs. Con- 
tinue this process a countable number of times, then the 
intersection 00 A 

A=()Gi 
i=l 

which is a nonempty compact SUBSET of Iw3 is called 
Antoine’s necklace. Antoine’s necklace is HOMEOMOR- 
PHIC with the CANTOR SET. 

see also ALEXANDER'S HORNED SPHEREJECKLACE 

References 
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Abbl _ 1 (A”b _ Aba) -- 

2 
. (3) 

For a general TENSOR, 

A[ al **-CL, I= l - acal ---a, x 
A a1 -*-a, 

I (4) 

permutations 

where E~~...~, is the LEVI-CIVITA SYMBOL, a.k.a. the 
PERMUTATION SYMBOL. 

see also SYMMETRIC TENSOR 

Apeirogon 
The REGULAR POLYGON essentially equivalent to the 
CIRCLE having an infinite number of sides and denoted 
with SCHL;~FLI SYMBOL (00). 

see also CIRCLE, REGULAR POLYGON 
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Apkry’s Constant 

Apkry’s Constant 
N.B. A detailed on-line essay by S. Finch was the start- 
ing point for this entry. 

Ap&y’s constant is defined by 

c(3) = 1.2020569.. . , (1) 

(Sloane’s A002117) where c(z) is the RIEMANN ZETA 
FUNCTION. Ap&y (1979) proved that c(3) is IRRA- 
TIONAL, although it is not known if it is TRANSCEN- 
DENTAL. The CONTINUED FRACTION for c(3)& [1,4, 1, 
18, 1, 1, 1, 4, 1, . . . ] (Sloane’s A013631). The positions 
at which the numbers 1, 2, + + + occur in the continued 
fraction are 1, 12, 25, 2, 64, 27, 17, 140, 10, . l  l  l  

Sums related to c(3) are 

Ap&y ‘s Constant 53 

OFTHEFIRST KIND. whereS,,,isa STIRLING NUMBER 
This can be rewritten as 

x 5 = 2C(3), (10) 
n=l 

where Hn is the nth HARMONIC NUMBER. Yet another 
expression for c(3) is 

C(3) -- - loo 1 
x ( 

1 1 
2 7 

l+s+...+- 
n > (11) 

(Castellanos 1988) l  

INTEGRALS for c(3) include 

C(3) 
1 O” t2 - -- 

s 
- dt 

2 o et--l 
n= 1 

(12) (2) 

(3) 

(4) 

(5) 

(6) 

= p [f*lln2+2~~/IDln(sinz)dz]. (13) 
(used by Aphy), and 

Gosper (1990) gave 
X(3)=2 l 

k=o w  + 1)” 
=$ C(3) 

C(3) 
1 O” 30k - 11 -- - 
4 x 

k=l (2k - l)k3 (ik)” ’ 
(14 

00 

>: 

1 2n3 
k=O (3k + 1)s = m + SC(3) 

A CONTINUED FRACTION involving Ap&y’s constant is 00 
1 7T3 

@k+ 1)3 = 64 + hc(3) 
6 l6 26 =5---.?-..* n6 

c9 117- 535- 34n3 + 51n2 + 27n + 5- l  ” 

(15) 
(Apery 1979, Le Lionnais 1983). Amdeberhan (1996) 
used WILF-ZEILBERGER PAIRS (F, G) with 

00 
1 7r3 

(6k + 1)” = a + %c(3)? 

F(n k) - (-l)kk!2(sn - k - l)! 
1 - 

(sn + k -t l)!(k + 1) ’ (16) 
where X(Z) is the DIRICHLET LAMBDA FUNCTION. The 
above equations are special cases of a general result due 
to Ramanujan (Berndt 1985). Apkry’s proof relied on 
showing that the sum S = 1 to obtain 

44 = z (;)2(-:“>: = (17) (7) 

For s = 2, where (i) ~~~BINOMIAL COEFFICIENT, satisfiesthe RE- 
CURRENCE RELATION 

C(3) = ; &)“-’ 5”;2;:3;)T 5 (3”) (inJn3 OS) 
n= 1 n n 

(n + l)3a(n + 1) - (34n3 + 51n2 + 27n + 5)a(n) 

+n3a(n - 1) = 0 (8) 
and for s = 3, 

(van der Poorten 1979, Zeilberger UN), 

C(3) = F; (4” 
n=O 72(4nn) (“n”) 

Apery’s constant is also given by 

C(3) = 2 $7 
n=l 

6120n+ 5265n4 + 13761n2 + 13878n3 + 1040 

’ (4n -I- 1)(4n + 3)(n + 1)(3n + 3)2(3n + 2)2 (l’) 
(9) 
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(Amdeberhan 1996). The corresponding G(n, k) for s = 
I and i are 

G(n, 1) = 
2(-l)kk!2(n - k)! 

(n + k + l)!(n + 1)2 
(20) 

and 

G(n, k) = 

(-l)kk!2(2n - k)!(3 + 4n)(4n2 + 6n + k + 3) 
2(2n+k+2)!(n+Q2(2n+1)2 . (21) 

Gosper (1996) expressed c(3) as the MATRIX PRODUCT 

N 

lim M, = o i , 
N-m rI 

0 C(3) 

[ I 
(22) 

n=l 

where 

(n+lj4 24570n4+64161n3+62152n2+28427n+4154 

40PB(n+p(n+p 31104(nf~)(n+~)(n+~) 

0 1 1 (23) 
which gives 12 bits per term. The first few terms are 

which gives 

C(3) 
E 423203577229 

352066176000 = 1.20205690315732.. . . (27) 

Given three INTEGERS chosen at random, the probabil- 
ity that no common factor will divide them all is 

K(3)1-1 = 1.202-l = 0.832.u. (28) 

B. Haible and T. Papanikolaou computed c(3) to 
l,OOO,OOO DIGITS using a WILF-ZEILBERGER PAIR iden- 
tity with 

k n!6(2n - k - l)!k!3 
F(n’ ‘) = (-‘) ‘J(n + k + 1)!2(2n)!3’ (29) 

S= 1, and t = 1, giving the rapidly converging 

(Amdeberhan and Zeilberger 1997). The record as of 
Aug. 1998 was 64 million digits (Plouffe). 

see also RIEMANN ZETA FUNCTION, WILF-ZEILBERGER 
PAIR 
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Apoapsis 

G (z> 
l r- 

F 

The greatest radial distance of an ELLIPSE as measured 
from a FOCUS. Taking II = T in the equation of an 
ELLIPSE 

r= 
a(1 - e2) 
1+ ecosu 
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Apodization Function Instrument Function Instrument Function Sidelobes 

Bartlett 

gives the apoapsis distance 

T+ = a(1 + e). 

n 

1.25 

0.7' 
05 

A 

0 5 

-3 -2-0125 1 2 3 
-0.5 

Apoapsis for an orbit around the Earth is called apogee, 
and apoapsis for an orbit around the Sun is called aphe- 
lion. 

Blackma 

Comes 

see also ECCENTRICITY, ELLIPSE, Focus, PERIAPSIS 

Apocalypse Number 
A number having 666 DIGITS (where 666 is the BEAST 

NUMBER) is called an apocalypse number. The FI- 
BONACCI NUMBER F3184 is an apocalypse number. 

see UZSO BEAST NUMBER,LEVIATHAN NUMBER 

1.251 

Cosine 

Gaussian 

Hamming 

Hanning 

References 
Pickover, C A. Keys to Infinity. New York: Wiley, pp. 97- 
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Apocalyptic Number 
A number of the form 2” which contains the digits 666 
(the BEAST NUMBER) iscalled an APOCALYPTIC NUM- 
BER. 2157 is an apocalyptic number. The first few such 
powers are 157, 192, 218, 220, . . . (Sloane’s A007356). 

see UZSO APOCALYPSE NUMBER, LEVIATHAN NUMBER 
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2 

1.5 

Uniform 
0.5 

Welch 

Apodization TYPE Apodization Function Instrument Function 

The application of an APODIZATION FUWTION. 
Bartlett -!A 

1 a 

Blackman -dx) 

Connes (l- $)’ 

a sinc’(7rlca) 

BI W 

Cosine 

Gaussian 

Hamming 

Hanning 

Uniform 

Welch 

Apodization Function 
A function (also called a TAPERING FUNCTION) used to 
bring an interferogram smoothly down to zero at the 
edges of the sampled region. This suppresses sidelobes 
which would otherwise be produced, but at the expense 
of widening the lines and therefore decreasing the reso- 
lution. 

4acaa(2rrd) 

YqziaF) 

2s,” cos(2nk+-+‘2) da: 

Hm(k) 

Hw(k) 

2a sine (2nka) 

WI (Ic) The following are apodization functions for symmetrical 
(2-sided) interferograms, together with the INSTRUMENT 
FUNCTIONS (or APPARATUS FUNCTIONS) they produce 
and a blowup of the INSTRUMENT FUNCTION sidelobes. 
The INSTRUMENT FUNCTION I(K) corresponding to a 
given apodization function A(x) can be computed by 
taking the finite FOURIER COSINE TRANSFORM, 

where 

&(x) = 0.42 + 0.5 cos (2) 

BI(k) = 
a(0.84 - 0.36a2k2 - 2.17 x 10~~su4~4) sinc(2nak) 

(1 - a2k2)(1 - 4a2k2) 

(3) 

HmA(x) = 0.54 + 0.46~0s (4) 
I(k) = I’ cos(2nkx)A(x) dx. (1) 

HmI(k) = 
a( 1.08 - 0.64a2k2) sinc(2Tak) 

1 - 4a2k2 (5) 
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(6) 

(7) 

HnI(k) = 
a sine (274 

1 - 4a2k2 

= a[sinc(27da) + + sinc(2nlca - n) 

+ + sinc(2rka + 7r)] 

WI(k) = 626 
J3p(2rJEa) 
(2rka)3/2 

sin( 27rlca) - 2rak cos( 2rak) 
=a . 

2a3 k3n3 

(8) 

(9) 

(10) 

(11) 

Type IFFWHM 

Bartlett 

Blackman 

Connes 

Cosine 

Gaussian 

Hamming 

Hanning 
Uniform 

Welch 

1.77179 
2.29880 
1.90416 

1.63941 
- 

1.81522 
2.00000 
1.20671 
1.59044 

IF Peak 
Peak (-1 S.L. Peak (+) S.L. 

Peak Peak 

1 0.00000000 0.0471904 
0.84 -0.00106724 0.00124325 

16 15 -0.0411049 0.0128926 

4 -0.0708048 0.0292720 r 
1 - - 

1.08 -0.00689132 0.00734934 
1 -0.0267076 0.00843441 
2 -0.217234 0.128375 
4 
3 

-0.0861713 0.356044 

A general symmetric apodization function A(x) can be 
written as a FOURIER SERIES 

A(z) = a0 +2fya,cos (y) ; (12) 
n=l 

where the COEFFICIENTS satisfy 

00 
ao+2 u,=l. E (13) 

?I=1 

The corresponding apparatus function is 

s b 

I@) 
- - - 4xF2xikx 

-b 

00 

+>:[ 
sinc(2xkb + 7-m) + sinc(2nkb - n7r)] 

> 
. (14) 

n= 1 

To obtain an APODIZATION FUNCTION with zero at ka = 

3/4, use 

a0 sinc( $7r) + ai[sinc( 47r) + sinc( +7r) = 0. (-15) 

Plugging in (13), 

-(l - 2Q)- 32,+al(&+g 

= +(l - 2~~) +a~(+ + 1) = 0 (16) 

Apollonius Circles 

i = 5 
a1 = -5 

;+g 6.3+2*5 - 28 (18) 

a0 = 1 - 2Ul = 
28- 2.5 la _ g 

28 =28-E’ (19) 

The HAMMING FUNCTION is close to the requirement 
that the APPARATUS FUNCTION goes to 0 at ka== 5/4, 
giving 

a0 = E ==: 0.5435 (20) 

a1 = g$ = 0.2283. (21) 

The BLACKMAN FUNCTION is chosen so that the APPA- 
RATUS FUNCTION goes to 0 at ku = 5/4 and 9/4, giving 

uo 
3969 

= 9304 $=: 0.4266 (22) 

al = E ==: 0.2483 (23) 

u2 
715 

= - 18608 =2: 0.0384. (24) 

see ah BARTLETT FUNCTION, BLACKMAN FUNCTION, 

CONNES FUNCTION, COSINE AP~DIZATION FUNCTION, 
FULL WIDTH AT HALF MAXIMUM, GAUSSIAN FUNC- 

TION, HAMMING FUNCTION, I-IANN FUNCTION, HAN- 
NING FUNCTION, MERTZ APODIZATION FUNCTION, 
PARZEN APODIZATION FUNCTION, UNIFORM APODIZA- 
TION FUNCTION, WELCH APODIZATION FUNCTION 
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Apollonius Circles 
There are two completely different definitions of the so- 

called Apollonius circles: 

1. The set of all points whose distances from two fixed 
points are in a constant ratio 1 : p (Ogilvy 1990). 

Ul(f + 3> = ; (17) 



Apollonius Point 

2. The eight CIRCLES (two of which are nondegener- 
ate) which solve APOLLONIUS’ PROBLEM for three 

CIRCLES. 

Given one side of a TRIANGLE and the ratio of the 
kngths of the other two sides, the LOCUS of the third 
VERTEX is the Apollonius circle (of the first type) whose 
CENTER is on the extension of the given side. For a given 
TRIANGLE, there are three circles of Apollonius. 

Denote the three Apollonius circles (of the first type) 

of a TRIANGLE by kl, k2, and k3, and their centers L1, 
Lz, and L3. The center L1 is the intersection of the side 

AaA3 with the tangent to the CIRCUMCIRCLE at Al. 
L1 is also the pole of the SYMMEDIAN POINT K with 
respect to CIRCUMCIRCLE. The centers L1, L2, and L3 
are COLLINEAR on the POLAR of K with regard to its 

CIRCUMCIRCLE, called the LEMOINE LINE. The circle of 
Apollonius k1 is also the locus of a point whose PEDAL 
TRIANGLE is ISOSCELES such that PI Pz = PIPa. 

Let U and V be points on the side line BC of a TRI- 
ANGLE AABC met by the interior and exterior ANGLE 
BISECTORS of ANGLES A. The CIRCLE with DIAME- 
TER UV is called the A-Apollonian circle. Similarly, 
construct the B- and C-Apollonian circles. The Apol- 

lonian circles pass through the VERTICES A, B, and C, 
and through the two ISODYNAMIC PRINTS S and S’. 
The VERTICES of the D-TRIANGLE lie on the respective 

Apollonius circles. 

see UZSOAPOLLONIUS' PROBLEM,APOLLONIUS PURSUIT 
PROBLEM, CASEY'S THEOREM,HART'S THEOREM, Iso- 
DYNAMIC POINTS, SODDY CIRCLES 
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the LINES AA’, BB’, and CC’ CONCUR in this point. It 

has TRIANGLE CENTER FUNCTION 

a = sin2 Acos2[$(B - C)]. 
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Apollonius’ Problem 

Given three objects, each of which may be a POINT, 
LINE, or CIRCLE, draw a CIRCLE that is TANGENT to 
each. There are a total of ten cases. The two easi- 
est involve three points or three LINES, and the hardest 
involves three CIRCLES. Euclid solved the two easiest 
cases in his Elements, and the others (with the exception 

of the three CIRCLE problem), appeared in the Tangen- 
cies of Apollonius which was, however, lost. The general 
problem is, in principle, solvable by STRAIGHTEDGE and 

COMPASS alone. 

Apollonius Point 
Consider the EXCIRCLES I?A, l?~, and rc of a TRIAN- 
GLE, and the CIRCLE r internally TANGENT to all three. 
Denote the contact point of r and rA by A’, etc. Then 
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The three-CIRCLE problem was solved by Vikte (Boyer 
1968), and the solutions are called AP~LLONIUS CIR- 
CLES. There are eight total solutions. The simplest 
solution is obtained by solving the three simultaneous 
quadratic equations 

(x - Xl)” + (Y 

( x - x2)2 + (y 

- y1)2 - (T Ik r1)2 = 0 (1) 

- y2)2 - (r & r2)2 = 0 (2) 

(x - x3)2 + (y - y3)2 - (r zt T3)2 = 0 (3) 
in the three unknowns x, y, T for the eight triplets of 
signs (Courant and Robbins 1996). Expanding the equa- 
tions gives 

(x2 +y2 -r2)-2X&-2 yyi&Zrr; +(xi2 +yi2 -ri”) = 0 

(4) 
for i = 1, 2, 3. Since the first term is the same for each 
equation, taking (2) - (1) and (3) - (1) gives 

ax + by + CT = d (5) 

a’x + b’y -+- C’T = d’, (6) 

where 

a = 2(x1 - x2) (7) 

b = 2(yl - ~2) (8) 

c = F2(?3 - 73) (9) 

d = (z22 +y22 - 73’) - (xl2 + y12 - r12> (10) 

and similarly for a’, b’, c’ and d’ (where the 2 subscripts 
are replaced by 3s). Solving these two simultaneous lin- 
ear equations gives 

b’d - bd’ - b’cr + bc’r 
x= 

ab’ - ba’ 
(11) 

-aId + ad’ -+ ah - a& 
Y- ab’ - a/b 7 (12) 

which can then be plugged back into the QUADRATIC 
EQUATION (1) and solved using the QUADRATIC FOR- 
MULA. 

Perhaps the most elegant solution is due to Gergonne. 
It proceeds by locating the six HOMOTHETIC CENTERS 
(three internal and three external) of the three given 
CIRCLES. These lie three by three on four lines (illus- 
trated above), Determine the POLES of one of these 
with respect to each of the three CIRCLES and connect 
the POLES with the RADICAL CENTER of the CIRCLES. 
If the connectors meet, then the three pairs of intersec- 
tions are the points of tangency of two of the eight circles 
(Johnson 1929, Dijrrie 1965). To determine which two 
of the eight Apollonius circles are produced by the three 
pairs, simply take the two which intersect the original 
three CIRCLES only in a single point of tangency. The 
procedure, when repeated, gives the other three pairs of 
CIRCLES. 

If the three CIRCLES are mutually tangent, then the 
eight solutions collapse to two, known as the SODDY 
CIRCLES. 

see UZS~APOLLONIUS PURSUIT PROBLEM,BEND (CUR- 
VATURE), CASEY'S THEOREM, DESCARTES CIRCLE 
THEOREM,FOUR COINS PROBLEM,HART'S THEOREM, 
SODDY CIRCLES 
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Apollonius Pursuit Problem 
Given a ship with a known constant direction and speed 
‘u, what course should be taken by a chase ship in pur- 
suit (traveling at speed V) in order to intersect the other 
ship in as short a time as possible? The problem can be 
solved by finding all points which can be simultaneously 
reached by both ships, which is an APOLLONIUS CIRCLE 
with p = w/V, If the CIRCLE cuts the path of the pur- 
sued ship, the intersection is the point towards which 
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the pursuit ship sho uld steer. 
cut the path, then it cannot b 

If the CIRCLE does not 
caught. 

see also APOLLONIUS CIRCLES, APOLLONIUS’ PROB- 
LEM, PURSUIT CURVE 
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Apollonius Theorem 

Al 

a3 Al a2 

-m n 
A2 P A3 

maz2 + ntQ2 = (m+n)A1P2 +mPA3 2 +nFZ2. 

Apothem 

ed. 

r s 
c? 

a 
Given a CIRCLE, the PERPENDICULAR distance a from 
the MIDPOINT of a CHORD to the CIRCLE'S clsnter is 
called the apothem, It is also equal to the RADIUS T 
minus the SAGITTA s, 

a =?--S. 

see also CHORD, RADIUS, SAGITTA, SECTOR, SEGMENT 

Apparatus Function 

see INSTRUMENT FUNCTION 

Appell Hypergeometric F’unction 
Aformalextensionofthe HYPERGEOMETRIC FUNCTION 
to two variables, resulting in four kinds of functions (Ap- 

Appell defined the functions in 1880, and Picard showed 
in 1881 that they may all be expressed by INTEGRALS 
of the form 

s 

1 

u”(l- #(l- XU)~ (I- yu)’ du. 
0 
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Appell Polynomial 
A type of POLYNOMIAL which includes the BERNOULLI 
POLYNOMIAL, HERMITE POLYNOMIAL, and LAGUERRE 
POLYNOMIAL as special cases. The series of POLYNOMI- 
ALS {A&z)}~=~ is defined by 

A(t)? = c A,(z)tn, 

n=O 

where 

A(t) = ?,a&” 
k=O 

is a formal POWER series with k = 0, 1, . . l  and a0 # 0. 
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Appell Transformation 
A HOMOGRAPHIC transfurmation 

ux + by + c 
x1 = 

d'x + bfl y -I- c 

a’x + b’y + cl 
y1 = 

pell 1925), 
with tl substituted for t according to 

Fd~;P,P’;r;x,Y) = y; ;fl; 

m=O n=o 
03 

F+;P,PhY’;x>Y) = PC 
m=O n=O 

&(a, a’; PJcx”rY) = fy 

m=O n=o 
m 

F&; P; Y, -A 5, Y) = 
z”c 
m=O n-o 

(Q)m+n(P)m(P’)n 

m!n!(&+, 
xmyn 

(a>m+n(P)m(P’)n 

m!n!(r),(r’> 
xmyn 

n 

(a>m(Q’)n(P)m(P’)n 

m!n!(y),+n 
xmyn 

(ff)m+n(P)m+n m n 

TYL!n!(~),(~‘)n x ’ *  

kdtl = 
dt 

(a”x + v t  y  + c” )2 l  
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Apple Arakelov Theory 
A formal mathematical theory which introduces “com- 
ponents at infinity” by defining a new type of divisor 
class group of INTEGERS of a NUMBER FIELD. The di- 
visor class group is called an “arithmetic surface.” 

see also ARITHMETIC GEOMETRY 

Arbelos 

A SURFACE OF REVOLUTIO~J defined by Kepler. Itcon- 
sists of more than half of a circular ARC rotated about 
an axis passing through the endpoints of the ARC. The 
equations of the upper and lower boundaries in the X-X 
PLANE are 

^ ̂ d 
The term “arbelos” means SHOEMAKER'S KNIFE in 
Greek, and this term is applied to the shaded AREA 
in the above figure which resembles the blade of a knife 
used by ancient cobblers (Gardner 1979)* Archimedes 
himself is believed to have been the first mathematician 
to study the mathematical properties of this figure. The 

zh = z&JR2 - (x - T)~ 

for R > T and it: E [-(T + R),r + R]. It is the outside 
surface of a SPINDLE TORUS. 

see also BUBBLE, LEMON, 
TION, SPINDLE T ORUS 

SPHERE-SPHERE INTERSEC- 

Approximately Equal 
If two quantities A and B are approximately equal, this 
is written A z B. 

see also DEFINED, EQUAL 

Approximation Theory 
The mathematical study of how given quantities can be 
approximated by other (usually simpler) ones under ap- 
propriate conditions. Approximation theory also stud- 

ies the size and properties of the ERROR introduced by 
approximation. Approximations are often obtained by 
POWER SERIES expansions in which the higher order 
terms are dropped. 

see &O LAGRANGE REMAINDER 
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position of the central notch is arbitrafy 
cated anywhere along the DIAMETER. 

and can be lo- 

The arbelos satisfies a number of unexpected identities 
(Gardner 1979). 

1. Call the radii of the left and right SEMICIRCLES a 
and b, respectively, with a + b z R. Then the arc 
length along the bottom of the arbelos is 

L = 27~ -+- 2nb = 2-/r(a -I- b) = 2zR, 

so the arc lengths along the top and bottom of the 

2. Draw the PERPENDICULAR BD from the tangent of 
the two SEMICIRCLES to the edge of the large CIR- 
CLE, Then the AREA of the arbelos is the same as 
the AREA ofthe CIRCLE with DIAMETER BD. 

3. The CIRCLES Cl and Cz inscribed on each half of 
BD on the arbelos (called ARCHIMEDES’ CIRCLES) 
each have DIAMETER (AB)(BC)/(AC). Further- 
more, the smallest CIRCUMCIRCLE of these two cir- 
cles has an area equal to that of the arbelos. 

4. The line tangent to the semicircles AB and BC con- 
tains the point E and F which lie on the lines AD 
and CD, respectively. Furthermore, BD and EF bi- 
sect each other, and the points B, D, E, and F are 
CONCYCLIC. 
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5. In addition to the ARCHIMEDES' CIRCLES C1 and Cz 
in the arbelos figure, there is a third circle C3 called 
the B ANKoFF CIRCLE which 1s congruent to these 
two. 

6. Construct a chain of TANGENT CIRCLES starting 

with the CIRCLE TANGENT to the two small ones 
and large one. The centers of the CIRCLES lie on 

7 

an ELLIPSE, and the DIAMETER of the nth CIR- 
CLE Cn is (l/n)th PERPENDICULAR distance to the 
base of the SEMICIRCLE. This result is most eas- 
ily proven using INVERSION, but was known to Pap- 
pus, who referred to it as an ancient theorem (Hood 
1961, Cadwell 1966, Gardner 1979, Bankoff 1981). If 
T = AB/AC, then the radius of the nth circle in the 
PAwus CHAIN is 

Tn = 
(1 - r)r 

2[?22(1 - r)2 + r]. 

This general result simplifies to TV = l/(6 + n2) for 
T = 2/3 (Gardner 1979). Further special cases when 
AC = I+ AB are considered by Gaba (1940). 

If B divides AC in the GOLDEN RATIO 4, then the 
circles in the chain satisfy a number of other special 
properties (Bankoff 1955). 

see 
cox 

UZSO ARCHIMEDES’ 
.ETER’S LOXODROM 

RCLES, BAN 
SEQUENCE 

KOF 
OF 

SF CIRCLE, 
TANGENT 

CIRCLES, GOLDEN RATIO, INVERSION, PAPPUS CHAIN, 
STEINER CHAIN 
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Arborescence 
A DIGRAPH is called an arborescence if, from a given 
node x known as the ROOT, there is exactly one ele- 
mentary path from 2 to every other node y. 

see also ARBORICITY 

Arboricity 
Given a GRAPH G, the arboricity is the MINIMUM num- 
ber of line-disjoint acyclic SUBGRAPHS whose UNION is 
G. 

see also ANARBORICITY 

Arc 
In general, any smooth curve joining two points. In 
particular, any portion (other than the entire curve) of 
a CIRCLE or ELLIPSE. 

see also APPLE, CIRCLE-CIRCLE INTERSECTION, FIVE 
DISKS PROBLEM, FLOWER OF LIFE, LEMON, LENS, 

PIECEWISE CIRCULAR CURVE, REULEAUX POLYGON, 
REULEAUX TRIANGLE, SALINON, SEED OF LIFE, TRI- 
ANGLE ARCS, VENN DIAGRAM, YIN-YANG 

Arc Length 
Arc length is defined as the length along a curve, 

s 

b 

SE 14 l  
(1) 

a 

Defining the line element ds2 E j&.12, parameterizing 
the curve in terms of a parameter t, and noting that 
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ds/dt is simply the magnitude of the VELOCITY with 
which the end of the RADIUS VECTOR r moves gives 

s=~bds=~b~dt=~b,~lo(dt 

In POLAR COORDINATES, 

so 

In CARTESIAN COORDINATES, 

de =xji:+yg 

Therefore, if the curve is written 

r(x) = x2 + f (x)9, 

then 

s= rbdmdx. 

If the curve is instead written 

r(t) = x(t)ji: + y(t)y, 

then 

S= x’“(t) + y’“(t) dt. 

Or, in three dimensions, 

r(t) = x(t)ji: + y(t)9 + z(t)2, 

so 

S= x’“(t) + y’“(t) + z’“(t) dt. 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

PO) 

(11) 

(12) 

(13) 

see also CURVATURE, GEODESIC, NORMAL VECTOR, 
RADIUS OF CURVATURE,RADIUS OF TORSION,~PEED, 
SURFACE AREA,TANGENTIAL ANGLE,TANGENT VEC- 
TOR, TORSION (DIFFERENTIAL GEOMETRY), VELOC- 
ITY 

Arc Second 
A unit of ANGULAR measure equal to l/60 of an ARC 
MINUTE, or l/3600 of a DEGREE. The arc second is de- 
noted ” (not to be confused with the symbol for inches). 

Arccosecant 

see INVERSE C~~ECANT 

Arccosine 

see INVERSE COSINE 

Arccotangent 

see INVERSE COTANGENT 

Arch 

A 4-POLYHEX. 
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Archimedes Algorithm 
Successive application of ARCHIMEDES' RECURRENCE 
FORMULA gives the Archimedes algorithm, which can 
be used to provide successive approximations to K (PI). 
The algorithm is also called the BORCHARDT-PFAFF AL- 
GORITHM. Archimedes obtained the first rigorous ap- 
proximation of r by CIRCUMSCRIBING and INSCRIBING 
n = 6 l  2”-gons on a CIRCLE. From ARCHIMEDES' RE- 
CURRENCE FORMULA, the CIRCUMFERENCES aandbof 
the circumscribed and inscribed POLYGONS are 

b(n) = 2nsin E , 
( > n (2) 

where 

b(n) < C = 27~ = 2n l  1 = 27r < u(n). (3) 

For a HEXAGON, n = 6 and 

a0 G a(6) = 4J3 

b. = b(6) = 6, 

(4 

(5) 

where arc = ~(6-2”). The first iteration of ARCHIMEDES' 
RECURRENCE FORMULA then gives 

Arc Minute 
A unit of ANGULAR measure equal to 60 ARC SECONDS, 
or l/60 of a DEGREE. The arc minute is denoted ’ (not 
to be confused with the symbol for feet). 

2.6+41/3 24d3 

a’= 6+4& =3+2fi 
= 24(2 - 6) (6) 

4(2 - h) l  6 = 12j/a 

= 6(& - h). (7) 



Archimedes’ Axiom Archimedes’ Cattle Problem 63 

Additional iterations do not have simple closed forms, 

but the numerical approximations for k = 0, 1, 2, 3, 4 

(corresponding to 6-, 12-, 24-, 48-, and 96-gons) are 

3.00000 < TT < 3.46410 (8) 

3.10583 < T < 3.21539 (9) 

3.~3263 < TT < 3.15966 (10) 

3.13935 < TT < 3.14609 (11) 

3.14103 < 7r < 3.14271. (12) 

By taking k = 4 (a 96-gon) and using strict inequalities 

to convert irrational bounds to rational bounds at each 
step, Archimedes obtained the slightly looser result 

Solution consists of solving the simultaneous DIOPHAN- 
TINE EQUATIONS in INTEGERS ‘w, X, Y, 2 (the number 
of white, black, spotted, and brown bulls) and w, 5, y, z 
(the number of white, black, spotted, and brown cows), 

w= $x+2 (1) 
X=&Y+2 (2) 

Y= SW-t-2 (3) 

w= &(X+x) (4) 

x=&(Y+y) (5) 

Y= g<z + z) (6) 

Z= g<w + w). (7) 

The smallest solution in INTEGERS is 
223 - = 3.14084.n 
71 

< T < $? = 3.14285.... (13) 
W = 10,366,482 (8) 
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Archimedes’ Axiom 
An AXIOM actually attributed to Eudoxus (Boyer 1968) 

which states that 
a/b = c/d 

IFF the appropria te one of fol 

fied for INTEGERS m and n: 

lowing conditions is satis- 

1, If ma < nb, then mc < md. 

2. If ma = nd, then mc = nd. 

3. If ma > nd, then mc > nd. 

LEMM ARCHIMEDES' 
imedes’ axiom 

A is sometimes also known as Arch- 
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Archimedes’ Cattle Problem 
Also called the BOVINUM PROBLEMA. It is stated as 

follows : “The sun god had a herd of cattle consisting of 
bulls and cows, one part of which was white, a second 
black, a third spotted, and a fourth brown. Among the 
bulls, the number of white ones was one half plus one 
third the number of the black greater than the brown; 

the number of the black, one quarter plus one fifth the 

number of the spotted greater than the brown; the num- 
ber of the spotted, one sixth and one seventh the number 
of the white greater than the brown. Among the cows, 

the number of white ones was one third plus one quarter 
of the total black cattle; the number of the black, one 
quarter plus one fifth the total of the spotted cattle; the 
number of spotted, one fifth plus one sixth the total of 

the brown cattle; the number of the brown, one sixth 
plus one seventh the total of the white cattle. What 
was the composition of the herd?” 

X = 7,460,514 (9) 

Y = 7,358,060 (10) 

Z = 4,149,387 (11) 

w = 7,206,360 (12) 

2= 4,893,246 (13) 

y = 3,515,820 (14) 

z = 5,439,213. (15) 

A more complicated version of the problem requires that 
W+X bea SQUARENUMBER andY+Za TRIANGULAR 
NUMBER. The solution to this PROBLEM are numbers 
with 206544 or 206545 digits. 
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Archimedes’ Circles 

Cl  ̂

~ 

c2 

I  I  4 

Draw the PERPENDICULAR LINE from the intersection 
of the two small SEMICIRCLES in the ARBELOS. The 
two CIRCLES Cl and Cz TANGENT to this line, the large 
SEMICIRCLE, and each ofthetwo SEMICIRCLES are then 
congruent and known as Archimedes’ circles. 

see UZSO ARBELOS, BANK~FF CIRCLE, SEMICIRCLE 

Archimedes’ Constant 

see PI 

Archimedes’ Hat-Box Theorem 
Enclose a SPHERE in a CYLINDER and slice PERPEN- 
DICULARLY~~ the CYLINDER'S axis. Then the SURFACE 
AREA of the of SPHERE slice is equal to the SURFACE 
AREA of the CYLINDER slice. 

Archimedes’ Postulate 

see ARCHIMEDES' LEMMA 

Archimedes’ Problem 
Cut a SPHERE by a PLANE in such a way that the VOL- 
UMES ofthe SPHERICAL SEGMENTS haveagiven RATIO. 

see UZSO SPHERICAL SEGMENT 

Archimedes’ Recurrence Formula 

Let a, and b, be the PERIMETERS of the CIRCUM- 
SCRIBED and INSCRIBED n-gon and ~2~ and b2n the 
PERIMETERS ofthe CIRCUMSCRIBED and INSCRIBED 2n- 
gon. Then 

Archimedes’ Lemma 
Also known as the continuity axiom, this LEMMA SW- 
vives in the writings of Eudoxus (Boyer 1968). It states 
that, given two magnitudes having a ratio, one can find 
a multiple of either which will exceed the other. This 
principle was the basis for the EXHAUSTION METHOD 
which Archimedes invented to solve problems of AREA 
and VOLUME. 

see also CONTINUITY AXIOMS 

h& 
u2n = - 

an + bn 
(1) 

b2n = &ix* (2) 

The first follows from the fact that side lengths of the 
POLYGONS on a CIRCLE of RADIUS T = 1 are 

References 
Boyer, C. B. A History of Mathematics. New York: Wiley, 

p. 100, 1968. so 

ST (4) 

Archimedes’ Midpoint Theorem 

M 

Let A4 be the MIDPOINT of the ARC AMB. Pick C 
at random and pick D such that MD 1 AC (where 1 
denotes PERPENDICULAR). Then 

AD=DC+BC. 

see also MIDPOINT 

a fl=2ntan If 
( ) n 

bn=2nsin IT . 
( > n 

(5) 

(6) 

But 

h&n 202ntan (z) 2nsin (E) 
- - 
a, + 6, - 2ntan (c) + 2nsin (z) 

tan (t) sin (f$ 

= 4ntan (z) + sin (E) * 

Using the identity 

tan(+) = 
tan II: sin 2 

tanz + sinz 

References then gives 
Honsberger, R. More Mathematical Morsels. Washington, * 

DC: Math. Assoc. Amer., pp. 31-32, 1991. h-h 

an + b, 
= azn. 

(7) 

(8) 

(9) 
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The second follows from 

(10) 

Using the identity 

sin x = 2 sin( ix) cos( $c) (11) 

gives 

=&y/sin’ (&) =4nsin (&) =b2n. (12) 

Successive application gives the ARCHIMEDES ALGO- 
RITHM, which can be used to provide successive approx- 
imations to PI (K). 

see also ARCHIMEDES ALGORITHM, PI 
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Archimedean Solid 
The Archimedean solids are convex POLYHEDRA which 
have a similar arrangement of nonintersecting regu- 
lar plane CONVEX POLYGONS of two or more differ- 
ent types about each VERTEX with all sides the same 
length. The Archimedean solids are distinguished from 
the PRISMS, ANTIPRISMS, and ELONGATED SQUARE 
GYROBICUPOLA by their symmetry group: the Arch- 
imedean solids have a spherical symmetry, while the 
others have “dihedral” symmetry. The Archimedean 
solids are sometimes also referred to as the SEMIREG- 
ULAR POLYHEDRA. 

Pugh (1976, p. 25) points out the Archimedean solids 
are all capable of being circumscribed by a regular TET- 
RAHEDRON so that four of their faces lie on the faces 
of that TETRAHEDRON. A method of constructing the 
Archimedean solids using a method known as “expan- 
sion” has been enumerated by Stott (Stott 1910; Ball 
and Coxeter 1987, ppm 139-140). 

Let the cyclic sequence S = (~1, ~2, . . . , pp) represent the 
degrees of the faces surrounding a vertex (i.e., S is a list 
of the number of sides of all polygons surrounding any 
vertex). Then the definition of an Archimedean solid 
requires that the sequence must be the same for each 
vertex to within ROTATION and REFLECTION. Walsh 
(1972) demonstrates that S represents the degrees of the 
faces surrounding each vertex of a semiregular convex 
polyhedron or TESSELLATION of the plane IFF 

1. Q 2 3 and every member of S is at least 3, 

2. cyzl $ 2 iq - 1, with equality in the case of a 
plane TESSELLATION, and 

Archimedean Solid 6 5 

3. for every ODD NUMBER p E S, S contains a subse- 
quence (b, p, b). 

Condition (1) simply says that the figure consists of two 
or more polygons, each having at least three sides. Con- 
dition (2) requires that the sum of interior angles at a 
vertex must be equal to a full rotation for the figure to 
lie in the plane, and less than a full rotation for a solid 
figure to be convex. 

The usual way of enumerating the semiregular polyhe- 
dra is to eliminate solutions of conditions (1) and (2) 
using several classes of arguments and then prove that 
the solutions left are, in fact, semiregular (Kepler 1864, 
pp. 116-126; Catalan 1865, pp* 25-32; Coxeter 1940, 
p. 394; Coxeter et al. 1954; Lines 1965, pp. 202-203; 
Walsh 1972). The following table gives all possible reg- 
ular and semiregular polyhedra and tessellations. In 
the table, ‘P’ denotes PLATONIC SOLID, ‘M’ denotes a 
PRISM or ANTIPRISM, ‘A’ denotes an Archimedean solid, 
and ‘T’ a plane tessellation. 

S Fg. Solid SchlUi 

(3, 3, 3) 
(3, 4 4) 
(3, 6, 6) 
(3, 8, 8) 
(3, 10, 10) 
(3, 12, 12) 
(4, 4, 4 
(4, 4 4) 
(4, 6, 6) 
(4, 6, 8) 

(4, 6, 10) 

(4, 6, 12) 
(4, 8, 8) 
(5, 5, 5) 
(5, 6, 6) 
(6, 6, 6) 
(3, 3, 3, n) 
(3, 3, 3, 3) 
(3, 4, 3, 4) 

(3, 5, 3, 5) 

(3, 6, 3, 6) 

(3, 4, 4, 4) 

(3, 4, 5, 4) 

(3, 4 6, 4) 
(4, 4, 4, 4) 
(3, 3, 3, 3, 3) 
(3, 3, 3, 3, 4) 

(3, 3, 3, 3, 5) 

(3, 3, 3, 3, 6) 
(3, 3, 3, 4 4) 
(3, 3, 4, 3, 4) 

(3, 3, 3, 3, 3) 

P tetrahedron 
M triangular prism 
A truncated tetrahedron 
A truncated cube 
A truncated dodecahedron 
T (plane tessellation) 
M n-gonal Prism 
P cube 
A truncated octahedron 

A great, rhombicuboct m 

A great, rhombicosidodec. 

T (plane tessellation) 

T (plane tessellation) 
P dodecahedron 
A truncated icosahedron 
T (plane tessellation) 

M n-gonal antiprism 

P octahedron 
A cuboctahedron 

A icosidodecahedron 

T 

A 

A 

T 

T 
P 

A 

A 

T 

T 
T 
T 

(plane tessellation) 

small rhombicuboct. 

small rhombicosidodec. 

(plane tessellation) 

(plane tessellation) 
icosahedron {3,5) 
snub cube 

snub dodecahedron 

(plane tessellation) 
(plane tessellation) - 

(plane tessellation) 4 
s 4 { > 

(plane tessellation) C3?6> 

As shown in the above table, there are exactly 13 Ar- 
chimedean solids (Walsh 1972, Ball and Coxeter 1987). 
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Theyarecalledthe CUBOCTAHEDRON, GREAT RHOMB- 
ICOSIDODECAHEDRON, GREAT RHOMBICUBOCTAHE- 
DRON, ICOSIDODECAHEDRON, SMALL RHOMBICOSIDO- 
DECAHEDRONSMALL RHOMBICUBOCTAHEDRONJNUB 
CUBE, SNUB DODECAHEDRON, TRUNCATED CUBE, 
TRUNCATED DODECAHEDRON, TRUNCATED ICOSAHE- 
DRON (soccer ball), TRUNCATED OCTAHEDRON, and 
TRUNCATED TETRAHEDRON. The Archimedean solids 
satisfy 

(2n - a)V = 4n, 

where o is the sum of face-angles at a vertex and V is 
the number of vertices (Steinitz and Rademacher 1934, 
Ball and Coxeter 1987). 

Here are the Archimedean solids shown in alphabetical 
order (left to right, then continuing to the next row), 

The following table lists the symbol and number of faces 
of each type for the Archimedean solids (Wenninger 
1989, p. 9). 

Solid SchEfli Wythoff C&R 

cuboctahedron 3 
4 

2 ] 3 4 (3.4)2 

great rhombicosidodecahedron t i 2351 

great rhombicuboctahedron lJ : 2341 

icosidodecahedron 3 

: 
2 1 3 5 (3.5)2 

small rhombicosidodecahedron t 3 5 1 2 3.4.5.4 

small rhombicuboctahedron : 
r 4 

3 4 1 2 3.43 

snub cube 3 
s 4 

1 2 3 4 34.4 

snub dodecahedron 3 
s 5 t I 

[ 2 3 5 34.5 

truncated cube w, 3) 2 3 1 4 3.82 

truncated dodecahedron t(5,31 2315 3.102 

truncated icosahedron t{3,5> 2 5 1 3 5x2 

truncated octahedron t@, 4) 2 4 1 3 4.62 

truncated tetrahedron t{3,3) 2 3 ] 3 3.62 

Solid V e f3 f4 f5 f6 f8 fl0 

cuboctahedron 12 24 8 6 

great rhombicos. 120 180 30 2G 12 

great rhombicub. 48 72 12 8 6 

icosidodecahedron 30 60 20 12 

small rhombicos. 60 120 20 30 12 

smallrhombicub. 24 48 8 18 

snub cube 24 60 32 6 

snub dodecahedron 60 150 80 12 

trunc. cube 24 36 8 6 

trunc. dodec. 60 90 20 12 

trunc. icosahedron 60 90 12 20 

trunc. octahedron 24 36 6 8 
trunc. tetrahedron 12 18 4 4 

Let T be the INRADIUS, p the MIDRADIUS, and R the 
CIRCUMRADIUS. The following tables give the analytic 
and numerical values of T, p, and R for the Archimedean 
solids with EDGES of unit length. 

Solid r 

cuboctahedron 2 4 

great rhombicosidodecahedron &(105 + 6fi)da 

great rhombicuboctahedron &(14+J@Gz 

icosidodecahedron i(5+3vq 

small rhombicosidodecahedron $J15+2~)~Fz 

small rhombicuboctahedron &(6+4)d= 
snub cube * 

snub dodecahedron * 

truncated cube &(5 + 2Jz)&zz 

truncated dodecahedron &(17Jz+3JiG)JS 

truncated icosahedron ~(21+~)&Gz 

truncated octahedron x 
20 m 

truncated tetrahedron &rn 
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Solid 

cuboctahedron 

great rhombicosidodecahedron 

great rhombicuboctahedron 

icosidodecahedron 

small rhombicosidodecahedron 

small rhombicuboctahedron 

snub cube 

snub dodecahedron 

truncated cube 

truncated dodecahedron 

truncated icosahedron 

truncated octahedron 

truncated tetrahedron 

*The complicated analytic expressions for the 
RADII of these solids are given in the entries for 
CUBE and SNUB DODECAHEDRON. 

CIRCUM- 

the SNUB 

Solid r P R 

cuboctahedron 0.75 0.86603 1 

great rhombicosidodecahedron 3.73665 3.76938 3.80239 

great rhombicuboctahedron 2.20974 2.26303 2.31761 
icosidodecahedron 1.46353 1.53884 1.61803 

small rhombicosidodecahedron 2.12099 2.17625 2.23295 

small rhombicuboctahedron 1.22026 1.30656 1.39897 

snub cube 1.15766 1.24722 1.34371 

snub dodecahedron 2.03987 2.09705 2.15583 
truncated cube 1.63828 1.70711 1.77882 

truncated dodecahedron 2.88526 2.92705 2.96945 
truncated icosahedron 2.37713 2.42705 2.47802 
truncated octahedron 1.42302 1.5 1.58114 
truncated tetrahedron 0.95940 1.06066 1.17260 

The DWAL~ of the Archimedean solids, sometimes called 
the CATALAN SOLIDS, are given in the following table. 

Archimedean Solid Dual 

rhombicosidodecahedron deltoidal hexecontahedron 

small rhombicuboctahedron deltoidal icositetrahedron 

great rhombicuboctahedron disdyakis dodecahedron 

great rhombicosidodecahedron disdyakis triacontahedron 

truncated icosahedron pentakis dodecahedron 

snub dodecahedron (laevo) pentagonal hexecontahedron 

(dextro) 

snub cube (laevo) pentagonal icositetrahedron 

(dextro) 

cuboctahedron rhombic dodecahedron 

icosidodecahedron 

truncated octahedron 

rhombic triacontahedron 

tetrakis hexahedron 

truncated dodecahedron 

truncated cube 

truncated tetrahedron 

triakis icosahedron 

triakis octahedron 

triakis tetrahedron 

Here are the Archimedean DUALS (Holden 1971, Pearce 

1978) displayed in alphabetical order (left to right, then 
continuing to the next row), 

Here are the Archimedean solids paired with their DU- 
ALS. 

The Archimedean solids and their DUALS are all 
CANONICAL POLYHEDRA. 

see also ARCHIMEDEAN SOLID STELLATION, CATA- 

LAN SOLID, DELTAHEDRON, JOHNSON SOLID, KEPLER- 
P~INSOT SOLID, PLATONIC SOLID, SEMXREGULAR 
POLYHEDRON, UNIFORM POLYHEDRON 
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Archimedean Solid Stellation 
A large class of POLYHEDRA which includes the Do- 
DECADODECAHEDRON and GREAT ICOSIDODECAHE- 
DRON. No complete enumeration (even with restrictive 
uniqueness conditions) has been worked out. 
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Archimedean Spiral 
A SPIRAL with POLAR equation 

l/m r-a0 , 

where T is the radial distance, 0 is the polar angle, and ~rz 
is a constant which determines how tightly the spiral is 
“wrapped.” The CURVATURE of an Archimedean spiral 
is given by 

kc= 
nP+(l + n + n202) 

a(1 + n202j3i2 ’ 

Various special cases are given in the followine: table. 

hyperbolic spiral 

Archimedes ’ Spiral 

see also ARCHIMEDES' SPIRAL, DAISY, FERMAT'S SPI- 
RAL, HYPERBOLIC SPIRAL, LITWUS, SPIRAL 
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Archimedean Spiral Inverse Curve 
The INVERSE CURVE ofthe ARCHIMEDEAN SPIRAL 

r = a$‘/” 

with INVERSION CENTER at the origin and inversion RA- 
DIUS k is the ARCHIMEDEAN SPIRAL 

T = kaO1’“. 

Archimedes’ Spiral 

An ARCHIMEDEAN SPIRAL with POLAR equation 

T = a@. 

This spiral was studied by Conon, and later by Archi- 
medes in On SpiraEs about 225 BC. Archimedes was able 
to work out the lengths of various tangents to the spiral. 

Archimedes’ spiral can be used for COMPASS and 
STRAIGHTEDGE division of an ANGLE into n parts (in- 
cluding ANGLE TRISECTION) and can also be used for 
CIRCLE SQUARING. In addition, the curve can be used 
as a cam to convert uniform circular motion into uni- 
form linear motion. The cam consists of one arch of the 
spiral above the X-AXIS together with its reflection in 
the X-AXIS. Rotating this with uniform angular veloc- 
ity about its center will result in uniform linear motion 
of the point where it crosses the ~-AXIS. 
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see also ARCHIMEDEAN SPIRAL 

Archimedes’ Spiral Inverse 
Taking the ORIGIN as the INVERSION CENTER, ARCHI- 
MEDES' SPIRAL T = aeinvertstothe HYPERBOLIC SPI- 
RAL T= a/& 

Archimedean Valuation 
A VALUATION for which 1x1 < 1 IMPLIES 1 l-t-21 < C for - - 
the constant C = 1 (independent of 2). Such a VALUA- 
TION does not satisfy the strong TRIANGLE INEQUALITY 

Ix + YI 5 max(Id Ivl>* 

Arcsecant 

see INVERSE SECANT 

Arcsine 

see INVERSE SINE 

Ar 

see 

ctangent 

INVERSE TA NGENT 

Area 
The AREA of a SURFACE is the amount of material 
needed to “cover” it completely. The AREA of a TRIAN- 
GLE is given by 

AA = $lh, (1) 

where I is the base length and h is the height, or by 
HERON'S FORMULA 

AA = &(s - a)(s - b)(s - c>, (2) 

where the side lengths are a, b, and c and s the 
SEMIPERIMETER. The AREA of a RECTA NGLE is given 

bY 
A rectangle = ab, (3) 

where the sides are length a and b. This gives the special 
case of 

A 
2 

square = a (4) 

for the SQUARE. The AREA ofaregular POLYGON with 
n sides and side length s is given by 

A-L- gon = +ns2 cot ; . ( > (5) 

CALCULUS and, in particular, the INTEGRAL, are power- 
ful tools for computing the AREA between a curve f(z) 
and the X-AXIS over an INTERVAL [a, b], giving 

.I 
b 

A= f (4 dx- 
a 

(6) 

The AREA of a POLAR curve with equation T = ~(0) is 

A”$ s r2 d0. (7) 

Written in CARTESIAN COORDINATES, this becomes 

A=; dy dx 
xdt -Yz dt > 

- -- ; /b dY - Y w  

(8) 

(9) 

For the AREA of special surfaces or regions, see the en- 
try for that region. The generalization of AREA to 3-D 
is called VOLUME, and to higher DIMENSIONS is called 
CONTENT. 

see also ARC LENGTH, AREA ELEMENT, CONTENT, 
SURFACE AREA,VOLUME 
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Area Element 
The area element for a SURFACE with RIEMANN~AN 
METRIC 

ds2 = Edu2 + 2Fdudv + Gdv2 

is 
dA = JEG-FZdu A dw, 

where du A dv is the WEDGE PRODUCT. 

see also AREA, LINE ELEMENT, RIEMANNIAN METRIC, 
VOLUME ELEMENT 
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Area-Preserving Map 
A MAP F from Ik” to R” is AREA-preserving if 

~vY4) = m(A) 

for every subregion A of IV, where m(A) is the n- 
D MEASURE of A. A linear transformation is AREA- 
preserving if its corresponding DETERMINANT is equal 
to 1. 

see also C~NFORMAL MAP, SYMPLECTIC MAP 
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Area Principle 

P 

The ((AREA principle” states that 
A&-l) = 

1 (mod 8) if Arf(K) = 0 
5 (mod 8) if Arf(K) = 1 (2) 

l&PI IAlBCl --- 
\AzPl - lA2BCl’ 

This can also be written in the form 

(1) 

where 

Egl = [a’ (2) 

(Jones 1985). For the JONES POLYNOMIAL TjvK of a 
KNOT K, 

Arf(K) = W&) (3) 

(Jones 1985), where i is the IMAGINARY NUMBER. 
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AB [ 1 CD (3) 

is the ratio of the lengths [A, B] and [C, D] for ABllCD 
with a PLUS or MINUS SIGN depending on if these seg- 
ments have the same or opposite directions, and 

Adams, C. C. The Knot Book: An Elementary Introduction 
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Freeman, pp. 223-231, 1994. 

Jones, V. “A Polynomial Invariant for Knots via von Neu- 
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@ Weisstein, E, W. ‘Xnots.” http: //wwv.astro.virginia. 
edu/-eww6n/math/notebooks/Knots.m. 

Lifitxzl (4) 
is the RATIO of signed AREAS of the TRIANGLES. 
Griinbaum and Shepard show that CEVA'S THEOREM, 
HOEHN'S THEOREM, and MENELAUS' THEOREM arethe 
consequences of this result q 

Argand Diagram 
A plot of COMPLEX NUMBERS as points 

z=x+iy 

see &o CEVA'S THEOREM, HOEHN'S THEOREM, MEN- 
ELAUS' THEOREM,~ELF-TRANSVERSALITY THEOREM 

using the X-AXIS as the REAL axis and ~-AXIS as the 
IMAGINARY axis. This is also called the COMPLEX 
PLANE or ARGAND PLANE. 

References 
Griinbaum, B. and Shepard, G. C. ‘Ceva, Menelaus, and the 
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Area1 Coordinates 

Argand Plane 

see ARGAND DIAGRAM 

Argoh’s Conjecture 

TRILINEAR COORDINATES normalized so that Let & be the kth BERNOULLI NUMBER. Then does 

t1 + t2 + t3 =I 1. nBn-l z -1 (mod n) 

When so normalized, they become the AREAS of the 
TRIANGLES PA1A2, PAlAa, and PAZAS, where P is 
the point whose coordinates have been specified. 

Arf Invariant 
A LINK invariant which always has the value 0 or 1. 
A KNOT has ARF INVARIANT 0 if the KNOT is “pass 
equivalent” to the UNKNOT and 1 if it is pass equiv- 
alent to the TREFOIL KNOT. If K+, IL, and L are 
projections which are identical outside the region of the 
crossing diagram, and K+ and K- are KNOTS while L 
is a 2-component LINK with a nonintersecting crossing 

IFF n is PRIME? For example, for n = 1, 2, , . . , raBn-l 
(mod n) is 0, -1, -1, 0, -1, 0, -1, 0, -3, 0, -1, l  . . . 
There are no counterexamples less than 12 = 5,600. Any 
counterexample to Argoh’s conjecture would be a con- 
tradiction to GIUGA'S CONJECTURE, and vice versa. 

see ho BERNOULLI NUMBER, GIUGA'S CONJECTURE 

References 
Borwein, D.; Borwein, J, M,; Borwein, P. B.; and Girgen- 

sohn, R. “Giuga’s Conjecture on Primality.” Amer. Math. 
Monthly 103, 40-50, 1996. 

Argoh ‘s Conjec t we 

diagram where the two left and right strands belong to 
the different LINKS, then 

a(K+) = a(K-) + l(h, Lz), (1) 

where I is the LINKING NUMBER of L1 and La. The 
Arf invariant can be determined from the ALEXANDER 
POLYNOMIAL or JONES POLYNOMIAL for a KNOT. For 
AK the ALEXANDER POLYNOMIAL of K, the Arf invari- 
ant is given by 
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Argument Addit ion Relation 
A mathematical relationship relating f(z + y) to f(z) 

and f(Y)- 

see also ARGUMENT MULTIPLICATION RELATION, 
RECURRENCE RELATION, REFLECTION RELATION, 
TRANSLATION RELATION 

Argument Principle 
If f(z) is MEROMORPHIC in a region R enclosed by a 
curve y, let Iv be the number of COMPLEX ROOTS of 
f(z) in y, and P be the number of POLES in y, then 

1 
N-P=% - 

s 

f ‘(4 dz 

f( > z ’ 
Y 

Defining w  s f(z) and o G f(r) gives Argument (Complex Number) 
A COMPLEX NUMBER z may be represented as 1 

N-p=- -. 
s 

dw 

2Ki d w  

see also VARIATION OF ARGUMENT 
where IzI is called the MODULUS of x, and 8 is called the 
argument 

arg(rz: + ;y) = tan-’ 
(2) 

References 
Duren, P.; Hengartner, W.; and Laugessen, R. S. “The Ar- 

gument Principle for Harmonic Functions.” Math. Msg. 
103,411-415,1996. 

Therefore, 
Argument Variation 

see VARIATION OF ARGUMENT 
arg(zw) = arg(lzleie” lwleisw) = arg(eie”eiew) 

= arg[e qz +0w) 1 = arg(x) + arg(w). (3) 
Aristotle’s Wheel Paradox 

Extending this procedure gives 

arg(r”) = narg(z). (4) 

A PARADOX mentioned in the Greek work Mechanica, 
dubiously attributed to Aristotle. Consider the above 
diagram depicting a wheel consisting of two concen- 
tric CIRCLES of different DIAMETERS (a wheel within 

The argument of a COMPLEX NUMBER is sometimes 
called the PHASE. 

a wheel). 
the large 

There 
CIRCLE 

is a 

with 
1: 1 correspondence 
points on the smal 

on 

should travel 
is rolled from 

of points 
.I CIRCLE, so 

the same distance regardless of 
left to right on the top straight 

see also AFFIX, COMPLEX NUMBER, DE MOIVRE’S 
IDENTITY, EULER FORMULA, MODULUS (COMPLEX 
NUMBER), PHASE, PHASOR 
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p. 16, 1972. 

the wheel 
whether it 
line or on the bottom one. This seems to imply that 
the two CIRCUMFERENCES of different sized CIRCLES 
are equal, which is impossible. 

Argument (Elliptic Integral) 
Given an AMPLITUDE 4 in an ELLIPTIC INTEGRAL, the 
argument u is defined by the relation 

The fallacy lies in the assumption that a 1:l correspon- 
dence of points means that two curves must have the 
same length. In fact, the CAIEDINALITIES of points in 
a LINE SEGMENT of any length (or even an INFINITE 
LINE, a PLANE, a 3-D SPACE, or an infinite dimensional 
EUCLIDEAN SPACE) are all the same: N1 (ALEPH-I), so 
the points of any of these can be put in a ONE-TO-ONE 
correspondence with those of any other. 

see UZSO ZENO’S PARADOXES 

4 E amu. 

see dso AMPLITUDE, ELLIPTIC INTEGRAL 

Argument (F’unct ion) 
An argument of a FUNCTION f(xl, . . . , xn) is one of 
the n parameters on which the function’s value de- 
pends. For example, the SINE sin z is a one-argument 
function, the BINOMIAL COEFFICIENT (i) is a two- 
argument function, and the HYPERGEOMETRIC FUNC- 

TION & (a, b; c; z) is a four-argument function. 
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Argument Multiplication Relation 
A mathematical relationship relating f (nx) to f(x) for 
INTEGER 72. 

see also ARGUMENT ADDITION RELATION, RECUR- 
REN-CE RELATION, REFLECTION RELATION, TRANSLA- 
TION RELATION 



72 Arithmetic 

Arithmetic 
The branch of mathematics dealing with INTEGERS 
or, more generally, numerical computation. Arithmeti- 
cal operations include ADDITION, CONGRUENCE cal- 
culation, DIVISION, FACTORIZATION, MULTIPLICATION, 
POWER computation, ROOT extraction, and SUBTRAC- 
TION. 

The FUNDAMENTAL THEOREM OF ARITHMETIC, also 
called the UNIQUE FACTORIZATION THEOREM, states 
that any POSITIVE INTEGER can be represented in ex- 
actly one way as a PRODUCT of PRIMES. 

The L~WENHEIMER-SKOLEM THEOREM, whichisafun- 
damental result in MODEL THEORY, establishes the ex- 
istence of “nonstandard” models of arithmetic. 

see ~2s~ ALGEBRA, CALCULUS, FUNDAMENTAL THE- 
OREM OF ARITHMETIC, GROUP THEORY, HIGHER 
ARITHMETIC, LINEAR ALGEBRA, L~WENHEIMER- 
SKOLEM THEOREM, MODEL THEORY, NUMBER THE- 
ORY,TRIGONOMETRY 

References 

Arithmetic- Geometric Mean 

The AGM has the properties 

XM(a, b) = M(Xa, Ab) (7) 

M(a,b) = M (;(a+ b),Jab) (8) 

MU, d1 - x2 ) = M(l + x, 1 - x) (9) 

M&b) = FM (10) 

The Legendre form is given by 

M(l,x) = fi +(l + kn), (11) 
n=O 

where ko E x and 

2dG 
k ~ n+l= l+knm 

Solutions to the differential equation 

(12) 

Karpinski, L. C. The History of Arithmetic. Chicago, IL: 
Rand, McNally, & Co., 1925. 

Maxfield, J. E. and Maxfield, M. W. Abstract Algebra and 
Solution by Radicals. Philadelphia, PA: Saunders, 1992. 

Thompson, J. E. Arithmetic for the Practical Man. New 
York: Van Nostrand Reinhold, 1973. 

Arithmetic-Geometric Mean 
The arithmetic-geometric mean (AGM) M(a, b) of two 
numbers a and b is defined by starting with a0 E a and 
bo E b, then iterating 

(1) 

d2Y x3 - x)- dY 
dx2 +(3x2-1)5+z9-=0 (13) 

are given by [A4(1+ x,1 - 2)l-l and [M(l, x)]? 

A generalization 
MEANLY 

of the ARITHMETIC-GEOMETRIC 

xp-’ dx 
(2” + a~)l/~(x~ + bp)(p-1)/p’ (14) 

which is related to solutions of the differential equation 

b n+1= da, bn (2) 

until an = b,. a, and b, converge towards each other 
since 

an+1 - b,+l = :(a, + bn) - da,b, 

an-2&K+bn - - 
l  

2 (3) 

But &< 6, so 

2b, < 2-\/a,b,. (4 

NOW, add a, - b, - 2Janbn to each side 

an -t b, - 2&b, <an-b, (5) 

so 

an+1 - b,+l < $ a, - n . ( b > (6) 

The AGM is very useful in computing the values of 
complete ELLIPTIC INTEGRALS and can also be used 
for finding the INVERSE TANGENT. The special value 
l/M(l, a) is called GAUSS'S CONSTANT. 

x(l-xp)y”+[l-(p+l)xP]Y’-(JI-l)xP-lY = 0. (15) 

When p = 2 or p = 3, there is a modular transformation 
for the solutions of (15) that are bounded as x -+ 0. Let- 
ting J,(x) be one of these solutions, the transformation 
takes the form 

JPW = ~JPW7 

l-u 

x = l-f- (p - l)u 

LL= 
1 + (p - 1)u 

P 

(17) 

(18) 

and 
xp+up = 1. (19) 

The case p = 2 gives the ARITHMETIC-GEOMETRIC 
MEAN, and 13 = 3 gives a cubic relative discussed by 
Borwein and Borwein (1990, 1991) and Borwein (1996) 
in which, for a, b > 0 and I(a, b) defined by 

I(a, b) = 
t dt 

[(a3 + t3)(b3 + t3)2]1/3 ’ (20) 
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I@, b) = I (F, [:(a2 + ab + b’)]) . (21) 

For iteration with a0 = a and bo = b and 

a, + 2bn 
an+1 = p 

3 
(22) 

b n+1 = $(un2 + anbn + bn”), (23) 

I(17 1) 
lim Us = lim b, = - 

n+cx, n-00 
I(% b) l  

Mudular transformations are known when p = 4 and 
p = 6, but they do not give identities for p = 6 (Borwein 
1996). 

see also ARITHMETIC-HARMONIC MEAN 
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bridge University Press, pp. 906-907, 1992. 

Arithmetic Geometry 
A vaguely defined branch of mathematics dealing with 
VARIETIES, the MORDELL CONJECTURE, ARAKELOV 
THEORY, and ELLIPTIC CURVES. 

References 
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Arithmetic-Harmonic Mean 
Let 

an+1 = +(a- + bn) (1) 

b 
2&z 

T&+1= - 
an + bn ' 

(2) 

Then 

A(~o,bo) = lim an = lim b, = Juobo, (3) n-F00 n-+m 

whichisjust the GEOMETRIC MEAN. 

Arithmetic-Logarithmic-Geometric Mean 

Inequality 

u+b b-u 

2 > In b - In a 
>a. 

see also NAPIER’S INEQUALITY 
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Arithmetic Mean 
For a CONTINUOUS DISTRIBUTION function, the arith- 
metic mean of the population, denoted p, Z, (x), or 
A(x), is given by 

CL = Lfw = Ia P(x)f(x)dx, 

--oo 

where (x) is the EXPECTATION VALUE. For a DISCRETE 
DISTRIBUTION, 

CL = (f(x)) = 
c SO P(Xn)f Cxn> 

z,“=, p( 
Xn 

) 
n=O 

(2) 
The population mean satisfies 

(f (4 + s(4) = (f (4) + Mx>> (3) 

(cf b>> = c (f (x>> ? (4) 

and 

(f (WY)) = (f (4) MY)) (5) 
if x and y are INDEPENDENT STATISTICS. The “sample 
mean, ” which is the mean estimated from a statistical 
sample, is an UNBIASED ESTIMATOR for the population 
mean. 

For small samples, the mean is more efficient than the 
MEDIAN and approximately 7r/2 less (Kenney and Keep- 
ing 1962, p. 211). A general expression which often holds 
approximately is 

mean - mode =2: 3(mean - median). 

Given a set of samples {xi}, the arithmetic mean is 

(6) 

Hoehn and Niven (1985) show that l  

A(al+v2fc ,..., a,+c)=~+A(a~,~~ ,..., u,) (8) 

for any POSITIVE constant c. The arithmetic mean sat- 
isfies 

AXDH, - - (9) 
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where Gis the GEOMETRIC MEAN and H is the HAR- 
MONIC MEAN (Hardy et al. 1952; Mitrinovic 1970; Seck- 
enbach and Bellman 1983; Bullen et al. 1988; Mitrinovid. 
et al. 1993; Alzer 1996). This can be shown as follows. 
For a, b > 0, 

(&$2zo 
1 2 1 -- 
a z+b10 

11 2 

-+c-- a -a 

2 
A& 

;+; - 

H > G 

(12) 

(13) 

(14) 
with equality IFF b = a. To show the second part of the 
inequality, 

(10) 

(11) 

(fi-Jb)2= a-2dx+b>O (15) 

a+b 
>a 

2 - (16) 

A > H, - 07) 

with equality IFF a = b. Combining (14) and (17) then 
gives (9). 

Given n independent random GAUSSIAN DISTRIBUTED 
variates xi, each with population mean pi = p and 
VARIANCE oi2 = 02, 

( > 
1 Iv 

Ir: =- 
N 

( ) 
IL Xi = $F > ( Xi 

i=l i=l 

(19) 

so the sample -mean is an UNBIASED ESTIMATOR of 
population mean. However, the distribution of z de- 
pends on the sample size. For large samples, z is ap- 
proximately NORMAL. For small samples, STUDENT'S 
t-DISTRIBWTXON should be used. 

The VARIANCE of the population mean is independent 
of the distribution. 

var(Z) = var 
(i&i) = &var (g) 

From LSTATISTICS for a GAUSSIAN DISTRIBUTION, the 
UNBIASED ESTIMATOR for the VARIANCE is given by 

(21) 

where 
N 

1 
SI- 

N n 
Xi - Z)“, (22) 

i=l 

SO n 

var@) = j&. 

The SQUARE ROOT ofthis, 

(23) 

is called the STANDARD ERROR. 

var(Z) E (z2) - (z)“, (25) 

SO 

(55”) = var(%) + (5)2 = $ + p2. (26) 

see also ARITHMETIC-GEOMETRIC MEAN, ARITH- 
METIC-HARMONIC MEAN, CARLEMAN'S INEQUAL- 
ITY, CUMULANT, GENERALIZED MEAN, GEOMET- 
RIC MEAN, HARMONIC MEAN, HARMONIC-GEOMETRIC 
MEAN, KURTOSIS, MEAN, MEAN DEVIATION, MEDIAN 
(STATISTICS), MODE, MOMENT, QUADRATIC MEAN, 
ROOT-MEAN-SQUARE,~AMPLE VARIANCE,~KEWNESS, 
STANDARD DEVIATION, TRIMEAN, VARIANCE 
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Arithmetic Progression 

see ARITHMETIC SERIES 
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Arithmetic Sequence 
A SEQUENCE of n numbers {do + Icd}Lzi such that the 
differences between successive terms is a constant d. 

see also ARITHMETIC SERIES, SEQUENCE 

Arithmetic Series 
An arithmetic series is the SUM of a SEQUENCE {ak}, 
k = 1, 2, l  “, in which each term is computed from 
the previous one by adding (or subtracting) a constant. 
Therefore, for k > 1, 

ak =ak-l+d=ak-2+2d=...=al+d(k-1). (1) 

The sum of the sequence of the first n terms is then 
given by 

S, E 2 ak = ?[a1 + (k - l)d] 
k=l k=l 

- - nal + dk(k - 1) = nal + dk(k - 1) 

Using the SUM identity 

n 

IE 
- $t(n + 1) - 

then gives 

Sn = nal + id(n - 1) = $,n[2al + d(n - I)]. 

Note, however, that 

~1 + a, = al + [al + d(n - l)] = 2al + d(n - l), 

so 
S, = +(a, +a,), 

(2) 

(3) 

(4) 

(5) 

(6) 
or n times the AVERAGE of the first and last terms! 
This is the trick Gauss used as a schoolboy to solve 
the problem of summing the INTEGERS from 1 to 100 
given as busy-work by his teacher. While his classmates 
toiled away doing the ADDITION longhand, Gauss wrote 
a single number, the correct answer 

$00)(1+ 100) = 50 ’ 101 = 5050 (7) 

on his slate. When the answers were examined, Gauss’s 
proved to be the only correct one. 

see also ARITHMETIC SEQUENCE, GEOMETRIC SERIES, 
HARMONIC SERIES, PRIME ARITHMETIC PROGRESSION 
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Armstrong Number 
The n-digit numbers equal to sum of nth powers of their 
digits (a finite sequence), also called PLUS PERFECT 
NUMBERS. They first few are given by 1, 2, 3, 4, 5, 
6, 7, 8, 9, 153, 370, 371, 407, 1634, 8208, 9474, 54748, 
. l  l  (Sloane’s A005188). 

see also NARCISSISTIC NUMBER 
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Arnold’s Cat Map 
The best known example of an ANOSOV DIFFEOMOR- 
PHISM. It is given by the TRANSFORMATION 

(1) 

where -xn+l and yn+l are computed mod 1. The Arnold 
cat mapping is non-Hamiltonian, nonanalytic, and mix- 
ing. However,itis AREA-PRESERVING since the DETER- 
MINANT~~ 1. The LYAPUNOV CHARACTERISTIC EXPO- 
NENTS are given by 

l-a 1 
1 2-g =c2 - 30 + 1 = 0, (2) 

o’f = i(3fJ5). (3) 

The EIGENVECTORS are found by plugging of into the 
MATRIX EQUATION 

[ 
l-T* 2-10*] [;I = [;I l  C4) 

For ol+, the solution is 

y= ~(1+J5)xqbx, (5) 

where q3 is the GOLDEN RATIO, so the unstable (normal- 
ized) EIGENVECTOR is 

(6) 

Similarly, for U-, the solution is 

y = -i(& - 1)x E $-lx, 

so the stable (normalized) EIGENVECTOR is 

(7) 

see also ANOSOV MAP 
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Arnold Diffusion 
The nonconservation of ADIABATIC INVARIANTS which 
arises in systems with three or more DEGREES OF FREE- 
DOM. 

Arnold Tongue 
Consider the CIRCLE MAP. If K is NONZERO, then 
the motion is periodic in some FINITE region surround- 
ing each rational 0. This execution of periodic motion 
in response to an irrational forcing is known as MODE 
LOCKING. If a plot is made of K versus 0 with the re- 
gions of periodic MODE-LOCKED parameter space plot- 
ted around rational St values (the WINDING NUMBERS), 
then the regions are seen to widen upward from 0 at 
K = 0 to some FINITE width at K = 1. The region 
surrounding each RATIONAL NUMBER is known as an 
ARNOLD TONGUE. 

At K = 0, the Arnold tongues are an isolated set of 
MEASURE zero. At K = 1, they form a general CAN- 
TOR SET of dimension d $=: 0.8700. In general, an Arnold 
tongue is defined as a resonance zone emanating out 
from RATIONAL NUMBERS in a two-dimensional param- 
eter space of variables. 

see also CIRCLE MAP 

Aronhold Process 
The process used to generate an expression for a covari- 
ant in the first degree of any one of the equivalent sets 
of COEFFICIEKTS for a curve. 

see also C 
THAL'S EQ 

EBSCH- 
ATION 

ARON HOLD N OTATIO N, JOA CHIMS- 
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Aronson’s Sequence 
The sequence whose definition is: “t is the first, fourth, 
eleventh, l  . . letter of this sentence.” The first few val- 
ues are 1, 4, 11, 16, 24, 29, 33, 35, 39, l  . . (Sloane’s 
A005224). 

References 
Hofstadter, D. R, Metamagical Themas: Questing of Mind 

and Puttern. New York: BasicBooks, p- 44, 1985. 
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Arrangement 
In general, an arrangement of objects is simply a group- 
ing of them. The number of “arrangements” of n, items 
is given either by a COMBINATION (order is ignored) or 
PERMUTATION (order is significant) l  

The division of SPACE into cells by a collection of HY- 
PERPLANES is also called an arrangement. 

see also COMBINATION, 
DERING, PERMUTATION 

CUTTING, HYPERPLANE, OR- 

Array 

Arrangement Number 

see PERMUTATION 

Array 
An array is a “list of lists” with the length of each 
level of list the same. The size (sometimes called the 
“shape”) of a d-dimensional array is then indicated as 
m X n X l  *v X p. The most common type of array en- 
\ d Y 

d 

countered is the 2-D m x n rectangular array having m 
columns and n, rows. If ~2 = n, a square array results. 
Sometimes, the order of the elements in an array is sig- 
nificant (as in a MATRIX), whereas at other times, arrays 
which are equivalent modulo reflections (and rotations, 
in the case of a square array) are considered identical 
(as in a MAGIC SQUARE or PRIME ARRAY). 

In order to exhaustively list the number of distinct ar- 
rays of a given shape with each element being one of Fz 
possible choices, the naive algorithm of running through 
each case and checking to see whether it’s equivalent to 
an earlier one is already just about as efficient as can 
be. The running time must be at least the number of 
answers, and this is so close to krnn*‘** that the difference 
isn’t significant. 

’ 

However, finding the number of possible arrays of a given 
shape is much easier, and an exact formula can be ob- 
tained using the POLYA ENUMERATION THEOREM. For 
the simple case of an m, x n array, even this proves un- 
necessary since there are only a few possible symmetry 
types, allowing the possibilities to be counted explicitly. 
For example, consider the case of VL and n EVEN and 
distinct, so only reflections need be included. To take a 
specific case, let m = 6 and n = 4 so the array looks like 

a bcldef 

9 hiljkl 
- - - + - - - 

m 
S 

n 
t 

0 

U 

P 

V 

Q 
w 

T 

x7 

where each a, b, . . . , ~1: can take a value from 1 to k. The 
total number of possible arrangements is kz4 (km, in 
general). The number of arrangements which are equiv- 
alent to their left-right mirror images is P2 (in general, 
k mn/2 ), as is the number equal to their up-down mirror 
images, or their rotations through 180”. There are also 
k” arrangements (in general, kmn/4) with full symmetry. 

In general, it is therefore true that 

k mn/4 with full symmetry 
k mn/2 _ kmni4 with only left-right reflection 
k mn/2 _ kmd4 with only up-down reflection 
k mn/2 -k mn/4 with only 180’ rotation, 

so there are 

k mn - 3k mn/2 + 2km”/4 



Arrow Notation Artin Braid Group 

arrangements with no symmetry. Now dividing by the 
number of images of each type, the result, for m # n 
with m, n EVEN, is 

see CZZSOACKERMANN NUMBER,CHAINED ARROW No- 
TATION, DOWN ARROW NOTATION, LARGE NUMBER, 
POWER TOWER,~TEINHAUS-MOSER NOTATION 

N(m,n, k) = $kmn + (i)(3)@““/” - kmnj4) 

+ +(k-- _ 3kmni2 + 2kmni4) 

= +krnn + ;kmni2 + $kmn/4m 

The number is therefore of order O(kmn/4), with “cor- 
rection” terms of much smaller order. 

see also ANTIMAGIC SQUARE, EULER SQUARE, 
KIRKMAN'S SCHOOLGIRL PROBLEM, LATIN RECT- 
ANGLE, LATIN SQUARE, MAGIC SQUARE, MATRIX, 
MRS. PERKINS' QUILT, MULTIPLICATION TABLE, OR- 
THOGONAL ARRAY,PERFECT SQUARE, PRIME ARRAY, 
QUOTIENT-DIFFERENCE TABLE, ROOM SQUARE, STO- 
LARSKY ARRAY,TRUTH TABLE, WYTHOFF ARRAY 

Arrow Notation 
A NOTATION invented by Knuth (1976) to represent 
LARGE NUMBERS in which evaluation proceeds from the 
right (Conway and Guy 1996, p. SO). 

m?n. rnarn-•mm 

n 

For example, 

mTn=m” 
*m 

m~~n=m~-*~m=mm’ 
- - 

n n 

m~~2=m~m=m~m=m” 

m~~3=m~m~m=m~(mjm) 
L d 

3 

=mTmm =mm 
m 

.m 

m TTf 2 = m TT 

v d 

2 m  

.m 

m’ m’ 

,m ,m 

m  m  

m TT n is sometimes called a POWER TOWER. 
values n T - l  l  T n are called ACKERMANN NUMBERS. 

(1) 

(2) 

(3) 

(4) 

(5) 

The 

77 
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Arrow’s Paradox 
Perfect democratic voting is, not just in practice but in 
principle, impossible. 
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Arrowhead Curve 

see SIERPI~~SKI ARROWHEAD CURVE 

Art Gallery Theorem 
Also called CHV~;TAL’S ART GALLERY THEOREM. If 
the walls of an art gallery are made up of n straight 
LINES SEGMENTS, then the entire gallery can always be 
supervised by Ln/3] watchmen placed in corners, where 
1x1 is the FLOOR FUNCTION. This theorem was proved 
by V. ChvStal in 1973. It is conjectured that an art 
gallery with n walls and h HOLES requires l(n + Ii)/31 
watchmen. 

see UZSO ILLUMINATION PROBLEM 
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Articulation Vertex 
A VERTEX whose removal will disconnect a GRAPH, also 
called a CUT-VERTEX. 

see also BRIDGE (GRAPH) 

References 
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Artin Braid Group 

see BRAID GROUP 



78 Artin’s Conjecture Artis tic Series 

If n # -1 and n is not a PERFECT SQUARE, then Artin 
conjectured that the SET S(n) of all PRIMES for which n 
is a PRIMITIVE ROOT is infinite. Under the assumption 
of the EXTENDED RIEMANN HYPOTHESIS; Artin’s con- 
jecture was solved in 1967 by C. Hooley. If, in addition, 

con- 
.IMES 

n is not 
jectured 
is CArtin 

an rth POWER for any T > 1, then Artin 
that the density of S(n) relative to the PR 
(independent of the choice of n), where 

c Artin 
1 

1-p 
da - 1) 1 = 0.3739558136 l  

l  l  ?  Artinian Ring 

Artin’s Conjecture 
There are at least two statements which go by the name 
of Artin’s conjecture. The first is the RIEMANN HY- 

POTHESIS. The second states that every INTEGER not 
equal to -1 or a SQUARE NUMBER is a primitive root 
modulo p for infinitely many p and proposes a density 
for the set of such p which are always rational multi- 
ples of a constant known as ARTIN'S CONSTANT. There 
is an analogous theorem for functions instead of num- 
bers which has been proved by Billharz (Shanks 1993, 
p* 147). 

see UZSO ARTIN? CONSTANT, RIEMANN HYPOTHESIS 
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Artin’s Constant 

and the PRODUCT is over PRIMES. The significance of 
this constant is more easily seen by describing it as the 
fraction of PRIMES p for which l/p has a maximal DEC- 
IMAL EXPANSION (Conway and Guy 1996). 
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Artin L-Function 
An Artin L-function over the RATIONALS Q encodes in 
a GENERATING FUNCTION information about how an 
irreducible manic POLYNOMIAL over Z factors when re- 
duced modulo each PRIME. For the POLYNOMIAL x2 +l, 
the Artin L-function is 

where (-l/p) is a LEGENDRE SYMBOL, which is equiv- 
alent to the EULER 1;-FUNCTION. The definition over 
arbitrary POLYNOMIALS generalizes the above expres- 

sion. 

see also LANGLANDS RECIPROCITY 

References 
Knapp, A. W. “Group Representations and Harmonic Anal- 
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Artin Reciprocity 

see ARTIN’S RECIPROCITY THEOREM 

Artin’s Reciprocity Theorem 
A general RECIPROCITY THEOREM for all orders. If R 
is a NUMBER FIELD and R’ a finite integral extension, 
then there is a SURJECTION from the group of fractional 
IDEALS prime to the discriminant, given by the Artin 
symbol. For some cycle c, the kernel of this SURJECTION 
contains each PRINCIPAL fractional IDEAL generated by 
an element congruent to 1 mod c. 

see ~ZSOLANGLANDS PROGRAM 

Artinian Group 
A GROUP in which any decreasing CHAIN of distinct 
SUBGROUPS terminates after a FINITE number. 

A noncommutative SEMISIMPLE RING satisfying the 
“descending chain condition.” 

see also GORENSTEIN RING, SEMISIMPLE RING 
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Artistic Series 
A SERIES is called artistic if every three consecutive 
terms have a common three-way ratio 

P[Ui, %+1, G+2] = 
(ai + ai+ + &+2)&+1 

l  

ai&+2 

A SERIES is also artistic IFF its BIAS is a constant. A 
GEOMETRIC SERIES with RATIO r > 0 is an artistic 
series with 

P= 
1 
-+1+r>3. - T 

see also BIAS (SERIES) 
SERIES 
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Progressions of Constant 
snthly 100, 38-47, 1993. 

MELO 

Cross Ra- 

DIG 

w, W/Q sgn) = 
P 

rI 
odd prime 

1 
l- ($)p-s’ 



ASA Theorem 
. 

Associative Magic Square 79 

ASA Theorem Associative 

Specifying two adjacent ANGLES A and B and the side 
between them c uniquely determines a TRIANGLE with 
AREA 

2 
K- 

2(cot A; cot B) ’ (1) 

The angle C is given in terms of A and B by 

C=r-A-B, (2) 

and the sides a and b can be determined by using the 
LAW OF SINES 

a b C 
----- 

sin A - sinB - sinC 

to obtain 

sin A 
U= 

sin@ - A - B)’ 

(3) 

(4) 

b= 
sin B 

sin@ - A - B) ” (5) 

see also AAA THEOREM, AAS THEOREM, ASS THEO- 
REM, SAS THEOREM,SSS THEOREM, TRIANGLE 

Aschbacher’s Component Theorem 
Suppose that E(G) (the commuting product of all com- 
ponents of G) is SIMPLE and G contains a SEMISIM- 
Pm INv0Lu~10N. Then there is some SEMISIMPLE 
INVOLUTION z such that CG(X) has a NORMAL SUB- 
GROUP K which is either QUASISIMPLE OF ISOMORPHIC 
to 0+(4,q)’ and such that Q = C&Y) is TIGHTLY EM- 
BEDDED. 

see also INVOLUTION (GROUP), ISOMORPHIC GROUPS, 
NORMAL SUBGROUP, QUASISIMPLE GROUP, SIMPLE 
GROUP, TIGHTLY EMBEDDED 

ASS Theorem 

/q /q /\ 

c C c 

Specifying two adjacent side lengths a and b of a TRIAN- 
GLE (taking a > b) and one ACUTE ANGLE A opposite 
a does not, in general, uniquely determine a triangle. 
If sin A < a/c, there are two possible TRIANGLES satis- 
fying the given conditions. If sin A = a/c, there is one 
possible TRIANGLE. If sin A > u/c, there are no possible 
TRIANGLES, Remember: don’t try to prove congruence 
with the ASS theorem or you will make make an ASS 
out of yourself. 

see also AAA THEOREM, AAS THEOREM, SAS THEO- 
REM, SSS THEOREM, TRIANGLE 

In simple terms, let zc, y, and z be members of an AL- 
GEBRA. Then the ALGEBRA is said to be associative 
if 

x  l  (y ’  x) = (x l  y) l  2, 
(1) 

where l  denotes MULTIPLICATION. More formally, let A 
denote an R-algebra, so that A is a VECTOR SPACE over 
Iw and 

AxA-+A (2) 

(XI Y) * x ’ y* (3) 

Then A is said to be m-associative if there exists an m-D 
SUBSPACE S of A such that 

(y l  2) l  z  = y  ’  (x ’  iz) 
(4) 

for all y,z f A and x f S. Here, VECTOR MULTIPLI- 
CATION x n y is assumed to be BILINEAR. An n-D n- 
associative ALGEBRA is simply said to be “associative.” 

see ~2~0 COMMUTATIVE, DISTRIBUTIVE 
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Associative Magic Square 

1 15 24 8 17 

23 7 16 5 14 

9 18 2 11 25 

An 72 x n MAGIC SQUARE for which every pair of num- 
bers symmetrically opposite the center sum to n2 + 1. 
The LO SHW is associative but not PANMAGIC. Order 
four squares can be PANMAGIC or associative, but not 
both. Order five squares are the smallest which can be 
both associative and PANMAGIC, and 16 distinct asso- 
ciative PANMAGIC SQUARES exist, one of which is illus- 
trated above (Gardner 1988). 

see also MAGIC SQUARE, PANMAGIC SQUARE 
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80 As troid As troid 

Astroid with n = 4, 
s4 = 6a. (11) 

The AREA is given by 

( w  - 2) A, = n - n2 m2 (12) 

with n = 4, 
A4 = $u2. (13) 

The EV~LUTE of an ELLIPSE is a stretched HYPOCY- 
CLOID. The gradient of the TANGENT T from the point 
with parameter p is - tanp. The equation of this TAN- 
GENTS is 

A 4-cusped HYPOCYCLOID which is sometimes also 
called a TETRACUSPID, CUBOCYCLOID, 0r PARACY CLE. 
The parametric equations of the astroid can be obtained 
by plugging in n = a/b = 4 or 4/3 into the equations for 
a general HYPOCYCLOID, giving II: sinp + y cosp = &zsin(2p) (14) 

(MacTutor Archive). Let T cut the X-AXIS and the y- 
AXIS at X and Y, respectively. Then the length XY is 
a constant and is equal to a. 

x = 3bcos++ bcos(3g5) = 4bcos3q5 = acos34 (1) 

y = 3bsin$ - bsin(3+) = 4bsin3 4 = asin $. (2) 

In CARTESIAN COORDINATES, 

t L 
4 

X w + y2/3 = pa 
(3) 

In PEDAL COORDINATES with the PEDAL POINT at the 
center, the equation is 

T2 +3p2 = u2. The astroid can also be formed as the ENVELOPE pro- 
duced when a LINE SEGMENT is moved with each end 
on one of a pair of PERPENDICULAR axes (e.g., it is the 
curve enveloped by a ladder sliding against a wall or a 
garage door with the top corner moving along a verti- 
cal track; left figure above). The astroid is therefore 

t t t 
The ARC LENGTH$URVATURE, and TANGENTIAL AN- 

GLE are 

a GLISSETTE. To see this, note that for a ladder of 
length L, the points of contact with the wall and floor 
are (x0,0) and (O,dw), respectively. The equa- 
tion of the LINE made by the ladder with its foot at 
(x0,0) is therefore s t s(t) = g 1 sin( at’) 1 dt’ = % sin2 t 

0 

kc(t) = - $ csc(2t) 

4(t) = 4. 

(5) 

(6) 

(7) 

y-o= JL’iEGq 
X- 

-x0 
x0> (15) 

which can be written 

As usual, care must be taken in the evaluation of s(t) for 
t > T/2. Since (5) comes from an integral involving the 
ABSOLUTE VALUE of a function, it must be monotonic 
increasing. Each QUADRANT can be treated correctly 
by defining 

2t 
n= 

L 1 
- +l, (8) 7r 

where 1x1 is the FLOOR FUNCTION, giving the formula 

U(X,Y,Xo) = Y + -(x _ x0) . 
x0 

(16) 

The equation of the 
neous solution of 

ENVELOPE is given by the simult a- 

{ 

J L2-,02 
U(x, y, x0) = y + - x - 

X0 ( x0) = 0 

au x 2-L,2 (17) 
-- 
ax0 - xo2>51p = O, 

s(t) = (-1) l+[n (mod 2)) 3 2 sin2 t + 3 L$n] . (9) 
which is 

The overall ARC LENGTH of the astroid can 
puted from the general TYPO CYC LOID formula 

be com- 
MA 

3 
*u x=- 
L2 (18) 

W 
2 

xo2)3'2 

Y= -L2 l  (19) 
S r&= 

8a(n - 1) 

n (10) 



As hid 

Noting that 

2 
x2/3 - xo - 

p/3 

w - L2 - 202 
Y -- p/3 

(20) 

(21) 

allows this to be written implicitly as 

x2/3 + y2/3 = LV, (22) 

the equation of the astroid, as promised. 

+-AL+L+ 

The related problem obtained by having the “garage 
door” of length L with an “extension” of length AL 
move up and down a slotted track also gives a surprising 
answer. In this case, the position of the “extended” end 
for the foot of the door at horizontal position 20 and 
ANGLE 8 is given by 

X== -ALcosO (23) 

y = .JL2= + ALsinO. (24) 

Using 
x0 = LCOSO (25) 

then gives 

AL 
x = --x0 

L (26) 

(27) 

Solving (26) for ~0, plugging into (27) and squaring then 
gives 

Y2 = L2 - (AT,>2 L2s2 (l+g2* 

Rearranging produces the equation 

X2 Y2 

~ + (L + AL)2 = ” @JQ2 

(28 

(29) 

the equation of a (QUADRANT of an) ELLIPSE with 
SEMIMAJOR and SEMIMINOR AXES of lengths AL and 
L+AL. 

Astroid Involute 81 

The astroid is also the ENVELOPE of the family of EL- 
LIPSES 

$+L- 
(l-42 l=O, (30) 

illustrated above. 

see U~SO DELTOID, ELLIPSE ENVELOPE, LAMI? CURVE, 
NEPHROID, RANUNCULUID 
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Astroid Evolute 

A HYPOCYCLOID EVOLUTE for n = 4 is another As- 
TROID scaled by a factor n/(n - 2) = 4/2 = 2 and 
rotated l/(2 l  4) = l/8 of a turn. 

Astroid Involute 

A HYPOCYCLOID INVOLUTE for n = 4 is another As- 
TROID scaled by a factor (n - 2)/2 = 2/4 = l/2 and 
rotated l/(2 l  4) = l/8 of a turn. 



82 Astroid Pedal Curve 

Astroid Pedal Curve 

The PEDAL CURVE ofan ASTROID with PEDAL PRINT 
at the center is a QUADRIFOLIUM. 

Astroid Radial Curve 

The QUADRIFOLIUM 

x = x0 + 3acmt - 3a cos(3t) 

y = yo + 3a sin i! + 3a sin(3+ 

Astroidal Ellipsoid 
The surface which is the inverse of the ELLIPSOID in the 
sense that it “goes in” where the ELLIPSOID “goes out.” 
It. is given by the parametric equations 

x- a ( 

Y = (b 

cos u cos v)” 

sin u cos V) 3 

x= (csin7.Q3 

for u f [-7r/27/2] and 21 E [-n, ~1. The special case where e, f, and g are second FUNDAMENTAL FORMS. 

a = b = c = 1 corresponds to the HYPERBOLIC OCTA- The differential equation for asymptotic curves on a 
HEDRON. MONGE PATCH (u,v, h(u,v)) is 

see also ELLIPSOID, HYPERBOLIC OCTAHEDRON 
huuutZ + 2hUUu’v’ + h,,vt2 = 0, (2) 
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Asymptosy 
ASYMPTOTIC behavior. A useful yet endangered word, 
found rarely outside the captivity of the Oxj%rd English 
Dictionary. 

see also ASYMPTOTE, ASYMPTOTIC 

Asymptotic Curve 

Asymptote 

u 
asymptotes 

A curve approaching a given curve arbitrarily closely, as 
illustrated in the above diagram, 

see also ASYMPTOSY, ASYMPTOTIC, ASYMPTOTIC 
CURVE 

References 
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Asympt 
Approaching a value or curve arbitrarily closely (i.e., 
as some sort of LIMIT is taken). A CURVE A which is 
asymptotic to given CURVE C is called the ASYMPTOTE 
of c. 

see UZSO ASYMPTOSY, ASYMPTOTE, ASYMPTOTIC 
CURVE, ASYMPTOTIC DIRECTION, ASYMPTOTIC SE- 
RIES, LIMIT 

Asymptotic Curve 
Given a REGULAR SURFACE M, an asymptotic curve 
is formally defined as a curve x(t) on M such that the 
NORMAL CURVATURE is 0 in the direction x’(t) for all 
t in the domain of x. The differential equation for the 
parametric representation of an asymptotic curve is 

ed2 + 2 f&i + pi2 = 0, (1) 

and on a polar patch (T cos 0, T sin 8, h(r)) is 

h”(r)rf2 + h’(r)d2 = 0. (3) 

The images below show asymptotic curves for the EL- 
LIPTIC HELICOID, FUNNEL, HYPERBOLIC PARABOLOID, 
and MONKEY SADDLE. 



Asymptotic Direction 

see also RULED SURFACE 

Atiyah-Singer Index Theorem 83 

where 
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The asymptotic series is 

lim xnRn(x > a:+00 

Asymptotic Direction 
An asymptotic direction at a point p of a REGULAR 
SURFACE M f Iw3 is a direction in which the NORMAL 
CURVATURE of M vanishes. 

1. There are no asymptotic directions at an ELLIPTIC 
POINT. 

lim x”Rn(x) 
n-km 

Therefore, 

2. There are exactly two asymptotic directions at a HY- 
PERBOLIC POINT. 

in the limit x + 00. If a function has an asymptotic 
expansion, the expansion is unique. The symbol - is 
also used to mean directly SIMILAR. 

3. There is exactly one asymptotic direction at a PAR- 
ABOLIC POINT. 
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see also ASYMPTOTIC CURVE p* 15, 1972. 
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Asymptotic Notation 
Let n be a integer variable which tends to infinity and let 
x be a continuous variable tending to some limit. Also, 
let 4(n) or $(z) b e a p t osi ive function and f(n) or f(z) 
any function. Then Hardy and Wright (1979) define 

1. f = O(4) t o mean that 1 f 1 < A# for some constant 
A and all values of n and 5, 

2. f = o($) to mean that f/4 + 0, 

3. f - 4 to mean that f/4 + 1, 

4. f + 4 to mean the same as f = o(4), 

5. f > 4 to mean f/4 + 00, and 

6. f x 4 to mean AlqS < f < A2 for some positive 
constants A1 and AZ. 

A&en, G. “Asymptotic of Semiconvergent Series.” $5.10 in 
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Morse, P. M. and Feshbach, H. “Asymptotic Series; Method 

of Steepest Descent.” 54.6 in Methods of Theoretical Phys- 
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f = o(4) implies and is stronger than f = O(4). 
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Atiyah-Singer Index Theorem 
A theorem which states that the analytic and topological 
“indices” are equal for any elliptic differential operator 
on an n-D COMPACT DIFFERENTIABLE Cc” boundary- 
less MANIFOLD. 

Hardy, G. H. and Wright, E. M. “Some Notation.” $1.6 in 
An Introduction to the Theory of Numbers, 5th ed. Oxford, 
England: Clarendon Press, pp. ,7-8, 1979. 

see also COMPACT MANIFOLD, DIFFERENTIABLE MAN- 
IFOLD 
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An asymptotic series is a SERIES EXPANSION of a FUNC- 
TION in a variable z which may converge or diverge 
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for large enough 2. To form an asymptotic series R(z) 
of f(z), written 
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take 

f (4 - R(x), (1) 

a rL, *  

defined to have the properties 

=0 for fixed n (4) 

=m for fixed x. (5) 

00 
- 

f (2) m > ; UnXBn (6) 



A tkin-Goldwasser-Kilian-Morain Certificate Augmented Amicable Pair 

Atkin-Goldwasser-Kilian-Morain Certificate 
A recursive PRIMALITY CERTIFICATE for a PRIME p. 

The certificate consists of a list of 

1. 

2. 

3. 

A 

A point on an ELLIPTIC CURVE C 

y2 = x3 + g2El: + g3 (mod p) 

for some numbers g2 and g3. 

A PRIME Q with g > (p1i4 + l)“, such that for 
some other number k and m = kq with k # 1, 

mC(s,y,gz,g3,p) is the identity on the curve, but 
kC(z, y, g2, gs,p) is not the identity. This guaran- 
tees PRIMALITY of p by a theorem of Goldwasser 
and Kilian (1986). 

Each Q has its recursive certificate following it. So if 
the smallest Q is known to be PRIME, all the numbers 
are certified PRIME up the chain. 

PRATT CERTIFICATE is quicker to generate for - 
small numbers. The Mathematics@ (Wolfram Re- 
search, Champaign, IL) task ProvablePrime [n] there- 
fore generates an Atkin-Goldwasser-Kilian-Morain cer- 
tificate only for numbers above a certain limit (lOlo by 
default), and a PRATT CERTIFICATE for smaller num- 
bers. 

see also ELLIPTIC CURVE PRIMALITY PROVING, ELLIP- 
TIC PSEUDOPRIME, PRATT CERTIFICATE, PRIMALITY 
CERTIFICATE, WITNESS 

Heferences 
Atkin, A. 0. L. and Morain, F. "Elliptic Curves and Primal- 

ity Proving." Math. Gomput. 61, 29-68, 1993. 
Bressoud, II. M. Factorization and Prime Testing. New 

York: Springer-Verlag, 1989. 
Goldwasser, S. and Kilian, J. “Almost All Primes Can Be 

Quickly Certified.” Proc. 18th STOC. pp. 316-329, 1986. 

Morain, F, “Implementation of the Atkin-Goldwasser-Kilian 
Primality Testing Algorithm.” Rapport de Recherche 911, 
INRIA, Octobre 1988. 

Schoof, R. “Elliptic Curves over Finite Fields and the Com- 
putation of Square Roots mod p.” Math. Comput. 44, 
483-494, 1985. 

Wunderlich, M. C. “A Performance Analysis of a Simple 
Prime-Testing Algorithm.” Math. Comput. 40, 709-714, 
1983. 

Atomic Statement 
In LOGIC, a statement which cannot be broken down 
into smaller statements. 

Attraction Basin 

see BASIN OF ATTRACTION 

Attractor 
An attractor is a SET of states (points in the PHASE 
SPACE), invariant under the dynamics, towards which 
neighboring states in a given BASIN OF ATTRACTION 
asymptotically approach in the course of dynamic evo- 
lution. An attractor is defined as the smallest unit which 
cannot be itself decomposed into two or more attractors 

with distinct BASINS OF ATTRACTION. This restriction 
is necessary since a DYNAMICAL SYSTEM may have mul- 
tiple attractors, each with its own BASIN OF ATTRAC- 
TION. 

Conservative systems do not have attractors, since the 
motion is periodic. For dissipative DYNAMICAL SYS- 
TEMS, however, volumes shrink exponentially so attrac- 
tors have 0 volume in n-D phase space. 

A stable FIXED POINT surrounded by a dissipative re- 
gion is an attractor known as a SINK. Regular attractors 
(corresponding to 0 LYAPUNOV CHARACTERISTIC Ex- 
PONENTS) act as LIMIT CYCLES, in which trajectories 
circle around a limiting trajectory which they asymp- 
totically approach, but never reach. STRANGE ATTRAC- 
TORS are bounded regions of PHASE SPACE (correspond- 
ing to POSITIVE LYAPUNOV CHARACTERISTIC EXPO- 

NENTS) having zero MEASURE in the embedding PHASE 
SPACE and a FRACTAL DIMENSION. Trajectories within 
a STRANGE ATTRACTOR appear to skip around ran- 
domly. 

see also BARNSLEY'S FERN, BASIN OF ATTRACTION, 
CHAOS GAME, FRACTAL DIMENSION, LIMIT CYCLE, 
LYAPUNOV CHARACTERISTIC EXPONENT, MEASURE, 
SINK (MAP), STRANGE ATTRACTOR 

Auction 
A type of sale in which members of a group of buyers 
offer ever increasing amounts. The bidder making the 
last bid (for which no higher bid is subsequently made 
within a specified time limit: “going once, going twice, 
sold”) must then purchase the item in question at this 
price. Variants of simple bidding are also possible, as in 
a VICKERY AUCTION. 

see also VICKERY AUCTION 

Augend 
The first of several ADDENDS, or “the one to which 
the others are added,” is sometimes called the augend. 
Therefore, while a, b, and c are ADDENDS in a + b + c, 

a is the augend. 

see also ADDEND, ADDITION 

Augmented Amicable Pair 
A PAIR of numbers m and n such that 

u(m) = u(n) = m + n - 1, 

where o(m) is the DIVISOR FUNCTION. Beckand Najar 
(1977) found 11 augmented amicable pairs. 

see also AMICABLE PAIR, DIVISOR FUNCTION, QUASI- 
AMICABLE PAIR 

References 
Beck, W. E. and Najar, R. M. “More Reduced Amicable 

Pairs.” Fib. Q uart. 15, 331-332, 1977. 
Guy, R. K. Unsolved Problems in Number Theory, 2nd ed. 

New York: Springer-Verlag, p. 59, 1994. 



Augmented Dodecahedron Authalic Latitude 85 

Au 

see 

.gmented Dodecahedron where h E 2k - 1 and 

JOHNSON SOLID 
L2h,i&h=2h+1~2k (7) 

L3hy M3h = 3h + 1 F 3k (8) 
L&t!& = 52h + 3 l  5h -t 1 F 5k(5h + 1)a (9) 

.gmented Hexagonal Prism 

JOHNSON SOLID 

Augmented Pentagonal Prism 

see JOHNSON SOLID 
see also GAUSS’S FORMULA 
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Augmented Polyhedron 
A UNIFORM POLYHEDRON with one or more other solids 
adjoined. 

Augmented Sphenocoro 

see JOHNSON SOLID 
Ausdehnungslehre 

~~~EXTERIOR ALGEBRA Augmented Triangular Prism 

see JOHNSON SOLID 

Authalic Latitude 
An AUXILIARY LATITUDE which gives a SPHERE equal 
SURFACE AREA relative to an ELLIPSOID. The authalic 
latitude is defined by 

Augmented Tridiminished Icosahedron 

see JOHNSON SOLID 

.gmented Truncated Cube 

JOHNSON SOLID P = sin -1 Q 

( > b ’ 
(1) 

Au 

See 

gmented Truncated Do decahedron 

JOHNSON SOLID 

q E (l-e”) 
i 

sin # 

1 - e2 sin2 C$ - 2e 
Ln(;+:;~;)], (2) Augmented Truncated Tetrahedron 

see JOHNSON SOLID 
and qp is 4 evaluated at the north pole (4 = 90’). Let R, 
be the RADIUS of the SPHERE having the same SURFACE 
AREA as the ELLIPSOID, then 

Aureum Theorema 
Gauss’s name for the QUADRATIC RECIPROCITY THE- 

OREM. 

% =a c ik* 
2 (3) 

Aurifeuillean Factorization 
A factorization of the form 

The series for /? is 

2 4n+2 + 1 = (22n+1 - zn+l +1)(22n+1 +2”“l+ 1). (1) 
0 = q5 - ( +e2 + &e4 + $&e6 + . . .) sin(24) 

+ (&e4 + &e6 + . , .) sin(44) The factorization for n = 14 was discovered by Au- 
rifeuille, and the general form was subsequently discov- 
ered by Lucas. The large factors are sometimes written 
as L and M as follows 

- ( & e6 + . . .) sin(Sg5) + . . . . (4 

The inverse FORMULA is found from 

2 4k-2 + 1 = (p-l - 2” + @“-l + 2’” + 1) (2) 
36k-3 + 1 = (32k-1 + 1)(32”-1 - 3” + 1)(32k-1 + 3’” + l), 

(3) 

L&$= 
(1 - e2 sin2 4)” 

2cos4 [ 

9 sin g5 - - 
1 - e2 1 - e2 sin2 4 

which can be written 

where 
q = q,sinp (6) 

22h + 1 = &hit& 

33h + 1 = (3h + l)L3hi&h 

5 
5h 

- 1 = (5h - l)L&d!~h, 

(4) 

(5) 

(6) 



86 Autocorrelation Autocorrelation 

and 40 = sin-l (q/2). This can be written in series form 
as 

4 = p + ($5” + &e4 + $f&e6 + . . .) sin(20) 

+ ($” + Ge” + . . .) sin(4P) 

+( se6 + . . m) sin(Sp) + . . . . (7) 

see also LATITUDE 
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Autocorrelation 
The autocorrelation function is defined by 

c,(t) = f* f = f"(-t) * f(t) = 

SW 
f*(T)f(t + 7) d7, 

-m 

(1) 

where * denotes CONVOLUTION and 7t denotes CROSS- 
CORRELATION. A finite autocorrelation is given by 

Cf (4 = ([y(t) - iJlEY@ + 7) - 4) (2) 
T/2 

= lim 
T-bm s [y(t) - d[y(t + T) - 31 dt* (3) 

-T/2 

If f is a REAL FUNCTION, 

f* = f, 

and an EVEN FUNCTION so that 

(4) 

then 

f k-7) = f (4, (5) 

Cf (t) = 
SW 

f (df (t + 7) dr (6) 
-w 

But let r’ = -7, so d7’ = -d-r, then 

Cf Cc> = 
L 

--OO f(-r)f(t - T)(-dr) 

- - 
sm 

f (--r)f (t - 4 dT 
--00 

f(r)f(t-r)dT= f * f. (7) 

The autocorrelation discards phase information, return- 
ing only the POWER. It is therefore not reversible. 

There is also a somewhat surprising and extremely im- 
portant relationship between the autocorrelation and 

the FOURIER TRANSFORM known as the WIENER- 
KHINTCHINE THEOREM. Let F[f(x)] = F(lc), and F* 
denote the COMPLEX CONJUGATE ofF,thenthe FOUR- 
IER TRANSFORM of the ABSOLUTE SQUARE ofF(J 
given by 

mv) I21 - - s O” f*(r)f(r+x)dr. (8) 
--oo 

The autocorrelation is a HERMITIAN OPERATOR since 
C,(4) = C,*(t). f-k f is MAXIMUM at the ORIGIN. In 
other words, 

s O” f(u)f(u+x)du 2 f”(u) du. (9) 
--oo 

To see this, let E be a REAL NUMBER. Then 

SW [f(u) + Ef(u + x)12 du > 0 
--00 

(10) 

f2(u)du+2c 
s 

O” f(u)f(ufx)du 
-w 

+e2 f2(u+x)du > 0 (11) 

SW f”(u) du + 2~ 
s 

O” f (u>f (u + 4 du 
-W -w 

+E2 f”(u)du > 0. (12) 

Define 

a= 
SW 

f2Wdu (13) 
-w 

bE2 
s 

O” f(u)f(u+x)du. (14 
-w 

Then plugging into above, we have ue2 +b~+c > 0. This 
QUADRATIC EQUATION does not have any REAL ROOT, 
so b2 - 4ac < 0, i.e., b/2 < a. It follows that 

s O” f(u)f(u+x)du I sm f 2(u) du, (15) 
-ml --00 

with the equality at x = 0. This proves that f * f is 
MAXIMUM at the ORIGIN. 

see UZSO CONVOLUTION, CROSS-CORRELATION, QUAN- 
TIZATION EFFICIENCY, WIENER-KHINTCHINE THEO- 
REM 
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Automorphic Function 

Automorphic Function 
An automorphic function f(z) of a COMPLEX variable 
z is one which is analytic (except for POLES) in a do- 
main D and which is invariant under a DENUMERABLY 
INFINITE group of LINEAR FRACTIONAL TRANSFORMA- 

TIONS (also known as MOBIUS TRANSFORMATIONS) 

az + b 
x1 = - 

cz+d’ 

Automorphic functions are generalizations of TRIGONO- 

METRIC FUNCTIONS and ELLIPTIC FUNCTIONS. 

see UZSO MODULAR FUNCTION, M~~BIUS TRANSFORMA- 
TIONS, ZETA FUCHSIAN 

Automorphic Number 
A number IC such that nk2 has its last digits equal to 
k is called n-automorphic. For example, 1 l  52 = 25 - 
and 1 m S2 = 36 are 1-automorphic and 2 . 8 2 = 12s 
and 2 l  882 = 15488 are 2-automorphic. de Guerre and 
Fairbairn (1968) g’ rve a history of automorphic numbers. 

The first few l-automorphic numbers are 1, 5, 6, 25, 
76, 376, 625, 9376, 90625, . . . (Sloane’s A003226, Wells 
1986, pa 130). There are two 1-automorphic numbers 
with a given number of digits, one ending in 5 and one in 
6 (except that the l-digit automorphic numbers include 
I), and each of these contains the previous number with 
a digit prepended. Using this fact, it is possible to con- 
struct automorphic numbers having more than 25,000 
digits (Madachy 1979). The first few l-automorphic 
numbers ending with 5 are 5, 25, 625, 0625, 90625, +, . 
(Sloane’s AO07185), and the first few ending with 6 are 
6, 76, 376, 9376, 09376, . . . (Sloane’s A016090). The l- 
automorphic numbers a(n > 

J (mod 10n) since 

[a( E a 

(Sloane and Plouffe 1995) 

The following table give: 
numbers. 

endingin5are IDEMPOTENT 

n) (mod 10n) 

the lo-digit n-automorphic 

n n-Automorphic Numbers Sloane 

1 0000000001, 8212890625, 1787109376 -,A007185, A016090 
2 0893554688 A030984 
3 6666666667, 7262369792, 9404296875 -, A030985, A030986 
4 0446777344 A030987 
5 3642578125 A030988 
6 3631184896 A030989 
7 7142857143, 4548984375, 1683872768 A030990, A030991, 

A030992 
8 0223388672 A030993 
9 5754123264, 3134765625, 8888888889 A030994, A030995,- 

see ~2~0 IDEMPOTENT, NARCH~ISTIC NUMBER, NUM- 
BER PYRAMID,TRIMORPHIC NUMBER 
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Automorphism 
An ISOMORPHISM of a system of objects onto itself. 

see UZSO ANOSOV AUTOMORPHISM 

Automorphism Group 
The GROUP of functions from an object G to itself which 
preserve the structure of the object, denoted Aut(G). 
The automorphism group of a GROUP preserves the 
MULTIPLKATION table, the automorphism group of a 
GRAPH the INCIDENCE MATRICES, andthatofa FIELD 
the ADDITION and MULTIPLICATION tables. 

see also OUTER AUTOMORPHISM GROUP 

Autonomous 
A differential equation or system of ORDINARY DIFFER- 
ENTIAL EQUATIONS is said to be autonomous if it does 
not explicitly contain the independent variable (usu- 
ally denoted t). A second-order autonomous differen- 
tial equation is of the form F(y, &I/‘) = 0, where 
y’ = dy/dt = v - l  By the CHAIN RULE, y” can be ex- 
pressed as 

dv dv dy dv --- y” = v’ = dt = dy dt - -&v. 

For an autonomous ODE, the solution is independent of 
the time at which the initial conditions are applied. This 
means that all particles pass through a given point in 
phase space. A nonautonomous system of n first-order 
ODES can be written as an autonomous system of n + 1 
ODES by letting t E x n+l and increasing the dimension 
of the system by 1 by adding the equation 

dx n+l dt =l. 

Autoregressive Model 

~~~MAXIMUM ENTROPYMETHOD 



Auxiliary Circle Axiom A Flow 

Auxiliary Circle 
The CIRCUMCIRCLE of an ELLIPSE, i.e., the CIRCLE 
whose center corresponds with that of the ELLIPSE and 
whose RADIUS is equal to the ELLIPSE'S SEMIMAJOR 
AXIS. 

see dso CIRCLE, ECCENTRIC ANGLE, ELLIPSE 

Auxiliary Latitude 

see AUTHALIC LATITUDE, CONFORMAL LATITUDE, 
GEOCENTRIC LATITUDE, ISOMETRIC LATITUDE, LAT- 
ITUDE, PARAMETRIC LATITUDE, RECTIFYING LATI- 
TUDE, REDUCED LATITUDE 

Auxiliary Triangle 

see MEDIAL TRIANGLE 

Average 

see MEAN 

Average Absolute Deviation 

1 N 
QrE- 

N ID 
x i  - j .LJ  = (1% - PI) l  

i=l 

see also ABSOLUTE DEVI 
DEVIATION, VARIANCE 

ATION,DEVIATION JTANDARD 

Average Function 
If f is CONTINUOUS on a CLOSED INTERVAL [a,b],then 
there is at least one number x* in [a, b] such that 

fb 

J f (x)dx = f (x*)(b - a). 
a 

The average value of the FUNCTION (f) on this interval 
is then given by f(x*). 

~~~MEAN-VALUE THEOREM 

Average Seek Time 

see POINT-POINT DISTANCE-I-D 

Ax-Kochen Isomorphism Theorem 
Let P be the SET of PRIMES, and let QP and Z&) be the 
FIELDS of p-ADIC NUMBERS and formal POWER series 
over Zp = (O,l, l  . . ,p - I). Further, suppose that D is a 
“nonprincipal maximal filter” on P. Then nPEP U&,/D 

and npEp Z&)/D are ISOMORPHIC. 

see UZSO HYPERREAL NUMBER,NONSTANDARD ANALY- 
SIS 

Axial Vector 

Axiom 
A PROPOSITION regarded as self-evidently TRUE with- 
out PROOF. The word “axiom” is a slightly archaic syn- 
onym for POSTULATE. Compare CONJECTURE or HY- 

POTHESIS, both of which connote apparently TRUE but 
not self-evident statements. 

see also ARCHIMEDES' AXIOM, AXIOM OF CHOICE, Ax- 
IOMATIC SYSTEM, CANTOR-DEDEKIND AXIOM, CON- 
GRUENCE AXIOMS, CONJECTURE, CONTINUITY Ax- 
IOMS, COUNTABLE ADDITIVITY PROBABILITY AXIOM, 
DEDEKIND'S AXIOM, DIMENSION AXIOM, EILENBERG- 
STEENROD AXIOMS, EUCLID'S AXIOMS, EXWION Ax- 
IOM,FANO'S AXIOM, FIELD AXIOMS, HAUSDORFF Ax- 
IOMS, HILE~ERT'S AXIOMS, HOMOTOPY AXIOM, IN- 
ACCESSIBLE CARDINALS AXIOM, INCIDENCE AXIOMS, 
INDEPENDENCE AXIOM, INDUCTION AXIOM, LAW, 
LEMMA, LONG EXACT SEQUENCE OF A PAIR AXIOM, 
ORDERING AXIOMS, PARALLEL AXIOM, PASCH'S Ax- 
IOM, PEANO'S AXIOMS, PLAYFAIR'S AXIOM, PORISM, 
POSTULATE, PROBABILITY AXIOMS, PROCLUS' AXIOM, 
RULE, T~-SEPARATI~N AXIOM,THEOREM,ZERMELO'S 
AXIOM OF CHOICE, ZERMELO-FRAENKEL AXIOMS 

Axiom A Diffeomorphism 
Let 4: M + M be a C1 DIFFEOMORPHISM on acom- 
pact RIEMANNIAN MANIFOLD M. Then 4 satisfies AX- 
iom A if the NONWANDERING set a(4) of $ is hyperbolic 
and the PERIODIC POINTS of q5 are DENSE in O(4). Al- 
though it was conjectured that the first of these condi- 
tions implies the second, they were shown to be indepen- 
dent in or around 1977. Examples include the ANOSQV 
DIFFEOMORPHISMS and SMALE HORSESHOE MAP. 

In some cases, Axiom A can be replaced by the condi- 
tion that the DIFFEOMORPHISM is a hyperbolic diffeo- 
morphism on a hyperbolic set (Bowen 1975, Parry and 
Pollicott 1990). 

see also ANOSOV DIFFEOMORPHISM, AXIOM A FLOW, 
DIFFEOMORPHISM, DYNAMICAL SYSTEM, RIEMANNIAN 
MANIFOLD,~MALE HORSESHOE MAP 
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Axiom A Flow 
A FLOW defined analogously to the AXIOM A DIFFEO- 
MORPHISM, except that instead of splitting the TAN- 
GENT BUNDLE into two invariant sub-BUNDLES, they 
are split into three (one exponentially contracting, one 
expanding, and one which is l-dimensional and tangen- 
tial to the flow direction). 

see also DYNAMICAL SYSTEM 
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Axiom of Choice 
An important and fundamental result in SET THEORY 
sometimes called ZERMELO’S AXIOM OF CHOICE. It was 
formulated by Zermelo in 1904 and states that, given any 
SET of mutually exclusive nonempty SETS, there exists 
at least one SET that contains exactly one element in 
common with each of the nonempty SETS. 

It is related to HILBERT'S PROBLEM lo, and was proved 
to be consistent with other AXIOMS in SET THEORY in 
1940 by Gijdel. In 1963, Cohen demonstrated that the 
axiom of choice is independent of the other AXIOMS in 
Cantorian SET THEORY, so the AXIOM cannot be proved 
within the system (Boyer and Merzbacher 1991, p. 610). 

see also H 
ORDERED 
LEMMA 

'ILBERT'S 
SETJER 

PROBLEMS, SET 
#MELO-FRAENKEL 

THEORY, 
AXIOMS, 

WELL- 
20~~3 
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Cohen, P. J, “The Independence of the Continuum Hypoth- 

esis.” Proc. Nat. Acad. Sci. U. S. A. 50, 1143-1148, 1963. 
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York: Springer-Verlag, pp. 274-276, 1996. 
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opment, and InfZ1uence. New York: Springer-Verlag, 1982. 

Axiomatic Set Theory 
A version of SET THEORY in which axioms are taken 
as uninterpreted rather than as formalizations of pre- 
existing truths. 

see also NAIVE SET THEORY, SET THEORY 

Axiomatic System 
A logical system which possesses an explicitly stated 
SET of AXIOMS from which THEOREMS can be derived. 

see also COMPLETE AXIOMATIC THEORY, CONSIS- 
TENCY,MODEL THEORY,THEOREM 

Axis 
A LINE with respect to which a curve or figure is drawn, 
measured, rotated, etc. The term is also used to refer 
to a LINE SEGMENT through a RANGE (Woods 1961). 

see also ABSCISSA, ORDINATE, X-AXIS, Y-AXIS, Z-AXIS 
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Woods, F. S. Higher G eometry: An Introduction to Advanced 

Methods in Analytic Geometry. New York: Dover, p. 8, 
1961. 

Axonometry 
A METHOD for mapping 3-D figures onto the PLANE. 

see also CROSS-SECTION, MAP PROJECTION,POHLKE'S 
THEOREM, PROJECTION,STEREOLOGY 
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Azimuthal Equidistant Projection 

- 

An AZIMUTHAL PROJECTION which is neither equal- 
AREA nor CONFORMAL. Let @1 and X0 be the LATI- 
TUDE and LONGITUDE of the center of the projection, 
then the transformation equations are given by 

2 = k’ cos 4 sin@ - X0) (1) 

y = k’[cos q51 sin 4 - sin41 cos~cos(~ - X0)]. (2) 

Here. I 
(3) 

and 

sin c \ I 

cost = sin& sin4 + co+ cos~cos(~ - X0), (4) 
where c is the angular distance from the center. The 
inverse FORMULAS are 

4 = sin -’ ( cos csin& + 
y sin c cos $1 

c > (5) 

A= 

i 

X0 + tan-l ( x sin c 
C COS 41 COS C--y sin 41 sin c > 

for qbl # *90” 

X0 + tan-l (-i) 
for 41 = 90” 

(6) 

X0 + tan-l (5)) 
for 41 = -go”, 

with the angular distance from the center given by 

c- dx2 + y2. (7) 

References 
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Azimuthal Projection 

see AZIMUTHAL EQUIDISTANT PROJECTION, LAM- 
BERT AZIMUTHAL EQUAL-AREA PROJECTION, ORTHO- 
GRAPHIC PROJECTION, STEREOGRAPHIC PROJECTION Dover, p. 313, 1973. 





B*-Algebra B-Spline 9 1 

B BP-Theorem 
If 0,f (G) = 1 and if 2 is a p-element of G, then 

II*-Algebra 
A BANACH ALGEBRA with an ANTIAUTOMORPHIC IN- 
VOLUTION * which satisfies 

** 
X =x (1) 

x*y* = (yx)* (2) 
x* + y* = (x + y>* (3) 

( > cx * = cx* (4) 

and whose NORM satisfies 

Ilxx*ll = 1/2112~ (5) 

A C*-ALGEBRA is a special type of B*-algebra. 

see also BANACH ALGEBRA, C*-ALGEBRA 

&-Sequence 
N-B, A detailed on-line essay by S. Finch was the start- 

ing point for this entry. 

Also called a SIDON SEQUENCE. An INFINITE SE- 
QUENCE of POSITIVE INTEGERS 

1 L 61 < b2 < b3 < . . . (1) 

such that all pairwise sums 

h + bj (2) 

for i < j are distinct (Guy 1994). An example is I, 2, 4, 
8, 13:21, 31, 45, 66, 81, . . . (Sloane’s AO05282). 

Zhang (1993, 1994) showed that 

S(B2) = 
O” 1 

SUP x 
- > 2.1597. (3) 

all B2 sequences 
k=i 

bk 

The definition can be extended to B,-sequences (Guy 
1994). 

see also A-SEQUENCE, MIAN-CHOWLA SEQUENCE 
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E32 in Unsolved Problems in Number Theory, 2nd ed. New 
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where L,I is the ~-LAYER. 

B-Spline 

pypc6 B J.p5 

l l 

p2 p4 

A generalization of the BI&XER CURVE. Let a vector 
known as the KNOT VECTOR be defined 

T= {to,tl,-rtm}, (1) 

where T is a nondecreasing SEQUENCE with ti E [O, 11, 
and define control points PO, . . . , P,. Define the degree 
as 

pEm--n-l. (2) 

The “knots” tp+l, . . . , tmBp-l are called INTERNAL 

KNOTS. 

Define the basis functions as 

N,o(t) = 
1 if ti 5 t < ti+l and ti < tt+l 
0 otherwise 

(3) 

N+(t) = ++ Ni,p-l(t) + ‘;+‘+’ - ’ N+l,,-1 (t). 
i+p i ti+p+1 - ii+1 

(4) 

Then the curve defined by 

c(t) = 9 RN,,(t) 
i=o 

(5) 

is a B-spline. Specific types include the nonperiodic B- 
spline (first p + 1 knots equal 0 and last p + 1 equal to 
1) and uniform B-spline (INTERNAL KNOTS are equally 
spaced). A B-Spline with no INTERNAL KNOTS is a 
BI&IER CURVE. 

The degree of a B-spline is independent of the number of 
control points, so a low order can always be maintained 
for purposes of numerical stability. Also, a curve is p - k 
times differentiable at a point where ?C duplicate knot 
values occur. The knot values determine the extent of 
the control of the control points. 

A nonperiodic B-spline is a B-spline whose first p + 1 

knots are equal to 0 and last p + 1 knots are equal to 
1. A uniform B-spline is a B-spline whose INTERNAL 
KNOTS are equally spaced. 

see also B~ZIER CURVE, NURBS CURVE 
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B-Tree 
B-trees were introduced by Bayer (1972) and Mc- 
Creight. They are a special m-ary balanced tree used in 
databases because their structure allows records to be 
inserted, deleted, and retrieved with guaranteed worst- 

case performance. An n-node B-tree has height O(lg 2), 
where LG is the LOGARITHM to base 2. The Apple@ 
Macintosh@ (Apple Computer, Cupertino, CA) HFS fil- 
ing system uses B-trees to store disk directories (Bene- 

dict 1995). A B-tree satisfies the following properties: 

1. The Rook is either a LEAF (TREE) or has at least 
two CHILDREN, 

2, Each node (except the ROOT and LEAVES) has be- 
tween [m/2] and m CHILDREN, where [xl is the 
CEILING FUNCTION. 

3. Each path from the ROOT to a LEAF (TREE) has the 

same length. 

Every 2-3 TREE is a B-tree of order 3. The number of 
B-trees of order n = 1, 2, . . , are 0, 1, 1, 1, 2, 2, 3, 4, 5, 
8, 14, 23, 32, 43, 63, l  . . (Ruskey, Sloane’s A014535). 

see also RED-BLACK TREE 
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Baby Monster Group 
Also known as FISCHER’S BABY MONSTER GROUP. The 
SPORADIC GROUP B. It has ORDER 

2 41 * 313 9 56 l  72 l  11 113 4 17.19 ‘23.31.47. 

see also MONSTER GROUP 

References 
Wilson, R. A, “ATLAS of Finite Group Representation.” 
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BAC-CAB Identity 
The VECTOR TRIPLE PRODUCT identity 

A x (B x C) = B(A . C) - C(A l  B). 

This identity can be generalized to n-D 

a2 x -- x a,-1 x (bl x mmw x b,-1) 

bl . l  l  
b-1 

n+l 
a2 . bl a-0 a2 - b-1 

- - - ( 1) * . l  

I . . 

I h-1 . bl 

see also LAGRANGE’S IDENTITY 

a,-1 . b-1 

Backtracking 

BAC-CAB Rule 

see BAC-CAB IDENTITY 

Bachelier Function 

see BROWN FUNCTION 

Bachet’s Conjecture 

see LAGRANGE’S FOUR-SQUARE THEOREM 

Bachet Equation 
The DIOPHANTINE EQUATION 

x2+k=y3, 

which is also an ELLIPTIC CURVE. The general equation 
is still the focus of ongoing study. 

Backhouse’s Constant 
Let P(x) be defined as the POWER series whose nth term 

has a COEFFICIENT equal to the nth PRIME, 

P(x) E y-$x” = 1+2x+3x2+5x3+7x4+11x5+~~., 

k=O 

and let Q(x) be defined by 

Q(x) = j+ = Rqiilk+ 

k=O 

Then N. Backhouse conjectured that 

lim 
n+m 

4n+l - = 1.456074948582689671399595351116.. . . 
Qn 

The constant was subsequently 
jolet. 

to exist by P. Fla- 
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BScklund Transformation 
A method for solving classes of nonlinear PARTIAL DIF- 
FERENTIAL EQUATIONS. 

see also INVERSE SCATTERING METHOD 
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Backtracking 
A method of drawing FRACTALS by appropriate num- 
bering of the corresponding tree diagram which does not 
require storage of intermediate results. 
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Backus-Gilbert Method 
A method which can be used to solve some classes of 
INTEGRAL EQUATIONS and is especially useful in im- 
plementing certain types of data inversion. It has been 
applied to invert seismic data to obtain density profiles 
in the Earth. 
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Backward Difference 
The backward difference is a FINITE DIFFERENCE de- 
fined by 

vp = vjp = jp - jp--la (1) 

Higher order differences are obtained by repeated oper- 
ations of the backward difference operator, so 

0; = V(Vp) = V(fp - fp-1) = VP - VfP--l (21 
= (j-p - fp-1) - (fp-1 - L-2) 
= fp - 2fp-I-+- fp-2 (3) 

In general, 

where (L) is a BINOMIAL COEFFICIENT. 

NEWTO 
presses 

N’S BAG KWARD DI FFERENCE FORMULA ex- 
jp as the sum of the nth backward differences 

jp = fo+PVo+~P(P+1)V~+~P(P+1)(P+2)v~+..., 

(5) 
where V;jl is the first nth difference computed from the 
difference table. 

see also ADAMS’ METHOD, DIFFERENCE EQUATION, 
DIVIDED DIFFERENCE, FINITE DIFFERENCE, FOR- 
WARD DIFFERENCE, NEWTON'S BACKWARD DIFFER- 
ENCE FORMULA, RECIPROCAL DIFFERENCE 
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Bader-Deuflhard Method 
A generalization of the BULIRSCH-STOER ALGORITHM 

for solving ORDINARY DIFFERENTIAL EQUATIONS. 
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Baguenaudier 
A PUZZLE involving disentangling a set of rings from a 
looped double rod (also called CHINESE RINGS). The 
minimum number of moves needed for n rings is 

1 - 

s 
(2 n+l - 2) n even 

3 (2 n+l - 1) n odd. 

BY simultaneously moving the two end rings, the num- 
ber of moves can be reduced to 

ZnB1 - 1 n even 
27x-l n odd. 

The solution of the baguenaudier is intimately related 
to the theory of GRAY CODES. 
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Bailey’s Met hod 

see LAMBERT'S METHOD 

Bailey’s Theorem 
Let I?(Z) be the GAMMA FUNCTION, then 

= [%&q’[;+ (;)2&+ (E)“&+...]. 

L / 
Y 

m 

Baire Category Theorem 
A nonempty complete METRIC SPACE cannot be repre- 
sented as the UNION of a COUNTABLE family of nowhere 
DENSE SUBSETS. 
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Baire Space 
A TOPOLOGICAL SPACE X in which each SUBSET of X 
of the “first category” has an empty interior. A TOPO- 
LOGICAL SPACE which is HOMEOMORPHIC to a complete 
METRIC SPACE is a I3aire space. 

Bairstow’s Method 
A procedure for finding the quadratic factors for the 
COMPLEX CONJUGATE ROOTS of a POLYNOMIAL P(X) 
with REAL COEFFICIENTS. 

[x - (a + ib)][x - (a - a)] 
=x2+2ax+(a2+b2)~x2+B~+C. (1 

Now write the original POLYNOMIAL as 

P(x) = (x2 + Bx + C)Q(x) + Rx + S (2 

dR 
R(B+6B,C+dC) = R(B,C)+dBdB+ dC E dC (3) 

S(B + 6B, C + SC) &<B,C)+gdB+gdC (4) 

~=O=(x2+Bx+C)~ + Q( .I + 
dR dS 
ac --I- dC (5) 

-Q(x) = (x2 + Bx + C)g + 2 + g (6) 

dP 
=O=(x2+Bx+qaB 

dR dS 

dB 
a’ +x&(x) + dB + dB (7) 

aQ dR dS -x&(S)=(X~+BX+C)~+~+~. (8) 

Now use the 2-D NEWTON's METHOD to find the simul- 
taneous solutions. 
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Baker’s Dozen 
The number 13. 

see ah 13, DOZEN 

Baker’s Map 
The MAP 

Xn+l=2PXn7 (1) 

where x is computed modulo 1. A generalized Baker’s 
map can be defined as 

{ 
XaXn Yn < QI 

Xn+l= 
(l-h)+AbXn Yn > Q 

(2) 

Yn yn < af 
Yn+l- 

{ 
9 yn>CY, (3) 

Ball IYiangle Picking 

where p E l- QI, X, +Xb 5 1, and x and y are computed 
mod 1. The Q = 1 Q-DIMENSION is 

D1=1+ 
aln(i) +pln($) 

dn(&)+pl+J’ 
(4) 

If X, = Xb, then the general Q-DIMENSION is 

1 
D,=1+- 

In (aq + pg) 

q-1 InX, ’ (5) 
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Balanced ANOVA 
An ANOVA in which the number of REPLICATES (sets 
of identical observations) is restricted to be the same for 
each FACTOR LEVEL (treatment group). 

see also ANOVA 

Balanced Incomplete Block Design 

see BLOCK DESIGN 

Ball 
The n-ball, denoted B”, is the interior of a SPHERE 
s n- 

‘, and sometimes also called the n-DISK. (Al - 
though physicists often use the term “SPHERE" to mean 
the solid ball, mathematicians definitely do not!) Let 
Vol(B”) denote the volume of an n-D ball of RADIUS T. 
Then 

x Vol(B”) = C2 [I+ erf(rfi)], 

n=O 

where erf (x) is the ERF function. 

see also ALEXANDER'S HORNED SPHERE, BANACH- 
TARSKI PARADOX, BING'S THEOREM, BISHOP'S IN- 
EQUALITY, BOUNDED, DISK, HYPERSPHERE, SPHERE, 
WILD POINT 

References 
Freden, E. Problem 10207. “Summing a Series of Volumes.” 

Amer. M&h. Monthly 100, 882, 1993. 

Ball Triangle Picking 
The determination of the probability for obtaining an 
OBTUSE TRIANGLE by picking 3 points at random in 
the unit DISK was generalized by Hall (1982) to the n- 

D BALL. Buchta (1986) subsequently gave closed form 
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evaluations for Hall’s integrals, with the first few solu- 
tions being 

9 4 
P2 = - - - =2: 0.72 

8 T2 

P3 = $g =2: 0.53 

P4 ==: 0.39 

P5 ==: 0.29. 

The case Pz corresponds to the usual DISK case. 

see also CUBE TRIANGLE PICKING, OBTUSE TRIANGLE 
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Ballantine 

see B~RROMEAN RINGS 

Ballieu’s Theorem 
For any set p = (~1, ~2,. . . , pn) of POSITIVE numbers 
with ~0 = 0 and 

Then all the EIGENVALUES X satisfying P(A) = 0, where 
P(X) is the CHARACTERISTIC POLYNOMIAL, lie on the 
DISK IzI < ik&. - 
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Ballot Problem 
Suppose A and B are candidates for office and there are 
2n voters, n voting for A and n for B. In how many ways 
can the ballots be counted so that A is always ahead of 
or tied with B? The solution is a CATALAN NUMBER 
c 72. 

A related problem also called “the” ballot problem is to 
let A receive a votes and B b votes with a > b. This ver- 
sion of the ballot problem then asks for the probability 
that A stays ahead of B as the votes are counted (Vardi 
1991). The solution is (a - b)/(a + b), as first shown 
by M. Bertrand (Bilton and Pedersen 1991). Another 
elegant solution was provided by And& (1887) using the 
so-called ANDRI?S REFLECTION METHOD. 

The problem can also be generalized (Hilton and Ped- 
ersen 1991). Furthermore, the TAK FUNCTION is con- 
nected with the ballot problem (Vardi 1991). 

see also 
NUMBER, 

ANDRI?S REFLECTION METHOD, 
TAK FUNCTION 

CATALAN 
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Banach Algebra 
An ALGEBRA A over a FIELD F with a NORM that 
makes A into a COMPLETE METRIC SPACE, and there- 
fore, a BANACH SPACE. F is frequently taken to be the 
COMPLEX NUMBERS in order to assure that the SPEC- 
TRUM fully characterizes an OPERATOR (i.e., the spec- 
tral theorems for normal or compact normal operators 
do not, in general, hold in the SPECTRUM over the REAL 
NUMBERS). 

see also B*-ALGEBRA 

Banach Fixed Point Theorem 
Let f be a contraction mapping from a closed SUBSET 
F of a BANACH SPACE E into F. Then there exists a 
unique x E F such that f(z) = z. 

see also FIXED POINT THEOREM 

References 
Debnath, L. and Mikusiriski, P. Introduction to Hilbert 

Spaces with Applications. San Diego, CA: Academic Press, 
1990. 

Banach-Hausdorff-Tarski Paradox 

see BANACH-TARSKI PARADOX 

Banach Measure 
An "AREA" which can be defined for every set-even 
those without a true geometric AREA-which is rigid 
and finitely additive. 
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Banach Space 
A normed linear SPACE which is COMPLETE in the norm- 
determined METRIC. A HILBERT SPACE is always a Ba- 
nach space, but the converse need not hold. 

see &o BESOV SPACE, HILBERT SPACE, SCHAUDER 
FIXED POINT THEOREM 

Banach-Steinhaus Theorem 

see UNIFORM BOUNDEDNESS PRINCIPLE 

Banach-Tarski Paradox 
First stated in 1924, this theorem demonstrates that it 
is possible to dissect a BALL into six pieces which can 
be reassembled by rigid motions to form two balls of 
the same size as the original. The number of pieces was 
subsequently reduced to five. IIowever, the pieces are 
extremely complicated. A generalization of this theo- 
rem is that any two bodies in Iw3 which do not extend 
to infinity and each containing a ball of arbitrary size 
can be dissected into each other (they are are EQUIDE- 

COMPOSABLE). 

Reterences 
Stromberg, K. “The Banach-Tarski Paradox.” Amer. Math. 

Monthly 86, 3, 1979. 
Wagon, S. The Banach-Tarski Paradox. New York: Cam- 

bridge University Press, 1993. 

Bang’s Theorem 
The lines drawn to the VERTICES of a face of a TETRA- 
HEDRON from the point of contact of the FACE with the 
INSPHERE form three ANGLES at the point of contact 
which are the same three ANGLES in each FACE. 

References 
Brown, B. H. “Theorem of Bang. Isosceles Tetrahedra.” 

Amer. Math. Monthly 33, 224-226, 1926. 
Honsberger, R. Mathematical Gems II. Washington, DC: 

Math. Assoc. Amer., p. 93, 1976. 

Bankoff Circle 

In addition to the ARCHIMEDES' CIRCLES Cl and Cz in 
the ARBELO~ figure, there is a third circle C3 congruent 
to these two as illustrated in the above figure. 

see also ARBELOS 

References 
Bankoff, L, “Are the Twin Circles of Archimedes Really 

Twins?” Math. Mug. 47, 214-218, 1974. 
Gardner, M. “Mathematical Games: The Diverse Pleasures 

of Circles that Are Tangent to One Another.” SC;. Amer. 
240, 18-28, Jan. 1979. 

Banzhaf Power Index 
The number of ways in which a group of rz with weights 

c 
n 

i=l wi = 1 can change a losing coalition (one with 
C wi < l/2) to a winning one, or vice versa. It was 
proposed by the lawyer J. F. Banzhaf in 1965. 

References 
Paulos, J. A. A Muthematician Reads the Newspaper. New 

York: BasicBooks, pp. 9-10, 1995. 

Bar (Edge) 
The term in rigidity theory for the EDGES of a GRAPH. 

see also CONFIGURATION, FRAMEWORK 

Bar Polyhex 

A POLYHEX consistGof HEXAGONS arranged along a 
I. 

line. 

see also BAR POLYIAMOND 

References 
Gardner, M. Mathematical Magic Show: More Puzzles, 

Games, Diversions, Illusions and Other Mathematical 
Sleight-of-Mind from Scientific American. New York: 
Vintage, p. 147, 1978. 

Bar Polyiamond 

A POLYIAMOND consistingof EQUILATERAL TRIANGLES 
arranged along a line. 

see also BAR POLYHEX 

References 
Golomb, S. W. Polyominoes: Puzzles, Patterns, Problems, 

and Packings, 2nd ed. Princeton, NJ: Princeton University 
Press, p. 92, 1994. 

Barber Paradox 
A man of Seville is shaved by the Barber of Seville IFF 
the man does not shave himself. Does the barber shave 
himself? Proposed by Bertrand Russell. 

Barbier’s Theorem 
All CURVES OF CONSTANT WIDTH ofwidthw have the 
same PERIMETER TW. 



Bare Angle Center Barth Decic 97 

Bare Angle Center 
The TRIANGLE CENTER with TRIANGLE CENTER 

FUNCTION 
a = A. 

References 
Kimberling, C. “Major Centers of Triangles.” Amer. Math. 

Monthly 104, 431-438, 1997. 

Barnes G-Function 

see G-FUNCTION 

Barnes’ Lemma 
If a CONTOUR in the COMPLEX PLANE is curved such 
that it separates the increasing and decreasing sequences 
of POLES, then 

1 

s 

im 

27rTTi 
r(a + spy@ + s>qy - s)r(d - s) ds 

--ica 

r(a + r>qQI + qw + r)W + 6) - 
r(a + p + 7 + 6) 

? 

where r(z) is the GAMMA FUNCTION. 

Barnes-Wall Lattice 
A lattice which can be constructed from the LEECH LAT- 
TICE h24. 

see also COXETER-TODD LATTICE, LATTICE POINT, 
LEECH LATTICE 

References 
Barnes, E. S. and Wall, G, E, “Some Extreme Forms Defined 

in Terms of Abelian Groups.” J. Austrul. Math. Sot, 1, 
47-63, 1959. 

Conway, J. H. and Sloane, N. J, A. “The 16-Dimensional 
Barnes-Wall Lattice A&’ $4.10 in Sphere Packings, Lat- 
tices, and Groups, 2nd ed. New York: Springer-Verlag, 
pp. 127-129, 1993. 

The ATTRACTOR ofthe ITERATED FUNCTION SYSTEM 
given by the set of “fern functions” 

(Barnsley 1993, p. 86; Wagon 1991). These AFFINE 
TRANSFORMATIONS are contractions. The tip of the 
fern (which resembles the black spleenwort variety of 
fern) is the fixed point of fl, and the tips of the lowest 
two branches are the images of the main tip under fi 
and f3 (Wagon 1991). 

see also DYNAMICAL SYSTEM, FRACTAL, ITERATED 
FUNCTION SYSTEM 

References 
Barnsley, M. Fractals Euerywhere, 2nd ed. Boston, MA: Aca- 

demic Press, pp* 86, 90, 102 and Plate 2, 1993. 
Gleick, J. Chaos: Making a New Science. New York: Pen- 

guin Books, p. 238, 1988. 
Wagon, S. “Biasing the Chaos Game: Barnslefs Fern.” $5.3 

in Mathematics in Action. New York: We H. Freeman, 
pp. 156-163, 1991. 

Barrier 
A number n is called a barrier of a number-theoretic 
function f(m) if, for all VI < n, m + f(m) < n. Neither 
the TOTIENT FUNCTION qS(n) nor the DI&OR FUNC- 
TION o(n) has barriers. 

References 
GUY? IL K. Unsolved Problems in Number Theory, 2nd ed. 

New York: Springer-Verlag, pp. 64-65, 1994. 

Barnsley’s Fern 
Barth Decic 
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The Barth decic is a DECIC SURFACE in complex three- 
dimensional projective space having the maximum pos- 
sible number of ORDINARY DOUBLE POINTS (345). It is 
given by the implicit equation 

8(X2 - 44y2)(y2 - qb4Z2)(Z2 - q5”x”) 
x(x” + y4 + x4 - 2x2y2 - 2z2z2 - 2y2z2) 

+(3+5~)(22+y2+z2-w2)2[x2+y2+~2-(2-~)~232~2 

= 0, 

where 4 is the GOLDEN MEAN and w  is a parameter 
(EndraB, Nordstrand), taken as w  = 1 in the above plot. 
The Barth decic is invariant under the ICOSAHEDRAL 
GROUP. 

see also ALGEBRAIC SURFACE, BART’H SEXTIC, DECK 

SURFACE, ORDINARY DOUBLE POINT 

References 
Barth, W. “Two Projective Surfaces with Many Nodes Ad- 

mitting the Symmetries of the Icosahedron.” J. Alg. Geom. 
5, 173-186, 1996. 

Endrafi, S. “FLchen mit vielen Doppelpunkten.” DMV- 
Mitteilungen 4, 17-20, 411995. 

Endraf3, S+ “Barth’s Decic.” http://wwu.mathematik.uni- 
mainz.de/AlgebraischeGeometrie/docs/ 
Ebarthdecic. shtml. 

Nordstrand, T. “Batch Decic.” http: //www .uib .no/people/ 
nfytn/bdectxt.htm. 

the surface is the eightfold cover of the CAYLEY CUBIC 
(EndraQ 

see UZSO ALGEBRAIC SURFACE, BARTH DECIC, CAYLEY 

CUBIC, ORDINARY DOUBLE POINT, SEXTIC SURFACE 

References 
Barth, W. “Two Projective Surfaces with Many Nodes Ad- 

mitting the Symmetries of the Icosahedron.” J. Alg. Geom. 
5, 173-186, 1996. 

EndraB, S. “F&hen mit vielen Doppelpunkten.” ‘DMV- 
Mitteilungen 4, 17-20, 4/1995. 

Endrafi, S. “Barth’s Sextic.” http://wwu.mathematik.uni- 
mainz.de/AlgebraischeGeometrie/docs/ 
Ebarthsextic.shtml. 

Nordstrand, T. “Barth Sextic.” http: //wuw . uib. no/people/ 
nf ytn/sexttxt . htm. 

Bartlett Function 
1.251 

0.7 
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-0.5 

The APODIZATION FUNCTION 

f(x) = 1 - F (1) 

which is a generalization of the one-argument TRIANGLE 

FUNCTION. Its FULL WIDTH AT HALF MAXIMUM is a. 
It has INSTRUMENT FUNCTION 

Barth Sextic 

I(x)=/)-~~~~~ (1-F) dx 

= fae-2,i,, (I+ ;) dx 

+lae-2riXE (1 - %> dx. 

Letting z’ E --2 in the first part therefore gives 

(2) 

The Barth-sextic is a SEXTIC SURFACE in complex 
three-dimensional projective space having the maximum 
possible number of ORDINARY DOUBLE POINTS (65). It 
is given by the implicit equation 

W 2x2 - y”)((b”y” - z2)(#“z2 - x2) 

-(1+ 2$)(x2 + y2 + z2 - w2)2w2 = 0. 

where 4 is the GOLDEN MEAN, and w  is a parameter 
(EndraB, Nordstrand), taken as w  = 1 in the above plot. 
The Barth sextic is invariant under the IC~SAHEDRAL 
GROUP. Under the map 

[ae-2Tikx(l+;) dx=~oe2”“*‘i(1-;)(-dr’) 

=lae2mikx (l- a> ds. (3) 

Rewriting (2) using (3) gives 

I(x) = (e2rikx + e-2xikx 
) (l- ;) dx 

s a 

=2 (4) 
0 

Integrating the first part and using the integral 

s x cos(bx) dx = $ cos(bx) + f sin(bx) (5) 

(X>Y,+v4 + (x2,Y2,22,w2), 
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for the second part gives 

I(x) = 2 
sin( 27&x) 

2nk 

cos(2rkz) + =& sin(%kx) I-1 
a 

0 

=2 
sin(&rka) 

27& 

_ o 1 
+ a sin(2rka) 

2rk II 
- - $-&cos(Zrrlcu) - l] = a’;;:;;) 

= a sinc2 (rka), (6) 

where sincx is the SINC FUNCTION. The peak (in units 
of a) is 1. The function I(x) is always positive, so there 
are no NEGATIVE sidelobes. The extrema are given by 
letting 0 E nka and solving 

2 
= 2sinpsinP-Pcosp =O 

P P 
2 (7) 

sinP(sin/? - pcosp) = 0 (8) 

sir@ - pcosp = 0 (9) 

tanp = p. 00) 

Solving this numerically gives p = 4.49341 for the first 
maximum, and the peak POSITIVE sidelobe is 0.047190. 
The full width at half maximum is given by setting x E 
rrka and solving 

sinc2 x = 3 (11) 

for x1/2, yielding 

x1/2 = rkl/za = 1.39156. (12) 

Therefore, with L e 2a, 

0.885895 1.77179 
FWHM = 2kIi2 x - = - 

a L . (13) 

see also APODIZATION FUNCTION, PARZEN APODIZA- (e.g., 123.4561& th en the index of the leading DIGIT 
TIoN Fu NCTION, TRIANGLE FUNCT ION needed to represent the number is 

References 
Bartlett, M. S. "Periodogram Analysis and Continuous Spec- 

tra.” Biometrika 37, I-16, 1950. 

Barycentric Coordinates 
Also known as HOMOGENEOUS COORDINATES or TRI- 
LINEAR COORDINATES. 

see TRILINEAR COORDINATES 

Base Curve 

see DIRECTRIX (RULED SURFACE) 

Base (Logarithm) 
The number used to define a LOGARITHM, which is then 
written log,. The symbol log x is an abbreviation for 
log,,~, Ins for log, x (the NATURAL LOGARITHM), and 
lg x for log, x:. 

see UZSO E, LG, LN, LOGARITHM, NAPIERIAN LOGA- 
RITHM,NATURAL LOGARITHM 

Base (Neighborhood System) 
A base for a neighborhood system of a point x is a col- 
lection IV of OPEN SETS such that x belongs to every 
member of N, and any OPEN SET containing x also con- 
tains a member of Iv as a SUBSET. 

Base (Number) 
A REAL NUMBER x can be represented using any INTE- 
GER number b as a base (sometimes also called a RADIX 
or SCALE). The choice of a base yields to a representa- 
tion of numbers known as a NUMBER SYSTEM. In base 
b, the DIGITS 0, 1, . . . . b - 1 are used (where, by con- 
vention, for bases larger than 10, the symbols A, B, C, 
. . m are generally used as symbols representing the DEC- 
IMAL numbers 10, II, 12, . . m ). 

Base Name 

2 
3 
4 

5 
6 
7 

8 
9 
10 
11 
12 
16 
20 

60 

binary 
ternary 
quaternary 
quinary 
senary 
septenary 
octal 
nonary 
decimal 
undenary 
duodecimal 
hexadecimal 
vigesimal 
sexafzesimal 

Let the base b representation of a number x be written 

(a, a,-1 . . . ao. a-1 . . .)b, (1) 

n E [log, xJ , (2) 

where 1x1 is the FLOOR FUNCTION. Now, recursively 
compute the successive DIGITS 

ri 
ai = 

L i G ’ (3) 

where rn =1: x and 

ri-1 = 7-i - a# (4 
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for i = n, n - 1, . . . , 1, 0, . . . . This gives the base b 
representation of 2. Note that if IZ: is an INTEGER, then 
i need only run through 0, and that if II: has a fractional 
part, then the expansion may or may not terminate. 
For example, the HEXADECIMAL representation of 0.1 
(which terminates in DECIMAL notation) is the infinite 

express ion o-19999 l  . .h. 

Some number systems use a mixture of bases for count- 
ing. Examples include the Mayan calendar and the old 
British monetary system (in which ha’pennies, pennies, 
threepence, sixpence, shillings, half crowns, pounds, and 
guineas corresponded to units of l/Z, 1, 3, 6, 12, 30, 240, 
and 252, respectively). 

Knuth has considered using TRANSCENDENTAL bases. 
This leads to some rather unfamiliar results, such as 
equating 7r to 1 in “base n,” n = 1,. 

see ah BINARY, DECIMAL, HEREDITARY REPRESEN- 
TATION, 
GESIMAL 

HEXADECIM 
, TERNARY, 

AL, 
VIG 

OCTAL, 
,ESIMAL 

QUATERNARY, SEXA- 
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Base Space 
The SPACE B of a FIBER BUNDLE given by the MAP 
f:E + B, where E is the TOTAL SPACE ofthe FIBER 
BUNDLE. 

see ah FIBER BUNDLE, TOTAL SPACE 

Baseball 
The numbers 3 and 4 appear prominently in the game 
of baseball. There are 3 l  3 = 9 innings in a game, and 
three strikes are an out. However, 4 balls are needed for 
a walk. The number of bases can either be regarded as 
3 (excluding HOME PLATE) or 4 (including it). 

see BASEBALL COVER,HOME PLATE 

Baseball Cover 

Basis 

A pair of identical plane regions (mirror symmetric 
about two perpendicular lines through the center) which 
can be stitched together to form a baseball (or tennis 
ball). A baseball has a CIRCUMFERENCE of 9 I/8 inches. 
The practical consideration of separating the regions far 
enough to allow the pitcher a good grip requires that 
the “neck” distance be about 1 3/16 inches. The base- 
ball cover was invented by Elias Drake as a boy in the 
1840s. (Thompson’s attribution of the current design 
to trial and error development by C. H. Jackson in the 
1860s is apparently unsubstantiated, as discovered by 
George Bart .) 

One way to produce a baseball cover is to draw the re- 
gions on a SPHERE, then cut them out. However, it is 
difficult to produce two identical regions in this man- 
ner. Thompson (1996) gives mathematical expressions 
giving baseball cover curves both in the plane and in 
3-D. J. H. Conway has humorously proposed the follow- 
ing “baseball curve conjecture:” no two definitions of 
“the” baseball curve will give the same answer unless 
their equivalence was obvious from the start. 

see also BASEBALL, HOME PLATE, TENNIS BALL THE- 
OREM,YIN-YANG 

References 
Thompson, R. B. “Designing a Baseball Cover. 1860’s: Pa- 

tience, Trial, and Error, 1990’s: Geometry, Calculus, 
and Computation.” http://www.mathsoft.com/asolve/ 
baseball/baseball. html. Rev. March 5, 1996. 

Basin of Attraction 
The set of points in the space of system variables such 
that initial conditions chosen in this set dynamically 
evolve to a particular ATTRACTOR. 

see also WADA BASIN 

Basis 
A (vector) basis is any SET of n LINEARLY INDEPEN- 
DENT VECTORS capable of generating an n-dimensional 
SUBSPACE of R". Given a HYPERPLANE defined by 

x1+x2 +x3 +x4 +x5 = 0, 

a basis is found by solving for x1 in terms of x2, x3, 24, 
and x5* Carrying out this procedure, 

Xl = -x2 -x3 -x4 -x5, 

+x3 

‘- 1 

0 

1 
0 

a 0 

+x4 +x5 

-1 
0 

0 1 
0 
1 1 
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and the above VECTOR form an (unnormalized) BASIS. 
Given a MATRIX A with an orthonormal basis, the MA- 
TRIX corresponding to a new basis, expressed in terms 
of the original 21, . . . , k, is 

Bauer’s Ident ical Congruence 
Let t(m) denote the set of the 4(m) numbers less than 
and RELATIVELY PRIME to m, where 4(n) is the To- 
TIENT FUNCTION. Define 

fm(x) = rI(x - t)* (1) 
e-f-4 

A’ = [A& . . . A;I,]. 

see also 
ORTH~N 

BILINE 
ORMAL 

AR BASIS, MODULAR SYSTEM 
POLOGICAL BASIS 

BASIS, 
A theorem of Lagrange states that BA SIS, To 

fm(x) = x6(m) - 1 (mod m). (2) Basis Theorem 

see HILBERT BASIS THEOREM This can be generalized as follows. Let p be an ODD 
PRIME DIVISOR of m and p” the highest POWER which 
divides m, then Basler Problem 

The problem of analytically finding the value of c(Z), 
where [is the RIEMANN ZETA FUNCTION. fm(x) E (x*-l - l)4(“)‘(p-1) (mod pa) (3) 
References 
Castellanos, D. “The Ubiquitous Pi. Part I.” Math. Msg. 

61, 67-98, 1988. 
and, in particular, 

fpa(x) E (x*-’ - l)pu-l (mod pa) l  
(4 

Basset Function 

see MODIFIED BESSEL FUNCTION OF THE SECOND 
KIND 

Furthermore, if m > 2 is EVEN and 2= is the highest 
POWER of 2 that divides m, then 

Batch fm(x) E (x2 - 1)#(m)/2 (mod 2a) (5) 
A set of values of similar meaning obtained in any man- 
ner. and, in particular, 

Heferences 
Tukey, J. W. Explanatory Data Analysis. Reading, MA: 

Addison-Wesley, p. 667, 1977. 
f2a(z) E (x2 - 1)2”-2 (mod 2”). (6) 

see also LEUDESDORF THEOREM 
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Bateman Function 

U(+,O,2x) 

for ,a= > 0,where U is a CONFLUENT HYPERGEOMETRIC 
FUNCTION OF THE SECOND KIND. 

Bauer’s Theorem 

~~~BAUER’S IDENTICAL CONGRUENCE 
see also CONFLU ENT HYPERGEOMETRICDIFFERENTIAL 

EQ UATION, HYP ERG EOMETRIC FUNCTION 

Bauspiel 
A construction for the RHOMBIC DODECAHEDRON. 

References 

Batrachion 
A class of CURVE defined at INTEGER values which hops 
from one value to another. Their name derives from the 
word batrachion, which means “frog-like.” Many ba- 
trachions are FRACTAL. Examples include the BLANC- 
MANGEFUNCTION,HOFSTADTER-CONWAY$~O,OWI SE- 
QUENCE,HOFSTADTER'S Q-SEQUENCE, and MALLOW'S 
SEQUENCE. 

Coxeter, H. S. M. Regular Polytopes, 3rd ed. New York: 
Dover, pp. 26 and 50, 1973. 

Bayes’ Formula 
Let A and Bj be SETS. CONDITIONAL PROBABILITY 
requires that 

References 
Pickover, C. A. “The Crying of Fractal Batrachion 1,489.” 

Ch. 25 in Keys to Infinity. New York: W. H. Freeman, P(An Bj) = P(A)P(Bj/A), (1) 
pp. 183-191, 1995. 

where n denotes INTERSECTION (“and”), and also that 

P(A n Bj) = P(Bj n A) = P(Bj)P(AIBj) (2) 
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and 

Bayes’ Theorem 

P(Bj n A) =P(Bj)P 

Since (2) and (3) must be equal, 

CAIBj)* (3) 

P(AnBj) = P(Bj n A). 

F’rom (2) and (3), 

P(A n Bj)= P(Bj)P(AIBj). 

Equating (5) with (2) gives 

P(A)P(BjlA) = P(Bj)P(AIBj), 

\ 
(41 

(5) 

(6) 

Beam Detector 

Bayesian Analysis 
A statistical procedure which endeavors to estimate pa- 
rameters of an underlying distribution based on the ob- 
served distribution. Begin with a (‘PRIOR DISTRIBU- 
TION" which may be based on anything, including an 
assessment of the relative likelihoods of parameters or 
the results of non-Bayesian observations. In practice, it 
is common to assume a UNIFORM DISTRIBUTION over 
the appropriate range of values for the PRIOR DISTRI- 
BUTION. 

SO 

P(BjIA) = P(Bj)P(AIBJ 

P(A) l  

(7 

Now, let 
N 

SE UAi, (8 

so Ai is an event is S and Ai n Aj = 121 for i # j, then 

A=AnS=An (9) 

(l@ 

From (5), this becomes 

P(A) = 5 P(Ai)P(E,Ai), 
i=l 

(11) 

SO 

P(A,IA) = NP(Ai)p(AiA,) l  

(12) 

C P(Aj)P(A14) 
j=l 

see UZSO CONDITIONAL PROBABILITY, INDEPENDENT 

STATISTICS 
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Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetter- 
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Bayed Theorem N.B. A detailed on-line essay by S. Finch was the start- 

see BAYES’ FORMULA ing point for this entry. 

Given the PRIOR DISTRIBUTION, collect data to obtain 
the observed distribution. Then calculate the LIKELI- 
HOOD of the observed distribution as a function of pa- 
rameter values, multiply this likelihood function by the 
PRIOR DISTRIBUTION, and normalize to obtain a unit 
probability over all possible values. This is called the 
POSTERIOR DISTRIBUTION. The MODE of the distribu- 
tion is then the parameter estimate, and “probability 
intervals” (the Bayesian analog of CONFIDENCE INTER- 
VALS) can be calculated using-the standard procedure. 
Bayesian analysis is somewhat controversial because the 
validity of the result depends on how valid the PRIOR 
DISTRIBUTION is, and this cannot be assessed statisti- 
cally. 

see also MAXIMUM LIKELIHOOD, PRIOR DISTRIBUTION, 
UNIFORM DISTRIBUTION 
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Bays’ Shuffle 
A shuffling algorithm used in a class of RANDOM NUM- 
BER generators. 

References 
Knuth, D. E. 53.2 and 3.3 in The Art of Computer Program- 

ming, VoZ. 2: Seminumerical Algorithms, 2nd ed. Read- 
ing, MA: Addison-Wesley, 1981. 

Press, W+ H.; Flannery, B. P.; Teukolsky, S. A.; and Vetter- 
ling, W. T. Numerical Recipes in FORTRAN: The Art of 
Scientijic Computing, 2nd ed. Cambridge, England: Cam- 
bridge University Press, pp. 270-271, 1992. 

Beam Detector 
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A “beam detector” for a given curve C is defined as 
a curve (or set of curves) through which every LINE 
tangent to or intersecting C passes. The shortest l- 
arc beam detector, illustrated in the upper left figure, 
has length Ll = r + 2. The shortest known 2-arc beam 
detector, illustrated in the right figure, has angles 

81 $=: 1.286 rad (1) 
02 = 1.191 rad, (2) 

given by solving the simultaneous equations 

2 cos 01 - sin( $2) = 0 (3) 

tan(+&)cos(@) +sin(+&)[sec2($&) + I] = 2. (4) 

The corresponding length is 

L2 = 2n - 201 - 02 + 2 tan( $01) + sec( f&) 

- cos( i&)+tan( i&) sin( @2) = 4.8189264563.. . . (5) 

A more complicated expression gives the shortest known 
3-arc length La = 4.799891547.. . . Finch defines 

L- inf L, 
7221 

(6) 

as the beam detection constant, or the TRENCH DIG- 
GERS’ CONSTANT. It is known that L > n. - 
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Bean Curve 

The PLANE CURVE given by the Cartesian equation 

ST4 + x2y2 + y4 = x(x” + y”). 

References 
Cundy, H. and Rollett, A. Mathematical Models, 3rd ed. 

Stradbroke, England: Tarquin Pub., 1989. 

Beast Number 
The occult “number of the beast” associated in the Bible 
with the Antichrist. It has figured in many numerolog- 
ical studies. It is mentioned in Revelation 13:13: “Here 
is wisdom. Let him that hath understanding count the 
number of the beast: for it is the number of a man; and 
his number is 666.” 

The beast number has several interesting properties 
which numerologists may find particularly interesting 
(Keith 1982-83). In particular, the beast number is 
equal to the sum of the squares of the first 7 PRIMES 

22 + 32 + 52 + 72 + 112 + 132 + 172 = 666, (1) 

satisfies the identity 

4(666) = 6 l  6.6, 
(2) 

where 4 is the T~TIENT FUNCTION, as well as the sum 

6.6 

x 
i = 666. (3) 

i=l 

The number 666 is a sum and difference of the first three 
6th POWERS, 

666 = l6 - 26 + 36 (4) 

(Keith). Another curious identity is that there are ex- 
actly two ways to insert “+” signs into the sequence 
123456789 to make the sum 666, and exactly one way 
for the sequence 987654321, 

666 = I+ 2 + 3 + 4 + 567 + 89 = 123 + 456 + 78 + 9 

(5) 

666 = 9 + 87 + 6 + 543 + 21 (6) 

(Keith). 666 is a REPDIGIT, and is also a TRIANGJJLAR 
NUMBER 

T6.6 = T36 = 666. (7) 

In fact, it is the largest REPDIGIT TRIANGULAR NUM- 
BER (Bellew and Weger 1975-76). 666 is also a SMITH 
NUMBER. The first 144 DIGITS of 7r - 3, where x is PI, 

add to 666. In addition 144 = (6 + 6) x (6 + 6) (Blatner 
1997). 

A number of the form 2” which contains the digits of the 
beast number “666” is called an APOCALYPTIC NUM- 
BER, and a number having 666 digits is called an APOC- 
ALYPSE NUMBER. 
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. 

BeI 

see also APOCALYPSE NUMBER, APOCALYPTIC NUM- 
BER, BIMONSTER, MONSTER GROUP 
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Beatty Sequence 
The Beatty sequence is a SPECTRUM SEQUENCE with an 
IRRATIONAL base. In other words, the Beatty sequence 
corresponding to an IRRATIONAL NUMBER 8 is given by 

1011 12QJ > 13@] 1 ’  l  l  j  
where 1x1 is the FLOOR FUNCTION. 

If CY and p are POSITIVE IRRATIONAL NUMBERS such 
that 

1 1 

d+‘=ly P 

Bee 

A 4-POLYHEX. 
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Behrens-Fisher Test 

see FISHER-BEHRENS PROBLEM 

Bei 
then the Beatty sequences la], 124, . . . and [@J, [ZpJ, 
l  l  . together contain all the POSITIVE INTEGERS without 
repetition. 

Behrmann Cylindrical Equal-Area 

Projection 
A CYLINDRICAL AREA-PRESERVING projection which 
uses 30’ N as the no-distortion parallel. 
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Beauzamy and D6got’s Identity 
For P, Q, R, and S POLYNOMIALS in n variables 

[PmQ,R-S] = ~ Ix 
A 

il!. . .&J’ 
ill .*.,i&O 

where 

Di = B/8xi is the DIFFERENTIAL OPERATOR, [X,Y] is 
the B~MBIERI INNER PRODUCT, and 

PC’ 21 ,**&a) = @l . * . &np. 
1 

see also REZNIK'S IDENTITY 

To 

RelBei zl Im[Bei zl IBei zI 

The IMAGINARY PART of 

J, (xe3=i/4 ) = her,(x) + i b&(x). (1) 

The special case v = 0 gives 

J&&x) E her(x) 

where Jo(z) is the zeroth order 
THE FIRST KIND. 

t i bei( (2) 

BESSEL FUNCTION OF 

O” (-1)“(;)4” 
bei  = x  [(2n)!]2 l  

n=O 

(3) 

see also BER, BESSEL FUNCTION, KEI, KELVIN FUNC- 
TIONS, KER 
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where (E) is a BINOMIAL COEFFICIENT, or using the 
formula of Comtet (1974) 
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B, = 1 e-l 
272 

x 

mn 1 m! ’ (4) 
I m=l I 

ml denotes the CEILING FUNCTION. where [x 

The Bell 
is a BEL 

number Bn is also equal to & (l), where & (2) 
#L POLYNOMIAL. DOBI~~SKI'S FORMULA gives 

the nth Bell number 

Bell Curve 

see GAUSSIAN DISTRIBUTION, NORMAL DISTRIBUTION 

Bell Number 
The number of ways a SET of n elements can be PARTI- 
TIONED into nonempty SUBSETS is called a BELL NUM- 
BER and is denoted B,. For example, there are five 
ways the numbers (1, 2, 3) can be partitioned: {{l}, 

Ph Wh w7 219 WEI WP 319 Wh W? (2, w, 
and ((17 2, 3)), so & = 5. Bo = 1 and the first few 
Bell numbers for n = 1, 2, . . l  are 1, 2, 5, 15, 52, 203, 
877, 4140, 21147, 115975, . . l  (Sloane’s AOOOllO). Bell 
numbers are closely related to CATALAN NUMBERS. 

(5) 
k=O 

Lovk (1993) showed that this formula gives the asymp- 
t otic limit 

where A(n) is defined implicitly by the equation 
The diagram below shows the constructions giving & = 
5 and Bd = 15, with line segments representing elements 
in the same SUBSET and dots representing subsets con- 
taining a single element (IX&au). 

A(n) log[A(n)] = 72. (7) 

A variation of DOBI~~SKI'S FORMULA gives 

BI, = k 
mk 

n-m 

( 1) 
3 

c 

- 

m! - s (8) 
s=o 

for 1 < k < n (Pitman 1997). de Bruijn (1958) gave the - - 
asymptotic formula 

In Bn lnlnn 1 
-=lnn-lnlnn-l+K+G 

n The INTEGERS B, can be defined by the sum 

+; (Ey+o [fi] l  (9) 

TOUCHARD'S CONGRUENCE states 

is a STIRLING NUMBER OF THE B p+k = Bk + Bk+l (mod p> 7 (10) 

SECOND KIND, or by the generating function 
when p is PRIME. The only PRIME Bell numbers for 
n 5 1000 are B2, B3, B7, B13, B42, and B55. The Bell 
numbers also have the curious property that g” = -1 x O” Bnxn 

n! ’ (2) 
n=O 

IB 0 & B2 a-0 Bn I 
The Bell numbers can also be generated using the BELL 
TRIANGLE, using the RECURRENCE RELATION 

Bl B2 B3 -a- &+I 
n 

- - . . l  . 
. 

rI 
n! 

(11) 

m  l  . l  . 

l  
. 

. l  . i=l 

1 Bn Bn+l Bn+2 .* l  B2n 

B r&+1= (3) 

(Lenard 1986). 

see also BELL POLYNOMIAL, BELL TRIANGLE, DOBI~ 
SKI'S FORMULA, STIRLING NUMBER OF THE SECOND 
KIND,TOUCHARD'S CONGRUENCE 
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Bell Polynomial 
14 - 

12 - 

10 - 

8- 

6- 

I  0.2 0.4 0.6 0.8 1 

TWO different GENERATING FUNCTIONS for the Bell 
polynomials for n > 0 are given by 

00 

&(x) E e-” IE 
k=l 

kn+k 

(k - l)! 

or 

where (L) is a BINOMIAL COEFFICIENT. 

Beltrami Differential Equation 

The Bell polynomials are defined such that & (1) = B,, 
where B, is a BELL NUMBER. The first few Bell poly- 
nomials are 

@o(x) = 1 
+1 Cx) =X 

42 (2) =x+x2 

$3 b> = x + 3x2 + x3 

+4(x) = x + 7x2 + 6x3 + x4 

45b) = x + 15x2 + 25x3 + 10x4 + x5 

$6 cx> = x + 31x2 + 90x3 + 65x4 + 15x5 + x6. 

see also BELL NUMBER 
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Bell Triangle 

1 2 5 15 52 203 877 ... 
1 3 10 37 151 674 ‘** 

2 7 27 114 523 l . . 
5 20 87 409 *me 

15 67 322 -m. 
52 255 ‘m. 

203 ‘a. . . . 
A triangle of numbers which allow the BELL NUMBERS 
to be computed using the RECURRENCE RELATION 

B n+l = 

see also BELL NUMBER, CLARK'S TRIANGLE, LEIBNIZ 
HARMONIC TRIANGLE, NUMBER TRIANGLE, PASCAL'S 
TRIANGLE, SEIDEL-ENTRINGER-ARNOLD TRIANGLE 

Bellows Conjecture 

see FLEXIBLE POLYHEDRON 

Beltrami Differential Equation 
For a measurable function p, the Beltrami differential I 
equation is given by 

f z* = A&, 

where fL: is a PARTIAL DERIVATIVE and X* denotes the 
COMPLEX CONJUGATE ofz. 

see also QUASICONFORMAL MAP 
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1980. 



Be1 trami Field 

Beltrami Field 
A VECTOR FIELD u satisfying the vector identity 

ux(vxu)=o 

where A x B is the CROSS PRODUCT and V x A is the 
CURL is said to be a Seltrami field. 

see ah BIVERGENCELESS FIELD, IRR~TATI~NAL 
FIELD, SOLENOIDAL FIELD 

Beltrami Identity 
An identity in CALCULUS OF VARIATIONS discovered in 
1868 by Beltrami. The EULER-LAGRANGE DIFFEREN- 
TIAL EQUATION is 

Now, examine the DERIVATIVE of cc 

df w af af 
&=dyYx+dy,Yxx+~. 

Solving for the Sf /ay term gives 

df df df af 
&Yx = z - dy,Yxx - G’ 

Now, multiplying (1) by yat gives 

Ya: 
af d af = 0 -- 
aY YxdJ: ayx ( > - 

co 

(4) 

Substituting (3) into (4) then gives 

(5) 

(6) 

This form is especially useful if fz = 0, since in that cas 

$(f-Yx-g)=O, (7 

which immediately gives 

e 

> 

f--y,% =c, 
X 

where C is a constant of integration. 

The Beltrami identity greatly simplifies the solution for 
the minimal AREA SURFACE OF REVOLUTION about 
a given axis between two specified points. It also al- 
lows straightforward solution of the BRACHISTOCHRONE 
PROBLEM. 

see U~SO BRACHISTOCHRONE PROBLEM, CALCULUS OF 
VARIATIONS, EULER-LAGRANGE DIFFERENTIAL EQUA- 
TION, SURFACE OF REVOLUTION 
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Bend (Curvature) 
Given four mutually tangent circles, their bends are de- 
fined as the signed CURVATURES of the CIRCLES. If the 
contacts are all external, the signs are all taken as POS- 
ITIVE, whereas if one circle surrounds the other three, 
the sign of this circle is taken as NEGATIVE (Coxeter 
1969). 

see dso CURVATURE, DESCARTES CIRCLE THEOREM, 
SODDY CIRCLES 
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Bend (Knot) 
A KNOT used to join the ends of two ropes together to 
form a longer length. 
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Benford’s Law 
Also called the FIRST DIGIT LAW, FIRST DIGIT PHE- 
NOMENON, or LEADING DIGIT PHENOMENON. In list- 
ings, tables of statistics, etc., the DIGIT 1 tends to oc- 
cur with PROBABILITY N 30%, much greater than the 
expected 10%. This can be observed, for instance, by 
examining tables of LOGARITHMS and noting that the 
first pages are much more worn and smudged than later 
pages. The table below, taken from Benford (1938), 
shows the distribution of first digits taken from several 
disparate sources. Of the 54 million real constants in 
Plouffe’s “Inverse Symbolic Calculator” database, 30% 
begin with the DIGIT 1. 

Title First Digit # 

12 3 4 5 6 7 8 9 

Rivers, Area 31.0 16.4 10.7 11.3 7.2 8.6 5.5 4.2 5.1 335 
Population 33.9 20.4.14.2 8.1 7.2 6.2 4.1 3.7 2.2 3259 
Constants 41.3 14.4 4.8 8.6 10.6 5.8 1.0 2.9 10.6 104 

Newspapers 30.0 18.0 12.0 10.0 8.0 6.0 6.0 5.0 5.0 100 

Specific Heat 24.0 18.4 16.2 14.6 10.6 4.1 3.2 4.8 4.1 1389 
Pressure 29.6 18.3 12.8 9.8 8.3 6.4 5.7 4.4 4.7 703 
H-P. Lost 30.0 18.4 11.9 10.8 8.1 7.0 5.1 5.1 3.6 690 
Mol. Wgt. 26.7 25.2 15.4 10.8 6.7 5.1 4.1 2.8 3.2 1800 
Drainage 27.1 23.9 13.8 12.6 8.2 5.0 5.0 2.5 1.9 159 
Atomic Wgt. 47.2 18.7 5.5 4.4 6.6 4.4 3.3 4.4 5.5 91 
n-l, &i 25.7 20.3 9.7 6.8 6.6 6.8 7.2 8.0 8.9 5000 
Design 26.8 14.8 14.3 7.5 8.3 8.4 7.0 7.3 5.6 560 
Reader’s Dig. 33.4 18.5 12.4 7.5 7.1 6.5 5.5 4.9 4.2 308 
Cost Data 32.4 18.8 10.1 10.1 9.8 5.5 4.7 5.5 3.1 741 
X-Ray Volts 27.9 17.5 14.4 9.0 8.1 7.4 5.1 5.8 4.8 707 
Am. League 32.7 17.6 12.6 9.8 7.4 6.4 4.9 5.6 3.0 1458 
Blackbody 31.0 17.3 14.1 8.7 6.6 7.0 5.2 4.7 5.4 1165 
Addresses 28.9 19.2 12.6 8.8 8.5 6.4 5.6 5.0 5.0 342 
nl, n2-.-n! 25.3 16.0 12.0 10.0 8.5 8.8 6.8 7.1 5.5 900 
Death Rate 27.0 18.6 15.7 9.4 6.7 6.5 7.2 4.8 4.1 418 
Average 30.6 18.5 12.4 9.4 8.0 6.4 5.1 4.9 4.7 1011 
Prob. Error 0.8 0.4 0.4 0.3 0.2 0.2 0.2 0.2 0.3 
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In fact, the first SIGNIFICANT DIGIT seems to follow a 
LOGARITHMIC DISTRIBUTION, with 

Benson’s Formula 

Bennequin’s Conjecture 
A BRAID with AcZ strands and R components with P 
positive crossings and N negative crossings satisfies 

P(n) St: log(n + 1) - logn 
Ip-NI<2U+M-R<P+N, - - 

fern= 1, . . . . 9. One explanation uses CENTRAL LIMIT- 

like theorems for the MANTISSAS of random variables 
under MULTIPLICATION. As the number of variables in- 
creases, the density function approaches that of a LOG- 
ARITHMIC DISTRIBUTION. 
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Benham’s Wheel 

An optical ILLUSION consisting of a spinnable top 
marked in black with the pattern shown above. When 
the wheel is spun (especially slowly), the black broken 
lines appear as green, blue, and red colored bands! 
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where U is the UNKNOTTING NUMBER. While the 
second part of the INEQUALITY was already known to 
be true (Boileau and Weber, 1983, 1984) at the time 
the conjecture was proposed, the proof of the entire 
conjecture was completed using results of Kronheimer 
and Mrowka on MILNOR'S CONJECTURE (and, indepen- 
dently, using MENASCO'S THEOREM). 

see also BRAID,MENASCO'S THEOREM,MILNOR'S CON- 
JECTUREJNKNOTTING NUMBER 

R 
E 

B 

B 

B 

leferences 
ennequin, D. “L’instanton gordien (d’aprks P. B. Kron- 
heimer et T. S. Mrowka).” Aste’risque 218, 233-277,1993. 

irman, J. S. and Menasco, W. W. “Studying Links via 
Closed Braids. II. On a Theorem of Bennequin.” Topology 
Appl. 40, 71-82, 1991. 

oileau, M. and Weber, C. ‘(Le problkme de 3. Milnor sur le 
nombre gordien des noeuds alghbriques.” Enseign. Math. 
30,173-222,1984. 

oileau, M. and Weber, C. ‘(Le problkme de J. Milnor sur le 
nombre gordien des neuds algkbriques.” In Knots, Braids 
and Singularities (Plans-sur-Bex, 1982). Geneva, Switzer- 
land: Monograph. Enseign. Math. Vol. 31, pp. 49-98, 
1983. 

Cipra, B. What’s Happening in the Mathematical Sciences, 

Vol. 2. Providence, RI: Amer. Math. Sot., pp* 8-13, 1994. 
Kronheimer, P. B. “The Genus-Minimizing Property of Al- 

gebraic Curves .” Bull. Amer. Math. Sot. 29, 63-69, 1993. 
Kronheimer, P. B. and Mrowka, T. S. “Gauge Theory for 

Embedded Surfaces. I.” Topology 32, 773-826, 1993. 
Kronheimer, P. B. and Mrowka, T. S. “Recurrence Relations 

and Asymptotics for Four-Manifold Invariants.” BUll. 

Amer. Math. Sot. 30, 215-221, 1994. 
Menasco, W. W+ “The Bennequin-Milnor Unknotting Con- 

jectures.” C. R. Acad. Sci. Paris Sk. I Math. 318, 831- 
836,1994. 

Benson’s Formula 
An equation for a LATTICE SUM with n = 3 

43(l) = 
i, j, 

Here, the prime denotes that summation over (0, 0, 0) is 
excluded. The sum is nu .merically equal to -1 .74756.. ‘1 
a value-known as “the” MADELUNG CONSTANT. 

see &O MADELUNG CONSTANTS 
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Ber 

Re[Ber z1 Imt3er 21 

0 0 

Im[zl 

The REAL PART of 

Jv (Xe3Ti/4 ) = ber&) + i bei#. 

The special case Y = 0 gives 

J&&z) c her(s) + ibei(z), (2) 

where Jo is the zeroth order BESSEL FUNCTION OF THE 
FIRST KIND. 

O” (-1)n(;)2+4n 
her(x) = Ix [(zn + l)!]” ’ (3) 

see also BEI, BESSEL FUNCTION, KEI, KELVIN FUNC- 
TIONS, KER 
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Beraha Constants 
The nth Beraha constant is given by 

The first few are 

Be1 =4 

Be2 = 0 

Bea = 1 

Be4 = 2 

Be5 = i(3 + &) ==: 2.618 

Bee = 3 

Be7 = ~+~cos(~T) z 3.247.... 

They appear to be ROOTS of the CHROMATIC POLY- 
NOMIALS of planar triangular GRAPHS. Be4 is 4 + 1, 
where 4 is the GOLDEN RATIO, and Be7 is the SILVER 
CONSTANT. 

References 
Le Lionnais, F, Les nombres remarquables. Paris: Hermann, 

p. 143, 1983. 

Berger-Kazdan Comparison Theorem 
Let M be a compact n-D MANIFOLD with INJECTIVITY 
radius inj (M), Then 

Vol(M) > 
cn inj(M) 

- 1 7r 

with equality IFF M is ISOMETRIC to the standard round 
SPHERE S” with RADIUS inj(M), where en(r) is the 
VOLUME of the standard TZ-HYPERSPHERE of RADIUS 
r. 

see also BLASCHKE CONJECTURE, HYPERSPHERE, IN- 
JE~T~E, IsOMETT~Y 

References 
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Bergman Kernel 
A Bergman kernel is a function of a COMPLEX VARI- 
ABLE with the “reproducing kernel” property defined 
for any DOMAIN in which there exist NONZERO ANA- 
LYTIC FUNCTIONS of class &(D) with respect to the 
LEBESGUE MEASURE dV. 

References 
Hazewinkel, M, (Managing Ed.). Encyclopaedia of Math- 

ematics: An Upduted and Annotated Translation of the 
Soviet “Mathematical Encyclopaedia. ” Dordrecht, Nether- 
lands: Reidel, pp. 356-357, 1988. 

Bergman Space 
Let G be an open subset of the COMPLEX PLANE c, and 
let L:(G) denote the collection of all ANALYTIC FUNC- 
TIONS f : G + C whose MODULUS is square integrable 
with respect to AREA measure. Then L:(G), sometimes 
also denote’d A2(G), is called the Bergman space for G. 
Thus, the Bergman space consists of all the ANALYTIC 
FUNCTIONS in L2 (G). The Bergman space can also be 
generalized to Lz(G), where 0 < p < 00. 

Bernoulli Differential Equation 

2 + P(X)Y = 4(4Y”* 

Let 21= yl+ for n # 1, then 

2 = (1 - n)y-n$* 

Rewriting (1) gives 

(1) 

(2) 

Y 
-7tdY 

z = q(x) - p(x)yl-” = Q(X) - UP(X)* (3) 

Plugging (3) into (2)) 

g = (1 - 4&> - VW (4) 
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NOW, this is a linear FIRST-ORDER ORDINARY DIFFER- 
ENTIAL EQUATION of the form 

and the MOMENTS about 0 are 

/A;=/L=iw(O)=p (8) 
p; = h!P(o) = p (9) 
pt n = &f@)(O) = p 

l  
(10) 

g’+ VP(X) = Q(x), (5) 

where P(x) = (1-n)p(x) and Q(x) E (l-n)&). It can 
therefore be solved analytically using an INTEGRATING 
FACTOR 

The MOMENTS about the MEAN are 

l-42 = p; - (/.L;)2 = p - p2 = p(1 - p) (11) 

CL3 = p$ - 3/.&L’, + 2(/L:)3 = p - 3P2 + 2p3 

= PG - P)(l - 2Pl (12) 

P4 = Pk - 4&d + 6P&q2 - 3(cl:)4 
= p - 4p2 + 6p3 - 3p4 

=p(l - P)(3P2 - 3p+ 1). (13) 

s 
,s fw da: 

Q(x) dx + C 
v= 

eJ m4 dx 

(l-d s dxc) d”q(x) dx + C 
- (1 - 4 J e - 

e(l-n) J P(X) dx 
1 (6) 

where C is a constant of integration. If n = 1, then 
equation (1) becomes The MEAN, VARIANCE, SKEWNESS, and KURTOSIS are 

then 

E-L= 
f12 = 

71 = 

- - 

72 = 

- - 

dY 
dz = Ykl -PI (7) 

I4 =P 

CL2 = P(l - P) dY 
y = (Q - P> dx (8) 

P3 -- PO - PI0 - 2P) 
c3 - Ml - PII”‘” 

y = C2e J[dx)-P(X)1 dx . (9) 1 - 2p 
(16) 

dP(l -P) The general solution is then, with Cl and C2 constants, 

lJ4 - 3= PC1 2P)(2P2 - 2P + 1) -- _ 
04 P2(1 

3 
- PI2 

Y= 

I 

6p2 - 6p + 1 
(17) 

P(l -P> . 

CJ 2e [P&*w1 d= 

for n = 1. 
To find an estimator for a population mean, 

(P) = 5 P(&)OYl -p 
Np-0 

Bernoulli Distribution 
A DISTRIBUTION given by N 

- - O>: pp--l(l - (y)N” 

Np=l 

= sp + (1 - @IN-l = 0, (18) 

pb4 = (; El-p for7l=O 
for n = 1 (1) 

= p”(l - p)‘-” for n = 0,l. (2) 

SO (p) is an UNBIASED ESTIMATOR for 8. The probabil- 
ity of Np successes in N trials is then 

The distribution of heads and tails in COIN TOSSING is 
a Bernoulli distribution with p = q = l/2. The GENER- 
ATING FUNCTION of the Bernoulli distribution is 

( > ;p BNP(l - qNq, (19) 
M(t) = (etn) = 9 etnpn(l - p>‘-” = eO(l -p) + etp, 

n=O 

(3) 

so 

where 
p - [number of successes] n 

- 
N =N* (20) 

see also BINOMIAL DISTRIBUTION M(t) = (1 - p> + pet 

M’(t) = pet 

M”(t) = pet 

M@‘(t) = pet 1 

(4) 

(5) 

(6) 

(7) 

Bernoulli Fhction 

see BERNOULLI POLYNOMIAL 
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Bernoulli Inequality 

(1 + x)~ > 1-t nx, (1) 

where z f R > - 1 # 0, n E z > 1. This inequality can 
be proven by taking a MACLAURIN SERIES of (1 + x)~, 

(1+x)” = l+nx+$n(n-l)x2+in(n-1)(7-v-2)x3+. , . . 

(2) 
Since the series terminates after a finite number of terms 
for INTEGRAL n, the Bernoulli inequality for x > 0 is 
obtained by truncating after the first-order term. When 
-1 < x < 0, slightly more finesse is needed. In this case, 
let y = 1x1 = --2 > 0 so that 0 < y < 1, and take 

(l-y)” = l-ny++t(n-l)y2+(n-l)(n-2)y3+. . . . 

(3) 
Since each POWER of y multiplies by a number < 1 and 
since the ABSOLUTE VALUE of the COEFFICIENT of each 
subsequent term is smaller than the last, it follows that 
the sum of the third order and subsequent terms is a 
POSITXVE number. Therefore, 

Cl- Y)” > 1 - ny, (4) 

(1 + x)” > 1 + nx, for -l<x<O, (5) 

completing the proof of the INEQUALITY over all ranges 
of parameters. 

Bernoulli Lemniscate 

see LEMNISCATE 

Bernoulli Number 
There are two definitions for the Bernoulli numbers. The 
older one, no longer in widespread use, defines the Ber- 
noulli numbers Bz by the equations 

B;x2 &x4 B;x6 - --- - 
2! 4! + 6! +*** (1) 

for 1x1 < 2n, or 

B1”x2 B;x4 B3+x6 - - 
2! + 4! + 6! +‘-’ 

for (ICI < 7r (Whittaker and Watson 1990, pm 125). Grad- 
shteyn and Ryzhik (1979) denote these numbers Bz, 
while Bernoulli numbers defined by the newer (National 
Bureau of Standards) definition are denoted B, The 

Bz Bernoulli numbers may be calculated from the inte- 
gral ” 

Bi =4n - J 
- t2n-ldt 

+t - 1’ 
0 

and analytically from 

(3) 

-2n 
P = (4) 

for n = 1, 2, . . l , where c(z) is the RIEMANN ZETA 

FUNCTION, 

The first few Bernoulli numbers Bz are 

Bernoulli numbers defined by the modern definition are 
denoted B, and also called “EVEN-index” Bernoulli 
numbers. These are the Bernoulli numbers returned by 
the Mathematics @ (Wolfram Research, Champaign, IL) 
function BernoulliB [n] . These Bernoulli numbers are 
a superset of the archaic ones Bc since 

for n = 0 
1 -- 

B, G 
(_21)(n/2~-1~;,2 

for rz = 1 

for n even 
(5) 

0 for n odd. 

The B, can be defined by the identity 

X O” B,xn - - = 
ex - 1 c n!’ 

n=O 

(6) 

These relationships can be derived using the generating 
function 

O” Bn(x)t” 
F(G) = x 7’ 

r (7) 

which converges uniformly for ItI < 27r and all x (Castel- 
lanos 1988). Taking the partial derivative gives 

wx, 4 O” Bn-1 (x)tn crg B,(x)t” ~ - - - 
all: >: In- II! - E 

- = tF(x, t). 
n! 

n=O ' 
/ 

n=O 

(8) 
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The solution to this differential equation is 

F(x, t) = T(t)ext, 

so integrating gives 

s 

1 

0 s 

1 

F(x, t) dx = T(t) 
0 

ext dx = T(t)+ 

- - &(x) dx 

- - Bn(x) dx = 1 

or 

text O” B,(x)tn - - 
et-l- x n! 

n=O 

(9) 

(10) 

(11) 

(Castellanos 1988). Setting x = 0 and adding t/2 to 
both sides then gives 

O” B2nt2n 
$tcoth($t) = x or. 

. 
?a=0 

(12) 

Letting t = 2ix then gives 

2 cot 2 = (13) 

for x E [-;lr,7F]. The Bernoulli numbers may also be 
calculated from the integral 

n! &J--- -- 
.I 

z dz 

2ni ez - 1 ~n+l’ (14) 

(15) 

The Bernoulli numbers satisfy the identity 

(k;1)8a+(k;1)Bk-l+...+(k;1)~l+~o =o, 

06) 
where (L) is a BINOMIAL COEFFICIENT. An asymptotic 
FORMULA is 

lim lBzn[ N 46 7L ( > 
2n 

. (17) n+m 7re 

Bernoulli numbers appear in expressions of the form 

c ;I1 kp, where p = 1, 2, l  . . . Bernoulli numbers also 
appear in the series expansions of functions involving 
tanx, cotx, cscx, lnl sinxl, lnl cosxl, lnl tanx/, tanhx, 

Bernoulli Number 

cothx, and cschx. An analytic solution exists for EVEN 
orders, 

B2n _ (-1)“-l2(2n)! O” -2n - 
(2 > 7r 2n x P = 

p=l 

for n = 1, 2, , . . , where [(2n) is the RIEMANN ZETA 
FUNCTION. Another intimate connection with the RIE- 
MANN ZETA FUNCTION is provided by the identity 

Bn = (-l)‘?a[(l - n). (19) 

The DENOMINATOR of& isgivenbythe VON STAUDT- 
CLAUSEN THEOREM 

Zk+l 

denom(&) = 
rI P, (20) 

p prime 

b--l~Pk 

which also implies that the DENOMINATOR of B:!k is 
SQUAREFREE (Hardy and Wright 1979). Another curi- 
ous property is that the fraction part of Bn in DECIMAL 
has a DECIMAL PERIOD which divides n, and there is a 
single digit before that period (Conway 1996). 

BO =l 

&z-i 

Ba = ; 

B4=-$ 

B6 = & 

Ba=-$) 

&o = & 

B12 = -$& 1 

B14 = ; 

B16 = -+g 

Bls = 
43,867 

798 
174 611 B20 = -1 

330 

B22 = 
854,513 

138 

(Sloane’s A000367 and A002445). In addition, 

B2n+1 = 0 (21) 

for n = 1, 2, l  l  . q 

Bernoulli first used the Bernoulli numbers while com- 

puting CLxl k p. He used the property of the FIGURATE 
NUMBER TRIANGLE that 

n 

x 
. . - u23 Cn + %j - 

j+l ’ 
(22) 

i=o 
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along with a form for a,j which he derived inductively 
to compute the sums up to n = 10 (Boyer 1968, p. 85). 
For p E z > 0, the sum is given by 

f-p=~ (B + n + l)[p+ll - Bp+l 

P+l 
? (23) 

k=l k=l 

where the NOTATION dk] means the quantity in ques- 
tion is raised to the appropriate POWER k, and all terms 
of the form Bm are replaced with the corresponding Ber- 
noulli numbers B,. Written explicitly in terms of a sum 
of POWERS, 

kp - - 
k’(p- k+ l)! 

g-k+1 

l  l  

k=l 

(24) 

It is also true that the COEFFICIENTS of the terms in 
such an expansion sum to 1 (which Bernoulli stated 
without proof). Ramanujan gave a number of curi- 
ous infinite sum identities involving Bernoulli numbers 
(Berndt 1994). 

G. J. Fee and S. Plouffe have computed &oo,~~o, which 
has - 800,000 DIGITS (Plouffe). Plouffe and collabora- 
tors have also calculated B, for n up to 72,000. 

see also ARGOH’S CONJECTURE, BERNOULLI FUNC- 
TION, BERNOULLI POLYNOMIAL, DEEIYE FUNCTIONS, 
EULER-MACLAURIN INTEGRATION FORMULAS, EULER 
NUMBER, FIGURATE NUMBER TRIANGLE, GENOCCHI 

NUMBER, PASCAL’S TRIANGLE, RIEMANN ZETA FUNC- 
TION,VON STAUDT-CLAUSEN THEOREM 
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Bernoulli’s Paradox 
Suppose the HARMONIC SERIES converges to h: 

= h. 
k=l 

Then rearranging the terms in the sum gives 

h-l=h, 

which is a contradiction. 
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Bernoulli Polynomial 

0.15 

0.1 

0.05 

-0.05 

There are two definitions of Bernoulli polynomials in 
use. The nth Bernoulli polynomial is denoted here by 

B,(x), an d the archaic Bernoulli polynomial by Bz (x)* 
These definitions correspond to the BERNOULLI NUM- 
BERS evaluated at 0, 

B, = B,(O) (1) 
B; E B;(O). (2) 

They also satisfy 

&z(l) = (-l)“&(O) (3) 

and 
B,(l - 2) = (-l)“Bn(x) (4) 
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(Lehmer 1988). The first few Bernoulli POLYNOMIALS 

are 

Be(x) = 1 

B1(x)=x-+ 

” Bz(x)=x2 -Xii 

B3(x) = x3 - 4x” + ix 

B4(2) = x4 - 2x3 + x2 - $ 

B5(x) = x5 - %2” + gx3 - iX 

B6(X) = x6 - 3x5 + %x4 - +x2 + A. 

Bernoulli (1713) defined the POLYNOMIALS in terms of 
sums of the POWERS of consecutive integers, 

m-l 

c 
kn-l = 

‘[Bn(m) - Bn(o)]* 
n (5) 

k=O 

Euler (1738) gave the Bernoulli POLYNOMIALS Bn(x) in 
terms of the generating function 

& E T B,(x):. (6) . 
n=O 

They satisfy recurrence relation 

dBn 

dx 
= nB,-l(x) (7) 

(Appell 1882), and obey the identity 

B=(x) = (B + x)~, (8) 

where B” is interpreted here as &(x). Hurwitz gave 
the FOURIER SERIES 

&(x) = -n! 2 n 2rikx 

(27Ti)n kx-mk- e ’ (9) 

for 0 < x < 1, and Raabe (1851) found 

m-l 

A x Bn (X + t> = mBnBn(mx). (10) 

A sum identity involving the Bernoulli POLYNOMIALS is 

= -(m-l)Bm(a+p)+m(~+P-l)Bm-&+p) (11) 

for an INTEGER m and arbitrary REAL NUMBERS Q: and 

P . 

see also BERNOULLI NUMBER, EULER-MACLAURIN IN- 
TEGRATION FORMULASJGULER POLYNOMIAL 
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Bernoulli’s Theorem 

see WEAK LAW OF LARGE NUMBERS 

Bernoulli Trial 
An experiment in which s TRIALS are made of an event, 
with probability p of success in any given TRIAL. 

Bernstein-Bkier Curve 

see B~ZIER CURVE 

Bernstein’s Constant 
N.B. A detailed on-line essay by S. Finch was the start- 
ing point for this entry. 

Let En(f) be the error of the best uniform approxima- 
tion to a REAL function f(x) on the INTERVAL [-l,l] 
by REAL POLYNOMIALS of degree at most n. If 

4x> = 1x1, (1) 

then Bernstein showed that 

0.267.. . < lim 2nE&) < 0.286. (2) n--km 

He conjectured that the lower limit (p) was p = 
l/( 2fi). However, this was disproven by Varga and 
Carpenter (1987) and Varga (1990), who computed 

fl = 0.2801694990 l  . . . (3) 

For rational approximations p(x)/q(x) for p and q of 
degree m and n, D. J. Newman (1964) proved 

(4 



Bernstein’s Inequality 

for Y+Z > 4. Gonchar (1967) and Bulanov (1975) improved - 
the lower bound to 

e 
--?r&iqT 

5 En,n(a) 5 3edfi. (5) 

Vjacheslavo (1975) proved the existence of POSITIVE 
constants wz and A4 such that 

m<e =~E,,,(cr) < M - (6) 

(Petrushev 1987, pp. 105-106). Varga et al. (1993) con- 
jectured and Stahl (1993) proved that 

(7) 
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Bernstein% Inequality 
Let P be a POLYNOMIAL of degree 12 with derivative P’. 
Then 

IIP’II~ 5 4Pllm 
where 

llPllm = max IP(x)le 
lizI= 

Bernstein-Szegli Polynomials 115 

Bernstein Minimal Surface Theorem 
If a MINIMAL SURFACE is given by the equation z = 
f(z, y) and f has CONTINUOUS first and second PARTIAL 
DERIVATIVES for all REAL x and y, then f is a PLANE. 

References 
Hazewinkel, M. (Managing Ed.). Encyclopaedia of Math- 

ematics: An Updated and Annotated Translation of the 
Soviet “Mathematical Encyclopaedia. ” Dordrecht, Nether- 
lands: Reidel, p. 369, 1988. 

Bernstein Polynomial 
The POLYNOMIALS defined by 

a,,(t) = 
0 
n $(l - y-i, 
i 

where 0 2 is a BINOMIAL COEFFICIENT. The Bernstein 
polynomials of degree n form a basis for the POWER 
POLYNOMIALS of degree n. 

see also B~ZIER CURVE 

Bernstein% Polynomial Theorem 
If g(0) is a trigonometric POLYNOMIAL of degree m sat- 
isfying the condition ]g(B)] 5 1 where 0 is arbitrary and 
real, then g’(0) 5 rrz* 

References 
Szegii, G. Orthogonal Polynomials, 4th ed. Providence, RI: 

Amer. Math. Sot., p. 5, 1975. 

Bernstein-Szeg6 Polynomials 
The POLYNOMIALS on the interval [-1, l] associated 
with the WEIGHT FUNCTIONS 

w(x) = (1 - z2)-lj2 

w(x) = (1 - X2)lj2 

w(x) = J 1-X 
- 
1+x’ 

also called BERNSTEIN POLYNOMIALS. 

References 
SzegG, G. Orthogonal Polynomials, 4th ed. Providence, RI: 

Amer. Math. Sot., pp. 31-33, 1975. 
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Berry-Osseen Inequality Bertrand’s Postulate 
Gives an estimate of the deviation of a DISTRIBUTION If n > 3, there is always at least one PRIME between n 

FUNCTION as a SUM of independent RANDOM VARI- 
ABLES with a NORMAL DISTRIBUTION. 

and 2n - 2. Equivalently, if n > 1, then there is always 
at least one PRIME between 72 and 2n. It was proved 
in 1850-51 by Chebyshev, and is therefore sometimes 
known as CHEBYSHEV’S THEOREM. An elegant proof 
was later given by Erdcs. An extension of this result is 
that if n > k, then there is a number containing a PRIME 
divisor > k in the sequence 72, n+l, . . . , n+k-1. (The 
case n = k + 1 then corresponds to Bertrand’s postu- 
late.) This was first proved by Sylvester, independently 
by Schur, and a simple proof was given by ErdBs. 

Reierences 
Hazewinkel, M. (Managing Ed.). Encyclopaedia of Math- 

ematics: An Updated and Annotated Translation of the 

Soviet “Mathematical Encyclopaedia. ” Dordrecht, Nether- 
lands: Reidel, p. 369, 1988. 

Berry Paradox 
There are several versions of the Berry paradox, the 
original version of which was published by Bertrand 
Russell and attributed to Oxford University librarian 
Mr. G. Berry. In one form, the paradox notes that the 
number “one million, one hundred thousand, one hun- 
dred and twenty one” can be named by the description: 

A related problem is to find the least value of 0 so that 
there exists at least one PRIME between n and n+O(ne) 
for sufficiently large n (Berndt 1994). The smallest 
known value is 8 = 6/11+ E (Lou and Yao 1992). 

see als 0 CHOQUET THEORY, 

TURE, PRIME NUM BER 

DE POLIGNAC'S CONJEC- 

References 
is an inconsistency in naming it in this manner! Berndt, B. C. Ramanujan’s Notebooks, Part IV* New York: 

Springer-Verlag, p. 135, 1994. 
Erdijs, P. “Ramanujan and I.” In Proceedings of the Inter- 

national Ramanujan Centenary Conference held at Anna 
University, Madras, Dec. 21, 1987. (Ed. K. Alladi), New 
York: Springer-Verlag, pp. l-20, 1989. 

Lou, S. and Yau, Q. “A Chebyshev’s Type of Prime Number 
Theorem in a Short Interval (II).” Hardy-Ramanujan J. 
15,1-334992. 

References 
Chaitin, G. J. “The Berry Paradox.” Complexity 1, 26-30, 

1995. 

Bertelsen’s Number 
An erroneous value of r(lO’), where r(z) is the PRIME 
COUNTING FUNCTION. Bertelsen’s value of 50,847,478 
is 56 lower than the correct value of 50,847,534. Bertrand’s Problem 

What is the PROBABZITY that a CHORD drawn at RAN- 
DOM on a CIRCLE of RADIUS T has length > r? The an- 
swer, it turns out, depends on the interpretation of “two 
points drawn at RANDOM." In the usual interpretation 

References 
Brown, K. S. “Bertelsen’s Numb 

corn/-ksbrown/kmath049. htm. 
er.” http://www.seanet. 

that ANGLES 81 and 
CIRCUMFERE NCE, 

02 are picked at RANDOM on the Bertini’s Theorem 
The general curve of a system which is LINEARLY IN- 
DEPENDENT on a certain number of given irreducible 
curves will not have a singular point which is not fixed 
for all the curves of the system. 

7T-; _ 2 p=---. 
T 3 

However 1 if a point is instead 
RADIUS of the CIRCLE and a 

placed at RAN DOM ona 
CHORD drawn PERPEN- References 

Coolidge, J, 1;. A Treatise on Algebraic Plane Curves. New 
York: Dover, p. 115, 1959. DICULAR to it, 

d3 
TT - - - 

T 
A 

2 . 
P= 

Bertrand Curves 
Two curves which, at any point, have a common princi- 
pal NORMAL VECTOR are called Bertrand curves. The 
product of the TORSIONS of Bertrand curves is a con- 

The latter interpretation is more satisfactory in the 
sense that the result remains the same for a rotated CIR- 
CLE, a slightly smaller CIRCLE INSCRIBED in the first, 
or for a CIRCLE of the same size but with its center 
slightly offset. Jaynes (1983) shows that the interpre- 
tation of “RANDOM'~ as a continuous UNIFORM DISTRI- 
BUTION over the RADIUS is the only one possessing all 
these three invariances. 

stant. 

Bertrand’s Paradox 

see BERTRAND'S PROBLEM 

References 
Bogomolny, A. “Bertrand’s Paradox.” http : //www . cut-the- 

knot.com/bertrand.html. 
Jaynes, E, T. Papers on Probability, Statistics, and Statisti- 

cal Physics. Dordrecht, Netherlands: Reidel, 1983. 
Pickover, C. A. Keys to Infinity. New York: Wiley, pp. 4% 

45, 1995. 
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Bertrand’s Test Bessel Differential Equation 
A CONVERGENCE TEST also called DE MORGAN’S AND 
BERTRAND'S TEST. If the ratio of terms of a SERIES 2d2Y dY 

{ I a, Tzl can be written in the form 
x -jp+x&+(x2-m2)y=u. (1) 

an 
-=1+ 

1 

&a+1 

;+A 
nlnn’ 

then the series converges if lim,,,p, > 1 and diverges 

Equivalently, dividing through by x2, 

d2Y 
d22+ (2) 

if lim,+,p, < 1, where limn+oo is the LOWER LIMIT 

and limn+oo is the UPPER LIMIT. 
The solutions to this equation define the BESSEL FUNC- 
TIONS. The equation has a regular SINGULARITY at 0 

see also KUMMER’S TEST and an irregular SINGULARITY at 00. 

References 
Bromwich, T. J. I’a and MacRobert, T. M. An Introduc- 

tion to the Theory of Infinite Series, 3rd ed. New York: 
Chelsea, p. 40, 1991. 

Bertrand’s Theorem 

A transformed version of the Bessel differential equation 
given by Bowman (1958) is 

2d2Y x d22 + (2p+ 1,x$ + (u2x2r + P")y = 0. (3) 

see BERTRAND’S POSTULATE The solution is 

Besov Space 
A type of abstract SPACE which occurs in SPLINE and 
RATIONAL FUNCTION approximations. The Besov space 
BCY p,q is a complete quasinormed space which is a BA- where 
NACH SPACE when 1 < p, q 2 00 (Petrushev and Popov 4-Jp-pz, (5) 
1987). 

References 
J and Y are the BESSEL FUNCTIONS OF THE FIRST and 

Bergh, J. and Lijfstram, J. Interpolation Spaces. New York: 
Springer-Verlag, 1976. 

Peetre, J. New Thoughts on Besov Spaces. Durham, NC: 
Duke University Press, 1976. 

SECOND KINDS, and Cl and c2 are constants. Another 
form is given by letting y = x”Jn(/?x’), q = yxdQ, and 
c = pxr (Bowman 1958, p. 117), then 

Petrushev, P. P. and Popov, V. A. “Besov Spaces.” $7.2 
in Rational Approximation of Real Functions. New York: 
Cambridge University Press, pp, 201-203, 1987. 

Triebel, H. Interpolation Theory, Function Spaces, Differen- 
tial Operators. New York: Elsevier, 1978. 

d2Y 2cll- 1 dy a2 - n2y2 ---- 
dx2 x dx 

p2y2x2r-2 + 22 
> 

Y = 0. 

(6) 
The solution is 

Bessel’s Correction 
The factor (N - 1)/N in the relationship between the Y- 

xa [AJn(@xr) + BYn(@xY)] for integral n 
AJn(px’) + BJ-n(Px')] for nonintegral 72. 

VARIANCE u and the EXPECTATION VALUES of the SAM- (7) 
PLE VARIANCE, see U~SO AIRY FUNCTIONS, ANGER FUNCTION, BEI, 

BER, BESSEL FUNCTION, BOURGET'S HYPOTHESIS, 

( > 
N-12 s2 =- 

N u7 (1) CATALAN INTEGRALS, CYLINDRICAL FUNCTION, DINI 
EXPANSION,HANKEL FUNCTION, HANKEL’S INTEGRAL, 

where 
HEMISPHERICAL FUNCTION, KAPTEYN SERIES, LIP- 

s2  E (x2) - (x)2 l  
(2) 

SCHITZ'S INTEGRAL, LOMMEL DIFFERENTIAL EQUA- 
TION, LOMMEL FUNCTION, LOMMEL'S INTEGRALS, 

For two samples, NEUMANN SERIES (BESSEL FUNCTION), PARSEVAL'S 
INTEGRAL, POISSON INTEGRAL, RAMANUJAN'S INTE- 

2 
A2 Ns12 +N2s2 0 = 

Nl + N2 - 2 - (3) 
GRAL, RICCATI DIFFERENTIAL EQUATION, SONINE'S 
INTEGRAL, STRUVE FUNCTION, WEBER FUNCTIONS, 
WEBER'S DISCONTINUOUS INTEGRALS 

see also SAMPLE VARIANCE, VARIANCE References 
Bowman, F. Introduction to Bessel Functions. New York: 

Dover, 1958. 
Morse, P. M. and Feshbach, H. Methods of Theoretical Phys- 

ics, Part I. New York: McGraw-Hill, p. 550, 1953. 
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Bessel’s Finite Difference Formula 
An INTERPOLATION formula also sometimes known as 

for P E WI, where Sk the CENTRAL DIFFERENCE and 

B 2n = ;Gzn E $(Ez, + Fzn) (2) 

B2n+l E G2n+1 - $G2n E $(Fzn - &n) (3) 

E2n E G2n - Gzn+l G B2n - B2n+1 (4) 

F2n G G2n+l G B2n + B2n+l, (5) 

where Gk are the COEFFICIENTS from GAUSS'S BACK- 
WARDFORMULA and GAUSS'S FORWARD FORMULA and 
Ek and Fk are the COEFFZC'IENTS from EVERETT'S FOR- 
MULA. The &s also satisfy 

B2n (P) = &n(q) 
B2,+1 (p) = -&n+l (q), 

(6) 
(7) 

for 
q-1-p. (8) 

see also EVERETT'S FORMULA 
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Bessel’s First Integral 

Jn(x) = i 
s 

x 

cos(n0 - xsin8) de, 
0 

where Jn(x) is a BESSEL FUNCTION OF THE FIRST 
KIND. 

Bessel’s Formula 

see BESSEL'S FINITE DIFFERENCE FORMULA, BES- 
SEL'S INTERPOLATION FORMULA, BESSEL'S STATISTI- 
CAL FORMULA 

Bessel Function 
A function Z(x) defined by the RECURRENCE RELA- 
TIONS CI- 

The Bessel functions are more frequently defined as so- 
lutions to the DIFFERENTIAL EQUATION 

x 
2d2Y dY 

dz2 +x& + (x2 - m2)y = 0. 

There are two classes of solution, called the BESSEL 
FUNCTION OF THE FIRST KIND J and BESSEL FUNC- 
TION OF THE SECOND KIND Y. (A BESSE'L FUNCTION 
OF THE THIRD KIND is a special combination of the first 
and second kinds.) Several related functions are also de- 
fined by slightly modifying the defining equations. 

see also BESSEL FUNCTION OF THE FIRST KIND, 
BESSEL FUNCTION OF THE SECOND KIND, BESSEL 
FUNCTION OF THE THIRD KIND, CYLINDER FUNC- 
TION, HEMICYLINDRICAL FUNCTION, MODIFIED BES- 
SEL FUNCTION OF THE FIRST KIND,MODIFIED BESSEL 
FUNCTION OF THE SECOND KIND, SPHERICAL BESSEL 
FUNCTION OF THE FIRST KIND, SPHERICAL BESSEL 
FUNCTION OF THE SECOND KIND 
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Bessel Function of the First Kind 

0.4 

zm+1+ zm-1= f!!!z, 
X 

0.2 

and 

-0.2 
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The Bessel functions of the first kind Jn(x) are defined as First, look at the special case m = -l/2, then (9) be- 
the solutionstothe BESSEL DIFFERENTIAL EQUATION comes 

F[a,n(n - 1) + un-2]xm+n = 0, (10) 
n=2 

so 
1 

a,=--- 
n(n - 1)an-2* (11) 

x2 d2Y dY 
d22 + xz + (x2 - m2)y = 0 (1) 

which are nonsingular at the origin. They are some- 
times also called CYLINDER FUNCTIONS ox: CYLINDRI- 
CAL HARMONICS. The above plot shows Jn(x) for n = 1, 

2, . . . , 5. 
Now let n E 22, where I = 1, 2, q l  . . 

1 
a2t = - 21(21 _ 1) U21-2 To solve the differential equation, apply FROBENIUS 

METHOD using a series solution of the form 
- ( 1) 

1 - 

- [22(21 1)][2(Z 1)(2z 3)]. [2 1 l] ao - - - l  - . ’ 00 

y = xk x u,xn = x u,xn+“* 
n=O n=O 

Plugging into (1) yields 

(2) 

x2 )(k + n)(k + n - l)anxk+n-2 

( 1) 
1 - - - 

211!(2Z - l)!!uo7 (12) 

which, using the identity 2’1!(2Z - l)!! = (22)!, gives 

(13) /  4 

7x10 

Similarly, letting n E 2Z + 1 
+X x(k + n)unxk+n-l + x2 x unxk+n 

n=O n=O 

00 
1 

@l+l = - (2Z+ q(q m-1 

-m2 )\ UnX n+k = 0 (3) 
/ 4 

n=O ( 1) 
1 

- - 
[21(2Z + l)][Z(E - 1)(22 - l)] ’ l  l  [2 ’ 1 . 3][1]u17 

(14) 

x(k + n)(k + n - l)anxk+n + x(/h + n)anxk-tn 

n=O n=O 

00 00 

which, using the identity 2’Z!(2Z + l)!! = (2Z+ l)!, gives 

( 1) 
I 

( 1) 
1 

a2i+l = - 

- 

211!(2Z + l)!!ul = (22 + l)! u1* (15) 
+>: 

an-22 
k+n - m2 &ax n+k = 0. (4) 

n=2 n=O 

Plugging back into (2) with k = m = -l/2 gives 
The INDICIAL EQUATION, obtained by setting n = 0, is 

00 

y = X-li2 
x 

UnXn 

n=O 

uo[k(k - 1) + k - m2] = ao(k2 - m2) = 0. (5) 

Since a0 is defined as the first, NONZERO term, k2 -mm2 = 

O,sok=&m. Now, if k=m, unXn + UnXn 

n=1,3,5 1"' n=0,2,4 1"' 

OQ 00 1 

C[( m -+ n)(m + n - 1) + (m -I- n) - m2]UnXmfn 

x 

21 
U21X 

+x 
U21+1X 

21+1 

l=O L=O i 

O” ( 1) 1 x OQ ( 1) 1 - 
a0 -x2’ + al x L 

21+1 

w !  
I=0 l=O 

(2z+ l)!x 1 +)‘ Un-2X m+n = 0 (6) 
/  4 

n-2 

20 cos x + u1 sin 2). (16) = x-w( 

In( m + n)’ - m2]unxm+n + 5+2xm+n = 0 (7) 

n=O n=2 The BESSEL FUNCTIONS of order H/2 are therefore de- 
fined as 

00 

‘T;7( n 2m + n)UnXmfn 
+>: an-25 

m+n =0 (8) 

n=O n=2 

00 

J-l/2(4 = 
2 - J- - cosx 

7TX 
(17) 

+2(x) = &sins, 
$ 

u1(2m+ l)+ y[a,n@m+n)+ Un-2]Xm+n = 0. (9) 1 / . 
n=2 

(18) 
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so the general solution for m = H/Z is 

Y = ad J-&x) + a’l Jlp(x) 

First Kind Bessel Function of the First Kind 

Returning to equation (5) and examining the case k: = 

-m, 
. (19 > 

Now, consider a general nz # -l/2. Equation (9) re- 
quires 

a1(2m+ 1) = 0 (20) 

[w+m + n) + u~-~]x~+~ = 0 (21) 

for n = 2, 3, . . . , so 

a1 =0 (22) 

1 
a, = - 

n(2m + n) an-2 (23) 

for n = 2, 3, . . . . Let n E 21 + 1, where 2 = 1, 2, , . . , 
then 

a21+1 = - 
(21-t 1),2(:IL + 1) + 1]a21-1 

- - 
- l  . . - f (n, m)al  = 0, 

(24) 

where f (n,m) is the function of I and nz obtained by 
iterating the recursion relationship down to al. Now let 
n G 22, where I = 1, 2, . . . , so 

1 1 
a21 = - 

21(2m + 21) 
a21-2 = - 41(m + l, a21-2 

( 1) 
1 

- - 
[4Z(m + Z)][4(Z - l)(m+ 1 - 1)] l  l  . [4. (m + I)] ao* 

(25) 

Plugging back into (9)) 

00 

n=O 

W 

x 

21+m+1 
= U21f12 

I=0 

w 

Ix 

r&=1,3,5,. 

w 

+- 
L 

I=0 

a21 x 
21fm 

00 

+ 
>: 

U,X 
n+m 

n=0,2,4,... 

00 

a0 
x 

(-1)’ 
= 

[4Z(m + 1)][4(1 - l)(m + 2 - I)]*.*[4 * (m + l)lX 
2I+m 

00 

c 

[(-l)'m(m - 1) * * *1]2""" 
1 a0 

[41(m + 1)][4(1 - l>(m + 2 - l)]~'-[m(m - l)'.'l] 
I=0 

O” (1) 1 m! O” (1) 
1 

x 

- 

Ix 

- m! 
= a0 

4lZ!(m + I)! = ao 221Z!(m + I)! ’ (26) 
I=0 l=O 

Now define 

where the factorials can be generalized to GAMMA 
FUNCTIONS for nonintegral m. The above equation then 
becomes 

al(l - 2m) + e[unn(n - 2m) + Un-2]Znwm = 0. (29) 

7x=2 

However, the sign of m is arbitrary, so the solutions must 
be the same for +m and -m. We are therefore free to 
replace -m with -ImI, so 

al(l + 2jmI) + x[U&(n + 2lml) + Gb-2]z’m’+n = 01 

n=2 

(30) 

and we obtain the same solutions as before, but with m 
replaced by Irnl . 

i 

C” (4 
I=0 22~+lmll!(jml+l)! 

x21+lml for 17721 # -$ 

JA4 = Ecosx for m = -3 

d- 5 sinx form= $. 

(31) 
We can relate Jm and J-m (when m is an INTEGER) by 
writing 

J--m(x)=? - ’ ( 1) 21-m 

1 o 221-mZ!(Z - m)!x ’ (32) 
= 

Now let I s I’ + m. Then 

00 
x ( 1) l’+m - 

J-&x> = 
221’+m(lt + m)!l! x 

zz'+m 

l’+m=O 
-1 

x 
( 1) 

I’+m - 
- X 21'+m - 

I’=-m 
22E’+mE~!(It + m)! 

00 

+IE 
( 1) 2’+?TL - 

I'=0 
22l'+yV(lf + m)! x 

21'+m 

' (33) 

But I’! = 00 for 2’ = -m,. . . , -1, SO the DENOMINA- 
TOR is infinite and the terms on the right are zero. We 
therefore have 

JBm(x) = y4 (-l)‘+” 
221+mZ!(I + m)!’ 

‘lfrn = (-l)“Jm(x). 
l=O 

Note that the BESSEL DIFFERENTIAL EQUATION is 
second-order, so there must be two linearly independent 
solutions. We have found both only for Irn/ = l/2. For 
a general nonintegral order, the independent solutions 
are Jm and J-m. When ~rz is an INTEGER, the general 
(real) solution is of the form 

zrn E CI Jm(x> + c2Ym(x), (35) 
y = ao2”m!J,(x) = a; Jm(x). (28) 



Bessel Function of the First Kind Bessel Function of the First Kind 121 

where Jm is a Bessel function of the first kind, Ym 
(a.k.a. N,) is the BESSEL FUNCTION OF THE SECOND 

KIND (a.k.a. NEUMANN FUNCTION or: WEBER FUNC- 
TION), and Cl and Cz are constants. Complex solutions 
are given by the HANKEL FUNCTIONS (a.k.a. BESSEL 

FUNCTIONS OF THE THIRD KIND). 

which can also be written 

ia cos 6 
e = JO(Z) + 2 x in J&z) cos(n0). (46) 

n=l 

The Bessel function addition theorem states 

The Bessel functions are ORTHOGONAL in [O, l] with re- 
spect to the weight factor 2. Except when 2n is a NEG- 

ATIVE INTEGER, 
Jn(y+z) = x Jr&) Jn-m(z)- (47) 

m=-m 

Jm(z) = 

p/2 

pw2pwqy773 + 1) Mo,m(2ir)j (36) 
ROOTS of the FUNCTION Jn(s) are given in the following 
table. 

zero Jo (4 Jl(X> J2 Cd J3 (4 J4W J5H 

1 2.4048 3.8317 5.1336 6.3802 7.5883 8.7715 
where r(z) is the GAMMA FUNCTION and Mo,m is a 
WHITTAKER FUNCTION. 

; / 11.7915 86537 5f201 1 101735 13.3237 710156 1 116198 14.7960 814172 / 16.2235 130152 9f610 Ill:o((l 17.6160 143725 112;386 18.9801 15 7002 

5 114.9309 ] 16.4706 ] 17.9598 119.4094 20.8269 22.2178 

In terms of a CONFLUENT HYPERGEOMETRIC FUNC- 
TION OF THE FIRST KIND, the Bessel function is written 

( > +z y 
J”(z) = IyY + 1) 

-&(v + 1; -$z”). (37) 
Let zn be the nth ROOT of the Bessel function JO(X), 
then 00 - 

Ix 
1 

xn JO(G) 
= 0.38479 l  . . 

(48) 

n=l 
A derivative identity for expressing higher order Bessel 
functions in terms of JO(X) is 

(Le Lionnais 1983) l  

(38) The ROOTS of its DERIVATIVES are given in the following 
table. 
zero 

I- 

1 
2 

Jo’(x) J/W J3W J/(x) 
1.8412 
5.3314 
8.5363 

11.7060 
14.8636 

where Tn(x) is a CHEBYSHEV POLYNOMIAL OF THE 
FIRST KIND. Asymptotic forms for the Bessel functions 

3.8317 
7.0156 

10.1735 
13.3237 
16.4706 

3.0542 4.2012 5.3175 6.4156 
6.7061 8.0152 9.2824 10.5199 
9.9695 11.3459 12.6819 13.9872 

13.1704 14.5858 15.9641 17.3128 
16.3475 17.7887 19.1960 20.5755 

are 

Jm(x)E ’ (,>m 
r(m+l) 2 

3 
4 
5 

(39) 

(40) 

(41) 

(42) 

(43) 

(44 

(45) 

for x << 1 and 
Various integrals can be expressed in terms of Bessel 
functions 

J&x)==: &OS x-y-;) 
d ( 1 

s 

27r 

Jo(z) = - 
27T 0 

ei” cos t$ dq5 

J,&) = ; Ix cos(zsin8 - no) de, 
0 

(49) 

(50) 

for x >> 1. A derivative identity is 

which is BESSEL'S FIRST INTEGRAL, 
An integral identity is 

J&z) = i-” 
s 

7r 

7T 0 
eizcosO cos(n0) d0 

Jn(x) = & J 
27r 

~izcos’~in’d~ 
0 

(51) 

(52) 
s 

U 

ut J&i) du’ = uJ1 (u). 
0 

Some sum identities are 

for n = 1, 2, l  l  . , 
1 = [Jo( + 2[J&)]” + 2[J2(~)]~ +. 4 

1 = Jo(x) + 2Jz(x) + 2J.42) + s l  . 

and the JACOBI-ANGER EXPANSION 

00 

Jn(z) = 3 (z,“T l)!! J 
42 

sir? u cos(x cos u) du (53) 
0 

for n = 1, 2, l  l  . , 

iz cos 0 
e z x inJn(Z)eine, 

n=-m 

J&) = & 
s 

e(z/2)(z-1/z)z-n-1 & (54) 
Y 
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for n > -l/2. Integrals involving J1 (5) include (I3owman 1958, p. 108), so 

r Jl(X) dx = 1 (55) 0 
s 

1 

xf(x)Jn(xw)dx = &&&,,Jn+~~(xa,) 
0 r=l 

= +A Jn+~~(w), (4 
(56) 

and the COEFFICIENTS are given by 

(57) 
Al = 

2 

J n+l s 

1 

%l> 0 
xf (x) Jn(xQI1) dx. (5) 

see also BESSEL FUNCTION OF THE SECOND KIND, DE- 
BYE'S ASYMPTOTIC REPRESENTATION, DIXON-FERRAR 
FORMULA, HANSEN-BESSEL FORMULA, KAPTEYN SE- 
RIES, KNESER-SOMMERFELD FORMULA, MEHLER’S 
BESSEL FUNCTION FORMULA, NICHOLSON'S FORMULA, 
POISSON’S BESSEL FUNCTION FORMULA, SCHL;~FLI'S 
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A Bessel function of the second kind Y,(x) is a solution 
to the BESSEL DIFFERENTIAL EQUATION which is sin- 
gular at the origin. Bessel functions of the second kind 
are also called NEUMANN FUNCTIONS or WEBER FUNC- 
TIONS. The above plot shows Yn(x) for n = 1, 2, . . . , 

Let U G J&x) be the first solution and u be the 
other one (since the BESSEL DIFFERENTIAL EQUATION 

is second-order, there are two LINEARLY INDEPENDENT 
solutions) l  Then 

Bessel Function Fourier Expansion 
Let n > l/2 and al, ~2, . . . be the P~SITNE ROOTS 
of Jn(xj = 0. An expansion of a function in the inter- 
val (OJ) in terms of BESSEL FUNCTIONS OF THE FIRST 
KIND 

xv” + 21’ + xw = 0. 

Take w  x (1) - u x (2), 

(2) 

f(x) = F &Jn(xm), (1) 
I=1 

x(uttv - uztll) + dv - ud = 0 (3) 

has COEFFICIENTS found as follows: d 
z 2 [ ( uh- ud)] = 0, (4 

s 

1 

xf (x)Jn(xcrr) dx = 
0 

of BESSEL FUNCTION 

Jn(xw)Jn( xal) dx. so x(u% - uvJ) = L3, where B is a constant. Divide by 

(2) 
ROOTS (5) But 

gives 
u 

=A+B -1 
s 

dx - 
21 XV2 (6) 

s 

1 

xJn(xal:) Jn(xw) dx = +&,,Jn+~~(w) (3) 
0 



Bessel Function of the Third Kind Bessel ‘s Inequality 

Rearranging and using 2t = Jm (5) gives 

123 

Bessel’s Inequality 
If f(x) is piecewise CONTINUOUS and has a general 
FOURIER SERIES 

x a&(x) (1) 
i 

u = AJm(x) + BJm(x) 
J 

& 
m X 

E A’Jm(x) + B’Ym(x), (7) 

where the Bessel function of the second kind is defined 

bY 

yrncx) _ Jm(x) cos(m4 - J-m(x) - 
sin( mn) 

L21n (3 
+ 27 - bmfk - bk 

I 

m- 

l ’ x-m+21c(m - k - I)! -- 
T x 2-m+2kk! (8) 

k=O 

m = 0, 1, 2, . . . , y is the EULER-MASCHERONI CON- 
STANT, and 

(9) 

with WEIGHTING FUNCTION W(X), it must be true that 

1 
2 

f(x) - x a&(x) w(x) dx 2 0 

i 
(2) 

J f”(x)w(x)dx - 2 x J ai f (x>$i(x)w(x) dx i 
+>: 2 ai 

s 
di2(x)w(x)dx 2 0. (3) 

i 

The function is given by 
so 

But the COEFFICIENT of the generalized FOURIER SE- 
RIES is given by 

m(z) = 1 r - d0 I 

7T J sin(zsin0 no> 

0 

1 
-- 

l 

O” 

7T 0 
[ent + e-“t(-l)“]e-“sinht dt. (lo) 

Asymptotic equations are 

Ym(X) = 

{ 

z [ln(+x) + y] m = 0, x 4X 1 
%4 2 m (11) -- 

R ( > X 
m # 0,x < 1 

Y,(X)=/$Sin(X-y-;) X2+1, (12) 

where r(z) is a GAMMA FUNCTION. 

see UZSOBESSEL FUNCTION OF THE FIRST KIND,BOUR- 
GET'S HYPOTHESIS, HANKEL FUNCTION 
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Bessel Function of the Third Kind 

am E J f (x)4m(x)w(x) dx, (4) 

J f2(x)w(x)dx - 271ai2 + xai” 2 0 (5) 
i i . 

J f 2(x)w(x) dx 2 >,‘ ai2. 

i 
(6) 

Equation (6) is an inequality if the functions & are not 
COMPLETE. If they are COMPLETE, then the inequality 
(2) becomes an equality, so (6) becomes an equality and 
is known as PARSEVAL'S THEOREM. If f (x) has a simple 
FOURIER SERIES expansion with COEFFICIENTS ao, al, 

--- 1 a, and bl, . . . , b,, then 

00 
1 7r 

(ak2 + bk2) 5 - 7T J (7) 
k=l -7r 

The inequality can also be derived from SCHWARZ'S IN- 

EQUALITY 

I (f Id I2 5 (f If) kds> (8) 

by expanding g in a superposition of EIGENFUNCTIONS 
of f, 9 =2: C; aifi* Then 

(9) 

see HANKEL FUNCTION 
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If g is normalized, then (gig) = 1 and 

(f If) > x wi*. (11) 
z 

see also SCHWARZ’S INEQUALITY, TRIANGLE INEQUAL- 

ITY 
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Bessel’s Interpolation Formula 

see BESSEL’S FINITE DIFFERENCE FORMULA 

Bessel Polynomial 

see BESSEL FUNCTION 

Bessel’s Second Integral 

see PoIssoN INTEGRAL 

Bessel’s Statistical Formula 

t= 
cl-w 23-W 

m= /W’ (l) 

where 

ti E 21 - ii?2 (2) 

w F P(1) - P(2) (3) 

N E Nl + N2 . (4) 

Beta 
A financial measure of a fund’s sensitivity to market 
movements which measures the relationship between a 
fund’s excess return over Treasury Bills and the excess 
return of a benchmark index (which, by definition, has 

P = 1). A fund with a beta of p has performed T = 
(p - 1) x 100% better (or (T( worse if r < 0) than its 
benchmark index (after deducting the T-bill rate) in up 
markets and (T( worse (or (T( better if T < 0) in down 
markets. 

see &O ALPHA, SHARPE RATIO 

Beta Distribution 

Beta Distribution 

A general type of statistical DISTRIBUTION which is re- 
lated to the GAMMA DISTRIBUTION. Beta distributions 
have two free parameters, which are labeled according 
to one of two notational conventions. The usual defmi- 
tion calls these QI and p, and the other uses p’ s p - 1 
and Q’ E a - 1 (Beyer 1987, p* 534). The above plots 
are for (Q) = (1,l) [solid], (1, 2) [dotted], and (2, 3) 
[dashed]. The probability function P(X) and DISTRIBU- 
TION FUNCTION D(X) are given by 

p(x) _ (1 - xyx--l - 
B(% P) 

- - ,ri”)$\ (1 - X)P-1Xa-1 
a (1) 

D(x) = qx; a, b), (2) 

where B(a,b) is the BETA FUNCTION, 1(x; a$) is the 
REGULARIZED BETA FUNCTION, and 0 < x < 1 where 
QI, p > 0. The distribution is normalized since 

s 1 

p(,) dx = r(a + ') 

s 

1 

rIa>w 0 

x”-‘(1 - x)- dx 
0 

rb + P> - - 
rww) 

B(aJ) = 1. (3) 

The CHARACTERISTIC FUNCTION is 

4(t) = lFl(a, a + b,it). 

The MOMENTS are given by 

(4 

s 

1 
MT = (x - /.L)~ dx = 

r(a + p)r(a + T) 
r(a + p + +(a) l  

(5) 

0  

The MEAN is --l(l _ “)@-lx dx 
- - % + @) B(a + 1, p) r(4w) 
- - 

r(+yP> r(a + P + 1) 
(6) 

and the VARIANCE, SKEWNESS, and KURTOSIS are 

g2 z 
@ 

(ct: + P)“b + P + 1) 

41 = 
qfi-fi)(Ja+Jp)Jl+~+P 

dQ(a+P+2) 

(7) 

(8) 

72 = 
6(cr2 + a3 - 4cup - 2a2p + p2 - 2arp2 + p”> 

@(LY+P+2)(QI+P+3) . 

(9) 

The MODE of a variate distributed as p(qfl) is 

g= 
a-l 

a+p-2’ (10) 
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In “normal” form, the distribution is written The beta function is then defined by 

f(x) = 
r(a + P> 
r(a)r(p)” 

a--1(1 - x)+1 (11) 

and the MEAN, VARIANCE, SKEWNESS, and KURTOSIS 
are 

/&=A 
a+P (12) 

o2 = QP 
(a + P>2(1 + QI + P> (13) 

y1 = 2(&-Jp)(&+dP>J1+a+P 
GP(a + P +- 2) (14) 

y2 = 
3(1+ a + @(2a2 - 24 + a2p + 2p2 + alP2) 

cup(a+P+q(Q+p+3) l  

(15) 

see also GAMMA DISTRIBUTION 
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Beta Function 
The beta function is the name used by Legendre and 
Whittaker and Watson (1990) for the EULERIAN INTE- 
GRAL OF THE SECOND KIND. To derive the integral 
representation of the beta function, write the product 
of two FACTORIALS as 

m!n! = e -“~m du e -vvn dv. (1) 

Now, let u E x2, v = y2, so 

m!n! = 4 

=4 

Transforming ~POLAR COORDINATES withx = TCOS~, 

Y = rsin8 

T/2 00 

m!n! = 4 
s s 

e -r2(wosi?)2m+1(~sin6)2n+1~drd9 
0 0 

= 4 
s 

42 
e-r2T2m+2n+3 & 

cos 
2m+l Q sin2n+l ,f) d$ 

0 s 0 42 
= 2(m + n + l)! cos 2m’1 8 sin2n+1 0 d0. (3) 

B(m+l,n+l)=B(n+l,m+l) 

s 

r/2 
,2 cos 2m+1 0 sinzn+’ 8 de = m!n! 

0 (m$n+l)!’ (4) 

Rewriting the arguments, 

r(PN4) (P - V(q - I>! 
B(pyq)= r(p = (p+q- l)! ’ (5) 

The general trigonometric form is 

s 42 
sir? 2 cosm xdx= $B(n-+- $n+ $)* (6) 

0 

Equation (6) can be transformed to an integral over 
POLYNOMIALS by letting u G cos2 0, 

m!n! 

s 

1 

B(m+l,n+l)s (m+n+q! = o urnP-u)“du 

(7) 
r(m>r(n> B(m,n)= rcm+nl = o IL -u 

s 

l m-l(l )n-ldu ig) . 

To put it in a form which can be used to derive the 
LEGENDRE DUPLICATI:ON FORMULA, let x E fi, SO 

U = x2 and du = 22 dx, and 

s 

1 

B(m,n) = X2( 
m-1) 

(1 
- x2)n-1 (2x dx) 

0 

J 

1 

= 2 x~~-'(I - x2)n-1 dxa 
(9) 

0 

To put it in a form which can be used to develop integral 
representations ofthe BESSEL FUNCTIONS and HYPER- 
GEOMETRIC FUNCTION, let u E x/(1+x), SO 

B(m+l,n+I)= (10) 

Various identities can be derived using the GAUSS MUL- 
TIPLICATION FORMULA 

%P, El> = 
r(nP)WW) 

W(P + dl 
= n-v B(p, q)B(p + +, q) l  9 l  B(P + e, a) 

B(q, q)B(Q, 4) l  l  l  B([n - 114, q> 
’  

(11) 

Additional identities include 

r(P)% + 1) 4 r(P + 1)W 
B(Pp Q + ‘1 = r(p + q + 1) = - 

P WP + 114) 
- %P + 1,4) - 

P 
(12) 

B(P7 4) = B(P + 174) + B(P, 4 + 1) (13) 
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B(P, Q + 1) = 

If n is a P~~ITWE INTEGER, then 

(14) 

1*2*+*n 
B(p++l) = p(p+l)...( P +n) (15) 

B(p + q)B(p + w) = B(w)% + ~3 P>* (17) 

A generalization of the beta function is the incomplete 
beta function 

s t qt; 2, y) = ux-‘(1 - u)‘--l du 
0 

[ 

1 =t” -+ 1-Y -t+...+ l  *. . 

2 x+1 

(1 - Y> l  l  l  (n - Y> p + 

n!(x + n> 1 
(18) 

see also CENTRAL BETA FUNCTION, DIRICHLET IN- 
TEGRALS, GAMMA FUNCTION, REGULARIZED BETA 
FUNCTION 
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Beta Function (Exponential) 

t 

Another “BETA FUNCTION" defined in terms of an in- 
tegral is the “exponential” beta function, given by 

tne-“t dt (1) 

The exponential beta function satisfies the RECUR- 

RENCE RELATION 

Z&&C) = (-l)nez - esr -I- n&1(~). (3) 

The first few integral values are 

PO(Z) = 

Pl(4 = 

D2(4 = 

2 sinh z 

% (4) 

2(sinh x - z cash z) 

iz2 (5) 

2( 2 + z2) sinh z - 42 cash z 

zz3 
. (6) 

see UZSO ALPHA FUNCTION 

Beta Prime Distribution 
A distribution with probability function 

P(x) = Iz: -v + x>-“-p 
B(%P) ’ 

where B is a BETA FUNCTION. The MODE of a variate 
distributed as B’(Q, p) is 

-1 
kb. 

If x is a P’(a,P) variate, then l/z is a p’(p, cw) variate. 
If x is a p(qp) variate, then (1 - x)/x and z/(1 - x) 

are P’(P, a> and P’(% P) variates. If x and y are y(crl) 
and ~(~12) variates, then x/y is a ,8’(al, cwz) variate. If 
x2/2 and y2/2 are $112) variates, then z2 G (x/y)” is 
a p’( l/2,1/2) variate. 

Bethe Lattice 

see CAYLEY TREE 

Betrothed Numbers 

see QUASIAMICABLE PAIR 

Betti Group 
The free part of the HOMOLOGY GROUP with a domain 
of COEFFICIENTS in the GROUP of INTEGERS (if this 
HOMOLOGY GROUP is finitely generated). 
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Betti Number 
Betti numbers are topological objects which were proved 
to be invariants by Poincare, and used by him to ex- 
tend the POLYHEDRAL FORMULA to higher dimensional 
spaces. The nth Betti number is the rank of the nth 
HOMOLOGY GROUP. Let p, be the RANK of the Ho- 
MOLOGY GROUP HT ofa TOPOLOGICAL SPACEK. For 
a closed, orientable surface of GENUS g, the Betti num- 
bers are po = 1, pl = 2g, and p2 = 1. For a nonori- 
entable surface with k CROSS-CAPS, the Betti numbers 

are PO = 1, pl = IC - 1, and p2 = 0. 

see U~SO EULER CHARACTERISTIC, POINCARI? DUALITY 

Bkier Curve 

PI 
a 

Given a set of n control points, the corresponding B&ier 
curve (or BERNSTEIN-B~ZIER CURVE) is given by 

C(t) = UP&,&), 
i=o 

where Bi,, (t) is a BERNSTEIN POLYNOMIAL and t E 

P 11 1 - 
A “rational” Bkzier curve is defined by 

C(t) c - yxo Bi,&)WiPi - 
c yxo &,&)Wi ’ 

where p is the order, Bi,, are the BERNSTEIN POLYNO- 
MIALS, Pi are control points, and the weight wi of Pi is 
the last ordinate of the homogeneous point Pp. These 
curves are closed under perspective transformations, and 
can represent CONIC SECTIONS exactly. 

The B&ier curve always passes through the first and 
last control points and lies within the CONVEX HULL of 
the control points. The curve is tangent to PI - PO and 
P,-P,- 1 at the endpoints. The “variation diminishing 
property” of these curves is that no line can have more 
intersections with a Bezier curve than with the curve 
obtained by joining consecutive points with straight line 
segments. A desirable property of these curves is that 
the curve can be translated and rotated by performing 
these operations on the control points. 

the fact that moving a single control point changes the 
global shape of the curve. The former is sometimes 
avoided by smoothly patching together low-order B6zier 
curves. A generalization of the Ezier curve is the B- 
SPLINE. 

see also B-SPLINE, NURBS CURVE 

Bkzier Spline 

see BI?ZIER CURVE, SPLINE 

Bezout Numbers 
Integers (X, p) for a and b such that 

Xa + pb = GCD(a, b). 

For INTEGERS al,..., a,, the Bezout numbers are a set 
of numbers kl, . . . , kn such that 

km + kza2 + . . . + &an = d, 

where d is the GREATEST COMMON DIVISOR of al,..., 

an. 

see also GREATEST COMMON DIVISOR 

Bezout’s Theorem 
In general, two algebraic curves of degrees no and 12 in- 
tersect in m.n points and cannot meet in more than m.n 
points unless they have a component in common (i.e., 
the equations defining them have a common factor). 
This can also be stated: if P and Q are two POLYNOMI- 
ALS with no roots in common, then there exist two other 
POLYNOMIALS A and B such that AP + BQ = 1. Simi- 
larly, given IV POLYNOMIAL equations of degrees n1, n2, 
. . . nN in N variables, there are in general nln2 . . . nN 
common solutions. 

see also POLYNOMIAL 

References 
Coolidge, J. L. A Treatise on Algebraic Plane Curves. New 

York: Dover, p. 10, 1959. 

Bhargava’s Theorem 
Let the nth composition of a function f(z) be denoted 
f(“‘(~), such that f’“)(~) = x and f(l)(z) = f(z). De- 
note f o g(x) = f(g(z)), and define 

~F(a,b,c)=F(a,b,c)+F(b,c,a)+F(c,a,b). (I) 

tet 

u G (a, b, c> 

ju\-a+b+c 

II II u =a4+b4+c4, 

(2) 

(3) 

(4) 

Undesirable properties of B6zier curves are their numer- 
ical inst abili ty for large numbers of control points, and 
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Bianchi Identities (Contracted) 
CONTRACTING X with v in the BIANCHI IDENTITIES 

f (4 ==I (f&)7 f&L f3W 
= (a(b - c), b(c - a), c(a - b)) 

g(u) = (9d”Lgdu>mw 

(5) 
(6) 

Rx~L/E;~ + J&v;n + &mTI;v = 0 (1) 

= ( xa2b,xab2,3ah). (7) 

Then if 1~1 = 0, 

IIf’” 0 9’“‘(u)II = 2(ab + bc + Cu)2m+13n 

- - Ilgo O f’“‘(4lL (8) 
or 

CR 
CL l&R);, = 0, q-2 (4) 

or 

CR 
LLV - ;gpvR);, = 0. (5) 

where m, n E (0, 1, . . .} and composition is done in 
terms of components. 

see also DIOPHANTINE EQUATION 
THE~RE M 

-QUARTIC, FORD'S 
Bias (Estimator) 
The bias of an ESTIMATOR # is defined as 

References 
Berndt, B. C+ Ramanujan’s Notebooks, Part IV. New York: 

Springer-Verlag, pp. 97400, 1994. 
Bhargava, S. “0 n a Family of Ramanujan’s Formulas for 

Sums of Fourth Powers.” Ganita 43, 63-67, 1992. 

B(B) E (6) - 8. 

It is therefore true that 

8 - 19 = (8 - (8)) + ((6) - 0) = (e - (8)) + B(6). Bhaskara-Brouckner Algorithm 

~~~SQUAREROOT 
An ESTIMATOR for which B = 0 is said to be UNBIASED. 

see also ESTIMATOR, UNBIASED 
Bi-Connected Component 
A maximal SUBGRAPH of an undirected graph such that 
any two edges in the SUBGRAPH lie on a common simple 
cycle. 

Bias (Series) 
The bias of a SERIES is defined as 

Q[G, ai+l, ai+2 = 1 
ai&+2 - GS12 . 

aiai+m+2 

see also STRONGLY CONNECTED COMPONENT 

Bianchi Identities 
The RIEMANN TENSOR~~ defined by A SERIES is GEO METRIC IFFQ = 0. A SERIES 

TIC IFF the bias is constant. 
ARTIS- 

C ross Ra- d2SPV d2SXK + d2gpn ~-~ 
dxQxX dxMxv > dxvdxX ’ 

Biased 
An ESTIMATOR which exhibits BIAS. 

Permuting V, K, and 7 (Weinberg 1972, pp* 146-147) 
gives the Bianchi identities 

Biaugmented Pentagonal Prism 

see JOHNSON SOLID 

see also BIANCHI IDENTITIES (CONTRA 
MAN N TENSOR 

CTED), RIE- 
Biaugment ed Triangular P 

~~~JOHNSON So LID 

‘rism 

References 
Weinberg, S. Gravitation and Cosmology: Principles and 

Applications of the General Theory of Relativity. New 
York: Wiley, 1972. 

Biaugmented Truncated Cube 

see JOHNSON SOLID 

BIBD 

see BLOCK DESIGN 
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Bicentric Polygon 

c 

A POLYGON which has both a CIRCUMCIRCLE and an 
INCIRCLE, both of which touch all VERTICES. All TRI- 
ANGLES are bicentric with 

R2 - s2 = 2Rr, (1) 

where R is the CIRCUMRADIUS, T is the INRADIUS, and s 
is the separation of centers. In 1798, N. Fuss character- 
ized bicentric POLYGONS of 12 = 4, 5, 6, 7, and 8 sides. 
For bicentric QUADRILATERALS (FUSS'S PROBLEM), the 
CIRCLES satisfy 

2r2(R2 - s”) = (R2 - s”)” - 4r2s2 

(Dijrrie 1965) and 

T== 
&ii2 

S 

R= 

(Beyer 1987). 

1 (ac + bd)(ad + bc)(ab + cd) 

4 J abed S 

In addition, 

1 1 1 

-+(R=s)2 (R - s)~ 

and 
a+c=b+d. 

The AREA of a bicentric quadrilateral is 

A = dabcd. 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

If the circles permit successive tangents around the IN- 
CIRCLE which close the POLYGON for one starting point 
on the CIRCUMCIRCLE, then they do so for all points on 
the CIRCUMCIRCLE. 

see also PONCELET'S CLOSURE THEOREM 

Bicentric Quadrilateral 
A 4-sided BICENTRIC POLYGON, also called a CYCLIC- 
INSCRIPTABLE QUADRILATERAL. 

References 
Beyer, W. H. (Ed.) CRC Standard Mathematical Tables, 

28th ed. Boca Raton, FL: CRC Press, p. 124, 1987. 

Bichromatic Graph 
A GRAPH with EDGES of two possible “colors,” usually 
identified as red and blue. For a bichromatic graph with 
R red EDGES and B blue EDGES, 

R+B>2. - 

see UZSO BLUE-EMPTY GRAPH, EXTREMAL COLORING, 
EXTREMAL GRAPH, MONOCHROMATIC FORCED TRI- 
ANGLE, RAMSEY NUMBER 

Bicollared 
A SUBSET X c Y is said to be bicollared in Y if there 
exists an embedding b : X x [-I,11 -+ Y such that 
b(x, 0) = x when x E X. The MAP b or its image is then 
said to be the bicollar. 

References 
Rolfsen, D. Knots and Links. Wilmington, DE: Publish or 

Perish Press, pp. 34-35, 1976. 

Bicorn 

The bicorn is the name of a collection of QUARTIC 
CURVES studied by Sylvester in 1864 and Cayley in 1867 
(MacTutor Archive). The bicorn is given by the para- 
metric equations 

x = asini5 

Y= 
a cos2 t(2 + cost) 

3 sin2 t * 

The graph is similar to that of the COCKED HAT CURVE. 

References 
Lawrence, J+ D. A Catalog of Special Plane Curves. New 

York: Dover, pp. 147-149, 1972. 
Macmtor History of Mathematics Archive. “Bicorn.” http : 

//www-groups. dcs . st -and. ac . uk/ -history/Curves / 
Bicorn. html. 

References 
Beyer, W. H. (Ed.) CRC Standard Mathematical Tables, 

28th ed. Boca Raton, FL: CRC Press, p. 124, 1987. 
DSrrie, H. “Fuss’ Problem of the Chord-Tangent Quadrilat- 

eral.” $39 in 100 Great Problems of Elementary Mathe- 
matics: Their History and Solutions. New York: Dover, 
pp. 188-193, 1965. 
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Bicubic Spline Bidiakis Cube 

A bicubic spline is a special case of bicubic interpolation 
which uses an interpolation function of the form 

4 4 

Y(Xl, 22) = >: >) Cij tiBIUjB1 

ix1 j=l 

?Jsz (XI, X2) = ): x(j - l)Cijti.-lzLjm2 

i=l j=l 

4 4 

YXlX2 C x >(i - l)(j - l)CijtiB2T&jB2, 

i=l j=l 

where cij are constants and u and t are parameters rang- 
ing from 0 to 1. For a bicubic spline, however, the partial 
derivatives at the grid points are determined globally by 
1-D SPLINES. 

see also B-SPLINE, SPLINE 

References 
Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetter- 

ling, W. T. Numerical Recipes in FORTRAN: The Art of 
Scientific Computing, 2nd ed. Cambridge, England: Cam- 
bridge University Press, pp. 118-122, 1992. 

Bicupola 
Two adjoined CUPOLAS. 

see also CUPOLA, ELONGATED GYROBICUPOLA,ELON- 
GATED ORTHOBI~UPOLA, GYR~BI~UP~LA, URTH~BI- 
CUPOLA 

Bicuspid Curve 

The PLANE CURVE given by the Cartesian equation 

( X2 - a")(X - a>" + (y" - a')' = 0. 

Bicylinder 

see STEINMETZ SOLID 

The IS-VERTEX graph consisting of a CUBE in which two 
opposite faces (say, top and bottom) have edges drawn 
across them which connect the centers of opposite sides 
of the faces in such a way that the orientation of the 
edges added on top and bottom are PERPENDICULAR to 
each other. 

see also BISLIT CUBE, CUBE, CUBICAL GRAPH 

Bieberbach Conjecture 
The nth COEFFICIENT in the P~~~~series ofa UNIVA- 
LENT FUNCTION should be no greater than n. In other 
words, if 

f(z) = a0 + a1z + a2z2 + l  l  . + a ,zn + . . . 

is a conformal transformation of a unit disk on any do- 
main, thenla,l 2 nlall. In more technical terms, “ge- 
ometric extremality implies metric extremality.” The 
conjecture had been proven for the first six terms (the 
cases n = 2, 3, and 4 were done by Bieberbach, Lowner, 
and Shiffer and Garbedjian, respectively), was known 
to be false for only a finite number of indices (Hayman 
1954), and true for a convex or symmetric domain (Le 
Lionnais 1983). The general case was proved by Louis 
de Branges (1985). De Branges proved the MILIN CON- 
JECTURE, which established the ROBERTSON CONJEC- 
TURE, which in turn established the Bieberbach conjec- 
ture (Stewart 1996). 
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Hayman, W. K, Multivalent Functions, 2nd ed. Cambridge, 
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Conjecture.” Amer. Math. Monthly 95, 689-696, 1988. 
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Proof.” Amer. Math. Monthly 93, 505-513, 1986. 

Le Lionnais, F. Les nombres remarquables. Paris: Hermann, 
p. 53, 1983. 

Pederson, R. N. “A Proof of the Bieberbach Conjecture for 
the Sixth Coefficient .” Arch. Rational Mech. Anal. 31, 
331-351, 1968/1969. 

Pederson, R. and Schiffer, M. “A Proof of the Bieberbach 
Conjecture for the Fifth Coefficient.” Arch. Rational 
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Infinity: A Guide to Today’s Mathematics. Oxford, Eng- 
land: Oxford University Press, ppm 164-166, 1996. 
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Bienaymkchebyshev Inequality 

see CHE~Y~HEV INEQUALITY 

Bifoliate 

‘% 
The PLANE CURVE given by the Cartesian equation 

x4 + y4 = 2azy2. 

References 
Cundy, H. and Rollett, A. Mathematical Models, 3rd ed. 

Stradbroke, England: Tarquin Pub., p. 72, 1989. 

Bifolium 

A F~LIUM with b = 0. The bifolium is the PEDAL 
CURVE of the DELTOID, where the PEDAL POINT is the 
MIDPOINT of one of the three curved sides. The Carte- 
sian equation is 

(x2 + y2)2 = 4azy2 

and the POLAR equation is 

T = 4a sin2 8 cos 9. 

see also FOLIUM, QUADRIFOLIUM, TRIFOLIUM 

References 
Lawrence, J. D. A Catalog of Special Plane Curves. New 

York: Dover, pp. 152-153, 1972. 
MacTutor History of Mathematics Archive. “Double 

Folium .” http://www-groups.dcs.st-and.ac.uk/ 
-history/Curves/Double.htmf. 

Bifurcation 
A period doubling, quadrupling, etc., that accompanies 
the onset of CHAOS. It represents the sudden appear- 
ance of a qualitatively different solution for a nonlin- 
ear system as some parameter is varied. Bifurcations 
come in four basic varieties: FLIP BIFURCATION, FOLD 
BIFURCATION,PITCHFORK BIFURCATION, and TRANS- 
CRITICAL BIFURCATION (Rasband 1990). 

see also GODIMENSION, FEIGENBAUM CONSTANT, 
FEIGENBAUM FUNCTION, FLIP BIFURCATION, HOPF 

BIFURCATION, LOGISTIC MAP, PERIOD DOUBLING, 
PITCHFORK BIFURCATION, TANGENT BIFURCATION, 
TRANSCRITICAL BIFURCATION 

References 
Guckenheimer, J. and Holmes, P. ‘&Local Bifurcations.” Ch. 3 

in Nonlinear Oscillations, Dynamical Systems, and Bifur- 
cations of Vector Fields, 2nd pr., rev. COW New York: 
Springer-Verlag, pp. 117-165, 1983. 
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nomena and Transition to Chaos in Dissipative Systems.” 
Ch. 7 in Regular and Chaotic Dynamics, 2nd ed. New 
York: Springer-Verlag, pp. 457-569, 1992. 

Rasband, S. N. “Asymptotic Sets and Bifurcations.” $2.4 
in Chaotic Dynamics of Nonlinear Systems. New York: 
Wiley, pp. 25-31, 1990. 

Wiggins, S, “Local Bifurcations.” Ch. 3 in Introduction to 
Applied Nonlinear Dynamical Systems and Chaos. New 
York: Springer-Verlag, pp. 253-419, 1990. 

Bifurcation Theory 
The study of the nature and properties of BIFURCA- 
TIONS. 

see also CHAOS, DYNAMICAL SYSTEM 

Bigraph 

see BIPARTITE GRAPH 

Bigyrate Diminished 

Rhombicosidodecahedron 

see JOHNSON SOLID 

Biharmonic Equation 
The differential equation obtained by applying the BI- 
HARMONIC OPERATOR and setting to zero. 

o”tp = 0. (1) 

In CARTESIAN COORDINATES, the biharmonic equation 
is 

v4qb = V2(V2)& 
- - 

( 
d2 d2 a2 a2 a2 a2 
=+ay2+s >( =+dy2+s 4 > 

a44 - - 
a24+ 

a44 + d4@ + 2 a44 
dy4 dz4 dx2dy2 

+2&+2$&o. (2) 

In POLAR COORDINATES (Kaplan 1984,p.148) 

2 -- 
*3 4r80 - r2 rr 14 + +h9 + gpr = 0. (3) 
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For a radial function $(T), the biharmonic equation be- 
comes 

(4) 

Writing the inhomogeneous equation as 

V4@ = 64@, 

we have 

64@ dr = d 

(Isp,” + Clrlnr + Czr) dr 

Now use 

s 
rlnrdr = ir21nr - $+2 

to obtain 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

c3 4pr3+Cirlnr+CJr+- 
> 

dr = dqb 
r (13) 

4(r) = pr4 + Ci ($T” lnr - $“) 

++Cir2+C31nr+C4 

=@~+~+a~~+b+(~r~+d)ln k . (14) 
( > 

The homogeneous biharmonic equation can be separated 
and solvedin 2-D BIPOLAR COORDINATES. 

References 
Kaplh, W, Advanced Calculus, 4th ed. Reading, MA: 
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Biharmonic Operator 
Also known as the BILAPLACIAN. 

v4 E (v2)2. 

In n-D space, 

3(15 - 8n + n2) 

r5 ’ 

Bijection 
A transformation which is ONE-TO-ONE and ONTO. 

see ~SO ONE-TO-ONE, ONTO, PERMUTATION 

Bilaplacian 

see BIHARMONIC OPERATOR 

Bilinear 
A function of two variables is bilinear if it is linear with 
respect to each of its variables. The simplest example is 

f (x, Y> = XY- 

Bilinear Basis 
A bilinear basis is a BASIS, which satisfies the conditions 

(ax + by) ’ 2 = a(x ’ z) + b(y - z) 

2 ’  (ax + by) = a(2 l  x) + b(z ’  y). 

see also BASIS 

Billiard Table Problem 
Given a billiard table with only corner pockets and sides 
of INTEGER lengths m and n, a ball sent at a 45” angle 
from a corner will be pocketed in a corner after m+ n - 2 
bounces, 

see also ALHAZEN'S BILLIARD PROBLEM, BILLIARDS 

Billiards 
The game of billiards is played on a RECTANGULAR table 
(known as a billiard table) upon which balls are placed. 
One ball (the “cue ball”) is then struck with the end 
of a “cue” stick, causing it to bounce into other balls 
and REFLECT off the sides of the table. Real billiards 
can involve spinning the ball so that it does not travel 
in a straight LINE, but the mathematical study of bil- 
liards generally consists of REFLECTIONS in which the 
reflection and incidence angles are the same. However, 
strange table shapes such as CIRCLES and ELLIPSES are 
often considered. Many interesting problems can arise. 

For example, ALHAZEN'S BILLIARD PROBLEM seeks to 
find the point at the edge of a circular “billiards” table 
at which a cue ball at a given point must be aimed in 
order to carom once off the edge of the table and strike 
another ball at a second given point. It was not until 
1997 that Neumann proved that the problem is insoluble 
using a COMPASS and RULER construction. 

On an ELLIPTICAL billiard table, the ENVELOPE of a 
trajectory is a smaller ELLIPSE, a HYPERBOLA, a LINE 
through the FOCI of the ELLIPSE, or periodic curve (e.g., 
DIAMOND-shape) (Wagon 1991). 

see UZSOALHAZEN'S BILLIARD PROBLEM,BILLIARD TA- 
BLE PROBLEM,REFLECTION PROPERTY 

see also BIHARMONIC EQUATION 
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Billion 
The word billion denotes different numbers in American 
and British usage. In the American system, one billion 
equals 10’. In the British, French, and German systems, 
one billion equals 1012. 

see also LARGE NUMBER, MILLIARD, MILLION, TRIL- 

Bilunabirotunda 

see JOHNSON SOLID 

Bimagic Square 

If replacing each number by its square in a MAGIC 
SQUARE produces another MAGIC SQUARE, the square 
is said to be a bimagic square. The first bimagic square 
(shown above) has order 8 with magic constant 260 for 
addition and 11,180 after squaring. &magic squares 
are also called DOUBLY MAGIC SQUARES, and are Z- 
MULTIMAGIC SQUARES. 

see also MAGIC 
TRIMAGIC SQUARE 

SQUARE, MULTIMAGIC SQUARE, 
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tical 
942. 

A LI NE SEGMENT joining 
sides of a QUADRIL ATERAL 

A’ 
1 B 

MAB 

the MIDPOINTS of opposite 

see also MEDIAN (TRIANGLE), VARIGNON'S THEOREM 

Bimodal Distribution 
A DISTRIBUTION having two separated peaks. 

see also UNIMODAL DISTRIBUTION 

Bimonster 
The wreathed product of the MONSTER GROUP by 22. 
The bimonster is a quotient of the COXETER GROUP 
with the following COXETER-DYNKIN DIAGRAM. 

This had been conjectured by Conway, but was proven 
around 1990 by Ivanov and Norton. If the parameters 
p, ~,r in Coxeter's NOTATION [3PPpYr] are written side 
by side, the bimonster can be denoted by the BEAST 
NUMBER 666. 

Bin 
An interval into which a given data point does or does 
not fall. 

see also HISTOGRAM 

Binary 
The BASE 2 method of counting in which only the digits 
0 and 1 are used. In this BASE, the number 1011 equals 
1~2°+142+O*22+1~23 = 11. This BASE is used in com- 
puters, since all numbers can be simply represented as 
a string of electrically pulsed ons and offs. A NEGATIVE 
-n is most commonly represented as the complement of 
the POSITIVE number n - 1, so -11 = 00001011~ would 
be written as the complement of 10 = 00001010~, or 
11110101. This allows addition to be carried out with 
the usual carrying and the left-most digit discarded, so 
17 - 11 = 6 gives 

00010001 17 

11110101 -11 

00000110 6 
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The number of times k a given binary number 
b, . - - b&l bo is divisible by 2 is given by the position 
of the first bk = I counting from the right. For exam- 
ple, 12 = 1100 is divisible by 2 twice, and 13 = 1101 is 
divisible by 2 0 times. 

Unfortunately, the storage of binary numbers in com- 
puters is not entirely standardized. Because computers 
store information in g-bit bytes (where a bit is a sin- 
gle binary digit), depending on the “word size” of the 
machine, numbers requiring more than 8 bits must be 
stored in multiple bytes. The usual FORTRAN77 integer 
size is 4 bytes long. However, a number represented as 
(byte1 byte2 byte3 byte4) in a VAX would be read and 
interpreted as (byte4 byte3 byte2 bytel) on a Sun. The 
situation is even worse for floating point (real) num- 
bers, which are represented in binary as a MANTISSA 
and CHARACTERISTIC, and worse still for long (g-byte) 
reals! 

Binary multiplication of single bit numbers (0 or 1) is 
equivalent to the AND operation, as can be seen in the 
following MULTIPLICATION TABLE. 

x 0 1 3I 0 0 0 
1 0 1 

see also BASE (NUMBER), DECIMAL, HEXADECIMAL, 
OCTAL, QUATERNARY, TERNARY 
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Binary Bracketing 
A binary bracketing is a BRACKETING built up entirely 
of binary operations. The number of binary bracketings 
of n letters (CATALAN’S PROBLEM) are given by the 
CATALAN NUMBERS &+where 

c, G 1 2n = 
0 

1 (2n)! (2 > n! --= 
n+l n n+l n!2 (n + l)!n! ’ 

where ( > 2n denotes a BINOMIAL COEFFICIENT and n! 
is the us:al FACTORIAL, as first shown by Catalan in 
1838. For example, for the four letters a, 6, c, and d 
there are five possibilities: ((ab)c)d, (a(bc))d, (ab)(cd), 

a((bc)d), and a(W)), written in shorthand as ((zz)z)z, 

(x(xx>>x, (xX)(xX), x((xx>x>, and x(x(x4). 

see also B 
PROBLEM 

Binary The 

RACKETING, CATALAN NUMBER, CATALAN'S 
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Binary Operator 
An OPERATOR which takes two mathematical objects 
as input and returns a value is called a binary operator. 
Binary operators are called compositions by Rosenfeld 
(1968). Sets possessing a binary multiplication opera- 
tion include the GROUP, GROUPOID, MONOID, QUASI- 
GROUP, and SEMIGROUP. Sets possessing both a bi- 
nary multiplication and a binary addition operation in- 
clude the DIVISION ALGEBRA, FIELD, RING, RINGOID, 

SEMIRING, and UNIT RING. 

see also AND, BOOLEAN ALGEBRA, CLOSURE, DIVI- 
SION ALGEBRA, FIELD, GROUP, GROUPOID, MONOID, 
OPERATOR, OR, MONOID, NOT, QUASIGROUP, RING, 
RINGOID, SEMIGROUP, SEMIRING, XOR, UNIT RING 

References 
Rosenfeld, A. An Introduction to Algebraic Structures. New 
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Binary Quadratic Form 
A 2-variable QUADRATIC FORM of the form 

Q(x, Y> = u11x2 +2a12xy+a22y2. 

see also QUADRATIC FORM, QUADRATIC INVARIANT 

Binary Remainder Method 
An ALGORITHM for computing a UNIT FRACTION 
(Stewart 1992). 

References 
Stewart, I. “The Riddle of the Vanishing Camel.” Sci. Amer. 

266, 122-124, June 1992. 

Binary Tree 
A TREE with two BRANCHES at each FORK and with 
one or two LEAVES at the end of each BRANCH. (This 
definition corresponds to what is sometimes known as 
an “extended” binary tree.) The height of a binary tree 
is the number of levels within the TREE. For a binary 
tree of height H with n nodes, 

H<n<2H-L - - 
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These extremes correspond to a balanced tree (each 
node except the LEAVES has a left and right CHILD, 
and all LEAVES are at the same level) and a degenerate 
tree (each node has only one outgoing BRANCH), respec- 
tively. For a search of data organized into a binary tree, 
the number of search steps S(n) needed to find an item 
is bounded by 

lgn < S(n) < n. - - 

Partial balancing of an arbitrary tree into a so-called 
AVL binary search tree can improve search speed. 

Binet’s Formula 
A special case of the Un BINET FORM with m = 0, 

corresponding to the nth FIBONACCI NUMBER, 

F, = 
(1+ Js)” - (l- Jsr 

2nJs ’ 

It was derived by Binet in 1843, although the result 
was known to Euler and Daniel Bernoulli more than a 
century earlier. 

see ah BINET FORMS, FIBONACCI NUMBER 

The number of binary trees with n internal nodes is 
the CATALAN NUMBER Cn (Sloane’s A000108), and the 
number of binary trees of height b is given by Sloane’s 
A001699. 

Bing’s Theorem 

see also B-TREE, QUADTREE, QUATERNARY TREE, 
RED-BLACK TREE, STERN-BROCOT TREE, WEAKLY 
BINARY TREE 

If M3 is a closed oriented connected S-MANIFOLD such 
that every simple closed curve in M lies interior to a 
BALL in M, then M is HOMEOMORPHXC with the HY- 
PERSPHERE, s3. 

see also BALL, HYPERSPHERE 
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Binomial 
A POLYNOMIAL with 2 terms. 

see also MONOMIAL, POLYNOMIAL, TRINOMIAL 

Binomial Coefficient 

Binet Forms 
The two RECURRENCE SEQUENCES 

The number of ways of picking n unordered outcomes 
from N possibilities. Also known as a COMBINATION. 

The binomial coefficients form the rows of PASCAL’S 
TRIANGLE. The symbols NC~ and 

un = m&-I + Un-2 (1) 

Vn = ml&-l+ Vn-z (2) 

with Uo = 0, VI = 1 and VO = 2, V-1 = m, can be solved 

N 0 N! - 
n = (N - n)!n! (1) 

are used, where the latter is sometimes known as N 
CHOOSE n. The number of LATTICE PATHS f&m the 
ORIGIN (0,O) to a point (a, b) is the BINOMIAL COEFFI- 
CIENT (“T”) (Hilton and Pedersen 1991). 

for the individual Un and I&. They are given by 

un = Qln P 
n 

A 
Vn = Qln + p”j 

where 

m+A 
a-- 

2 (6) 

P 
m-A - -- - 

2 . (7) 

A useful related identity is 

U,-l+Un+l = I&. (8) 

BINET’S FORMULA is a special case of the Binet form 
for & corresponding to m = 1. 

see also FIBONACCI Q-MATRIX 

For POSITIVE integer n, the BINOMIAL THEOREM gives 

(z + gn = e ($xka--*. 
k=O 

(2) 
The FINITE DIFFERENCE analog of this identity is 
known as the CHU-VANDERMONDE IDENTITY. A sim- 
ilar formula holds for NEGATIVE INTEGRAL n, 

(x + a)+ = (3) 

A general identity is given by 

(a+!+” n n - - - 
a c(> 

j (a - jcy-‘(b + jc)n-j (4) 

j=O 
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(Prudnikov et al. 1986), which gives the BINOMIAL THE- 
OREM as a special case with c = 0. 

The binomial coefficients satisfy the identities: 

(a) = (z) =l 
(;> = (rink) =&)k(k;l) 

(“:‘>=(;>+(k:l)* 
Sums of powers include 

= p 

~(-I)$) = Q 
k=O 

n 

n k 

c(> 
kr 

= (l+ r)” 

k=O 

(the BINOMIAL THEOREM), and 

zF&(s + I), +(s + 2);s + 1,4x) 

(5) 

(6) 

(7) 

2” - - 
(di=G + l)“dzz’ (11) 

where 2Fl (a, b; c; Z) is a HYPERGEOMETRIC FUNCTION 
(Abramowitz and Stegun 1972, p. 555; Graham et al. 
1994, p. 203). For NONNEGATIVE INTEGERS n and T 
with T < n + 1, 

$G(;) [@j(;)w)n-k 

n--T 

+>)(-l)j (n + 1 - r - j>“-” = n!. (12) 
j=O 0 

T 

I 

Taking n = 2r - 1 gives 

(13) gg(;)Z (:>,r - j,n-k = $!. 

- 

Another identity is 

2 (“k’ “> [xn+‘(l - x>” + (1 - Z)n+lxk 
k=O 

(Reeler et al. 1972, Item 42). 

] = 1 (14 1 

Binomial Coefficient 

RECURRENCE RELATIONS of the sums 

n /\w 
s, = (15) 

are given by 

2sl(n)- al(n+ l)= 0 (16) 

-2(2n + l)s2(n) + (n + @2(n) = 0 (17) 

-S(n + l)‘sa(n) + (-16 - 2fn - 7n2)ss(n + 1) 

+(n + 2)2s&2 + 2) = 0 (18) 

-+ + 1)(4n + 3)(4n + 5)s4(n> 

-2(2n + 3)(3n2 + 9n -I- 7)sd(n + 1) 

f(n+ 2)3s4(n+ 2) = 0. (19) 

This sequence for s3 cannot be expressed as a fixed 
number of hypergeometric terms (PetkovSrek et al. 1996, 
p* 160). 

A fascinating series of identities involving binomial co- 
efficients times small powers are 

x 
1 

- = 
(2n\ 

$ (2nfi + 9) = 0.7363998587.. . (20) 
n=l \nl 

>: 
1 

- = ;&=0.6045997881... 2n n 
n=l ( > 

(21) 

n 

00 
1 1 

--- WI -12 sn - (22) 

n= 1 

00 
1 17 -=- 

n4 (2nl 36 c'(4) (23) 

nzf ‘” \n/ 

(Comtet 1974, p. 89) and 

O” ( 
n- 1 

>: 
1) 

--- - 2n - 5 2 

n3 ( > 

C(3) 1 

n=l n 

(24) 

where C(Z) is the RIEMANN ZETA FUNCTION (Le Lion- 
nais 1983, pp. 29, 30, 41, 36, and 35; Guy 1994, pm 257). 

As shown by Kummer in 1852, the exact POWER of p 
dividing (uT’) is equal to 

Eo+El+*..+Q, (25) 

where this is the number of carries in performing the 
addition of a and b written in base b (Graham et al. 
1989, Exercise 5.36; Ribenboim 1989; Vardi 1991, p. 68). 
Kummer’s result can also be stated in the form that the 
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exponent of a PRIME p dividing (L) is given by the 
number of integers j > 0 for which 

frac(m/pj) > frac(nlpj), (26) 

where frac(z) denotes the FRACTIONAL PART of 2. This 
inequality may be reduced to the study of the exponen- 
tial sums '& A(n)e(x/n), where A(n) is the MANGOLDT 
FUNCTION. Estimates of these sums are given by Jutila 
(1974, 1975), but recent improvements have been made 
by Granville and Ramare (1996). 

R. W. Gosper showed that 

f( > n= (-1)(“-u/2 (mod n) (27) 

for all PRIMES, and conjectured that it holds only for 
PRIMES. This was disproved when Skiena (1990) found 
it also holds for the COMPOSITE NUMBER n = 3 x 11 x 
179. Vardi (1991, p. 63) subsequently showed that n = 
p2 is a solution whenever p is a WIEFERICH PRIME and 
that if n = pk with IG > 3 is a solution, then so is n = 

P Ic? This allowed him to show that the only solutions 
for COMPOSITE n < 1.3x lo7 are 5907, 10932, and 35112, 
where 1093 and 3511 are WIEFERICH PRIMES. 

Consider the binomial coefficients 2n-1 , the first few ( ) 
of which are 1, 3, 10, 35, 126, . . . (STbane’s AOOl7OO). 
The GENERATING FUNCTION is 

; [--&-I] =~+32~+102~+352~+.~.. (28) 

These numbers are SQUAREFREE only for n = 2, 3, 4, 
6, 9, 10, 12, 36, l  . l  (Sloane’s A046097), with no others 
less than n = 10,000. Erdkk showed that the binomial 
coefficient (E) is never a POWER of an INTEGER for n > 
3 where k # 0, 1, n- 1, and n (Le Lionnais 1983, p. 48). 

The binomial coefficients ( Lnnj21) are called CENTRAL 
BINOMIAL COEFFICIENTS, where 1x1 is the FLOOR 
FUNCTION, although the subset of coefficients (:) is 
sometimes also given this name. Erdes and Graham 
(1980, p. 71) conjectured that the CENTRAL BINOMIAL 
COEFFICIENT (v) is never SQUAREFREE for n > 4, and 

this is sometimes known as the ERD~S SQUAREFREE 
CONJECTURE. %RK&Y’S THEOREM (Sgrkijzy 1985) 
provides a partial solution which states that the BINO- 
MIAL COEFFICIENT (r) is never SQUAREFREE for all 
sufficiently large n > no (Vardi 1991). Granville and 
Ramare (1996) p roved that the only SQUAREFREE val- 
ues are n = 2 and 4. Sander (1992) subsequently showed 
that (““n’“) are also never SQUAREFREE for sufficiently 
large n as long as d is not “too big.” 

For p, Q, and T distinct PRIMES, then the above function 
satisfies 

f (Pdf (P)f W(r) = f (Pdf(P~)Pb) (mod PV) 
(29) 

(Vardi 1991, p* 66). 

The binomial coefficient (r) mod 2 can be computed 
using the XOR operation n XOR nz, making PASCAL’S 
TRIANGLE mod 2 very easy to construct. 

The binomial coefficient “function” can be defined as 

C(x, y) = x! 
y!(z - y)! 

(Fowler 1996)) h s own above. It has a very complicated 
GRAPH for NEGATIVE x and y which is difficult to render 
using standard plotting programs. 

see also BALLOT PROBLEM, BINOMIAL DISTRIBU- 
TION, BINOMIAL THEOREM, CENTRAL BINOMIAL Co- 
EFFICIENT, CHU-VANDERMONDE IDENTITY, COMBI- 
NATION, DEFICIENCY, ERD~S SQUAREFREE CONJEC- 
TURE, GAUSSIAN COEFFICIENT, GAUSSIAN POLYNOM- 
IAL, KINGS PROBLEM, MULTINOMIAL COEFFICIENT, 
PERMUTATION, ROMAN COEFFICIENT, S~RK&Y’S 
THEOREM, STREHLIDENTITY,WOLSTENHOLME'S THE- 
OREM 
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Binomial Distribution 

Amer. 

The probability of n successes in IV BERNOULLI TRIALS 

P(nJN) = N 
0 

N! 

n 
p”(’ -p)N-n = nl(N - . n),pnqN-n- . 

(1) 
The probability of obtaining more successes than the n 
observed is 

P= = I&+ 1, N - N), (2) 

where 
I&, b) - wx; a) v, 

B(a, b) 
(3) 

B(a,b) is the BETA FUNCTION, and B(x;a,b) is the 
incomplete BETA FUNCTION. The CHARACTERISTIC 
FUNCTION is 

4(t) = (q + pe”t)n. (4 

The MOMENT-GENERATING FUNCTION M for the dis- 
tribution is 

M(t) = (P) = k etn (;)pnqN-n 
n=O 

N 
N - - 

c( > 

n (pe”>“(l -PIN-” 

n=O 

= [pet + (1 -p)lN (5) 
M’(t) = N[pet + (1 -p>lNsl(pet) (6) 

M”(t) = N(N - l)[pet + (1 -p)]N-2(pet)2 

+ N[pet + (1 - p)]ND1(pet). (7) 

The MEAN is 

p = M’(O) = N(p + 1 - p)p = Np. (8) 

The MOMENTS about 0 are 

/.L; = p = Np 00 

PL = NP(l - P + NP) (10) 

PL = Np( 1 - 3p + 3Np + 2p2 - 3NP2 + N2p2) (11) 

dl = Np(1 - 7p + 7Np + 12p2 - UNp2 + 6N2p2 

- 6p3 +- llNp3 - 6N2p3 + N3p3), (12) 

so the MOMENTS about the MEAN are 

p2 = g2 = [NW - l)P2 + NP] - (NPj2 

= N2p2 - Np2 + Np - N2p2 

= Np(l - p) = Npq (13) 

CL3 = I& - 3/&p: + 2(p1)3 

= NP(l - P)(l - 2P) (14) 

P4 = Pi - 4/&p: -t 6p;(cl’l>” - 3(/41)4 

- Np(l - p)[3p2(2 - N) + 3p(N - 2) + 11. (15) - 
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The SKEWNESS and KURT~SIS are since p + q = 1. We can now find the terms in the 

139 

+y12L NP(l - P)(l - 2P) 
fT3 WP(l - PI”‘” 

1 - 2p 

=&qq=x 

P4 yz=,-3= 6P2 -6p+l 1 - 6Pq 

NP(l -P) = Npq . 
(17) 

(16) 

An approximation to the Bernoulli distribution for large 
N can be obtained by expanding about the value C 
where P(n) is a maximum, i.e., where dP/dn = 0. Since 
the LOGARITHM function is MONOTONIC, we can instead 
choose to expand the LOGARITHM. Let n = fi + q, then 

l@(n)] = ln[P(fi)]+B~q+@~q2+$B3~3+. . . , (18) 

where 

(19) 

But we are expanding about the maximum, so, by defi- 
nition, 

BI = wP(n)l [ 1 dn 
= 0. 

n=fi 
(20) 

This also means that B2 is negative, so we can write 
Bz = -IB& NOW, taking the LOGARITHM of (1) gives 

ln[P(n)] = In N!-ln n !-ln(N-n)!+nlnp+(N-n)lnq. 

(21) 
For large n and N - n we can use STIRLING'S APPROX- 
IMATION 

ln(n!) 1 $=:n nn-n, (22) 

yQ-ln+l)-l-inn (23) 

d[ln(N - n)!] 

dn 
==: $--[(N - n)ln(N - n) - (N - n)] 

- - -ln(N-n)+(N-n)&+l] 

and 

= -ln(N - n), (24) 

W~b)l 
dn 

=z: -lnn+ln(N-n)+lnp-lnq. (25) 

To find ii, set this expression to 0 and solve for n, 

N-tip 
In -- 

( > fi c-l 
=0 (26) 

N-GPzl -- 
fi Q 

(27) 

(N - ii)p = iiq 

fi(q + p) = ii = Np, 

(28) 

(29) 

expansion 

B2 F 

- - 

- - 

B3 G 

- - 

- - 

B4 = 

1 1 cl2 - P2 ----- 
N2p2 N2q2 - N2p2q2 

(1- 2p+p”) -p2 1 - 2p 

N2p2(1 -p)” = N2p2(1 -p)” (31) 

2(P2 -pq+q2) 
N3p3q3 

qP2 - P(l - P) + (1 - 2P+ P2)1 
N3p3(1 - p3) 

2(3P2 -3p+1) 

N3p3(1 -p”) l  

(32) 

Now, treating the distribution as continuous, 

dlmkP(n) =/P(n)dn= 1”; P(fi+q)dq= 1. 

n=O --oo 

(33) 

Since each term is of order l/N N l/a2 smaller than the 
previous, we can ignore terms higher than B2, so 

P(n) = p(fi)e-iB21q2/2a 

The probability must be normalized, so 

P(ii)e-‘B2’a2’2 dv = P(G) 

and 

- - Lexp [-(n[lr)2] . 
aJE 

Defining u2 = ZNpq, 

P(n) = --&exp [-WI, 

(34) 

(35) 

(36) 

(37) 



140 Binomial Expansion Binomial Series 

which is a GAUSSIAN DISTRIBUTION. For p << 1, a 
different approximation procedure shows that the bi- 
nomial distribution approaches the POISSON DISTRIBU- 
TION. The first CUMULANT is 

and subsequent CUMULANTS are given by the RECUR- 
RENCE RELATION 

dnr 
&+1 -0 = Pq dp (39) 

Let 61: and y be independent binomial RANDOM VARI- 
ABLES characterized by parameters n,p and m,p. The 
CONDITIONAL PROBABILITY ofz given that x + y = k 
is 

P(x = ilx + y = k) = 
P(x = i,x + y = k) 

P(x + y = k) 

P(x = i, y = k - i) P(x = i)P(y = k - i) - - 
P(x+y=k) = P(x + y = k) 

(I)pi(l - p>“-” (kri)p”-i(l _ p)m-(“-i) 
- - 

(“i”)pk(l - p)n+m-k 

(1) (k:i) - -- 
(40) 

Note that this is a HYPERGEOMETRIC DISTRIBUTION! 

see UZSO DE MOIVRE-LAPLACE THEOREM, HYPERGEO- 
METRIC DISTRIBUTION, NEGATIVE BINOMIAL DISTRI- 
BUTION 

References 
Beyer, W. H. CRC Standard Mathematical Tables, 28th ed. 

Boca Raton, FL: CRC Press, p. 531, 1987. 
Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetter- 

ling, W. T. “Incomplete Beta Function, Student’s Distribu- 
tion, F-Distribution, Cumulative Binomial Distribution.” 
$6.2 in Numerical Recipes in FORTRAN: The Art of Sci- 
entific Computing, 2nd ed. Cambridge, England: Cam- 
bridge University Press, pp. 219-223, 1992. 

Spiegel, M. R. Theory and Problems of Probability and 
Statistics. New York: McGraw-Hill, p. 108409, 1992. 

Binomial Expansion 

see BINOMIAL SERIES 

Binomial Formula 

see BINOMIAL SERIES, 

Binomial Number 

BINOMIAL THEOREM 

A number of the form an & b”, where a, b, and 72 are 
INTEGERS. They can be factored algebraically 

a”-b” = (a-b)(a”-l +a n-2b+. . l +&n-2 +P) (1) 

nm 
a 

_ b”” = (am _ bm)[dm(n-l) + um(n-2)bm 

+w+bmcn-‘)]. (3) 

In 1770, Euler proved that if (a, b) = 1, then every FAC- 
TOR of 

a2n + b2n (4) 

is either 2 or of the form 2”$-% + 1. If p and Q are 
PRIMES, then 

upq - l)(a - 1) 

( up - l)(aq - 1) 
-1 (5) 

is DIVISIBLE by every PRIME FACTOR ofap-r notdivid- 
ing aq - 1. 

see also CUNNINGHAM NUMBER, FERMAT NUMBER, 
MERSENNE NUMBER, RIESEL NUMBER, SIERPI~KI 
NUMBER OFTHE SECOND KIND 
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Cambridge Phil. Sot. 58, 555-562, 1962, 

Binomial Series 
For 1x1 < 1, 

(1 +x)n = (1) 

= (:)x0+ (ll>x’+ ($x2+... (2) 
n! 

= l+ l!(n - l)! 
a:+ 

n! 22+ 

(n - 2)!2! “’ (3) 

n(n - 1) 22 + =1+7%x+2 . . . l  

The binomial series also has the CONTINUED FRACTION 
representation 

(1 + 2)” = 
1 

. (5) 

l- 
nx 

1.(l+n) 
l2 x 

1+ 
1 m (1 - n) 

2-3 x 
1-c L I 

2(2 + n) 

3-4 x 
1+ 

2(2 - n> 

TX 
1-t 

3(3 + n) 

5.6 x 

u”+b” = (u+b)(a”-1 -u”-2b+. . .-ubn-2+bn-1) (2) l+ 1+... 
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see also BINOMIAL THEOREM 
NEGATIVE BINOMIA L SERIES 

, MULTINOMIAL SERIES, Binormal Developable 
A RULED SURFACE A4 is said to be a binormal de- 
velopable of a curve y if M can be parameterized by 
x(u, w) = y(z~)+v&(u), where B is the BINORMAL VEC- 

References 
Abramowitz, M. and Stegun, C. A. (Eds,). Handbook 

of Mathematical Functions with Formulas, Graphs, and 
Mathematical Tables, 9th printing. New York: Dover, 
pp. 14-15, 1972. 

Pappas, T. “Pascal’s Triangle, the Fibonacci Sequence & Bi- 
nomial Formula.” The Joy of Mathematics. San Carlos, 
CA: Wide World Publ./Tetra, pp* 40-41, 1989. 

TOR. 

see also NORMA 
OPABLE 

L DEVELOPABLE, TANGENT DEVEL- 

References 
Gray, A. “Developables.” $17.6 in Modern Differential Ge- 

ometry of Curves and Surfaces. Boca Raton, FL: CRC 
Press, pp. 352-354, 1993. Binomial Theorem 

The theorem that, for INTEGRAL POSITIVE n, 
Binormal Vector 

7-t 

(x + a)n = 

BCFXR (1) 
rt x d' - -- 

Ir' x r"l' (2) the so-called BINOMIAL SERIES, where (E) are BINO- 
MIAL COEFFICIENTS. The theorem was known for the 
case n = 2 by Euclid around 300 BC, and stated in its 
modern form by Pascal in 1665. Newton (1676) showed 
that a similar formula (with INFINITE upper limit) holds 
for NEGATIVE INTEGRAL n, 

where the unit TANGENT VECTOR T and unit “princi- 
pal” NORMAL VECTOR N are defined by 

(x + a)+ = 
k -n-k 

xa 9 

the so-called NEGATIVE BINOMIAL SERIES, which con- Here,risthe RADIUS V~~~~~,sisthe ARC LENGTH,~ 
is the TORSION, and K is the CURVATURE. The binormal 
vector satisfies the remarkable identity 

verges for 1x1 > /al. 

see also BINOMIAL COEFFICIENT, BINOMIAL SERIES, 
CAUCHY BINOMIAL THEOREM, CHU-VANDERMONDE 
IDENTITY, LOGARITHMIC BINOMIAL FORMULA,NEGA- 
TIVE BINOMIAL SERIES, Q-BINOMIAL THEOREM, RAN- 
DOM WALK 

[i%,B,jij] =is$ (;). (5) 

see also FRENET 
GENT VECTOR 

FORMULAS, NORMAL VECTOR, TAN- 
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Bioche’s Theorem 
If two complementary PLUCKER CHARACTERISTICS are 
equal, then each characteristic is equal to its comple- 
ment except in four cases where the sum of order and 
class is 9. 
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Binomial Triangle 

see PASCAL'S TRIANGLE Biotic Potential 
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Bipartite Graph 

A set of VERTICES decomposed into two disjoint sets 
such that no two VERTICES within the same set are 
adjacent. A bigraph is a special case of a JGPARTITE 

GRAPH with Ic = 2, 

see also COMPLETE BIPARTITE GRAPH, ~PARTITE 
GRAPH, K~NIG-EGEV~RY THEOREM 
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Assaults and Conquest. New York: Dover, p. 12, 1986. 

Two-center bipolar coordinates are two coordinates giv- 
ing the distances from, two fixed centers ~1 and ~2, some- 
times denoted T and T’. For two-center bipolar coordi- 
nates with centers at (I&O), 

Tl 2 = (x + c)” + y2 (8) 
T-z2 = (x - c)” + y2. (9) 

Combining (8) and (9) gives 

T12 - Tz2 = 4cx. w  

Solving for CARTESIAN COORDINATES x and y gives 

(11) 
1 

Y = ~q,J16ca,,z - (r12 - r22 +4c2). (12) 

Solving for POLAR COORDINATES gives 

Biplanar Double Point 

see ISOLATED SINGULARITY J 
?-I2 + 7-22 - 2c2 

T= 
2 (13) 

Bipolar Coordinates 
Bipolar coordinates are a 2-D system of coordinates. 
There are two commonly de-fined types of bipolar co- 
ordinates, the first of which is defined by 

a sinh ‘u 
X= 

cash II - cosu 
asinu 

Y- cash w  - cod (2 

where u f [O, 27r), v E (-oo,oo). The following identi- 
ties show that curves of constant u and II are CIRCLES 
in xy-space. 

x2 + (y - a cot u)2 = a2 csc2 u 

( X- ~0th~)~ + y2 = a2 csch2 w. 

The SCALE FACTORS are 

h, = 
a 

cash ‘u - cosu 

h, = 
a 

cash ZI - cosu’ 

The LAPLACIAN is 

v2 = (coshys42 ( ;;2 + ;;2) * 

LAPLACE'S EQUATION is separable. 

(3) 

(4) 

(5) 

(6) 

(7) 

B = tan-l 
8c2(r12 + 7+z2 - 2c2) 

Q2 - Tz2 
-1 l  

(14) 
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Bipolar Cylindrical Coordinates 

A set of CURVILINEAR COORDINATES defined by 

a sinh v 
x- 

coshv - cosu 
usinu 

Y= 
cash ZI - cos u 

z = x, 

(2) 

(3) 

where u E [O, 2n), w  E (--00, oo), and z E (-qoo). 
There are several notational conventions, and whereas 
(u, V, z) is used in this work, Arfken (1970) prefers 
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(w5 4. Th e o f 11 owing identities show that curves of 
constant u and 21 are CIRCLES in z:y-space. 

x2 + (y - a cot u)2 = a2 csc2 u (4) 

(x - a coth v)” + y2 = a2 csch2 21. (5) 

The SCALE FACTORS are 

see also CUBEFREE, PRIME NUMBER, RIEMANN ZETA 
FUNCTION,SQUAREFREE 

References 
Sloane, N. J. A, Sequences A046100 and A046101 in “An On- 
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Biquadrat ic Equation 

see QUARTIC EQUATION 

h, = 
a 

coshw - cosu 

h, = 
a 

cash v - cosu 
h, = 1. 

The LAPLACIAN is 

(6) 

(7) 

(8) 

Biquadratic Number 
A biquadratic number is a fourth POWER, n4. The first 
few biquadratic numbers are 1, 16, 81, 256, 625, . . . 
(Sloane’s A000583). The minimum number of squares 
needed to represent the numbers 1, 2, 3, . . . are 1, 2, 3, 
4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4, 5, . . l  

(Sloane’s A002377), and the number of distinct ways to 
represent the numbers 1, 2, 3, . . l  in terms of biquadratic 
numbers are 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 
2, 2, 2,.. l  , A brute-force algorithm for enumerating the 
biquadratic permutations of n is repeated application of 
the GREEDY ALGORITHM. 

v2 = (coshw~cosu)2 (& + &) + !r* (9) 

LAPLACE'S EQUATION is not separable in BIPOLAR 
CYLINDRICAL COORDINATES, but it isin Z-D BIPOLAR 
COORDINATES. 

References 
A&en, G. “I3ipolar Coordinates (<, 77, x).” $2.9 in Ma& 

ematical Methods for Physicists, 2nd ed. Orlando, FL: 
Academic Press, pp. 97402, 1970. 

Biprism 
Two slant triangular PRISMS fused together. 

see also PRISM, SCHMITT-CONWAY BIPRISM 

Bipyramid 

see DXPYRAMID 

Biquadratefree 

8C 

6C 

40 

20 

- 
20 40 60 80 100 

A number is said to be biquadratefree if its PRIME de- 
composition contains no tripled factors. All PRIMES are 
therefore trivially biquadratefree. The biquadratefrce 
numbers are 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 
15, 17, l  . . (Sloane’s A046100). The biquadrateful num- 
bers (i.e., those that contain at least one biquadrate) 
are 16, 32, 48, 64, 80, 81, 96, . . . (Sloane’s A046101). 
The number of biquadratefree numbers less than 10, 100, 
1000, . . . are 10, 93, 925, 9240, 92395, 923939, . . . , and 
their asymptotic density is l/5(4) = 90/n4 ==: 0.923938, 
where c(n) is the RIEMANN ZETA FUNCTION. 

Every POSITIVE integer is expressible as a SUM of (at 

most) g(4) = 19 biquadratic numbers (WARING’S PROB- 
LEM). Davenport (1939) showed that G(4) = 16, mean- 
ing that all sufficiently large integers require only 16 
biquadratic numbers. The following table gives the first 
few numbers which require 1, 2, 3, . . l , 19 biquadratic 
numbers to represent them as a sum, with the sequences 
for 17, 18, and 19 being finite. 

# Sloane Numbers 

1 000290 1, 16, 81, 256, 625, 1296, 2401, 4096, ..a 
2 003336 2, 17, 32, 82, 97, 162, 257, 272, l  . . 

3 003337 3, 18, 33, 48, 83, 98, 113, 163, .m m 
4 003338 4, 19, 34, 49, 64, 84, 99, 114, 129, l  . . 

5 003339 5, 20, 35, 50, 65, 80, 85, 100, 115, 9.. 
6 003340 6, 21, 36, 51, 66, 86, 96, 101, 116, .a l  

7 003341 7, 22, 37, 52, 67, 87, 102, 112, 117, ..a 

8 003342 8, 23, 38, 53, 68, 88, 103, 118, 128, ..m 

9 003343 9, 24, 39, 54, 69, 89, 104, 119, 134, l  . . 
10 003344 10, 25, 40, 55, 70, 90, 105, 120, 135, . . . 
11 003345 11, 26, 41, 56, 71, 91, 106, 121, 136, . . . 
12 003346 12, 27, 42, 57, 72, 92, 107, 122, 137, l  . . 

The following table gives the numbers which can be rep- 
resented in n different ways as a sum of k biquadrates. 

k n Sloane Numbers 

1 1 000290 1, 16, 81, 256, 625, 1296, 2401, 4096, l  l  l  

2 2 635318657, 3262811042, 8657437697,-m 

The numbers 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 
15, 18, 19, 20, 21, . . . (Sloane’s A046039) cannot be 
represented using distinct biquadrates. 

see UZSO CUBIC NUMBER, SQUARE NUMBER, WARING’S 
PROBLEM 
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Biquadratic Reciprocity Theorem 

x4 E q (mod p) . (1) 

This was solved by Gauss using the GAUSSIAN INTEGERS 

as 

where 7~ and 0 are distinct GAUSSIAN INTEGER PRIMES, 

N(a + bi) = da2 + b2 (3) 

and N is the norm. 

a 

( > 
- 
7T 4 

1 - if z4 = QI (mod r) is solvable - 
-1, i, or - i otherwise, 

(4) 

where solvable means solvable in terms of GAUSSIAN IN- 
TEGERS. 

see also RECIPROCITY THEOREM 

Biquaternion 
A QUATERNION with COMPLEX coefficients. The ALGE- 
BRA of biquaternions is isomorphic to a full matrix ring 
over the complex number field (van der Waerden 1985). 

see also QUATERNION 
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Birational Transformation 
A transformation in which coordin ates in two SPACES 
are expressed rationally in t erms of those in an .other. 

see UZSO RIEMANN CURVE THEOREM, WEBER’S THEO- 
REM 

Birch Conjecture 

see SWINNERTON-DYER CONJECTURE 

Birch-Swinnerton-Dyer Conjecture 

see SWINNERTON-DYER CONJECTURE 

Birthday At tack 

Birkhoff’s Ergodic Theorem 
Let T be an ergodic ENDOMORPHISM of the PROBABIL- 
ITY SPACE X and let f : X + Iw be a real-valued MEA- 

SURABLE FUNCTION. Then for ALMOST EVERY x f X, 
we have 

ln = - 
IE f oF3(x)+ fdm 

n 
j=l s 

as n -+ 00. To illustrate this, take f to be the charac- 
teristic function of some SUBSET A of X so that 

f0 { 1 ifxfA 
x= 

0 if x $ A. 

The left-hand side of (-1) just says how often the or- 
bit of x (that is, the points x, TX, 57’2, . . l ) lies in 
A, and the right-hand side is just the MEASURE of A. 
Thus, for an ergodic ENDOMORPHISM, “space-averages 
= time-averages almost everywhere.” Moreover, if T is 
continuous and uniquely ergodic with BOREL PROBA- 
BILITY MEASURE m and f is continuous, then we can 
replace the ALMOST EVERYWHERE convergence in (-1) 
to everywhere. 

Birotunda 
Two adjoined ROTUNDAS. 

see also BILUNABIROTUNDA, CUPOLAROTUNDA, ELON- 
GATED GYROCUPOLAROTUNDA, ELONGATED ORTHO- 
CUPOLAROTUNDA, ELONGATED ORTHOBIROTUNDA, 

GYROCUPOLAROTUNDA, GYROELONGATED ROTUNDA, 
ORTHOBIROTUNDA,TRIANGULAR HEBESPHENOROTUN- 
DA 

Birthday Attack 
Birthday attacks are a class of brute-force techniques 
used in an attempt to solve a class of cryptographic 
hash function problems. These methods take advantage 
of functions which, when supplied with a random in- 
put, return one of IC equally likely values. By repeatedly 
evaluating the function for different inputs, the same 
output is expected to be obtained after about 1.26 
evaluations. 

see also BIRTHDAY PROBLEM 
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Birthday Problem 
Consider the probability Ql(n, d) that no two people out 
of a group of n will have matching birthdays out of d 
equally possible birthdays. Start with an arbitrary per- 
son’s birthday, then note that the probability that the 
second person’s birthday is different is (d - 1)/d, that 
the third person’s birthday is different from the first two 

is [(d - Wl[@ - WI, and so on, up through the nth 
person. Explicitly, 

In general, let Q&z, d) denote the probability that a 
birthday is shared by exactly i (and no more) people 
out of a group of n people. Then the probability that a 
birthday is shared by k or more people is given by 

Pk(n,d) = 1 - FQi(n,d). (8) 
I- z- 1 

Q2 can be computed explicitly as 

’ Ql(n,d) = yC$... d - (n - 1) 

d 

(d-l)(d-2)*d*[d-(n-l)] - - 
dn 

. (1) 
Q2W) = $ ‘z s(f) (,“_a) 

Sut this can be written in terms of FACTORIALS as 

d! 
Ql(ny d, = (d _ n)!dn’ (2) 

so the probability P2 (n, 365) that two people out of a 
group of n do have the sume birthday is therefore 

P&,d) = 1 - Ql(n,d) = 1 - 
d! 

(d - n)!d”’ (3) 

If 365-day years have been assumed, i.e., the existence of 
leap days is ignored, then the number of people needed 
for there to be at least a 50% chance that two share 
birthdays is the smallest n such that Pz(n, 365) > l/2. - 
This is given by 12 = 23, since 

Pz(23,365) = 
380939047022973907852437082910563905188~6454060947061 
75091883268515350125426207425223147563269805908203125 

$=: 0.507297. (4) 

The number of people needed to obtain Pz(n, 365) > l/2 
for n = 1, 2, l  l  . , are 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, . . . 
(Sloane’s AO3381O). 

The probability Pz (n, d) can be estimated as 

P&d) = 1 -e --n(n-1)/2d 

El- (l-J& 

where the latter has error 

’ ’ 6(d - n + 1)” 

(Sayrafiezadeh 1994). 

(5) 

(6) 

(7) 

n! 
1nPJ 

x 
d! 

=- 
dn 

i=l 
2%!(n - 2i)!(d - n + i)! 

( 1) 
n - 

- -- 
dn 

2 -“/2r(l + n)PiBd’(fJZ) - 
r(l+ d) 

I r(l+d-n) ’ 

(9) 

where (z) is a BINOMIAL COEFFICIENT, r(n) is a 

GAMMA FUNCTION, and $)(x) is an ULTRASPHERI- 
CAL POLYNOMIAL. This gives the explicit formula for 

B(n, d) as 

P&d) = 1 - Q&d) - Q&d) 

=1+ 
(-l)“+‘r(n + l)PJ7(2-1’2) (1o) 

2”/2d” 

l  

Q&I, d) cannot be computed in entirely closed form, 
but a partially reduced form is 

Q ( d) I’(d+ 1) 
3n, =p 

(-l)“F(:) - +!) 

d” r(d - 72 + 1) 

LnPJ 
+(-l)nr(l + n) x 

i=l r(d - i + i)r(i + 1) 

where 

F = F(n,d,a) G 1-3F2 

and 3F2 (a, b, C; d, e; z) is a GENERALIZED HYPERGEO- 
METRIC FUNCTION. 

In general, Qk(n, d) can be computed using the RECUR- 
RENCE RELATION 

Qk(n,d) = ‘2 [ 

i=l 

n!d! 

diki!(k!);(n - ik)!(d - i)! 

k-l 

x~Q~(n-k,d-~)(dd.ii)lri*] (13) 

j=l J 
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(Finch). However, the time to compute this recursive 
function grows exponentially with JG and so rapidly be- 
comes unwieldy. The minimal number of people to give 
a 50% probability of having at least n coincident birth- 
days is 1, 23, 88, 187, 313, 460, 623, 798, 985, 1181, 
1385, 1596, 1813, . l  . (Sloane’s A014088; Diaconis and 
Mosteller 1989). 

A good approximation to the number of people n such 
that p = p&z, d) is some given value can given by solv- 
ing the equation 

n,-n/(dk) _ - 
[ 

d” -‘k! In 
(&) (l- &)]“k 

(14) 
for n and taking [nj, where [nl is the CEILING FUNC- 
TION (Diaconis and Mosteller 1989). For p = 0.5 and 
k= 1, 2, 3, . . . , this formula gives n = 1, 23, 88, 187, 
313, 459, 722, 797, 983, 1179, 1382, 1592, 1809, . . . , 
which differ from the true values by from 0 to 4. A 
much simpler but also poorer approximation for n such 
that p = 0.5 for k < 20 is given by 

n = 47(k - 1.5)3’2 (15) 

(Diaconis and Mosteller 1989), which gives 86, 185, 307, 
448, 606, 778, 965, 1164, 1376, 1599, 1832, . . . for k = 3, 
4, ..*. 

The “almost” birthday problem, which asks the number 
of people needed such that two have a birthday within 
a day of each other, was considered by Abramson and 
Moser (1970), who showed that 14 people suffice. An ap- 
proximation for the minimum number of people needed 
to get a SO-50 chance that two have a match within IG 
days out of d possible is given by 

n(k,d) = 1.2 
d 

- 
2k+1 (16) Bisection Procedure 

(Sevast’yanov 1972, Diaconis and Mosteller 1989). 

see also BIRTHDAY ATTACK, COINCIDENCE, SMALL 
WORLD PROBLEM 

References 
Abramson, M. and Moser, W. 0. J. “More Birthday Sur- 

prises .” Amer. Math. Monthly 77, 856-858, 1970. 
Ball, W. W. R. and Coxeter, H. S. M. Mathematical Recre- 

ations and Essays, 13th ed. New York: Dover, pp. 45-46, 
1987. 

Bloom, D. M. “A Birthday Problem.” Amer. Math. Monthly 
80, 1141-1142,1973. 

Bogomolny, A. “Coincidence.” http: //www. cut-the-knot. 
corn/do-you_know/coincidence .html. 

Clevenson, M. L. and Watkins, W. “Majorization and the 
Birthday Inequality.” Math. Mug. 64, 183-188, 1991. 

Diaconis, I? and Mosteller, F. “Methods of Studying Coinci- 
dences.” J. Amer. Statist. Assoc. 84, 853-861, 1989. 

Feller, W. An Introduction to Probability Theory and Its Ap- 
plications, Vol. I, 3rd ed. New York: Wiley, pp. 31-32, 
1968. 

Finch, S. “Puzzle #28 [J une 19971: Coincident Birthdays.” 
http://wwu.mathsoft.com/mathcad/library/puzzle/ 
soln28/soln28.html. 

Gehan, E. A. “Note on the ‘Birthday Problem.“’ Amer. Stat. 
22, 28, Apr. 1968. 

Heuer, G. A. “Estimation in a Certain Probability Problem.” 
Amer. Math. Monthly 66, 704-706, 1959. 

Hocking, R. L. and Schwertman, N. C. “An Extension of the 
Birthday Problem to Exactly k Matches.” CoEZege Math. 
J. 17, 315-321, 1986. 

Hunter, J. A. H. and Madachy, J. S. Muthemutical Diver- 
sions. New York: Dover, pp* 102-103, 1975. 

Klamkin, M. S. and Newman, D. J. “Extensions of the Birth- 
day Surprise.” J. Combin. Th. 3, 279-282, 1967. 

Levin, B. “A Representation for Multinomial Cumulative 
Distribution Functions.” Ann. Statistics 9, 1123-1126, 

McKinney, E. H. “Generalized Birthday Problem.” Amer. 
M&h. Monthly 73, +5-387, 1966. 

Mises, R. von. “Uber Aufteilungs-und Besetzungs- 
Wahrscheinlichkeiten.” Revue de la Fuculte’ des Sci- 
ences de Wniversitk d’Istunbu1, N. S. 4, 145-163, 1939. 
Reprinted in Selected Papers of Richard von Mises, Vol. 2 
(Ed. P. Frank, S. Goldstein, M. Kac, W. Prager, G. SzegB, 
and G. Birkhoff). Providence, RI: Amer. Math. Sot., 
pp. 313-334, 1964. 

Riesel, H. Prime Numbers and Computer Methods for Fuc- 
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Sayrafiexadeh, M. “The Birthday Problem Revisited.” Muth. 
i&g. 67, 220-223, 1994. 

Sevast’yanov, B. A. “Poisson Limit Law for a Scheme of Sums 
of Dependent Random Variables.” Th. Prob. Appl. 17, 
695-699, 1972. 

Sloane, N. J. A. Sequences A014088 and A033810 in “An On- 
Line Version of the Encyclopedia of Integer Sequences.” 

Stewart, I. “What a Coincidence!” Sci. Amer. 278, 95-96, 
June 1998. 

Tesler, L. “Not a Coincidence!” http: //www .nomodes. corn/ 
coincidence .html. 

Bisected Perimeter Point 

see NAGEL POINT 

Given an interval [a, b], let a, and b, be the endpoints 
at the nth iteration and rn be the nth approximate solu- 
tion. Then, the number of iterations required to obtain 
an error smaller than E is found as follows. 

rn G +(an + bn) (2) 

1~~ - ~1 2 $(bn - a,) = 2-n(b - a) < E 

-n In 2 < In E - ln(b - a), 

(3) 

(4 

n> ln(b-a)-1nE 

In2 l  

(5) 

see also ROOT 

l-teterences 
Arfken, G. Mathematical Methods for Physicists, 3rd ed. Or- 

lando, FL: Academic Press, pp. 964-965, 1985. 
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Press, W. H.; FJannery, B. P.; Teukolsky, S. A.; and Vetter- 
ling, W. T. “Bracketing and Bisection.” 59.1 in Numerical 
Recipes in FORTRAN: The Art of Scientific Computing, 
2nd ed. Cambridge, England: Cambridge University Press, 
pp. 343-347, 1992. 

Bisector 
Bisection is the division of a given curve or figure into 
two equal parts (halves). 

see also ANGLE BISECTOR, BISECTION PROCEDURE, 
EXTERIOR ANGLE BISECTOR, HALF, HEMISPHERE, 
LINE BISECTOR, PERPENDICULAR BISECTOR, TRISEC- 
TION 

Bishop’s Inequality 
Let V(T) be the volume of a BALL of radius T in a com- 
plete n-D RIEMANNTAN MANIFOLD with RICCI CURVA- 
TURE _> (n - 1)~. Then V(T) _> V,+&), where V, is 
the volume of a BALL in a space having constant SEC- 
TIONAL CURVATURE. In addition, if equality holds for 
some BALL, then this BALL is ISOMETRIC to the BALL 
of radius T in the space of constant SECTIONAL CURVA- 
TUREK. 

References 
Chavel, I. Riemannian Geometry: A Modern Introduction, 

New York: Cambridge University Press, 1994. 

Bishops Problem 

Find the maximum number of bishops B(n) which can 
be placed on an n x n CHESSBOARD such that no two 
attack each other. The answer is 2n-2 (Dudeney 1970, 
Madachy 1979), giving the sequence 2, 4, 6, 8, . . l  (the 
EVEN NUMBERS) for n = 2, 3, . . . l  One maximal so- 
lution for n = 8 is illustrated above. The number of 
distinct maximal arrangements of bishops for n = 1, 2, 
. l  l  are 1, 4, 26, 260, 3368, . . l  (Sloane’s A002465). The 
number of rotationally and reflectively distinct solutions 
on an n x n board for n > 2 is - 

B(n) = 
2+41’2[2(n-2)/2 + 11 for n even 
2(n-3)/2[2(n-3)/2 + I] for n odd 

where [n] is the FLOOR FUNCTION, giving the sequence 
for n = 1, 2, . . . as 1, 1, 2, 3, 6, 10, 20, 36, l  . . (Sloane’s 
A005418). 

The minimum number of bishops needed to occupy or 
attack all squares on an n x n CHESSBOARD is n, ar- 
ranged as illustrated above. 

see also CHESS, KINGS PROBLEM, KNIGHTS PROBLEM, 
QUEENS PROBLEM,ROOKS PROBLEM 

Heferences 
Ahrens, W. Mathematische Unterhaltungen und Spiele, 

Vol. 1, 3rd ed. Leipzig, Germany: Teubner, p. 271, 1921. 
Dudeney, H. E. “Bishops-Unguarded” and “Bishops- 

Guarded.” 3297 and 298 in Amusements in Mathematics. 
New York: Dover, pp. 88-89, 1970. 

Guy, R. K. “The n Queens Problem.” SC18 in Unsolved 
Problems in Number Theory, 2nd ed. New York: Springer- 
Verlag, pp. 133-135, 1994. 

Madachy, J. Madachy’s Mathematical Recreations. New 
York: Dover, pp. 36-46, 1979. 

Pickover, C. A. Keys to Infinity. New York: Wiley, pp. 74- 
75, 1995. 

Sloane, N. J. A. Sequences AU02465/M3616 and A005418/ 
MO771 in “An On-Line Version of the Encyclopedia of In- 
teger Sequences.” 

Bislit Cube 

The 8-VERTEX graph consisting of a CUBE in which two 
opposite faces have DIAGONALS oriented PERPENDICU- 
LAR to each other. 

see also B~DIAKIS CUBE, CUBE, CUBICAL GRAPH 

(Dudeney 1970, p. 96; Madachy 1979, p. 45; Pickover 
1995). An equivalent formula is 

B(n) = ZnB3 + 21(n-1)/21-1, 
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Bispherical Coordinates 
i 

A system ~~CURVILINEAR COORDINATES defined by 

z = asin&zos+ 

cash 7 - cos < (1) 

a sin < sin 4 
Y= cash 7 - cos [ (2) 

a sinh 7 
z= 

coshq - cost’ (3) 

Black-Scholes Theory 

Bit Complexity 
The number of single operations (of ADDITION, SUB- 
TRACTION, and MULTIPLICATION) required to complete 
an algorithm. 

see also STRASSEN FORMULAS 

References 
Borodin, A. and Munro, I. The Computational Complexity 

of Algebraic and Numeric Problems. New York: American 
Elsevier, 1975. 

Bitangent 

A LINE which is TANGENT to a curve at two distinct 
points. 

see also KLEIN'S EQUATION, PLUCKER CHARACTERIS- 
TICS, SECANT LINE, SOLOMON'S SEALLINES,TANGENT 
LINE 

Bivariate Distribution 

see GAUSSIAN BIVARIATE DISTRIBUTION 
The SCALE FACTORS are 

hE = 
a 

COST-j-cost (4) 

h, = 
a 

coshq - cost (5 

h+ = 
asinJ 

coshq - cost’ (6 

The LAPLACIAN is 

cos u cot2 u + 3 coshv cot2 u 

cash v - cosu 

, -3 cosh2 v cot u csc u + cosh3 v csc2 2~1 8 + 
cash w  - cosu I 4 a2 

a 
+(cos u - cash v) sinh 21 - 

2 a2 
dv + (cosh2 u - cos u) dv2 

+(coshv - 
d 

cos u) (cash v cot u - sin u - cos u cot u) du 

a2 
+(cosh2 v - cos 2~)~ dU2. (7) 

In bispherical coordinates, LAPLACE'S EQUATION is sep- 
arable, but the HELMHOLTZ DIFFERENTIAL EQUATION 
is not. 

see also LAPLACE'S EQUATION-BISPHERICAL COOR- 
DINATES, TOROIDAL COORDINATES 

References 
Arfken, G. “Bispherical Coordinates (e, 7, 4).” $2.14 in 

Mathematical Methods for Physicists, 2nd ed, Orlando, 
FL: Academic Press, pp. 115-117, 1970. 

Morse, P. M. and Feshbach, H. Methods of Theoretical Phys- 

ics, Part I. New York: McGraw-Hill, pp. 665-666, 1953. 

Bivector 
An antisymmetric TENSOR of second RANK (a.k.a. 2- 
form). 

2 = XabWa AL& 

where A is the WEDGE PRODUCT (or OUTER PROD- 
UCT). 

Biweight 

see TUKEY’S BIWEIGHT 

Black-Scholes Theory 
The theory underlying financial derivatives which in- 
volves “stochastic calculus” and assumes an uncor- 
related LOG NORMAL DISTRIBUTION of continuously 
varying prices. A simplified “binomial” version of the 
theory was subsequently developed by Sharpe et al. 

(1995) and Cox et al. (1979). It reproduces many re- 
sults of the full-blown theory, and allows approximation 
of options for which analytic solutions are not known 
(Price 1996). 

see also GARMAN-KOHLHAGEN FORMULA 

References 
Black, F. and Scholes, M. S. “The Pricing of Options and 

Corporate Liabilities,” J. Political Econ. 81, 637-659, 
1973. 

COX, J. C.; Ross, A.; and Rubenstein, M. “Option Pricing: A 
Simplified Approach.” J. Financial Economics 7, 229-263, 

1979. 
Price, J. F. “Optional Mathematics is Not Optional.” Not. 

Amer. Math. Sot. 43, 964-971, 1996. 
Sharpe, We F.; Alexander, G. J.; and Bailey, J. V. Invest- 

ments, 5th ed. Englewood Cliffs, NJ: Prentice-Hall, 1995. 
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Black Spleenwort Fern 

see BARNSLEY’S FERN 

points, where N = 2d, and can be obtained by setting 
b(0) = b(N) = 0, letting 

Blackman Function 

Bl&l -* 

An APODIZATXON FUNCTION given by 

b(m + 27 = 2” + $[b(m) + b(m + 2n)], 

and looping over n = d to 1 by steps of -1 and m = 0 
to N - 1 by steps of 2”. 

( > 

2rx 
A(s) = 0.42 +Oe5cos F + 0.08~0s - s (1) 

a ( ) a 

Its FULL WIDTH AT HALF MAXIMUM is 0.810957a. The 
APPARATUS FUNCTION is 

Iv4 
- - 

a(0.84 - 0.36a2k2 - 2.17 x 10-1ga4k4) sin(2rak) 
(1 - a2k2)(1 - 4a2k2) 

. (2) 

Peitgen and Saupe (1988) refer to this curve as the TAK- 
AGI FRACTAL CURVE. 

see also HOFSTADTER-CONWAY $10,000 SEQUENCE, 
WEIERSTRA~ FUNCTION 

The COEFFICIENTS are approximations to References 

3969 
ao = 9304 (3) 

1155 
a1 = 4652 (4) 

715 
a2 = 18608’ (5) 

which would have produced zeros of I(k) at k = (7/4)a 
and k = (9/4)a. 

Dixon, R. Mathographics. New York: Dover, pp. 175-176 
and 210, 1991. 

Peitgen, H.-O. and Saupe, D. (Eds.). “Midpoint Displace- 
ment and Systematic Fractals: The Takagi F’ractal Curve, 
Its Kin, and the Related Systems.” sA.1.2 in The Science 
of Fractal Images. New York: Springer-Verlag, pp. 246- 
248, 1988. 

Takagi, T. “A Simple Example of the Continuous Function 
without Derivative .” Proc. Phys. Math. Japan 1, 176-177, 
1903. 

see also APODIZATION FUNCTION 

Tall, D. 0. “The Blancmange Function, Continuous Every- 
where but Differentiable Nowhere.” Math. Gax. 66, U-22, 
1982. 

References 

Tall, D. “The Gradient of a Graph.” Math. Teaching 111, 
48-52, 1985. 

Blackman, R. B. and Tukey, J. W. “Particular Pairs of Win- 
dows .” In The Measurement of Power Spectra, From 
the Point of View of Communications Engineering. New 
York: Dover, pp. 98-99, 1959. 

Blaschke Conjecture 

Blancmange Function 

The only WIEDERSEHEN MANIFOLDS are the standard 
round spheres. The conjecture has been proven by com- 
bining the BERGER-KAZDAN COMPARISON THEOREM 
with A. Weinstein’s results for n EVEN and C. T. Yang’s 
for n ODD. 

A CONTINUOUS FUNCTION which is nowhere DIFFER- 
ENTIABLE. The iterations towards the continuous func- 
tion are BATRACHIONS resembling the HOFSTADTER- 
CONWAY $10,000 SEQUENCE. The first six iterations 
are illustrated below. The dth iteration contains N + 1 
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References 
Chavel, I. Riemannian Geometry: A Modern Introduction. 

New York: Cambridge University Press, 1994. 

Blaschke’s Theorem 
A convex planar domain in which the minimal length is 
> 1 always contains a CIRCLE of RADIUS l/3. 

References 
Le Lionnais, F. Les nombres remarquables. Paris: Hermann, 

p. 25, 1983. 

Blecksmith-Brillhart-Gerst Theorem 
A generalization of SCHR~TER’S FORMULA. 

References 
Berndt, B. C. Ramanujan’s Notebooks, Part III. New York: 

Springer-Verlag, p. 73, 1985. 



Blichfeld t’s Lemma Block Design 

Blichfeldt’s Lemma 

see BLICHFELDT'S THEOREM 

Blichfeldt’s Theorem 
Published in 1914 by Hans Blichfeldt. It states that any 
bounded planar region with PO~ITWE AREA > A placed 
in any position of the UNIT SQUARE LATTICE can be 
TRANSLATED so that the number of LATTICE POINTS 
inside the region will be at least A + 1. The theorem 
can be generalized to n-D. 

BLM/Ho Polynomial 
A l-variable unoriented KNOT POLYNOMIAL Q(z). It 
satisfies 

Q unknot = 1 (1) 
and the SKEIN RELATIONSHIP 

QL+ + QL- = x(Q~o + QLA (2) 

It also satisfies 

QWL~ =QL~QL~ (3) 

where # is the KNOT SUM and 

QL+ = QL, (4) 

where L* is the MIRROR IMAGE of L. The BLM/Ho 
polynomials of MUTANT KNOTS are also identical. 
Brandt et al. (1986) give a number of interesting prop- 
erties. For any LINK L with > 2 components, QL - 1 is 
divisible by 2(x - 1). If L has c components, then the 
lowest POWER of 2 in QL(x) is 1 - c, and 

lim xc-‘Q+) = ce,J;ycl O&m)C-‘P~(&m), 
x+0 (5) 

t 

where PL is the HOMFLY POLYNOMIAL. Also, the de- 
gree of QL is less than the CROSSING NUMBER of L. If 
L is a Z-BRIDGE KNOT, then 

QL(z) = 22 -‘vL(t)VL(t-l + 1 - 2t-7, (6) 

where z = -t - t-l (Kanenobu and Sumi 1993). 

The POLYNOMIAL was subsequently extended to the 2- 
variable KAUFFMAN POLYNOMIAL F(a, z), which satis- 
fies 

Q(x) = F(l,x>- (7) 

Brandt et al. (1986) give a listing of Q POLYNOMIALS 
for KNOTS up to 8 crossings and links up to 6 crossings. 

References 

Bloch Constant 
N.B. A detailed on-line essay by S. Finch was the start- 
ing point for this entry. 

Let F be the set of COMPLEX analytic functions f de- 
fined on an open region containing the closure of the 
unit disk D = {Z : 1~1 < 1) satisfying f(0) = 0 and 
df /dz(O) = 1. For each f in F, let b(f) be. the SUPRE- 
MUM of all numbers r such that there is a disk S in D on 
which f is ONE-TO-ONE and such that f(S) contains a 
disk of radius T. In 1925, Bloch (Conway 1978) showed 
that b(f) 2 l/72. Define Bloch’s constant by 

B = inf{b(f) : f E F}. 

Ahlfors and Grunsky (1937) derived 

0.433012701.. . = $&<B - 

They also conjectured that the upper limit is actually 
the value of B, 

B= 
1 

(Le Lionnais 1983). 

see also LANDAU CONSTANT 

Reierences 
Conway, J. B. Functions of One Complex Variable, 2nd ed. 
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Le Lionnais, F. Les nombres remarquables. Paris: Hermann, 

p. 25, 1983. 
Minda, C. D. “Bloch Constants.” J. d’Analyse Math. 41, 

54-84, 1 982. 

Bloch-Landau Constant 

see LANDAU CONSTANT 

Brandt, R. D.; Lickorish, W. B. R.; and Millett, K. C. "A 
Polynomial Invariant for Unoriented Knots and Links.” In- 
vent. IMath. 84, 563-573, 1986. 

Ho, C. F. “A New Polynomial for Knots and Links- 
Preliminary Report .” Abstracts Amer. Math. Sot. 6, 300, 
1985. 

Kanenobu, T. and Sumi, T. “Polynomial Invariants of 2- 
Bridge Knots through 22-Crossings.” Math. Compuf. 60, 
771-778 and Sl’l-S28, 1993. 

Stoimenow, A. “Brandt-Lickorish-Millett-Ho Polynomi- 
als.” http://uww.informatik.hu-berlin.de/-stoimeno/ 
ptab/blmhlO .html. 

@ Weisstein, E. W. “Knots.” http: //www l  astro . Virginia. 
edu/-eww6n/math/notebooks/Knots.m. 

Block 

see also BLOCK DESIGN, SQUARE POLYOMINO 

Block Design 
An incidence system (21, k, X, r, b) in which a set X 
of v points is partitioned into a family A of b subsets 
(blocks) in such a way that any two points determine A 
blocks, there are JZ points in each block, and each point 
is contained in T different blocks. It is also generally 
required that k: < *u, which is where the “incomplete” 
comes from in the formal term most often encountered 
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for block designs, BALANCED INCOMPLETE BLOCK DE- 
SIGNS (BIBD). The five parameters are not independent, 
but satisfy the two relations 

VT = bk (1) 

A( w - 1) = T(k - 1). (2) 

A BIBD is therefore commonly written as simply (21, k, 
X) , since b and T are given in terms of V, JG, and A by 

b = + - QA 
k(k - 1) (3) 

A( v - 1) 

T=n- (4) 

A BIBD is called SYMMETRIC if b = u (or, equivalently, 
T = k). 

Writing X = {zi}yzl and A = {Aj},b=,, then the IN- 
CIDENCE MATRIX of the BIBD is given by the v x b 
MATRIX M defined by 

mij = 
1 if zi E A 
0 otherwise. 

This matrix satisfies the equation 

(5) 

MMT = (T - x)1 + XJ, (6) 

where I is a 21 x v IDENTITY MATRIX and J is a 2t x w  
matrix of 1s (Dinitz and Stinson 1992). 

Examples of BIBDs are given in the following table. 

Block Design b, k, w  

affine plane ( 2 n t n, 1) 
Fano plane (7, 3, 1)) 
Hadamard design symmetric (4n + 3, 2n + 1, n) 
projective plane symmetric (n2 + n + 1, n + 1, 1) 
Steiner triple system (w, 3, 1) 

unital b3 + 1, 4 + 1, 1) 

see UZSO AFFINE PLANE, DESIGN, FANO PLANE, HADA- 
MARD DESIGN,~ARALLEL CLASS,PROJECTIVE PLANE, 
RESOLUTION, RESOLVABLE, STEINER TRIPLE SYSTEM, 
SYMMETRIC BLOCK DESIGN, UNITAL 

References 
Dinitz, J. H. and Stinson, D. R. “A Brief Introduction to 

Design Theory.” Ch. 1 in Contemporary Design Theory: A 
Collection of Surveys (Ed. J. H. Dinite and D. R. Stinson). 
New York: Wiley, pp. l-12, 1992. 

Ryser, H. J. “The (b, v, r, k, X)-Configuration.” $8.1 in Corn- 
binatorial Mathematics. Buffalo, NY; Math. Assoc. Amer., 
pp. 96402, 1963. 

Block Growth 
Let (2~2122. l  . ) be a sequence over a finite ALPHABET 

A (all the entries are elements of A). Define the block 
growth function B(n) of a sequence to be the number 
of ADMISSIBLE words of length n. For example, in the 
sequence aabaabaabuabuub. l  . , the following words are 
ADMISSIBLE 

Length Admissible Words 

1 4 
2 au, ub, bu 
3 ad, ubu, baa 
4 uubu, ubau, buub 

so B(1) = 2, B(2) = 3, B(3) = 3, B(4) = 3, and so 
on. Notice that B(n) 5 B(n + l), so the block growth 
function is always nondecreasing. This is because any 
ADMISSIBLE word of length n can be extended right- 
wards to produce an ADMISSIBLE word of length n + 1. 
Moreover, suppose B(n) = B(n + 1) for some n. Then 
each admissible word of length n extends to a unique 
ADMISSIBLE word of length n+ 1. 

For a SEQUENCE in which each substring of length n 
uniquely determines the next symbol in the SEQUENCE, 
there are only finitely many strings of length n, so the 
process must eventually cycle and the SEQUENCE must 
be eventually periodic. This gives us the following the- 
orems: 

1. If the SEQUENCE is eventually periodic, with least 
period p, then B(n) is strictly increasing until it 
reaches p, and B(n) is constant thereafter. 

2. If the SEQUENCE is not eventually periodic, then 
B(n) is strictly increasing and so B(n) 2 n+l for all 
n. If a SEQUENCE has the property that B(n) = n+l 
for all n, then it is said to have minimal block growth, 
andthe SEQUENCE iscalleda STURMIAN SEQUENCE. 

The block growth is also called the GROWTH FUNCTION 
or the COMPLEXITY of a SEQUENCE. 

Block Matrix 
A square DIAGONAL MATRIX in which the diagonal ele- 
ments are SQUARE MATRICES of any size (possibly even 
1 x l), and the off-diagonal elements are 0. 

Block (Set) 
One of the disjoint SUBSETS making up a SET PARTI- 
TION. A block containing n elements is called an n- 
block. The partitioning of sets into blocks can be de- 
noted using a RESTRICTED GROWTH STRING. 

see also BLOCK DESIGN, RESTRICTED GROWTH 
STRING, SET PARTITION 

Blow-Up 
A common mechanism which generates SINGULARITIES 
from smooth initial conditions. 
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Blue-Empty Coloring 

see BLUE-EMPTY GRAPH 

Blue-Empty Graph 
An EXTREMAL GRAPH in which the forced TRIAN- 
GLES are all the same color. Call R the number of 
red MONOCHROMATIC FORCED TRIANGLES and B the 
number of blue MONOCHROMATIC FORCED TRIANGLES, 
then a blue-empty graph is an EXTREMAL GRAPH with 
B = 0. For EVEN n, a blue-empty graph can be 
achieved by coloring red two COMPLETE SUBGRAPHS 
of n/2 points (the RED NET method). There is no blue- 
empty coloring for ODD n except for n = 7 (Lorden 
1962). 

see UlSO COMPLETE GRAPH, EXTREMAL GRAPH, 

MON 'OCH ROMATIC FORCED TRIA NGLE, RED N ET 

References 
Lorden, G. “Blue-Empty Chromatic Graphs.” Amer. Math. 

Manthly 69, 114-120, 1962. 
Sauvk, L. “On Chromatic Graphs.” Amer. Math. Monthly 

68,107-111,1961. 

Board 
A subset of d x d, where d = (1, 2, . . . , d}. 

see also ROOK NUMBER 

Boatman’s Knot 

see CLOVE HITCH 

Bochner Identity 
For asmooth HARMONIC MAP u:iV +N, 

a(lOul”) = IV(du)j’ + (RicM Vu,Vu) 

- (RiemN(u)(Vu, Vu)Vu, VU), 

where V is the GRADIENT, Ric is the RICCI TENSOR, 
and Riemisthe RIEMANN TENSOR. 

References 
Eels, J. and Lemaire, L. “A Report on Harmonic Maps.” 

Bull. London Math. Sot. IO, l-68, 1978. 

Bochner’s Theorem 
Among the continuous functions on R”, the POSITIVE 
DEFINITE FUNCTIONS are those functions which are the 
FOURIER TRANSFORMS of finite measures. 

Bode’s Rule 

s 

x5 

f(x) dx = &h(7fl + 32f2 + l2f3 + 32f4 + 7fs) 
Xl 

--?-h7f(“) 

References 
Abramowite, M. and Stegun, C. A. (Eds.). Handbook 

of Mathematical Functions with Formulas, Gruphs, and 
Mathematical Tables, 9th printing. New York: Dover, 
p. 886, 1972. 

Bogdanov Map 
A 2-D MAP which is conjugate to the H~NON MAP in 
its nondissipative limit. It is given by 

XI = x + y’ 

yl = y + ey + JGx(x - 1) + py- 

see also H~NON MAP 

References 
Arrowsmith, D. K.; Cartwright, J. H. E.; Lansbury, A. N.; 

and Place, C. M. “The Bogdanov Map: Bifurcations, Mode 
Locking, and Chaos in a Dissipative System.” Int. J. Bi- 
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Bogdanov, R. “Bifurcations of a Limit Cycle for a Family 
of Vector Fields on the Plane.” Selecta Math. Soviet 1, 
373-388,198l. 

Bogomolov-Miyaoka-Yau Inequality 
Relates invariants of a curve defined over the INTEGERS. 
If this inequality were proven true, then FERMAT’S LAST 
THEOREM would follow for sufficiently large exponents. 
Miyaoka claimed to have proven this inequality in 1988, 
but the proof contained an error. 

see also FERMAT’S LAST THEOREM 

References 
Gox, D. A. “Introduction to Fermat’s Last Theorem.” Amer. 

Math. Monthly 101, 3-14, 1994. 

Bohemian Dome 

A QUARTIC SURFACE which can be constructed as fol- 
lows. Given a CIRCLE C and PLANE E PERPENDICULAR 
to the PLANE of C, move a second CIRCLE K of the 
same RADIUS as C through space so that its CENTER 
always lies on C and it remains PARALLEL to E. Then 
K sweeps out the Bohemian dome. It can be given by 
the parametric equations 

0 . 

X = acosu 

y = bcosv + asinu 

z = csinv 

see also HARDY'S RULE, NEWTON-C• TES FORMULAS, where u, v E [O, 271). In the above plot, a = 0.5, b = 1.5, 

SIMPSON'S 3/8 RULE,STMPSON'S RULE,TRAPEZOIDAL and c = 1. 

RULE,~EDDLE'S RULE see also QUARTIC SURFACE 
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Bohr-Favard Inequalities 
If f has no spectrum in [-X, A], then 

llfll < Wll~ 
O” - 2A 

(Bohr 1935). A related inequality states that if Arc is 
the class of functions such that 

f(x) = f(x + 24, f(x),f’(x), = =. 7f(k-1)(4 

are absolutely continuous and s,“” f(x) dx = 0, then 

(Northcott 1939). Further, for each value of k, there is 
always a function f(x) belonging to Arc and not identi- 
cally zero, for which the above inequality becomes an in- 
equality (Favard 1936) l  These inequalities are discussed 
in Mitrinovic et ~2. (1991). 
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Bolyai-Gerwein Theorem 

see WALLACE-B~LYAI-GERWEIN THEOREM 

Bolza Problem 
Given the functional 

find in a class of arcs satisfying p differential and Q finite 
equations 

&Y(Yl,***,yn;yl~ ,“‘, Yn’) = 0 for Q = l,...,p 

$P(Yl,.* l  ,Yn) = 0 for p= l,...,q 

as well as the r equations on the endpoints 

X&/lo,...,ynr;yll, l  n  . ,Ynl) = 0 for y= l,***,T, 

one which renders U a minimum. 
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Bolzano Theorem 

see BOLZANO-WEIERSTRAB THEOREM 

Bolzano-Weierstrafl Theorem 
Every BOUNDED infinite set in R" has an ACCUMULA- 
TION POINT. For n = 1, the theorem can be stated as 
follows: If a SET in a METRIC SPACE, finite-dimensional 
EUCLIDEAN SPACE, or FIRST-COUNTABLE SPACE has 
infinitely many members within a finite interval x f 
[a, b], then it has at least one LIMIT POINT x such that 
x E [a, b]. The theorem can be used to prove the INTER- 
MEDIATE VALUE THEOREM. 

Bombieri’s Inequality 
For HOMOGENEOUS POLYNOMIALS P and Q of degree 
m and n, then 

rpm Ql2 2 J- - [P]z[Q]z, (m + n)! 
where [P . Q] 2 is the BOMBIERI NORM. Ifnz = 72, this 
becomes 

[P - Q]2 2 [P]2[Q]2* 

see also BEAUZAMY AND D~GOT'S IDENTITY, REZNIK'S 
IDENTITY 

Bombieri Inner Product 
For HOMOGENEOUS POLYNOMIALS P and Q of degree 

P, Ql = *c ( +*. Ga!)(%,*.*,i,bi, ,*.., i,). 
21 ,...,i&O 

Bombieri Norm 
For HOMOGENEOUS POLYNOMIALS P of degree m, 

see dso POLYNOMIAL BAR NORM 
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Bombieri’s Theorem 
Define 

qx; 47 a) = *(x; 4, a> - &7 (1) 

where 
(2) 

(Davenport 1980, p. 121), A(n) is the MANGOLDT 
FUNCTION, and 4(q) is the TOTIENT FUNCTION. NOW 

define 

E(x; 4) = max a lE(x; CL a> I (3) 
(a,q)=l 

where the sum is over a RELATIVELY PRIME to Q, 
(a,q) = 1, and 

E* (5 q) = max E(y, q). 
YlX 

(4) 

Bombieri’s theorem then says that for A > 0 fixed, 

x E*(w) a &Q(ln& 
s5Q 

(5) 

provided that fi(ln~)-~ 5 Q 5 &. 
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Bond Percolation 

bond percolation site percolation 

A PERCOLATION which considers the lattice edges as the 
relevant entities (left figure). 

see also PERCOLATION THEORY, SITE PERCOLATION 

Bonferroni Correction 
The Bonferroni correction is a multiple-comparison cor- 
rection used when several independent STATISTICAL 
TESTS are being performed simultaneously (since while 
a given ALPHA VALUE QI may be appropriate for each 
individual comparison, it is not for the set of all com- 
parisons). In order to avoid a lot of spurious positives, 
the ALPHA VALUE needs to be lowered to account for 
the number of comparisons being performed. 

The simplest and most conservative approach is the 
Bonferroni correction, which sets the ALPHA VALUE for 
the entire set of n comparisons equal to a by taking the 

ALPHA VALUE for each comparison equal to a/n. Ex- 
plicitly, given n tests Ti for hypotheses Hi (1 < i < n) - - 
under the assumption Ho that all hypotheses I& are 
false, and if the individual test critical values are < a/n, - 
then the experiment-wide critical value is 5 a. In equa- 
tion form, if 

P(Ti passes (Ho) 5 2 
n 

for 1 < i < n, then - - 

P(some Ti passes IHO) 5 a, 

which follows from BONFERRONI’S INEQUALITY. 

Another correction instead uses 1-(1--a)‘? While this 
choice is applicable for two-sided hypotheses, multivari- 
ate normal statistics, and positive orthant dependent 
statistics, it is not, in general, correct (Shaffer 1995). 

see UZSO ALPHA VALUE, HYPOTHESIS TESTING, STATIS- 
TICAL TEST 
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Bonferroni’s Inequality 
Let P(Ei) be the probability that Ei is true, and 

P(U yXI Ei) be the probability that El, Ez, . l  . , E, 
are all true. Then 

P 

Bonferroni Test 

see BONFERRONI CORRECTION 

Bonne Projection 

‘. 
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A MAP PROJECTION which resembles the shape of a 
heart. Let 41 be the standard parallel and X0 the central 
meridian. Then 

x = psinE (1) 

y=Rcot& -pcosR, (2) 

where 

p = coQh+qh -4 

E - (A - X0) cos@ 
- 

P ' 

The inverse FORMULAS are 

(3) 

(4) 

4 = cot(b1+&-p (5) 

x=x0+ &tan-l (cot; -y) 7’ @) 
where 

p = fJx2 + (cot $1 - y)“. (7) 
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Book Stacking Problem 
I I 

-+++ 

I 
I 1 

I 

-hi+- 

How far can a stack of ?z books protrude over the edge 
of a table without the stack falling over? It turns out 
that the maximum overhang possible CE, for n books (in 
terms of book lengths) is half the nth partial sum of the 
HARMONIC SERIES, given explicitly by 

n 1 dn = i x i = +[r + *(l+ Tit)] 
k=l 

where Q(z) is the DIGAMMA FUNCTION and y is the 
EULER-MASCHERONI CONSTANT. The first few values 
are 

dl = ; = 0.5 

d2 = ; = 0.75 

d3 = ++ =2: 0.91667 

dq = g z 1.04167, 

(Sloane’s A001008 and AOO2805). 

In order to find the number of stacked books required to 
obtain d book-lengths of overhang, solve the d, equation 
for d, and take the CEILING FUNCTION. For n = 1, 2, . . . 
book-lengths of overhang, 4,31, 227, 1674, 12367,91380, 
675214, 4989191, 36865412, 272400600, . . . (Sloane’s 
AOl4537) books are needed. 
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BOoleTs Inequality 

If Ei and Ej are MUTUALLY EXCLUSIVE for all i and j, 
then the INEQUALITY becomes an equality. 

Boolean Algebra 
A mathematical object which is similar to a BOOLEAN 
RING, but which uses the meet and join operators in- 
stead of the usual addition and multiplication operators. 
A Boolean algebra is a set B of elements a, b, . . . with 
BINARY OPERATORS + and l  such that 

la. If a and b are in the set B, then a + b is in the set 
B. 

lb. If a and b are in the set B, then a l  b is in the set 
13. 

2a. There is an element 2 (zero) such that a + 2 = a 
for every element a. 

2b. There is an element U (unity) such that a . U = a 
for every element a. 

3a. u+b=b+u 

3b. u-b= b.u 

4a. u+b.c= (u+b)(u+c) 

4b. u.(b+c)=a*b+u.c 

5. For every element a there is an element a’ such that 
u+u’=Uandu~u’=Z. 

6. There are are least two distinct elements in the set 
B. 

(Bell 1937, p* 444). 
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In more modern terms, a Boolean algebra is a SET B of 
elements a, b, l  . . with the following properties: 

1. B has two binary operations, A (WEDGE) and V 
(VEE), which satisfy the IDEMP~TENT laws 

aAa=aVa=a, 

the COMMUTATIVE laws 

aO-b/\a 

aVb=bVa, 

and the ASSOCIATIVE laws 

a A (b /\ c) = (a A b) A c 

a V (b V c> = (a V b) V c. 

2. The operations satisfy the ABSORPTION LAW 

a A (a V b) = a V (a A b) = a. 

3. The operations are mutually distributive 

a A (b V c> = (a A b) V (a A c) 

aV (b AC) = (a V b) A (a Vc). 

4. B contains universal bounds 0,1 which satisfy 

5. B has a unary operation a -+ a’ of 
which obeys the laws 

OAa=O 

OVa=a 

IAa=a 

Iva=I. 

complementation 

aVa’=I 

(Birkhoff and Mac Lane 1965). Under intersection, 
union, and complement, the subsets of any set I form a 
Boolean algebra. 

Huntington (1933a, b) presented the following basis for 
Boolean algebra, 

1. Commutivity. x + y = y + x. 

2. Associativity. (x + y) + z = x + (y + z). 

3. HUNTINGTON EQUATION. n(n(x) + y) + n(n(x) + 

n(Y)) = 5. 

H. Robbins then conjectured that the HUNTINGTON 
EQUATION could be replaced with the simpler ROBBINS 

EQUATION, 

Boolean Ring 

The ALGEBRA defined by commutivity, associativity, 
and the ROBBINS EQUATION is called ROBBINS ALGE- 
BRA. Computer theorem proving demonstrated that ev- 
ery ROBBINS ALGEBRA satisfies the second WINKLER 
CONDITION, from which it follows immediately that all 
ROBBINS ALGEBRAS are Boolean. 
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Boolean Connective 
One ofthe LOGIC operators AND A, OR V, and NOT 1. 

see also QUANTIFIER 

Boolean Function 
A Boolean function in n variables is a function 

where each xi can be 0 or I and f is 0 or 1. Determining 
the number of monotone Boolean functions of n vari- 
ables is known as DEDEKIND'S PROBLEM. The number 
of monotonic increasing Boolean functions of n variables 
is given by 2, 3, 6, 20, 168, 7581, 7828354, , . . (Sloane’s 
A000372, Beeler et al. 1972, Item 17). The number of 
inequivalent monotone Boolean functions of n variables 
is given by 2, 3, 5, 10, 30, , . . (Sloane’s A003182). 

Let M(n, k) denote th .e number of dis #tinct monotone 
Boolean functions of n variables with k mint uts. Then 

M(n,O) = 1 

M(n, 1) = 2” 

Jqn, 2) = y-y2n - 1)-3n +2” 

M(n,3) = i(2n)(2n - l)(2n - 2) - 6" + 5" +4" - 3". 
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Boolean Ring 
A RING with a unit element in which every element is 
IDEMPOTENT. 

n(n(x + y) + n(x + n(Y))) =I x- see also BOOLEAN ALGEBRA 
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Borchardt-Pfaff Algorithm 

see ARCHIMEDES ALGORITHM 

Borel-Cantelli Lemma 

Let {An}~O be a SEQUENCE of events occurring with a 
certain probability distribution, and let A be the event 

Border Square 

A MAGIC SQUARE that remains magic when its bor- 

consisting of the occurrence of a finite number of events 
A,, n = 1, . . . . Then if 

then 
P(A) = 1. 

der is removed. A nested magic square remains magic 
after the border is successively removed one ring at a 
time. An example of a nested magic square is the order 
7 square illustrated above (i.e., the order 7, 5, and 3 
squares obtained from it are all magic). 

see also MAGIC SQUARE 
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Bore1 Determinacy Theorem 
Let T be a tree defined on a metric over a set of Daths 

Kraitchik, M. “Border Squares.” 57.7 in Mathematical Recre- 
ations. New York: W. W. Norton, ppm 167-170, 1942. 

such that the distance between paths p and Q is* l/n, 
where n is the number of nodes shared by p and Q. Let 

Bordism 
A relation between COMPACT boundaryless MANIFOLDS 
(also called closed MANIFOLDS). TWO closed MANI- 

FOLDS are bordant IFF their disjoint union is the bound- 
ary of a compact (n+l)-MANIFOLD. Roughly, two MAN- 
IFOLDS are bordant if together they form the boundary 
of a MANIFOLD. The word bordism is now used in place 
of the original term COBORDISM. 

A be a Bore1 set of paths in the topology induced by this 
metric. Suppose two players play a game by choosing a 
path down the tree, so that they alternate and each time 
choose an immediate successor of the previously chosen 
point. The first player wins if the chosen path is in A. 
Then One of the players has a winning STRATEGY in this 
GAME. 

see also GAME THEORY, STRATEGY 
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Borel’s Expansion 

Let 4(t) = c;to An tn be any function for which the 
integral ” 

Bordism Group I( > x E 
sa 

e --tx t”$(t) dt 

There are bordism groups, also called C~BORDISM 0 

GROUPS or COBORDISM RINGS, and there are singu- converges. Then the expansion 
lar bordism groups. The bordism groups give a frame- 
work for getting a grip on the question, “When is a 
compact boundaryless MANIFOLD the boundary of an- I( > 

Al 
x = w  [Ao+(~+l)~ 

other MANIFOLD. 3” The answer is, p recisely when all of A2 

its STIEFEL-WHITNEY CLASSES are zero. Singular bor- +(P+l)(P+2)~+*.* 7 1 
dismgroupsgiveinsightinto STEENROD'S REALIZATION 
PROBLEM: “When can homology classes be realized as where r(z) is the GAMMA FUNCTION, is usually an 
the image of fundamental classes of manifolds?” That ASYMPTOTIC SERIES for 1(x). 
answer is known, too. 

The machinery of the bordism group winds up being Bore1 Measure 

important for HOMOTOPY THEORY as well. If F isthe BOREL SIGMA ALGEBRA onsome TOPOLOG- 
ICAL SPACE, then a MEASURE m : F -+ R is said to be 
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a Bore1 measure (or BOREL PROBABILITY MEASURE). 
For a Bore1 measure, all continuous functions are MEA- 
SURABLE. 

Bore1 Probability Measure 

see BOREL MEASURE 
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Bore1 Set Borsuk’s Conjecture 
A DEFINABLE SET derived from the REAL LINE by re- 
moving a FINITE number of intervals. Bore1 sets are 
measurable and constitute a special type of SIGMA AL- 
GEBRA called a BOREL SIGMA ALGEBRA. 

see also STANDARD SPACE 

Bore1 Sigma Algebra 
A SIGMA ALGEBRA which is related to the TOPOLOGY 
of a SET. The Bore1 sigma-algebra is defined to be 
the SIGMA ALGEBRA generated by the OPEN SETS (or 

equivalently, by the CLOSED SETS). 

see also BOREL MEASURE 

Bore1 Space 

A SET equipped with a SIGMA ALGEBRA of SUBSETS. 

Borromean Rings 

C’j) r L- 3 
Three mutually interlocked rings named after the Italian 
Renaissance family who used them on their coat of arms. 
No two rings are linked, so if one of the rings is cut, all 
three rings fall apart. They are given the LINK symbol 
06& and are also called the BALLANTINE. The Bor- 
romean rings have BRAID WORD o~%~o~%~~~%~ 
and are also the simplest BRUNNIAN LINK. 
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Borrow 
~ ~-borrows 

12 lLI 
1234 118’4 

- 789 - 789 
445 445 

The procedure used in SUBTRACTION to “borrow” 10 
from the next higher DIGIT column in order to obtain a 
POSITIVE DIFFERENCE in the column in question. 

see also CARRY 

Borsuk conjectured that it is possible to cut an n-D 
shape of DIAMETER 1 into n + I pieces each with di- 
ameter smaller than the original. It is true for n = 2, 
3 and when the boundary is “smooth.” However, the 
minimum number of pieces required has been shown to 
increase as N 1.1 ? Since l.lfi > n + 1 at n = 9162, 
the conjecture becomes false at high dimensions. In fact, 
the limit has been pushed back to N 2000. 

see also DIAMETER (GENERAL), KELLER’S CONJEC- 
TURE, LEBESGUE MINIMAL PROBLEM 
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Borwein Conjectures 
Use the definition of the ~-SERIES 

n-l 

(a; q)n = rI (1 - an9 (1) 
j=O 

and define 
(qN-MS1; q)M 

(a dm  l  

(2) 

Then P. Borwein has conjectured that (1) the PULYNO- 
MIALS An(q), Bn(q), and Cn (q) defined by 

(!?; q3)n(q2; q3)n = An(q3) - qBn(q3) - q2Cn(q3) (3) 

have NONNEGATIVE COEFFICIENTS, (2) the POLYNOMI- 

ALS K(a), CL(q)7 and Cz (q) defined by 

(q; q3)Fk12; q”>H = fG(q3) - @7*,(q3) - q2G(q3) (4 

have NONNEGATIVE COEFFICIENTS, (3) the POLYNOMI- 

ALS A:,(Q), mz), G(q), X(q)1 and E:(q) defined bY 

(q; Q5)n(Q2; Q5)n(q3; q5)n(q4; q5)n = 
A~(q5)-qB~(q5)-q2Cn*(q5)-q3D:,(q5)-q4E~(q5) (5) 
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have NONNEGATIVE COEFFICIENTS, (4)the P~LYNOMI- 

ALS &(v-wz), @t(m,n,t,q), and Gl(m,n,t,q) de- 
fined by 

(q; q3)m(q2; q3)m(ZQ; Q3)n(zq2; C13>n 

= Fz’[At(m,n,t,q3) - qBt(m,n,t,q3) 

t=o 

-q2ct (m, n, 6 q”>l (6) 

have NONNEGATIVE COEFFICIENTS, 
1 5 a 5 lc/2, consider the expansion 

(Cl”; Qk)m(4k-a; qk)n 
(k--1)/2 

u=(l-k)/2 

with 

Bound Variable 
An occurrence of a variable in a LOGIC which is not 
FREE. 

Boundary 
The set of points, known as BOUNDARY POINTS, which 
are members of the CLOSURE of a given set S and the 
CLOSURE of its complement set. The boundary is some- 
times called the FRONTIER. 

see also SURGERY 

5) for !C ODD and 
Boundary Conditions 
There are several types of boundary conditions com- 
monly encountered in the solution of PARTIAL DIFFER- 
ENTIAL EQUATIONS. 

“2-a”F,(qk) (7) 

/1‘ ‘- 
j=-m 

(8) 

thenif ais RELATIVELY PRIME tokand m = n, the CO- 
EFFICIENTS of F,(q) are NONNEGATIVE, and (6) given 
Q + p < 2’K and -K + p 5 n - m < K - QI, consider - 

x (9) 

the GENERATING FUNCTION for partitions inside an mx 
n rectangle with hook difference conditions specified by 
QI, p, and K. Let Q: and p be POSITIVE RATIONAL 
NUMBERS and K > 1 an INTEGER such that aK and 
PK are integers. Then if 1 5 a+P 5 2K- 1 (with strict 
inequalities for K = 2) and -K + /3 5 n - m 5 K - QI, 
then G(cY, /?,K;q) has NONNEGATIVE COEFFICIENTS. 

see also q-SERIES 

References 
Andrews, G. E. et al. “Partitions with Prescribed Hook Dif- 

ferences.” Europ. J. Combin. 8, 341-350, 1987. 
Bressoud, D. M. “The Borwein Conjecture and Partitions 

with Prescribed Hook Differences.” Electronic J. Com- 
binatorics 3, No. 2, R4, l-14, 1996. http://vww. 
combinatorics. org/Volume3/volume3-2. html#R4. 

Bouligand Dimension 

see MINKOWSKI-BOULXAND DIMENSION 

Bound 

1. DIRICHLET BOUNDARY CONDITIONS specify the 
value of the function on a surface T = f(r, t). 

2. NEUMANN BOUNDARY CONDITIONS specify the nor- 
mal derivative of the function on a surface, 

3. 

dT 
d7E = ii - VT = f (r, y). 

CAUCHY BOUNDARYCONDITIONS 
average of first and second kinds. 

specify a weighted 

4. ROBIN BOUNDARY CONDITIONS. For anelliptic par- 
tial differential equation in a region R, Robin bound- 
ary conditions specify the sum of QIU and the normal 
derivative of u = f at all points of the boundary of 
0, with QI and f being prescribed. 

see also BOUNDARY VALUE PROBLEM, DIRICHLET 
BOUNDARY CONDITIONS, INITIAL VALUE PROBLEM, 
NEUMANN BOUNDARY CONDITIONS, PARTIAL DIFFER- 
ENTIAL EQUATION, ROBIN BOUNDARY CONDITIONS 

References 
A&en, G. Mathematical Methods for Physicists, 3rd ed. Or- 

lando, FL: Academic Press, pp, 502-504, 1985. 
Morse, P. M. and Feshbach, H. “Boundary Conditions and 

Eigenfunctions.” Ch. 6 in Methods of Theoretical Physics, 
Part I, New York: McGraw-Hill, pp. 495-498 and 676-790, 

Boundary Map 
The MAP Hn(X,A) + H,-l(A) appearing in the LONG 
EXACT SEQUENCE OF A PAIR AXIOM. 

see also LONG EXACT SEQUENCE OF A PAIR AXIOM 

Boundary Point 
A point which is a member of the CLOSURE of a given 
set S and the CLOSURE of its complement set. If A is a 
subset of Iw”, then a point x E IP is a boundary point 
of A if every NEIGHBORHOOD of x contains at least one 
point in A and at least one point not in A. 

see also BOUNDARY 

see GREATEST LOWER BOUND, INFIMUM, LEAST UP- 
PER BOUND,~UPREMUM 
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Boundary Set 
A (symmetrical) boundary set of RADIUS T and center 

x0 is the set of all points x such that 

Ix-x01 =r. 

Let x0 be the ORIGIN. In @, the boundary set is then 
the pair of points II: = T and =1: = --T. In Iw2, the 

boundary set is a CIRCLE. In R3, the boundary set 
is a SPHERE. 

see also CIRCLE, DISK, OPEN SET, SPHERE 

Boundary Value Problem 
A boundary value problem is a problem, typically an 
ORDINARY DIFFERENTIAL EQUATION or a PARTIAL 
DIFFERENTIAL EQUATION, which has values assigned 

on the physical boundary of the DOMAIN in which the 
problem is specified. For example, 

d2u 3F 
I- 

- V2u = f in n 

u(0, t) = IL1 on 80 
8th 

(0 t) 8t ’ = u2 on &I, 

where dCJ denotes the boundary of a, is a boundary 
problem. 

see also BOUNDARY 
PROBLEM 

CONDITIONS, INITIAL VALUE 

References 
Eriksson, K.; Estep, D.; Hansbo, P.; and Johnson, C. Compu- 

tationai Differential Equations. Lund: Studentlitteratur, 
1996. 

Press, W. H.; Flannery, B. I?; Teukolsky, S. A.; and Vetter- 
ling, We T. “Two Point Boundary Value Problems.” Ch. 17 
in Numerical Recipes in FORTRAN: The Art of Scientific 
Computing, 2nd ed. Cambridge, England: Cambridge Uni- 
versity Press, pp. 745-778, 1992. 

Bounded 
A SET in a METRIC SPACE (X,d) is bounded if it has 

a FINITE diameter, i.e., there is an R < 00 such that 

d(x, y) < R for all 2, y E X. A SET in Ik” is bounded if - 
it is contained inside some BALL xl2 + . . . + xn2 < R2 
of FINITE RADIUS R (Adams 1994). 

see also BOUND, FINITE 

Bourget Function 

Jn,&)= -$/tmnB1 (t+i)kexp [$(t- i)] dt 

1 = -- - 
s 7r 0 

(2 cos 0)” cos(n0 - z sine) d0. 

see also BESSEL FUNCTION OF THE FIRST KIND 

References 
Hazewinkel, M. (Managing Ed.). Encyclopaedia of Math- 

ematics: An Updated and Annotated Translation of the 
Soviet “Mathematical Encyclopaedia. ” Dordrecht, Nether- 
lands: Reidel, p. 465, 1988. 

Bourget’s Hypothesis 
When n is an INTEGER > 0, then J&z) and Jn+m(z) - 
have no common zeros other than at z = 0 for nz an 
INTEGER > 1, where J&T) is a BESSEL FUNCTION OF - 
THE FIRST KIND. The theorem has been proved true 
for m=l 2, 3, and 4. 

References 
Watson, G. N. A Treatise on the Theory of Bessel Functions, 

2nd ed. Cambridge, England: Cambridge University Press, 
1966. 

Boustrophedon Transform 
The boustrophedon (“ox-plowing”) transform b of a se- 
quence a is given by 

for n > 0, where 
NUMBER 

E, is a SECANT NUMBER or TANGENT 
defined bY 

ak&-k (1) 

Un = f-(-l)“” (;) &En.-I, (2) 
k=O 

00 

>: 
En%= set 61: + tan 2. 

. 
n=O 

(3) 

The exponential generating functions of a and b are 
related by 

B(x) = (sect: + tanx)d(x), (4 
References 
Adams, R. A. Calculus: A Complete Course, Reading, MA: 

Addison-Wesley, p. 707, 1994. 
where the exponential generating function is defined by 

Bounded Variation 
A FUNCTION f( z is said to have bounded variation if, ) 
over the CLOSED INTERVAL it: E [a, b], there exists an M 

such that 

lf(~i>-f(~>I+lf(~2)-f(21)1+. . ~+lfwf(~~-1)1 I M 

A(r)=pAn$. . n=o 
(5) 

see also ALTERNATING PERMUTATION, ENTRINGER 
NUMBER, SECANT NUMBER, SEIDEL~NTRINGER- 
ARNOLD TRIANGLE,TANGENT NUMBER 

References 

for all a < xi < x2 < . . . < xnml < b. 
Millar, J.; Sloane, N. J. A.; and Young, N. E. “A New Op- 

eration on Sequences: The Boustrophedon Transform+” J. 
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Sovinum Problema 

see ARCHIMEDES’ CATTLE PROBLEM 

Bow 

x4 = x2y - y3. 

References 
Cundy, H. and Rollett, A. Mathematical Models, 3rd ed. 

Stradbroke, England: Tarquin Pub., p 72, 1989. 

Bowditch Curve 

see LISSAJO~S CURVE 

Bowley Index 
The statistical INDEX 

PB = $(PL- +pp), 

where pi is LASPEYRES' INDEX and Pp is PAASCHE'S 
INDEX. 

see also INDEX 

References 
Kenney, J. F. and Keeping, E. S. Mathematics of Statistics, 

Pt. 1, 3rd ed. Princeton, NJ: Van Nostrand, p, 66, 1962. 

Bowley Skewness 
Ah known as QUARTILE SKEWNESS COEFFICIENT, 

(Q3 - Q2) - (Q2 - QI) _ QI - 2Q2 + Q3 

QrQl) - Qs-Ql ’ 

where the Qs denote the INTERQUARTILE RANGES. 

see also SKEWNESS 

Bowling 
Bowling is a game played by rolling a heavy ball down 
a long narrow track and attempting to knock down ten 
pins arranged in the form of a TRIANGLE with its vertex 
oriented towards the bowler. The number 10 is, in fact, 
the TRIANGULAR NUMBER T4 = 4(4 + 1)/2 = 10. 

Two “bowls” are allowed per “frame.” If all the pins are 
knocked down in the two bowls, the score for that frame 
is the number of pins knocked down. If some or none of 
the pins are knocked down on the first bowl, then all the 
pins knocked down on the second, it is called a “spare,” 
and the number of points tallied is 10 plus the number 
of pins knocked down on the bowl of the next frame. 
If all of the pins are knocked down on the first bowl, 
the number of points tallied is 10 plus the number of 

pins knocked down on the next two bowls. Ten frames 
are bowled, unless the last frame is a strike or spare, in 
which case an additional bowl is awarded. 

The maximum number of points possible, corresponding 
to knocking down all 10 pins on every bowl, is 300. 

References 
Cooper, C. N. and Kennedy, R. E. “A Generating Function 

for the Distribution of the Scores of All Possible Bowl- 
ing Games.” In The Lighter Side of Mathematics (Ed. 
R. K. Guy and R. E. Woodrow). Washington, DC: Math. 
Assoc. Amer., 1994. 

Cooper, C. N. and Kennedy, R. E. “Is the Mean Bowling 
Score Awful. 7” In The Lighter Side of Mathematics (Ed. 
R. K. Guy and R. E. Woodrow). Washington, DC: Math. 
Assoc. Amer., 1994. 

Box 

see CUBOID 

Box-and-Whisker Plot 

i + 

@!I . . . . 
A HISTOGRAM-like method of displaying data invented 
by J. Tukey ,(1977). Draw a box with ends at the QUAR- 

TILES Q1 and Q3. Draw the MEDIAN as a horizontal 
line in the box. Extend the “whiskers” to the farthest 
points. For every point that is more than 3/2 times the 
INTERQUARTILE RANGE from the end of a box, draw a 
dot on the corresponding top or bottom of the whisker. 
If two dots have the same value, draw them side by side. 

References 
Tukey, J. W. Explanatory Data Analysis. Reading, MA: 

Addison-Wesley, pp. 39-41, 1977. 

Box Counting Dimension 

see CAPACITY DIMENSION 

Box Fractal 

l xx 
A FRACTAL which can be constructed using STRING 

REWRITING by creating a matrix with 3 times as 
many entries as the current matrix using the rules 

line 1: tt*lIr,>ti* *If Ii II,>II II 3 
line 2: I I*) , tr ,>i l  *  I I  I I  

I  

t r , > t t  I I  

line 3: f t * t l , ) l t *  * I I  ,  I I  tt,>ll I t  
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Let Nn be the number of black boxes, L, the length of 
a side of a white box, and A, the fractional AREA of 
black boxes after the nth iteration. 

N-b = 5” (1) 
L, z (i)” = n 

A, = Ln2Nn “(i,? 

(2) 

(3) 

The CAPACITY DIMENSION is therefore 

see also CANTOR DUST, SIERPI~~SKI CARPET, 
SKI SIEVE 

d 
In N, 

= - lim - - - yrn W”) - cap 
72300 lnL, - n>m ln(3-“) 

In 5 - - 
In 3 

= 1.464973521.. q. 

References 

(4 

* Weisstein, E. W. "l?ract als." http://www. 
edu/#eww6n/mat ,h/notebooks/Fractal ,m. 

astro,virginia. 

Box-Muller Transfwmation 
A transformation which transforms from a 2-D contin- 
uous UNIFORM DISTRIBUTION to a 2-D GAUSSIAN BI- 
vmwrE DISTRIBUTION (or COMPLEX GAussIAN DIS- 
TRIBUTION). If ~1 and z2 are uniformly and indepen- 
dently distributed between 0 and 1, then zr and z2 as de- 
fined below have a GAUSSIAN -DISTRIBUTION with MEAN 
p = 0 and VARIANCE o2 = 1. 

21 = d-2 ln X:1. cos(2~22) (1) 

252 = J-2 In zl sin(2rs2). (2) 

This can be verified by solving for ~1 and ~2, 

x1 = e -(r12+r22)/2 

1 
x:2 = Ytan 

-1 x2 

~ 27T ( > 
- . 
Xl 

(3) 

(4) 

Taking the JACOBIAN yields 

Box-Packing Theorem 
The number of “prime” boxes is always finite, where a 
set of boxes is prime if it cannot be built up from one 
or more given configurations of boxes. 

see also CONWAY PUZZLE, CUBOID, DE BRUIJN'S THEO- 
REM, KLARNER'S THEOREM, SLOTHOUBER-GRAATSMA 
PUZZLE 

References 
Honsberger, R. Mathematical Gems II. Washington, DC: 

Math. Assoc. Amer., p. 74, 1976. 

Boxcar Function 

where H is the HEAVISIDE STEP FUNCTION. 

References 
von Seggern, D. CRC Standard Curves 

Raton, FL: CRC Press, p. 324, 1993. 
Surfaces. Boca 

Boxcars 
A roll of two 6s (the highest roll possible) on a pair of 
6-sided DICE. The probability of rolling boxcars is l/36, 
or 2.777. . . %. 

see also DICE, DOUBLE SIXES, SNAKE EYES 

Boy Surface 
A NONORIENTABLE SURFACE which is one of the three 
possible SURFACES obtained by sewing a MOBIUS STRIP 
to the edge of a DISK. The other two are the CROSS- 
CAP and ROMAN SURFACE. The Boy surface is a model 
of the PROJECTIVE PLANE without singularities and is 
a SEXTIC SURFACE. 

The Boy surface can be described using the general 
method for NONORIENTABLE SURFACES, but this was 
not known until the analytic equations were found by 
Apery (1986). B ased on the fact that it had been proven 
impossible to describe the surface using quadratic poly- 
nomials, Hopf had conjectured that quartic polynomials 
were also insufficient (Pinkall 1986). Ap&y’s IMMER- 
SION proved this conjecture wrong, giving the equations 
explicitly in terms of the standard form for a NONORI- 
ENTABLE SURFACE, 

f&y+) = +[(2x2-y2-r2)(x2+Y2+z2) 

+ 2yz(y2 - z”) + =(x2 - z2) 

+ XY(Y2 - x2)1 (1) 
f2 (x9 Y? 4 = yd[(y” - z2)(x2 + y2 + z”> 

+ xz(x2 - x2) + xy(y2 - x2)] (2) 

f3(GYG4 - i(x + y + x)[(x + y + 4" 

+qY-+-Y)(x-~>l. (3) 



Boy Surface Boy Surface 

Plugging in In Iw4, the parametric representation is 

x = cosusinw (4) 
y = sinusinv (5) 

z= cos zt (6) 

and letting u E [0, ;TT] and v E [0, 7r] then gives the Boy 
surface, three views of which are shown above. 

The EC3 parameterization can also be written as 

X= 
ficos2 v cos(221) + cosusin(2v) 

2 - JZsin(3u) sin(2v) 
(7) 

Y== 
Jz cos2 21 sin( 2u) + cos u sin( 2v) 

2 - fisin(3u) sin(2w) 
(8) 

3 cos2 v 

’ = 2 - fisin(3u) sin(2v) 

(Nordstrand) for u E [-~/2,x/2] and 

(9) 

21 E [o,;rr]. 

Three views of the surface obtained using this parame- 
terization are shown above. 

In fact, a HOMOTOPY (smooth deformation) between 
the ROMAN SURFACE and Boy surface is given by the 
equations 

x(21, w) = 
&kos(2u) cos2 v + cos u sin(2v) 

2 - a&in(3u) sin(2w) 
(10) 

Y(% v) = 
JZsin(2u) cos2 v - sinusin(2v) 

2 - alfisin(3u) sin(2v) 
(11) 

z(u,v) = 
3 cos2 v 

2 - aJz sin(3u) sin( 2w) 

as a varies from 0 to 1, where QI = 0 corresponds to the 
ROMAN SURFACE and or = 1 to the Boy surface (Wang), 
shown below. 
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x0 = 3[(u2 + v2 + w2)(u2 + II”) - J2vw(3u2 - v2)] 

(13) 

Xl = J2 (u” + u2)(u2 - t12 + duw) (14) 
x2 = J2(u2 + v2)(2uv - Jzvw) (15) 
x3 = 3(u2 + v2)2, (16) 

and the algebraic equation is 

64(x0 - x3)3~33 - 48(x0 - x3)2x32(3x12 + 32~~ + 2~3~) 

+12(x0 - x&[Z~(X~~ + x22)2 - 24xa2(x12 + x22) 

+362/22223(~2~ - 3x1~) + ~3~1 

+(9x12 + 9xz2 - 2~3~) 

x [-81(x12 + ~2~)~ - 72xa2(x12 + x2”) 

+lO8dS~1~3(~1~ - 32~~) + 4x34] = 0 (17) 

(Apkry 1986). Letting 

x0 = 1 (18) 

Xl =x (19) 

x2 =y (20) 

x3 = z (21) 

gives another version of the surface in Ik3. 

see also CROSS-CAP, IMMERSION, M~~BIUS STRIP, 
NONORIENTABLE SURFACE, REAL PROJECTIVE PLANE, 
ROMAN SURFACE, SEXTIC SURFACE 

References 
Ap&y, F. “The Boy Surface.” Adv. Math. 61, 185-266, 1986. 
Boy, W. “Uber die Curvatura integra und die Topologie 

geschlossener F&hen.” Math. Ann 57, 151-184, 1903. 
Brehm, U. “How to Build Minimal Polyhedral Models of the 

Boy Surface.” Math. Intell. 12, 51-56, 1990. 
Carter, J. S. “On Generalizing Boy Surface-Constructing a 

Generator of the 3rd Stable Stem.” Trans. Amer. Math. 
Sot. 298, 103-122, 1986, 

Fischer, G. (Ed.). Plates 115-120 in Muthematische Mod- 
eZle/Muthematical Models, Bildband/Photograph Volume. 
Braunschweig, Germany: Vieweg, pp. 110-115, 1986. 

Geometry Center. “Boy’s Surface.” http : //www . geom .umn. 
edu/zoo/toptype/pplanne/boy/. 

Hilbert, D. and Cohn-Vossen, S. $46-47 in Geometry and the 
Imagination. New York: Chelsea, 1952. 

Nordstrand, T. “Boy’s Surface.” http://www.uib.no/ 
people/nf ytn/boytxt . htm. 

Petit, J.-P. and Souriau, J. “Une reprksentation analytique 
de la surface de Boy.” C. R. Acad. Sci. Paris S&r. I Math 
293, 269-272, 1981. 

Pinkall, U. Mathematical IModels from the Collections of Uni- 
versities and Museums (Ed. G. Fischer). Braunschweig, 
Germany: Vieweg, pp. 64-65, 1986. 

Stewart, I. Game, Set and Math. New York: Viking Penguin, 
1991. 

Wang, P. “Renderings .” http://www.ugcs.caltech.edu/ 
-peterw/portfolio/renderings/. 



164 Bra 

Bra 
A (C~VARIANT) I-VECTOR denoted ($1. The bra is 
DUALLY the CONTRAVARIANTKET, denoted I$), Taken 

together, the bra and KET form an ANGLE BRACKET 
(bra+ket = b racket). The bra is commonly encountered 
in quantum mechanics. 

see ah ANGLE BRACKET, BRACKET PRODUCT, Co- 
VARIANTVECTOR,DIFFERENTIAL !+FoRM,KET,ONE- 
FORM 

Brachistochrone Problem 
Find the shape of the CURVE down which a bead sliding 
from rest and ACCELERATED by gravity will slip (with- 
out friction) from one point to another in the least time. 
This was one of the earliest problems posed in the CAL- 
CULUS OF VARIATIONS. The solution, a segment of a 

CYCLOID, was found by Leibniz, L’Hospital, Newton, 
and the two Bernoullis. 

The time to travel from a point pl to another point I’2 
is given by the INTEGRAL 

s 2 ds 
t12 = ;. 

1 

(1) 

The VELOCITY at any point is given by a simple appli- 

cation of energy conservation equating kinetic energy to 
gravitational potential energy, 

+v2 = mgy, 

SO 

v= J2sv* 

Plugging this into (1) then gives 

2 m - t12 _ 

s 1 d% 
dx=12/zdx. 

The function to be varied is thus 

f = (1 + y’2)1’2(2gy)-1’2. 

(2) 

(3) 

(4) 

(5) 

To proceed, one would normally have to apply the full- 

blown EULER-LAGRANGE DIFFERENTIAL EQUATION 

= 0. (6) 

However, the function f(y, y’,zc) is particularly nice 
since x does not appear explicitly. Therefore, 8f /ax = 
0, and we can immediately use the BELTRAMI IDENTITY 

f-Y/g = c. I 

Computing 

(7) 

Brachistochrone Problem 

subtracting y’(af /ay’) from f, and simplifying then 
gives 

Squaring both sides and rearranging slightly results in 

(10) 

where the square of the old constant C has been ex- 
pressed in terms of a new (POSITIVE) constant K2. This 
equation is solved by the parametric equations 

2 = $“(8 - sin@) (11) 

y = $k2(1 - cosq, (12) 

which are-lo and behold-the equations of a CYCLOID. 

If kinetic friction is included, the problem can also be 
solved analytically, although the solution is significantly 

messier. In that case, terms corresponding to the normal 
component of weight and the normal component of the 

ACCELERATION (present because of path CURVATURE) 
must be included. Including both terms requires a con- 
strained variational technique (Ashby et al. 1975), but 
including the normal component of weight only gives an 
elementary solution. The TANGENT and NORMAL VEC- 
TORS are 

(13) 

dy, dx A 
N=-z~+clsy, (14) 

gravity and friction are then 

F gravity = mgy (15) 

F friction = --CL(F gravityr;J)T = -pmg$, (16) 

and the components along the curve are 

F gravity+ 
dY 

= mg  ds (17) 

dx 

so Newton’s Second Law gives 

dw dY dx 
mdt = mg-& - w-v-& (19) 

But 
dv dv 1 d 

dt 
=21x = &v2) 

+” = dY - 4 

(20) 

(21) 

g = y’(1+ y’2)-1’2(2gy)-1’2, (8) 
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SO 

(23) 

Using the EULER-LAGRANGE DIFFERENTIAL EQUATION 
gives 

[1+ y’2](l + py’) + qy - px)y’l = 0. (24 

This, can be reduced to 

1+(y’12 _ c 
(1+ /q/q2 - Y - PX’ (25) 

Now letting 
y' z cot(@), (26) 

the solution is 

2= $“[@I - sin@ + ~(1 - COSB)] (27) 

y = fk2[(1 - cod) + ~(0 + sin@)]. (28) 

see also CYCLOID,TAUTOCHRONE PROBLEM 
-  a 
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Bracket 

see ANGLE BRACKET, BRA, BRACKET POLYNOMIAL, 
BRACKET PRODUCT, IVERSON BRACKET, KET, LA- 

GRANGE BRACKET,~OISSON BRACKET 

Bracket Polynomial 
A one-variable KNOT POLYNOMIAL related to the JONES 
PO'LYNOMIAL. The bracket polynomial, however, is not 
a topological invariant, since it is changed by type I REI- 
DEMEISTER MOVES. However, the SPAN of the bracket 
polynomial is a knot invariant. The bracket polynom- 
ial is occasionally given the grandiose name REGULAR 
ISOTOPY INVARIANT. It is defined by 

(L) (A, B,d) E x (LIo) d”““, 
u 

(1) 

where A and B are the “splitting variables,” g runs 
through all “St at es” of L obtained by SPLITTING the 
LINK, (Lla) is the product of “splitting labels” corre- 
sponding to 0, and 

where NL is the number of loops in O-. Letting 

(3) 

(4 

gives a KNOT POLYNOMIAL which is invariant under 
REGULAR ISOTOPY, and normalizing gives the KAUFF- 
MAN POLYNOMIAL X whichisinvariantunder AMBIENT 
ISOTOPY. The bracket POLYNOMIAL of the UNKNOT is 
1. Thebracket POLYNOMIAL ofthe MIRROR IMAGE K* 
is the same as for K but with A replaced by A? In 
terms of the one-variable KAUFFMAN POLYNOMIAT, X, 
the two-variable KAUFFMAN POLYNOMIAL F and the 
JONES POLYNOMIAL V, 

X(A) = (-A3)-“(L) (L), (5) 

(L) (A) = F(-A3, A + A-l) (6) 

W) (A) = VW4), (7) 

where w(L) is the WRITHE of L. 

see UZSO SQUARE BRACKET POLYNOMIAL 
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Bracket Product 
The INNER PRODUCT in an L2 SPACE represented by an 
ANGLE BRACKET. 

see also ANGLE BRACKET, BRA, KET, L2 SPACE, ONE- 
FORM 

Bracketing 
Take x itself to be a bracketing, then recursively de- 
fine a bracketing as a sequence B = (Bl, . . . , Bk) where 
C; > 2 and each Bi is a bracketing. A bracketing can be - 
represented as a parenthesized string of xs, with paren- 
theses removed from any single letter x for clarity of 
notation (Stanley 1997). Bracketings built up of binary 
operations only are called BINARY BRACKETING% For 
example, four letters have 11 possible bracketings: 

xxxx ( > xx xx x(xx)x xx(xx) 

(x2x)x x(xxx) ((xx)x)x (x(xx))x 

(4 (xx> xW)x) x(x(x4) 9 

the last five of which are binary. 

The number of bracketings on n letters is given by the 
GENERATING FUNCTION 

&-6x+x2)= 1870 

> 

Stanley lg;7;xz +3x3 +11x4 +45x5 

and the RECURRENCE 
RELATION 

sn = 
3(2n - 3)s,4 - (n - 3)5,-z 

n 
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QUADRILATERAL (i.e., a QUADRILATERAL inscribed in 
a CIRCLE), A + B = Z, SO 

(Sloane), giving the sequence for sn as 1, 1, 3, 11, 45, 
197, 903, l  l  . (Sloane’s AOOlO03). The numbers are also 
given by 

sn = x s(i1)*-s(k) 
il+...+i&=n 

K = &=ijcs - b)(s - c)(s - d) (3) 

&IC + ad)(ac + bd)(ab + cd) - - 
4R 

1 (4) 
for n > 2 (Stanley 1997). - 

where R is the RADIUS of the CIRCUMCIRCLE. If the 
QUADRILATERAL is INSCRIBED inone CIRCLE and CIR- 
CUMSCRIBED onanother,thenthe AREA FORMULA sim- 
plifies to 

K=da. (5) 

The first PLUTARCH NUMBER 103,049 is equal to ~10 
(Stanley 1997), suggesting that Plutarch’s problem of 
ten compound propositions is equivalent to the number 
of bracketings. In addition, Plutarch’s second number 
310,954 is given by (sio + srr)/2 = 310,954 (Habsieger 
et al. 1998). 

see also BINARY BRACKETING,~LUTARCH NUMBERS 
see also BRETSCHNEIDER'S FORMULA, HERON'S FOR- 
MULA 
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Habsieger, L., * Kazarian, M.; and Lando, S. “On the Second 

Number of Plutarch.” Amer. Math. Monthly 105, 446, 

1998. 
Schriider, E. “Vier combinatorische Probleme.” 2. Math. 

Physik 15, 361-376, 1870. 
Sloane, N. J. A. Sequence A001003/M2898 in “An On-Line 

Version of the Encyclopedia of Integer Sequences.” 
Stanley, R. P. “Hipparchus, Plutarch, Schrijder, and Hough.” 

Amer. Math. Monthly 104, 344-350, 1997. 

References 
Coxeter, H. S. M, and Greiteer, S. L. Geometry Revisited. 

Washington, DC: Math. Assoc. Amer., pp. 56-60, 1967. 
Johnson, R. A. Modern Geometry: An Elementary Treatise 

on the Geometry of the Triangle and the Circle. Boston, 
MA: Houghton Mifflin, pp. 81-82, 1929. 

Brahmagupta Identity 
Let 

Bradley’s Theorem 
Let where B is the BRAHMAGUPTA MATRIX, then 

det[B(zl, pi)B(xz, yz)] = det[B(~ ~111 WBh ydI 
- - PP 1 2. 00 

m c r(m + j(x + l))r(P + 1 + 24 (4 + j 
j=O 

l?(m+jz+l)r(a+p+1+j(a+Q 9 
References 
Suryanarayan, E. R. “The Brahmagupt a Polynomials .” Fib. 

Quart. 34, 30-39, 1996. and QI be a NEGATIVE INTEGER. Then 

Brahmagupta Matrix S(QI, P, m; 4 = 
r(P + 1 - m) 

r(a+p+l-m)’ 

where r(z) is the GAMMA FUNCTION. 

References It satisfies 
Berndt, B. C. Ramanujan’s Notebooks, Part IV. New York: 

Springer-Verlag, pp. 346-348, 1994. 
Bradley, D. “On a Claim by Ramanujan about Certain Hy- 

pergeometric Series.” Proc. Amer. Math. Sot. 121, 1145- 
1149, 1994. 

B(a,y$3(~2, ~2) = B( 21x2 * ty1y2,wyz * YlX2). 

Powers of the matrix are defined by 

Brahmagupta’s Formula 
For a QUADRILATERAL with sides of length a, b, c, and 
d, the AREA K is given by 

The zn and yn are called BRAHMAGUPTA POLYNOMI- 
ALS. The Brahmagupta matrices can be extended to 
NEGATIVE INTEGERS 

(s - a)(s - b)(s - c)(s - d) - abcdcos2[$(A + B)], 

(1) B-“= [; ;I-‘= [;“, ,“I,] EB-,. 

where 
SE +(a+b+c+d) (2) 

see U~SO BRAHMAGUPTA IDENTITY 

References 
Suryanarayan, E. R. “The Brahmagupta Polynomials.” Fib. 

Quart. 34, 30-39, 1996. 
is the SEMIPERIMETER, A is the ANGLE between a and 
d, and B is the ANGLE between b and c. For a CYCLIC 
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Brahmagupta Polynomial 
One of the POLYNOMIALS obtained by taking POWERS 
of the BRAHMAGUPTA MATRIX. They satisfy the recur- 
rence relation 

Xn+l = XXn + tyyn (1) 

Yn+l = Xyn + YXn. (2) 

A list of many others is given by Suryanarayan (1996). 
Explicitly, 

Xn=o”+t(~)Xn~‘TJ2+t2(~)Xn~4~4+~mm 

yn=nXn-1y+t(~)Xn-3y3+t2(~)Xn-5y5 

The Brahmagupta POLYNOMIAIJ satisfy 

dXn @In - - -- 
ax - dy 

- T&Xn-1 

dxn = ,aYn 

dY dY 
= nt?Jn-l. 

The first few POLYNOMIALS are 

x0 = 0 

Xl =x 

x2 = x2 + ty2 

x3 = x3 + 3txy2 

x4 = x4 + 6tx2y2 + t2y4 

Yo =0 

Yl = Y 

y2 = 2xy 

y3 = 3x2y + ty3 

y4 = 4x3y + 4txy3. 

(5) 

(6) 

Taking x =y=landt= 2 gives yn equal to the PELL 
NUMBERS and xn equal to half the Pell-Lucas num- 
bers. The Brahmagupta POLYNOMIALS are related to 
the MORGAN-VOYCE POLYNOMIALS, but the relation- 
ship given by Suryanarayan (1996) is incorrect. . 

References 
Suryanarayan, E. R. “The Brahmagupta Polynomials.” Fib. 

Quart. 34, 30-39, 1996. 

Brahmagupta’s Problem 
Solve the PELL EQUATION 

X2 - 92y2 = 1 

in INTEGERS. The smallest solution is x = 1151, y = 
120. 

see also DIOPHANTINE EQUATION, PELL EQUATION 

Braid 
An intertwining of strings attached to top and bottom 
“bars” such that each string never “turns back up.” In 
other words, the path of a braid in something that a 
falling object could trace out if acted upon only by grav- 
ity and horizontal forces. 

see also BRAID GROUP 

References 
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Braid Group 
Also called ARTIN BRAID GROUPS. Consider n strings, 
each oriented vertically from a lower to an upper “bar.” 
If this is the least number of strings needed to make a 
closed braid representation of a LINK, n is called the 
BRAID INDEX. Now enumerate the possible braids in a 
group, denoted Bn. A general n-braid is constructed by 
iteratively applying the oi (; = 1,. . . , n - 1) operator, 
which switches the lower endpoints of the ith and (; + 
1) th strings--keeping the upper endpoints fixed-with 
the (i + 1)th string brought above the ith string. If the 
(i + 1)th string passes below the ith string, it is denoted 

- 
fT l i ’ 

1 2 i+l i+l 

Topological equivalence for different representations of 

a BRAID WORD ni pi and Hi 0: is guaranteed by the 
conditions 

as first proved by E. Artin. Any n-braid is expressed as 
a BRAID WORD, e.g., uIuz~~c~~ -‘al is a BRAID WORD 

for the braid group B3* When the opposite ends of the 
braids are connected by nonintersecting lines, KNOTS 
are formed which are identified by their braid group and 
BRAID WORD. The BURAU REPRESENTATION gives a 
matrix representation of the braid groups. 
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Braid Index 
The least number of strings needed to make a closed 
braid representation of a LINK. The braid index is equal 
to the least number of SEIFERT CIRCLES in any projec- 
tion of a KNOT (Yamada 1987). Also, for a nonsplit- 
table LINK with CROSSING NUMBER c(L) and braid in- 
dex i(L), 

c(L) 2 2[i(L) - l] 

(Ohyama 1993). Let E be the largest and e the small- 
est POWER of e in the HOMFLY POLYNOMIAL of an 
oriented LINK, and i be the braid index. Then the 
MORTON-FRANKS-WILLIAMS INEQUALITY holds, 

i> i(E-e)+l 

(Franks and Williams 1987). The inequality is sharp for 
all PRIME KNOTS up to 10 crossings with the exceptions 

of09042, 09049, 10132, 10150, and 10156. 

References 
Franks, J. and Williams, R. F. “Braids and the Jones Poly- 

nomial.” Trans. Amer. ikth, Sot. 303, 97-108, 1987. 
Jones, V. F. R. “Hecke Algebra Representations of Braid 
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the Braid Index of a Link.” Invent. 1Muth. 89, 347-356, 
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Braid Word 
Any n-braid is expressed as a braid word, e.g., 

m~2~3~2 %I is a braid word for the BRAID GROUP B3. 
By ALEXANDER'S THEOREM, any LINK is representable 
by a closed braid, but there is no general procedure for 
reducing a braid word to its simplest form. However, 
MARKOV'S THEOREM gives a procedure for identifying 
different braid words which represent the same LINK. 

Let b+ be the sum of POSITIVE exponents, and b- the 
sum of NEGATIVE exponentsinthe BRAID GROUP B,. 
If 

b+ - 3b- - n + 1 > 0, 

then the closed braid b is not AMPHICHIRAL (Jones 
1985). 

see also BRAID GROUP 

References 
Jones, V. F. R. “A Polynomial Invariant for Knots via von 

Neumann Algebras.” Bull. Amer. Math. Sot. 12, 103-111, 
1985. 

Jones, V. F. R. ‘(Hecke Algebra Representations of Braid 
Groups and Link Polynomials.” Ann. Math. 126, 335- 
388,1987. 

Branch Point 

Braikenridge-Maclaurin Construction 
The converse of PASCAL’S THEOREM. Let Al, B2, Cl, 
AZ, and & be the five points on a CONIC. Then the 
CONIC is the LOCUS of the point 

C2 = A+ 4 C1A2). BI(Z l  C1B2), 

where x is a line through the point A& l  &AZ* 

see also PASCAL'S THEOREM 

Branch 
The segments of a TREE between the points of connec- 
tion (FORKS). 

see also FORK, LEAF (TREE) 

Branch Cut 

Re[Sqrt 21 Im[Sqrt zl lsqrt 21 

Alineinthe COMPLEX PLANE acrosswhicha FUNCTION 
is discontinuous. 

function 

cos-l x 
cash-’ 
cot-l z 
coth-’ 
csc -l z 
csch-’ 
In z 
set -l z 
sech-’ 
sin-l z 
sinh-’ 

6 z 
tan-l z 
tanh-’ 
zn,n g z 

branch cut(s) 

(-00, -1) and (1,~) 

(-007 1) 
(4, i) 

[-I, 11 
(-17 1) 
(-4, i) 

(-00, 01 
(-171) 
ho] and (174 
( -00, -1) and (1,~) 
(-ioo,-;) and (ilk) 

(--oo,o> 
(400, 4) and (i, iw) 

( -00, -11 and [l,~) 

(---co, 0) for !R[n] 5 0; (-00, O] for R[n] > 0 

see also BRANCH POINT 

KeIerences 
Morse, P. M. and Feshbach, H. Methods of Theoretical Phys- 

ics, Part I. New York: McGraw-Hill, pp. 399-401, 1953. 

Branch Line 

SUBBRANCH CUT 

Branch Point 
An argument at which identical points in the COMPLEX 
PLANE are mapped to different points. For example, 
consider 

f( > z =P. 
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Then f(8i> = f( 1) = 1, but f(e2r’) = eaxia, despite 
the fact that eio = e2? PINCH POINTS are also called 
branch points. 

see dso BRANCH CUT, PINCH POINT 

Hekrences 
A&en, G. Mathematical Methods for Physicists, 3rd ed. Or- 

lando, FL: Academic Press, pp. 397-399, 1985. 
Morse, P. M. and Feshbach, H. Methods of Theoretical Phys- 

ics, Part I. New York: McGraw-Hill, pp, 391-392 and 399- 
401, 1953. 

Brauer Chain 
A Brauer chain is an ADDITION CHAIN in which each 
member uses the previous member as a summand. A 
number n for which a shortest chain exists which is a 
Brauer chain is called a BRAUER NUMBER. 

see also ADDITION CHAIN, BRAUER NUMBER, HANSEN 
CHAIN 

References 
Guy, R. K. “Addition Chains. Brauer Chains. Hansen 

Chains.” SC6 in Unsolved Problems in Number Theory, 
2nd ed. New York: Springer-Verlag, pp. 111-113, 1994, 

Brauer Group 
The GROUP of classes of finite dimensional central sim- 
ple ALGEBRAS over k with respect to a certain equiva- 
lence. 

References 
Hazewinkel, M. (Managing Ed.), Encyclopaedia of Math- 

ematics: An Updated and Annotated Translation of the 
Soviet “Muthematical Encyclopaedia. ” Dordrecht, Nether- 
lands: Reidel, p. 479, 1988. 

Brauer Number 
A number n for which a shortest chain exists which is 
a BRAUER CHAIN is called a Brauer number. There are 
infinitely many non-Brauer numbers. 

see UZSO BRAUER CHAIN, HANSEN NUMBER 

References 
Guy, R. K. “Addit ion Chains. Brauer Chains. Hansen 

Chains.” SC6 in Unsolved Problems in Number Theory, 
2nd ed. New York: Springer-Verlag, pp. 111-113, 1994. 

Brauer-Severi Variety 
An ALGEBRAIC VARIETY over a FIELD K that becomes 
ISOMORPHIC to a PROJECTIVE SPACE. 

Brauer’s Theorem 
If, in the GER~ORIN CIRCLE THEOREM for a given KU, 

1 ajj - Grim 1 >Aj+Arn 

for all j # nz, then exactly one EIGENVALUE of A lies in 
the DISK I&. 

References 
Gradshteyn, I. S. and Ryzhik, I. M. Tables of Integrals, Se- 

ries, and Products, 5th ed. San Diego, CA: Academic 
Press, p. 1121, 1979. 

Braun’s Conjecture 
Let B = {b&z,...} b e an INFINITE Abelian SEMI- 
GROUP with linear order bl < b2 < l  . . such that 61 is the 
unit element and a < b IMPLIES UC < bc for a, b, c E B. 
Define a MOBIUS FUNCTION 1-1 on B by &) = 1 and 

for 72 = 2, 3, . . . . Further suppose that p(bn) = p(n) 
(the true MOBIUS FUNCTION) for all n > 1. Then 
Braun’s conjecture states that 

b mn = b,b, 

for all m, n > 1. - 

see UZSO MOBIUS PROBLEM 

References 
Flath, A. and Zulauf, A. “Does the Mi-jbius Function Deter- 

mine Multiplicative Arithmetic?” Amer. Math. Monthly 

102, 354-256, 1995. 

Breeder 
A pair of POSITIVE INTEGERS (al, a2) such that the 
equations 

a1 + a2x = cr(a1) = &2)(x + 1) 

have a POSITIVE INTEGER solution Al:, where a(n) is the 
DIVISOR FUNCTION. If x is PRIME, then (al, azz) is an 
AMICABLE PAIR (te Riele 1986). (al, a~) is a “special” 
breeder if 

References 
Hazewinkel, M. (Managing Ed.). Encyclopaedia of Math- 

ematics: An Updated and Annotated Translation of the 
Soviet “Mathematical Encyclopaedia. ” Dordrecht, Nether- 
lands: Reidel, pp. 480-481, 1988. 

a2 = a, 

where a and u are RELATIVELY PRIME, (a,~) = 1. If 
regular amicable pairs of type (i, 1) with i > 2 are of 
the form (au, up) with p PRIME, then (au, a) are special 
breeders (te Riele 1986). 

Heferences 
te Riele, H. J. J+ “Computation of All the Amicable Pairs 

Below 101’? Math. Cornput. 47, 361-368 and S9-S35, 
1986. 
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Brelaz’s Heuristic Algorithm 
An ALGORITHM which can be used to find a good, but 
not necessarily minimal, EDGE or VERTEX coloring for 
a GRAPH. 

see UZSO CHROMATIC NUMBER 

Brent’s Factorization Method 
A modification of the POLLARD p FACTORIZATION 
METHOD which uses 

xi+1 = xi2 - c (mod n). 

References 
Brent, R. “An Improved Monte Carlo Factorization Algo- 

rithm.” Nurdisk Tidskrifi for Informationsbehandlung 
(BIT) 20, 176-184, 1980. 

Brent’s Method 
A ROOT-finding ALGORITHM which combines root 
bracketing, bisection, and INVERSE QUADRATIC IN- 
TERPOLATION. It is sometimes known as the VAN 
WIJNGAARDEN-DEKER-BRENT METHOD. 

Brent’s method uses a LAGRANGE INTERPOLATING 
POLYNOMIAL of degree 2. Brent (1973) claims that this 
method will always converge as long as the values of the 
function are computable within a given region contain- 
ing a ROOT. Given three points 21, 22, and x3, Brent’s 
method fits x as a quadratic function of y, then uses the 
interpolation formula 

[Y - fb)lIY - f(XdlX3 
x = [f(x3) - f(~dlV(~3) - fW1 

[Y - f(d][!J - f(x3)h 

+ [fW - f(xdl[f(xd - f(x3)l 

lY - fb3)l[Y - f(xd1x2 

+ [fb> - fb>][f(x2> - f(xl>l l  (’ 

Subsequent root estimates are obtained by setting y = 0 
giving 

P 

where 

P = S[R(R - T)(23 - x2) - (1 - R)(xz - x1)] (3) 

Q = (T - l)(R - l)(S - 1) (4) 

with 

R = f cx2> 
f (4 (5) 

s G f (4 
f (Xl) (6) 

T E f(xl) 
fk3) 

(7) 

Bretschneider’s Formula 

References 
Brent, FL P. Ch. 3-4 in Algorithms for Minimization Without 

Derivatives. Englewood Cliffs, NJ: Prentice-Hall, 1973. 
Forsythe, G. E.; Malcolm, M. A.; and Moler, C. B. $7.2 in 

Computer Methods fur Mathematical Computations. En- 
glewood Cliffs, NJ: Prentice-Hall, 1977. 
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$9.3 in Numerical Recipes in FORTRAN: The Art of Sci- 
entific Computing, 2nd ed. Cambridge, England: Cam- 
bridge University Press, pp. 352-355, 1992. 

Brent-Salamin Formula 
A formula which uses the ARITHMETIC-GEOMETRIC 
MEAN to compute PI. It has quadratic convergence 
and is also called the GAUSS-SALAMIN FORMULA and 
SALAMIN FORMULA. Let 

&x+1= +(%a+&) (1) 

b nfl = d Gabn (2) 
G&+1 = + - b) (3) 

d, = an2 - bn2, (4 

and define the initial conditions to be a0 = 1, bo = 
l/A. Then iterating a, and b, gives the ARITHMETIC- 
GEOMETRIC MEAN, and 7r is given by 

7T= 
4[M(l, 2-1’2)]2 

1 - cE1 2jf’dj 

- - 4[M(l, 2-1/2)]z 

1 - cEl 2'+lCj2. 

(5) 

(6) 

King (1924) showed that this formula and the LEGEN- 
DRE RELATION are equivalent and that either may be 
derived from the other. 

see also ARITHMETIC-GEOMETRIC MEAN, PI 

References 
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University Press, 1924. 
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Bretschneider’s Formula 
Given a general QUADRILATERAL with sides of lengths 
a, b, c, and d (Beyer 1987), the AREA is given by 

A quadrilateral = 3 ’ -\/4p2q2 - (b2 + d2 - a2 - c~)~, 

where p and q are the diagonal lengths. 

see &o BRAHMAGUPTA'S FORMULA, HERON'S FOR- 
MULA 

References 
Beyer, W. H. (Ed.). CRC Standard Mathematical Tables, 
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Brianchon Point 
The point of CONCURRENCE of the joins of the VER- 
TICES of a TRIANGLE and the points of contact of a 
CONIC SECTION INSCRIBED inthe TRIANGLE. A CONIC 
INSCRIBED in a TRIANGLE has an equation of the form 

f+g+h-0 - 
u zt 211-j 

so its Brianchon point has TRILINEAR COORDINATES 
(l/f, l/g, l/h). For KIEPERT'S PARABOLA, the Bran- 
chion point has TRIANGLE CENTER FUNCTION 

1 
QI= 

up2 - c2) ’ 

which is the STEINER POINT. 

Brianchon’s Theorem 
The DUAL of PASCAL'S THEOREM. It states that,given 
a 6-sided POLYGON CIRCUMSCRIBED on a CONIC SEC- 
TION, thelinesjoining opposite VERTICES (DIAGONALS) 
meet in a single point. 

see also DUALITY PRINCIPLE, PASCAL'S THEOREM 

References 
Coxeter, H. S. M. and Greitzer, S. L. Geometry Revisited. 

Washington, DC: Math, Assoc. Amer., pp. 77-79, 1967. 
Ogilvy, C. S. Excursions in Geometry. New York: Dover, 

p* 110, 1990. 

Brick 

see EULER BRICK, HARMONIC BRICK, RECTANGULAR 
PARALLELEPIPED 

Bride’s Chair 
One name for the figure used by Euclid to prove the 
PYTHAGOREAN THEOREM. 

see also PEACOCK'S TAIL, WINDMILL 

Bridge Card Game 
Bridge is a CARD game played with a normal deck of 52 
cards. The number of possible distinct 13-card hands is 

= 635,013,559,600. 

where (;) is a BINOMIAL COEFFICIENT. While the 
chances of being dealt a hand of 13 CARDS (out of 52) 
of the same suit are 

the chance that one of four players will receive a hand 
of a single suit is 

1 

39,688,347,497 - 

There are special names for specific types of hands. A 
ten, jack, queen, king, or ace is called an “honor.” Get- 
ting the three top cards (ace, king, and queen) of three 
suits and the ace, king, and queen, and jack of the re- 
maining suit is called 13 top honors. Getting all cards of 
the same suit is called a 13-card suit. Getting 12 cards 
of same suit with ace high and the 13th card not an 
ace is called 2-card suit, ace high. Getting no honors is 
called a Yarborough. 

The probabilities of being dealt 13-card bridge hands 
of a given type are given below. As usual, for a hand 
with probability P, the ODDS against being dealt it are 
(l/P) - 1 : 1. 

Hand Exact Probability 

13 top honors 4 1 
Iv 158,753,389,900 

13-card suit 4 1 
N 15&,753,389,900 

12-card suit, ace high v 4 
1,469,938,795 

32 
Yarborough ( 13 > 5,394 

N 9,860,459 
48 

four aces ( 9 > 11 
4,165 

20 32 
nine honors CN)C 9 4 > 

N 
888,212 

93,384,347 

Hand Probability Odds 

13 top honors 6.30 x lo-l2 158,753,389,899:1 
13-card suit 6.30 x lo-l2 158,753,389,899:1 
12-card suit, ace high 2.72 x lo-’ 367,484,697.8:1 
Yarborough 5.47 x lo-” 1,827.O:l 
four aces 2.64 x 1O-3 377.6:1 
nine honors 9.51 X 1o-3 104.1:1 

see also CARDS, POKER 

References 
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Bridge (Graph) 
The bridges of a GRAPH are the EDGES whose removal 
disconnects the GRAPH. 

see also ARTICULATION VERTEX 

References 
Chartrand, G. “Cut-Vertices and Bridges.” 52.4 in Introduc- 

tory Graph Theory. New York: Dover, pp* 45-49, 1985. 

4 1 -- 
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Bridge Index 
A numerical KNOT invariant. For a TAME KNOT K, the 
bridge index is the least BRIDGE NUMBER of all planar 
representations of the KNOT. The bridge index of the 
UNKNOT is defined as 1. 

see &O BRIDGE NUMBER, CROOKEDNESS 

References 
Rolfsen, D. Knots and Links. Wilmington, DE: Publish or 

Perish Press, 114, 1976. pJ 
Schubert, I-L “Uber eine numerische Knotteninvariante.” 

Math. 2. 61, 245-288, 1954. 

Bridge of Kkigsberg 

see K~NIGSBERG BRIDGE PROBLEM 

Bridge Knot 
An n-bridge knot is a knot with BRIDGE NUMBER n. 
The set of Z-bridge knots is identical to the set of rational 
knots. If L is a Z-BRIDGE KNOT, then the BLM/Ho 
POLYNOMIAL Q and JONES POLYNOMIAL V satisfy 

QL(z) = 22 -‘VL(t)vL(t-l+ I- 22-l), 

where z = -t - t-l (Kanenobu and Sumi 1993). Ka- 
nenobu and Sumi also give a table containing the num- 
ber of distinct 2-bridge knots of 72 crossings for 72 = 10 
to 22, both not counting and counting MIRROR IMAGES 
as distinct. 

n K, K,+K; 
3 0 0 
4 0 0 
5 
6 
7 
8 
9 ' 
10 45 85 
11 91 182 
12 176 341 
13 352 704 
14 693 1365 
15 1387 2774 
16 2752 5461 
17 5504 11008 
18 10965 21845 
19 21931 43862 
20 43776 87381 
21 87552 175104 
22 174933 349525 

References 
Kanenobu, T. and Sumi, T. “Polynomial Invariants of 2- 

Bridge Knots through 22-Crossings.” Math. Comput. 60, 
771-778 and Sl7-S28, 1993. 

Schubert, H. “Knotten mit zwei Briicken." Math. 2. 65, 
133-170, 1956. 

Bring Quintic Form 

Bridge Number 
The least number of unknotted arcs lying above the 
plane in any projection. The knot 0505 has bridge num- 
ber 2. Such knots are called Z-BRIDGE KNOTS. There is 
a one-to-one correspondence beetween Z-BRIDGE KNOTS 
and rational knots. The knot 080lo is a 3-bridge knot. A 
knotwithbridgenumber bis ann-EMBEDDABLE KNOT 
where n < b. - 
see UZSO BRIDGE INDEX 

References 
Adams, C. C. The Kno-t Book: 

to the Mathematical Theory 
Freeman, pp. 64-67, 1994. 

Rolfsen, D. Knots and Links. 
Perish Press, p. 115, 1976. 

An Elementary Introduction 
of Knots. New York: W. H. 

Wilmington, DE: Publish or 

Brill-Noether Theorem 
If the total group of the canonical series is divided into 
two parts, the difference between the number of points 
in each part and the double of the dimension of the 
complete series to which it belongs is the same. 

References 
Coolidge, J. L. A Treatise on Algebraic Plane Curves. New 

York: Dover, p. 263, 1959. 

Bring-Jerrard Quintic Form 
A TSCHIRNHAUSEN TRANSFORMATION can be used to 
algebraically transform a general QUINTIC EQUATION 
to the form 

2 + ClZ + co = 0. (1) 

In practice, the general quintic is first, reduced to the 
PRINCIPAL QUINTIC FORM 

y5 + by2 + bly + bo = 0 (2) 

before the transformation is done. Then, we require that 
the sum of the third POWERS of the ROOTS vanishes, 

SO S3(yj) = 0. We assume that the ROOTS zi of the 
Bring-Jerrard quintic are related to the ROOTS yi of the 
PRINCIPAL QUINTIC FORM by 

& = ayi4 + pyi3 + yy? + 6yi + E* (3) 

In a similar manner to the PRINCIPAL QUINTIC FORM 
transformation, we can express the COEFFICIENTS cj in 
terms of the bj. 

see also BRING QUINTIC FORM, PRINCIPAL QUINTIC 
FORM, QUINTIC EQUATIO N 

Bring Quintic Form 
A TSCHIRNHAUSEN TRANSFORMATION can be used to 
take a general QUINTIC EQUATION to the form 

x5 -Lc-a==, 

where a may be COMPLEX. 

see 

EQ 

UZSO BRING-J 
UATION 

RD QUTNTIC FORM, QUINTIC 

References 
Ruppert, W. M, “On the Bring Normal Form of a Quintic in 

Characteristic 5.” Arch. Math. 58, 44-46, 1992. 
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Brioschi Formula 
For a curve with METRIC 

ds2 = Edu2 + Fdudv+Gdv2, (1) 

where E, F, and G is the first FUNDAMENTAL FORM, 
the GAUSSIAN CURVATURE is 

M1+M2 

K = (EG - 32 ) (2) 

where 

0 $E, $GU 
ikf2- LE, E F 

$Y, F G 

which can also be written 

(4 

=-&[E(&)+i&g)]* @) 
see also FUNDAMENTAL FORMS, GAUSSIAN CURVATURE 

References 
Gray, A. Modern Differential Geometry of Curves and Sur- 

faces. Boca Raton, FL: CRC Press, pp. 392-393, 1993. 

Briot-Bouquet Equation 
An ORDINARY DIFFERENTIAL EQUATION of the form 

where m is a POSITIVE INTEGER, f is ANALYTIC at x = 
y = 0, f(O,O) = 0, and fb(O, 0) # 0. 

References 
Hazewinkel, M. (Managing Ed.). Encyclopaedia of Math- 

ematics: An Updated and Annotated Translation of the 
Soviet “Mathematical Encyclopaedia. ” Dordrecht, Nether- 
lands: Reidel, pp. 481-482, 1988. 
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Brocard Angle 

A c 

Define the first BROCARD POINT as the interior point 0 
of a TRIANGLE for which the ANGLES LOAB, LOBC, 
and LfICA are equal. Similarly, define the second BRO- 
CARD POINT as the interior point s2’ for which the AN- 
GLES LWAC, LfI’CB, and LfYBA are equal. Then the 
ANGLES in both cases are equal, and this angle is called 
the Brocard angle, denoted w. 

The Brocard angle w of a TRIANGLE AABC is given by 
the formulas 

cotw = cotA+cotB+cotC (1) 

= (a2+;;+2) 
(2) 

1+ cos a1 cos a2 cos a3 = 
sin a1 sin a2 sin a3 

(3) 

sin2 Qrl + sin2 a2 + sin2 a3 - - 
2 sin QI~ sin ~r2 sin a3 

(4) 

al sin QC~ + a2 sin a2 + u3 sin a3 - - 
a1 cos cyl + u2 cos a2 + u3 cos a3 

(5) 

csc2 w = csc2 a1 + csc2 a2 + csc2 a3 (6) 
2A 

sinw = 
a12uz2 + az2as2 + a32a12 ’ 

(7) 

where A is the TRIANGLE AREA, A, B, and C are AN- 
GLES, and a, b, and c are side lengths. 

If an ANGLE a of a TRIANGLE is given, the maximum 
possible Brocard angle is given by 

cotw = $ tan( +) + $ cos(+). (8) 

Let a TRIANGLE have ANGLES A, J3, and C. Then 

sin A sin B sin C < kABC, (9) 

where 

k= 3J3 3 

( > 2n w  

(Le Lionnais 1983). This can be used to prove that 

8w3 < ABC (11) 

(Abi-Khuzam 1974). 



174 Brocard Axis Brocard Line 

see also BROCARD CIRCLE, BROCARD LINE, EQUI- 
ARD CENTER, FERMAT POINT, ISOG~NIC CEN- BROC 

TERS 

see UZSO BROCARD ANGLE, BROCAR'D DIAMETER,BRO- 
CARD POINTS 

References 
Johnson, R* A. Modern Geometry: An Elementary Treatise 

on the Geometry of the Triangle and the Circle. Boston, 
MA: Houghton Mifflin, p. 272, 1929. 

Brocard’s Conjecture . 

Brocard Axis 
The LINE KO passing through the LEMOINE POINT K 
and CIRCUMCENTER 0 of a TRIANGLE. The distance 

OK is called the BROCARD DIAMETER. The Brocard 
axis is PERPENDICULAR to the LEMOINE AXIS and is 
the ISOGONAL CONJUGATE of KIEPERT'S HYPERBOLA. 
It has equations 

sin(B - C)cy + sin(C - A)P + sin(A - B)y = 0 

for n > 2 where 7r is the PRIME COUNTING FUNCTION. - 
see also ANDREA'S CONJECTURE 

Brocard Diameter 
The LINE SEGMENT KOjoiningthe LEMOINE POINTK 
and CIRCUMCENTER 0 of a given TRIANGLE. It is the 
DIAMETER of the TRIANGLE'S BROCARD CIRCLE, and 
lies along the BROCARD AXIS. The Brocard diameter 
has length 

bc(b2 - c2)a + ca(c” - a”)@ + &(a2 - b2)y = 0. 

The LEMOINE POINT, CIRCUMCENTER, ISODYNAMIC 
POINTS, and BROCARD MIDPOINT all lie along the Bro- 
card axis. Note that the Brocard axis is not equivalent 
to the BROCARD LINE. 

CARD LINE 

Brocard Circle 

\  
.  

/ -  

.  
/  

.  ,  

-N 
,  

-m-_-d 
-0 

The CIRCLE passing through the first and second BRO- 
CARD POINTS fl and s2', the LEMOINE POINT K, and 
the CIRCUMCENTER 0 ofa given TRIANGLE. The BRO- 
CARD POINTS 0 and s1’ are symmetrical about the LINE 
zo, which is called the BROCARD LINE. The LINE 
SEGMENT KO is called the BROCARD DIAMETER, and 
it has length 

()K=OR- RJl - 4sin2 w  

cosw - 
1 

cos w  

where R is the CIRCUMRADIUS and w is the BROCARD 
ANGLE. The distance between either of the BROCARD 
POINTS and the LEMOINE POINT is 

OK= 
on R& - 4sin2 w  

- = 3 
cos w  cos w  

where s2 is the first BROCARD POINT, R is the CIRCUM- 
RADIUS, and w is the BROCARD ANGLE. 

see also BROCARD AXIS, BROCARD CIRCLE, BROCARD 
LINE,BROCARD POINTS 

Brocard Line 

A 2 

A LINE from any of the VERTICES Ai of a TRIANGLE 
to the first 0 or second n' BROCARD POINT. Let the 
ANGLE at a VERTEX Ai also be denoted Ai, and denote 
the intersections of Ala and AlSl’ with AzA3 as WI and 
Wz* Then the ANGLES involving these points are 

LA1S1W3 = Al (1) 

LW3flA2 = A3 (2) 

LA2S2W1 = A2. (3) 

Distances involving the points Wi and Wi are given by 

OK = fYK = 00 tanw. 
A2n= z 

sin A2 
sin# (4 
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AdI as2 sin(Ag - w) ---- - - 
A3R - ma2 sin w  (5) 

W3A1 a2 sin w  
- - - ~ - 

w3A2 al sin(As - w) - ’ (6) 

where w is the BROCARD ANGLE (Johnson 1929, 
pp* 267-268). 

The Brocard line, MEDIAN M, and LEMOINE POINT K 
are concurrent, with Alf21, A& and A&f meeting at 
a point P. Similarly, Al R’, A&f, and A& meet at 
a point which is the ISOGONAL CONJUGATE point of P 
(Johnson 1929, pp. 268-269). 

see also BROCARD AXIS, BROCARD DIAMETER, BRO- 

CARD POINTS, ISOGONAL CONJUGATE, LEMOINE 
POINT, MEDIAN (TRIANGLE) 

References 
Johnson, R. A. Modern Geometry: An Elementary Treatise 

on the Geometry of the Triangle and the Circle. Boston, 
MA: Houghton Mifflin, pp. 263-286, 1929. 

Brocard Midpoint 
The MIDPOINT of the BROCARD POINTS. It has TRI- 
ANGLE CENTER FUNCTION 

QI = a(b2 + c”) = sin(A + w), 

where w  is the BROCARD ANGLE. It lies on the BRO- 
CARD AXIS. 

References 
Kimberling, C. “Central Points and Central Lines in the 

Plane of a Triangle.” Math. Mug. 67, 163-187, 1994. 

Brocard Points 
B 

0 
12 0 % 

A’ 
I I 

2 

The first Brocard point is the interior point s2 (or ~1 
or 2,) of a TRIANGLE for which the ANGLES LflAB, 
LOBC, and LfXA are equal. The second Brocard point 
is the interior point 0’ (or 72 or 22) for which the AN- 
GLES LR’AC, LO’CB, and LO’BA are equal. The AN- 
GLES in both cases are equal to the BROCARD ANGLE 

w, 

The first two Brocard points are ISOGONAL CONJU- 
GATES (Johnson 1929, p. 266). 

Let CBC be the CIRCLE which passes through the ver- 
tices B and C and is TANGENT to the line AC at C, and 
similarly for CAB and CBC. Then the CIRCLES CAB, 
CBC, and CAC intersect in the first Brocard point 0. 
Similarly, let C& be the CIRCLE which passes through 
the vertices B and C and is TANGENT to the line AB at 
B, and similarly for CkB and C& Then the CIRCLES 
C’ AB? CL,, and C& intersect in the second Brocard 
points 0’ (Johnson 1929, pp. 264-265). 

The PEDAL TRIANGLES of s2 and 0’ are congruent, 
and SIMILAR to the TRIANGLE AABC (Johnson 1929, 
p. 269). Lengths involving the Brocard points include 

On=OW=R&-4sin2w (1) 

s2fl’ = 2Rsinwdl - 4sin2 w. (2) 

Brocard’s third point is related to a given TRIANGLE by 
the TRIANGLE CENTER FUNCTION 

-3 
a=a (3) 

(Casey 1893, Kimberling 1994). The third Brocard 
point fl" (or 73 or 23) is COLLINEAR with the SPIEKER 
CENTER and the ISOTOMIC CONJUGATE POINT of its 
TRIANGLE'S INCENTER. 

see &~BROCARD ANGLE,BROCARD MIDPOINT,EQUI- 
BROCARD CENTER,YFF POINTS 
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Casey, J. A Treatise on the Analytical Geometry of the Point, 

Line, Circle, and Conic Sections, Containing an Account 
of Its Most Recent Extensions, with Numerous Examples, 
2nd ed., rev. en2. Dublin: Hodges, Figgis, & Co., p. 66, 
1893. 
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Brocard’s Problem 
Find the values of n for which n! + 1 is a SQUARE NUM- 
BER ?'& where n! is the FACTORIAL (Brocard 1876, 
1885). The only known solutions are n = 4, 5, and 
7, and there are no other solutions < 1027. The pairs of 
numbers (m,n) are called BROWN NUMBERS. 

see also 
BER 

BR~WNNUMBERS,FACTORIAL,SQUARE NUM- 

Heterences 
Brocard, H. Question 166. Nouv. Corres. 1Math. 2, 287, 

1876. 
Brocard, H. Question 1532, Nouv. Ann. Math, 4, 391, 1885. 
Guy, R. K. Unsolved Problems in Number Theory, 2nd ed. 

New York: Springer-Verlag, p. 193, 1994. 

Brocard Triangles 
Let the point of intersection of A&l and A&’ be B1, 
where s1 and fl' are the BROCARD POINTS, and similarly 
define Bz and B3. BIB2 B3 is the first Brocard trian- 
gle, and is inversely similar to A1 Aa As, It is inscribed 
in the BROCARD CIRCLE drawn with OK as the DIAM- 
ETER. The triangles BlAzAs, B2A3Al, and BSAlAz 
are IS~SCELES TRIANGLES with base angles w, where w  
is the BROCARD ANGLE. The sum of the areas of the 
I~OSCELES TRIANGLES is A, the AREA of TRIANGLE 
A1 AZ As, The first Brocard triangle is in perspective 
with the given TRIANGLE, with AIBI, AzBz, and A& 
CONCURRENT. The MEDIAN POINT ofthefirst Brocard 
triangle is the MEDIAN POINT M of the original triangle. 
The Brocard triangles are in perspective at M. 

Let cl, c2, and c3 and ci, ck, and CL be the CIRCLES 
intersecting in the BROCARD POINTS s2 and fl’, respec- 
tively. Let the two circles cl and ci tangent at Al to 
Al A2 and AlA3, and passing respectively through AS 
and AZ, meet again at Cl. The triangle C&&3 is the 
second Brocard triangle. Each VERTEX of the second 
Brocard triangle lies on the second BROCARD CIRCLE. 

The two Brocard triangles are in perspective at AZ. 

see also STEINER POINTS, TARRY POINT 

References 
Johnson, R. A, Modern Geometry: An Elementary Treatise 

on the Geometry of the Triangle and the Circle. Boston, 
MA: Houghton Mifflin, pp. 277-281, 1929. 

Bromwich Integral 
The inverse of the LAPLA GE TRANSFORM, given by 

w 
1 7+im 

- - 
2ni s 

est f (s) ds, 
y-&m 

whereyisavertical CONTOURED the COMPLEX PLANE 
chosen so that all singularities of f(s) are to the left of 
1tJ. 

References 
Arfken, G. “Inverse Laplace Transformation.” 515.12 in 

Mathematical Methods for Physicists, 3rd ed. Orlando, 
FL: Academic Press, pp. 853-861, 1985. 

Brothers 
A PAIR of consecutive numbers. 

see also PAIR, SMITH BROTHERS, TWINS 

Brouwer Fixed Point Theorem 
Any continuous FUNCTION G : Dn --+ Dn has a FIXED 
POINT, where 

is t 

D” = {x f R” : Xl2 + l  . l  + G-b2 I 1) 

he unit n-B 

also FIXED 

ALL. 

POINT THEOREM 

References 
Milnor, J. W. Topology from the Difierentiable Viewpoint. 

Princeton, NJ: Princeton University Press, p, 14, 1965. 

Browkin’s Theorem 
For every POSITIVE INTEGER n, there exists a SQUARE 
in the plane with exactly n LATTICE POINTS in its inte- 
rior. This was extended by Schinzel and Kulikowski to 
all plane figures of a given shape. The generalization of 
the SQUARE in 2-D to the CUBE in 3-D was also proved 
by Browkin. 

see also CUBE, SCHINZEL'S THEOREM, SQUARE 

References 
Honsberger, R. Mathematical Gems I. Washington, DC: 

Math. Assoc. Amer., pp. 121-125, 1973. 

Brown’s Criterion 
A SEQUENCE {yi) ofnondecreasing POSITIVEINTEGERS 
is COMPLETE IFF 

1. Ul = 1. 

2. For all k = 2, 3, . . . , 

Sk-1 = ul + v2 + . . . + vk-1 2 vk - 1. 

A corollary states that a SEQUENCE for which ~1 = 1 
and vk+l < 2Vk is COMPLETE (Honsberger 1985). - 

see ah COMPLETE SEQUENCE 

References 
Brown, J. L. Jr. “Notes on Complete Sequences of Integers.” 

Amer. Math. Monthly, 557-560, 1961. 
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Brown Function 
For a FRACTAL PROCESS with values ~(t- At) and y(t+ 
At), the correlation between these two values is given by 
the Brown function 

y- = 22H-1 - 1, 

also known as the BACHELIER FUNCTION, LEVY FUNC- 
TION, or WIENER FUNCTION. 
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Brown Numbers 
Brown numbers are PAIRS (m, n) of INTEGERS satisfying 
the condition of BROCARD'S PROBLEM, i.e., such that 

n! + 1 = rn2 

where n! is the FACTORIAL and m2 is a SQUARE NUM- 
BER. Only three such PAIRS of numbers are known: 

(V), (11,5), (To, and Erdes conjectured that these 
are the only three such PAIRS. Le Lionnais (1983) points 
out that there are 3 numbers less than 200,000 for which 

(n - l)! + 1 = 0 (mod n”) , 

namely 5, 13, and 563. 

see also 

NUMBER 
BROCARD'S PROBLEM, FACTORIAL, SQUARE 

Heferences 
Guy, R. K. Unsolved Problems in Number Theory, 2nd ed. 

New York: Springer-Verlag, p. 193, 1994. 
Le Lionnais, F. Les nombres remarquables. Paris: Hermann, 

p. 56, 1983. 
Pickover, C. A. Keys to Infinity. New York: W. H. Freeman, 

p. 170, 1995. 

Broyden’s Method 
An extension of the secant method of root finding to 
higher dimensions. 

References 
Broyden, C. G. “A Class of Methods for Solving Nonlinear 
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Bruck-Ryser-Chowla Theorem 
If n = 1,2 (mod 4), and the SQUAREFREE part of n is di- 
visible by a PRIME p = 3 (mod 4), then no DIFFERENCE 
SET of ORDER n exists. Equivalently, if a PROJECTIVE 
PLANE of order n exists, and n = 1 or 2 (mod 4), then 
n is the sum of two SQUARES. 

Dinitz and Stinson (1992) give the theorem in the fol- 
lowing form. If a symmetric (v&X)-BLOCK DESIGN 
exists, then 

1. Ifvis EVEN, then Ic- X is a SQUARE NUMBER, 

2. If 21 is ODD, the the DIOPHANTINE EQUATION 

x2 z (k - X)y” + (-l)(“-1)/2xz2 

has a solution in integers, not all of which are 0. 

see UZSO BLOCK DESIGN, FISHER'S BLOCK DESIGN IN- 
EQUALITY 
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Bruck-Ryser Theorem 

~~~BRucK-RYSER-CHOWLA THEOREM 

Brun’s Constant 
The number obtained by adding the reciprocals of the 
TWIN PRIMES, 

B-(;+$)+($++)+(A+&)+($+&)+-, 
(1) 

By BRUN'S THEOREM, the constant converges to a def- 
inite number as p -+ 00. Any finite sum underesti- 
mates B. Shanks and Wrench (1974) used all the TWIN 
PRIMES among the first 2 million numbers. Brent (1976) 
calculated all TWIN PRIMES up to 100 billion and ob- 
tained (Ribenboim 1989, p. 146) 

B z 1.90216054, (2) 

assuming the truth of the first HARDY-LITTLEWOOD 
CONJECTURE. Using TWIN PRIMES up to 1014, Nicely 
(1996) obtained 

B sz: 1.9021605778 zt 2.1 x lo-’ I (3) 

(Cipra 1995, 1996), in the process discovering a bug in 
Intel’s@ Pent iumTM microprocessor. The value given by 
Le Lionnais (1983) is incorrect. 

see UZSO TWIN PRIMES, TWIN PRIME CONJECTURE, 
TWIN PRIMES CONSTANT 
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Brunn-Minkowski Inequality 
The nth root of the CONTENT of the set sum of two sets 
in Euclidean n-space is greater than or equal to the sum 
of the nth roots of the CONTENTS of the individual sets. 

see also TOMOGRAPHY 

References 
Cover, T. M. “The Entropy Power Inequality and the Brunn- 
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Brun’s Sum 

see BRuN'S CONSTANT 

Brun’s Theorem 
The series producing BRUN'S CONSTANT CONVERGES 
even if there are an infinite number of TWIN PRIMES. 
Proved in 1919 by V. Brun. 

Brunnian Link 
A Brunnian link is a set of n linked loops such that 
each proper sublink is trivial, so that the removal of any 
component leaves a set of trivial unlinked UNKNOTS. 
The BORROMEAN RINGS are the simplest example and 
have n = 3. 

see aho BORROMEAN RINGS 
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Brute Force Factorization 

see DIRECT SEARCH FACTORIZATION 

Bubble see UZSO BUFFON’S NEEDLE PROBLEM 
A bubble is a MINIMAL SURFACE of the type that is 
formed by soap film. The simplest bubble is a single 
SPHERE. More complicated forms occur when multi- 
ple bubbles are joined together. Two outstanding prob- 
lems involving bubbles are to find the arrangements with 
the smallest PERIMETER (planar problem) or SURFACE 
AREA (AREA problem) which enclose and separate r~ 
given unit areas or volumes in the plane or in space. 
For n = 2, the problems are called the DOUBLE BUB- 
BLE CONJECTURE and the solution to both problems is 
knownto be the DOUBLE BUBBLE. 

Buffon’s Needle Problem 

see also 
PLATEAU ‘S 

DOUBLE 
LAWS,P L 

BUBBLE 

IATEAU'S 
f MINIMA 
PROBLEM 

L SURFACE, 

References 
Morgan, F. “Mathematicians, Including Undergraduates, 

Look at Soap Bubbles.” Amer. Math. Monthly 101, 343- 
351,1994. 

Pappas, T. “Mathematics & Soap Bubbles.” The Joy of 
Mathematics. San Carlos, CA: Wide World Publ./Tetra, 
p. 219, 1989. 

Buffon’s Needle Problem 

Buchberger’s Algorithm 
The algorithm for the construction of a GR~BNER BASIS 
from an arbitrary ideal basis. 

see also GR~BNER BASIS 

References 
Becker, T. and Weispfenning, V. Gr6bner Bases: A Com- 

putational Approach to Commutative Algebra. New York: 
Springer-Verlag, pp. 213-214, 1993. 

Buchberger, B. “Theoretical Basis for the Reduction of Poly- 
nomials to Canonical Forms.” SIGSAM Bull. 39, 19-24, 
Aug. 1976. 

Cox, D.; Little, J.; and O’Shea, D. Ideals, Varieties, and 
Algorithms: An Introduction to Algebraic Geometry and 
Commutative Algebra, 2nd ed. New York: Springer- 
Verlag, 1996. 

Buckminster Fuller Dome 

see GEODESIC DOME 

Buffon-Laplace Needle Problem 

Find the probability P(!, a, b) that a needle of length G 
will land on a line, given a floor with a grid of equally 
spaced PARALLEL LINES distances a and b apart, with 
l > a, b. 

P(t, a, b) = 
2C(a + b) - t2 

nab l 
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Find the probability P(t, d) that a needle of length e 
will land on a line, given a floor with equally spaced 
PARALLEL LINES a distance d apart. 

x = acost (2) 
y = bcott. (3) 

P(t, d) = s 2T tl cos81 d0 G 42 

0 --=a4 d 27T s 
cos 8 d0 

0 

The CURVATURE is 

3ab cot t csc t 
K= 

(b2 csc4 t + a2 sin2 t)3/2 (4) 

and the TANGENTIAL ANGLE is 

Several attempts have been made to experimentally de- 
termine 7r by needle-tossing. For a discussion of the 
relevant statistics and a critical analysis of one of the 
more accurate (and least believable) needle-tossings, see 
Badger (1994) l  

(5) 
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Badger, L. “Lazzarini’s Lucky Approximation of TV” AI&h. 

Mug. 67, 83-91, 1994. 
Dijrrie, H. "Buffon's Needle Problem.” $18 in 100 Great 

Problems of Elementary Mbthematics: Their History and 
Solutions. New York: Dover, pp. 73-77, 1965. 

Kraitchik, M. “The Needle Problem.” 56.14 in Mathematical 
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Monthly 101, 132-139, 1994. 

Bumping Algorithm 
Given a PERMUTATION {pl,p2,...,p,} of (1, . . . . n}, 
the bumping algorithm constructs a standard YOUNG 
TABLEAU by inserting the pi one by one into an already 
constructed YOUNG TABLEAU. To apply the bump- 
ing algorithm, start with {{PI}}, which is a YOUNG 
TABLEAU. If p1 through pk have already been inserted, 
then in order to insert pk+l, start with the first line of 
the already constructed YOUNG TABLEAU and search 
for the first element of this line which is greater than 
pk+l. If there is no such element, append pk+l to the 
first line and stop. If there is such an element (say, pP), 
exchange p, for pk+l, search the second line using p,, 

and so on. 

see also YOUNG TABLEAU 

Bulirsch-Stow Algorithm 
An algorithm which finds RATIONAL FUNCTION extrap- 
olations of the form 

pcL(x) po+pla:+...+p,xP 
&(i+l)...(i+m) = - = 

pi/ (4 qo +q1rr: +. l  l  +q,xv 
References 
Skiena, S. Implementing Discrete Mathematics: Combina- 

torics and Graph Theory with Mathematics. Reading, 
MA: Addison-Wesley, 1990. 

and can be used in 
ENTIAL EQ UATIONS 

solution of ORDINARY DIFFER- 

References 
Bulirsch, R. and Stoer, J. 52.2 in Introduction to Numerical 

Analysis. New York: Springer-Verlag, 1991. 
Press, W. H.; Flannery, B. P,; Teukolsky, S. A.; and Vetter- 

ling, We T. “Richardson Extrapolation and the Bulirsch- 
Stoer Method.” 516.4 in Numerical Recipes in FORTRAN: 
The Art of Scientific Computing, 2nd ed. Cambridge, Eng- 
land: Cambridge University Press, pp. 718-725, 1992. 

Bundle 

see FIBER BUNDLE 

Burau Representation 
Gives a MATRIX representation bi of a BRAID GROUP 
in terms of (n - 1) x (n - 1) MATRICES. A -t always 
appears in the (i, i) position. 

Bullet Nose 
-t 0  0  l  ** 0  

-1 

1 0 

a.. 

0 
0 0 1 l  +* 0  

. * . 
. 

. 

. 1  l  l  . 

. . . . . 

0  0  1 l  ‘a  1  I 

b 1= (1) 

1 . . l  0 0 l  l  l  

A plane curve with implicit equation 
0 
0 
0 

0 
0 
1 

l  . . 

l  l  l  

l  l  . 

bi = (2) -t 
-1 

a2 b2 --- 
x2 y2 = la (1) 

0 
0 

0 
0 

0 
0 In parametric form, 
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b n-1 = 

I 

. . 
l  

l  m  

; ; ‘ .  ; : l  
(3) 

0  0  a-- 0  -t 

0  0  *-a 0 -t 

Let Q be the MATRIX PRODTJCT of BRAID WORDS, then 

det(I - q) 

1 + t + * * * + t-1 = AL, (4) 

where AL is the ALEXANDER POLYNOMIAL and det is 
the DETERMINANT. 

References 
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Burkhardt Quartic 
The VARIETY which is an invariant of degree four and 
is given by the equation 

d - YO(d + 3; + y; + y!) + 3yly2y3y4 = 0. 

References 
Burkhardt, H. “Untersuchungen aus dem Gebiet der hyperel- 

liptischen Modulfunctionen. II.” Math. Ann. 38, 161-224, 
1890, 

Burkhardt, H. “Untersuchungen aus dem Gebiet der hyper- 
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Burnside’s Conjecture 
Every non-ABELIAN SIMPLE GROUP has EVEN ORDER. 

see also ABELIAN GROUP, SIMPLE GROUP 

Burnside’s Lemma 
Let J be a FINITE GROUP and the image R(J) be a 
representation which is a HOMEOMORPHISM of J into a 
PERMUTATION GROUP S(X), where S(X) is the GROUP 
of all permutations of a SET X. Define the orbits of R( J) 
as the equivalence classes under II: - y, which is true if 
there is some permutation p in R(J) such that p(z) = y. 
Define the fixed points of p as the elements 5 of X for 
which p(z) = z. Then the AVERAGE number of FIXED 
POINTS of permutations in R(J) is equal to the number 
of orbits of R(J). 

The LEMMA was apparently known by Cauchy (1845) in 
obscure form and Frobenius (1887) prior to Burnside’s 
(1900) rediscovery. It was subsequently extended and 
refined by Pblya (1937) for applications in COMBINATO- 
RIAL counting problems. In this form, it is known as 
P~LYA ENUMERATION THEOREM. 

References 
P6lya, G. “Kombinatorische Anzahlbestimmungen fiir Grup- 

pen, Graphen, und chemische Verbindungen.” Acta Math. 
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Burnside Problem 
A problem originating with W. Burnside (1902), who 
wrote, CtA still undecided point in the theory of dis- 
continuous groups is whether the ORDER of a GROUP 
may be not finite, while the order of every operation 
it contains is finite.” This question would now be 
phrased as “Can a finitely generated group be infinite 
while every element in the group has finite order?” 
(Vaughan-Lee 1990). This question was answered by 
Golod (1964) when he constructed finitely generated in- 
finite ~-GROUPS. These GROUPS, however, do not have 
a finite exponent. 

Let FT be the FREE GROUP of RANK T and let N be 
the SUBGROUP generated by the set of nth POWERS 

($19 E FT}. Th en Iv is a normal subgroup of FT. We 
define B(T, n) = FT/N to be the QUOTIENT GROUP. We 
call B(r, n) the r-generator Burnside group of exponent 
n. It is the largest r-generator group of exponent n, in 
the sense that every other such group is a HOMEOMOR- 
PHIC image of B(T, n)* The Burnside problem is usually 
stated as: “For which values of T and n is B(r, n) a 
FINITE GROUP?” 

An answer is known for the following values. For T = 1, 
B&n) is a CYCLIC GROUP of ORDER n. For n = 2, 
B(r, 2) is an elementary ABELTAN 2-group of ORDER 2Y 
For n = 3, B(T, 3) was proved to be finite by Burnside. 
The ORDER of the B(r, 3) groups was established by 
Levi and van der Waerden (1933), namely 3a where 

(1) 

where (;) is a BINOMIAL COEFFICIENT. For n = 4, 
B(r, 4) was proved to be finite by Sanov (1940). Groups 
of exponent four turn out to be the most complicated 
for which a POSITIVE solution is known. The precise 
nilpotency class and derived length are known, as are 
bounds for the ORDER. For example, 

IB(2,4)1 = 212 (2) 

IB(3,4)1 = 26g (3) 

IB(4,4)1 = 2422 (4) 

IB(5,4)1 = 22728, (5) 

while for larger values of T the exact value is not yet 
known. For n = 6, B(T, 6) was proved to be finite by 
Hall (1958) with ORDER 2”3’, where 

(8) 

No other Burnside groups are known to be finite. On 
the other hand, for T  > 2 and n 2 665, with n ODD, 



Busemann-Petty Problem 

B(T, n) is infinite (Novikov and Adjan 1968). There is a 
similar fact for T > 2 and n a large POWER of 2. 

E. Zelmanov was awarded a FIELDS MEDAL in 1994 for 
his solution of the “restricted” Burnside problem. 

see also FREE GROUP 
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Busemann-Petty Problem 
If the section function of a centered convex body in Eu- 
clidean n-space (n 2 3) is smaller than that of another 
such body, is its volume also smaller? 

References 
Gardner, R. J. ‘&Geometric Tomography.” Not. Amer. Math. 
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Busy Beaver 
A busy beaver is an n-state, 2-symbol, 5-tuple TURING 
MACHINE which writes the maximum possible number 
BB(n) of Is on an initially blank tape before halting. 
For n = 0, 1, 2, . . , , BB(n) is given by 0, 1, 4, 6, 13, 
2 4098, 2 136612, . . l  . The busy beaver sequence is 
also known as RADO’S SIGMA FUNCTION. 

see also HALTING PROBLEM, TURING MACHINE 
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Butterfly Catastrophe 

A CATASTROPHE which can occur for four control fac- 
tors and one behavior axis. The equations 

x = c(8at3 + 24t5) 

Y = c(-6at2 - 15t4) 

display such a catastrophe (von Seggern 1993). 

References 
von Seggern, D. CRC Standard Curves and Surfaces. Boca 

Raton, FL: CRC Press, p. 94, 1993. 

Butterfly Curve 

A PLANE CURVE given by the implicit equation 

y6 = (x2 - x6)* 

see also DUMBBELL CURVE, EIGHT CURVE, PIRIFORM 

References 
Cundy, H. and Rollett, A. Mathematical Models, 3rd ed. 
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Butterfly Effect 
Due to nonlinearities in weather processes, a butterfly 
flapping its wings in Tahiti can, in theory, produce a 
tornado in Kansas. This strong dependence of outcomes 
on very slightly differing initial conditions is a hallmark 
of the mathematical behavior known as CHAOS. 
see also CHAOS, LORENZ SYSTEM 

Butterfly Fkactal 

The FRACTAL-like curve generated by the 2-D function 

f&Y) = 
( x2 - y”)sin (+) 

x2 + y2 * 
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Butterfly Polyiamond 

A 6-POLYIAMOND. 

kkkrences 
Golomb, S. W. Polyominoes: Puzzles, Patterns, Problems, 

and Packings, Zni ed. Princeton, NJ: Princeton University 
Press, p. 92, 1 994. 

Butterfly Theorem 

Given a CHORD PQ of a CIRCLE, draw any other two 
CHORDS AB and CD passing through its MIDPOINT. 
Call the points where AD and BC meet PQ X and Y. 
Then iW is the MIDPOINT ofXY. 

see also CHORD, CIRCLE, MIDPOINT 

Butterfly Theorem 

References 
Coxeter, H. S. M. and Greitzer, S. L. Geometry Revisited, 
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C-Table 

see C-DETERMINANT 

The FIELD of COMPLEX NUMBERS, denoted c. 

see also c*, COMPLEX NUMBER, I, N, Q, II& Z 

c * 
The RIEMANN SPHERE c U(W). 

see also c, COMPLEX NUMBER, (& R, RIEMANN 
SPHERE,~ 

C*-Algebra 
A special type of B*-ALGEBRA in which the INVOLU- 
TION is the ADJ~INT OPERATOR in a HILBERT SPACE. 
see also B*-ALGEBRA, ~-THEORY 

References 
Davidson, K. R 

Amer. Math. 
C* -Algebras 

‘sot ., 1996. 

C-Curve 

see LEVY FRACTAL 

bY Example. Providence, RI: 

C-Determinant 
A DETERMINANT appearing in PADS APPROXIMANT 
identities: 

ar-s+1 G-s+2 ’  l  l  a, 

c  

l  l  
. 

l  

r/s = 
. l  . l  . 

. . 
. . 

a, a,+1 m-m G+s-1 

see also PADS APPROXIMANT 

C-Matrix 
Any SYMMETRIC MATRIX (A T = A)or SKEW SYMMET- 
RIC MATRIX (AT = -A) C, with diagonal elements 0 
and others &l satisfying 

cc T = (n - l)l, 

where I is the IDENTITY MATRIX, is known as a C- 
matrix (Ball and Coxeter 1987). Examples include 

C ++o++- 
6= 

+ - + 0 + - 

+ - - + 0 + 

-+ + - - + 0 

References 
Ball, W. W. R. and Coxeter, H. S. M. Mathematical Recre- 
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Cable Knot 
Let K1 be a TORUS KNOT. Then the SATELLITE KNOT 
with COMPANION KNOT Kz is a cable knot on Kz* 

Reterences 
Adams, C. C. The Knot Book: An Elementary Introduction 

to the Mathematical Theory of Knots. New York: W. H. 
Freeman, p. 118, 1994, 
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Cactus Fractal 

A MANDELBROT SET-like FRACTAL obtained byiterat- 
ing the map 

&x+1 = G-b 3 + (zo - I)& - zo. 

see also FRACTALJULIA SET,MANDELBROT SET 

Cake Cutting 
It is always possible to “fairly” divide a cake among n 
people using only vertical cuts. Furthermore, it is pos- 
sible to cut and divide a cake such that each person 
believes that everyone has received l/n of the cake ac- 
cording to his own measure. Finally, if there is some 
piece on which two people disagree, then there is a way 
of partitioning and dividing a cake such that each par- 
ticipant believes that he has obtained more than l/n of 
the cake according to his own measure. 

Ignoring the height of the cake, the cake-cutting problem 
is really a question of fairly dividing a CIRCLE into n 
equal AREA pieces using cuts in its plane. One method 
of proving fair cake cutting to always be possible relies 
on the FROBENIUS-K~NIG THEOREM. 

see UZSO CIRCLE CUTTING, CYLINDER CUTTING, EN- 
VYFREE, FROBENIUS-K~NIG THEOREM, HAM SAND- 
WICH THEOREM, PANCAKE THEOREM, PIZZA THEO- 
REM, SQUARE CUTTING,TORUS CUTTING 
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Cal 

see WALSH FUNCTION 

Calabi’s Triangle 

Equilateral Triangle Calabi’s Triangle 

The one TRIANGLE in addition to the EQUILATERAL 
TRIANGLE for which the largest inscribed SQUARE 
can be inscribed in three different ways. The ra- 
tio of the sides to that of the base is given by =1: = 
1.55138752455.. . (Sloane’s A046095), where 

1 + 3idm)1'3 11 
X= 

3+ 

(-23 
3 l  p/3 

+ 
3[2(-23 + 3id%7)]1/3 

is the largest POSITIVE ROOT of 

2x3 -2x2 -3x+2 = 0, 

which has CONTINUED FRACTION [l, 1, 1, 4, 2, 1, 2, 1, 
5, 2, 1, 3, 1, 1, 390, . . . ] (Sloane’s A046096). 

see also GRAHAM'S BIGGEST LITTLE HEXAGON 
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Calabi-Yau Space 
A structure into which the 6 extra DIMENSIONS of 10-D 
string theory curl up. 

Calculus 
In general, “a” calculus is an abstract theory developed ’ 
in a purely formal way. 

“The” calculus, more properly called ANALYSIS (or 
REAL ANALYSIS or, in older literature, INFINITESIMAL 
ANALYSIS) is the branch of mathematics studying the 
rate df change of quantities (which can be interpreted as 
SLOPES of curves) and the length, AREA, and VOLUME 
of objects. The CALCULUS is sometimes divided into 
DIFFERENTIAL and INTEGRAL CALCULUS, concerned 
with DERIVATIVES 

d 

dz x f( > 

and INTEGRALS 

respectively. 

While ideas related to calculus had been known for some 
time (Archimedes’ EXHAUSTION METHOD was a form 
of calculus), it was not until the independent work of 
Newton and Leibniz that the modern elegant tools and 
ideas of calculus were developed. Even so, many years 
elapsed until the subject was put on a mathematically 
rigorous footing by mathematicians such as WeierstraQ. 

see also ARC LENGTH, AREA, CAL CULUS OF VARI- 
ATIONS, CHANGE OF VARIABLES THEOREM, DE- 

RIVATIVE, DIFFERENTIAL CALCULUS, ELLIPSOIDAL 
CALCULUS, EXTENSIONS CALCULUS, FLUENT, FLUX- 
ION,FRACTIONAL CALCULUS,FUNCTIONAL CALCULUS, 
FUNDAMENTAL THEOREMS OF CALCULUS, HEAWSIDE 
Calculus, INTEGRAL, INTEGRAL CfmcuLus, JAco- 
BIAN, LAMBDA CALCULUS, KIRBY CALCULUS, MALLI- 
AWN 
TION 

C 
AL 

P ALCULUS, 
CALCULUS 

REDICATE CALC 
SLOPE, TENSOR 

ULUS, 
CALCU 

PROP0 
LUS, u 

SI- 
M- 

BRAL CALCULUSJOLUME 
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Calculus of Variations 
A branch of mathematics which is a sort of general- 
ization of CALCULUS. Calculus of variations seeks to 
find the path, curve, surface, etc., for which a given 
FUNCTION hasa STATIONARYVALUE (which,inphysical 
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problems, is usually a MINIMUM or MAXIMUM). Mathe- 
matically, this involves finding STATIONARY VALUES of 

Calderh’s Formula 

integrals of the form 

I- 
s 

a f(x) = c1, O” O” (f, Qapb) T,!J~‘~(x)u-~ da db, 

f(Y, !A 4 dx- (1) 
s s -m -m 

b 
where 

I has an extremum only if the EULER-LAGRANGE DIF- 
FERENTIAL EQUATION is satisfied, Le., if 

(2) 

This result was originally derived using HARMONIC 
ANALYSIS, but also follows from a WAVELETS viewpoint. 

The FUNDAMENTAL LEMMA OF CALCULUS OF VARIA- 
TIONS states that, if 

Caliban Puzzle 
A puzzle in LOGIC in which one or more facts must be 
inferred from a set of given facts. 

J 

M(x)h(x) dx = 0 (3) Calvary Cross 
a 

for all h(x) with CONTINUOUS second PARTIAL DERIVA- 
TIVES, then 

M(x) = 0 (4) 
on (a, b). 

see also BELTRAMI IDENTITY, BOLZA PROBLEM, 
BRACHISTOCHRONE 
LOPE THEOREM, EULER-LAGRANGE 

PROBLEM, CATENARY, ENVE- 
DIFFERENTIAL 

see also CROSS 

EQUATION, ISOPERIMETRIC PROBLEM, ISOVOLUME Cameron’s Sum-Free Set Constant 
PROBLEM, LINDELOF'S THEOREM, PLATEAU'S PROB- 
LEM, POINT-POINT DISTANCE-~-D, POINT-POINT 

A set of POSITIVE INTEGERS S is sum-free if the equa- 

DISTANCE-~-D, ROULETTE, SKEW QUADRILATERAL, 
tion x + y = x has no solutions x, y, z f S. The proba- 

SPHERE WITH TUNNEL, UNDULOID, WEIERSTRA% 
bility that a random sum-free set S consists entirely of 
ODD INTEGERS satisfies 

ERDMAN CORNER CONDITION 
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see ANOMALOUS CANCELLATION 

Cancellation Law 
If bc E bd ( mod a) and (6, a) = 1 (i.e., a and b are 
RELATIVELY PRIME), then CE d (mod a). 

see UZSO CONGRUENCE 

Calcus 

1 calcus S A. 
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Cannonball Problem 
Find a way to stack a SQUARE of cannonballs laid out on 
the ground into a SQUARE PYRAMID (i.e., find a SQUARE 
NUMBER which is also SQUARE PYRAMIDAL). This cor- 
responds to solving the DIOPHANTINE EQUATION 

k 

>: 

,2 
2 - - ;k(l+ Ic)(l+ 2K) = N2 

i=l 

for some pyramid height k. The only solution is k = 24, 
N = 70, corresponding to 4900 cannonballs (Ball and 
Coxeter 1987, Dickson 1952), as conjectured by Lucas 
(1875, 1876) and proved by Watson (1918). 

see 

PY 
UZSU 

RAMI 
SPHERE 
D,SQUA 

PACKING, SQUARE NUMB 
RE PYRAMIDAL NUMBER 

ER,SQUARE 
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Canonical Form 
A clear-cut way of describing every object in a class in 
a ONE-TO-ONE manner. 

see also NORMAL FORM, ONE-TO-ONE 

References 
Petkovgek, M.; Wilf, H. S.; and Zeilberger, D. A=B. Welles- 

ley, MA: A. K. Peters, p. 7, 1996. 

Canonical Polyhedron 
A POLYHEDRON is said to be canonical if all its EDGES 
touch a SPHERE and the center of gravity of their contact 
points is the center of that SPHERE. Each combinato- 
rial type of (GENUS zero) polyhedron contains just one 
canonical version. The ARCHIMEDEAN SOLIDS and their 
DUALS are all canonical. 
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Canonical Transformat ion 

see SYMPLECTIC DIFFEOMORPHISM 

Cantor Comb 

~~~CANTOR SET ' 

Posting t0 

Cantor Dust 

Cantor-Dedekind Axiom 
The points on a line can be put into a ONE-TO-ONE 
correspondence with the REAL NUMBERS. 

see also CARDINAL NUMBER, CONTINUUM HYPOTHE- 
SIS, DEDEKIND CUT 

Cantor Diagonal Slash 
A clever and rather abstract technique used by Georg 
Cantor to show that the INTECER~ and REALS cannot be 
put into a ONE-TO-ONE correspondence (i.e., the INFIN- 
ITY of REAL NUMBERS is “larger” than the INFINITY of 
INTEGERS). It proceeds by constructing a new member 
S’ of a SET from already known members S by arrang- 
ing its nth term to differ from the nth term of the nth 
member of S. The tricky part is that this is done in 
such a way that the SET including the new member has 
a larger CARDINALITY than the original SET S. 

, CONTIN see also CARDINALITY 
NUMERABLE SET 
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Cantor Dust 

A FRACTAL which can be constructed using STRING RE- 
WRITING by creating a matrix three times the size of the 
current matrix using the rules 

line 1: II*ll,>II* *II ,I1 it,>II II 
line 2: II*ll,>II II, II lf,>ll II 

line 3: rl*Il->ll* *II, tl fl,>ll II 

Let Nn be the number of black boxes, L, the length of 
a side of a white box, and A, the fractional AREA of 
black boxes after the nth iteration. 

Nn c 5” (1) 
L, c (i)” = 3-” (2) 

An = Ln2Nn = (g)“m (3) 

The CAPACITY DIMENSION is therefore 

see 

d 
hNn 

Jnm in = - 
ln( sn) 

cap = - 
n 7z5zx3 ln(3-“) 

In 5 - - 
In 3 

= 1.464973521.. . . (4 

also Box FRACTAL, SIERPI~SKI CARPET, SIERPI~~- 
SIEVE 
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The Cantor set (T,) is g iven by taking the interval [OJ] 
(set To), removing the middle third (Tl), removing the 
middle third of each of the two remaining pieces (Tz), 
and continuing this procedure ad infinitum. It is there- 
fore the set of points in the INTERVAL [OJ] whose ternary 
expansions do not contain I, illustrated below. 

Cantor’s Equation 

WE = tz, 

where w is an ORDINAL NUMBER and E is an INACCES- 
SIBLE CARDINAL. 

see also INACCESSIBLE CARDINAL, ORDINAL NUMBER 
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Cantor Function 
The function whose values are 

1 Cl 
( 

2 
5 2 

-i...+~+z" 
> 

for any number between 

and 
b&L+ +c”-‘+L 

w . l  

3 3m--1 3"' 

Chalice (1991) shows that any real-values function F(s) 
on [0, l] which is MONOTONE INCREASING and satisfies 

1. F(0) = 0, 

2. F(x/3) = F(x)/2, 

3. F(l- 2) = l-F(z) 

is the Cantor function. 

see UZSO CANTOR SET, DEVIL’S STAIRCASE 
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Cantor’s Paradox 
The SET of all SETS is its own POWER SET. Therefore, 
the CARDINALITY of the SET of all SETS must be bigger 
than itself. 

-- -- -- -- me I- WI -- -- 

This produces the SET of REAL NUMBERS (2) such that 

X= :+...+g+..., (1) 

where C~ may equal 0 or 2 for each n. This is an infinite, 
PERFECT SET. Thetotallengthofthe LINE SEGMENTS 
in the nth iteration is 

c,= g y 0 (2) 

and the number of LINE SEGMENTS is IVn = 2”, so the 

length of each element is 

e In - en = -= 
N 3 0 

and the CAPACITY DIMENSION is 

(3) 

d 
In N nIn2 

cap = - lim - = - lim -n 
HO+ he n-m 

In 2 -- - 
In 3 

= 0.630929.. . . (4 

The Cantor set is nowhere DENSE, so it has LEBESGUE 
MEASURE 0. 

A general Cantor set is a CLOSED SET consisting en- 
tirely of BOUNDARY POINTS. Such sets are UNCOUNT- 
ABLE and may have 0 or POSITIVE LEBESGUE MEA- 
SURE. The Cantor set is the only totally disconnected, 
perfect, COMPACT METRIC SPACE up to a HOMEOMOR- 
PHISM (Willard 19’70) l  

see also ALEXANDER'S HORNED SPHERE, ANTOINE'S 
NECKLACE, CANTOR FUNCTION 
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A FRACTAL which can be constructed using STRING RE- 
WRITING by creating a matrix three times the size of the 
current matrix using the rules 

line 1: tt*tl,>il***ll, II Il,>lt II 

line 2; tl*fl,>ll* *tt ,tI 1i,>ll I I  

line 3: tl*lt,>tt***tt , If 1t,>rt If 

The first few steps are illustrated above. 

The size of the unit element after the nth iteration is 

1 n 
L,= 3 

0 

and the number of elements is given by the RECUR- 
RENCE RELATION 

-Nn = 4N,-1 + 5(9”) 

where Nl = 5, and the first few numbers of elements are 
5, 65, 665, 6305, . l  l  . Expanding out gives 

Nn = 5 2 4n-k9k-1 z 9” - 4”. 

k=O 

The CAPACITY DIMENSION is therefore 

In Nn 
D=- lim -x- 

n-km hl L, 
lim ln(9” - 4”) 

n-+m lIl(3-“) 

ln(gn) In 9 2 In 3 - -- 
,Jym ln(3-“) = E = In3 = 2* 

Since the DIMENSION of the filled part is 2 (i.e., the 
SQUARE is completely filled), Cantor’s square fractal is 
not a true FRACTAL. 

see also Box FRACTAL, CANTOR DUST 
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Cantor’s Theorem 
The CARDINAL NUMBER of any set is lower than the 
CARDINAL NUMBER of the set of all its subsets. A 
COROLLARY is that there is no highest N (ALEPH). 

see also CANTOR'S PARADOX 

Cap 

see CROSS-CAP, SPHERICAL CAP 

Capacity 

Capacity Dimension 
A DIMENSION also called the FRACTAL DIMEN- 
SION, HAWSDORFF DIMENSION, and HAUSDORFF- 
BESICOVITCH DIMENSION in which nonintegral values 
are permitted. Objects whose capacity dimension is dif- 
ferent from their TOPOLOGICAL DIMENSION are called 
FRACTALS. The capacity dimension of a compact MET- 
RIC SPACE X is a REAL NUMBER &apacity such that if 
n(e) denotes the minimum number of open sets of diam- 
eter less than or equal to E, then n(c) is proportional to 
e-D as c + 0. Explicitly, 

d capacity = - lim In N 
HO+ lnc 

(if the limit exists), where N is the number of elements 
forming a finite COVER of the relevant METRIC SPACE 
and c is a bound on the diameter of the sets involved 
(informally, E is the size of each element used to cover 
the set, which is taken to to approach 0). If each ele- 
ment of a FRACTAL is equally likely to be visited, then 
d capacity = dinformation, w here dinformation is the INFOR- 
MATION DIMENSION. The capacity dimension satisfies 

where d correlation is the CORRELATION DIM ENSION, and 
is conj ectured to be equal to the LYAPUNOV DIMENSION. 

d correlation 5 dinformation < dcapacity - 

see also CORRELATION EXPONENT, DIMENSION, H 
DORFF DIMENSION,KAPLAN-YORKE DIMENSION 
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Carathkodory Derivative 
A function f is Carathkodory differentiable at a if there 
exists a function d which is CONTINUOUS at a such that 

f(x) - f(a) = 4(x)(x - 4 

Every function which is Carathkodory differentiable is 
also FR&HET DIFFERENTIABLE. 

see also DERIVATIVE, FRI?CHET DERIVATIVE 

Carath&odory’s Fundamental Theorem 
Each point in the CONVEX HULL of a set S in R” is in 
the convex combination of n + 1 or fewer points of S. 

see also CONVEX HULL, HELLY'S THEOREM see TRANSFINITE DIAMETER 

Cardano’s Formula 

see Cumc EQUATION 
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Cardinal Number 
In informal usage, a cardinal number is a number used 
in counting (a COUNTING NUMBER), such as 1, 2, 3, , , , l  

Formally, a cardinal number is a type of number defined 
in such a way that any method of counting SETS using it 
gives the same result. (This is not true for the ORDINAL 
NUMBERS.) In fact, the cardinal numbers are obtained 
by collecting all ORDINAL NUMBERS which are obtain- 
able by counting a given set. A set has No (ALEPH-0) 

members if it can be put into a ONE-TO-ONE correspon- 
dence with the finite ORDINAL NUMBERS. 

Two sets are said to have the same cardinal number if 
all the elements in the sets can be paired off ONE-TO- 
ONE. An INACCESSIBLE CARDINAL cannot be expressed 
in terms of a smaller number of smaller cardinals. 

see also ALEPH, ALEPH-0 (No), ALEPH-1 (HI), CAN- 
TOR-DEDEKIND AXIOM, CANTOR DIAGONAL SLASH, 

CONTINUUM, CONTINUUM HYPOTHESIS, EQUIPOL- 
LENT, INACCESSIBLE CARDINALS AXIOM, INFINITY, 
ORDINAL NUMBER, POWER SET, SURREAL NUMBER, 

UNCOUNTABLE SET 
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Cardinality 

see CARDINAL NUMBER 

Cardioid 

The curve given by the POLAR equation 

T = a(1 + cod), (1 

sometimes also written 

T = 2b(1+ cod), (2 

where b = a/2, the CARTESIAN equation 

(x2 + y2 - ax)2 = a2(x2 + y”), 

> 

> 

(3) 

and the parametric equations 

X = a cos t(1+ cos t) (4) 

y = asint(l+ cost). (5) 

The cardioid is a degenerate case of the LIMA~ON. It is 
also a l-CUSPED EPICYCLOID (with T = R) and is the 
CAUSTIC formed by rays originating at a point on the 
circumference of a CIRCLE and reflected by the CIRCLE. 

The name cardioid was first used by de Castillon in 
Philosophical Bxznsactions of the Royal Society in 1741. 
Its ARC LENGTH was found by La Hire in 1708. There 
are exactly three PARALLEL TANGENTS to the cardioid 
with any given gradient. Also, the TANGENTS at the 
ends of any CHORD through the CUSP point are at 
RIGHT ANGLES. The length of any CHORD through the 
CUSP point is 2~. 

The cardioid may also be generated as follows. Draw 
a CIRCLE C and fix a point A on it. Now draw a set 
of CIRCLES centered on the CIRCUMFERENCE of C and 
passing through A. The ENVELOPE of these CIRCLES 
is then a cardioid (Pedoe 1995). Let the CIRCLE C be 
centered at the origin and have RADIUS 1, and let the 
fixed point be A = (1,O). Then the RADIUS of a CIRCLE 
centered at an ANGLE 0 from (1, 0) is 

r2 = (0 - cos8)2 + (1 - sin0)2 

= cos2 e + 1 - 2 sin 8 + sin2 8 

- 2(1 - sin0). - (6) 

The ARC LENGTH, CURVATURE, and TANGENTIAL AN- 
GLE are 

s 

t 

S= 21 cos( $!)I dt = 4a sin( $0) 

K= 
3Psec($)l 

4a 

4 - $e. - 

(7) 

(8) 

(9) 

As usual, care must be taken in the evaluation of s(t) 
for t > 7r. Since f7) comes from an integral involving: the 
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ABSOLUTE VALUE of a function, it must be monotonic 
increasing. Each QUADRANT can be treated correctly 
by defining 

n= (10) 

where 1x1 is the FLIER FUNCTION, giving the formula 

s(t) = (-1) l-f+ hod 2)14sin($) + 8 Lin] . (11) 

The PERIMETER of the curve is 

27r 

L= 
s 

~2acos(~~)~ dB = 4a 
0 s 

x 

cos( +O) d0 
0 

s 

42 

s 

n/2 
= 4a cos 4(2 dg5) = 8a cos 4 d4 

0 0 

= 8a[sin#’ = 8~. (12) 

The AREA is 

2x 

A=; 

s 

2x 

r2 d0 = +a2 
s 

(1+2cos8+cos20)d0 
0 0 

27T 
- - $U2 

s 
{1+ 2cos8+ g1+ cos(28)]}de 

0 
27T 

-12 - ZU 
s 

[; + 2 cos 8 + + cos(20)] d0 
0 

= &“@I + 2sine + $ sin(20)]iT = $a2. (13) 

see aho CIRCLE, CISSOID, CONCHOID, EQUIANGULAR 
SPIRAL, LEMNISCATE, LIMA~ON, MANDELBROT SET 
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Cardioid Caustic 
The CATACAUSTIC of a CARDIOID for a RADIANT POINT 
at the CUSP is a NEPHROID. The CATACAUSTIC for 
PARALLEL rays crossing a CIRCLE is a CARDIOID. 

Cardioid Evolute 
/---N / / l\ \ \ / \ 

: 
\ 
\ 

x = gu+ ~ucose(1 -cod) 

Y- $sinO(l- c0se). 

This is a mirror-image CARDIOID with a’ = a/3* 

Cardioid Inverse Curve 
If the CUSP of the cardioid is taken as the INVERSION 
CENTER, the cardioid inverts to a PARABOLA. 

Cardioid Involute 

X = zu + 3a cos e(i - cos e) 

Y = 3asin@(l- case). 

This is a mirror-image CARDIOID with a’ = 3a. 

Cardioid Pedal Curve 

The PEDAL CURVE of the CARDIOID where the PEDAL 
POINT is the CUSP is CAYLEY'S SEXTIC. 

Cards 
Cards are a set of n rectangular pieces of cardboard 
with markings on one side and a uniform pattern on the 
other. The collection of all cards is called a “deck,” and 
a normal deck of cards consists of 52 cards of four dif- 
ferent “suits.” The suits are called clubs (&), diamonds 
(o), hearts (O), and spades (4). Spades and clubs are 
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colored black, while hearts and diamonds are colored 
red. The cards of each suit are numbered I through 13, 
where the special terms ace (l), jack (ll), queen (12), 
and king (13) are used instead of numbers 1 and 11-13. 

The randomization of the order of cards in a deck is 
called SHUFFLING. Cards are used in many gambling 
games (such as POKER), and the investigation of the 
probabilities of various outcomes in card games was one 
of the original motivations for the development of mod- 
ern PROBABILITY theory. 

see also BRIDGE CARD GAME, CLOCK SOLITAIRE, 
COIN, COIN TOSSING, DICE, POKER, SHUFFLE 

Carleman’s Inequality 
Let {ai}yzl be a SET of POSITIVE numbers. Then the 
GEOMETRIC MEAN and ARITHMETIC MEAN satisfy 

n n 

In 
alm***ai) 

l/i< e 
_ ; IE 

a;. 

i=l i=l 

Here, the constant e is the best possible, in the sense 
that counterexamples can be constructed for any stricter 
INEQUALITY which uses a smaller constant. 

see also ARITHMETIC MEAN, e, GEOMETRIC MEAN 
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Carlson-Levin Constant 
N.B. A detailed on-line essay by S. Finch was the start- 

ing point for this entry. 

Assume that f is a NONNEGATIVE REAL function on 
[0, co) and that the two integrals 

r x”-‘-“[f(x)]” dx (1) 
0 

x”-‘+“[f(x)]” dx (2) 

exist and are FINITE. If p = Q = 2 and A = ~1 = 1, 
Carlson (1934) determined 

r 
f (4 dx 2 fi 

0 
(pw dx) Ii4 

X 

(I- 
x2 [ml2 dz 

0 > 

l/4 

(3) 

and showed that fi is the best constant (in the sense 
that counterexamples can be constructed for any stricter 

c= l 
(PS>” w 

where 

S-l- P 
y = p/J + qx 

t=X 
P/J +- Clx 

cX=l-s-t 

(6) 
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INEQUALITY which uses a smaller constant). For the 
general case 

(7) 

(8) 

and I?(Z) is the GAMMA FUNCTION. 
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Carlsods Theorem 
If f(z) is regular and of the form 0(W) where k: < n, 
for S[r] 2 0, and if f(x) = 0 for x = 0, 1, . l  . , then f(z) 
is identically zero. 

see also GENERALIZED HYPERGEOMETRIC FUNCTION 
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Carlyle Circle 

Consider a QUADRATIC EQUATIONX~-sx+p= 0 where 
s and p denote signed lengths. The CIRCLE which has 
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the points A = (0,l) and B = (s,p) as a DIAMETER 
is then called the Carlyle circle C,,, of the equation. 
The CENTER of C,,, is then at the MIDPOINT of AB, 
IW = (s/2, (1 + p)/2), which is also the MIDPOINT of 
S = (s,O) and Y = (0,l + p). Call the points at which 
C,,, crosses the X-AXIS HI = (~1~0) and I& = (~2~0) 
(with ~1 2 ~2)~ Then 

s = x1 + x2 

p=mx2 

(x - x1)(x - x2) = x2 - sx +p, 

so x1 and x2 are the ROOTS of the quadratic equation. 

see also 257~GON, 65537-CON, HEPTADECAGON, PEN- 

TAGON 
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Carmichael Condition 
A number n satisfies the Carmichael condition IFF (p - 
l)l(n/p - 1) for all PRIME DIVISORS p of n. This is 
equivalent to the condition (p - 1) 1 (n - 1) for all PRIME 
DIVISORS p of n. 

see ~2~0 CARMICHAEL NUMBER 
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sohn, R. “Giuga’s Conjecture on Primality.” Amer. Math. 
Monthly 103, 40-50, 1996. 

Carmichael’s Conjecture 
Carmichael’s conjecture asserts that there are an IN- 
FINITE number of CARMICHAEL NUMBERS. This was 
proven by Alford et al. (1994). 

see U~SO CARMICHAEL NUMBER, CARMICHAEL’S To- 
TIENT FUNCTION CONJECTURE 
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Carmichael Function 
X(n) is the LEAST COMMON MULTIPLE (LCM) of all the 
FACTORS of the TOTIENT FUNCTION 4(n), except that 
if 81n, then 2”-2 is a FACTOR instead of 2”? 

@( 1 n 
forn=p”,p=2anda<2, orp>3 - - 

1 

A( > n= 5 n 4( > 
for n = 2a and a > 3 

LCM[X(P~“~)]~ - 
for n = nipiai. 

Some special values are 

W) =1 

X(2) = 1 

X(4) = 2 

X(27 = 2'-2 

for T > 3, and - 
X(PT) = 4(P’) 

for p an ODD PRIME and T > 1. The ORDER of a (mod 
n) is at most A(n) (R b i en b aim 1989). The values of A(n) 
for the first few n are 1, 1, 2, 2, 4, 2, 6, 4, 10, 2, 12, l  . . 
(Sloane’s AOll773). 

see also MODULO MULTIPLICATION GROUP 
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Carmichael Number 
A Carmichaelnumberis an ODD COMPOSITE NUMBER 
n which satisfies FERMAT'S LITTLE THEOREM 

a n-1 - 1 s 0 (mod n) 

for every choice of a satisfying (up-t) = 1 (i.e., a and 
n are RELATIVELY PRIME) with 1 < a < n. A Car- 
michael number is therefore a PSEUDOPRIMES to any 
base. Carmichael numbers therefore cannot be found 
to be COMPOSITE using FERMAT'S LITTLE THEOREM. 
However, if (a, n) # 1, the congruence of FERMAT'S LIT- 
TLE THEOREM is sometimes NONZERO, thus identifying 
a Carmichael number n as COMPOSITES. 

Carmichael numbers are sometimes called ABSOLUTE 
PSEUDOPRIMES and also satisfy KORSELT~ CRITERION. 
R. D. Carmichael first noted the existence of such num- 
bers in 1910, computed 15 examples, and conjectured 
that there were infinitely many (a fact finally proved by 
Alford et al. 1994). 
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The first few Carmichael numbers are 561, 1105, 1729, 
2465, 2821, 6601, 8911, 10585, 15841, 29341, . . . 
(Sloane’s A002997). C armichael numbers have at least 
three PRIME FACTORS. For Carmichael numbers with 
exactly three PRIME FACTORS, once one of the PRIMES 

has been specified, there are only a finite number of Car- 
michael numbers which can be constructed. Numbers of 
the form (6Tc + l)( 12k + 1) (18k + 1) are Carmichael num- 
bers if each of the factors is PRIME (Korselt 1899, Ore 
1988, Guy 1994). This can be seen since for 

N = (6k+1)(12k+1)(18k+l) = 1296k3+396k2+36k+l, 

N - 1 is a multiple of 36J~ and the LEAST COMMON 
MULTIPLE of 6k, 12k, and 18/z is 36k, so aNwl E 1 
modulo each of the PRIMES 6k + 1, 12k + 1, and 18k + 
1, hence uRT-’ = 1 modulo their product. The first 
few such Carmichael numbers correspond to k = 1, 6, 
35, 45, 51, 55, 56, . . . and are 1729, 294409, 56052361, 
118901521, . . . (Sloane’s A046025). The largest known 
Carmichael number of this form was found by II. Dubner 
in 1996 and has 1025 digits. 

The smallest Carmichael numbers having 3, 4, . . . fac- 
tors are 561 = 3 x 11 x 17, 41041 = 7 x 11 x 13 x 41, 
825265, 321197185, . . . (Sloane’s A006931), In total, 
there are only 43 Carmichael numbers < 106, 2163 
< 2.5 x lOlo, 105,212 < 1015, 

- 
and 246,683 < 1016 (Pinch - 

EN)* Let C(n) d enote the number of Carmichael num- 
bers less than n. Then, for sufficiently large n (n - lo7 
from numerical evidence), 

C(n) - n217 

(Alford et al. 1994). 

The Carmichael numbers have the following properties: 

1. If a PRIME p divides the Carmichael number 
n, then n = 1 (mod p - 1) implies that n G 

’ P (mod P(P - I>>* 

2. Every Carmichael number is SQUAREFREE. 

3. An ODD COMPOSITE SQUAREFREE number n is a 
Carmichael number IFF n divides the DENOMINATOR 
of the BERNOULLI NUMBER &-I. 

see also CARMICHAEL CONDITION, PSEUDOPRIME 
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Carmichael Sequence 
A FINITE, INCREASING SEQUENCE of INTEGERS {al, 
- - - ? a,} such that 

(Ui - l)l(Ul *.-a&l) 

fori= l,..., VYL, where mln indicates that m DIVIDES n. 
A Carmichael sequence has exclusive EVEN or ODD ele- 
ments. There are infinitely many Carmichael sequences 
for every order. 

see also GIUGA SEQUENCE 
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Carmichael’s Theorem 
If a and n are RELATIVELY PRIME so that the GREATEST 
COMMON DENOMINATOR GCD(a,n) =l,then 

uw - = 1 (mod n), 

where X is the CARMICHAEL FUNCTION. 

Carmichael’s Totient Function Conjecture 
It is thought that the TOTIENT VALENCE FUNCTION 
N&(m) > 2 (i.e., the TOTIENT VALENCE FUNCTION - 
never takes the value 1). This assertion is called Car- 
michael’s totient function conjecture and is equivalent 
to the statement that there exists an m, # n such 
that #(n) = 4(m) (Ribenboim 1996, pp. 39-40). Any 
counterexample to the conjecture must have more than 
10,000 DIGITS (Conway and Guy 1996). Recently, 
the conjecture was reportedly proven by F. Saidak in 
November, 1997 with a proof short enough to fit on a 
postcard. 

see also TOTIENT FUNCTION, TOTIENT VALENCE 
FUNCTION 
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Carnot’s Polygon Theorem 
If PI, P2, .-. , are the VERTICES of a finite POLYGON 
with no “minimal sides” and the side Pi Pj meets a curve 
in the POINTS PQ~ and Pij2, then 

1, 

where AB denotes the DISTANCE from POINT A to B. 

References 
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Carnot’s Theorem 
Given any TRIANGLE AlAzA3, the signed sum of PER- 
PENDICULAR distances from the CIRCUMCENTER 0 to 
the sides is 

where T is the INRADIUS and R is the CIRCUMRADIUS. 
The sign of the distance is chosen to be POSITIVE IFF 
the entire segment 00i lies outside the TRIANGLE. 

see also JAPANESE TRIANGULATION THEOREM 
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Carotid-Kundalini Fkactal 
Fractal Valley Gaussian Mtn. Oscillation Land 

,r 1. *, 1 " " 1 " " I> "' 1 

A fractal-like structure is produced for 2 < 0 by super- 
posing plots of CAROTID-KUNDALINI FUNCTIONS CK, 
of different orders 72. The region -1 < 61: < 0 is called 
FRACTAL LAND by Pickover (1995), the central region 
the GAUSSIAN MOUNTAIN RANGE, and the region x > 0 
OSCILLATION LAND. The plot above shows n = 1 to 25. 

Gaps in FRACTAL LAND occur whenever 

cos(Zm/q) for r = 0, 1, l  . . , Lq/ZJ, where [zl is the 
CEILING FUNCTION and 1x1 is the FLOOR FUNCTION. 

References 
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Carot id-Kundalini finct ion 
The FUNCTION given by 

CK, (x) E cos(nx cos -1x>, 

see also CAROTID-KUNDALINI FRACTAL 

where n is an INTEGER and -1 < GL: < 1. 

Carry 

1 1 -carries 
1 5 geaddend 1 

+ 2 4 g+addend2 

4 0 7+sum 

The operating of shifting the leading DIGITS of an AD- 
DITION into the next column to the left when the SUM of 
that column exceeds a single DIGIT (i.e., 9 in base 10). 

see also ADDEND, ADDITION, BORROW 

Carrying Capacity 

see LOGISTIC GROWTH CURVE 

Cartan Matrix 
A MATRIX used in the presentation of a LIE ALGEBRA. 

References 
Jacobson, N. Lie Algebras. New York: Dover, p. 121, 1979. 

Cartan Relation 
The relationship Sqi (X - 9) = Cj+k=iSqj (x) - Sq” (y) 
encountered in the definition of the STEENROD ALGE- 

Cartan Subgroup 
A type of maximal Ab elian SUBGROUP. 

References 
Knapp, A. W. “Group Representations and Harmonic Anal- 

ysis, Part II.” Not. Amer. Math. Sot. 43, 537-549, 1996. 

Cartan Torsion Coefficient 
The ANTISYMMETRIC parts of the CONNECTION COEF- 
FICIENT rxpV. 

2 cos --I x = 27p P 

Q 

for p and q RELATIVELY PRIM E INTEGERS. At such 
points 2, the functions assume the [(q + Q/21 values 
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Cartesian Coordinates 
z-axis 

A 

u x-axis y-axis 

Cartesian coordinates are rectilinear Z-D or 3-D coordi- 
nates (and therefore a special case of CURVILINEAR CO- 
ORDINATES) which are also called RECTANGULAR Co- 

ORDINATES. The three axes of 3-D Cartesian coordi- 

nates, conventionally denoted the X-, y-, and Z-AXES (a 
NOTATION due to Descartes) are chosen to be linear and 
mutually PERPENDICULAR. In 3-D, the coordinates X, 
y, and x may lie anywhere in the INTERVAL (--co, 00). 

The SCALE FACTORS of Cartesian coordinates are all 

unity, hi = 1. The LINE ELEMENT is given by 

ds=dxji:+dy?+dzii, 

and the VOLUME ELEMENT by 

dV = dxdydz. 

The GRADIENT has a particularly simple form, 

as does the LAPLACIAN 

a2 d2 a2 
v2=@+T+'22. 

dY 

The LAPLACIAN is 

V2F E V = (VF) = d2F 
a2F d2F 

=+dy2+= 

The DIVERGENCE is 

V F = aFx + aFy + dFz . 
dX dy ax ’ 

and the CURL is 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

The GRADIENT ofthe DIVERGENCE is 

L 
9 - - 

I3 
au, au, au, 

BY d dz+dy+dz > 
. (8) 

1. 
LAPLACE'S EQUATIQN is separable in Cartesian cooral- 

195 

nates. 

see also COORDINATES, HELMHOLTZ DIFFERENTIAL 
EQUATION-CARTESIAN COORDINATES 
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Cartesian Ovals 

A curve consisting of two ovals which was first studied 
by Descartes in 1637. It is the locus of a point P whose 

distances from two FOCI Fl and F2 in two-center BIPO- 
LAR COORDINATES satisfy 

mr * nr’ = k, (1) 

where m, 12 are POSITIVE INTEGERS, k is a POSITIVE 
real, and T and T’ are the distances from Fl and F2. If 

m = n, the oval becomes an an ELLIPSE. In CARTESIAN 
COORDINATES, the Cartesian ovals can be written 

m Jc (x + a)2 + y2 = k2 (2) 

(x2 + y2 + a”)(m” - n2) - 2ax(m2 + n2) - k2 

= -2n&x + a)2 + y2, (3) 

K m2 - n2)(x2 + y2 + a”) - 2ax(m2 + n2)12 

- 2(m2 + n2)(n2 + y2 + a”) - 4ax(m2 - n2) - k2. - (4) 

Now define 

b E m2 - n2 

cIm2 +n2, 

(5) 

(6) 
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and set a = 1. Then 

[b(22+~2)-2cz+b]2+4b2+k2-2C=2C(x2+y2)~ (7) 

If c’ is the distance between Fl and &, and the equation 

T+mr’=a (8) 

Casimir Operator 
An OPERATOR 

r = ii, R iR 
ei u 

i--l 

on a representation R of a LIE ALGEBRA. 

References 
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is used instead, an alternate form is 

Cassini Ellipses 

see CASSINI OVALS [(1-m2)(x2+y2)+2m2c’x+at2-m2c’2]2 = 4at2(x2+y2). 

(9) 
The curves possess three FOCI. If m = 1, one Cartesian 
oval is a central CONIC, while if m = a/c, then the curve 
is a LIMACON and the inside oval touches the outside 
one. Cartesian ovals are ANALLAGMATIC CWRVES. 
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Curves/Cartesian.htm1. 

Cartesian Product 

seel31R~~~ PRODUCT (SET) 

Cartesian Trident 

see TRIDENT OF DESCARTES 

Cartography 
The study of MAP PROJECTIONS and the making of ge- 
ographical maps. 

see also MAP PROJECTION 

Cascade 
A Z-ACTION or IV-ACTION. A cascade and a single MAP 
X + X are essentially the same, but the term “cascade” 
is preferred by many Russian authors. 

see also ACTION, FLOW 

Casey’s Theorem 
Four CIRCLES are TANGENT to a fifth CIRCLE or a 
straight LINE IFF 

t12t34 k t13t42 zt t14t23 = 0, 

where tij is a common TANGENT to CIRCLES i and j* 

see also PURSER’S THEOREM 

References 
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Treatise 
Boston, 

Cassini’s Identity 
For F, the nth FIBONACCI NUMBER, 

F n-1Fn+l-Fn2 =(-I)“. 

see also FIBONACCI NUMBER 

References 
Petkovgek, M.; Wilf, H. S.; and Zeilberger, D. A=B. Welles- 
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Cassini Ovals 

<qcxL:‘:I:::x:::I-:(:, 

The curves, also called CASSINI ELLIPSES, described by 
a point such that the product of its distances from two 
fixed points a distance 2a apart is a constant b2. The 
shape of the curve depends on b/a. If a < b, the curve 
is a single loop with an OVAL (left figure above) or dog 
bone (second figure) shape. The case a = b produces 
a LEMNISCATE (third figure). If a > b, then the curve 
consists of two loops (right figure). The curve was first 
investigated by Cassini in 1680 when he was studying 
the relative motions of the Earth and the Sun. Cassini 
believed that the Sun traveled around the Earth on one 
of these ovals, with the Earth at one FOCUS of the oval. 

Cassini ovals are ANALLAGMATIC CURVES. The Cassini 
ovals are defined in two-center BIPOLAR COORDINATES 
by the equation 

TIT2 = b2, (1) 

with the origin at a FOCUS. Even more incredible curves 
are produced by the locus of a point the product of 
whose distances from 3 or more fixed points is a con- 
stant. 

The Cassini ovals have the CARTESIAN equation 

[(x - a)" + y”][(x + a)’ + y”] = b4 

or the equivalent form 

(x2 + y2 + u2)2 - 4u2x2 = b4 

(2) 

(3) 
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and the polar equation 

r4 + u4 - 2a2r2 cos(20) = b4. (4) 

Solving for r2 using the QUADRATIC EQUATION gives 

r2 = 
2a2 cos(28) + d4a4 cos2(20) - 4(a4 - b”) 

2 

- - u2 cos(28) + db4 - u4 sin2(28) 

=a2 [cos(2t9+/pjxG . (5) 

If a < b, the curve has AREA 

f-0 
A= +r2 d0 = 2(i) 

where the integral has been done over half the curve 
and then multiplied by two and E(x) is the complete 
ELLIPTIC INTEGRAL OF THE SECOND KIND. If u = b, 
the curve becomes 

r2 = a2 
[ 
cos(20) + J1-sin28 = 2u2 cos(28), 1 (7) 

which is a LEMNISCATE having AREA 

A = 2u2 (8) 

(two loops of a curve fi the linear scale of the usual 
lemniscate r2 = u2 cos( 20), which has area A = u2 /2 
for each loop). If a > 6, the curve becomes two disjoint 
ovals with equations 

1 , 

r = *+os(2S) * Jci,” - sin2(28), (9) 

where 8 E [-&,&I and 

b 2 
80 E + sin-l - K )I l  U 

see UZSOCASSINI SURFACE, LEMNISCATE, MANDELBROT 
SET, OVAL 
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Cassini Projection 

A MAP PROJECTION . 

x = sin-l B 

[ 

tan 4 
Y = tan-l 

cos(X - A,) 

where 
B = cos+in(X - X0). 

The inverse FORMULAS are 

4 = sin -l(sinDcosx) 

(1) 

1 (2) 

(3) 

(4) 
tan x 

X=X() +tan-l a , 
( > (5) 

where 
D =y+&. (6) 

References 
Snyder, J. P. MalJ Projections-A Working 1Manual. U. S. 
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Cassini Surface 

The QUARTIC SURFACE obtained by replacing the con- 
stant c in the equation of the CASSINI OVALS 

[(x - u)” + y”][(z + u)” + Y”] = c2 (1) 

by c = z2, obtaining 

K x - u)” + y2][(x + a)” + Y”] = z4m (2) 

As can be seen by letting y = 0 to obtain 

( x2 - a2)2 = x4 (3) 

x2+x2 =u2, (4) 
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the intersection of the surface with the y = 0 PLANE is 

a CIRCLE of RADIUS a. 

References 
Fischer, G. (Ed.). Mathematical Models from the Collections 

of Universities and Museums. Braunschweig, Germany: 
Vieweg, p. 20, 1986. 

Fischer, G. (Ed.). Plate 51 in Mathematische Mod- 

elle/Mathematical Models, Bildband/Photograph Volume. 
Braunschweig, Germany: Vieweg, p. 51, 1986. 

Castillon’s Problem 

Inscribe a TRIANGLE in a CIRCLE such that the sides of 
the TRIANGLE pass through three given POINTS A, B, 
and C. 

References 
Dijrrie, H. “Castillon’s Problem.” $29 in 100 Great Problems 

of Elementary Mathematics: Their History and Solutions. 
New York: Dover, pp. 144-147, 1965. 

Casting Out Nines 
An elementary check of a MULTIPLICATION which makes 
use of the CONGRUENCE 10" = 1 (mod 9) for n > 2. 
From this CONGRUENCE, a MULTIPLICATION ab = c 
must give 

a- 
x 

ai = u* 

b E x bi = b* 

CI c G = c*, 
so ab E a*b* must be = c* (mod 9) Casting out nines 
is sometimes also called “the HINDU CHECK." 

References 

Curve Source Catacaustic 

cardioid 

circle 

circle 

circle 

cissoid of Diocles 

1 arch of a cycloid 

deltoid 

In 2 

logarithmic spiral 

parabola 

quadrifolium 

Tschirnhausen cubic 

cusp 

not on circumf. 

on circumf. 

point at 00 

focus 

rays 1 axis 

point at 00 

rays 11 axis 

origin 

rays 1 axis 

center 

focus 

nephroid 

limaqon 

cardioid 

nephroid 

cardioid 

2 arches of a cycloid 

astroid 

catenary 

equal logarithmic spiral 

Tschirnhausen cubic 

astroid 

semicubical parabola 

see UZSO CAUSTIC, DIACAUSTIC 
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Lawrence, 5, D. A Catalog of Special Plane Curves. New 
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Catalan’s Conjecture 
8 and 9 (23 and 32) are the only consecutive POWERS 
(excluding 0 and l), i.e., the only solution to CATA- 
LAN'S DIOPHANTINE PROBLEM. Solutions to this prob- 
lem (CATALAN'S DIOPHANTINE PROBLEM) are equiva- 
lent to solving the simultaneous DIOPHANTINE EQUA- 
TIONS 

x2 - y" = 1 

X3 - Y2 = 1. 

This CONJECTURE has not yet been proved or refuted, 
although it has been shown to be decidable in a Fx- 
NITE (but more than astronomical) number of steps. 
In particular, if n and TI + 1 are POWERS, then n < 

expexpexpexp 730 (Guy 1994, pa 155), which follows 
from R. Tijdeman’s proof that there can be only a Fr- 
NITE number of exceptions should the CONJECTURE not 
hold. 

Hyyrb and M3kowski proved that there do not exist 
three consecutive POWERS (Ribenboim 1996), and it is 
also known that 8 and 9 are the only consecutive CUBIC 
and SQUARE NUMBERS (in either order). 

see also CATALAN'S DI~PHANTINE PROBLEM 

Conway, J. H. and Guy, R. K. The Book of Numbers. New 
York: Springer-Verlag, pp. 28-29, 1996. 

Cat Map 

see ARNOLD’S CAT MAP 

Catacaustic 
The curve which is the ENVELOPE of reflected rays. 
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Guy, R. K. “Difference of Two Power.” SD9 in Unsolved 
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Verlag, pp. 155-157, 1994. 

Ribenboim, P. Catalan’s Conjecture. Boston, MA: Academic 
Press, 1994. 

Ribenboim, P. “Catalan’s Conjecture.” Amer. Math. 
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Catalan’s Constant (Vardi 1991, p. 159). W. Gosper used the related FOR- 
A constant which appears in estimates of combinatorial 
functions. It is usually denoted K, P(2), or G. It is not 
known if K is IRRATIONAL. Numerically, 

MULA 

K = 0.915965594177.. . (1) 

(Sloane’s A006752). The CONTINUED FRACTION for K 
is [0, 1, 10, 1, 8, 1, 88, 4, 1, 1, . . .] (Sloane’s A014538). 
K can be given analytically by the following expressions, 

1 K=---- 
fi 

[q&]21’2 g [ -& - l]1’(2k+1)p 
(14) 

where 

q(m) = 
m*m--i(i) 

7Fm(2m - 1)4”-lBm ’ (15) 

K = p(2) (2) 

where Bn is a BERNOULLI NUMBER and $(x) is a POLY- 
GAMMA FUNCTION (Finch). The Catalan constant may 
also be defined by 

O” (1) k 
c 

- 1 1 1 
- = 12 - - (‘Jk + 112 32 + 52 + ” ’ (3) 

k=O‘ . ’ 
00 

1 - - 
’ + x (472 + 1)” - 

n=l 

1 O” 
x 

1 

ii- 
n=l 

(4n + 3)2 
(4 

s 

’ tan-l xdx - - 
X 0 

s 

’ lnxda: - -- 
o 1+x2’ 

where p(z) is the DIRICHLET BETA FUNCTION. Interms 
ofthe P~LYGAMMA FUNCTION XP1(x), 

Applying CONVERGENCE IMPROVEMENT to (3) gives 

K=$(m+l 
m=l 

where C(Z) is the RIEMANN 

identity 

) 
3m - 1 -am + 21, 4m (10) 

ZETA FUNCTION and the 

1 1 
~ = T(rn+ l)vzm 

(1 - 3X)2 - (1 - X)2 
(11) 

m- 1 

has been used (Flajolet and Vardi 1 
and Vardi algorithm also gives 

K=$[(l--$)g 

k=l 

96). The Flajolet 

where p(z) is the DIRICHLET BETA FUNCTION. Glaisher 
(1913) gave 

O” n@n + 1) 
K=l-x l@-~ 

n=l 

(13) 

K=i ’ 
-2 

s 
K(k) dk, (16) 

0 

where K(k) (not to be confused with Catalan’s constant 
itself, denoted K) is a complete ELLIPTIC INTEGRAL OF 
THE FIRST KIND. 

00 

K- 
ai 

? + x 2L(i+1)/2]i2 ’ 

i=l 

(17) 

where 
{Ui} = {l,l, l,O, -1, -1, -1,o) (18) 

is given by the periodic sequence obtained by appending 
copies of (1, 1, 1, 0, -1, -1, -1, 0) (in other words, 

ai E a[(i-1) (mod 8)]+1 for i > 8) and [xJ is the FLOOR 
FUNCTION (Nielsen 1909). 

see also DIRICHLET BETA FUNCTION 
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Catalan’s Diophantine Problem 
Find consecutive POWERS, i.e., solutions to 

2 - Cd = 1, 

excluding 0 and 1. CATALAN'S CONJECTURE isthatthe 
only solution is 3’ - 23 = 1, so 8 and 9 (2” and 32) are 
the only consecutive POWERS (again excluding 0 and 1). 

see d5o CATALAN’S CONJECTURE 
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Catalan Integrals 
Special cases of general FORMULAS due to Bessel. 

J&m) = f 
s 

m 

eYcosBcos(~sinB)d~, 
0 

where Jo is a BESSEL FUNCTION OF THE FIRST KIND. 

Now, let z E 1 - z’ and y E 1+ z’. Then 

Jo(2i& = 1 
s 

r e(l+")cOs~ 
cos[( 1 - z) sin 01 de. 

7r 0 

Catalan Number 
The Catalan numbers are an INTEGER SEQUENCE {Cn} 

which appears in TREE enumeration problems of the 
type, “In how many ways can a regular n-gon be di- 
vided into n - 2 TRIANGLES if different orientations 
are counted separately?” (EULER'S POLYGON DIVI- 
SION PROBLEM). The solution is the Catalan number 
C+z (Dijrrie 1965, Honsberger 1973), as graphically il- 
lustrated below (Dickau). 

The first few Catalan numbers are 1, 2, 5, 14, 42, 132, 
429, 1430, 4862, 16796, . . . (Sloane’s A000108). The 
only ODD Catalan numbers are those of the form c2kBl, 

and the last DIGIT is five for k = 9 to 15. The only 
PRIME Catalan numbers for n < 215 - 1 are C2 = 2 and - 
c3 = 5. 

The Catalan numbers turn up in many other related 
types of problems. For instance, the Catalan number 
c 72-l gives the number of BINARY BRACKETINGS of n 

letters (CATALAN'S PROBLEM). The Catalan numbers 
also give the solution to the BALLOT PROBLEM, the 
number of trivalent PLANTED PLANAR TREES (Dickau), 

the number of states possible in an n-FLEXAGON, the 
number of different diagonals possible in a FRIEZE PAT- 
TERN with 72 + 1 rows, the number of ways of forming 
an n-fold exponential, the number of rooted planar bi- 
nary trees with n internal nodes, the number of rooted 
plane bushes with TX EDGES, the number of extended 
BINARY TREES with n internal nodes, the number of 
mountains which can be drawn with n upstrokes and 
n downstrokes, the number of noncrossing handshakes 
possible across a round table between n pairs of peo- 
ple (Conway and Guy 1996), and the number of SE- 
QUENCES with NONNEGATIVE PARTIAL SUMS whichcan 
be formed from n 1s and n -1s (Bailey 1996, Buraldi 
1992)! 

An explicit formula for Cn is given by 

1 (2n)! (2 > n! 
-- = (n+ l)!n!’ n+ 1 n!2 (‘I 

where (2) d enotes a BINOMIAL COEFFICIENT and n! is 
the usual FACTORIAL. A RECURRENCE RELATION for 
Cn is obtained from 

C n+l - - 
cn - 

- - 

- - 

(2n + 2)! (n + 1)(n!)2 

(n + 2)[(n + 1)!12 (2 > 72 ! 

(272 + 2)(2n + l)(n + 1) 

(n + 2)(n + 1)” 

2(2n + l)(n + I>" 2(2n + 1) 
(n+1)2(n+2) = M-2 ’ 

(2) 
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so 
c n+1= 

2(2n + 1) c 
n+2 n* (3) 

Other forms include 

CT-& = 
2 - 6 - 10. . . (4n - 2) 

(n + I)! 

2”(2n - l)!! - - 
(n + l)! 

(2 > n! 

z n!(n+ l)!’ 

(4) 

(5) 

(6) 

SEGNER'S RECURRENCE FORMULA, given by Segner in 
1758, gives the solution to EULER'S POLYGON DIVISION 
PROBLEM 

E, = &tEn-1+- E3En-2 3-m l  l  + En-l&* (7) 

With El = Ea = 1, the above RECURRENCE RELATION 
gives the Catalan number Cn-2 = E,. 

The GENERATING FUNCTION for the Catalan numbers 
is given by 

= l+a:+2z2+5z3+. 

The asymptotic form for the Catalan numbers is 

ck - 
4” 

l  l  l  (8) 

(9) 

(Vardi 1991, Graham et al. 1994). 

A generalization of the Catalan numbers is defined by 

(10) 

for k > 1 (Klarner 1970, Hilton and Pederson 1991). - 
The usual Catalan numbers ck = a& are a special case 
with p = 2. pdk gives the number of p-ary TREES with k 
source-nodes, the number of ways of associating k appli- 
cations of a given p-ary OPERATOR, the number of ways 
of dividing a convex POLYGON into k disjoint (p + l)- 
gons with nonintersecting DIAGONALS, and the number 
ofp-GOOD PATHS from (0, -1) to (k, (p-l)k-1) (Hilton 
and Pederson 1991). 

A further generalization is obtained as follows. Let p 

be an INTEGER > 1, let pk = (k, (p - 1)k - 1) with 
k > 0, and q < p - 1. Then define pdqO = 1 and let pd,k 

bethe number of ~-GOOD PATHS from (1, q - 1) to Pk 
(Hilton and Pederson 1991). Formulas for pdqi include 
the generalized JONAH FORMULA 

(11) 

and the explicit formula 

p qk=- d 

A RECURRENCE RELATION is given by 

(12) 

P d qk = x P d d P--r,i P q+r,j (13) 

wherei,j,r>l,k>l,q<p-r,andi+j=k+l 
(Hilton and Pederson 1991). 

see &O BALLOT PROBLEM, BINARY BRACKETING, 
BINARY TREE, CATALAN'S PROBLEM, CATALAN'S 
TRIANGLE, DELANNOY NUMBER, EULER'S POLYGON 
DIVISION PROBLEM, FLEXAGON, FRIEZE PATTERN, 
MOTZKIN NUMBER,~-GOOD PATH, PLANTED PLANAR 

TREE,SCHR~DERNUMBER, SUPERCATALAN NUMBER 
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Catalan’s Problem 
The problem of finding the number of different ways in 
which a PRODUCT of n different ordered FACTORS can be 
calculated by pairs (i.e., the number of BINARY BRACK- 
ETINGS of n letters). For example, for the four FAC- 

TORS a, b, c, and H, there are five possibilities: ((ab)c)d, 
(a(bc))d, (ab)(cd), u((bc)d), and u(b(cd)). The solution 
was given by Catalan in 1838 as 

CA = 
2 m 6 9 10 l  (4n - 6) 

?I! 

andis equaltothe CATALAN NUMBER Cn-l = CL. 

see also BINARY BRACKETING, CATALAN'S DIOPHAN- 
TINE PROBLEM, EULER’S POLYGON DIVISION PROBLEM 
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Catalan Solid 
The DUAL POLYHEDRA of the ARCHIMEDEAN SOLIDS, 

given in the following table. 

Archimedean Solid Dual 

rhombicosidodecahedron deltoidal hexecontahedron 
small rhombicuboctahedron deltoidal icositetrahedron 

great rhombicuboctahedron disdyakis dodecahedron 

great rhombicosidodecahedron disdyakis triacontahedron 

truncated icosahedron pentakis dodecahedron 

snub dodecahedron pentagonal hexecontahedron 

(laevo) (dextro) 

snub cube pentagonal icositetrahedron 

(laevo) (dextro) 

cuboctahedron rhombic dodecahedron 

icosidodecahedron rhombic triacontahedron 
truncated octahedron tetrakis hexahedron 

truncated dodecahedron triakis icosahedron 

truncated cube triakis octahedron 

truncated tetrahedron triakis tetrahedron 

Catalan’s Surface 

Here are the ARCHIMEDEAN DUALS (Holden 1971, 
Pearce 1978) displayed in alphabetical order (left to 
right, then continuing to the next row). 

Here are the Archimedean solids paired with the corre- 
sponding Cat alan solids. 

@ 

“.’ k 

see also ARCHIMEDEAN SOLID, DUAL POLYHEDRON, 

SEMIREGULAR POLYHEDRON 
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Catalan’s Surface 

A MINIMAL SURFACE given by the parametric equations 

X(U,II) = u - sinucoshw 

Y b7 4 = 1 - cosucoshv 

z(u, v) = 4 sin( $u) sinh( iv) 

(1) 

(2) 

(3) 
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(Gray 19X3), or Catastrophe 

see BUTTERFLY CATASTROPHE, CATASTROPHE THE- 
ORY, CUSP CATASTROPHE, ELLIPTIC UMBILIC CATAS- 
TROPHE, FOLD CATASTROPHE, HYPERBOLIC UMBILIC 
CATASTROPHE, PARABOLIC UMBILIC CATASTROPHE, 
SWALLOWTAIL CATASTROPHE 

x(f, 4) = a sin(2$) - 24 + $a~’ cos(2$) 

Y(? 99 = -a cos(Z+) - +v2 cos(2qb) 

Z(T, qb) L=: 2av sin #, 

(4 

(5) 

(6) 

where 
1 

v----T+- 
r 

(da Carmo 1986). 
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Catalan’s Triangle 
A triangle of numbers with entries given by 

Cnm (n+m)!(n-Al) - - 
m!(n + l)! 

for 0 < m < n, where each element is equal to the one - - 
above plus the one to the left. Furthermore, the sum 
of each row is equal to the last element of the next row 
and also equal to the CATALAN NUMBER Cn. 

1 
1 1 

12 2 
135 5 
1 4 9 14 14 
1 5 14 28 42 42 

1 6 20 48 90 132 132 

(Sloane’s A009766). 

see also BELL TRIANGLE, CLARK'S TRIANGLE, Eu- 
LER'S TRIANGLE,LEIBNIZ HARMONIC TRIANGLE,NUM- 
BER TRIANGLE, PASCAL'S TRIANGLE, PRIME TRIAN- 
GLE, SEIDEL-ENTRINGER-ARNOLD TRIANGLE 
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Catalan’s Trisectrix 

Catastrophe Theory 
Catastrophe theory studies how the qualitative nature 
of equation solutions depends on the parameters that 
appear in the equations. Subspecializations include bi- 
furcation theory, nonequilibrium thermodynamics, sin- 
gularity theory, synergetics, and topological dynamics. 
For any system that seeks to minimize a function, only 
seven different local forms of catastrophe “typically” oc- 
cur for four or fewer variables: (1) FOLD CATASTROPHE, 
(2) CUSP CATASTROPHE, (3) SWALLOWTAIL CATASTRO- 
PHE, (4) BUTTERFLY CATASTROPHE, (5) ELLIPTIC UM- 

BILIC CATASTROPHE, (6) HYPERBOLIC UMBILIC CATAS- 
TROPHE, (7) PARABOLIC UMBILIC CATASTROPHE. 

More specifically, for any system with fewer than five 
control factors and fewer than three behavior axes, these 
are the only seven catastrophes possible. The following 
tables gives the possible catastrophes as a function of 
control factors and behavior axes (Goetz). 

Control 1 Behavior 2 Behavior 
Factors Axis Axes 

1 fold - 

2 cusp - 

3 swallowtail hyperbolic umbilic, elliptic umbilic 

4 butterfly parabolic umbilic 

References 
Arnold, V. 1. Catastrophe Theory, 3rd ed. Berlin: Springer- 

Verlag, 1992. 
Gilmore, R, Catastrophe Theory for Scientists and Engi- 

neers. New York: Dover, 1993. 
Goetz, P. “Phil’s Good Enough Complexity Dictionary.” 

http://www.cs.buffalo.edu/-gaetz/dict,htmL 
Saunders, P. T. An Introduction to Catastrophe Theory. 

Cambridge, England: Cambridge University Press, 1980, 
Stewart, I. The Problems of Mathematics, 2nd ed. Oxford, 

England: Oxford University Press, pm 211, 1987, 
Thorn, R. Structural Stability and Morphogenesis: An Out- 

line of a General Theory of Models. Reading, MA: Read- 
ing, MA: Addison-Wesley, 1993. 

Thompson, J. M. T. Instabilities and Catastrophes in Science 
and Engineering. New York: Wiley, 1982. 

Woodcock, A. E. R. and Davis, M. Catastrophe Theory. New 
York: E. P. Dutton, 1978. 

Zeeman, E. C. Catastrophe Theory-Selected Papers 197% 
1977. Reading, MA: Addison-Wesley, 1977. 

Categorical Game 
A GAME in which no draw is possible. 

see TSCHIRNHAUSEN CUBIC 
Categorical Variable 
A variable which belongs to exactly one of a finite num- 
ber of CATEGORIES. 
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Huygens was the first to use the term catenary in a letter 
to Leibniz in 1690, and David Gregory wrote a treatise 
on the catenary in 1690 (MacTutor Archive). If you roll 
a PARABOLA along a straight line, its Focus traces out 
a catenary. As proved by Euler in 1744, the catenary is 
also the curve which, when rotated, gives the surface of 
minimum SURFACE AREA (the CATENOID) for the given 
bounding CIRCLE. 

The CARTESIAN equation for the catenary is given by 

Category 
A category consists of two things: an OBJECT and a 

MORPHISM (sometimes called an “arrow”) l  An OB- 
JECT is some mathematical structure (e.g., a GROUP, 
VECTOR SPACE, or DIFFERENTIABLEMANIFOLD) anda 
MORPHISM is a MAP betweentwo OBJECTS. The MOR- 

PHISMS are then required to satisfy some fairly natural 
conditions; for instance, the IDENTITY MAP between 
any object and itself is always a MORPHISM, and the 
composition of two MORPHISMS (if defined) is always a 
MORPHISM. y = ia(exia -+ Cxia) = acosh 

One usually requires the MORPHISMS to preserve the 
mathematical structure of the objects. So if the objects 
are all groups, a good choice for a MORPHISM would be 
a group HOMOMORPHISM. Similarly, for vector spaces, 

and the CES~RO EQUATION is 

(s2 + a2)bc = -a. 

The catenary gives the shape of the road over which a 
regular polygonal ‘cwheel” can travel smoothly. For a 

one would choose linear maps, and for differentiable 
manifolds, one would choose differentiable maps. 

regular n-gon, the corresponding catenary is 
In the category of TOPOLOGICAL SPACES, homomor- 
phisms are usually continuous maps between topologi- 
cal spaces. However, there are also other category struc- 
tures having TOPOLOGICAL SPACES as objects, but they 
are not nearly as important as the “standard” category 
of TOPOLOGICAL SPACES and continuous maps. 

see also ABELIAN CATEGORY, ALLEGORY, EILENBERG- 
STEENROD AXIOMS, GROUPOID, HOLONOMY, LOGOS, 
MONODROMY, TOPOS 

(3) 

where 

(4) 

References 
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t 
S=asinh - , 0 a 

(5) Category Theory 
The branch of mathematics which formalizes a number 
of algebraic properties of collections of transformations 
between mathematical objects (such as binary relations, 
groups, sets, topological spaces, etc.) of the same type, 
subject to the constraint that the collections contain the 
identity mapping and are closed with respect to compo- 
sitions of mappings. The objects studied in category 
theory are called CATEGORIES. 

see also CATEGORY 

(6) 

Catenary 

The curve a hanging flexible wire or chain assumes when 
supported at its ends and acted upon by a uniform grav- 
itational force. The word catenary is derived from the 
Latin word for “chain.” In 1669, Jungius disproved 
Galileo’s claim that the curve of a chain hanging un- 
der gravity would be a PARABOLA (MacTutor Archive). 
The curve is also called the ALYSOID and CHAINETTE. 
The equation was obtained by Leibniz, Huygens, and 
Johann Bernoulli in 1691 in response to a challenge by 
Jakob Bernoulli. 

# = -2 tar? [tanh Ml l  

(7) 

The slope is proportional to the ARC LENGTH as mea- 
sured from the center of symmetry. 

see also CALCULUS OF VARIATIONS, CATENOID, LINDE- 
LOF’S THEOREM,~URFACE OF REVOLUTION 
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Catenary Evolute 

X = a[x - i sinh( 2t)] 

Y = 2acosh t. 

Catenary Involute 
\ 

\ 
\ 

\ 
l_ 

The parametric equation for a CATENARY is 

t dt> = u cosht ) [ 1 
so 

dr 1 
dt 

=a [ 1 sinh t 

121 =aJX=acosht 

and 

(1) 

(2) 

(3) 

(4) 

ds2 = Jdr2) = a2(l + sinh2 t) di2 = a2 cosh2 dt2 (5) 

ds 

dt 
= acosht. (6) 

Therefore, 

s=a 
s 

cash t dt = a sinh t (7) 

and the equation of the INVOLUTE is 

x = a(t - tanht) 

y = asecht. 

This curve is called a TRACTRTX. 

(8) 

(9) 

Catenary Radial Curve 

The KAMPYLE OF EUDOXUS. 

Catenoid 

A CATENARY of REVOLUTION. The catenoid and PLANE 

are the only SURFACES OF REVOLUTION which are also 
MINIMAL SURFACES. The catenoid can be given by the 
parametric equations 

v 
X = ccosh - cosu 

0 c (1) 

Y = ccosh z sinu 
0 c (2) 

x = 21, (3) 

where u E [0, 27~). The differentials are 

dx = sinh E cos u dv - cash 
0 C 

(4) 

dY 
V 

= sinh - 
0 

sin u dv + cash 
V 

C 0 
- cos u du 
C 

(5) 

dz = d-u, (6) 

SO the LINE ELEMENT is 

ds2 = dx2 + dy2 + dz2 

= [sinh2 (z) + l] dv2 + cosh2 (z) du2 

= cosh2 dv2 + cosh2 z dzL2. 
0 C 

(7) 

The PRINCIPAL CURVATURES are 

(8) 

1 
~2 = - sech2 21 . 

C 0 c (9) 

The MEAN CURVATURE of the catenoid is 

H-O (10) 
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and the GAUSSIAN CURVATURE is 

deformed into a The HELICOID can be continuously 
catenoid with c = 1 by the transformation 

(11) 

x(u, v) = cos cy sinh zt sin u + sin CI: cash v cos u (12) 

y(u,v) = -cosasinhvcosu+sin~~coshvsin~(13) 

z(u,v) = ucosa + vsinar, (14) 

where QI = 0 
to a catenoid. 

corresponds to a HELICOID and a = 7r/2 

see also CATENARY, COSTA MINIMAL SURFACE, HELI- 
COID, MINIMAL SURFACE, SURFACE OF REVOLUTION 
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Caterpillar Graph 
A TREE with every NODE on a central stalk or only one 
EDGE away from the stalk. 
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Cattle Problem of Archimedes 

see ARCHIMEDES' CATTLE PROBLEM 

Cauchy Binomial Theorem 

n 

rI( 
1+ YQk)7 

m=O k=l 

where (z) q is a GAUSSIAN COEFFICIENT. 

see also q-BINOMIAL THEOREM 

Cauchy Boundary Conditions 
BOUNDARY CONDITIONS of a PARTIAL DIFFERENTIAL 
EQUATION which are a weighted AVERAGE of DIRICH- 
LET BOUNDARY CONDITIONS (which specify the value 
of the function on a surface) and NEUMANN BOUNDARY 
CONDITIONS (which specify the normal derivative of the 
function on a surface). 

see also BOUNDARY CONDITIONS, CAWHY PROB- 
LEM, DIRICHLET BOUNDARY CONDITIONS, NEUMANN 
BOUNDARY CONDITIONS 
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Cauchy’s Cosine Integral Formula 

where r(z) is the GAMMA FUNCTION. 

Cauchy Criterion 
A NECESSARY and SUFFICIENT condition for a SE- 
QUENCE & to CONVERGE. The Cauchy criterion is sat- 
isfied when, for all E > 0, there is a fixed number IV such 
that ISj - SJ < E for all i, j > IV. 

Cauchy Distribution 

8 

\ 

b 

x 

The Cauchy distribution, also called the LORENTZIAN 
DISTRIBUTION, describes resonance behavior. It also de- 
scribes the distribution of horizontal distances at which 
a LINE SEGMENT tilted at a random ANGLE cuts the 
X-AXIS. Let 8 represent the ANGLE that a line, with 
fixed point of rotation, makes with the vertical axis, as 
shown above. Then 

tan0 = 5 

0 = tan-r x 
0 b 

(1) 

(2) 

d&c-L =-- dx bdx 

l+$b b2 + x2 ’ 

so the distribution of ANGLE 8 is given by 

dB 1 bdx ----- - 
7r n- b2 + x2  l  

(3) 

(4) 
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see ah GAUSSIAN DISTRIBUTION, NORMAL DISTRIBU- 
TION 

This is normalized over all angles, since 

s - d2 de = 1 
-x/2 

7r (5) References 
Spiegel, M. R, Theory and Problems of Probability and 

Statistics. New York: McGraw-Hill, pp. 114-115, 1992. 
and 

Cauchy Equation 

see EULER EQUATION 
- s O” 

-m 
$-$$ = i [tan-’ (!)I, 

-I - ;[+ - (-$)I = 1. 
(6) Cauchy’s Formula 

The GEOMETRIC MEAN is smaller than the ARITH- 

METIC MEAN, 

l/N 

c 
N 
*- 2-- l ni 

<- 
N ’ 

Cauchy Functional Equation 
The fifth of HILBERT’S PROBLEMS is a generalization of 
this equation. 

The general Cauchy distribution and its cumulative dis- 
tribution can be written as 

P(x)= 1 
$r 

7T (5 - p)2 + ($)" (7) 
Cauchy-Hadamard Theorem 
The RADIUS OF CONVERGENCE ofthe TAYLOR SERIES 1 1 

D(x) = - + - tan-l X-P 
2 7T ( > -7’ (8) 

uo + UlZ + a2z2 + l  ‘0  

where r is the FULL WIDTH AT HALF MAXIMUM (r = 
2b in the above example) and p is the MEAN (cl = 0 in 
the above example). The CHARACTERISTIC FUNCTION 

is 
1 

’ = lim (la,l>+’ 
n+m 

iS 

4(t) 

1 O” - -- 
7r s 

eit(rz/2-p) 

dx 
-m 1+ x2 see dso RADIUS OF CONVERGENCE, TAYLOR SERIES 

O” e --ipt 
-- - s 

cos(rtx/2) dx 
7T -rn 1+ (w2)2 

Cauchy Inequality 
A special case of the HOLDER SUM INEQUALITY with 
p=q=2, 

=e 
-ipt-qq/2 

. (9) 

The MOMENTS are given by 

p2 = 2 = 00 (10) 

{ 
0 

p3 = 
for p = 0 

00 for p # 0 (11) where equality holds for ak = &. In 2-D, it becomes 

p4=QQ, (12) (a2 + b2)(c2 + a2) > (UC+ bd)2. 

and the STANDARD DEVIATION, SKEWNESS, and KUR- 
TOSIS by 

It can be proven by writing 

f-(aix + bi)2 = f)i2 (x + %>2 = 0. (3) 
i I  

i=l i=l 

u2 = 00 (13) 

71’ O 
1 

for p = 0 
00 for p # 0 (14) 

If b&i is a constant c, then x = -cc. If it is not a 
constant, then all terms cannot simultaneously vanish 
for REAL x, so the solution is COMPLEX and can be 
found using the QUADRATIC EQUATION 

72 = 00. (15) 

If X and Y are variates with a NORMAL DISTRIBUTION, 
then 2 = X/Y has a Cauchy distribution with MEAN 

I-L = 0 and full width 

X= 

-2xaibi & 44 (‘&bi)’ -4’&2xbi2 

2Eai2 
l  

(4) 
r=20-,. 

OX 
(16) 
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Now, let z E x0 + reiB, so dz = irei de. Then In order for this to be COMPLEX, it must be true that 

- - s f (zo + reie)i de. (5) 
Yr with equality when bi/ai is a constant. The VECTOR 

derivation is much simpler, 
But we are free to allow the radius T to shrink to 0, so 

(a. b)2 = a2b2 cos28 < a2b2, - (6) s f(z) dz = lim 
T-b0 

f(zo + reie)i d0 = f(xo)i de 
Y 2 - 20 s Yr s Yr 

= if(zo> 
s 

de = 27rif(zo), (6) 
Yr 

where 

and similarly for b. 

see also CHEBYSHEV INEQUALITY, HOLDER SUM IN- 
EQUALITY 

and 
1 

f(z0) = - 
s 

f (4 dz ~ 
2Ti 

Y 
z - zo ’ (7) 

If multiple loops are made around the POLE, then equa- 
tion (7) becomes 

References 
Abramowitz, M. and Stegun, C. A. (Eds.). Handbook 

of Mathematical Functions with Formulas, Graphs, and 
1Mathematical Tables, 9th printing. New York: Dover, 
p* 11, 1972. 1 

n(wo)f(zo) = - 
s 

f (4 dz - 
27Ti Y z - 20 ’ (8) 

Cauchy Integral Formula 
where n(y,zo) is the WINDING NUMBER. 

A similar formula holds for the derivatives of f(z), Q=Q+@ 
f’(z0) = lim fh +h) - f(h) 

he0 h 

x0) - (z - z. - h)] dz 

1 
= lim - 

s 

hf (4 dz 
h--+0 2rih y (‘z - 20 - h)(z - x0) 

1 - f (4 dz - 
2ni s (z - z())2 l  

Y 

(9) 

Y '/b '/r 

Given a CONTOUR INTEGRAL, ofthe form 

/ 
f (4 dz 1 

Y z - x0 

define a path 70 as an infinitesimal CIRCLE around the 
point zo (the dot in the above illustration). Define the 
path “(7- as an arbitrary loop with a cut line (on which 
the forward and reverse contributions cancel each other 
out) so as to go around ~0. 

Iterating again, The total path is then 

2 f"(xo> = - 
s 

f (4 dz 
2ni 

Y 
(z - zo)3’ 

Y = “(0 + Yn (2) (10) 

Continuing the process and adding the WINDING NUM- 
BER n, 

n(y,zo)f(r'(zo) = r! 
s 

f(z)dz 
27Ti 

y  (z - z(#+1 l  

(11) 

Fromthe CAUCHY~NTEGRAL THEOREM, ~~~CONTOUR 
INTEGRAL along any path not enclosing a POLE is 0. 
Therefore, the first term in the above equation is 0 since 
“)‘o does not enclose the POLE, and we are left with see also MORERA'S THEOREM 
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Cauchy Integral Test 

see INTEGRAL TEST 

Cauchy Integral Theorem 
If f is continuous and finite on a simply connected region 
2? and has only finitely many points of nondifferentia- 
bility in R, then 

f 
f(z) dx = 0 (1) 

-Y 

for any closed CONTOUR y completely contained in R. 
Writing x as 

iEx+iy (2) 

and f(z) as 
f (2) E u + iv (3) 

then gives 

~fW = l (u + iv)@ + i dy) 

- - s udx - vdy+i v dx + udy. (4) 
Y .I Y 

F'rom GREEN'S THEOREM, 

s f (x7 Y) dx - 9(x, Y) dY = 
Y 

-//(g+g) dXdY, 

(5) 

s f(x7 Y) dx+dx7 Y> dY 
Y 

z//($-$) dxdy (6) 

so (4) becomes 

+i// (a - $) dxdy. (7) 

But the CAUCHY-RIEMANN EQUATIONS require that 

dU 

dY 

so 

.f 
f( 

Y 

Qa E. D. 

au dv 
z = ay (8) 

dV Z -- 
dX’ (9) 

z) dz = 0, 

For a MULTIPLY CONNECTED region, 

(11) 

see also CAUCHY INTEGRAL THEOREM, MORERA'S 
THEOREM,RESIDUE THEOREM (COMPLEX ANALYSIS) 
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Cauchy-Kovalevskaya Theorem 
The theorem which proves the existence and uniqueness 
of solutions to the CAUCHY PROBLEM. 

see also CAUCHY PROBLEM 

Cauchy-Lagrange Identity 

(aI2 + lQ2 + . * * + dn”)(bl” + bz2 + =. . + b,‘) 

- (albz - a2b1)2 + (albs - ah)2 + . . . - 

+(a,-& - anbn-1)2. 

From this identity, the n-D CAUCHY INEQUALITY fol- 
lows. 

Cauchy-Maclaurin Theorem 

see MACLAURIN-CAUCHY THEOREM 

Cauchy Mean Theorem 
For numbers > 0, the GEOMETRIC MEAN < the ARITH- 

METIC MEAN. 

Cauchy Principal Value 

r  s 

R 

PV f(x) dx = lim 
--oo R+oo -R f (4 dx 

s 

b C--E 

PV f(x) dx = lim 
E--+0 a 

where E > 0 and a < c < b. - - 
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Cauchy Problem 
If f(x,y) is an ANALYTIC FUNCTION in a NEIGHBOR- 
HOOD of the point (x~,yo) (i.e., it can be expanded in 
a series of NONNEGATIVE INTEGER POWERS of(x-so) 
and (y - yo)), find a solution y(x) of the DIFFERENTIAL 
EQUATION 

dY -- 
dx- x’ f( ) 

with initial conditions y = yo and x = x0. The existence 
and uniqueness of the solution were proven by Cauchy 
and Kovalevskaya in the CAUCHY-KOVALEVSKAYA THE- 

OREM. The Cauchy problem amounts to determining 
the shape of the boundary and type of equation which 
yield unique and reasonable solutions for the CAUCHY 
BOUNDARY CONDITIONS. 

see also CAUCHY BOUNDARY CONDITIONS 

Cauchy Ratio Test 

see RATIO TEST 



210 Cauchy Remainder Form Cauchy Root Test 

Cauchy Remainder Form 
The remainder of n terms of a TAYLOR SERIES is given 

bY 

R, = 
(x - cy cx - 4 fbyc), 

(n - l)! 

where a < c < X. - - 

Cauchy-Riemann Equations 
Let 

f (x, Y> = u(x, Y) + iv(x, Y), (1) 

where 
x E x + iy, (2) 

so 
dz=dx+idy. (3) 

The total derivative of f with respect to z may then be 
computed as follows. 

Z-X 

y=i 

2 = z - iy, 

so 

dY 1 
z=i=-i 
da: 
- = 1, 
dz 

and 
4f af ax af aY af -3f ---- 
dz - dXdL+dy&=da:-2dy- 

In terms of u and zt, (8) becomes 

df 
dz= g+ig,-i(E+i$) 

au .dV .du dv - - 
( z+“z + ) ( -“ay+ay > 

Along the real, or X-AXIS, aflay = 0, so 

df &+i* -- 
dz-dx dx’ 

Along the imaginary, or y-axis, af /da: = 0, so 

df du dv -- -i- + -. 
dz - dy dy 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

If f is COMPLEXDIFFERENTIABLE, thenthevalueofthe 
derivative must be the same for a given dz, regardless of 
its orientation. Therefore, (10) must equal (ll), which 
requires that 

du dv --- 
dx - dy (12) 

and 
dv du -- 
dz= dy’ (13) 

These are known as the Cauchy-Riemann equations. 
They lead to the condition 

a2u d2V - - -- 
dxdy - dxdy ' 

(14) 

The Cauchy-Riemann equations may be concisely writ- 
ten as 

In POLAR COORDINATES, 

f (reie) E R(r, t9)eiecrge), 

so the Cauchy-Riemann equations become 

(16) 

dR RdO - - -- 
dr - r do (17) 

16R -- RdO -- - 
r at9 - a?- l  

(18) 

If u and v satisfy the Cauchy-Riemann equations, they 
also satisfy LAPLACE'S EQUATION in Z-D, since 

(-g)+gg,=o. (20) 

By picking an arbitrary f(z), solutions can be found 
which automatically satisfy the Cauchy-Riemann equa- 
tions and LAPLACE'S EQUATION. This fact is used to 
find so-called CONFORMAL SOLUTIONS to physical prob- 
lems involving scalar potentials such as fluid flow and 
electrostatics. 

see also CAUCHY INTEGRAL THEOREM, CONFORMAL 
SOLUTION,MONOGENIC FUNCTION,POLYGENIC FUNC- 
TION 
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Cauchy’s Rigidity Theorem 

see RIGIDITY THEOREM 

Cauchy Root Test 

see ROOT TEST 
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Cauchy-Schwarz 
Let f(z) and g(z) by 
of [a, b], then 

Integral Inequality 
any two R ,EAL integrable functions 

b 

f wl(4 dx 

with equality IFF f(x) = kg(x) with k real. 
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Cauchy-Schwarz Sum Inequality 

la- bl I lal lbl. 

(gg2s (g2) (g2) 
Equality holds IFF the sequences al, ~2, . . . and bl, 62, 
l  l  . are proportional. 

see also FIBONACCI IDENTITY 
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Cauchy Sequence 
A SEQUENCEU~, u2,... suchthatthe METRIC~(U,,U,) 
satisfies 

lim 
min(m,n)+m 

d(a,, a,) = 0. 

Cauchy sequences in the rat ionals do not necessarily 
CONVERGE, but they do CONVERGE in the REALS. 

REAL NUMBERS can be defined using either DEDEKIND 
CUTS or Cauchy sequences. 

see also DEDEKIND CUT 

Cauchy Test 

see RATIO TEST 

Caustic 
The curve which is the ENVELOPE of reflected (CAT- 
ACAUSTIC) or refracted (DIACAUSTIC) rays of a given 
curve for a light source at a given point (known as the 
RADIANT POINT). The caustic is the EVOEUTE of the 
ORTHOTOMIC. 

References 
Lawrence, J. D. A Catalog of Special Plane Curves. New 
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Lee, X. “Caustics.” http://www.best.com/-xah/Special 

PlaneCurves-dir/Caustics,djr/caustics.html. 
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Cavalieri’s Principle 

1. If the lengths of every one-dimensional slice are equal 
for two regions, then the regions have equal AREAS. 

2. If the AREAS of every two-dimensional slice (CROSS- 
SECTION) areequalfortwo SOLIDS, thenthe SOLIDS 
have equal VOLUMES. 

see also CROSS-SECTION, PAPPUS'S CENTROID THEO- 
REM 

References 
Beyer, W. El. (Ed.) CRC Standard Mathematical Tables, 

28th ed. Boca Raton, FL: CRC Press, p. 126 and 132, 
1987. 

Cayley Algebra 
The only NONASSOCIATIVE DIVISION ALGEBRA with 
REAL SCALARS. There is an &square identity corre- 
sponding to this algebra. The elements of a Cayley al- 
gebra are called CAYLEY NUMBERS or OCTONIONS. 

References 
Kurosh, A. G. General Algebra. New York: Chelsea, pp. 226- 

28, 1963+ 

Cayley-Bacharach Theorem 
Let X1, X2 c p2 be CUBIC plane curves meeting in nine 
points pl, . . . , pg. If X C p2 is any CUBIC containing 

PI, “‘I p8, then X contains pg as well. It is related to 
GORENSTEIN RINGS, andis ageneralizationof PAPPUS'S 
HEXAGON THEOREM and PASCAL'S THEOREM. 

References 
Eisenbud, D.; Green, M.; and Harris, J. “Cayley-Bacharach 

Theorems and Conjectures.” Bull. Amer. Math. Sot. 33, 
295-324, 1996. 

Cayley Cubic 

a 
b 

a _, 
‘I , 
0 

A CUBIC RULED SURFACE (Fischer 1986) in which the 
director line meets the director CONXC SECTION. Cay- 
ley’s surface is the unique cubic surface having four OR- 
DINARY DOUBLE POINTS (Hunt), the maximum possible 
for CUBIC SURFACE (EndraB). The Cayley cubic is in- 
variant under the TETRAHEDRAL GROUT and contains 
exactly nine lines, six of which connect the four nodes 
pairwise and the other three of which are coplanar (En- 
drafi). 

Ifthe ORDINARY DOUBLE POINTS in projective 3-space 
are taken as (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 
0, 0, l), then the equation of the surface in projective 
coordinates is 

1 1 1 1 

g+ 
;+-&+-&=0 
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(Hunt). Defining “affine” coordinates with plane at in- 
finity w  = 20 + ~1 + 22 + 2x3 and 

X2 
zx- 

w 

then gives the equation 

-5(22y+x2~+y22ty2Zt~2y+z2x)+2(xy+x~+y~) = 0 

plotted in the left figure above (Hunt). The slightly 
different form 

4(x3 + y3 + z3 + w”> - (x + y + x + w)” = 0 

is given by EndraB which, when rewritten in TETRAHE- 

DRAL COORDINATES, becomes 

x2 + y2 - x22 + y22 + x2 - 1 = 0, 

plotted in the right figure above. 

The Hessian of the Cayley cubic is given by 

0 = xo2(XlX2 + x1X3 + x2x3) + Xf(XoX2 + X0x3 + ~2x3) 

+&x0x1 + X0X3 + X1X3) + X~(XOXl + x0x2 + x122). 

in homogeneous coordinates x0, 51, x2, and ~3. Taking 
the plane at infinity as w  = 5(x0 + xl + 22 + 2x3)/2 and 
setting x, y, and z as above gives the equation 

25[~3(y+~)+y3(x+z)+z3(x+y)]+50(x2y2+x2z2+y2z2) 

-125(x2yz+y2xz+z2xy)+60xyz-4(xy+xz+yz) = 0, 

plotted above (Hunt). The Hessian of the Cayley cubic 
has 14 ORDINARY DOUBLE POINTS, four more than a 
the general Hessian of a smooth CUBIC SURFACE (Hunt). 
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Cayley Graph 
The representation of a GROUP as a network of directed 
segments, where the vertices correspond to elements and 
the segments to multiplication by group generators and 
their inverses. 

see also CAYLEY TREE 

References 
Grossman, I. and Magnus, W. Groups and Their Graphs. 

New York: Random House, p. 45, 1964. 

Cayley’s Group Theorem 
Every FINITE GROUP of order n can be represented as 
a PERMUTATION GROUP on n letters, as first proved by 
Cayley in 1878 (Rotman 1995). 

see also FINITE GROUP, PERMUTATION GROUP 

References 
Rotman, J. J. An Introduction to the Theory of Groups, 4th 

ed. New York: Springer-Verlag, p. 52, 1995. 

Cayley-Hamilton Theorem 
Given 

a11 -x a12 “’ alrn 

a21 a22 - x . . . P2m 

. l  
. 

. 

1  I 1  . 

. . l  l  

G-d 
am2 l  * l  arnrn-2 

= Xm + Cm-~Xm--l + - l  - + CO, 
(l) 

then 
A” + Cm-lArnol +a ma + ~01 = 0, (2) 

where I is the IDENTITY MATRIX. Cayley verified this 
identity for m = 2 and 3 and postulated that it was true 
for all m. For m, = 2, direct verification gives 

ii?-X b 

C d-x 
=(a-x)(d-x)-bc 

= x2 - (a + d)x + (ad - bc) = x2 + clx + c2 (3) 

EndraB, S. “FlZchen mit vielen Doppelpunkten.” DMV- 
Mitteilungen 4, 17-20, Apr, 1995, 
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so 

(4) 

_ a2 + bc ab + bd - 
UC + cd bc + d2 I 

(5) 

-(a+d)A= 7a,“cI;f I;;-; 1 (6) 
(ad-bc)l = adibc adrbc 

I 
, 

A2 - (a + d)A + (ad - bc)I = (8) 

(Goldstein 1960, p. 155). 

.ik, I. M. Tables of Integrals, Se- 
ed. San Diego, CA: Academic 

the Cay Icy-Har nilt on Equation 
ations .” Amer. Math. Monthly 

where Z* denotes the COMPLEX CONJUGATE. In terms 
of the EULER ANGLES 8, 4, and $, the Cayley-Klein 
parameters are given by 

a - ew+w2 
- 

cos(  $?) 

P 

= #bw sin( $0) 

y = ie -i(+-4)12 sin( ;S, 

S-e -(++w2 cos( $0) 

The Cayley-Hamilton theorem states that a n, x n MA- 
TRIX A is annihilated by its CHARACTERISTIC POLY- 
NOMIAL det(xI - A), which is manic of degree n. 

References 

99, 42-44,1992. 

Cayley’s Hypergeometric Function Theorem 
If 

(1 - q+b--C 2Fl(2a, 2b; 2c; z) = 2 a,?, 
TL=O 

A(a,b;c+ +; z) 2F1 (c - a, c - b; c;; z) 
00 

- - 
x 
n=O 

( > Cn 

(c + p” 

where 2 Fl (a,b;c;z) is a HYPERGEOMETRIC FUNCTION. 

see UZSO HYPERGEOMETRIC FUNCTION 

Cayley-Klein Parameters 
The parameters a, /3, y, and S which, like the three 
EULER ANGLES, provide a way to uniquely characterize 
the orientation of a solid body. These parameters satisfy 
the identities 

cya*+yy*=1 (1) 
m*+pp*=1 (2) 

pp* + ss* = 1 (3) 

a*@ + -y*6 = 0 (4) 

a6 - pr = 1 (5 > 

and 

> 

The transformation matrix 
Cayley-Klein parameters by 

is given in terms of the 

A= 
f (a” -y2+s2-p2) fi(7” - a2 + d2 - p”) 7s - ap 
$i(a2 + y2 - p” - h2) +(a” +r2 +P2+S2) -qap+yq 

PJ - a7 ib7 + PJ) ad+@7 1 (12) 
(Goldstein 1960, p. 153). 

The Cayley-Klein parameters may be viewed as param- 
eters of a matrix (denoted Q for its close relationship 
with QUATERNIONS) 

Q Q: P 
= y s [ I 

which characterizes the transformations 

(13) 

u1 = au+pv (14) 
V’ = yu + 6v. (15) 

of a linear space having complex axes. This matrix sat- 
isfies 

QtQ - QQt = I - 7 (16) 

where I is the IDENTITY MATRIX and At the MATRIX 
TRANSPOSE, as well as 

IQl*lQI = 1. (17) 

In terms ofthe EULER PAR AMETERS ei and the PAULI 
M ATRICES ui, the Q-matrix can be writ ten as 

Q = e0l+ i(elal + e2u2 + e3u3) (18) 

(Goldstein 1980, p. 156). 

see ~SO EULER ANGLES, EULER PARAMETERS, PAULI 
MATRICES, QUATERNION 

References 
Goldstein, H. “The Cayley-Klein Parameters and Related 
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Cayley-Klein-Hilbert Metric 
The METRIC of Felix Klein’s model for HYPERBOLIC 
GEOMETRY, 

911 = 
a2(1 - X2”) 

(1 - Xl2 - x,y 

a2x1x2 
912 = 

(1 - Xl2 - x,2)2 

922 = 
a2(1 - 21~) 

(1 - Xl2 - x2y 

see also ‘HYPERBOLIC GEOMETRY 

Cayley Number 
There are two completely different definitions of Cayley 
numbers. The first type Cayley numbers is one of the 
eight elements in a CAYLEY ALGEBRA, also known as 
an OCTONION. A typical Cayley number is of the form 

a + bio + cil + di2 + ei3 + f id + gi5 + his, 

where each of the triples (io, ii, is), (ii, i2, id), (& i3, is), 
(i3, id, is), (id, is, io), (is, is, il), (&, io, i2) behaves like 
the QUATERNIONS (i, j, k). Cayley numbers are not As- 
SOCIATIVE. They have been used in the study of 7- and 
8-D space, and a general rotation in 843 space can be 
written 

The second type of Cayley number is a quantity which 
describes a DEL PEZZO SWRFACE. 

see also COMPLEX NUMBER, DEL PEZZO SURFACE, 
QUATERNION, REAL NUMBER 
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Book of Numbers. New York: Springer-Verlag, pp. 234- 
235, 1996. 
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Cayley’s Ruled Surface 

see CAYLEY CUBIC 

Cayley’s Sextic 

A plane curve discovered by Maclaurin but first studied 
in detail by Cayley. The name Cayley’s sextic is due 
to R. C. Archibald, who attempted to classify curves in 
a paper published in Strasbourg in 1900 (MacTutor Ar- 
chive). Cayley’s sextic is given in POLAR COORDINATES 

bY 
T = acos3($), (1) 

or 
T = 4bcos3(50), (2) 

where b E a/4. In the latter case, the CARTESIAN equa- 
tion is 

4(x2 +y2 - i!~x)~ = 27a2(x2 +y2)2. (3) 

The parametric equations are 

x(t) = 4acos4($)(2cost - 1) 

y(t) = 4acos3(+t) sin( $). 

(4) 

(5) 

The ARC 'LENGTH, CURVATURE, and TANGENTIAL AN- 
GLE are 

s(t) = 3(t + sint), (6) 
kc(t) = + sec2(+t), (7) 

qs(t) = 2t. (8) 

References 
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Cayley’s Sextic Evolute 

\ / \ \ // \ / \ ---- / 
The EVOLUTE of Cayley’s sextic is 

x=ia+ &a[3 cos( it) - cos(2t)l 

Y- &@sin($t) - sin(2t)], 

which is a NEPHROID. 
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Cayley Tree 
A TREE in which each NODE has a constant number of 
branches. The PERCOLATION THRESHOLD for a Cayley 
tree having z branches is 

1 
pc = - 

z-1’ 

see also CAYLEY GRAPH 

Cayleyian Curve 
The ENVELOPE of the lines connecting correspond- 
ing points on the JACOBIAN CURVE and STEINERIAN 

CURVE. The Cayleyian curve of a net of curves of or- 
der n has the same GENUS (CURVE) as the JACOBIAN 
CURVE and STEINERIAN CURVE and, in general, the 
class 3n(n - 1). 

References 
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bch Cohomology 
The direct limit of the COHOMOLOGY groups with CO- 
EFFICIENTS in an ABELIAN GROUP of certain coverings 
of a TOPOLOGICAL SPACE. 

Ceiling Function 

[xl Ceiling 4 
[xJ Nint (Round) 

- - - Lx] Floor 
f-l -_---. “-1 x 2 

The function [zl which gives the smallest INTEGER 2 x:, 
shown as the thick curve in the above plot. Schroeder 
(1991) calls the ceiling function symbols the “GALLOWS" 
because of the similarity in appearance to the structure 
used for hangings. The name and symbol for the ceiling 
function were coined by K. E. Iverson (Graham et al. 
1990). It can be implemented as ceil(x)=-int c-x), 
where int(x> is the INTEGER PART of zc. 

see U~SO FLOOR FUNCTION, INTEGER PART, NINT 
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Cell 
A finite regular POLYTOPE. 

see also 16-CELL, 24-CELL, 120~CELL, 600-CELL 

Cellular Automaton 
A grid (possibly 1-D) of cells which evolves according to 

a set of rules based on the states of surrounding cells. 
von Neumann was one of the first people to consider 
such a model, and incorporated a cellular model into 
his %niversal constructor.” von Neumann proved that 
an automaton consisting of cells with four orthogonal 
neighbors and 29 possible states would be capable of 
simulating a TURING MACHINE for some configuration 
of about 200,000 cells (Gardner 1983, pa 227). 

1-D automata are called “elementary” and are repre- 
sented by a row of pixels with states either 0 or 1. 
These can be represented with an 8-bit binary num- 
ber, as shown by Stephen Wolfram. Wolfram further 
restricted the number from 28 = 256 to 32 by requiring 
certain symmetry conditions. 

The most well-known cellular automaton is Conway’s 
game of LIFE, popularized in Martin Gardner’s Scien- 
tific American columns. Although the computation of 

successive LIFE generations was originally done by hand, , 

the computer revolution soon arrived and allowed more 
extensive patterns to be studied and propagated. 

see LIFE, LANGTON'S ANT 
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Cellular Space 
A HAUSD~RFF SPACE which has the structure of a so- 
called CW-COMPLEX. 

Center 
A special POINT which usually has some symmetric 
placement with respect to points on a curve or in a 
SOLID. The center of a CIRCLE is equidistant from all 
puints on the CIRCLE and is the intersection of any two 
distinct DIAMETERS. The same holds true for the center 
of a SPHERE. 

see also CENTER (GROUP), CENTER OF MASS, CIR- 
CUMCENTER, CURVATURE CENTER, ELLIPSE, EQUI- 

BROCARD CENTER, EXCENTER, HOMOTHETIC CEN- 
TER, INCENTER, INVERSION CENTER, Is0G0~1c CEN- 
TERS, MAJOR TRIANGLE CENTER, NINE-POINT CEN- 
TER, ORTHOCENTER, PERSPECTIVE CENTER, POINT, 
RADICAL CENTER, SIMILITUDE CENTER, SPHERE, 
SPIEKER CENTER, TAYLOR CENTER, TRIANGLE CEN- 
TER, TRIANGLE CENTER FUNCTION, YFF CENTER OF 
CONGRUENCE 

Center Function 

~~~TR~ANGLE CENTER FUNCTION 

Center of Gravity 

see CENTER OF MASS 

Center (Group) 
The center of a GROUP is the set of elements which 
commute with every member of the GROUP. It is equal 
to the intersection of the CENTRALIZERS of the GROUP 
elements. 

see UZSO IS~CLINIC GROUPS, NILPOTENT GROUP 

Center of Mass 

see CENTROID (GEOMETRIC) 

Centered Cube Number 

A FIGURATE NUMBER ofthe form, 

CC& = n3 + (n - 1)” = (2n - l)(n2 - n + 1). 

The first few are 1, 9, 35, 91, 189, 341, . . . (Sloane’s 
A005898). The GENERATING FUNCTION for the cen- 
tered cube numbers is 

x(x” +5x2 +5x + 1) 
(x - 1)4 

= 2 + 9x2 + 35x3 + 91x4  + . l  . . 

see also CUBIC NUMBER 
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Centered Hexagonal Number 

see HEX NUMBER 

Centered Pentagonal Number 

A CENTERED POLYGONAL NUMBER consistingofacen- 
tral dot with five dots around it, and then additional 
dots in the gaps between adjacent dots. The general 
term is (5n2 - 5n + 2)/2, and the first few such num- 
bers are 1, 6, 16, 31, 51, 76, . . , (Sloane’s A005891). 
The GENERATING FUNCTION of the centered pentago- 
nal numbers is 

x(x2 + 3x + 1) 
(x - 1)” 

= x + 6x2 + 16x3 + 31~~ + . . . . 

~~~UZSOCENTERED SQUARENUMBER,CENTEREDTRI- 
ANGULAR NUMBER 
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Centered Polygonal Number 

@ 
0 l 

A FIGURATE NUMBER in which layers of POLYGONS are 
drawn centered about a point instead of with the point 
at a VERTEX. 

~~~UZSOCENTEREDPENTAGONALNUMBER,CENTERED 
SQUARE NUMBER,~ENTERED TRIANGULAR NUMBER 

Rekrences 
Sloane, N. J. A. and Plouffe, S. Extended entry for sequence 

M3826 in The Encyclopedia of Integer Sequences. San 
Diego, CA: Academic Press, 1995. 

Centered Square Number 
R 

V 

v 
A CENTERED POLYGONAL NUMBER consistingofacen- 
tral dot with four dots around it, and then additional 
dots in the gaps between adjacent dots. The general 
term is n2 + (n - l)“, and the first few such numbers 
are 1, 5, 13, 25, 41, . . . (Sloane’s A001844). Centered 
square numbers are the sum of two consecutive SQUARE 
NUMBERS and are congruent to 1 (mod 4). The GEN- 
ERATING FUNCTION giving the centered square numbers 
is 

x(x + 1)” 
(1- x)3 

= x + 5x2 + 13x3 + 25x4 + l  . l  l  

~~~~Z~OCENTEREDPENTAGONAL NUMBER$ENTERED 
POLYGONAL NUMBER,~ENTERED TRIANGULAR NUM- 
BER,SQUARE NUMBER 

References 
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York: Springer-Verlag, p. 41, 1996. 
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Centered Triangular Number 

A CENTERED POLYGONAL NUMBER consistingofacen- 
tral dot with three dots around it, and then additional 

dots in the gaps between adjacent dots. The general 
term is (3n2 - 3n + 2112, and the first few such numbers 
are 1, 4, 10, 19, 31, 46, 64, . . . (Sloane’s A005448). The 
GENERATING FUNCTION giving the centered triangular 
numbers is 

x(x2 + x + 1) 

(1 - x)3 
= x + 4x2 + 10x3 + 19x4 + * ’ l  l  

~~~&~CENTERED PENTAGONALNUMBER,CENTERED 
SQUARE NUMBER 

References 
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cent illion 
In the American system, 10303. 

see also LARGE NUMBER 

Central Angle 

*c 

@3 
4 

An ANGLE having its VERTEX at a CIRCLE'S center 
which is formed by two points on the CIRCLE'S CIR- 
CUMFERENCE. For angles with the same endpoints, 

8, = 2&, 

where 0i is the INSCRIBED ANGLE. 

References 
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Central Beta Fhction 

-2.5: 

-5: 

-7.5: 

-13- 

Re[b z] Im[b z] lb 4 

2 40 
-2 20 

121 121 

The central beta function is defined by 

P(P) = WP, P>, (1) 
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where B(p, q) is the BETA FUNCTION. It satisfies the 
identities 

P(P) = 2 1-2pB(p, +) (2) 

= 2l-” cos(~p)B(; - p,p> (3) 

s 1 
tP dt - - 

o (1+ q2p 

203 
rI 

n(n + 2P) -- - 
P 

n-l 
(n+p>(n+p)’ 

(4) 

(5) 

With p = l/2, the latter gives the WALLIS FORMULA 
When p = a/b, 

where 

bp(a/b) = 2 ‘-Wb J(a, b), 

d J(a, b) = s ’ t-l dt 

JrF 

The central beta function satisfies 

(7) 

(2+4x)P(1 +x>= d(x) (8) 

(1 - zx)p(l - x)P(x) = 27WOt(Xx) (9) 

PC 
1 -- 
2 x1 =2 4x4 tan(rx)P(x) (10) 

P(x)P(x + 3> = 24x+17rP(2x)P(2x + $>* (11) 

For p an ODD POSITIVE INTEGER, the central beta func- 

! tion satisfies the identity 

1 (P--1)/2 

P(P4 = 3 n 
2x + Y p-1 

zn 
FE=1 

p (x+ ;) ’ (12) 

see UZSO BETA FUNCTION, REGULARIZED BETA FUNC- 
TION 

References 
Borwein, J. M. and Zucker, I. J. “Elliptic Integral Evalua- 

tion of the Gamma Function at Rational Values of Small 
Denominators.” IMA J. Numerical Analysis 12, 519-526, 
1992. 

Central Binomial Coefficient 
The nth central binomial coefficient is defined as ( ,a2,), 

where (L) is a BINOMIAL COEFFICIENT and Ln] is the 
FLOOR FUNCTION. The first, few values are 1, 2,3, 6, 10, 
20,35, 70,126,252,... (Sloane’s AOOl405). The central 
binomial coefficients have GENERATING FUNCTION 

l-4x2 - &=22 

2(2x3 - x2) 
= 1 +2x+3x2 +6x3 +10x4 +.... 

Central Conic 

The above coefficients are a superset of the alternative 
“central” binomial coefficients 

2n 0 (2 > n! -- - 
n ( > n! 2’ 

which have GENERATING FUNCTION 

1 

m 
= 1 + 2x + 6x2 + 20x3 + 70x4 + l  . . . 

The first few values are 2, 6, 20, 70, 252, 924, 3432, 
12870, 48620, 184756, . . . (Sloane’s A000984). 

Erdes and Graham (1980, p. 71) conjectured that 
the central binomial coefficient (2) is wver SQUARE- 
FREE for n > 4, and this is sometimes known as the 
ERD~S SQUAREFREE CONJECTURE. S~RK~ZY'S THE- 
OREM (S&k&y 1985) provides a partial solution which 
states that the BINOMIAL COEFFICIENT (F) is never 
SQUAREFREE for all sufficiently large n > no (Vardi - 
1991). Granville and Ramare (1996) proved that the 
only SQUAREFREE values are n = 2 and 4. Sander 
(1992) subsequently showed that (2”n’“) are also never 
SQUAREFREE for sufficiently large n as long as d is not 
“too big.” 

see also BINOMIAL COEFFICIENT, CENTRAL TRINO- 
MIAL COEFFICIENT, ERD~S SQUAREFREE CONJEC- 
TURE,S~LRK~ZY'S THEOREM,QUOTA SYSTEM 

References 
Granville, A. and Ramare, 0. “Explicit Bounds on Exponen- 

tial Sums and the Scarcity of Squarefree Binomial Coeffi- 
cients .” Mathematika 43, 73-107, 1996. 

Sander, J. W. “On Prime Divisors of Binomial Coefficients.” 
Bull. London Math. Sot. 24, 140-142, 1992. 
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Number Th. 20, 70-80, 1985. 
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Vardi, I. “Application to Binomial Coefficients,” “Binomial 
Coefficients, ” “A Class of Solutions,” “Computing Bino- 
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52.2, 4.1, 4.2, 4.3, and 4.4 in Computational Recreations 
in Mathematics. Redwood City, CA: Addison-Wesley, 
pp. 25-28 and 63-71, 1991. 

Central Conic 
An ELLIPSE or HYPERBOLA. 

see also CONIC SECTION 

References 
Coxeter, H. S. M. and Greitzer, S. L. Geometry Revisited. 

Washington, DC: Math. Assoc. Amer., pp. 146-150, 1967. 
Ogilvy, C. S. Excursions in Geometry. New York: ‘Dover, 

p. 77, 1990. 

The central binomial coefficients are SQUAREFREE only 
for n = 1, 2, 3, 4, 5, 7, 8, 11, 17, 19, 23, 71, ,. . (Sloane’s 
A046098), with no others less than 1500. 



Central DifKerence 

Central Difference 
The central difference for a function tabulated at equal 
intervals fi is defined by 

Wn+l/a) =&x+1/2 = 6:+1,2 = fn+1 - fw (1) 

Higher order differences may be computed for EVEN and 
ODD powers, 

6 2k 
n+l/Z = 

6 2k+l 
n+1/2 = 

E(-l)’ (y) fn+k-j 

j=O 

y(-1)’ (‘“; ‘> fn+k+l-j. 

j=O 

(2) 

(3) 

see also BACKWARD DIFFERENCE, DIVIDED DIFFER- 
ENCE, FORWARD DIFFERENCE 

References 
Abramowitz, M. and Stegun, C. A. (Eds.). “Differences.” 

$25.1 in Handbook of Mathematical Functions with Formu- 
las, Graphs, and Mathematical Tables, 9th printing. New 
York: Dover, pp. 877478, 1972. 

Central Limit Theorem 
Let 21,52,. . l  , XN be a set of Iv INDEPENDENT random 
variates and each xi have an arbitrary probability distri- 
bution P(xl, l  l  . , XN) with MEAN pi and a finite VARI- 
ANCE gi2. Then the normal form variate 

has a limiting distribution which is NORMAL (GAUS- 
SIAN) with MEAN p = 0 and VARIANCE o2 = 1. If 
conversion to normal form is not performed, then the 
variate 

N 

XL xi - 
N IL (2) 

is NORMALLY DISTRIBUTED with PX = pLs and OX = 
~,/a. To prove this, consider the INVERSE FOURIER 
TRANSFORM of P&f). 

F-l [PX (f)] E [m e2Tifxp(X) dX 

- - x 
n=O 

00 

x 

n=O 

(2rifx)np(,) dX 
n! 

n! /” Xnp(X) dx 

- - IE O” Cznif >” lxjn 

n! ’ (3) 

Central Limit Thoren 219 

Now write 

(Xn) = (N-“(xl + x2 + . . . + x~)~) 

- - 
r 

N-n(xl+.. . + xN)np(xl) l  l  *I dxl - - - dxN, 
-m 

(4) 
so we have 

= 1 I I + xN)n 

x P(Q) * * ’ p(xN) dxl . . . dxN 

2nif(xl + . . . + XN) n 1 - - 
N 1 n! 

x p(x1) l **p(xN)dxl***dxN - - rw e2rif (~I+---+x:N)/N p(x+.p(xN)dx1 . ..dxN 
J-W 

e2rifxl/N 
p(a) dxl 1 

e2xifxN/N 
p(xN) dxN 1 

1 
N - - 

= (1, [l+ (y)x+; (y)2x2+...]p(x)dx}N 

1 

N 

x’p(x) dx + O(N-3) 

= 1+ y (2) - g (x2) + O(iv-“)] N 

= exp @$ (x2) + O(N-3)] } . 

(5) 

Now expand 

ln(1 +x) = x - +x2 + ix3 +. . . , 

so 

(6) 

+;w (x)2 + O(N-3) I> 
= exp 2Tif (2) - (2nf)2((x2) - (‘>“> + o(N-2) 

2N 
1 

$=: exp (2rf)2a,2 
2Tifpx - 2N 

I 
1 (7) 
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since 

px = (x) 
5x2  E (x2) - (x)2 l  

Taking the FOURIER TRANSFORM, 

Px E 
r 

e-2”ifxF-1[Px(f)] df 
--oo 

This is of the form 

eiaf-bf2 df, 

(8) 
(9) 

(10) 

(11) 

where a E Z;rr(p, - x) and b E (27~~)~/2N. But, from 
Abramowita and Stegun (1972, pa 302, equation 7.4.6), 

eiaf -bf2 df = p2/4b (12) 

Therefore, 

But OX = (r,/fi and px = px, so 

1 
Px = - 

6 
e-(Px-42/2flx2 

l  

5 x  r 

(13) Centroid (Function) 

(14) 

The ‘Lfuzzy” central limit theorem says that data which 
are influenced by many small and unrelated random ef- 
fects are approximately NORMALLY DISTRIBUTED. 

see UZSO LINDEBERG CONDITION, LINDEBERG-FELLER 
CENTRAL LIMIT THEOREM, LYAPUNOV CONDITION 

References 
Abramowitz, M. and Stegun, C. A. (Eds.). Hand book 

of Mathematical Functions uith Formulas, Graphs, and 
Mathematical Tables, 9th printing. New York: Dover, 
1972. 

Spiegel, M. R. Theory and Problems of Probability and 
Statistics. New York: McGraw-Hill, pp. 112-113, 1992. 

Zabell, S. L. “Alan Turing and the Central Limit Theorem.” 
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Central Trinomial Coefficient 
The nth central binomial coefficient is defined as the co- 
efficient of xn in the expansion of (1 +z + x2)? The first 
few are 1, 3, 7, 19, 51, 141, 393, . . . (Sloane’s A002426). 
This sequence cannot be expressed as a fixed number 
of hypergeometric terms (PetkovBek et al. 1996, p. 160). 
The GENERATING FUNCTION is given by 

f( > 
1 

x= 
J(1+ z)(l - 3x) 

= I+ x + 3x2 + 7x3 + , . . . 

see also CENTRAL BINOMIAL COEFFICIENT 

References 
Petkovgek, M.; Wilf, H. S.; and Zeilberger, D. A=& Welles- 

ley, MA: A. K. Peters, 1996. 
Sloane, N. 3. A. Sequence A002426/M2673 in “An On-Line 

Version of the Encyclopedia of Integer Sequences.” 

Centralizer 
The centralizer of a FINITE non-ABELIAN SIMPLE 
GROUP G is an element z of order 2 such that 

Q(z) = {g f G : gx = zg}. 

see also CENTER (GROUP), NORMALIZER 

Centrode 

where 7 is the TORSION, K is the CURVATURE, T is the 
TANGENT VECTOR, and B is the BINORMAL VECTOR. 

By analogy with the GEOMETRIC CENTROID, the cen- 
troid of an arbitrary function f(x) is defined as 

( > 5= 
JYm xf (4 dx 

References 
Bracewell, R. The Fourier Transform and Its Applications. 

New York: McGraw-Hill, pp. 139-140 and 156, 1965. 

Centroid (Geometric) 
The CENTER OF MASS of a 2-D planar LAMINA or a 
3-D solid. The mass of a LAMINA with surface density 
function a(x,y) is 

M= ss 4x7 Y) dA. (1) 

The coordinates of the centroid (also called the CENTER 
OF GRAVITY) are 

a: = J J  X5(X? Y> dA 
M (2) 
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(3) 

The centroids of several common laminas along the non- 
symmetrical axis are summarized in the following table. 

Figure 

parabolic segment g h 

semicircle 4r 
37r 

In 3-D, the mass of a solid with density function 

P(X, Y, 4 is 

M= JJJ P(X, Y, 4 dv, 
and the coordinates of the center of mass are 

y = JJ YPh Y? 4 dV 
M 

(4 

(5) 

(6) 

(7) 

Figure z 

cone 

conical frust urn h(R12+2R&+3R22) 
4~R12+Rl&+Rz2) 

hemisphere 

paraboloid 

pyramid 

see also PAPPUS’S CENTROID THEOREM 

References 
Beyer, W. H. CRC Standard Mathematical Tubles, 26th ed. 

Boca Raton, FL: CRC Press, p. 132, 1987. 
McLean, W. G. and Nelson, E. W. “First Moments and Cen- 

troids .” Ch. 9 in Schaum’s Outline of Theory and Prob- 
lems of Engineering Mechanics: Statics and Dynamics, 
4th ed. New York: McGraw-Hill, pp. 134-162, 1988. 

Centroid (Orthocentric System) 
The centroid of the four points constituting an ORTHO- 
CENTRIC SYSTEM is the center of the common NINE- 
POINT CIRCLE (Johnson 1929, pa 249). This fact auto- 
matically guarantees that the centroid of the INCENTER 
and EXCENTERS of a TRIANGLE is located at the CIR- 
CUMCENTER. 

References 
Johnson, R. A. Modern Geometry: An Elementary Treatise 

on the Geometry of the Triangle and the Circle. Boston, 
MA: Houghton Mifflin, 1929+ 

Centroid (Triangle) 
The centroid (CENTER OF MASS) of the VERTICES of 
a TRIANGLE is the point M (or G) of intersection of 
the TRIANGLE’S three MEDIANS, also called the MEDIAN 
POINT (Johnson 1929, p. 249). The centroid is always 
in the interior of the TRIANGLE, and has TRILINEAR 
COORDINATES 

1 1 1 
- l  - - - 

or 
a ’b ’c ’  

csc A : csc B : csc C. 

If the sides of a TRIANGLE are divided 

A2P1 &% Ad’2 

so that 

P ---- --- ------ 
PA3 P2A1 P3A2 d 

(1) 

(2) 

(3) 

the centroid of the TRIANGLE API P2 P3 is M (Johnson 
1929, p. 250). 

Pick an interior point X. The TRIANGLES SXC, CXA, 
and AXE? have equal areas IFF X corresponds to the 
centroid. The centroid is located one third of the way 
from each VERTEX to the MIDPOINT of the opposite side. 
Each median divides the triangle into two equal areas; 
all the medians together divide it into six equal parts, 
and the lines from the MEDIAN POINT to the VERTICES 
divide the whole into three equivalent TRIANGLES. In 
general, for any line in the plane of a TRIANGLE ABC, 

d = ;(dA + dB +dc), (4 

where d, dA, d B, and dc are the distances from the cen- 
troid and VERTICES to the line. A TRIANGLE will bal- 
ance at the centroid, and along any line passing through 
the centroid. The TRILINEAR POLAR of the centroid is 
called the LEMOINE AXIS. The PERPENDICULARS from 
the centroid are proportional to si-‘, 

alp2 = a2p2 = asp3 = ;A, 

where A is the AREA of the TRIANGLE. Let P be an 
arbitrary point, the VERTICES be Al, AZ, and As, and 
the centroid M. Then 

m2+PA22+PA32 = m2+m2+MA32+3PM2. 

(6) 
If 0 is the CIRCUMCENTER of the triangle’s centroid, 
then 

m2 = R2 - ;(a” + b2 + c”). (7) 

The centroid lies on the EULER LINE. 

The centroid of the PERIMETER of a TRIANGLE is the 
triangle’s SPIEKER CENTER (Johnson 1929, p. 249). 

see also CIRCUMCENTER, EULER LINE, EXMEDIAN 
POINT,INCENTER,URTHOCENTER 

References 
Carr, G. S. Formulas and Theorems in Pure Mathematics, 

2nd ed. New York: Chelsea, p. 622, 1970. 
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Coxeter, H. S. M. and Greitzer, S. L. Geometry Revisited. 
Washington, DC: Math. Assoc. Amer., pm 7, 1967. 

Dixon, R. Mathographics. New York: Dover, pp. 55-57, 1991. 
Johnson, R. A. Modern Geometry: An Elementary Treatise 

on the Geometry of the Triangle and the Circle. Boston, 
MA: Houghton Mif%n, pp. 173-176 and 249, 1929. 

Kimberling, C. “Central Points and Central Lines in the 
Plane of a Triangle.” Math. Mag. 67, 163-187, 1994. 

Kimberling, C. ‘Centroid.” http://www.evansville.edu/ 
-ck6/tcenters/class/centroid.html. 

Certificate of Compositeness 

see COMPOSITENESS CERTIFICATE 

Certificate of Primality 

see PRIMALITY CERTIFICATE 

Cesko Equation 
An INTRINSIC EQUATION which expresses a curve in 
terms of its ARC LENGTH s and RADIUS OF CURVA- 
TURE R (or equivalently, the CURVATURE K). 

see &~ARc LENGTH,~NTRINSIC EQUATION, NATURAL 
EQUATION, RADIUS OF CURVATURE,~HEWELL EQUA- 
TION 

References 
Yates, R. C. ‘(Intrinsic Equations.” A Handbook on Curves 

and Their Proverties. Ann Arbor, MI: J. W. Edwards, 
pp, 123-126, li52. 

Cesko Fkactal 

2x3 
A FRACTAL also known as the TORN SQUARE FRAC- 
TAL. The base curves and motifs for the two fractals 
illustrated above are show below. 

see also FRACTAL,KOCH SNOWFLAKE 

References 
Lauwerier, H. Fractals: Endlessly Repeated Geometric Fig- 

ures. Princeton, NJ: Princeton University Press, p. 43, 
1991. 

Pappas, T. The Joy of Mathematics. San Carlos, CA: Wide 
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CesAro Mean 

see FEJES T~TH'S INTEGRAL 

Ceva’s Theorem 

B 

Given a TRIANGLE with VERTICES A, B, and C and 
points along the sides D, E, and F, a NECESSARY and 
SUFFICIENT condition for the CEVIANS AD, BE, and 
CF to be CONCURRENT (intersect in a single point) is 
that 

BDXEaAF=DC.EA*FB. (1) 

Let P = [V-,..., Vn] be an arbitrary n-gon, C a given 
point, and k a POSITIVE INTEGER such that 1 5 Iz 2 
n/2, For i = 1, . . . , n, let Wi be the intersection of the 
lines CVi and Vi-&+k, then 

f&+1. 
i=l 

(2) 

Here, ABlICD and 
AB [ 1 CD (3) 

is the RATIO of the lengths [A, B] and [C, D] with a plus 
or minus sign depending on whether these segments have 
the same or opposite directions (Griinbaum and Shepard 
1995). 

Another form of the theorem is that three CONCURRENT 
lines from the VERTICES of a TRIANGLE divide the op- 
posite sides in such fashion that the product of three 
nonadjacent segments equals the product of the other 
three (Johnson 1929, p. 147). 

see also HOEHN'S THEOREM, MENELAUS' THEOREM 
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Cevian 

b 

A line segment which joins a VERTEX of a TRIANGLE 
with a point on the opposite side (or 
the above figure, 

its extension). In 

b sin a’ 

’ = sin(y + a’) l  

References 
Thhbault, V. “On the Cevians of a Triangle.” Amer. Math. 

Monthly 60, 167-173, 1953. 

Cevian Conjugate Point 

see ISOTOMIC CONJUGATE POINT 

Cevian Transform 
Vandeghen’s (1965) name for the transformation taking 
points to their ISOTOMIC CONJUGATE POINTS. 

see also ISOTOMIC CONJUGATE POINT 

References 
Vandeghen, A. %ome Remarks on the Isogonal and Cevian 

Transforms. Alignments of Remarkable Points of a Trian- 
gle.” Amer. Math. Monthly 72, 1091-1094, 1965. 

Cevian Triangle 

4 A2 

Given a center a : p : y, the cevian triangle is defined 
as that with VERTICES 0 : p : y, CY : 0 : y, and Q : 
p : 0. If A’B’C’ is the CEVIAN TRIANGLE of X and 
A”B”C” is the ANTICEV~AN TRIANGLE, then X and 
A” are HARMONIC CONJUGATE POINTS withrespectto 
A and A’. 

see also ANTICEVIAN TRIANGLE 

Chain 
Let P be a finite PARTIALLY ORDERED SET. A chain 
in P is a set of pairwise comparable elements (i.e., a 
TOTALLY ORDERED subset). The WIDTH of P is the 
maximum CARDINALITY of an ANTICHAIN in P. For a 
PARTIAL ORDER, the size of the longest CHAIN is called 
the WIDTH. 

see also ADDITION CHAIN, ANTICHAINJ~RAUERCHAIN, 
CHAIN (GRAPH),DILWORTH'S LEMMA,HANSEN CHAIN 

Chain Fraction 

see CONTINUED FRACTION 

Chain (Graph) 
Achain ofa GRAPH isa SEQUENCE{~~,X~,...,Z~) such 
that (q, 4, (~2, Q), l  . . , (xn--1,x,) are EDGES of the 
GRAPH. 

Chain Rule 
If g(x) is DIFFERENTIABLE at the point x and f(x) is 
DIFFERENTIABLE at the point g(x), then f o g is DIF- 
FERENTIABLE at x. Furthermore, let y = f(g(z)) and 
u = g(x), then 

dY dy du 
dz= 

-a- 
du dx’ (1) 

There are a number of related results which also go un- 
der the name of “chain rules.” For example, if z = 
f(x, y), x = g(t), and y = h(f), then 

dz 

dt= (2) 

The “general” chain rule applies to two sets of functions 

and 

Ul = g&1, ’ l  - 7 2,) 

l  

. 

l  
(4) 

up =gp(x1,**-,xn)* 

Defining the m x n JACOBI MATRIX by 

ayl 

( 
&Ii 

) [ 
3x1 - . 

3Xj - ’ 
ay7l.L 
ax1 

dY1 
8x2 

l  

. . . 

(5) 

and similarly for (ayi/auj) and (dui /axj) then gives 

(g)=(g)($ (6) 
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In differential form, this becomes 

l  . . 
(7) 

(Kaplan 1984). 

see &SO DERIVATIVE, JACOBIAN, POWER RULE, PROD- 

UCT RULE 

References 
Anton, H. Calculus with Analytic Geometry, 2nd ed, New 

York: Wiley, p. 165, 1984. 
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Chained Arrow Notation 
A NOTATION which generalizes ARROW NOTATION and 
is defined as 

see also ARROW NOTATION 

References 
Conway, J. H. and Guy, R. K. The Book of Numbers. New 

York: Springer-Verlag, p. 61, 1996. 

Chainette 

see CATENARY 

Chair 

A SURFACE with tetrahedral symmetry which, according 
to Nordstrand, looks like an inflatable chair from the 
1970s. It is given by the implicit equation 

(x2+y2+z2 -ak2)2 A[( z-k)2-2x2][(Z+k)2-2y2] = 0. 

see also BRIDE’S CHAIR 

References 
Nordstrand, T. “Chair.” http://www.uib.no/people/nfytn/ 

chairtxt . htm. 

Chaitin’s Constant 
An IRRATIONAL NUMBER s2 which gives the probability 
that for any set of instructions, a UNIVERSAL TURING 

MACHINE will halt. The digits in 0 are random and 
cannot be computed ahead of time. 

see also HALTING PROBLEM, TURING MACHINE, UNI- 
VERSAL TURING MACHINE 

References 
Finch, S. “Favorite Mathematical Constants.” http: //www. 

mathsoft.com/asolve/constant/chaitin/chaitin.htm~. 
Gardner, M. “The Random Number n Bids Fair to Hold 
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Let. 46, 37-42, 1993. 

Chait in’s Number 

see CHAITIN’S CONSTANT 

C hait in’s Omega 

see CHAITIN? CONSTANT 

Champernowne Constant 
Champernowne’s number 0.1234567891011.. . (Sloane’s 
AO33307) is the decimal obtained by concatenating the 
POSITIVE INTEGERS. It is NORMAL in base 10. In 1961, 
Mahler showed it to also be TRANSCENDENTAL. 

The CONTINUED FRACTION of the Champernowne con- 
stant is [O, 8, 9, 1, 149083, 1, 1, 1, 4, 1, 1, 1, 3, 4, 1, 1, 

1, 15, 

457540111391031076483646628242956118599603939~~~ 

710457555000662004393090262659256314937953207~~~ 

747128656313864120937550355209460718308998457~~~ 

5801469863148833592141783010987, 

6, 1, 1, 21, 1, 9, 1, 1, 2, 3, 1, 7, 2, 1, 83, J, 156, 4, 
58, 8, 54, l  l  l  ] (Sloane’s A030167). The next term of 
the CONTINUED FRACTION is huge, having 2504 digits. 
In fact, the coefficients eventually become unbounded, L 
making the continued fraction difficult to calculate for 
too many more terms. Large terms greater than lo5 oc- 
cur at positions 5, 19,41, 102, 163, 247,358,460, . . . and 
have 6, 166, 2504, 140, 33102, 109, 2468, 136, . . . digits 
(Plouffe). Interestingly, the COPELAND-ERD~S CON- 

STANT, which is the decimal obtained by concatenating 
the PRIMES, has awell-behaved CONTINUED FRACTION 
which does not show the “large term” phenomenon. 

see also COPELAND-ERD~S CONSTANT,~MARANDACHE 
SEQUENCES 
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Change of Variables Theorem 
A theorem which effectively describes how lengths, ar- 
eas, volumes, and generalized n-dimensional volumes 
(CONTENTS) are distorted by DIFFERENTIABLE FUNC- 
TIONS. In particular, the change of variables theorem 
reduces the whole problem of figuring out the distortion 
of the content to understanding the infinitesimal dis- 
tortion, i.e., the distortion of the DERIVATIVE (a linear 
MAP), which is given by the linear MAP'S DETERMI- 
NANT. So f : R" + R" is an AREA-PRESERVING linear 
MAP IFF Idet(f)l = 1, and in more generality, if S is 
any subset of Iw”, the CONTENT of its image is given by 
1 det( f) 1 times the CONTENT of the original. The change 
of variables theorem takes this infinitesimal knowledge, 
and applies CALCULUS by breaking up the DOMAIN into 
small pieces and adds up the change in AREA, bit by 
bit. 

The change of variable formula persists to the general- 
ity of DIFFERENTIAL FORMS on MANIFOLDS, giving the 
formula 

under the conditions that M and W are compact con- 
nected oriented MANIFOLDS with nonempty boundaries, 
f : M + W is a smooth map which is an orientation- 
preserving DIFFEOMORPHISM of the boundaries. 

In 2-D, the explicit statement of the theorem is 

s f (x, Y> dXdY 
R 

and in 3-D, it is 

where R = f (R*) is th e image of the original region R*, 

is the JACOBIAN, and f is a global orientation-preserving 
DIFFEOMORPHISM of R and R* (which are open subsets 
of P). 

The change of variables theorem is a simple consequence 
of the CURL THEOREM and a little DE RHAM COHOMOL- 
OGY. The generalization to n-D requires no additional 
assumptions other than the regularity conditions on the 
boundary. 

see also IMPLICIT FUNCTION THEOREM, JACOBIAN 
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Chaos 
A DYNAMICAL SYSTEM is chaotic if it 

1. Has a DENSE collection of 
bits, 

points with periodic or- 

2. Is sensitive to the initial condition of the system (so 
that initially nearby points can evolve quickly into 
very different states), and 

3. IS TOPOLOGICALLY TRANSITIVE. 

Chaotic systems exhibit irregular, unpredictable behav- 
ior (the BUTTERFLY EFFECT). The boundary between 
linear and chaotic behavior is characterized by PERIOD 
DOUBLING, following by quadrupling, etc. 

An example of a simple physical system which displays 
chaotic behavior is the motion of a magnetic pendulum 
over a plane containing two or more attractive magnets. 
The magnet over which the pendulum ultimately comes 
to rest (due to frictional damping) is highly dependent 
on the starting position and velocity of the pendulum 
(Dickau). Another such system is a double pendulum (a 
pendulum with another pendulum attached to its end). 

see also ACCUMULATION POINT, ATTRACTOR, BASIN 
OF ATTRACTION, BUTTERFLY EFFECT, CHAOS GAME, 
FEIGENBAUM CONSTANT, FRACTAL DIMENSION, GIN- 
GERBREADMAN MAP, HI?NON-HEILES EQUATION, 
HI?NON MAP,LIMIT CYCLE,LOGISTIC EQUATION,LYA- 
PUNOV CHARACTERISTIC EXPONENT, PERIOD THREE 
THEOREM, PHASE SPACE, QUANTUM CHAOS, RESO- 
NANCE OVERLAP METHOD, SARKOVSKII'S THEOREM, 
SHADOWING THEOREM, SINK (MAP), STRANGE AT- 
TRACTOR 
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Chaos Game 
Pick a point at random inside a regular n-gon. Then 
draw the next point a fraction T of the distance between 
it and a VERTEX picked at random. Continue the pro- 
cess (after throwing out the first few points). The result 
of this “chaos game” is sometimes, but not always, a 
FRACTAL. The case (n, T) = (4,1/2) gives the interior 
of a SQUARE with all points visited with equal probabil- 
ity. 

cr 
i- ,A> **&+ 

.,%i 05 03 
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Character (Group) 
The GROUP THEORY term for what is known to physi- 
cists as the TRACE. All members of the same CONJU- 
GACY CLASS in the same representation have the same 
character. Members of other CONJUGACY CLASSES may 
also have the same character, however. An (abstract) 
GROUP can be uniquely identified by a listing of the 
characters of its various representations, known as a 
CHARACTER TABLE. Some of the SCH~NFLIES SYM- 
BOLS denote different sets of symmetry operations but 
correspond to the same abstract GROUP and so have the 
same CHARACTER TABLES. 

Character (Multiplicative) 
A continuous HOMEOMORPHISM of a GROUP into the 
NONZERO COMPLEX NUMBERS. A multiplicative char- 
acter w gives a REPRESENTATION on the 1-D SPACE c 
of COMPLEX NUMBERS, wherethe REPRESENTATION ac- 
tion by g E G is multiplication by w(g). A multiplicative 
character is UNITARY ifit has ABSOLUTE VALUE 1 ev- 
erywhere. 
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Character (Number Theory) 
A number theoretic function xk(n) for POSITIVE integral 
n is a character module k if 

for all m, n, and 

Xl;(n) = 0 

if (k, n) # 1. xk can only assume values which are 4(k) 
ROOTS OF UNITY, where q5 is the TOTIENT FUNCTION. 

see also DIRICHLET L-SERIES 

Character Table 

see also BARNSLEY’S FERN 
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Dg E 2cfJ 2c3 cz 3c; 3c; 
AIll 1 1 1 1 1 x2 + y2, x2 

A2 

Bl 

B2 

El 

E2 

1 1 11-I -1 2,& 
1 -1 1 -1 1 -I 

1 -1 1 -1 -1 1 (X,Y)(Rx,&) 

2 1 -1 -2 0 0 (X6 Y4 

2 -1 -1 2 0 0 ( x2 - Y2,XY) 

c 2v E C2 G&Z) ad(v) 

A1 1 1 1 1 z X2,Y2,ZJ 
C3 E C3 Cs2 E = exp(27ri/3) 
A 1 1 1 z,RZ x 

2 2 2 
IY ,z ,XY 

> 
(XIY)(%RY) (x2 - Y2,XY)(yz,X4 

A2 1 1 -1 

Bl 1 -1 1 

B2 1 -1 -1 

C4 E C3 C2 Cd3 
A 1 1 1 1 z,RZ 2 22 

x+y,z 
B 1 -1 1 -1 X2 - Y2,XY 

E X.1 3aw 1 I c3v 

Al 

A2 

E 
E 1 i -1 -i 

C5 E C5 C5’ C5= Cs4 E = exp(2Fi/5) 
A 11111 Oh x2 + y2,r2 

El { ; ;* ;z* ;:* :* (X~YHRaq/~ (YGX4 

Cx2 - Y2, XY) 

cdv E 2c4 c2 2c, 2&j 

Al 1 11 1 lz x 2 +Y 22 9 

A2 1 1 1 -1 -1 R, 
B1 1 -1 1 1 -1 x2 - y2 

B2 1 -1 l-l 1 ZY 
E 2 O-2 0 0 (2, YmL RY) (X? Y4 

A 1 1 1 1 I 1 x, Rz x2 +y2,x2 

B l-l 1 -1 1 -1 
I I C E 2C5 5v 2cs2 50, 

AI 1 1 1 1 x x2 + y2, x2 

El : z+ 1:’ --; --:a ;* -t 
E2 { 

1 --E --E 1 --E* -& 
1 --E* --E* 1 --E .?T* cx2 - Y21 XY) 

Bl 
B2 

B3 

1 1 1 
2 2~0s 72” 2 cos 144” 
2 2~0s 144’ 2 cos 72” 

Gtl 
Al 
A2 

4 

B2 

El 
E2 

E 2Cg 2c, C2 30, 3ad 

111111% x2 +y2,z2 D2 E C2(4 C2(y) G(x) 

AI 1 1 1 1 x 2 +Y 22 9 1 1 1 1 -1 -1 R, 

1 -1 1 -1 I -1 
1 -1 1 -1 -1 1 

2 1 -1 -2 0 0 b, Y)(%, R&f) b% Y4 
2 -1 -1 2 0 0 cx2 - Y21 XY) 

Bl 1 1 -1 
B2 1 -1 1 

B3 1 -1 -1 

D3 E 2c, 3c2 
A1 1 1 1 x 2 +YJ 22 

A2 1 1 -1 z,R, XY 
E 2 -1 o (x, y)(Rx, RY) (x2 - y2, XY)(XG ~2) 

E C,’ . . . mu, 

1 . * . 1 % x2 +y2,z2 
A,sX- 1 1 . . . -1 R, 

El cc I-I 2 2cos a rn.. 0 (x7 Y>; (REY RY) (x5 Y4 
E2 s A 2 2cos2G *.. 0 (x” - Y2, XY) 
E3 G XD 2 2cos3+ . . . 0 

. . * . . 

. . . . . . . . . . 
x 

2 22 
+Y 7x 

x2 - y2 

XY 

(x4 Y4 

A1 1 1 1 1 1 

A2 1 1 1 -1 -1 z,RZ 
B1 1 -1 1 1 -1 

B2 1 -1 1 -1 1 

E 2 o-2 0 0 (x7 Y)& RY) 
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Characteristic Class 
Characteristic classes are COHOMOLOGY classes in the 
BASE SPACE of a VECTOR BUNDLE, defined through 
OBSTRUCTION theory, which are (perhaps partial) ob- 
structions to the existence of k: everywhere linearly 
independent vector FIELDS on the VECTOR BUNDLE. 
The most common examples of characteristic classes 
are the CHERN, PONTRYAGIN, and STIEFEL-WHITNEY 
CLASSES. 

Characteristic (Elliptic Integral) 
A parameter n used to specify an ELLIPTIC INTEGRAL 
OF THE THIRD KIND. 

see UZSO AMPLITUDE, ELLIPTIC INTEGRAL, MODULAR 
ANGLE, MODULUS (ELLIPTIC INTEGRAL), NOME, PA- 
RAMETER 
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Characteristic Equation 
The equation which is solved to find a MATRIX'S EIGEN- 
VALUES, also called the CHARACTERISTIC POLYNOMIAL. 
Given a 2 x 2 system of equations with MATRIX 

the MATRIX EQUATION is 

b x 

d y= I[ 1 
which can be rewritten 

t & f 11 

[,,, d:t] [;I =$I* 
M can have no MATRIX INVERSE, since otherwise 

[;I =M-$]= [;I, 

(1) 

(2) 

(3) 

(4) 

which contradicts our ability to pick arbitrary x and y. 
Therefore, M has no inverse, so its DETERMINANT is 0. 
This gives the characteri stic equation 

(5) 

where [AI denotes the DETERMINANT of A. For a general If 1y is a SUBFIELD of K, then H and K have the same 
k x k MATRIX characteristic. 

all 
a21 

. 
l  

. 

akl 

al2 

a22 

alk 

a2k 
. I I . . 

akk 

(6) 

Characteristic (Field) 

the characteristic equation is 

a11 -t a12 .** alk 

a21 a22 -t . . . a2k 

l  . l  = 0. 
l  (7) 

. l  . . 

l  l  
l  

l  

akl ak2 d.. akk - t 

see also BALLIEU'S THEOREM, CAYLEY-HAMILTON 
THEOREM, PARODI'S THEOREM, ROUTH-HURWITZ 
THEOREM 
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Characteristic (Euler) 

see EULER CHARACTERISTIC 

Characteristic Factor 
A characteristic factor is a factor in a particular fac- 
torization of the TOTIENT FUNCTION 4(n) such that 
the product of characteristic factors gives the represen- 
tation of a corresponding abstract GROUP as a DIRECT 
PRODUCT. By computing the characteristic factors, any 
ABELIAN GROUP can be expressed as a DIRECT PROD- 
UCT of CYCLIC SUBGROUPS, for example, 22 8 24 or 
&@Zz @Z2. There is a simple algorithm for determining 
the characteristic factors of MODULO MULTIPLICATION 
GROUPS. 

see also CYCLIC GROUP, DIRECT PRODUCT (GROUP), 
MODULO MULTIPLICATION GROUP, TOTIENT FUNC- 
TION 

References 
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Characteristic (Field) 
For a FIELD K with multiplicative identity 1, consider 
the numbers 2 = 1+ 1, 3 =1+1+1,4=1+1+1+1, 
etc. Either these numbers are all different, in which 
case we say that K has characteristic 0, or two of them 
will be equal. In this case, it is straightforward to show 
that, for some number p, we have t + 1 $,. . . + l, = 0. 

p times 

If p is chosen to be as small as possible, then p will 
be a PRIME, and we say that K has characteristic II. 
The FIELDS Q, R, c, and the p-ADIC NUMBERS Qp 
have characteristic 0. For p a PRIME, the GALOIS FIELD 
GF(p”) has characteristic p. 

see also FIELD, SUBFIELD 
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Characteristic Function 
The characteristic function 4(t) is defined as the FOUR- 
IER TRANSFORM ofthe PROBABILITY DENSITY FUNC- 
TION, 

(b(t) = F[P(x)] = s O” eit”P(x) dx (1) -m - - r P(x) dx + it 
r 

xP(x) dx 
--oo -m 

+ i(d)” 
sm 

x2P(x) dx +. . . (2) 
-m 

O” (t> i k - - 
Ix -cLlk (3) 
k=O l  

= 1+ it/L; - +t”p; - &it”& + &t4pl + l  l  l  , (4) . 

where pk (sometimes also denoted y”) is the nth MO- 
MENT about 0 and & E 1. The characteristic function 
can therefore be used to generate MOMENTS about 0, 

or the CUMULANTS K~, 

(5) 

(6) 

A DISTRIBUTION is not uniquely specified by its Mo- 
MENTS, but is uniquely specified by its characteristic 
function. 

see also CUMULANT, MOMENT, M 0 MENT- ,GENE 
FUNCTION,PROBAB LITY DENSIT Y FUNC TION 

RATING 
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Characteristic (Partial Differential 

Equation) 
Paths in a 2-D plane used to transform PARTIAL DIF- 
FERENTIAL EQUATIONS into systems of ORDINARY DIF- 
FERENTIAL EQUATIONS. They were invented by Rie- 
mann. For an example of the use of characteristics, con- 
sider the equation 

it follows that dt/ds = 1, dx/ds = -621, and du/ds = 
0. Integrating gives t(s) = s, x(s) = -6suo(x), and 
u(s) = uo(x), where the constants of integration are 0 
and uo(x) = u(x,O). 

Characteristic Polynomial 
Theexpandedformofthe CHARACTERISTIC EQUATION. 

det(xl - A), 

where A is an n x n MATRIX and I is the IDENTITY 
MATRIX. 

see UZSO CAYLEY-HAMILTON THEOREM 

Characteristic (Real Number) 
For a REAL NUMBER x, 1x1 = int(x) is called the char- 
acteristic. Here, 1x1 is the FLOOR FUNCTION. 

see UZSO MANTISSA, SCIENTIFIC NOTATION 

C harlier’s Check 
A check which can be used to verify correct computation 
of MOMENTS. 

Chasles-Cayley-Brill Formula 
The number of coincidences of a (v, y’> correspondence 
of value y on a curve of GENUS p is given by 

v+vt+2py. 

see also ZEUTHEN'S THEOREM 

References 
Coolidge, J. L, A Treatise on Algebraic Plane Curves. New 
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Chasles’s Contact Theorem 
If a one-parameter family of curves has index Iv and 
class IV, the number tangent to a curve of order 721 and 
class ml in general position is 

mlN+nlM. 

References 
Coolidge, J. L. A Treatise on Algebraic Plane Curves. New 

York: Dover, p. 436, 1959. 

Chasles’s Polars Theorem 
If the TRILINEAR POLARS of the VERTICES of a TRI- 
ANGLE are distinct from the respectively opposite sides, 
they meet the sides in three COLLINEAR points. 

see also COLLINEAR, TRIANGLE, TRILINEAR POLAR 

ut - 6211~~ = 0. 

Now let u(s) = u(x(s>, t(s)). Since 

du dx dt -- ds - ds”x + -&% 
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Chasles’s Theorem see also ONE-NINTH CONSTANT, RATIONAL FUNCTION 
If two projective PENCILS of curves of orders 12 and n’ 
have no common curve, the LOCUS of the intersections of 
corresponding curves of the two is a curve of order n+n’ 
through all the centers of either PENCIL. Conversely, if 
a curve of order n + n’ contains all centers of a PENCIL 
of order n to the multiplicity demanded by NOETHER’s 
FUNDAMENTAL THEOREM, then it is the Locus of the 
intersections of corresponding curves of this PENCIL and 
one of order n’ projective therewith. 
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see also NOETHER’S FUNDAMENTAL THEOREM, PENCIL Chebyshev Deviation 
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Chebyshev Approximation Formula 
Using a CHE~YSHEV POLYNOMIAL OF THE FIRST KIND 
T, define 

Then 
N-l 

f(x) = 7; d%(X) - fCo* 
k=O 

It is exact for the Iv zeros of TN(X). This type of ap- 
proximation is important because, when truncated, the 
error is spread smoothly over [-1, l]. The Chebyshev 
approximation formula is very close to the MINIMAX 
POLYNOMIAL. 

References 
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Chebyshev Constants 
IV.5 A detailed on-line essay by S. Finch was the start- 
ing point for this entry. 

The constants 

x m,n = inf sup le-” - r(x)l, 
T-T, 2>0 - 

where 

r(x) = 2, PC > 

q(x) 

p and 4 are nzth and nth order POLYNOMIALS, and Rm,n 
is the set all RATIONAL FUNCTIONS with REAL coeffi- 
cients. 

Chebyshev Differential Equation 

apyf(4 - P(4lW~. 
- - 
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Chebyshev Differential Equation 

(1 2 d2Y dY - ~)~-xz+rn~y=O (1) 

for 1x1 < 1. The Chebyshev differential equation has reg- 
ular SINGULARITIES at -1, 1, and 00. It can be solved 
by series solution using the expansions 

Y=F anxn (2) 
n=O 
w  W 

= )‘ 7tUnXn-l 

n=O 00 - - n n+l 
n=O 

00 

ytt = x(n + 1 

n=O 

W 

- - 

E( 
n-l-2 

n=O 

an+d (3) 

n&+111: n-1 = F(n + l)n&+lXn--l 
n=l 

(72 + l)an+2Xn- (4 

Now, plug (2-4) into the original equation (1) to obtain 

(1 - x2) 

00 

n 
n 

n=O 

+ 2)(n + 1 

F(n+z)(n+ l)G-b+2Xn 

n=O 

-x e(n+ 1)?Ln+1Xn+TT12 

n=O 

00 
- 

X( n-t 

n=O 

00 

)an+2xn - 
Iu 

n 

n=O 

+ 2>(n 

l)an+lXn+l+ m2 

00 

x 
an 

n=O 

W 

x 
UnXn = 0 (5) 

n=O 

Xn =0 (6) 



Chebyshev Differential Equation Chebyshev-Gauss Quadrature 

f)n + 2)(n + l)an+2xn - F n(n - l)UnXn+2 

n=O n=2 

00 cxl 

- 
x 

nUnXn + 7Yb2 
c 

UnXn = 0 (7) 
n=l n=O 

2 l  la2 + 3 l  2a3x - Z 9 ax + m2ao + m2alx 

+ ji-;[(n + 2)(n + Q&+2 - n(n - I)% 
n=2 

--a, + m2an]xn = 0 (8) 

(2~2 + m2ao) + [(m2 - 1)~ + 6a3]x 

+ F,[(n + 2)(n + l)%+2 + (m2 - n2)an]xn = 0, (9) 
n=2 

SO 
2a2 + m2a0 = 0 

( m2 - l)al + 6a3 = 0 (11) 

forn=2,3,.... (12) 

The first two are special cases of the third, so the general 
recurrence relation is 

2 2 

an+2 = (n 9 ,xl”, 2) an 
for n = O,l,. . . . (13) 

From this, we obtain for the EVEN COEFFICIENTS 

a2 = -+rn’ao (14 

22 - m2 (2 2 
a4 = -------a2 = 

- m2)(-m2) 

3*4 1.2*3*4 ao (15) 

n 
a272 = 

K2 > 2 - m2][(2n - 2)’ - m2] l  l  l  [-m2] 

(2 > n! 
a07 

(16) 

and for the ODD COEFFICIENTS 

1 - m2 
a3 = -a0 

6 
(17) 

32 - m2 
a5 = -a3 = 

(3 2 - m2)(12 - m”) 

4-5 5! 
al (18) 

a2n-1 = 
[(Zn - 1)” - m2][(2n - 3)2 - m”] l  m m [12 - m2] 

(2n + l)! 
al 

( 9) 1 

So the general solution is 

y=ao 1+ 

[ 

O” 

x 

[k” - m2][(k - 2)” - m2] * * * [-m2] k 

k! 
x + 

k=2,4,... 

= 
a1 x-t x [(k - zq2 - m2J[(k - 2)" - m2] a * *[12 - my 

Xk 

k! 
k=3,5,... 1 (20) 
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If n is EVEN, then yl terminates and is a POLYNOMIAL 
solution, whereas if n is ODD, then y2 terminates and 
is a POLYNOMIAL solution. The POLYNOMIAL solutions 
defined here are known as CHEBYSHEV POLYNOMIALS 
OF THE FIRST KIND. The definition of the CHEBYSHEV 
POLYNOMIAL OF THE SECOND KIND gives a similar, but 
distinct, recurrence relation 

I (n + 1)” - m2 I 

an+2 = (n + 2)(n + 3) an 
for n= O,l,.... (21) 

Chebyshev Function 

e(x) = Tilnp, 

PlX 

where the sum is over PRIMES p, so 

lim g=l. 
X-ho0 O( > X 

Chebyshev-Gauss Quadrature 
Also called CHEBYSHEV QUADRATURE. A GAUSSIAN 
QUADRATURE over the interval 1-1, l] with WEIGHT- 
ING FUNCTION W(X) = l/d-. The ABSCISSAS for 
quadrature order n are given by the roots of the CHEBY- 
SHEV POLYNOMIAL OF THE FIRST KIND 7&(x), which 
occur symmetrically about 0. The WEIGHTS are 

A n+lYn A-& Yn-1 

wi = -AnTA(xi)Tn+l(xi) = A,_1 T!-l(xi)T!(xi) ’ 

(1) 

where An is the COEFFICIENT of xn in T,(x). For HER- 
MITE POLYNOMIALS, 

An = 2n-1, 

so 
A n+l - = 2. 

A, 

Addit ionally, 

so 

w; = - 
Tn+&:)Z(xi) ’ 

(5) 

Since 

Tn(x) = cos(n cos-’ x 

the ABSCISSAS are given explicitly by 

xi = cos (2 i - 1)n 

[ I 272 

Since 

( 1) 
i+1 

T:,(xi) = - n 
Qri 

(8) 

Tn+l(xi) = (-l)i Sinai, (9) 
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where Chebyshev Integral Inequality 

Qri = 
(2i - 1)X 

2n ’ (10) 

all the WEIGHTS are 

7r 
wi = -* 

n (11) 

The explicit FORMULA is then 

k=l 

n Xi Wi 

2 *0.707107 1.5708 
3 0 1.0472 

1tO.866025 I .0472 
4 1t0.382683 0.785398 

*O-92388 0.785398 
5 0 0.628319 

1t0.587785 0.628319 
zto.951057 0.628319 

References 
Hildebrand, F. B. Introduction to Numerical Analysis. New 

York: McGraw-Hill, pp. 330-331, 1956. 

Chebyshev Inequality 
Apply MARKOV’S INEQUALITY with a E k2 to obtain 

Pb -  I - 1 ) ”  > k21 < 

( (x  -  d2) u2 
z- 

-  -  p 
k2 ’ 

(1) 

Therefore, if a RANDOM VARIABLE x has a finite MEAN 
p and finite VARIANCE c2, then V IG 2 0, 

p(lx - PI > k> L - (2) 

References 
Abramowita, M. and Stegun, C. A. (Eds.). Handbook 

of Mathematical Functions with Formulas, Graphs, and 

Mathematical Tables, 9th printing. New York: Dover, 
p* II, 1972. 

Chebyshev Integral 

J 
~‘(1 - 2)’ dx. 

J 
b 

< (b - u)~-’ - f (Xl)f (22) l  ” fnCx> dX~ 
a 

where fl, f2, l  . . ) fn are NONNEGATIVE integrable func- 
tions on [a, b] which are monotonic increasing or decreas- 
ing. 

References 
Gradshteyn, 1, S. and Ryzhik, I. M. Tables of Integrals, Se- 

ries, and Products, 5th ed. San Diego, CA: Academic 
Press, p* 1092, 1979. 

Chebyshev Phenomenon 

see PRIME QUADRATIC EFFECT 

Chebyshev Polynomial of the First Kind 

A set of ORTHOGONAL POLYNOMIALS defined as the so- 
lutions to the CHEBYSHEV DIFFERENTIAL EQUATION 
and denoted T,(x). They are used as an approxima- 
tion to a LEAST SQUARES FIT, and are a special case 
ofthe ULTRASPHERICAL POLYNOMIAL witha=O. The 
Chebyshev polynomials of the first kind T.(x) are illus- 
trated above for x E [0, 11 and n= 1, 2, . . l  , 5. 

The Chebyshev polynomials of the first kind can be ob- 
tained from the generating functions 

g1(t,x) = l - t2 
1 - 2xt + t2 

= To(x) + 25,(z)t” (1) 
n-l 

and 

g2(t,x) = 
1 

l - xt = 2Tn(x)t" 
- 2xt + t2 

(2) 
n=O 

for 1x1 < 1 and ItI < 1 (Beeler et al. 1972, Item 15). 
(A closZy related GENERATING FUNCTION is the basis 
for the definition of CHEBYSHEV POLYNOMIAL OF THE 
SECOND KIND.) They are normalized such that Tn( 1) = 
1. They can also be written 
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or in terms of a DETERMINANT Using a FAST FIBONACCI TRANSFORM with multiplica- 
tion law 

Tn = 

In closed form, 

2 1 0 0 .*’ 0 0 
1 2X 1 0 ... 0 0 
0 1 2x 1 ... 0 0 
0 0 1 2X ..* 0 0 
. . . . 

l  
. . 

l  l  . l  l  l  l  

0  
0  (j 0  

. 

l  ** i 22: 

1nPJ 

%x(x) = cos(ncos-l x) = 
n 

cc > 

n-2m 

2m x ( x2 - l>“, 
m=O 

(5) 
where (i) is a BINOMIAL COEFFICIENT and [xJ is the 
FLOOR FUNCTION. Therefore, zeros occur when 

2 
r(k - 3> 

= cos - [ 1 n 

for k = 1, 2, . . . , n. Extrema occur for 

l  
(4) 

(6) 

(7) 

where k = 0, 1, . . . ,W At maximum, Tn(x) = 1, and 
at minimum, Tn(x) = -1. The Chebyshev POLYNOMI- 
ALS are ORTHONORMAL with respect to the WEIGHTING 
FUNCTION (1 - x2)-li2 

s ’ for m # 0, n # 0 

-l for m = n = 0, 

(8) 
where 6,, is the KRONECKER DELTA. Chebyshev poly- 
nomials of the first kind satisfy the additional discrete 
identity 

m 
c Ti(Xk)Tj(Xk) = 

+TKdij for i # 0, j # 0 
for i = j = 0, (9) m 

k=l 

where xk for k = 1, . . . , m are the m zeros of T,(x). 
They also satisfy the RECURRENCE RELATIONS 

Xx+1(x) = 2xTn(x) - Tnq(x) (10) 

T,+l(x) = XX(X) - d(1 - x2)(1 - [C(X)]~} (11) 

for n > 1. They have a COMPLEX integral representa- - 
tion 

Tn(x) = & 

s 7 

(1 
- --n--l dz 

1 - 2x2 + z2 (12) 

and a Rodrigues represent ation 

Tn(x) = 
(-1)“fi(1 - x2Y2 d” [(l-X2)7H/2] (13) 

2n(n - k)! dxn 
l  
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(A,B)(C, D) = (AD -I- BC + 2xAC,BD - AC) (14) 

gives 

(Tn+l(x), -T,(x)) = (TV, -To(~))(l,0)~. (15) 

Using GRAM-SCHMIDT URTHONORMALIZATION in the 
range (-1,l) with WEIGHTING FUNCTION (1 -x2)(-1/2) 
gives 

PO(X) = 1 (16) 

p&j= x- 

[ 

j-T1 x(1 - x~)-“~ dx 

I;,(1 - x2)-l/2 dx 1 =x- c (1 - [ - x2y2111 = x 
sin-l xl’, 

p2(5)= x- 

[ 

j’Tl x3(1 - x2)-1’2 dx 

JT1 x2(1 - x2)-li2 dx 1 X 

JT, x2(1 - x2)-1’2 dx 
- 

J:,(l - x2)-l/2 da 1 . 1 

= [x - ()1x I 2 = 22 - 3, 
7r 

etc. Normalizing such that Tn(l) = 1 gives 

To(x) = 1 

Tl cx> =X 

T2(x) = 2x2 - 1 

T3(x) = 4x3 - 3x 

T4(x)=8x4-8x2+1 

Wx) = 16x5 - 20x3 + 5x 

T6(x) = 32x” - 48x4 + 18x2 - 1. 

(17) 

(18) 

The Chebyshev polynomial of the first kind is related 
to the BESSEL FUNCTION OF THE FIRST KIND Jn(x) 
and MODIFIED BESSEL FUNCTION OF THE FIRST KIND 
1n (x) by the relations 

(19) 

In(x) = Tn. (20) 

Letting x z cos 8 allows the Chebyshev polynomials of 
the first kind to be written as 

Tn(x) = cos(n0) = cos(nco8 x). (21) 
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The second linearly dependent solution to the trans- 
formed differential equation 

d2Tn 
d82 + n2Tn = 0 (22) 

is then given by 

vn Cx> = sin(n0) = sin(ncos-1 x), (23) 

which can also be written 

Vn(X) = -\/l - X2 Un-l(X), (24) 

where & is a CHEBYSHEV POLYNOMIAL OF THE SEC- 
OND KIND. Note that V.,Jx) is therefore not a POLY- 
NOMIAL. 

The POLYNOMIAL 

Xn - 21BnTn(x) (25) 

(of degree n - 2) is the POLYNOMIAL of degree < n which 
stays closest to xn in the interval (-1, l)* The maximum 
deviation is 2l-” at the n + 1 points where 

k7r 
x = cos - , 

( > n (26) 

for k = 0, 1, . . . , n (Beeler et al. 1972, Item 15). 

see also CHEBYSHEV APPROXIMATION FORMULA, 
CHEBYSHEV POLYNOMIAL OF THE SECOND KIND 
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Chebyshev Polynomial of the Second Kind 

A modified set of Chebyshev POLYNOMIALS defined by a 
slightly different GENERATING FUNCTION. Used to de- 
velop four-dimensional SPHERICAL HARMONICS in an- 
gular momentum theory. They are also a special case 
ofthe ULTRASPHERICAL POLYNOMIAL with a = 1. The 
Chebyshev polynomials of the second kind & (2) are 
illustrated above for x E [0, l] and n = 1, 2, . l  l  , 5. 

The defining GENERATING FUNCTION of the Chebyshev 
polynomials of the second kind is 

Q2 (t, 2) = 
L 

1 - 2xt + t2 
= x K+>tn (1) 

for 1x1 < 1 and It] < 1. To see the relationship to 
a CHEBYSHEV POLYNOMIAL OF THE FIRST KIND (T), 

take dgldt, 

89 
8t 

= -(l - 2xt + t2)-2(-2x + 2t) 

= 2(t - x)(1 - 2xt + t2)-2 

= F nU,(x)t”-l. (2) 
n=O 

Multiply (2) by t, 

Pt 2 - 2Xt)(l - 2Xt + t2)12 = xnUn(X)tn (3) 

and take (3)-(2), 

Pf 2 - 2tx) - (1 - 2xt + t”) t2 - 1 

(l-2xt+ty = (1-2xt+t)2 

= F(n - l)&Jx)t”. (4) 

r&=0 

The Rodrigues representation is 

un(X) = 
(-V(n+ l)fi dn [(I x2)n+1/2] 

P+l(n+ +)!(l - x2)li2 dX” - l  

(5) 
The polynomials can also be written 

b-421 
Un(X) = x (-1)’ 

T=o 

= 'z (Znm++ll>~~-~~(x~ - l)", (6) 

where 1x1 is the FLOOR FUNCTION and [xl is the CEIL- 
ING FUNCTION, or in terms of a DETERMINANT 

un = 

2x 1 0 0 l  ** 0 0 
0 2x 1 0 .‘. 0 0 
0 1 2x 1 l  '* 0 0 
. . . l  . . 

l  

. . . l  . . l  

0  

0  

. m  

0 0 

-1 1’ 2x . 

l  
(7) 
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The first few POLYNOMIALS are 

Uo(x) = 1 

Ul(X) = 2x 

uz(x) =4x2 -1 

U3(x) = 8x3 -4x 

U4(x) = 16x4 -12x2 +1 

Us(x)= 32x5 -32x3 +6x 

Us(x) = 64x" -80x4 +24x2 -1. 

Letting x =: cos 0 allows the Chebyshev polynomials of 
the second kind to be written as 

G-L(x) = 
sin[(n + l)Q] 

sin 0 * (8) 

The second linearly dependent solution to the trans- 
formed differential equation is then given by 

wk(x) = 
cos[(n + l)O] 

sin tJ I 

which can also be written 

Wn(x) = (l- x2)-'/"Tn+l(x), 

(9) 

10) 

where T, is a CHEBYSHEV POLYNOMIAL OF THE FIRST 
KIND. Note that WR.(x) is therefore not a POLYNOMIAL. 

see also CHEBYSHEV APPROXIMATION FORMULA, 
CHEBYSHEV POLYNOMIAL OF THE FIRST KIND, ULTRA- 
SPHERICAL POLYNOMIAL 
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Chebyshev Quadrature 
A GAUSSIAN QUADRATURE-like FORMULA for numeri- 
cal estimation of integrals. It uses WEIGHTING FWNC- 
TION w(z) = 1 in the interval [ - 1, 11 and forces all the 
weights to be equal. The general FORMULA is 

The ABSCISSAS are found 
the MACLAURIN SERIES of 

by taking terms up to yn in 

s,(y) = exp in { [ -2 + ln(1 - y) 
1 ( > 1 - - 
Y 

1 
+ln(l+y) l+- ( >I1 , 

Y 

and then defining 

G,(x) G xnsn i . ( ) X 

The ROOTS of G,(x) then give the ABSCISSAS. The first 
few values are 

Go(x) = 1 

Gl(X) = x 

G2(x) = +(3x2 - 1) 

G3(x) = $(2x3 - 2) 

G4(2) = &(45x4 - 30x2 + 1) 

G5 (x) = $(72x5 - 60x3 + 7x) 

G6(2) = &(105x6 - 105x4 + 21x2 - 1) 

G7(x) = &,(6480x7 - 7560x5 +2142x3 -149x) 

G(x) = &(42525x8 -56700x6 +20790x4 

-2220x2 -43) 

G(x) = &(22400x9 - 33600x7 + 15120x5 

- 2280x3 + 53x). 

Because the ROOTS are all REAL for n < 7 and n = 9 - 
only (Hildebrand 1956), these are the only permissible 
orders for Chebyshev quadrature. The error term is 

En = 
n even, 

JT1 x&(x) dx n odd 
Cn = 

s 
1 
-1 x2Gn(x) dx n even. 

The first few values of cn are 2/3, 8/45, l/15, 32/945, 
13/756, and 16/1575 (Hildebrand 1956). Beyer (1987) 
gives abscissas up to n = 7 and Hildebrand (1956) up 
to n = 9. 

s 1 

-1 

f(x)dx = ; k f(xi). 
i=l 
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n Xi n Xi wi 

2 *0.57735 
3 0 

%0.707107 
4 50.187592 

&0.794654 
5 0 

zkO.374541 
ho.832497 

6 *0.266635 
zto.422519 
&0.866247 

7 0 
*o-323912 
*0.529657 
zk0.883862 

9 0 
*O. 167906 
zkO.528762 
ztO.601019 
ho.911589 

The ABSCISSAS and weights can be computed analyti- 
cally for small n. 

n Xi 

see also CHEBYSHEV QUADRATURE, L~BATTO QUAD- 
RATURE 
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Chebyshev-Radau Quadrature 
A GAUSSIAN QUADRATURE-like FORMULA over the in- 
terval[-l,l] whichhas WEIGHTING FUNCTION W(X) = 
X. The general FORMULA is 

s 1 

z.f(x) dx = &[f(Xi) - f(-%>I* 
-1 i=l 

1 0.7745967 0.4303315 
2 0.5002990 0.2393715 

0.8922365 0.2393715 

3 0.4429861 0.1599145 

0.7121545 0.1599145 
0.9293066 0.1599145 

4 0.3549416 0.1223363 

0.6433097 0.1223363 

0.7783202 0.1223363 
0.9481574 0.1223363 
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Beyer, W. H. CRC Standard Mathematical Tables, 28th ed. 
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Chebyshev Sum Inequality 
If 

al > a2 > ..* > a, - - - 

This is true for any distribution. 

SE UZSO CAUCHY INEQUALITY,H~LDER SUM INEQUAL- 
ITY 
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Hardy, G. H.; Littlewood, J. E.; and P6lya, G. Inequalities, 
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Chebyshev-Sylvester Constant 
In 1891, Chebyshev and Sylvester showed that for suf- 
ficiently large x, there exists at least one prime number 
p satisfying 

27 < p < (1+ QI)x, 

where cy = 0.092.. . . Since the PRIME NUMBER THE- 
OREM shows the above inequality is true for all Q > 0 
for sufficiently large x, this constant is only of historical 
interest. 
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Chebyshev’s Theorem 

see BERTRAND'S POSTULATE 
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Checker-Jumping Problem 
Seeks the minimum number of checkers placed on a 
board required to allow pieces to move by a sequence of 
horizontal or vertical jumps (removing the piece jumped 
over) n rows beyond the forward-most initial checker. 
The first few cases are 2, 4, 8, 20. It is, however, impos- 
sible to reach level 5. 

Kererences 
Honsberger, R. Mathematical Gems II. Washington, DC: 

Math. Assoc. Amer., pp, 23-28, 1976. 

Checkerboard 

see CHESSBOARD 

Checkers 
Beeler et al. (1972, Item 93) estimated that there are 
about 101’ possible positions. However, this disagrees 
with the estimate of Jon Schaeffer of 5 x 10zO plausible 
positions, with 1018 reachable under the rules of the 
game. Because “solving” checkers may require only the 
SQUARE ROOT of the number of positions in the search 
space (i.e., lo’), so there is hope that some day checkers 
may be solved (i.e., it may be possible to guarantee a 
win for the first player to move before the game is even 
started; Dubuque 1996). 

Depending on how they are counted, the number of EU- 
LERIAN CIRCUITS on an n x n checkerboard are either 
1, 40, 793, 12800, 193721, . l  . (Sloane’s A006240) or 1, 

13, 108, 793, 5611, 39312, . . . (Sloane’s A006239). 

see also 
LEM 

CHECKERBOARD, CHECKER-JUMPING PROB- 
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Checksum 
A sum of the digits in a given transmission modulo some 
number. The simplest form of checksum is a parity bit 
appended on to 7-bit numbers (e.g., ASCII characters) 
such that the total number of 1s is always EVEN (“even 
parity”) or ODD (“odd parity”). A significantly more 
sophisticated checksum is the CYCLIC REDUNDANCY 

CHECK (or CRC), which is based on the algebra of poly- 
nomials over the integers (mod 2). It is substantially 
more reliable in detecting transmission errors, and is 
one common error-checking protocol used in modems. 

see also CY 
CORRECTING 

CLIC REDUNDANCY 
CODE 

CHECK, ERROR- 

References 
Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetter- 

ling, W. T. “Cyclic Redundancy and Other Checksums.” 
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Cheeger’s Finiteness Theorem 
Consider the set of compact n-RIEMANNIAN MANIFOLDS 

M with diameter(M) 5 d, Volume(M) > V, and 1x1 < - - 
K where K is the SECTIONAL CURVATURE. Then there 
is a bound on the number of DIFFEOMORPHISMS classes 
of this set in terms of the constants n, d, V, and K. 

References 
Chavel, I. Riemannian Geometry: A Modern Introduction. 

New York: Cambridge University Press, 1994. 

Chefalo Knot 
A fake KNOT created by tying a SQUARE KNOT, then 
looping one end twice through the KNOT such that when 
both ends are pulled, the KNOT vanishes. 

Chen’s Theorem 
Every “large” EVEN INTEGER may be written as 2n = 

p + no where p is a PRIME and m e PZ is the SET of 
SEMIPRIMES (i.e., Z-ALMOST PRIMES). 

see UZSO ALMOST PRIME, PRIME NUMBER, SEMIPRIME 

References 
Rivera, C. “Problems & Puzzles (Conjectures): Chen’s 

Conjecture.” http://uww.sci,net.mx/-crivera/ppp/ 
conj-002.htm. 

Chern Class 
A GADGET defined for COMPLEX VECTOR BUNDLES. 

The Chern classes of a COMPLEX MANIFOLD are the 
Chern classes of its TANGENT BUNDLE. The ith Chern 
class is an OBSTRUCTION to the existence of (n - i + 
1) everywhere COMPLEX linearly independent VECTOR 
FIELDS on that VECTOR BUNDLE. The ith Chern class 
is in the (2i)th cohomology group of the base SPACE. 

see UZSO OBSTRUCTION, PONTRYAGIN CLASS, STIEFEL- 
WH ITNEY CLASS 

Chern Number 
The Chern number is defined in terms of the CHERN 
CLASS of a MANIFOLD as follows. For any collection 
CHERN CLASSES such that their cup product has the 
same DIMENSION as the MANIFOLD, this cup product 
can be evaluated on the MANIFOLD% FUNDAMENTAL 
CLASS. The resulting number is called the Chern num- 
ber for that combination of Chern classes. The most 
important aspect of Chern numbers is that they are 
C~B~RDI~M invariant. 

see also PONTRYAGIN NUMBER, STIEFEL-WHITNEY 
NUMBER 
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Chernoff Face 
A way to display n variables on a 2-D surface. For in- 
stance, let II: be eyebrow slant, y be eye size, x be nose 
length, etc. 

References 
Gonick, L. and Smith, W. The Cartoon Guide to Statistics. 

New York: Harper Perennial, p. 212, 1993. 

Chess 
Chess is a game played on an 8x 8 board, called a CHESS- 
BOARD, of alternating black and white squares. Pieces 
with different types of allowed moves are placed on the 
board, a set of black pieces in the first two rows and 
a set of white pieces in the last two rows. The pieces 
are called the bishop (2)) king (l), knight (Z), pawn (8), 
queen (l), and rook (2). The object of the game is to 
capt we the opponent’s king. It is believed that chess 
was played in India as early as the sixth century AD. 

In a game of 40 moves, the number of possible board 
positions is at least 10120 according to Peterson (1996) l  

However, this value does not agree with the 104’ pos- 
sible positions given by Beeler et al. (1972, Item 95). 
This value was obtained by estimating the number of 
pawn positions (in the no-captures situation, this is 158), 
times all pieces in all positions, dividing by 2 for each 
of the (rook, knight) which are interchangeable, divid- 
ing by 2 for each pair of bishops (since half the posi- 
tions will have the bishops on the same color squares). 
There are more positions with one or two captures, since 
the pawns can then switch columns (Schroeppel 1996). 
Shannon (1950) gave the value 

64! 
p(4o) = 32!(8!)2(2!)6 = 1043m 

The number of chess games which end in exactly n plies 
(including games that mate in fewer than n plies) for 
n = 1, 2, 3, . - - are 20, 400, 8902, 197742, 4897256, 
119060679, 3195913043, . . . (K. Thompson, Sloane’s 
AOO7545). Rex Stout’s fictional detective Nero Wolfe 
quotes the number of possible games after ten moves as 
follows: “Wolfe grunted. One hundred and sixty-nine 
million, five hundred and eighteen thousand, eight hun- 
dred and twenty-nine followed by twenty-one ciphers. 
The number of ways the first ten moves, both sides, 
may be played” (Stout 1983). The number of chess 
positions after n moves for n = 1, 2, l  , . are 20, 400, 
5362, 71852, 809896?, 9132484?, . . . (Schwarzkopf 1994, 
Sloane’s AO19319). 

Cunningham (1889) incorrectly found 197,299 games 
and 71,782 positions after the fourth move. C. Flye 
St. Marie was the first to find the correct number of po- 
sitions after four moves: 71,852. Dawson (1946) gives 
the source as Intermediare des Mathematiques (1895), 
but K. Fabel writes that Flye St. Marie corrected the 
number 71,870 (which he found in 1895) to 71,852 in 

1903. The history of the determination of the chess se- 
quences is discussed in Schwarzkopf (1994). 

Two problems in recreational mathematics ask 

1. How many pieces of a given type can be placed on a 
CHESSBOARD without any two attacking. 

2. What is the smallest number of pieces needed to oc- 
cupy or attack every square. 

The answers are given in the following table (Madachy 
1979) l  

Piece Max. Min. 

bishops 14 8 
kings 16 9 
knights 32 12 
queens 8 5 
rooks 8 8 

see also BISHOPS PROBLEM, CHECKERBOARD,CHECK- 
ERS, FAIRY CHESS, Go, GOMORY'S THEOREM, HARD 
HEXAGON ENTROPY CONSTANT, KINGS PROBLEM, 
KNIGHT’S TOUR, MAGIC TOUR, QUEENS PROBLEM, 

ROOKS PROBLEM,TOUR 
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Stout, R. “‘Gambit.” In Seven Complete Nero Wolfe Novels. 
New York: Avenic Books, p. 475, 1983. 

Chessboard 

A board containing 8 x 8 squares alternating in color 
between black and white on which the game of CHESS is 
played. The checkerboard is identical to the chessboard 
except that chess’s black and white squares are colored 
red and white in CHECKERS. It is impossible to cover a 
chessboard from which two opposite corners have been 
removed with DOMINOES. 

see also CHECKERS, CHESS, DOMINO, GOMORY'S THE- 
OREM, WHEAT AND CHESSBOARD PROBLEM 

References 
Pappas, T. “The Checkerboard.” The Joy of Mathematics. 

San Carlos, CA: Wide World Publ./Tetra, pp. 136 and 232, 
1989, 

Chevalley Groups 
Finite SIMPLE GROUPS of LIE-TYPE. They include 
four families of linear SIMPLE GROUPS: PSL(n, q), 

PSU(n, q), PSp(2n, q>, or -=+, 4). 

see also TWISTED CHEVALLEY GROUPS 

References 
Wilson, R. A. “ATLAS of Finite Group Representation,” 

http://for *mat .bham.ac .uk/atlas#chev. 

C hevalley’s Theorem 
Let f(z) be a member of a FINITE FIELD 

F[a,22,... , zcn] and suppose f(O,O,. . l  ,O) = 0 and n 
is greater than the degree of f , then f has at least two 
zeros in A” (8’). 

References h(x) = Q(+, +x2), (2) 
Chevalley, C. “Dkmonstration d’une hypothese de M. Artin.” 

Abhand. Math. Sem. Hamburg 11, 73-75, 1936. 
Ireland, K. and Rosen, M. “Chevalley’s Theorem.” 510.2 in 

A Classical Introduction to Modern Number Theory, 2nd 
ed. New York: Springer-Verlag, pp. 143-144, 1990+ 

where Q is the REGULARIZED GAMMA FWNCTION. 

(3) 

Chevron 

A 6-POLYIAMOND. 

References 
Golomb, S. W+ Polyominoes: Puzzles, Patterns, Problems, 

and Packings, 2nd ed. Princeton, NJ: Princeton University 
Press, p. 92, 1994. 

Chi 

20: 

15: 

10 y 

r;- J 

1 2 3 4 5 

-5 
I 

-10 t 

-15 1 

Re[CoshIntegral z] ICoshIntegral z] 

I ’ Chi(z) = y + lnz + 
cosht - I 

dt 7 
0 

t 

where y is the EULER-MASCHERONI CONSTANT. The 
function is given by the Muthematicu@ (Wolfram Re- 
search, Champaign, IL) command CoshIntegral CzJ. 

see also COSINE INTEGRAL, SHI, SINE INTEGRAL 
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Abramowitz, M. and Stegun, C. A. (Eds.). ‘&Sine and Co- 

sine Integrals.” 55.2 in Handbook of Mathematical Func- 
tions with Formulas, Graphs, and Mathematical Tables, 
9th printing. New York: Dover, pp. 231-233, 1972. 

Chi Distribution 
The probability density function and cumulative distri- 
bution function are 

EL(x) = 
21--n/2xn-le-z2/2 

r( $4 
(1) 

2 _ 2[r( 3431 + in) - r’($(n + I))] 
0 - 

F2( in) 
(4) 

71 = 

2r3($(n + 1)) - 3r(+)r( i(n + i))r(i + $73) 

[r(+b)r(l + in) - r2(+(n + 1))]3/2 
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+ [r(in>r(l+ in)- r2(+(n+1))]3/2 (5) 

72 = 
-3r4($(n+ 1)) +6r(in) +r2(i(n+ l))r(l+ in) 

n ;n>rc F) - r2(+ + I))]z 

+ 
-4r2(+)r(~(n+1))r(~)+r3(+)17(~) 

P? +w( F) - ry++ i))p ’ @) 

where p is the MEAN, o2 the VARIANCE, 71 the SKEW- 
NESS, and 72 the KURTOSIS. For n = 1, the x distribu- 
tion is a HALF-NORMAL DISTRIBUTION with 0 = 1. For 
n = 2, it is a RAYLEIGH DISTRIBUTION with 0 = 1. 

see UZSO CHI-SQUARED DISTRIBUTION, HALF-NORMAL 
DISTRIBUTION, RAYLEIGH DISTRIBUTION 

Chi Inequality 
The inequality 

(j + l)Uj + G 2 (j + l>i, 

which is satisfied by all A-SEQUENCES. 

References 
Levine, E. and O’Sullivan, J. “An Upper Estimate for the 

Reciprocal Sum of a Sum-Free Sequence,” Acta Arith. 34, 
9-24, 1977. 

Chi-Squared Distribution 
A x2 distribution is 8 GAMMA DISTRIBUTION with t9 = 2 
and a E r/2, where r is the number of DEGREES OF 
FREEDOM. If Yi have NORMAL INDEPENDENT distribu- 
tions with MEAN 0 and VARIANCE 1, then 

is distributed as x2 with n DEGREES OF FREEDOM. If 
xi2 are independently distributed according to a x2 dis- 
tribution with n1, n2, . . . , nk DEGREES 0~ FREEDOM, 
then 

k 

IE Xj2 (2) 
j=l 

is distributed according to x2 with n E & nj DE- 
GREES OF FREEDOM. 

{ 

,r/2--1,-x/2 

EL(x) = r(+T)2+ 
for 0 < x < 00 - 

(3) 

0 for x < 0. 

The cumulative distribution function is then 

aL(x2) = s x2 t 42-l ct” dt 

0 r($r)2+ 

- r(& $x2> - 
r($> 

= P(+, ix”), (4 

where P(a, Z) is a REGULARIZED GAMMA FUNCTION. 
The CONFIDENCE INTERVALS can be found by finding 
the value of 2 for which D, (x) equals a given value. 
The MOMENT-GENERATING FUNCTION ofthe x2 distri- 
bution is 

M(t) = (1 - 2t)-“2 (5) 
R(t) E In M(t) = - +7+ ln(1 - 2t) (6) 

so 

R’ w 
r - -- 

l- 2t 
2r 

R”(t) = (1-T 

(7) 

(8) 

p = R’(O) = T (9) 
g2 = R”(0) = 2r (10) 

(11) 

12 
y2=7 (12) 

The nth MOMENT about zero for a distribution with n 
DEGREES OF FREEDOM is 

d-L = 2”r(n + $1 
r(;T) 

=r(r+2)*++2n-2), (13) 

and the moments about the MEAN are 

P2 = 2r (14) 

p3 = 8r (15) 

p4 = 12n2 + 48n. (16) 

The nth CUMULANT is 

&n = anr(n)($) = 2”-‘(n - l)!r. (17) 

The MOMENT-GENERATING FUNCTION is 

1 
-r/2 

. (18) 

As r -+ 00, 

lim M(t) = et2/‘, (19) r--+00 

so for large T, 

(20) 
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is approximately a GAUSSIAN DISTRIBUTION with 
MEAN 6 and VARIANCE o2 = 1. Fisher showed that 

(21) 

is an improved estimate for moderate r. Wilson and 
Wilferty showed that 

x2 
(> 

l/3 
T (22) 

is a nearly GAUSSIAN DISTRIBUTION with MEAN p = 
1 - 2/(9r) and VARIANCE o2 = 2/(9r). 

In a GAUSSIAN DISTRIBUTION, 

P(x) dx = -?- 
,a” 

-(z--C1)2/2a2 dx 
1 

let 
z = (x - p)2/a2. 

Then 

so 

But 

2(x - 4 dz = - 
u2 

dx = ii@ dx 
u 

dx = zdz. 
2G 

P(z) dz = 2P(x) dx, 

so 

1 
P(x) dx = 2 ~ 

1 

afie 
-d2 & = e-z/2 dz 

a+ 

This is a x2 distribution with T = 1, since 

P(z) dz = 
g/2-lee/2 

dz = 
x-l/2e--1/2 

I?( $)21/Z 6 
dz 

7T 

(23) 

(24) 

(25) 

(26) 

(27) 

(28) 

(29) 

If Xi are independent variates with a NORMAL DISTRI- 
BUTION having MEANS pi and VARIANCES oi2 for i = 1, 

’  l  ’  ?  
n, then 

n 

12- 
5x = x 

(Xi - pi)2 

2oi2 (30) 
i=l 

is a GAMMA DISTRIBUTION variate with QI = n/Z, 

The noncentral chi-squared distribution is given by 

P(x) = 2-ni2e -(X+z)/2xn/2-l F(fn, $x), (32) 

where 

F(a, x) = 
oE(;a;z) 

r( > a ' 
(33) 

OF1 isthe CONFLUENT HYPERGEOMETRICLIMITFUNC- 
TION and r is the GAMMA FUNCTION. The MEAN, 
VARIANCE, SKEWNESS, and KURTOSIS are 

12(4A + n) 

” = (2X + n)2 l  

(36) 

(37) 

see also CHI DISTRIBUTION, SNEDECOR’S F-DISTRIBU- 
TION 
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Chi-Squared Test 
Let the probabilities of various classes in a distribution 

be PI, PZ, . . . y pk. The expected frequency 1 

k 

2 
x9 = 

>: 

( rni - NP~)~ 

i=l 
NPi 

is a measure of the deviation of a sample from expecta- 
tion. Karl Pearson proved that the limiting distribution 
of xS2 is x2 (Kenney and Keeping 1951, pp. 114-116). 

k-l 
2 > 

k-3 =1--I &7 2 
( i 

7 

where 1(x, n) is PEARSON'S FUNCTION. There are some 
subtleties involved in using the x2 test to fit curves (Ken- 
ney and Keeping 1951, pp. 118-119). 

When fitting a one-parameter solution using x2, the 
best-fit parameter value can be found by calculating x2 
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at three points, plotting against the parameter values of 
these points, then finding the minimum of a PARABOLA 
fit through the points (Cuzzi 1972, pp. 162-168). 

References 
Cuzzi, J. The Subsurface Nature of Mercury and Mars from 

Thermal Microwave Emission. Ph.D. Thesis. Pasadena, 
CA: California Institute of Technology, 1972. 
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Child 
A node which is one EDGE further away from a given 
EDGE ina ROOTED TREE. 

see also ROOT (TREE), ROOTED TREE, SIBLING 

Chinese Hypothesis 
A PRIME p always satisfies the condition that 2p - 2 
is divisible by p. However, this condition is not true 
exckusively for PRIME (e.g., 2341 - 2 is divisible by 341 = 
11-31). COMPOSITE NUMBERS n (such as 341) for which 
2n - 2 is divisible by n are called POULET NUMBERS, 
and are a special class of FERMAT PSEUDOPRIMES. The 
Chinese hypothesis is a special case of FERMAT'S LITTLE 
THEOREM. 

References 
Shanks, D. Solved and Unsolved Problems in Number Theory, 

4th ed. New York: Chelsea, pp, 19-20, 1993. 

Chinese Remainder Theorem 
Let T and s be POSITIVE INTEGERS which are RELA- 
TIVELY PRIME and let a and b be any two INTEGERS. 
Then there is an INTEGER IV such that 

N s a (mod r) (1) 

and References 
N G b (mod s) . (2) Nash, J. C. “The Choleski Decomposition.” Ch. 7 in Com- 

pact Numerical Methods for Computers: Linear Algebra 
and Function Minimisation, 2nd ed. Bristol, England: 
Adam Hilger, pp. 84-93, 1990. 

Moreover, N is uniquely determined module TS. An 
equivalent statement is that if (r, s) = 1, then every 
pair of RESIDUE CLASSES modulo T and s corresponds 
to a simple RESIDUE CLASS modulo TS. 

The theorem can also be generalized 
a set of simul taneous CONGRUENCES 

x E ai (mod mi) 

as follows. Given 

(3) 

fori= 1, . . . . T and for which the rni are pairwise RELA- 
TIVELY PRIME, the solution of the set of CONGRUENCES 
is 

ikl 
x=a&-+...+a,&- 

ml 
M (mod M), 
m, 

(4) 

where 

and the bi are determined from 

b,F 
mi 

= 1 (mod mi). (6) 
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Chinese Rings 

see BAGUENAUDIER 

Chiral 
Having forms of different HANDEDNESS which are not 
mirror-symmetric. 

see also DISYMMETRIC, ENA 
MIRROR IMAGE,REFLEXIBLE 

Choice Axiom 

see AXIOM OF CHOICE 

Choice Number 

see COMBINATION 

.NTIOMER, HANDEDNESS, 

Cholesky Decomposition 
Given a symmetric POSITIVE DEFINITE MATRIX A, the 
Cholesky decomposition is an upper TRIANGULAR MA- 
TRIX U such that 

A = UTU. 

see ah LU DECOMPOSITION, QR DECOMPOSITION 

Press, Wm H.; Flannery, B. P.; Teukolsky, S. A.; and Vetter- 
ling, W. T. “Cholesky Decomposition.” 52.9 in Numerical 
Recipes in FORTRAN: The Art of Scientific Computing, 
2nd ed. Cambridge, England: Cambridge University Press, 
pp. 89-91, 1992. 

Choose 
An alternative term for a BINOMIAL COEFFICIENT, in 
which (z) is read as “n choose 3c.” R. K. Guy suggested 
this pronunciation around 1950, when the notations “CT 
and & were commonly used. Leo Moser liked the pro- 
nunciation and he and others spread it around. It got 
the final seal of approval from Donald Knuth when he 
incorporated it into the TeX mathematical typesetting 
language as {n\choose k}. 
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Choquet Theory 
Erd6s proved that there exist at least one PRIME of the 
form 4k + 1 and at least one PRIME of the form 4k + 3 
between n and 2n for all n > 6. 

see also EQUINUMEROUS, PRIME NUMBER 

Chord 

The LINE SEGMENT joining two points on a curve. The 
term is often used to describe a LINE SEGMENT whose 
ends lie on a CIRCLE. In the above figure, T is the RA- 
DIUS of the CIRCLE, a is called the APOTHEM, and s the 

The shaded region in the left figure is called a SECTOR, 
and the shaded region in the right figure is called a SEG- 
MENT. 

All ANGLES inscribed in a CIRCLE and subtended by 
the same chord are equal. The converse is also true: 
The LOCUS of all points from which a given segment 
subtends equal ANGLES is a CIRCLE. 

Let a CIRCLE of RADIUS R have a CHORD at distance T. 
The AREA enclosed by the CHORD, shown as the shaded 
region in the above figure, is then 

s dR2 --TV 

A=2 X(Y) dY- (1) 
0 

But 
y2 -I- (r + x)” = R2, (2) 

so 
x(y) = Jm - T (3) 

s 

dR2-4 

A=2 (JR2_yz -@Y 
0 

- - ydm + R2 tan-’ 

1 
dR2 -r2 

- 2ry 

1 0 

=rJR2_rZ+R2tan-1 f 2-1 -~T&FZ I) 1 
R 2 

=R2ta8 - -1 -rdm. 
K) I 

(4 r 

Checking the limits, when r = R, A = 0 and when 
T + 0, 

A = $R2, (5) 

see also ANNULUS, APOTHEM, BERTRAND'S PROBLEM, 
CONCENTRIC CIRCLES, RADIUS, SAGITTA, SECTOR, 
SEGMENT 

Chordal 

see RADICAL AXIS 

Chordal Theorem 

The LOCUS of the point at which two given CIRCLES 
possess the same POWER is a straight line PERPENDIC- 
ULAR to the linejoiningthe MIDPOINTS of the CIRCLE 
and is known as the chordal (or RADICAL AXIS) of the 
two CIRCLES. 

References 
Dijrrie, H. 100 Great Problems of Elementary Mathematics: 
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Chow Coordinates 
A generalization of GRASSMANN COORDINATES to m-D 
varieties of degree d in P”, where Pn is an n-D pro- 
jective space. To define the Chow coordinates, take 
the intersection of a m-D VARIETY 2 of degree d by 
an (n - m)-I3 SUBSPACE U of Pn. Then the coordi- 
nates of the d points of intersection are algebraic func- 
tions of the GRASSMANN COORDINATES of U, and by 
taking a symmetric function of the algebraic functions, 
a hHOMOGENEous POLYNOMIAL known as the Chow 
form of 2 is obtained. The Chow coordinates are then 
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the COEFFICIENTS of the Chow form. Chow coordinates 
can generate the smallest field of definition of a divisor. 

References 
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Chow Ring 
The intersection product for classes of rational equiva- 
lence between cycles on an ALGEBRAIC VARIETY. 

References 
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Wilson, W. S.; Chern, S. S.; Abhyankar, S. S.; Lang, S.; and 

Igusa, J.-I. “Wei-Liang Chow.” Not. Amer. Math. Sot. 
43, 1117-1124, 1996. 

Chow Variety 
The set (&-,@ of all m-D varieties of degree d in an n-D 
projective space P” into an M-D projective space PM. 

References 
Wilson, W. S.; Chern, S. S.; Abhyankar, S. S.; Lang, S.; and 
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Christoffel-Darboux Formula 
For three consecutive ORTHOGONAL POLYNOMIALS 

pn(x) = (Anx + &&n-lx - Cnpn-z(x) (1) 

for 7x = 2, 3, . . . , where A, > 0, B,, and C, > 0 are 
constants. Denoting the highest COEFFICIENT of pn(x) 

bY kn7 

A, = 5 (2) 
n 1 

A, h&-&-2 
c,=._=- 

n 1 k 12’ ?I- 
(3) 

Then 

P&)PO(Y) + ..a + Pdx>PdY) 

- - 
k 

kn Pn+l(x>P&> -P&)P~+~Y) c4) 
l  

n+l  X-Y 

In the special case of x = y, (4) gives 

[po(x>12 + l  l  ’  + LPn(x>12 

- 
- +Ph+l(z)P?%(z) - PLd4Pn+l(41. (5) 

nfl 

References 

Christoffel Number 

Christoffel-Darboux Identity 

O” &dx)b(Y) 
IE 

@m+dX)#&) - bdx>b+dY> - 
Yk - am%& - Y)7 

where #k(x) are ORTHOGONAL 

WEIGHTING FUNCTION W(x), 

Trn E 

s 

[4m(X)]2W ( 

Ak+l 

4 dx, (2) 

(3) ak = - 
Al, 

where Ak is the COEFFICIENT of X' in &(x). 

(1) 
POLYNOMIALS with 

SCeterences 
Hildebrand, F. B. Introduction to Numerical Analysis. New 
. York: McGraw-Hill, p+ 322, 1956. 

Christoffel Formula 

Let {P&)1 b e orthogonal POLYNOMIALS associated 
with the distribution da(x) on the interval [a, b]. Also 
let 

p = c(x  - x1)(x - x2) l  l  l  (x - x1) 

(for c # 0) be a POLYNOMIAL of order 2 which is 
NONNEGATIVE in this interval. Then the orthogonal 
POLYNOMIALS {q(x)} associated with the distribution 
p(x) da(x) can be represented in terms of the POLYNO- 

MIALS J&(X) as 

Pn(X) Pn+&> * l  ’ P,+W 
pn(Xl) pn+l(Xl) ’  ’  l  Pn+l (Xl) 

P(X>Gdx> = . . l  
l  

. 

. . . . 
. 

Pn[Xl) PTX+;(~~) l  *’ 

. 

Pn+l (xl) 

In the case of a zero xk of multiplicity nz > 1, we replace 
the corresponding rows by the derivatives of order 0, 1, 
2, . . . . m- l of the POLYNOMIALS pn(xi), . . . , p,+l(xi) 

atx=xk. 
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Christoffel Number 
One of the quantities Xi appearing in the GAUSS-JACOBI 

MECHANICAL QUADRATURE. They satisfy 

s b 

A1 + x2 + . l  . + A, = da(x) = a(b) - a(a) (1) 
a 

(Eds.). Handbook 
nmulas, Graphs, and 

New York: Dover, 

ed. Providence, RI: 
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and are given by The Christoffel symbols are given in terms of the first 
FUNDAMENTAL FORM E,F,and Gby 

d44 (2) GE, - 2FF, + FE, 

2(EG - F2) 

GEv - FG, 

(3) 

(3) (4) 2(EG - F2) 

2GFv - GG, - FG, 

2(EG - F2) 

2EF, - EE, - FE, 
2(EG - F2) 

(4 (5) 

(6) 
where k, is the higher COEFFICIENT of pn(x)* EG, - FE, 

(7) 
References 
Szeg6, G. Orthogonal Polynomials, 4th ed. Providence, RI: 

Amer. Math. Sot., pp. 47-48, 1975. 

2(EG - F2) 

EG, - 2FF, + FG, 

2(EG - F2) ’ (8) 

Christoffel Symbol of the First Kind 
Variously denoted [ij, k], [i Ic j] , rabc, or {ab, c}* 

and r& = IT:, and r& = rT2. If F = 0, the Christoffel 
symbols of the second kind simplify to 

where gmk is the METRIC TENSOR and 

w 
(2) 

(12) 
But 

= [ik, j] + [jk, i], 

(Gray 1993). 
so 

[& c] = f (gac,b + gbc,a - gab& (4) 
The following relationships hold between the Christoffel 
symbols of the second kind and coefficients of the first 
FUNDAMENTAL FORM, 

References 
A&en, G. Mathematical Methods for Physicists, 3rd ed. Or- 

lando, FL: Academic Press, pp. 160-167, 1985. &E+&F= ;E, 

rt2E + I’T2F = +Ev 

ri2E + ri2F = Fv - ;G, 

rilF + r&G = Fu - +Ev 

rt2F + rt2G = iG, 

lYi2F + l?;,G = ;G, 

r,‘, + rf, = (In JEG-F2), 

ri, + ri2 = (In JEG-FZ), 

(15) 
(16) 
(17) 
(18) 
(19) 
(20) 

(21) 

(22) 

Christoffel Symbol of the Second Kind 
Variously denoted { i m j } or rg. 

d& 
= r; = Z” - 7 = gkm[ij, k] 

&P 

1 km 
= p (1) 

where r; is a CONNECTION COEFFICIENT and {bc,d} 
is a CHRISTOFFEL SYMBOL OF THE FIRST KIND. 

(Gray 1993). 

For a surface given in MONGE'S FORM z = F(x, y), 

= gcd{bc, d}* (2) 
(23) 

zijxk 

see UZSO CHRISTOFFEL SYMBOL OF THE FIRST KIND, 
CONNECTION COEFFICIENT, GAUSS EQUATIONS 
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A Chu space is a binary relation from a SET A to an 
antiset X which is defined as a SET which transforms 
via converse functions. 
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Chromatic Number 
The fewest number of colors r(G) necessary to color a 
GRAPH or surface. The chromatic number of a surface 
of GENUS g is given by the HEAWOOD CONJECTURE, 

Chu-Vandermonde Identity 

00 /\ 

(x + a)n = x (;) (a)k(x)n-k 

k=O 

where (L) is a BINOMIAL COEFFICIENT and (a), E 
a@-1)+2- n+ 1) isthe POCHHAMMER SYMBOL. A 
special case gives the identity where Lxj is the FLOOR FUNCTION. y(g) is sometimes 

also denoted x(g). For g = 0, 1, . . . , the first few values 
of x(g) are 4, 7, 8, 9, 10, 11, 12, 12, 13, 13, 14, 15, 15, 
16, . . . (Sloane’s AOOO934). “YJ ($ (;> = (-:“)* 
The fewest number of colors necessary to color each 
EDGE of a GRAPH so that no two EDGES incident on the 
same VERTEX have the same color is called the “EDGE 
chromatic number.” 

see also BRELAZ'S HEURISTIC ALGORITHM, CHRO- 
MATIC POLYNOMIAL, EDGE-COLORING, EULER CHAR- 
ACTERISTIC, HEAWOOD CONJECTURE, MAP COLOR- 
ING,TORUS COLORING 

see also BINOMIAL THEOREM,~MBRAL CALCULUS 
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ley, MA: A. K. Peters, pp. 130 and 181-182, 1996. 

Church’s Theorem 
No decision procedure exists for ARITHMETIC. 
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Chartrand, G. “A Scheduling Problem: An Introduction to 

Chromatic Numbers.” $9.2 in IntrodzLctory Graph Theory. 
New York: Dover, pp. 202-209, 1985. 

Eppstein, D. ‘&The Chromatic Number of the Plane.” 
http://uww S its , uci . edu / c~ eppstein / junkyard/ 
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Sloane, N. J. A. Sequence A000934/M3292 in “An On-Line 

Church’s Thesis 

see CHURCH-TURING THESIS 

Church-Turing Thesis 
The TURING MACHINE concept defines what is meant 
mathematically by an algorithmic procedure. Stated 
another way, a function f is effectively COMPUTABLE 
IFF it can be computed by a TURING MACHINE. 

Version of the Encyclopedia of Integer Sequences.” 

Chromatic Polynomial 
A POLYNOMIAL P(z) of a graph g which counts the 
number of ways to color g with exactly z colors. Tutte 
(1970) showed that the chromatic POLYNOMIALS of pla- 
nar triangular graphs possess a ROOT close to +2 = 
2.618033.. ‘, where # is the GOLDEN MEAN. More pre- 
cisely, if n is the number of VERTICES of G, then 

see U~SO ALGORITHM, COMPUTABLE FUN 
ING MACHINE 

CTION , TUR- 
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PG($“) 5 #5-n C hv6t al’s Art Gallery Theorem 

see ART GALLERY THEOREM 
(Le Lionnais 1983), 
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p. 46, 1983. 
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Chv6tal’s Theorem 
Let the GRAPH G have VERTICES with VALENCES dl 5 
l  l  l  < d,. - If for every i < n/2 we have either di 2 i + 1 
or d,-i 2 n - i, then the GRAPH is HAMILTONIAN. 

the 

Chu Identity 

see COSINE INTEGRAL seeCH~-VANDERMONDE IDENTITY 



Ci 

. 
Cl 

see COSINE INTEGRAL 

Cigarettes 
It is possible to place 7 cigarettes in such a way that 
each touches the other if Z/d > 7fi/2 (Gardner 1959, 
p. 115). 
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Gardner, M. The Scientific American Book of Mathematical 

Puzzles & Diversions. New York: Simon and Schuster, 
1959. 

Cin 

see COSINE INTEGRAL 

Circle 

A circle is the set of points equidistant from a given 
point 0. The distance T from the CENTER is called the 
RADIUS, and the point 0 is called the CENTER. Twice 
the RADIUS is known as the DIAMETER d = 2~. The 
PERIMETER C of a circle is called the CIRCUMFERENCE, 
and is given by 

C = rd = 27~. (1) 

The circle is a CONIC SECTION obtained by the intersec- 
tion of a CONE with a PLANE PERPENDICULAR to the 
CONE’S symmetry axis. A circle is the degenerate case 
of an ELLIPSE with equal semimajor and semiminor axes 
(i.e., with ECCENTRICITY 0). The interior of a circle is 
called a DISK. The generalization of a circle to 3-D is 

called a SPHERE, and to n-D for n 2 4 a HYPERSPHERE. 

The region of intersection of two circles is called a LENS. 
The region of intersection of three symmetrically placed 
circles (as in a VENN DIAGRAM), in the special case of 
the center of each being located at the intersection of 
the other two, is called a REULEAUX TRIANGLE. 

The parametric equations for a circle of RADIUS a are 

x = acost (2) 
y = asin t. (3) 

For a body moving uniformly around the circle, 

x1 = -asint 

y’ = acost, 

(4) 

(5) 

and 

xl1 = -acost (6) 
y" = -a sin t. (7) 

Circle 247 

When normalized, the former gives the equation for the 
unit TANGENT VECTOR of the circle, (- sin t, cost). The 
circle can also be parameterized by the rational func- 
tions 

1 - t2 
x = t(1 + t) (8) 

2t y=----- 
1+ t2 ’ (9) 

but an ELLIPTIC CURVE cannot. The following plots 
show a sequence of NORMAL and TANGENT VECTORS 
for the circle. 

u 

:_________ 

m  

t 

The ARC LENGTH S, CURVATURE K, and TANGENTIAL 
ANGLE 4 of the circle are 

s(t)= ds= 
s s 

dmdt=.t (10) 

xlyff - yy 1 
@) = @t2 + yt2)3/2 = ; (11) 

4(t) 
- - 

s 

ix(t)dt = 4. 
a (12) 

The CES~RO EQUATION is 

1 
K= -. 

a 
(13) 

In POLAR COORDINATES, the equation of the circle has 
a particularly simple form. 

r=a 

is a circle of RADIUS a centered at ORIGIN, 

T = 2acosO 

is circle of RADIUS a centered at (a, 0), and 

r = 2asin8 
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is a circle of RADIUS a centered on (0, a). In CARTE- 
SIAN COORDINATES, the equation of a circle of RADIUS 
a centered on (~0, ~0) is 

Four or more points which lie on a circle are said to be 
CONCYCLIC. Three points are trivially concyclic since 
three noncollinear points determine a circle. 

The CIRCUMFERENCE-to-DIAMETER ratio C/d for a cir- 
cle is constant as the size of the circle is changed (as 
it must be since scaling a plane figure by a factor s in- 
creases its PERIMETER by s), and d also scales by s. This 
ratio is denoted 7r (PI), and has been proved TRANSCEN- 
DENTAL. With d the DIAMETER and T the RADIUS, 

(x - xo)2 + (y - ya)2 = u2* (17) 

In PEDAL COORDINATES withthe PEDAL POINT at the 
center, the equation is 

pa = T2. (18) 

C = rd = 27~. (30) The circle having PI P2 as a diameter is given by 

( x-x1)(x -x2)+(y-y1)(y- y2) = 0. (19) Knowing C/d, we can then compute the AREA of the 
circle either geometrically or using CALCULUS. From 
CALCULUS, The equation of a circle passing through the three points 

(xi,yi) for i = 1, 2, 3 (the CIRCUMCIRCLE of the TRI- 
ANGLE determined by the points) is 

27r 

s s 

r 

A= d6 rdr = (27r)(;r2) = m2. (31) 
0 0 

I x2 + y2 x Y 11 
Xl2 + Y12 
x22 + Y22 

Xl y1 1 =o 

x2 y2 1 ’ 
(20) 

xs2 + Y32 x3 Y3 1 

Now for a few geometrical derivations. Using concentric 
strips, we have 

The CENTER and RADIUS of this circle can be identified 
by assigning coefficients of a QUADRATIC CURVE 

ax2 + cy2 + dx + ey + f = 0, (21) 

As the number of 
with a TRIANG LE 

strips increases to infinity, we are left where a = c and b 
C~MPLETIN G THE 

- - 

S 
0 (since there is no x$~ cross term). 

on the right, so QUARE gives 

a(x+$)2+a(y+$)2+f-~=~m (22) A= i(2m)r = m2. (32) 

This derivation was first recorded by Archimedes in 
Measurement of a Circle (ca. 225 BC). If we cut the 
circle instead into wedges, 

The CENTER can then be identified as 

d 

x”=-tG 
e 

yo=-2a 

and the RADIUS as 

(23) 

(24) 

(25) 

(26) 

(27) 

(28) 

As the number of wedges 
left with a RECTANGLE, so 

increases to infinity, we are 

Xl2 +Y12 Yl l 

d=- ~2~+y2~ y2 1 

x32 +y32 y3 1 

Xl2 +y12 Xl 1 

e= x22 +y22 x2 1 
x32 + y32 x3 1 

Xl2 + Y12 Xl yr 

f - - x22 + Y22 - x2 Y2 

x32 +Y32 x3 Y3 

A = (m)r = m2. (3% 

~~~&OARC,BLASCHKE'S THEOREM,BRAHMAGUPTA'S 
FORMULA, BROCARD CIRCLE, CASEY'S THEOREM, 
CHORD, CIRCUMCIRCLE, CIRCUMFERENCE, Cm- 
FORD'SCIRCLETHEOREM,CLOSEDDISK,CONCENTRIC 
CIRCLES, COSINE CIRCLE, COTES CIRCLE PROPERTY, 
DIAMETER, DISK, DROZ-FARNY CIRCLES, EULER TRI- 
ANGLEFORMULA,EXCIRCLE,FEUERBACH'S THEOREM, . (29) 
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FIVE DISKS PROBLEM, FLOWER OF LIFE, FORD CIR- 
CLE, FUHRMANN CIRCLE, GER~GORIN CIRCLE THEO- 

REM, HOPF CIRCLE, INCIRCLE, INVERSIVE DISTANCE, 
JOHNSON CIRCLE, KINNEY'S SET, LEMOINE CIRCLE, 
LENS, MAGIC CIRCLES, MALFATTI CIRCLES, MCCAY 
CIRCLE, MIDCIRCLE, MONGE'S THEOREM, MOSER'S 
CIRCLE PROBLEM, NEUBERG CIRCLES, NINE-POINT 
CIRCLE, OPEN DISK, P-CIRCLE, PARRY CIRCLE, PI, 
POLAR CIRCLE, POWER (CIRCLE), PRIME CIRCLE, 
PTOLEMY'S THEOREM, PURSER'S THEOREM, RADI- 
CAL AXIS, RADIUS, REULEAUX TRIANGLE, SEED OF 

LIFE, SEIFERT CIRCLE, SEMICIRCLE, SODDY CIRCLES, 
SPHERE, TAYLOR CIRCLE, TRIANGLE INSCRIBING IN 

A CIRCLE, TRIPLICATE-RATIO CIRCLE, TUCKER CIR- 
CLES, UNIT CIRCLE, VENN DIAGRAM, VILLARCEAU 
CIRCLES, YIN-YANG 
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Circles-and-Squares Fractal 

A FRACTAL produced by iteration of the equation 

&2+1= &I 2 (mod m) 

which results in a MBIRi-like pattern. 

see also FRACTAL, MQ)IR~ PATTERN 

Circle Caustic 
Consider a point light source located at a point (p, 0). 
The CATACAUSTIC of a unit CIRCLE for the light at p = 
00 is the NEPHROID 

x= i[3 cos t - cos(3t)] (1) 

y = +[3sint - sin(3t)l. (2) 

The CATACAUSTIC for the light at a finite distance p > 1 
is the curve 

II:= 
p(1 - 3p cos t + 2/L cos3 t) 

-(1+ 2/G) +3pcost 

Y= 
2~~ sin3 t 

1+2/.? - 3pcost’ 

(3) 

(4) 

andforthe light 011 the CIRCUMFERENCE ofthe CIRCLE 
P = 1 is the CARDXOID 

xx; cost(1 + cost) - + (5) 

y = Tj sint(l+ cost). (6) 

If the point is inside the circle, the catacaustic is a dis- 
continuous two-part curve. These four cases are illus- 
trated below. 

The CATACAUSTIC for PARALLEL rayscrossinga CIRCLE 
is a CARDIOID. 

see also CATACAUSTIC, CAUSTIC 

Circle-Circle Intersection 

Let two CIRCLES of RADII R and T and centered at (0,O) 
and (d, 0) intersect in a LENS-shaped region. The equa- 
tions of the two circles are 

x2 + y2 = R2 
(x - d)2 + y2 = r2. 

(1) 
(2) 
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Combining (1) and (2) gives 

(x - d)2 + (R2 - x2) = r2. (3) 

Multiplying through and rearranging gives 

The limiting cases of this expression can be checked to 
give 0 when d = R + T and 

A = 2R2 cos-’ (&) - +dJ4Rz-dz (12) 

= 2A(;d, R) (13) 

x2 - 2dx + d2 -x2 =T2 -R2. (4 
when r = R, as expected. In order for half the area of 

Solving for 2 results in 
two UNIT DISKS (R = 1) to overlap, set A = 7rR2/2 = 
r/2 in the above equation 

d2 - r2+R2 
x= 

2d ’ (5) ;TT = 2cos-‘(id) - ;dJ4-dZ (14 

The line connecting the cusps of the LENS therefore has 
half-length given by plugging z back in to obtain 

and solve numerically, yielding d ==: 0.807946. 

see ah LENS, SEGMENT, SPHERE-SPHERE INTERSEC- 
TION 

d2 - r2 + R2 

> 

2 

y2 = R2 - 22 = R2 - 
2d 

4d2R2 - (d2 - r2 + R2)2 - - 
4d2 

1 

giving a length of 

(6) 

Circle Cutting 

0 
2 4 7 11 

a=- ;&d2R2 - (d2 - ~~ + R2)2 ’ Determining the maximum number of pieces in which 

= ;[(-d+ 

it is possible to divide a CIRCLE for a given number of 

T - R)(-d - r + R) cuts is called the circle cutting, or sometimes PANCAKE 
CUTTING, problem. The minimum number is always 

x [(-d + T + R)(d + T + R)]‘/“. (7) n + 1, where n is the number of cuts, and it is always 
possible to obtain any number of pieces between the 

This same formulation applies directly to the SPHERE- minimum and maximum. The first cut creates 2 regions, 

SPHERE INTERSECTION problem. and the nth cut creates n new regions, so 

To find the AREA of the asymmetric “LENS” in which 
the CIRCLES intersect, simply use the formula for the 
circular SEGMENT of radius R’and triangular height d’ 

A(R’,d’) = Rt2 cos-l (8) Therefore, 

f(l) = 2 

f(2) = 2-t f(l) 

f( 1 n = n+ f(n - 1) 

(1) 
(2) 
(3) 

twice, one for each half of the “LENS." Noting that the 
heights of the two segment triangles are 

dl=x= 
d2 - r2+R2 

2d 

d2=d-x= 
d2 + r2 - R2 

2d . 

(9) 

(10) 

The result is 

A = A(Rd) + A(R2,dz) 

= T2 cos 
sl 

( 

d2 + r2 - R2 

2dr > 

+ R2 cos-1 
d2 + R2 - r2 

2dR > 
1 -- 
2 J(d - T - R)(d + r - R)(d - T + R)(d + T + R). 

(11) 

f( > n = n + [(n - 1) + f (n - 2)] 

=n+(n-l)+... -I- 2 + f(l) = &(l) 
k=2 

n 

- - 
x 

k - 1+ f(1) = +(n+ 1) - 1+ 2 

k=l 

= i(n2+n+2). (4) 

Evaluating for n = 1, 2, . . . gives 2, 4, 7, 11, 16, 22, . . . 
(Sloane’s AOO0124) l  

1 2 4 8 

A related problem, sometimes called MOSER'S CIRCLE 
PROBLEM, is to find the number of pieces into which 
a CIRCLE is divided if n points on its CIRCUMFERENCE 
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are joined by CHORDS with no three CONCURRENT. The 
answer is 

(5) 

- &(n4 - 6n3 + 23n2 - 18n + 24), - (6) 

(Yaglom and Yaglom 1987, Guy 1988, Conway and Guy 
1996, Noy 1996), where (z) is a BINOMIAL COEFFI- 
CIENT. The first few values are 1, 2, 4, 8, 16, 31, 57, 
99, 163, 256, . . . (Sloane’s AO00127). This sequence 
and problem are an example of the danger in making 
assumptions based on limited trials. While the series 
starts off like 2n-1, it begins differing from this GEO- 
METRIC SERIES at n = 6. 

see also CAKE CUTTING, CYLINDER CUTTING, HAM 
SANDWICH THEOREM, PANCAKE THEOREM, PIZZA 
THEOREM,~QUARE CUTTING,TORUS CUTTING 
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Circle Evolute 

x = cost x’ = -sini! xl1 = -cost 

y=sint y’=cost y” = - sin t, 

so the RADIUS OF CURVATURE is 

R = (xl2 + y'2)3/2 

ylxl - xl'y' 

(sin2 t + ~0s’ t)3/2 - - - 1, 
(-sint)(-sint) - (-cost)cost - 

and the TANGENT VECTOR is 

Therefore, 

cos~=~~ji:= -sint 

sin7G.f =cos& 

t(t) = x - Rsin7 = cost - 1 xost = 0 

q(t)=y+Rcos~=sint+l*(-sint)=O 

(1) 

(2) 

(3) 

(4) 

(5) 
(6) 

(7) 
(8) 

and the EVOLUTE degenerates to a POINT at the ORI- 
GIN. 

see also CIRCLE INVOLUTE 
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Circle Inscribing 
If T is the RADIUS of a CIRCLE inscribed in a RIGHT 
TRIANGLE with sides a and b and HYPOTENUSE c, then 

T = +(a+b-c). 

see INSCRIBED, POLYGON 

Circle Involute 
First studied by Huygens when he was considering clocks 
without pendula for use on ships at sea. He used the cir- 
cle involute in his first pendulum clock in an attempt to 
force the pendulum to swing in the path of a CYCLOID. 

For a CIRCLE with a -1 , the parametric equations 
the circle and their deriva tives are given by 

x = cost 

of 

x’ = -sint xtl = -cost 

Y = sin t yt = cost y” = - sin t. (2) 

The TANGENTVECTOR is 

and the ARC LENGTH along the circle is 

(3) 

(4 

so the involute is given by 

x = a(cost + tsint) (6) 
y = a(sint - tcost). (7) 
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The ARC LENGTH, 
GLE are 

C~R&JRE, and TANGENTIAL AN- 

dmdt = +t2 (8) 

at (9) 
(b = t. (10) 

The CES~RO EQUATION is 

see also CIRCLE, CIRCLE EVOLUTE, ELLIPSE INVOLUTE, 
INVOLUTE 
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Circle Involute Pedal Curve 

The PEDAL CURVE of CIRCLE INVOLUTE 

f = cost + tsint 

g = sint - tcost 

with the center as the PEDAL POINT is the ARCHIME- 
DES' SPIRAL 

2 = tsint 

y = -tcost. 

Circle Lattice Points 
For every POSITIVE INTEGER n, there exists a CIRCLE 

which contains exactly n lattice points in its interior. 
H. Steinhaus proved that for every POSITIVE INTEGER 
n, there exists a CIRCLE of AREA n which contains ex- 
actly n lattice points in its interior. 

SCHINZEL’S THEOREM shows that for every POSITIVE 

INTEGER n, there exists a CIRCLE in the PLANE hav- 
ing exactly n LATTICE POINTS on its CIRCUMFERENCE. 

The theorem also explicitly identifies such ~CHINZEL 
CIRCLES” as 

(x - $>” + y2 = $“-’ for n = 2k 

( X- ;)‘+IJ~=;~~’ forn.=2k+l. (I) 

Note, however, that these solutions do not necessarily 
have the smallest possible RADIUS. For example, while 
the SCHINZEL CIRCLE centered at (l/3, 0) and with 
RADIUS 625/3 has nine lattice points on its CIRCUM- 

FERENCE, so does the CIRCLE centered at (l/3, 0) with 
RADIUS 65/3. 

Let T be the smallest INTEGER RADIUS of a CIRCLE cen- 
tered at the ORIGIN (0, 0) with L(r) LATTICE POINTS. 
In order to find the number of lattice points of the CIR- 
CLE, it is only necessary to find the number in the first 
octant, i.e., those with 0 5 y 5 Lr/fi], where [zj is the 
FLOOR FUNCTION. Calling this N(T), then for T 2 I, 

L(T) = IN - 4, so L(r) E 4 (mod 8). The multiph- 
cation by eight counts all octants, and the subtraction 
by four eliminates points on the axes which the multi- 
plication counts twice. (Since 1/2 is IRRATIONAL, the 
MIDPOINT of a are is never a LATTICE POINT.) 

GAUSS'S CIRCLE PROBLEM asks for the number oflat- 
tice points within a CIRCLE of RADIUS T 

N(T) = 1 + 4 LT] + 4 E Id=] l  (2) 

i= l  

Gauss showed that 

N(r) = m2 + E(T), (3) 

where 
IE(r)l < 2&m (4 

............ 

. .... .... . 

.......... 

.......... 

............ 

. ........ . 

@ 
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............ 

.......... 

.......... 

..... ..... 

............ 

The number of lattice points on the CIRCUMFERENCE of 
circles centered at (0, 0) with radii 0, 1, 2, . . . are 1, 4, 4, 
4, 4, 12, 4, 4, 4, 4, 12, 4, 4, . . . (Sloane’s A046109). The 
following table gives the smallest RADIUS T < 111,000 
for a circle centered at (0, 0) having a given number of 
LATTICE POINTS L(r). Note that the high water mark 
radii are always multiples of five. 
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L( > r T 

1 0 
4 1 

12 5 
20 25 
28 125 
36 65 
44 3,125 
52 15,625 
60 325 
68 _< 390,625 
76 < 1,953,125 

- 84 1,625 
92 -c 48,828,125 - 

100 4,225 
108 1,105 
132 40,625 
140 21,125 
180 5,525 
252 27,625 
300 71,825 
324 32,045 . . . . . . e . . . . . - . . . . . . . 

If the CIRCLE is instead centered at (l/2, 0), then the 
CIRCLES of RADII l/2, 312, 512, . . . have 2, 2, 6, 2, 2, 
2, 6, 6, 6, 2, 2, 2, 10, 2, . . . (Sloane’s A046110) on their 
CIRCUMFERENCES. If the CIRCLE is instead centered 
at (l/3, 0), th en the number of lattice points on the 
CIRCUMFERENCE of the CIRCLES of RADIUS l/3, 2/3, 
413, 513, 713, 813, . . . are 1, 1, 1, 3, 1, 1, 3, 1, 3, 1, 1, 
3, 1, 3, 1, 1, 5, 3, . . . (Sloane’s A0461 11). 

Let 

1. a, be the RADIUS of the CIRCLE centered at (0, 0) 
having 8n+4 lattice points on its CIRCUMFERENCE, 

2. b,/2 be the RADIUS of the CIRCLE centered at (l/2, 
0) having 4n + 2 lattice points on its CIRCUMFER- 

ENCE, 

3. cn/3 be the RADIUS of CIRCLE centered at (l/3, 0) 
having 2n + 1 lattice points on its CIRCUMFERENCE. 

Then the sequences {a,}, {bn}, and {cn} are equal, with 
the exception that b, = 0 if 21n and cn = 0 if 31n. How- 
ever, the sequences of smallest radii having the above 
numbers of lattice points are equal in the three cases 

and given by 1, 5, 25, 125, 65, 3125, 15625, 325, . . . 
(Sloane’s A046112). 

KULIKOWSKI’S THEOREM states that for every POX- 
TIVE INTEGER n, there exists a 3-D SPHERE which has 
exactly n LATTICE PRINTS on its surface. The SPHERE 

is given by the equation 

(x - u)” + (y - b)2 + (z - h)” = c2 + 2, 

where a and b are the coordinates of the center of the 
so-called SCHINZEL CIRCLE and c is its RADIUS (Hons- 
berger 1973). 

see UZSO CIRCLE, CIRCUMFERENCE, GAUSS’S CIRCLE 
PROBLEM, KULIKOWSKI’S THEOREM, LATTICE POINT, 
SCHINZEL CIRCLE, SCHINZEL’S THEOREM 
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Circle Lattice Theorem 

see GAUSS’S CIRCLE PROBLEM 

Circle Map 
A 1-D MAP which maps a CIRCLE onto itself 

0 n+l=en+f2- 
K 

G SiK$2dn), (1) 

where 8n+l is computed mod 1. Note that the circle map 
has two parameters: n and K. 0 can be interpreted as 
an externally applied frequency, and K as a strength of 
nonlinearity. The 1-D JACOBIAN is 

do n+l ~ = 1 - Kcos(2nOn), 
aa 

(2) 

so the circle map is not AREA-PRESERVING. It is related 
to the STAN ‘DARD MAP 

I = 172 + 
K 

n+1 G sin( 27&) (3) 

0 n+l = 0, + L+I, (4) 
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for I and 8 computed mod 1. Writing &+I as Circle Order 

e n+l = 6, + In + g sin(27&) (5) 

gives the circle map with Ifl = s1 and K = -K. The 
unperturbed circle map has the form 

8 n+l =&+S2. (6) 

If s1 is RATIONAL, then it is known as the map WINDING 
NUMBER, defined by 

and implies a periodic trajectory, since 8, will return 
to the same point (at most) every 4 ORBITS. If 0 is 
IRRATIONAL, then the motion is quasiperiodic. If K is 
NONZERO, then the motion may be periodic in some 
finite region surrounding each RATIONAL 0. This exe- 
cution of periodic motion in response to an IRRATIONAL 
forcing is known as MODE LOCKING. 

If a plot is made of K vs. n with the regions of pe- 
riodic MODE-LOCKED parameter space plotted around 
RATIONAL 0 values (WINDING NUMBERS), then the re- 
gions are seen to widen upward from 0 at K = 0 to some 
finite width at K = 1. The region surrounding each RA- 
TIONAL NUMBER is knownasan ARNOLD TONGUE. At 
K= 0, the ARNOLD TONGUES are an isolated set of 
MEASURE zero. At K = 1, they form a CANTOR SET 
of DIMENSION d =2: 0.08’700. For K > 1, the tongues 
overlap, and the circle map becomes noninvertible. The 
circle map has a FEIGENBAUM CONSTANT 

S G lim en - en-’ = 2 833 
8 -8, - - (8) 

n+m n+l 

see also ARNOLD TONGUE, DEVIL'S STAIRCASE, MODE 
LOCKING, WINDING NUMBER (MAP) 

Circle Method 

see PARTITION FUNCTION P 

Circle Negative Pedal Curve 
The NEGATIVE PEDAL CURVE of a circle is an ELLIPSE 
if the PEDAL POINT is inside the CIRCLE, and a HY- 
PERBOLA if the PEDAL POINT is outside the CIRCLE. 

Circle Notation 
A NOTATION for LARGE NUMBERS due to Steinhaus 
(1983) in which @ is defined in terms of STEINHAUS- 
MOSER NOTATION as 72 in n SQUARES. The particular 
number known as the MEGA is then defined as follows. 

see U~SO MEGA, MEGISTRON, STEINHAUS-MOSER No- 
TATION 

A POSET P is a circle order if it is ISOMORPHIC to a SET 
of DISKS ordered by containment. 

see &SO ISOMORPHIC POSETS, PARTIALLY ORDERED 

SET 

Circle Orthotomic 

The ORTHOTOMIC of the CIRCLE represented by 

X = cost (1) 

y = sin t (2) 

with a source at (x, y) is 

x = xcos(2t) - ysin(2i) + 2sint (3) 

y = -x sin(2t) - y cos(2t) + 2 cost. (4) 

Circle Packing 

The densest packing of spheres in the PLANE is the 
hexagonal lattice of the bee’s honeycomb (illustrated 
above), which has a PACKING DENSITY of 

qZ2- 
w3 

= 0.9068996821.. . . 

Gauss proved that the hexagonal lattice is the densest 
plane lattice packing, and in 1940, L. Fejes T6th proved 
that the hexagonal lattice is indeed the densest of all 
possible plane packings. 

Solutions for the smallest diameter CIRCLES into which 
n UNIT CIRCLES can be packed have been proved op- 
timal for n = 1 through 10 (Kravitz 1967). The best 
known results are summarized in the following table. 
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d exact 

- 
1 

d approx. 
1.00000 

2.00000 

2.15470.. . 

2.41421.. . 

2.70130.. . 

3.00000 
3.00000 

3.30476. l  . 

3.61312.. m 

3.82.. . 

4.02.. l  

For CIRCLE packing inside a SQUARE, proofs are known 
only for n = 1 to 9. 

n d exact 

1 1 
2 

3 
4 1 

5 

5 
6 
7 
8 

9 I 
3 

10 

d approx. 

1.000 
0.58.. . 

0.500. . * 
0.500 
0.41.. . 

0.37. . . 
0.348.. . 
0.341. l  l  

0.333.. . 

0.148204. . . 

The smallest SQUARE into which two UNIT CIRCLES, 
one of which is split into two pieces by a chord, can be 
packed is not known (Goldberg 1968, Ogilvy 1990). 

see also HYPERSPHERE PACKING, MALFATTI’S RIGHT 
TRIANGLE PROBLEM, MERGELYAN-WESLER THEOREM, 
SPHERE PACKING 
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Circle Pedal Curve 

The PEDAL CURVE of a CIRCLE is a CARDIOID if the 
PEDAL POINT is taken on the CIRCUMFERENCE, 

and otherwise a LIMA~ON. 

Circle-Point Midpoint Theorem 

Taking the locus of MIDPOINTS from a fixed point to a 
circle of radius r results in a circle 
follows trivially from 

r(O) = [a] +f ([z~ 
- [ 

+ose - ix - 
+ sin8 1 ’ 

If radius r/2. This 

-X - E I> 0 
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Circle Radial Curve Circle Strophoid 
The STROPHOID of a CIRCLE with pole at the center 
and fixed point on the CIRCUMFERENCE is a FREETH’S 
NEPHROID. 

The RADIAL CURVE of a unit CIRCLE from a RADIAL 
POINT (sJ) is another CIRCLE with parametric equa- 

x(t) =x-cost 
y(t) = - sin& 

Circle Squaring 
Construct a SQUARE equal in AREA to a CIRCLE using 
only a STRAIGHTEDGE and COMPASS. This was one of 
the three GEOMETRIC PROBLEMS OF ANTIQUITY, and 
was perhaps first attempted by Anaxagoras. It was fi- 
nally proved to be an impossible problem when PI was 
proven to be TRANSCENDENTAL by Lindemann in 1882. 

However, approximations to circle squaring are given 
by constructing lengths close to K = 3.1415926.. . . 
Ramanujan (1913-14) and Olds (1963) give geomet- 
ric constructions for 355/113 = 3.1415929.. l  . Gard- 
ner (1966, pp. 92-93) gives a geometric construc- 
tion for 3 + 16/113 = 3.1415929. l  l  . Dixon (1991) 
gives constructions for 6/5(1 + 4) = 3.141640 l  . . and 

4 + [3 - tan(30°)] = 3.141533. l  l  . 

While the circle cannot be squared in EUCLIDEAN 
SPACE, it can in GAUSS-B• LYAI-LOBACHEVSKY SPACE 
(Gray 1989). 

see also GEOMETRIC CONSTRUCTION, QUADRAT 
SQUARING 

URE, 
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Circle Tangents 
There are four CIRCLES that touch all the sides of a 
given TRIANGLE. These are all touched by the CIRCLE 
through the intersection of the ANGLE BISECTORS of 
the TRIANGLE, known as the NINE-POINT CIRCLE. 

Given the above figure, GE = FH, since 

AB=AG+GB=GE+GF=GEf(GE+EF) 

=2G+EF 

CD=CH+HD=EH+FH=FH+(FH+EF) 

= EF + 2FH. 

Because AB = CD, it follows that GE = FH. 

The line 

(X? Y> 

tangent to a CIRCLE of RADIUS a centered at 

2’ = x+acost 
y' = y+ asint 

through (0,O) can be found by solving the equation 

giving 

t= zk cos-l 
( 

--ax zt &Id- 

x2 + y2 
1 

. 
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Two of these four solutions give tangent lines, as illus- 
trated above. 

see also KISSING CIRCLES PROBLEM, MIQUEL POINT, 
MONGE'S PROBLEM, PEDAL CIRCLE, TANGENT LINE, 
TRIANGLE 
- #. 
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Circuit 

see CYCLE (GRAPH) 

Washington, 

Circuit Rank 
Also known as the CYCL~MATIC NUMBER. The circuit 
rank is the smallest number of EDGES y which must be 
removed from a GRAPH of IV EDGES and n nodes such 
that no CIRCUIT remains. 

Y =N-n+l. 

Circulant Determinant 
Gradshteyn and Ryzhik (1970) define circulants by 

Xl x2 x3 “’ xn 

Xn Xl x2 -.. Xn-1 

Xn-1 Xn Xl “’ X72-2 

l  . l  
l  

l  

. . . l  . 

l  
. 

. . . 

x2 x3 x4 “’ x1 

- - rI( Xl + X2Wj + X3Wj2 + l  -. + XnWj n-1L (1) 

j=l 

where wj is the nth ROOT OF UNITY. The second-order 
circulant determinant is 

Xl x2 I I x2 Xl 
= (Xl +x2)(x1 -x2), (2) 

and the third order is 

Xl x2 x3 

X3 Xl 52 

152 X3 x11 

= (x1+x2 +x3)(x1 + wx2 + w2x3)(x1 + w2x2 -I- WXQ), 

(3) 

where w  and w2 are the COMPLEX CUBE ROOTS of 
UNITY. 

The EIGENVALUES X of the corresponding n x n circulant 
matrix are 

Xj = Xl + X2Wj + X3Ldj2 + m - - + XnWj 
n-1 

- (4) 

see also CIRCULANT MATRIX 
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Circulant Graph 
A GRAPH of n VERTICES in which the ith VERTEX is 
adjacent to the (i + j)th and (i - j)th VERTICES for 
each j in a list 2. 

Circulant Matrix 
An n x n MATRIX C defined as follows, 

l  (7) (Y) l  l  * (nnl) 

C I n 

( > 
n- 1 ’ 7 . m m  (n22) o - - 

. l  . 
. 

l  

1 
n-l 

C = n[(l +Wj)n - 113 

j=O 

where wo E 1, ~1, . . . , tin-1 are the nth ROOTS 
OF UNITY. Circulant matrices are examples of LATIN 
SQUARES. 

see also CIRCULANT DETERMINANT 
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Circular Cylindrical Coordinates 

see CYLINDRICAL COORDINATES 

Circular Functions 
The functions describing the horizontal and vertical po- 
sitions of a point on a CIRCLE as a function of ANGLE 
(COSINE and SINE) and those functions derived from 
them: 

1 cos 2 
cotx E -=- 

tan x sin x (1) 

1 
csc x = - 

sin x (2) 

1 
set x = - 

cos 2 

sin 2 
tanz = - 

cosx’ 

(3) 

(4) 

The study of circular functions is called TRIGONOME- 

see &SO COSECANT, COSINE, COTANGENT, ELLIPTIC 
FUNCTION, GENERALIZED HYPERBOLIC FUNCTIONS, 
HYPERBOLIC FUNCTIONS, SECANT, SINE, TANGENT, 
TRIGONOMETRY 

Keierences 
Abramowitz, M. and Stegun, C. A. (Eds.). “Circular Func- 

tions.” $4.3 in Handbook of Mathematical Functions with 
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Circular Permutation 
The number of ways to arrange n distinct objects along 
a CIRCLE is 

Pn = (n - l)!. 

The number is (n - l)! instead of the usual FACTORIAL 
n! since all CYCLIC PERMUTATIONS of objects are equiv- 
alent because the CIRCLE can be rotated. 

see also PERMUTATION, PRIME CIRCLE 

Circumcenter 

The center 0 of a TRIANGLE’S CIRCUMCIRCLE. It can 
be found as the intersection of the PERPENDICULAR BI- 
SECTORS. If the TRIANGLE is ACUTE, the circumcenter 
is in the interior of the TRIANGLE. In a RIGHT TRI- 

ANGLE, the circumcenter is the MIDPOINT of the HY- 
POTENUSE. 

- - - 
001+002+003=R+r, (1) 

where Oi are the MIDPOINTS of sides Ai, R is the 
CIRCUMRADIUS, and T is the INRADIUS (Johnson 1929, 
pa 190). The TRILINEAR COORDINATES of the circum- 
center are 

cosA: COSB : cosC, (2) 

and the exact trilinears are therefore 

RcosA : RcosB : RcosC. (3) 

The AREAL COORDINATES are 

(+ot A, +bcot B, +ccot C). (4) 

The distance between the INCENTER and circumcenter 
is @(R - 2~). Given an interior point, the distances 
to the VERTICES are equal IFF this point is the circum- 
center. It lies on the BROCARD AXIS. 

The circumcenter 0 and ORTHOCENTER H are ISOGO- 

The ORTHOCENTER H of the PEDAL TRIANGLE 
A010203 formed by the CIRCUMCENTER 0 concurs 
with the circumcenter 0 itself, as illustrated above. The 
circumcenter also lies on the EULER LINE. 

see also BROCARD DIAMETER, CARNOT'S THEOREM, 
CENTROID (TRIANGLE), CIRCLE, EULER LINE, INCEN- 
TER, ORTHOCENTER 

References 
Carr, G. S. Formulas and Theorems in Pure Mathematics, 
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Circumcircle 
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A TRIANGLE'S circumscribed circle. Its center 0 is Circumference 
called the CIRCUMCENTER, and its RADIUS R the CIR- The PERIMETER of a CIRCLE. For RADIUS T or DIAM- 
CUMRADIUS. The circumcircle can be specified using ETER d = 2r, 
TRILINEAR COORDINATES as C = 27~ = nd, 

&a.+ yab + apt = 0. (1) 

The STEINER POINT S and TARRY POINT T lie on the 
circumcircle. 

where K is PI. 

see also CIRCLE, DIAMETER, PERIMETER, PI, RADIUS 

A GEOMETRIC CONSTRUCTION for the circumcircle is 
given by Pedoe (1995, pp. xii-xiii). The equation for the 
circumcircle ofthe TRIANGLE with VERTICES (x,,Yi) for 
i= 1, 2, 3 is 

x2 + y2 x y 1 

Xl2 + Y12 
x22 +y22 

Xl Yl 1 =o 
x2 y2 1 . 

(2) 

x32 + Y32 x3 y3 1 

Expanding the DETERMINANT, 

Circuminscribed 
Given two closed curves, the circuminscribed curve is 
simultaneously INSCRIBED in the outer one and CIR- 
CUMSCRIBED on the inner one. 

see also PONCELET'S CLOSURE THEOREM 

Circumradius 
The radius of a TRIANGLE'S CIRCUMCIRCLE or of a 
POLYHEDRON'S CIRCUMSPHERE, denoted R. For a TRI- 
ANGLE, 

a(x2 + y”) + Ma: + 2fy + g = 0, (3) 
R= 

abc 

J(a + b + c)(b + c - a)(c + a - b)(a + b - c)’ 

(1) 

where 

Xl 
a= x2 

x3 

d=-$ 

Yl 1 

Y2 1 
Y3 1 

Xl2 +y12 y1 1 

222 +y22 y2 1 

x32 +y32 y3 1 

a2+y12 Xl 1 

f -- -; x22+y22 22 1 

x32 +y32 x3 1 

Xl2 + Y12 Xl y1 

g=- x22+y22 x2 y2 

x32 +y32 x3 y3 

(4) 

(5) 

(6) 

. (7) 

COMPLETING THE SQUARE gives 

a(x+~)2+a(y+~)2-~-~+~=0 (8) 

which is a CIRCLE of the form 

( x - x0 

with CIRCUMCENTER 

and CIRCUMRADIUS 

‘I2 + (Y - Yo) 
2 

= r2, (9) 

d x0 = -- 
a 

f yoz-- 
a 

00) 

(11) 

where the side lengths of the TRIANGLE are a, b, and c. 

This equation can also be expressed in terms of the 
RADII of the three mutually tangent CIRCLES centered 
at the TRIANGLE'S VERTICES. Relabeling the diagram 
for the SODDY CIRCLES with VERTICES Ol,Oz,and 03 
and the radii ~1, 73, and 73, and using 

T= f2 +d2 9 

J 
--- 

a2 a’ (12) 

then gives 

a = 7-1 + 7-2 

b = r2 + r3 

c = 7-l + 7-3 

(2) 

(3) 

(4) 

see also CIRCLE, CIRCUMCENTER, CIRCUMRADIUS, Ex- 
CIRCLE,INCIRCLE,PARRY POINT,PURSER'S THEOREM, 
STEINER POINTS, TARRY POINT 

References 
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R (rl + T2)(Tl + r3)(T2 + T3) - - 

lTP?-Q(Tl +T2 +r3) l  

(5) 

If 0 is the CIRCUMCENTER and M is the triangle CEN- 
TROID, then 

m2zR2- ;(a” + b2 + c”). (6) 

ala2a3 
Rr = - 

4s 
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COSQil +COSaz +COSa3 = 1+ i (8) 

r = 2R cos a1 cos a2 cos a3 (9) 

U12 + az2 + a32 = 4TR + 8R2 (10) 

(Johnson 1929, pp. 189-191). Let d be the distance 
between INRADIUS T and circumradius R, d = rR. Then 

R2 - d2 = 2Rr (11) 

1 1 1 

R-d+-=; (12) 

(Mackay 1886-87). These and many other identities are 
given in Johnson (1929, pp. 186-190). 

For an ARCHIMEDEAN SOLID, expressing the circumra- 
dius in terms of the INRADIUS T and MIDRADIUS p gives 

for an ARCHIMEDEAN SOLID. 

see also CARNOT'S THEOREM, CIRCUMCIRCLE, CIR- 
CUMSPHERE 
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Circumscribed 
A geometric figure which touches only the VERTICES (or 
other extremities) of another figure. 

see also CIRCUMCENTER, CIRCUMCIRCLE, CIRCUMIN- 

SCRIBED, CIRCUMRADIUS, INSCRIBED 

Circumsphere 
A SPHERE circumscribed in a given solid. Its radius is 
called the CIRCUMRADIUS. 

see also INSPHERE 

Cis 

Cis x S eix = cost + isinx. 

Cissoid 
Given two curves Cl and C2 and a fixed point 0, let a 
line from 0 cut C at Q and C at R. Then the LOCUS of 
a point P such that OP = QR is the cissoid. The word 
cissoid means “ivy shaped.” 

Curve 1 Curve 2 Pole Cissoid 

line 
line 

parallel line 

circle 

any point 

center 

circle 

circle 

circle 

circle 

circle 

tangent line on C 

tangent line on C opp. 

tangent 

radial line on C 

concentric circle center 

same circle bfi, 0) 

line 

conchoid of 

Nicomedes 

oblique cissoid 

cissoid of Diocles 

strophoid 

circle 

lemniscate 

see also CISSOID OF DIoCLES 
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Cissoid of Diocles 

A curve invented by Diocles in ibout 180 BC in con- 
nection with his attempt to duplicate the cube by geo- 
metrical methods. The name Vissoid” first appears in 
the work of Geminus about 100 years later. Fermat and 
Roberval constructed the tangent in 1634. Huygens and 
Wallis found, in 1658, that the AREA between the curve 
and its asymptote was 3a (MacTutor Archive). From a 
given point there are either one or three TANGENTS to 
the cissoid. 

Given an origin 0 and a point P on the curve, let S be 
the point where the extension of the line OP intersects 
the line x = 2a and R be the intersection of the CIRCLE 

of RADIUS a and center (a, 0) with the extension of OP. 
Then the cissoid of Diocles is the curve which satisfies 
OP = RS. 
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The cissoid of Diocles is the ROULETTE of the VERTEX 
of a PARABOLA rolling on an equal PARABOLA. Newton 
gave a method of drawing the cissoid of Diocles using 
two line segments of equal length at RIGHT ANGLES. If 
they are moved so that one line always passes through a 
fixed point and the end of the other line segment slides 
along a straight line, then the MIDPOINT of the sliding 
line segment traces out a cissoid of Diocles. 

The cissoid of Diocles is given by the parametric equa- 
t ions 

x = 2asin2 0 (1) 
2a sin3 8 

y=- 
case ’ (2) 

Converting these to POLAR COORDINATES gives 

r2 = x2 + y2 = 4a2 ( sin6 8 
sin4 0 + - 

~0~2 e > 

= 4a2 sin4 ep + tan2 0) = 4a2 sin4 Osec2 0, (3) 

so 

T = 2asin2 6&d? = 2asinOtanO. 

In CARTESIAN COORDINATES, 

X3 8a3 sin6 0 sin6 e ~ - 
2a-x - 2a - 2asin2 0 

= 4a2 
1 - sin2 e 

= 4a 
2 sin6 e 

-=y2. 
~0~2 e 

An equivalent form is 

x(x2 + y2) = 2ay2. 

Using the alternative parametric form 

2at2 x(t) = ~ 1 + t2 
2at3 

y(t) = jq 

(Gray 1993), g ives the CURVATURE as 

3 
IEM = altl(f2 + 4)3/Z ’ 
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Cissoid of Diocles Caustic 
The CAUSTIC ofthe cissoid where the RADIANT POINT 
is taken as (8a, 0) is a CARDIOID. 

Cissoid of Diocles Inverse Curve 
If the cusp of the CISSOID OF D~OCLES is taken as 
the INVERSION CENTER, then the cissoid inverts to a 
PARABOLA. 

Cissoid of Diocles Pedal Curve 

The PEDAL CURVE of the cissoid, when the PEDAL 
POINT is on the axis beyond the ASYMPTOTE at a dis- 
tance from the cusp which is four times that of the 
ASYMPTOTE is a CARDIOID. 

Clairaut’s Differential Equation 

or 

Y = PX + fCP>7 

where f is a FUNCTION of one variable and p E dy/dx. 
The general solution is y = cx + f(c). The singular 
solution ENVELOPES are x = -f’(c) and y = f(c) - 

cf’(4 

see &O D'ALEMBERT'S EQUATION 
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Clarity 
The RATIO of a measure of the size of a “fit” to the size 
of a “residual.” 

References 
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Clark’s Triangle 

(m-1)3 
0 n2 

6 1 d 
12 7 1 J 

18 19 8 1 
24 37 27 9 1 

30 61 64 36 10 1 
36 91 125100 46 11 1 
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A NUMBER TRIANGLE created by setting the VERTEX 

equal to 0, filling one diagonal with Is, the other diag- 
onal with multiples of an INTEGER f, and filling in the 
remaining entries by summing the elements on either 
side from one row above. Call the first column n = 0 
and the last column vz = n so that 

c(m, 0) = fm (1) 

c(m,m) = 1, (2) 

then use the RECURRENCE RELATION 

c(m, n) = c(m - 1, n - 1) + c(m - 1, n) (3) 

to compute the rest of the entries. For n = 1, we have 

c(m, 1) = c(m - 1,O) + c(m - 1, 1) (4) 

c(m, 1) - c(m - 1,1) = c(m - 1,O) = f(m - 1). (5) 

For arbitrary m, the value can be computed by SUM- 
MING this RECURRENCE, 

c(m, 1) = 

Now, for n = 2 we have 

c(m, 2) = c(m - 1,l) + c(m - 1,2) (7) The constant bin size in a HISTOGRAM. 

So far, this has just been relatively boring ALGEBRA. 
But the amazing part is that if f = 6 is chosen as the 
INTEGER, then c(m, 2) and c(m, 3) simplify to 

c(m, 2) = i(m - 1)(6m2 - 12m + 6) 

= (m - 1)3 (13) 

c(m, 3) = $ (m - 1)2(m - 2)2, (14) 

which are consecutive CUBES (m - 1)3 and nonconsecu- 
tive SQUARES n2 = [(m - l)(m - 2)/212. 

see UZSO BELL TRIANGLE, CATALAN'S TRIANGLE, 
EULER'S TRIANGLE, LEIBNIZ HARMONIC TRIANGLE, 
NUMBER TRIANGLE, PASCAL'S TRIANGLE, SEIDEL- 
ENTRINGER-ARNOLD TRIANGLE, SUM 

References 
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Class 

see CHARACTERISTIC CLAss, Cuss INTERVAL, CLASS 
(MULTIPLY PERFECT NUMBER), CLASS NUMBER, 
CLASS (SET)$ONJUGACY CLASS 

Class (Group) 

see CONJUGACY Cuss 

Class Interval 

see also SHEPPARD'S CORRECTION 
c(m, 2)-c(m-1,2) = c(m-l,l) = $f(m-l)m+l, (8) 

SO SUMMING the RECURRENCE gives 

c(m,Z) = x[+fk(k - 1) + 11 = fJ+fk’ - &fk + 1) 
k=l k=l 

= +f[&(m + l)(Zm + I)] - $f[$2(m + l)] + m 

- i(m-l)(fm2-2fm+6). - (9 

Similarly, for n = 3 we have 

c(m, 3) - c(m - 1,3) = c(m - 1,2) 

- ifm3 - - fm” +(+f +l)m- (f +2). (10 

Taking the SUM, 

m 

c(m, 3) = x i fk3 - fk2 + (+f + 1)k - (f + 2). (11) 
k=2 

Evaluating the SUM gives 

c(m, 3) = & (m - l)(m - 2)(fm2 - 3fm+ 12). (12) 

Class (Map) 
A MAP u : Iw” + R” from a DOMAIN G is called a map 
of class CT if each component of 

is of class C’ (0 5 T 2 00 or r = w) in G, where Cd 
denotes a continuous function which is differentiable d 
times. 

Class (Multiply Perfect Number) 
The number IG in the expression s(n) = kn for a MUL- 
TIPLY PERFECT NUMBER is called its class. 

Class Number 
For any IDEAL I, there is an IDEAL Ii such that 

I& = x, (1) 

where z is a PRINCIPAL IDEAL, (i.e., an IDEAL of rank 
1). Moreover, there is a finite list of ideals Ii such that 
this equation may be satisfied for every I. The size 
of this list is known as the class number. When the 
class number is 1, the RING corresponding to a given 
IDEAL has unique factorization and, in a sense, the class 
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number is a measure of the failure of unique factorization 
in the original number ring. 

A finite series giving exactly the class number of a RING 
is known as a CLASS NUMBER FORMULA. A CLASS 
NUMBER FORMULA is known for the full ring of cyclo- 
tomic integers, as well as for any subring of the cyclo- 
tomic integers. Finding the class number is a computa- 
tionally difficult problem. 

Let h(d) denote the class number of a quadratic ring, 
correspondingtothe BINARY QUADRATIC FORM 

ax2 + bxy + cyz, (2) 

with DISCRIMINANT 

d c b2 - 4~. (3) 

Then the class number h(d) for DISCRIMINANT d gives 
the number of possible factoriaations of ax2 + bxy + cy2 
in the QUADRATIC FIELD Q(d). Here, the factors are 
of the form x + yJd, with z and y half INTEGERS. 

Some fairly sophisticated mathematics shows that the 
class number for discriminant d can be given by the 
CLASS NUMBER FORMULA 

h(d) 
- & x,“r:(djr) In sin (7) for d > 0 

= - 
- # crA;‘(dlr)r for d < 0, 

(4) 

where (dir) is the KRONECKER SYMBOL, r](d) is the 
FUNDAMENTAL UNIT, w(d) is the number of substitu- 
tions which leave the BINARY QUADRATIC FORM un- 
changed 

6 for d = -3 
w(d) = 4 for d = -4 (5) 

2 otherwise, 

and the sums are taken over all terms where the KRON- 
ECKER SYMBOL is defined (Cohn 1980). The class num- 
ber for d > 0 can also be written 

d-l 

2hW 
rl = rI 

T-=1 

(6) 

for d > 0, where the PRODUCT is taken over terms for 
which the KRONECKER SYMBOL is defined. 

The class number is related to the DIRICHLET L-SERIES 
bY 

h(d) 
Ld(l> - -- 
44 ' 

(7) 

where n(d) is the DIRICHLET STRUCTURE CONSTANT. 

Wagner (1996) h s ows that class number h(-d) satisfies 
the INEQUALITY 

In d, (8) 

for -d < 0, where 1x1 is the FLOOR FUNCTION, the 
product is orer PRIMES dividing d, and the * indicates 
that the GREATEST PRIME FACTOR of d isomittedfrom 
the product. 

The Mathematics@ (Wolfram Research, Champaign, 
IL) function NumberTheory ’ NumberTheoryFunct ions ’ 
ClassNumber [n] gives the class number h(d) for d a 
NEGATIVE SQUAREFREE number ofthe form 4k+l. 

GAUSS'S CLASS NUMBER PROBLEM asks to determine 
a complete list of fundamental DISCRIMINANTS -d such 
that the CLASS NUMBER is given by h(-d) = m for 
a given nz. This problem has been solved for n < 7 - 
and ODD 72 < 23. Gauss conjectured that the class 
number h(-d) f o an IMAGINARY quadratic field with 
DISCRIMINANT -d tends to infinity with d, an assertion 
now known as GAUSS'S CLASS NUMBER CONJECTURE. 

The discriminants d having h(-d) = 1, 2, 3, 4, 5, l  + + 

are Sloane’s A014602 (Cohen 1993, p. 229; Cox 1997, 
p. 271), Sloane’s A014603 (Cohen 1993, p. 229), Sloane’s 
A006203 (Cohen 1993, p. 504), Sloane’s A013658 (Co- 
hen 1993, p. 229), Sloane’s A046002, Sloane’s A046003, 

The complete set of negative discriminants hav- 
f&lass numbers l-5 and ODD 7-23 are known. Buell 
(1977) gives the smallest and largest fundamental class 
numbers for d < 4,000,000, partitioned into EVEN dis- 
criminants, discriminants 1 (mod 8)) and discriminants 
5 (mod 8). Arno et al. (1993) give complete lists of val- 
ues of d with h(-d) = k for ODD k = 5, 7, 9, . . . , 23. 
Wagner gives complete lists of values for Tc = 5, 6, and 
7. 

Lists of NEGATIVE discriminants corresponding to 
IMAGINARY QUADRATIC FIELDS Q(J-do) having 
small class numbers h( -d) are given in the table below. 
In the table, Iv is the number of “fundamental” values 
of -d with a given class number h(-d), where “funda- 
mental” means that -d is not divisible by any SQUARE 
NUMBER s2 such that h(-d/s2) < h(-d). For example, 
although h( -63) = 2, -63 is not a fundamental dis- 
criminant since 63 = 32 l  7 and h(-63/32) = h(-7) = 
1 < h(-63). EVEN values 8 5 h(-d) 5 18 have been 
computed by Weisstein. The number of negative dis- 
criminants having class number 1, 2, 3, . . . are 9, 18, 
16, 54, 25, 51, 31, . . . (Sloane’s A046125). The largest 
negative discriminants having class numbers 1, 2, 3, . l  . 
are 163, 427, 907, 1555, 2683, . . . (Sloane’s A038552). 

The following table lists the numbers with small class 
numbers 5 11. Lists including larger class numbers are 
given by Weisstein. 

h(-d) N d 

1 9 3, 4, 7, 8, 11, 19, 43, 67, 163 
2 18 15, 20, 24, 35, 40, 51, 52, 88, 91, 115, 

123,148,187, 232, 235,267,403,427 
3 16 23, 31, 59, 83, 107, 139, 211, 283, 307, 

331, 379,499, 547,643,883, 907 
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h&d) N d h(-d) N d 

4 54 39, 55, 56, 68, 84, 120, 132, 136, 155, 
168, 184, 195, 203, 219, 228, 259, 280, 
291, 292, 312, 323, 328, 340, 355, 372, 
388, 408, 435, 483, 520, 532, 555, 568, 
595, 627, 667, 708, 715, 723, 760, 763, 
772, 795, 955, 1003,1012,1027,1227, 
1243,1387,1411,1435,1507,1555 

5 25 47, 79, 103, 127, 131, 179, 227, 347, 443, 
523, 571, 619, 683, 691, 739, 787, 947, 
1051,1123,1723,1747,1867, 2203, 2347, 
2683 

6 51 87, 104,116, 152, 212, 244, 247, 339, 
411, 424, 436, 451, 472, 515, 628, 707, 
771,808, 835, 843, 856,1048,1059,1099, 
1108,1147,1192,1203,1219,1267, 1315, 
1347,1363,1432,1563,1588,1603,1843, 
1915,1963, 2227, 2283, 2443, 2515, 2563, 
2787, 2923,,3235,3427, 3523, 3763 

7 31 71,151, 223, 251,463,467,487, 587, 
811, 827,859,1163,1171,1483,1523, 
1627,1787,1987, 2011, 2083, 2179, 2251, 
2467,2707,3019,3067,3187,3907,4603, 
5107,5923 

8 131 95,111,164, 183, 248, 260, 264, 276, 
295, 299, 308, 371, 376, 395, 420, 452, 
456, 548, 552, 564, 579, 580, 583, 616, 
632, 651, 660, 712, 820, 840, 852, 868, 
904, 915, 939, 952, 979,987, 995,1032, 
1043, 1060,1092,1128, 1131,1155, 
1195,1204,1240,1252,1288,1299,1320, 
1339,1348,1380,1428, 1443,1528, 1540, 
1635,1651,1659,1672, 1731,1752, 1768, 
1771,1780, 1795,1803,1828,1848, 1864, 
1912,1939,1947,1992,1995, 2020, 2035, 
2059,2067,2139,2163,2212,2248,2307, 
2308,2323,2392,2395,2419,2451,2587, 
2611,2632,2667, 2715,2755,2788,2827, 
2947, 2968, 2995, 3003,3172, 3243,3315, 
3355, 3403, 3448, 3507,3595, 3787,3883, 
3963,4123,4195,4267,4323,4387,4747, 
4843,4867, 5083, 5467, 5587, 5707, 5947, 
6307 

9 34 199, 367,419,491, 563, 823,1087,1187, 
1291, 1423,1579, 2003, 2803, 3163,3259, 
3307, 3547, 3643,4027,4243,4363,4483, 
4723,4987,5443,6043,6427,6763,6883, 
7723,8563,8803,9067,10627 

10 87 119,143, 159, 296, 303,319,344,415, 
488, 611, 635, 664, 699, 724, 779, 788, 
803, 851, 872, 916, 923, 1115,1268, 
1384, 1492,1576,1643,1684, 1688,1707, 
1779,1819,1835,1891,1923, 2152, 2164, 

2363, 2452, 2643, 2776, 2836, 2899,3028, 
3091,3139,3147,3291,3412,3508,3635, 
3667, 3683,3811, 3859,3928,4083,4227, 
4372, 4435,4579, 4627,4852,4915,5131, 
5163, 5272,5515, 5611, 5667, 5803,6115, 
6259,6403,6667, 7123, 7363, 7387,7435, 
7483,7627,8227,8947,9307,10147, 
10483,13843 

11 41 167, 271, 659, 967,1283,1303,1307, 
1459,1531,1699, 2027, 2267, 2539, 2731, 
2851, 2971,3203,3347, 3499,3739,3931, 
4051, 5179, 5683,6163, 6547, 7027, 7507, 
7603, 7867,8443,9283, 9403,9643,9787, 
10987,13003, 13267,14107,14683,15667 

The table below gives lists of POSITIVE fundamental 
discriminants d having small class numbers h(d), cor- 
responding to REAL quadratic fields. All POSITIVE 

SQUAREFREE values of d < 97 (for which the KRON- - 
ECKER SYMBOL is defined) are included. 

h(d) d 
1 5, 13, 17, 21, 29, 37, 41, 53, 57, 61, 69, 73, 77 
2 65 

The POSITIVE d for which h(d) = 1 is given by Sloane’s 
A014539. 

see also CLASS NUMBER FORMULA, DIRICHLET L- 
SERIES, DHCRIMINANT (BINARY QUADRATIC FORM), 
GAUSS’S CLASS NUMBER CONJECTURE, GAUSS’S 

CLASS NUMBER PROBLEM, HEEGNER NUMBER, IDEAL, 
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Class Number Formula 
A class number formula is a finite series giving exactly 
the CLASS NUMBER ofa RING. For a RING ofquadratic 
integers, the class number is denoted h(d), where d is the 
discriminant. A class number formula is known for the 
full ring of cyclotomic integers, as well as for any subring 
of the cyclotomic integers. This formula includes the 
quadratic case as well as 
rings. 

many cubic and higher-order 

see also CLASS NUMBER 

Class Representative 
A set of class representatives is a SUBSET of X which 
contains exactly one element from each EQUIVALENCE 
CLASS. 

Class (Set) 
A class is a special kind of SET invented to get around 
RUSSELL'S PARADOX while retaining the arbitrary cri- 
teria for membership which leads to difficulty for SETS. 
The members of classes are SETS, but it is possible to 
have the class C of “all SETS which are not members of 
themselves” without producing a paradox (since C is a 
proper class (and not a SET), it is not a candidate for 
membership in C). 

see also AGGREGATE,RUSSELL'S PARADOX, SET 

Classical Groups 
The four following types of GROUPS, 

1. LINEAR GROUPS, 
2. ORTHOGONAL GROUPS, 

3. SYMPLECTIC GROUPS, and 

4. UNITARY GROUPS, 

which were studied before more exotic types of groups 
(such as the SPORADIC GROUPS) were discovered. 

see UZSO GROUP, LINEAR G ROUP, ORTHOGONAL 
GRO UP, SYMPLECTIC GROUP J NITARY GROUP 

Classifxat ion 
The classification of a collection of objects generally 
means that a list has been constructed with exactly one 
member from each IS~M~RPHISM type among the ob- 
jects, and that tools and techniques can effectively be 
used to identify any combinatorially given object with 
its unique representative in the list. Examples of math- 
ematical objects which have been classified include the 
finite SIMPLE GROUPS and Z-MANIFOLDS but not, for 
example, KNOTS. 

Classification Theorem 
The classification theorem of FINITE SIMPLE GROUPS, 
also known as the ENORMOUS THEOREM, which states 
that the FINITE SIMPLE GROUPS can be classified com- 
pletely into 

1. CYCLIC GROUPS Z& of PRIME ORDER, 

2. ALTERNATING GROUPS A, of degree at least five, 

3. LIE-TYPE CHEVALLEY GROUPS pwn, a) 7 
psw 4)' pswn, 4)' and Pf+, 4)) 

4. LIE-TYPE (TWISTED CHEVALLEY GROUPS or the 

TITS GROUP) 3D4(q), E&)r h(q), Es(q), F.(q), 
2F4(2n)t, G&), “G2(sn), 2B(2”), 

5. SPORADIC GROUPS k&, Mlz, M22, Mz3, M2*, Jz = 
HJ, SW, HS, McL, Cog, Coz, Co1, He, Fia2, Fi29, 
Fik4, HN, Th, B, M, JI, U’N, J3, Ly, Ru, J4. 

The “PROOF,, of this theorem is spread throughout the 
mathematical literature and is estimated to be approx- 
imately 15,000 pages in length. 

see also FINITE GROWP, GROUP, ~-FUNCTION, SIMPLE 
GROUP 
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Clausen Formula 
Clausen’s 4 F3 identity 

4F3 
a b c d 

” 1 (24 IdI b + b) 14 (Zb) I4 

e f 9 = (2a + 2b)ldpldlbldl ’ 

holds for a + b + c - d = l/2, e = a + b + l/2, a + f = 
d+l=b+g, d a nonpositive integer, and (a), 
P~CHHAMMER SYMBOL (PetkovSrek et al. 1996). 

is the 

Another identity ascribed to Clausen which in- 
volves the HYPERGEOMMTRIC FUNCTION &(u,~;c;z) 
and the GENERALIZED HYPERGEOMETRIC FUNCTION 
3F2 (CL, b, c; d, e; z) is given by 

= 3F2 
2a, a + b, 2b 

a+b++,2a+2bix ’ > 

see also GENERALIZED HYPERG 
HYPERG .EOMETRIC FUN 'CTION 

EOMETRIC FUNCTION, 

References 
Petkovgek, M.; Wilf, H. S.; and Zeilberger, D. A--B. Welles- 

ley, MA: A. K. Peters, pp. 43 and 127, 1996. 



266 Clausen Function CLEAN Algorithm 

Clausen Function 

Define 

k=l 

(1) 

(2) 
k=l 

and write 

Cl,(x) = 
S,(X) = CTxl +$J n even 

&(x) = Crxl w  n odd. 

(3) 

Then the Clausen function Cl,(x) can be given symbol- 
ically in terms of the POLYLOGARITHM as 

Cl,(x) = 
li[Li,(e-““) - Li,(ei”)] n even 
$Li,(eeiz) + Lin(ei2)] n odd. 

For n = 1, the function takes on the special form 

Cl,(x) = C,(x) = -In ]2sin($x)] (4) 

and for n = 2, it becomes CLAUSEN’S INTEGRAL 

s 

X 

Cl,(x) = &(x) = - ln[2 sin( it)] dt. (5) 
0 

The symbolic sums of opposite parity are summable 
symbolically, and the first few are given by 

Cz(x) = +x2 - $x + +x2 (6) 

Cd(X) = & - &x2x2 + +x3 - &x4 (7) 

Sl(X) = + CT - 2) ($1 

S3(x) = in22 - $x2 +- &x3 (9) 

S5(4 = &7r4x - $T2x3 + &x4 - &x5 (10) 

for 0 5 x < 27r (Abramowitz and Stegun 1972). - 

see do CLAUSEN'S INTEGRAL, POLYGAMMA FUNC- 
TION, POLYLOGARITHM' 
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Clausen’s Integral 

The CLAUSEN FUNCTION 

s 

0 

Cl&?) = - ln[2 sin( it)] dt. 
0 

see also CLAUSEN FUNCTION 
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CLEAN Algorithm 
An iterative algorithm which DECONVOLVES a sampling 
function (the “DIRTY BEAM") from an observed bright- 
ness ("DIRTY MAP") of a radio source. This algorithm 
is of fundamental importance in radio astronomy, where 
it is used to create images of astronomical sources which 
are observed using arrays of radio telescopes (“synthesis 
imaging”). As a result of the algorithm’s importance to 
synthesis imaging, a great deal of effort has gone into 
optimizing and adjusting the ALGORITHM. CLEAN is a 
nonlinear algorithm, since linear DECONVOLUTION algo- 
rithms such as WIENER FILTERING and inverse filtering 
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are inapplicable to applications with invisible distribu- 
tions (i.e., incomplete sampling of the spatial frequency 
plane) such as map obtained in synthesis imaging. 

The basic CLEAN method was developed by Hiigbom 
(1974). It was originally designed for point sources, but 
it has been found to work well for extended sources 
as well when given a reasonable starting model. The 
Hijgbom CLEAN constructs discrete approximations 171 
to the CLEAN MAP in the (<,r]) plane from the CON- 
VOLWTION equation 

b’ * I = I’, (1) 

where b’ is the DIRTY BEAM, I’ is the DIRTY MAP (both 
in the (c, 77) PLANE), and f*g denotes a CONVOLUTION. 

The CLEAN algorithm starts with an initial approxi- 
mation 10 = 0. At the nth iteration, it then searches for 
the largest value in the residual map 

A DELTA FUNCTION is then centered at the location of 
the largest residual flux and given an amplitude p (the 
so-called “LOOP GAIN”) times this value. An antenna’s 
responsetothe DELTA FUNCTION, the DIRTY BEAM, is 
then subtracted from In-1 to yield In. Iteration con- 
tinues until a specified iteration limit 2v is reached, or 
until the peak residual or ROOT-MEAN-SQUARE resid- 
ual decreases to some level. The resulting final map is 
denoted 1~, and the position of each DELTA FUNCTION 

is saved in a “CLEAN component” table in the CLEAN 
MAP file. At the point where component subtraction is 
stopped, it is assumed that the residual brightness dis- 
tribution consists mainly of NOISE. 

To diminish high spatial frequency features which may 
be spuriously extrapolated from the measured data, 
each CLEAN component is convolved with the so-called 
CLEAN BEAM b, which is simply a suitably smoothed 
version of the sampling function ( WIRTY BEAM”). Usu- 
ally, a GAUSSIAN is used. A good CLEAN BEAM should: 

1. Have a unity FOURIER TRANSFORM inside the 
pled region of (u, V) space, 

sam- 

2. Have a FOURIER TRANSFORM which tends to 0 out- 
side the sampled (u, V) region as quickly as possible, 
and 

3. Not have any effects produced by NEGATIVE side- 
lobes larger than the NOISE level. 

A CLEAN MAP is produced when the final 
map is added to the the approximate solution, 

residual 

[clean map] = 1~ * b + [I’ - b’ * 1~1 (3) 

in order to include the NOISE. 

CLEAN will always converge to one (of possibly many) 
solutions if the following three conditions are satisfied 
(Schwarz 1978): 
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1. The beam must be symmetric. 

2. The FOURIER TRANSFORM of the DIRTY BEAM is 
NONNEGATIVE (positive definite or positive semidef- 
init e) . 

3. There must 
dirty image 
BEAM. 

be no spatial frequencies present 
which are not also present in the 

in the 
DIRTY 

These conditions are almost always satisfied in practice. 
If the number of CLEAN components does not exceed 
the number of independent (u, V) points, CLEAN con- 
verges to a solution which is the least squares fit of the 
FOUIIIER TRANSFORMS of the DELTA FUNCTION com- 
ponents to the measured visibility (Thompson et al. 
1986, p. 347). Schwarz claims that the CLEAN algo- 
rithm is equivalent to a least squares fitting of cosine 
and sine parts in the (u, u) plane of the visibility data. 
Schwab has produced a NOISE analysis of the CLEAN 
algorithm in the case of least squares minimization of 
a noiseless image which involves an Iv x A4 MATRIX. 

However, no NOISE analysis has been performed for a 
REAL image. 

Poor modulation of short spacings results in an under- 
estimation of the flux, which is manifested in a bowl of 
negative surface brightness surrounding an object. Pro- 
viding an estimate of the “zero spacing” flux (the to- 
tal flux of the source, which cannot be directly mea- 
sured by an interferometer) can considerably reduce 
this effect. Modulations or stripes can occur at spa- 
tial frequencies corresponding to undersampled parts 
of the (U,ZI) plane. This can result in a golf ball-like 
mottling for disk sources such as planets, or a corru- 
gated pattern of parallel lines of peaks and troughs 
(“stripes”). A more accurate model can be used to sup- 
press the “golf ball” modulations, but may not elimi- 
nate the corrugations. A tapering function which de- 
emphasizes data near (u, V) = (0,O) can also be used. 
Stripes can sometimes be eliminated using the Cornwell 
smoothness-stabilized CLEAN (a-k-a. Prussian helmet 
algorithm; Thompson et al. 1986). CLEANing part way, 
then restarting the CLEAN also seems to eliminate the 
stripes, although this fact is more disturbing than reas- 
suring. Stability the the CLEAN algorithm is discussed 
by Tan (1986). 

In order to CLEAN a map of a given dimension, it is nec- 
essary to have a beam pattern twice as large so a point 
source can be subtracted from any point in the map. 
Because the CLEAN algorithm uses a FAST FOURIER 
TRANSFORM, the size must also be a POWER of 2. 

There are many variants of the basic Hijgbom CLEAN 
which extend the method to achieve greater speed and 
produce more realistic maps. Alternate nonlinear DE- 
CONVOLUTION methods, such as the MAXIMUM EN- 

TROPY METHOD, may also be used, but are gener- 
ally slower than the CLEAN technique. The Astro- 
nomical Image Processing Software (AIPS) of the Na- 
tional Radio Astronomical Observatory includes 2-D 
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DECONVOLUTION algorithms in the tasks DCONV and 
UVMAP. Among the variants of the basic Hijgbom CLEAN 
are Clark, Cornwell smoothness stabilized (Prussian 
helmet), Cotton-Schwab, Gerchberg-Saxton (Fienup), 
Steer, Steer-Dewdney-Ito, and van Cittert iteration. 

In the Clark (1980) modification, CLEAN picks out only 
the largest residual points, and subtracts approximate 
point source responses in the (S, q) plane during minor 
(Hiigbom CLEAN) cycles. It only occasionally (dur- 
ing major cycles) computes the full 1n residual map by 
subtracting the identified point source responses in the 
(u, W) plane using a FAST FOURIER TRANSFORM for the 
CONVOLUTION. The ALGORITHM then returns to a mi- 
nor cycle. This algorithm modifies the Hiigbom method 
to take advantage of the array processor (although it also 
works without one). It is therefore a factor of Z-10 faster 
than the simple Hijgbom routine. It is implemented as 
the AIPS task APCLN. 

The Cornwell smoothness stabilized variant was devel- 
oped because, when dealing with two-dimensional ex- 
tended structures, CLEAN can produce artifacts in the 
form of low-level high frequency stripes running through 
the brighter structure. These stripes derive from poor 
interpolations into unsampled or poorly sampled re- 
gions of the (u, ti) plane. When dealing with quasi-one- 
dimensional sources (i.e., jets), the artifacts resemble 
knots (which may not be so readily recognized as spuri- 
ous). APCLN can invoke a modification of CLEAN that 
is intended to bias it toward generating smoother solu- 
tions to the deconvolution problem while preserving the 
requirement that the transform of the CLEAN compo- 
nents list fits the data. The mechanism for introducing 
this bias is the addition to the DIRTY BEAM of a DELTA 
FUNCTION (or “spike”) of small amplitude (MAT) while 
searching for the CLEAN components. The beam used 
for the deconvolution resembles the helmet worn by Ger- 
man military officers in World War I, hence the name 
“Prussian helmet” CLEAN. 

The theory underlying the Cornwell smoothness stabi- 
lized algorithm is given by Cornwell (1982, 1983), where 
it is described as the smoothness stabilized CLEAN. It 
is implemented in the AIPS tasks APCLN and MX. The 
spike *performs a NEGATIVE feedback into the dirty im- 
age, thus suppressing features not required by the data. 
Spike heights of a few percent and lower than usual loop 
gains are usually needed. Also according to the MX doc- 
umentation, 

(noise)2 1 
PHAT ==: 

2(signa1)2 = 2(SNR)2 ’ 

Unfortunately, the addition of a Prussian helmet gen- 
erally has “limited success,” so resorting to another de- 
convolution method such as the MAXIMUM ENTROPY 
METHOD is sometimes required. 

The Cotton-Schwab uses the Clark method, but the 
major cycle subtractions of CLEAN components are 
performed on ungridded visibility data. The Cotton- 
Schwab technique is often faster than the Clark variant. 
It is also capable of including the w  baseline term, thus 
removing distortions from noncoplanar baselines. It is 
often faster than the Clark method. The Cotton-Schwab 
technique is implemented as the AIPS task MX. 

The Gerchberg-Saxton variant, also called the Fienup 
variant, is a technique originally introduced for solv- 
ing the phase problem in electron microscopy. It was 
subsequently adapted for visibility amplitude measure- 
ments only. A Gerchberg-Saxton map is constrained to 
be NONZERO, and positive. Data and image plane con- 
straints are imposed alternately while transforming to 
and from the image plane. If the boxes to CLEAN are 
chosen to surround the source snugly, then the algorithm 
will converge faster and will have more chance of finding 
a unique image. The algorithm is slow, but should be 
comparable to the Clark technique (APCLN) if the map 
cant ains many picture elements. However, the resolu- 
tion is data dependent and varies across the map. It is 
implemented as the AIPS task APGS (Pearson 1984). 

The Steer variant is a modification of the Clark variant 
(Cornwell 1982). It is slow, but should be comparable 
to the Clark algorithm if the map contains many pic- 
ture elements. The algorithm used in the program is 
due to David Steer. The principle is similar to Barry 
Clark’s CLEAN except that in the minor cycle only 
points above the (trim level) x (peak in the residual map) 
are selected. In the major cycle these are removed us- 
ing a FAST FOURIER TRANSFORM. If boxes are chosen 
to surround the source snugly, then the algorithm will 
converge faster and will have more chance of finding a 
unique image. It is implemented in AIPS as the exper- 
imental program STEER and as the Steer-Dewdney-Ito 
variant combined with the Clark algorithm as SDCLN. 

The Steer-Dewdney-Ito variant is similar to the Clark 
variant, but the components are taken as all pixels 
having residual flux greater than a cutoff value times 
the current peak residual. This method should avoid 
the “ripples” produced by the standard CLEAN on ex- 
tended emission. The AIPS task SDCLN does an AP- 
based CLEAN of the the Clark type, but differs from 
APCLN in that it offers the option to switch to the Steer- 
Dewdney-Ito method. 

Finally, van Cittert iteration consists of two steps: 

1. Estimate a correction to add to the current map es- 
timate by multiplying the residuals by some weight. 
In the classical van Cittert algorithm, this weight is 
a constant, where as in CLEAN the weight is zero 
everywhere except at the peak of the residuals. 

2. Add the step to the current estimate, and subtract 
the estimate, convolved with the DIRTY BEAM, from 
the residuals. 
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Though it is a simple algorithm, it works well (if slowly) 
for cases where the DIRTY BEAM is positive semidefinite 

(as it is in astronomical observations). The basic idea is 
that the DIRTY MAP is a reasonably good estimate of 
the deconvolved map. The different iterations vary only 
in the weight to apply to each residual in determining 

the correction step. van Cittert iteration is implemented 
as the AIPS task APVC, which is a rather experimental 
and ad hoc procedure. In some limiting cases, it reduces 
to the standard CLEAN algorithm (though it would be 
impractically slow). 

see also CLEAN BEAM, CLEAN MAP, DIRTY BEAM, 
DIRTY MAP 
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Interferometry and Synthesis in Radio Astronomy. New 
York: Wiley, p. 348, 1986, 

CLEAN Beam 
An ELLIPTICAL GAUSSIAN fit to the DIRTY BEAM in 

order to remove sidelobes. The CLEAN beam is con- 
volved with the final CLEAN iteration to diminish spu- 

rious high spatial frequencies. 

see also CLEAN ALGORITHM, CLEAN MAP,DECON- 
VOLUTION, DIRTY BEAM, DIRTY MAP 

CLEAN Map 
The deconvolved map extracted from a finitely sampled 
DIRTY MAP by the CLEAN ALGORITHM, MAXIMUM 
ENTROPY METHOD, or any other DECONVOLUTION pro- 
cedure. 

see also CLEAN ALGORITHM, CLEAN BEAM,DECON- 
VOLUTION,DIRTY BEAM, DIRTY MAP 

Clebsch-Aronhold Notation 
A notation used to describe curves. The fundamen- 

tal principle of Clebsch-Aronhold notation states that 
if each of a number of forms be replaced by a POWER of 
a linear form in the same number of variables equal to 
the order of the given form, and if a sufficient number 
of equivalent symbols are introduced by the ARONHOLD 
PROCESS so that no actual COEFFICIENT appears except 

to the first degree, then every identical relation holding 

for the new specialized forms holds for the general ones. 

References 
Coolidge, J. L. A Treatise on Algebraic Plane Curves. New 
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Clebsch Diagonal Cubic 

A CUBIC ALGEBRAIC SURFACE given by the equation 

xo3 +x13 +xz3 +233 +xd3 = 0, (1) 

with the added constraint 

x0 +a+22 +x3 +x4 = 0. (2) 

The implicit equation obtained by taking the plane at 

infinity as x0 + 51 + x2 + x3/2 is 

81(x3+y3+r3)-189(x2y+x2z+y2x+y2z+z2x+z2y) 

+54xyx + 126(xy + xz + yz) - 9(x2 + y2 + z”) 

-9(x + y + z) + 1 = 0 (3) 

(Hunt, Nordstrand). On Clebsch’s diagonal surface, 
all 27 of the complex lines (SOLOMON'S SEAL LINES) 
present on a general smooth CUBIC SURFACE are real. 
In addition, there are 10 points on the surface where 3 
of the 27 lines meet. These points are called ECKARDT 
POINTS (Fischer 1986, Hunt), and the Clebsch diago- 
nal surface is the unique CUBIC SURFACE containing 10 

such points (Hunt). 

If one of the variables describing Clebsch’s diagonal sur- 
face is dropped, leaving the equations 

xo3 + Xl3 + x23 + x33 = 0, (4) 
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It:0 +a+22 +x3 = 0, (5) 

the equations degenerate into two intersecting PLANES 
given by the equation 

(x + y)(x + z)(y + z) = 0. (6) 

see also CUBIC SURFACE, ECKARDT POINT 
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Clebsch-Gordon Coefficient 
A mathematical symbol used to integrate products of 
three SPHERICAL HARMONICS. Clebsch-Gordon coeffi- 
cients commonly arise in applications involving the ad- 
dition of angular momentum in quantum mechanics. If 
products of more than three SPHERICAL HARMONICS 
are desired, then a generalization known as WIGNER 
6j-SYMBOLS or WIGNER Sj-SYMBOLS is used. The 
Clebsch-Gordon coefficients are written 

c’ mlm2 = (jlj2mm2ljlj2jm) (1) 

and are defined by 

*JM = 
>: 

cJ WM2 hf+m (2) 

M=M1+M2 

where J G J1 + Jz. The Clebsch-Gordon coefficients 
are sometimes expressed using the related RACAH V- 
COEFFICIENTS 

V(jlj2j; mlm2m) (3) 

or WIGNER 3j-SYMBOLS. 
are 

Connections among the three 

(jlj2mm2 ljljzm) 
. . . 

- - - ( 1) -jl+jz--m 
F( 

rJj+1 Jl n 3 
ml m2 -m 

> 
(4) 

(jlj2mm2 Ijlj2 jm) 

= (-Qj+“Jzj+lV(j~j2j; mlm2 - m) (5) 

( 

. . . 
V(jlj,j;mlmzm) = (-1)-j1+j2+j z2 cl ;12’, , 

> 
(6) 

They have the symmetry 

(jlj2mlm2ljij2jm) = (-l)j1+j2+(j2jlmzml(j~jljm), 
(7) 

and obey the ort hogonality relationships 

X( jlj2mm2ljlj2jm>(j1j2jm~jij2mh3 

j,m 

= S m1m f Sm2mr (8) 
1 2 

lE( jlj2mm2 Ij,j2jm)( j, j2j’m’I jlj2mlm2) 

ml e2 

= 6jjr6mmt. (9) 

see also RACAH V-COEFFICIENT, RACAH w-COEF- 
FICIENT, WIGNER 3j-Sy~BoL, WIGNER 6j-SYMBOL, 
WIGNER Sj-SYMBOL 
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Clement Matrix 

see KAC MATRIX 

Clenshaw Recurrence Formula 
The downward Clenshaw recurrence formula evaluates a 
sum of products of indexed COEFFICIENTS by functions 
which obey a recurrence relation. If 

k-0 

and 

Fn+r(x) = a(n, x)K(x) + P(n,x)Fn-l(X), 
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where the cks are known, then define 

yN+2 =yN+l=O 

yk = @,x)Y kfl +p(k+ l,Z)yk+2 + ck 

for k = N,N- l,... and solve backwards to obtain y2 

and yl. 

Ck = yk - a@, x)yk+l - P(k+ 1, x)yk+Z 

f(x) = 2 ckFk(x) 

k=O 

= coFo(x)+ [y1 - a(Lx)yz - P(2,x)y3]fi(x) 

+[y2 - @,x)y3 - p(%x)y4]F2(x) 

+[y3 - @,X)Y4 - P(WY5lF3(X) 

+[y4 - "(@)y5 - p(5, x)yS]F4(x)+ l  ** 

= coFo(~)+yl~~(~)+y2[Fz(~)-~(~,~)F~(~>] 

+y3[F3(x) - @,x)F2(x) - P(W] 

+y4[F4(x) - 43, +3(x) - P(3,4] + - 9  l  

= co~o(~)+Y2[{~(~,~)~1(~) +P(WFo(x)) 

- a(Lx)F&)] +yA(x) 

= coFo(x) + ylF&) + P(l, x)Fo(x)yz. 

The upward Clenshaw recurrence formula is 

y-2 = y-1 = 0 

1 

” = p(k + 1,x) 
[Yk-2 - a(k,x)yk-1 - ck] 

for k = 0, 1,. . . , IV - 1. 

f(x) = CNFN(X) - P(N, x>FN-X(&IN--~ - FN(X)YN-2. 
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Cliff Random Number Generator 
A RANDOM NUMBER generator produced by iterating 

X n+l = llOOlnXn (mod 1)1 

for a SEED X0 = 0.1. This simple generator passes 

the NOISE SPHERE test for randomness by showing no 
structure. 

see UZSO RANDOM NUMBER, SEED 
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Freeman, pp. 233-247, 1995. 

Clifford Algebra 
Let V be an n-D linear SPACE over a FIELD K, and let Q 
be a QUADRATIC FORM on V. A Clifford algebra is then 
defined over the T(V)/I(Q), where T(V) is the tensor 
algebra over V and I is a particular IDEAL of T(V). 

References 
Iyanaga, S. and Kawada, Y. (Eds.). “Clifford Algebras.” $64 

in Encyclopedic Dictionary of Mathematics. Cambridge, 
MA: MIT Press, pp. 220-222, 1980. 
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Clifford’s Circle Theorem 
Let Cl, C2, C3, and Cd be four CIRCLES of GENERAL 
POSITION through a point P. Let Pij be the second 
intersection of the CIRCLES ci and Cj* Let Cijk be 

the CIRCLE Pij Pik Pjk. Then the four CIRCLES P234, 

fi34, P 124, and Pi23 all pass through the point P123& 
Similarly, let C5 be a fifth CIRCLE through P. Then the 

five points p2345, pl345, P1245, Pl235 and P1234 all lie on 
One CIRCLE C12345, And SO On. 

see also CIRCLE, Cox’s THEOREM 

Clifford’s Curve Theorem 
The dimension of a special series can never exceed half 
its order. 

References 
Coolidge, J. L. A Treatise on Algebraic Plane Curves. New 

York: Dover, p. 263, 1959. 

Clique 
In a GRAPH of IV VERTICES, a subset of pairwise ad- 

jacent VERTICES is known as a clique. A clique is a 

fully connected subgraph of a given graph. The prob- 
lem of finding the size of a clique for a given GRAPH is 
an NP-COMPLETE PROBLEM. The numberofgraphson 
n nodes having 3 cliques are 0, 0, 1, 4, 12, 31, 67, . . . 

(Sloane’s A005289). 

see also CLIQUE NUMBER, MAXIMUM CLIQUE PROB- 
LEM,RAMSEY NUMBER,TUR~N'S THEOREM 

References 
Sloane, N. J. A. Sequence A005289/M3440 in “An On-Line 

Version of the Encyclopedia of Integer Sequences." 

Clique Number 
The number of VERTICES in the largest CLIQUE of C, 
denoted w(G). For an arbitrary GRAPH, 

where di is the DEGREE of VERTEX i. 

References 
Aigner, M, ‘TurAn’s Graph Theorem.” Amer. Math. 

Monthly 102, 808-816, 1995. 
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Clock Solitaire 
A solitaire game played with CARDS. The chance of 
winning is l/13, and the AVERAGE number of CARDS 
turned up is 42.4. 

References 
Gardner, M. Mathematical Magic Show: More Puzzles, 

Games, Diversions, Illusions and Other Mathematical 
Sleight-of-Mind from Scientific American. New York: 
Vintage, pp. 244-247, 1978. 

Close Packing 

see SPHERE PACKING 

Closed Curve 

closed curves open curves 

A CURVE with no endpoints which completely encloses 
an AREA. A closed curve is formally defined as the con- 
tinuous IMAGE of a CLOSED SET. 

see also SIMPLE CURVE 

Closed Curve Problem 
Find NECESSARY and SUFFICIENT conditions that de- 
termine when the integral curve of two periodic func- 
tions K(S) and T(S) with the same period L is a CLOSED 
CURVE. 

Closed Disk 
An n-D closed disk of RADIUS T is the collection of points 
of distance 5 T from a fixed point in EUCLIDEAN n- 
space. 

see also DISK, OPEN DISK 

Closed Form 
A discrete FUNCTION A(n, JG) is called closed form (or 
sometimes “hypergeometric”) in two variables if the ra- 
tios A(n+ 1, k)/A(n, k) and A(n, k+ l)/A(n, k) are both 
RATIONAL FUNCTIONS. A pair of closed form functions 
(F,G) is said to be a WOLF-ZEILBERGER PAIR if 

F(n -I- 1, k) - F(n, k) = G(n, k + 1) - G(n, k). 

see UZSORATIONAL FUNCTION,WILF-ZEILBERGER PAIR 

References 
Petkovgek, M.; Wilf, H. S.; and Zeilberger, D. A=B. Welles- 

ley, MA: A. K. Peters, p. 141, 1996. 
Zeilberger, D. “Closed Form (Pun Intended!).” Contempo- 

rary Math. 143, 579-607, 1993. 

Closure 

Closed Graph Theorem 
A linear OPERATOR between two BANACH SPACES is 
continuous IFF it has a “closed” GRAPH. 

see also BANACH SPACE 

References 
Zeidler, E. Applied Functional Analysis: Applications to 

Mathematical Physics. New York: Springer-Verlag, 1995. 

Closed Interval 
An INTERVAL which includes its LIMIT POINTS. If the 
endpoints of the interval are FINITE numbers a and b, 
then the INTERVAL is denoted [u,b]. If one of the end- 
points is *oo, then the interval still contains all of its 
LIMIT POINTS, so [CL, 00) and (--00, b] are also closed 
intervals. 

see UZSO HALF-CLOSED INTERVAL, OPEN INTERVAL 

Closed Set 
There are several equivalent definitions of a closed SET. 
A SET S is closed if 

The COMPLEMENT ofSisan OPEN SET, 

Sisits own CLOSURE, 

Sequences/nets/filters in S which converge do so 
within S, 

Every point outside S has a NEIGHBORHOOD disjoint 
from S. 

The POINT-SET TOPOLOGICAL definition ofaclosed set 
is a set which contains all of its LIMIT POINTS. There- 
fore, a closed set C is one for which, whatever point z 
is picked outside of C, z can always be isolated in some 
OPEN SET which doesn’t touch C. 

see also CLOSED INTERVAL 

Closure 
A SET S and a BINARY OPERATOR I are said to ex- 
hibit closure if applying the BINARY OPERATOR to two 
elements S returns a value which is itself a member of 
- 
3. 

The term “closure” is also used to refer to a “closed” 
version of a given set. The closure of a SET can be 
defined in several equivalent ways, including 

1. The SET plus its LIMIT POINTS, also called “bound- 
ary” points, the union of which is also called the 
“frontier ,” 

The unique smallest CLOSED SET containing the 
given SET, 

The COMPLEMENT of the interior of the COMPLE- 
MENT of the set, 

The collection of all points such that every NEIGH- 
BORHOOD of them intersects the original SET in a 
nonempty SET. 

In topologies where the T%SEPARATION AXIOM is as- 
sumed, the closure of a finite SET S is S itself. 
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see also BINARY OPERATOR, EXISTENTIAL CLOSURE, 
REFLEXIVE CLOSURE, TIGHT CLOSURE, TRANSITIVE 
CLOSURE 

Clothoid 

see also CORNU SPIRAL 

Clove Hitch 

A HITCH also called the BOATMAN'S KNOT or PEG 
KNOT. 

References 
Owen, P. Knots. Philadelphia, PA: Courage, pp. 24-27, 1993. 

Clump 

References 
Lauwerier, H. Fractals: Endlessly Repeated Geometric Fig- 
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Coates-Wiles Theorem 
In 1976, Coates and Wiles showed that ELLIPTIC 
CURVES with COMPLEX MULTIPLICATION havinganin- 
finite number of solutions have L-functions which are 
zero at the relevant fixed point. This is a special case of 
the SWINNERTON-DYER CONJECTURE. 

References 
Cipra, B. “Fermat Prover Points to Next Challenges.” Sci- 

ence 271, 1668-1669, 1996. 

Coaxal Circles 

@ID 0 
@ 
0 

see RUN 

Cluster 
Given a lattice, a cluster is a group of filled cells which 
are all connected to their neighbors vertically or hori- 
zontally. 

see also CLUSTERPERIMETER, PERCOLATION THEORY, 
s-CLUSTER+-RUN 

CIRCLES which share a RADICAL LINE with a given cir- 
cle are said to be coaxal. The centers of coaxal circles 
are COLLINEAR. It is possible to combine the two types 
of coaxal systems illustrated above such that the sets 
are orthogonal. 

see also CIRCLE, COAXALOID SYSTEM, GAUSS- 
BODENMILLER THEOREM,RADICAL LINE 

References 

References 
Stauffer, D. and Aharony, A. Introduction to Percolation 

Theory, 2nd ed. London: Taylor & Francis, 1992. 

Cluster Perimeter 
The number of empty neighbors of a CLUSTER. 

see also PERIMETER POLYNOMIAL 

Coanalytic Set 
A DEFINABLE SET which is the complement of an AN- 
ALYTIC SET. 

see also ANALYTIC SET 

Coastline Paradox 
Determining the length of a country’s coastline is not 
as simple as it first appears, as first considered by 
L. F. Richardson (1881-1953). In fact, the answer de- 
pends on the length of the RULER you use for the mea- 
surements. A shorter RULER measures more of the sin- 
uosity of bays and inlets than a larger one, so the esti- 
mated length continues to increase as the RULER length 
decreases. 

In fact, a coastline is an example of a FRACTAL, and 
plotting the length of the RULER versus the measured 
length of the coastline on a log-log plot gives a straight 
line, the slope of which is the FRACTAL DIMENSION of 
the coastline (and will be a number between 1 and 2). 

Coxeter, H. S+ M. and Greitzer, S. L. Geometry Revisited. 
Washington, DC: Math. Assoc. Amer., pp. 35-36 and 122, 
1967. 

Dixon, R. Mathographics. New York: Dover, pp. 68-72,199l. 
Johnson, R. A. Modern Geometry: An Elementary Treatise 

on the Geometry of the Triangle and the Circle. Boston, 
MA: Houghton Mifflin, pp. 34-37, 199, and 279, 1929. 

Coaxal System 
A system of COAXAL CIRCLES. 

Coaxaloid System 
A system of circles obtained by multiplying each RADIUS 
in a COAXAL SYSTEM by a constant. 

References 
Johnson, R. A. Modern Geometry; An Elementary Treatise 

on the Geometry of the Triangle and the Circle. Boston, 
MA: Houghton Mifflin, pp. 276-277, 1929. 

Cobordant Manifold 
Two open MANIFOLDS lM and M’ are cobordant if there 
exists a MANIFOLD with boundary IV”+’ such that an 
acceptable restrictive relationship holds. 

see also COBORDISM,FL-COBORDISM THEOREM,MORSE 
THEORY 

Cobordism 

see BORDISM, h-COBORDISM 
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Cobordism Group 

see BORDISM GROUP 

Cobordism Ring 

see BORDISM GROUP 

Cochleoid 

The cochleoid, whose name means “snail-form” in Latin, 
was first discussed by J. Peck in 1700 (MacTutor Ar- 
chive). The points of contact of PARALLEL TANGENTS 
to the cochleoid lie on a STROPHOID. 

In POLAR COORDINATES, 

asin 
r=- 

8 l  

(1) 

In CARTESIAN COORDINATES, 

(2) 

The CURVATURE is 

2J%Y3[28 - sin(20)] 

K = [l + 202 - cos(28) - 28 sin(2B)13i2 ’ (3) 

see also QUADRATRIX OF HIPPIAS 
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http://www-groups.dcs.st-and.ac.uk/-history/Curves 
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Cochleoid Inverse Curve 

The INVERSE CURVE ofthe COCHLEOID 

sin 8 
TX- 

8 

with INVERSI~ N 

radiu .s k is the Q 
CENTER at the 
UADRATRIX OF 

ORIGIN 
HIPPIAS 

Code 

and inversion 

X = ktcot 8 (2) 

y = kt. (3) 

Cochloid 

see CONCHOID OF NICOMEDES 

Cochran’s Theorem 
The converse of FISHER'S THEOREM. 

Cocked Hat Curve 

The PLANE CURVE 

(x2 + 2ay - u2)2 = y2(a2 - x2), 

which is similar to the BICORN. 

References 
Cundy, H. and Rollett, A. Mathematical Models, 3rd ed. 

Stradbroke, England: Tarquin Pub., p. 72, 1989. 

Cocktail Party Graph 

A GRAPH consisting of two rows of paired nodes in which 
all nodes but the paired ones are connected with an 
EDGE. It is the complement of the LADDER GRAPH. 

Coconut 

see MONKEY AND COCONUT PROBLEM 

Codazzi Equations 

see MAINARDI-CODAZZI EQUATIONS 

Code 
A code is a set of n-tuples of elements (“WORDS") taken 
from an ALPHABET. 

see ah ALPHABET, CODING THEORY, ENCODING, 
ERROR-CORRECTING CODE, GRAY CODE, HUFFMAN 
CODING, ISBN, LINEAR CODE, WORD 
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Codimension 
The minimum number of parameters needed to fully de- 
scribe all possible behaviors near a nonstructurally sta- 
ble element,. 

see &O BIFURCATION 

Coding Theory 
Coding theory, sometimes called ALGEBRAIC CODING 
THEORY, deals with the designof ERROR-CORRECTING 
CODES for the reliable transmission of information 
across noisy channels. It makes use of classical and 
modern algebraic techniques involving FINITE FIELDS, 
GROUP THEORY, and polynomial algebra. It has con- 
nections with other areas of DISCRETE MATHEMATICS, 
especially NUMBER THEORY and the theory of experi- 
mental designs. 

see also ENCODING, ERROR-CORRECTING CODE, GA- 
LOIS FIELD, HADAMARD MATRIX 
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MacWilliams, F. J. and Sloane, N, J. A. The Theory ofError- 
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Roman, S. Coding and Information Theory. New York: 
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Coefficient 
A multiplicative factor (usually indexed) such as one of 
theconstants ai in the POLYNOMIAL a,~~+a,-~a:~-~+ 
m  . l  +a2x2 +aIr:+ao. 

see ~2~0 BINOMIAL COEFFICIENT, CARTAN TOR- 
SION COEFFICIENT, CENTRAL BINOMIAL COEFFI- 
CIENT, CLEB~~H-GORDON COEFFICIENT, COEFFI- 
CIENT FIELD, COMMUTATION COEFFICIENT, Cow 
NECTION COEFFICIENT, CORRELATION COEFFICIENT, 
CROSS-CORRELATION COEFFICIENT, EXCESS COEF- 
FICIENT, GAUSSIAN COEFFICIENT, LAGRANGIAN Co- 
EFFICIENT, MULTINOMIAL COEFFICIENT, PEARSON’S 
SKEWNESS COEFFICIENTS, PRODUCT-MOMENT Co- 
EFFICIENT OF CORRELATION, QUARTILE SKEWNESS 
COEFFICIENT, QUARTILE VARIATION COEFFICIENT, 
RACAH V-COEFFICIENT, RACAH W-COEFFICIENT,RE- 
GRESSION COEFFICIENT, ROMAN COEFFICIENT, TRI- 
ANGLE COEFFICIENT, UNDETERMINED COEFFICIENTS 
METHOD, VARIATION COEFFICIENT 

Coefficient Field 
Let V be a VECTOR SPACE over a FIELD K, and let A be 
a nonempty SET. For an appropriately defined AFFINE 
SPACE A, K is called the COEFFICIENT field. 

Coercive Functional 
A bilinear FUNCTIONAL 4 on a normed SPACE E is called 
coercive (or sometimes ELLIPTIC) if there exists a POS- 
ITIVE constant K such that 

for all 61: E E. 

see UZSO LAX-MILGRAM THEOREM 

Keterences 
Debnath, L. and MikusiJlski, P. Introduction to Hilbert 

Spaces 
1990. 

with Applications. San Diego, CA: Academic Press, 

Cofactor 
The MINOR of a DETERMINANT is another DETERMI- 
NANT ICI formed by omitting the ith row and jth col- 
umn of the original DETERMINANT (Ml. 

SWUZSODETERMINANT EXPANSION BYMINORS,MINOR 

Cohen-Kung Theorem 
Guarantees that the trajectory of LANGTON'S ANT is 
unbounded. 

Cohomology 
Cohomology is an invariant of a TOPOLOGICAL SPACE, 
formally “dual” to HOMOLOGY, and so it detects “holes” 
in a SPACE. &homology has more algebraic structure 
than HOMOLOGY, making it into a graded ring (multi- 
plication given by “cup product”), whereas HOMOLOGY 
is just a graded ABELIAN GROUP invariant of a SPACE. 

A generalized homology or cohomology theory must sat- 
isfy all of the EILENBERG-STEENROD AXIOMS with the 
exception of the dimension axiom. 

~~~UZSOALEKSANDROV-TECH COHOMOLOGY,ALEXAN- 
DER-SPANIER COHOMOLOGY, TECH COHOMOLOGY,DE 
RHAM COHOMOLOGY, HOMOLOGY (TOPOLOGY) 

Cohomotopy Group 
Cohomotopy groups are similar to HOMOTOPY GROUPS. 
A cohomotopy group is a GROUP related to the HOMO- 
TOPY classes of MAPS from a SPACE X into a SPHERE 
s n 

. 

see also HOMOTOPY GROUP 

coin 
A Aat disk which acts as a two-sided DIE. 

see BERNOULLI TRIAL, CARDS, COIN PARADOX, COIN 
TOSSING, DICE, FELLER'S COIN-TOSSING CONSTANTS, 
FOUR COINS PROBLEM, GAMBLER'S RUIN 
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Coin Flipping 

see COIN TOSSING 

After a half rotation of the coin on the left around the 
central coin (of the same RADIUS), the coin undergoes 
a complete rotation. 

References 
Pappas, T. ‘(The Coin Paradox.” The Joy of Mathematics. 

San Carlos, CA: Wide World Publ./Tetra, p. 220, 1989. 

Coin Problem 
Let there be n > 2 INTEGERS 0 < al < . . . < a, with 

(al,a2,.- , a,) z 1 (all R ELATIVELY PRIME). For large 
enough N = cyCl aixi, there is a solution in NONNEG- 
ATIVE INTEGERS xi. The greatest N = g(al, az, . . . a,) 
for which there is no solution is called the coin problem. 
Sylvester showed 

g(m, a2) = (al - l)(a2 - 1) - 1, 

and an explicit solution is known for n = 3, but no 
closed form solution is known for larger N. 

References 
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Coin Tossing 
An idealized coin consists of a circular disk of zero thick- 
ness which, when thrown in the air and allowed to fall, 
will rest with either side face up ( “heads” H or Yails” T) 

with equal probability. A coin is therefore a two-sided 
DIE. A coin toss corresponds to a BERNOULLI DISTRI- 
BUTION with p- l/2. Despite slight differences between 
the sides and NONZERO thickness of actual coins, the 
distribution of their tosses makes a good approximation 
to a p= l/2 BERNOULLI DISTRIBUTION. 

There are, however, some rather counterintuitive prop- 
erties of coin tossing. For example, it is twice as likely 
that the triple TTH will be encountered before THT 
than after it, and three times as likely that THH will 
precede HTT. Furthermore, it is six times as likely that 
HTT will be the first of HTT, TTH, and TTT to oc- 

cur (Honsberger 1979). More amazingly still, spinning 
a penny instead of tossing it results in heads only about 
30% of the time (Paulos 1995). 

Let w(n) be the probability that no RUN of three consec- 
utive heads appears in n independent tosses of a COIN. 
The following table gives the first few values of w(n). 

0 1 
1 1 
2 1 

Feller (1968, pp. 278-279) proved that 

lim w(n)anfl = p, 
n-boa 

(1) 

a = 5[(136+ 241/33)1’3 - 8(136+ 24&3)-1'3 - 21 

= 1.087378025... (2) 

P 
2-a - - ~ = 1.236839845. . . . 

4-3a 

The corresponding constants for a RUN 
are ~ik, the smallest POSITIVE ROOT of 

(3) 

of IC > 1 heads 

1 - x + (+x>“+’ = 0, (4) 

Pk = 
2-a 

k+l-k& 
(5) 

These are modified for unfair coins with P(H) = p and 
P(T) = q = 1 - p to & the smallest POSITIVE ROOT 
of 

1 - 2 + qpkxk+l = 0, (6) 

P f, 
1 -pa; 

= (k + 1 - kcyX)p (7) 

(Feller 1968, pp. 322-325). 

see also BERNOULLI DISTRIBUTION, CARDS, COIN, 
DICE, GAMBLER'S RUIN, MARTINGALE, RUN, SAINT 
PETERSBURG PARADOX 
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Coincidence 
A coincidence is a surprising concurrence of events, per- 
ceived as meaningfully related, with no apparent causal 
connection (Diaconis and Mosteller 1989). 

see also BIRTHDAY PROBLEM, LAW OF TRULY LARGE 
NUMBERS, ODDS, PROBABILITY, RANDOM NUMBER 
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Colatitude 
The polar angle on a SPHERE measured from the North 
Pole instead of the equator. The angle 4 in SPHERICAL 
COORDINATES is the COLATITUDE. It is related to the 
LATITUDE 6 by 4 = 90” - S. 

see also LATITUDE, LONGITUDE, SPHERICAL COORDI- 

2, l), (-2, -l), (-5, -7, -lo), and (-17, -25, -37, 
-55, -82, -41, -61, -91, -136, -68, -34). The num- 
ber of tripling steps needed to reach 1 for n = 1, 2, . l  l  

are 0, 0, 2, 0, 1, 2, 5, 0, 6, . . . (Sloane’s A006667). 

The Collatz problem was modified by Terras (1976, 
1979), who asked if iterating 

T( > 
1, for x even 

2 = 
i(3x + 1) for x odd (2) 

always returns to 1. If NEGATIVE numbers are included, 
there are 4 known cycles: (1, 2), (-l), (-5, -7, -lo), 
and (-17, -25, -37, -55, -82, -41, -61, -91, -136, 
-68, -34). It is a special case of the “generalized Collatz 
problem” with d = 2, nzo = 1, nzl = 3, TO = 0, and 
r1 = -1. Terras (1976, 1979) also proved that the set 
of INTEGERS SI, = {n : n has stopping time 5 k} has a 
limiting asymptotic density F(k), so the limit 

F@) 
1 

= lim -, 
z+m 2 (3) 

for (n : n 5 x and a(n) < k} exists. Furthermore, 
F(k) + 1 as JG --+ 00, so almost all INTEGERS have a 
finite stopping time. Finally, for all k > 1, - 

1 - F(k) = lim 1 < 2-“, 
x+-x - (4) 

where 

NATES 
rj = 1 - H(8) = 0.05004. l  l  

(5) 

Colinear 

see COLLINEAR 

Collatz Problem 
A problem posed by L. Collatz in 1937, also called the 
3x + 1 MAPPING, HASSE,S ALGORITHM, KAKUTANI'S 
PROBLEM, SYRACUSE ALGORITHM, SYRACUSE PROB- 
LEM, THWAITES CONJECTURE, and ULAM'S PROBLEM 
(Lagarias 1985). Thwaites (1996) has offered a Cl000 
reward for resolving the CONJECTURE. Let n be an IN- 
TEGER. Then the Collatz problem asks if iterating 

f0 { 
+ for n even 

n= 
3n + 1 for n odd 

(1) 

always returns to 1 for POSITIVE n. This question 
has been tested and found to be true for all numbers 
< 5.6 x 1Ol3 (Leavens and Vermeulen 1992), and more 
recently, 1015 (Vardi 1991, p. 129). The members of 
the SEQUENCE produced by the Collatz are sometimes 
known as HAILSTONE NUMBERS. Because of the dif- 
ficulty in solving this problem, Erdcs commented that 
“mathematics is not yet ready for s uch problems” (La- 
garias 1985). If NEG ATIVE numbers are included, there 
are four known cycles (excluding the trivial 0 cycle) : (4, 

H(x) = -xlgx - (l- x)lg(l -x) (6) 

8=& (7) 

(Lagarias 1985). 

Conway proved that the original Collatz problem has 
no nontrivial cycles of length < 400. Lagarias (1985) 
showed that there are no nontrivial cycles with length 
< 275,000. Conway (1972) also proved that Collatz- 
type problems can be formally UNDECIDABLE. 

A generalization of the COLLATZ PROBLEM lets d > 2 be - 
a POSITIVE INTEGER and mo, . l  l  , md-1 be NONZERO 

INTEGERS. Also let pi E Z satisfy 

ri E imi (mod d) m (8) 

Then 
mix---i 

T(x) = d (9) 

for x E i (mod d) defines a generalized Collatz mapping. 
An equivalent form is 

T(x) = IT] + Xi (10) 
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for 2 = i (mod d) where X0, . l  . , Xd-1 are INTEGERS 
and Lr] is the FLUOR FUNCTION. The problem is con- 
nected with ERGODIG THEORY and MARKOV CHAINS 
(Matthews 1995). Matthews (1995) obtained the fol- 
lowing table for the mapping 

Tk(x) = 
IX 

5(3x + k) 
for x s 0 (mod 2) 
for x E 1 (mod 2), (11) 

where k = T5k. 

k # Cycles Max. Cycle Length 

0 5 27 
1 10 34 
2 13 118 
3 17 118 
4 19 118 
5 21 165 
6 23 433 

Matthews and Watts (1984) proposed the following con- 
jectures. 

1. If 1rno.m .rn+ll < dd, then all trajectories {TK(n)} 
for n f Z eventually cycle. 

2. If Irn() *. -md-11 > dd, then almost all trajectories 
{TK(n)} for n E z are divergent, except for an ex- 
ceptional set of INTIZGIZR~ n satisfying 

#{n E Sj -X 5 n < X} = o(X). 

3. The number of cycles is finite. 

4. If the trajectory {TK(n)} for n E Z is not eventually 
cyclic, then the iterates are uniformly distribution 
mod da for each clr > 1, with - 

lim 1 card{K < NITK(n) s j (mod d”)} 
N+ooN+l 

= d-” (12) 

for 0 < j < da - 1. - - 

Matthews believes that the map 

i 

7x + 3 for 2 G 0 (mod 3) 

T( > x = ;(7++2) fora:= (mod3) (13) 
3(x - 2) for x G 2 (mod 3) 

will either reach 0 (mod 3) or will enter one of the cycles 
(-1) or (-2, -4), and offers a $100 (Australian?) prize 
for a proof. 

see also HAILSTONE NUMBER 
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Collinear 
p3 

Pl p2 4 L 

Three or more points PI, PZ , P3, . l  . , are said to be 
collinear if they lie on a single straight LINE L. (Two 
points are always collinear.) This will be true IFF the 
ratios of distances satisfy 

x2 - Xl : y2 -yl:z2-zl=x3-xl:y3-y1:z3-x1~ 

Two points are trivially collinear since two points deter- 
mine a LINE. 

see ah CONCYCLIC, DIRECTED ANGLE, N-CLUSTER, 
SYLVESTER'S LINE PROBLEM 

Collimation 
A transformation of the plane which transforms COL- 
LINEAR points into COLLINEAR points. A projective 
collineation transforms every 1-D form projectively, and 
a perspective collineation is a collineation which leaves 
all lines through a point and points through a line invari- 
ant. In an ELATION, the center and axis are incident; in 
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a HOMOLOGY they are not. For further discussion, see 
Coxeter (1969, p. 248). 
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Cologarit hm 
The LOGARITHM of the RECIPROCAL of a number, equal 

to the NEGATIVE of the LOGARITHM of the number it- 
self, 

1 
colog II: E log - 

0 
= - log X. 

2 

see also ANTILOGARITHM, LOGARITHM 

Colon Product 
Let Al3 and CD be DYADS. Their colon product is 

defined by 

AB : CD E Cm AB l  D = (A l  C)(B . D)e 

Colorable 
Color each segment of a KNOT DIAGRAM using one of 

three colors. If 

1. at any crossing, either the 
all the same, and 

colors are all different or 

2. at least two colors are used, 

then a KNOT is said to be colorable (or more specif- 
ically, THREE-COLORABLE). Colorability is invariant 

under REIDEMEISTER MOVES, and can be generalized. 
For instance, for five colors 0, 1, 2, 3, and 4, a KNOT is 
five-colorable if 

1. at any crossing, three segments meet. If the overpass 
is numbered a and the two underpasses B and C, 

then 2a E b + c (mod 5), and 

2. at least two colors are used. 

Colorability cannot alway distinguish HANDEDNESS. 
For instance, three-colorability can distinguish the mir- 
ror images of the TREFOIL KNOT but not the FIGURE- 
OF-EIGHT KNOT. Five-colorability, on the other hand, 

distinguishes the MIRROR IMAGES of the FIGURE-• F- 
EIGHT KNOT butnotthe TREFOIL KNOT. 

see also COLORING, THREE-COLORABLE 

Coloring 
A coloring of plane regions, LINK segments, etc., is an 

assignment of a distinct labelling (which could be a 
number, letter, color, etc.) to each component. Col- 
oring problems generally involve TOPOLOGICAL consid- 
erations (i.e., they depend on the abstract study of the 
arrangement of objects), and theorems about colorings, 

suchasthefamous FOUR-COLOR THEOREM,~~~ be ex- 
tremely difficult to prove. 

see also COLORABLE, EDGE-COLORING, FOUR-COLOR 
THEOREM, ~-COLORING, POLYHEDRON COLORING, 
SIX-COLOR THEOREM, THREE-COLORABLE, VERTEX 
COLORING 
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Columbian Number 

see SELF NUMBER 

Colunar Triangle 
Given a SCHWARZ TRIANGLE (p Q T), replacing each 

VERTEX with its antipodes gives the three colunar 
SPHERICAL TRIANGLES 

where 
1 1 -+-=I 
P P’ 

1 1 

if-=l 4 

1 1 
-+T’=l. 
T 

see also SCHWARZ TRIANGLE, SPHERICAL TRIANGLE 
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Comb Function 

see SHAH FUNCTION 

Combination 
The number of ways of picking T unordered outcomes 
from n possibilities. Also known as the BINOMIAL CO- 
EFFICIENT or CHOICE NUMBER and read “rt choose T.” 

&E n E 
0 

n! 

T r!(n - T)! ’ 

where n! is a FACTORIAL. 

see also BINOMIAL COEFFICIENT, DERANGEMENT, FAC- 
TORIAL, PERMUTATION, SUBFACTORIAL 
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Combination Lock Combinatorics 
Let a combination of n buttons be a SEQUENCE of dis- 
joint nonempty SUBSETS of the SET (1, 2, . . . , n}. If 
the number of possible combinations is denoted a,, then 
an satisfies the RECURRENCE RELATION 

The branch of mathematics studying the enumeration, 
combination, and permutation of sets of elements and 
the mathematical relations which characterize these 
properties. 

with a0 = 1. This can also be written 

k=O 

where the definition 0’ = 1 has been used. Furthermore, 

72 
a, = x An,k2n-IC = 2 An,k2’-‘, (3) 

k=l k=l 

where An,k are EUL ERIAN NUMBERS. In terms of the 
STIRLING NUMBERS OF THE SECOND KIND s(n, k), 

an = ji: k!s(n, k). 

k=l 

a, can also be given in closed form as 

where Li,(z) is the P~LYL~GARITHM. The first few 
values of a, for n = 1, 2, . . . are 1, 3, 13, 75, 541, 
4683, 47293, 545835, 7087261, 102247563, . . . (Sloane’s 
A000670). 

The quantity 

satisfies the inequality 

1 1 
-<b,,<o”. 
2(ln 2)” (7) 
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Combinatorial Species 

see SPECIES 

Combinatorial Topology 
Combinatorial topology is a special type of ALGEBRAIC 
TOPOLOGY that uses COMBINATORIAL methods. For 
example, SIMPLICIAL HOMOLOGY is a combinatorial 
construction in ALGEBRAIC TOPOLOGY, so it belongs 
to combinatorial topology. 

see also ALGEBRAIC TOPOLOGY, SIMPLIC~AL HOMO- 
LOGY, TOPOLOGY 

see also ANTICHAIN, CHAIN, DILWORTH’S LEMMA, 
DIVERSITY CONDITION, ERD~S-SZEKERES THEO- 
REM, INCLUSION-EXCLUSION PRINCIPLE, KIRKMAN'S 
SCHOOLGIRL PROBLEM, KIRKMAN TRIPLE SYSTEM, 
LENGTH (PARTIAL ORDER) ,PARTZAL ORDER, PIGEON- 
HOLE PRINCIPLE, RAMSEY'S THEOREM, SCHR~DER- 
BERNSTEIN THEOREM, SCHUR’S LEMMA, SPERNER’S 

THEOREM, TOTAL ORDER, VAN DER WAERDEN’S THE- 
OREM, WIDTH (PARTIAL ORDER) 
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Comma Derivative 

aA - - 
axk = 
1 dA” -- 

gk hk 

dkA 

A”. 

see also C~VARIANT DERIVATIVE, SEMICOLON DERIV- 
ATIVE 

Comma of Didymus 
The musical interval by which four fifths exceed a sev- 
enteenth (i.e., two octaves and a major third), 

34 ( > 2 34 81 =10125 --P-P 
22(:) 

- 
24-5-80 ’ ’ 

also called a SYNTONIC COMMA. 

see &O COMMA OF PYTHAGORAS, DIESIS, SCHISMA 

Comma of Pythagoras 
The musical interval by which twelve fifths exceed seven 
octaves, 

( 2 2 > 12 312 531441 - ---_- - 
27 219 524288 

=1.013643265. 

Successive CONTINUED FRACTION CONVERGENTS to 

1% 21 lod3/2) g ive increasingly close approximations 
m/n of m fifths by n octaves as 1, 2, 5/3, 12/7, 41/24, 
53/31, 306/179, 665/389, l  . . (Sloane’s A005664 and 
A046102; Jeans 1968, p. lSS), shown in bold in the ta- 
ble below. All near-equalities of m fifths and n octaves 
having 

( > 3m 3m R=L-- 
2n - p+n 

with IR- 11 < 0.02 are given in the following table. 

m n Ratio m n Ratio 

12 7 1.013643265 265 155 1.010495356 
41 24 0.9886025477 294 172 0.9855324037 

53 31 1.002090314 306 179 0.9989782832 
65 38 1.015762098 318 186 1.012607608 
94 55 0.9906690375 347 203 0.9875924759 

106 62 1.004184997 359 210 1.001066462 

118 69 1.017885359 371 217 1.014724276 
147 86 0.9927398469 400 234 0.9896568543 
159 93 1.006284059 412 241 1.003159005 

188 110 0.9814251419 424 248 1.016845369 
200 117 0.994814985 453 265 0.9917255479 
212 124 1.008387509 465 272 1.005255922 
241 141 0.9834766286 477 279 1.018970895 
253 148 0.9968944607 494 289 0.9804224033 

see also COMMA OF DIDYMUS, DIESIS, SCHISMA 
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Common Cycloid 

see CYCLOID 

Common Residue 
The value of b, where a E b (mod m), taken to be NON- 
NEGATIVE and smaller than m. 

see also MINIMAL RESIDUE, RESIDUE (CONGRUENCE) 

Commutation Coefficient 
A coefficient which gives the difference between partial 
derivatives of two coordinates with respect to the other 
coordinate, 

see also CONNECTION COEFFICIENT 
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Commutative Compact Group 
Let A denote an R-algebra, so that A is a VECTOR 
SPACE over R and 

If the parameters of a LIE GROUP vary over a CLOSED 
INTERVAL, the GROUP is compact. Every representation 
of a compact group is equivalent to a UNITARY repre- 
sentation. 

AxA+A 

Now define 

2 E {x E a : x - y for some y E A # 0}, 

where 0 E 2. An ASSOCIATIVE R-algebra is commuta- 
tive if x . y = y l  x for all x, y f A. Similarly, a RING is 
commutative if the MULTIPLICATION operation is com- 
mutative, and a LIE ALGEBRA is commutative if the 
COMMUTATOR [A, B] is 0 for every A and B in the LIE 
ALGEBRA. 

see also ABELIAN, ASSOCIATIVE, TRANSITIVE 
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mutative Algebra. Reading, MA: Addison-Wesley, 1969. 

Commutative Algebra 
An ALGEBRA in which the + operators and x are COM- 
MUTATIVE. 

see U~SO ALGEBRAIC GEOMETRY, GR~BNER BASIS 
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Commutator 
Let A, B, . . . be OPERATORS. Then the commutator of 
A and B is defined as 

Let a, b, . . . be constants. Identities include 

[f(x)7 Xl = 0 (2) 
[&i] = 0 (3) 
[A,B] = -[B,A] (4) 

[A, BC] = [A, B]C + B[k, C] (5) 
[AB, C] = [A, C]B + A[& C] (6) 

[a+A,b+B] = [A,B] (7) 
[A + B, c + 01 = [A, z1] + [A, D] + [B, 61 + [fi, q. 

(8) 
The commutator can be interpreted as the “infinitesi- 
mal” of the commutator of a LIE GROUP. 

Compact Manifold 
A MANIFOLD which can be “charted” with finitely many 
EUCLIDEAN SPACE charts. The CIRCLE is theonlycom- 
pact 1-D MANIFOLD. The SPHERE and ~-TORUS are 
the only compact Z-D MANIFOLDS. It is an open ques- 
tion if the known compact MANIFOLDS in 3-D are com- 
plete, and it is not even known what a complete list in 
4-D should look like. The following terse table there- 
fore summarizes current knowledge about the number 
of compact manifolds N( 0) of D dimensions. 

D N(D) 

1 1 
2 2 

see also TYCHONOF COMPACTNESS THEOREM 

Compact Set 
The SET S is compact if, from any SEQUENCE of ele- 
ments X1, X2, l  . . of S, a subsequence can always be 
extracted which tends to some limit element X of S. 
Compact sets are therefore closed and bounded. 

Compact Space 
A TOPOLOGICAL SPACE is compact if every open cover 
of X has a finite subcover. In other words, if X is the 
union of a family of open sets, there is a finite subfamily 
whose union is X. A subset A of a TOPOLOGICAL SPACE 
X is compact if it is compact as a TOPOLOGICAL SPACE 
with the relative topology (i.e., every family of open 
sets of X whose union contains A has a finite subfamily 
whose union contains A). 

Compact Surface 
A surface with a finite number of TRIANGLES in its TRI- 
ANGULATION. The SPHERE and TORUS are compact, 
but the PLANE and TORUS minus a DISK are not. 

Compactness Theorem 
Inside a BALL B in R3, 

{rectifiable currents S in BL AREA S 5 c, 
length dS < c} - 

is compact under the FLAT NORM. 

References 
Morgan, F. “What Is a Surface?” Amer. Math. MonthEy 103, 

369-376, 1996. 
Let A and B be TENSORS. Then 

[A,B] = VAB - VBA. (9) 

see dso ANTICOMMUTATOR, JACOBI IDENTITIES 
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Companion Knot 
Let K1 be a knot inside a TORUS. Now knot the TORUS 
in the shape of a second knot (called the companion 
knot) Kz. Then the new knot resulting from K1 is called 
the SATELLITE KNOT &* 

References 
Adams, C. C. The Knot Book: An Elementary Introduction 

to the Mathematical Theory of Knots. New York: W. H. 
Freeman, pp. 115-118, 1994. 

Comparability Graph 
The comparability graph of a POSET P = (X, 2) is the 
GRAPH with vertex set X for which vertices 2 and y are 
adjacent IFF either 51: 5 y or y 5 61: in P. 

see also INTERVAL GRAPH, PARTIALLY ORDERED SET 

Comparison Test 
Let c ak and c bl, be a SERIES with POSITIVE terms 
and suppose al 5 bi, u2 5 bz, . . . . 

1. If the bigger series CONVERGES, then the smaller 
series also CONVERGES. 

2. If the smaller series DIVERGES, thenthe bigger series 
also DIVERGES. 

see also CONVERGENCE TESTS 

References 
Arfken, G. Mathematical Methods for Physicists, 3rd ed. Or- 

lando, FL: Academic Press, pp. 280-281, 1985. 

Compass 
A tool with two arms joined at their ends which can 
be used to draw CIRCLES. In GEOMETRIC CONSTRUC- 
TIONS, the classical Greek rules stipulate that the com- 
pass cannot be used to mark off distances, so it must 
“collapse” whenever one of its arms is removed from 
the page. This results in significant complication in the 
complexity of GEOMETRIC CONSTRUCTIONS. 

see also CONSTRUCTIBLE POLYGON, GEOMETRIC CON- 
STRUCTION, GEOMETROGRAPHY, MASCHERONI CON- 
STRUCTION,PLANEGEOMETRY,POLYGON,PONCELET- 
STEINER THEOREM, RULER, SIMPLICITY, STEINER 
CONSTRUCTION, STRAIGHTEDGE 

References 
Dixon, R. “Compass Drawings.” Ch. 1 in Mathographics. 

New York: Dover, pp. l-78, 1991. 

Compatible 
Let 1 IAl 1 be the MATRIX NORM associated with the MA- 
TRIX A and lix]I be the VECTOR NORM associated with 
a VECTOR x. Let the product Ax be defined, then 11 Al 1 
and Ilx\l are said to be compatible if 

References 
Gradshteyn, I. S. and Ryzhik, 

ries, and Products, 5th ed, 
Press, p. 1115, 1980. 

I. M. Tables of Integrals, Se- 

San Diego, CA: Academic 

Complement Graph 
The complement GRAPH G of G has the same VERTICES 
as G but contains precisely those two-element SUBSETS 
which are not in G. 

Complement Knot 

see KNOT COMPLEMENT 

Complement Set 
Given a set S with a subset E, the complement of E is 
defined as 

E’Y{F:FL~,F$E}. (1) 

If E = S, then 
E’ = S’ = 0, (2) 

where 0 is the EMPTY SET. Given a single SET, the 
second PROBABILITY AXIOM gives 

1 = P(S) = P(E u E’). (3) 

Using the fact that E f~ E’ = 0, 

1= P(E) + P(E’) 

P(E’) = 1 -P(E). 

This demonstrates that 

P(S) = P(0) = 1 - P(S) = 1 - 1 = 0. (6) 

Given two SETS, 

P(E n F’) = P(E) - P(E n F) (7) 

P(E’ n F’) = 1 - P(E) - P(F) + P(E n F). (8) 

Complementary Angle 
Two ANGLES QI and 7r/2 - a are said to be complemen- 
t ary. 

see UZSO ANGLE,~UPPLEMENTARY ANGLE 

Complete 

see COMPLETE AXIOMATIC THEORY, COMPLETE BI- 
GRAPH, COMPLETE FUNCTIONS, COMPLETE GRAPH, 
COMPLETE QUADRANGLE, COMPLETE QUADRILAT- 
ERAL, COMPLETE SEQUENCE, COMPLETE SPACE, 
COMPLETENESS PROPERTY, WEAKLY COMPLETE SE- 
QUENCE 

Complete Axiomatic Theory 
An axiomatic theory (such as a GEOMETRY) is said to be 
complete if each valid statement in the theory is capable 
of being proven true or false. 

see dso CONSISTENCY 



284 Complete Bigraph Complete Graph 

Complete Graph Complete Bigraph 

see COMPLETE BIPARTITE GRAPH 

Complete Bipartite Graph 

A BIPARTITE GRAPH (i.e., a set of VERTICES decom- 
posed into two disjoint sets such that there are no two 
VERTICES within the same set are adjacent) such that 
every pair of VERTICES in the two sets are adjacent. If 
there are p and q VERTICES in the two sets, the complete 
bipartite graph (sometimes also called a COMPLETE BI- 
GRAPH) is denoted Kp,q. The above figures show K3,2 

and Kz,s* 

see also BIPARTITE GRAPH, COMPLETE 
COMPLETE ~PARTITE GRAPH, &PARTITE 
THOMASSEN GRAPH, U TILITY GRAPH 

GRAPH, 
GRAPH, 

References 
Saaty, T. L. and Kainen , P, C. The Four-Color Problem: 

Assaults and Conquest. New York: Dover, p. 12, 1986. 

Complete Functions 
A set, of ORTHONORMAL FUNCTIONS &(x) is termed 
complete in the CLOSED INTERVAL II: f [u,b] if, for every 
piecewise CONTINUOUS FUNCTION f(z) in the interval, 
the minimum square error 

C-L = Ilf -(c1~1+... +cnqLL)~~ 
2 

(where 11 denotes the NORM) converges to zero as n be- 
comes infinite. Symbolically, a set, of functions is com- 
plete if 

lim 
rn+m 1 

2 

w(x)dx = 0, 

where w(x > is a WEIGHTING FUNCTION and the above 
is a LEBES G UE INTEGRAL. 

see also BESSEL'S INEQUALITY, HILBERT SPACE 

References 
A&en, G. “Completeness of Eigenfunctions.” 59.4 in Mathe- 

matical Methods for Physicists, 3rd ed. Orlando, FL: Aca- 
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K5 K6 K7 

A GRAPH in which each pair of VERTICES is connected 
by an EDGE. The complete graph with n VERTICES is 
denoted K,. In older literature, complete GRAPHS are 
called UNIVERSAL GRAPHS. 

I& is the TETRAHEDRAL GRAPH andisthereforea PLA- 

NAR GRAPH. KS is nonplanar. Conway and Gordon 
(1983) 
CALLY 

proved that every embed .ding of KS is INTRINSI- 
LINKED with at least one pair of linked triangles. 

They also showed that any embedding of K7 contains a 
knotted HAMILTONIAN CYCLE. 

The number of EDGES in KV is V(V - 1)/2, and the 
GENUS is@-- 3)(v-4)/12 for w  2 3. The number of dis- 
tinct variations for K, (GRAPHS which cannot be trans- 
formed into each other without passing nodes through 
an EDGE or another node) for n = 1, 2, . l  . are 1, 1, 1, 
1, 1, 1, 6, 3, 411, 37, . . . . The ADJACENCY MATRIX of 

the complete graph takes the particularly simple form 
of all 1s with OS on the diagonal. 

It is not known in general if a set of TREES with 1, 2, l  . . , 

n - 1 EDGES can always be packed into Kn. However, 
if the choice of TREES is restricted to either the path or 
star from each family, then the packing can always be 
done (Zaks and Liu 1977, Honsberger 1985). 
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Zaks, S. and Liu, C. L. “Decomposition of Graphs into 

Trees.” Proc. Eighth Southeastern Conference on Gom- 
binatorics, Graph Theory, and computing. pp. 643-654, 
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Complete l+Partite Graph 

Complete k-Partite Graph 

A ~PARTITE GRAPH (i.e., a set of VERTICES decom- 
posed into /C disjoint sets such that no two VERTICES 
within the same set are adjacent) such that every pair 
of VERTICES in the k sets are adjacent. If there are 

P, f& l  * l  7 T VERTICES in the k sets, the complete k- 
partite graph is denoted KP,p,...,r. The above figure 
shows & ,3,5. 

see also COMPLETE GRAPH, COMPLETE k-PARTITE 
GRAPH, k-PARTITE GRAPH 

References 
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Complete Metric Space 
A complete metric space is a METRIC SPACE in which 

every CAUCHY SEQUENCE is CONVERGENT. Examples 
include the REAL NUMBERS with the usual metric and 
the p-ADIC NUMBERS. 

Complete Permutation 

~~~DERANGEMENT 

Complete Quadrangle 
If the four points making up a QUADRILATERAL are 
joined pairwise by six distinct lines, a figure known as 
a complete quadrangle results. Note that a complete 
quadrilateral is defined differently from a COMPLETE 
QUADRANGLE. 

The midpoints of the sides of any complete quadrangle 
and the three diagonal points all lie on a CONIC known 
as the NINE-POINT CONIC. If it is an ORTHOCENTRIC 
QUADRILATERAL, the CONIC reduces to a CIRCLE. The 
ORTHOCENTERS of the four TRIANGLES of a complete 
quadrangle are COLLINEAR on the RADICAL LINE of the 
CIRCLES on the diameters of a QUADRILATERAL. 

see aho COMPLETE QUADRANGLE,PTOLEMY'S THEO- 
REM 
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Johnson, R. A. Modern Geometry: An Elementary Treatise 
on the Geometry of the Triangle and the Circle. Boston, 
MA: Houghton Mifflin, pp. 61-62, 1929. 

Ogilvy, C. S. Excursions in Geometry. New York: Dover, 
pp. 101-104, 1990. 

Complete Quadrilateral 
The figure determined by four lines and their six points 
of intersection (Johnson 1929, pp. 61-62). Note that 
this is different from a COMPLETE QUADRANGLE. The 
midpoints of the diagonals of a complete quadrilateral 
are COLLINEAR (Johnson 1929, pp* 152-153). 

A theorem due to Steiner (Mention 1862, Johnson 1929, 
Steiner 1971) states that in a complete quadrilateral, the 
bisectors of angles are CONCURRENT at 16 points which 
are the incenters and EXCENTERS of the four TRIAN- 
GLES. Furthermore, these points are the intersections of 
two sets of four CIRCLES each of which is a member of 
a conjugate coaxal system. The axes of these systems 
intersect at the point common to the CIRCUMCIRCLES 
of the quadrilateral. 

see also 
LER TH 

COMPLETE 
EOREM, POL 

QU 
AR 

'ADRANG 
CIRCLE 

LE, GAUSS~ODENMIL- 
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Complete Residue System 
A set of numbers a~, al, . . . , a,-1 (mod m) form a 
complete set of residues if they satisfy 

ai = i (mod m) 

for i = 0, 1, . . . , m - 1. In other words, a complete 
system of residues is formed by a base and a modulus if 
the residues pi in bi = ri (mod m) for i = 1, . . l  , m - 1 
run through the values 1, 2, l  . . , m - 1. 

see also HAUPT-EXPONENT 

Complete Sequence 
A SEQUENCE of numbers V = {v~} is complete if every 
POSITIVE INTEGER n is the sum of some subsequence of 
V, i.e., there exist ai = 0 or 1 such that 

(Honsberger 1985, pp. 123-126). The FIBONACCI NUM- 
BERS are complete. In fact, dropping one number still 
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see also CW-COMPLEX, SIMPLICIAL COMPLEX 
{l, 2,3,5,7,11,13,17,19,23, * * l } 

Complex Analysis 
is complete, even if any number of PRIMES each > 7 are 
dropped, as long as the dropped terms do not include 
two consecutive PRIMES (Honsberger 1985, pp. 127- 
128). This is a consequence of BERTRAND'S POSTU- 
LATE. 

see UZSO BERTRAND'S POSTULATE, BR~WN'S CRI- 
TERION, FIBONACCI DUAL THEOREM, GREEDY AL- 
GORITHM, WEAKLY COMPLETE SEQUENCE, ZECK- 
ENDORF'S THEOREM 

The study of COMPLEX NUMBERS, their DERIVATIVES, 
manipulation, and other properties. Complex analysis is 
an extremely powerful tool with an unexpectedly large 
number of practical applications to the solution of phys- 
ical problems. CONTOUR INTEGRATION, for example, 
provides a method of computing difficult INTEGRALS by 
investigating the singularities of the function in regions 
of the COMPLEX PLANE near and between the limits of 
integration. 
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Complete Space 
A SPACE of COMPLETE FUNCTIONS. 

see also COMPLETE METRIC SPACE 

The most fundamental result of complex analysis is the 
CAUCHY-RIEMANN EQUATIONS, which give the condi- 
tions a FUNCTION must satisfy in order for a com- 
plex generalization of the DERIVATIVE, the so-called 
COMPLEX DERIVATIVE, to exist. When the COMPLEX 
DERIVATIVE is defined “everywhere,” the function is 
said to be ANALYTIC. A single example of the unex- 
petted power of complex analysis is PICARD'S THEO- 
REM, which states that an ANALYTIC FUNCTION as- 
sumes every COMPLEX NUMBER, with possibly one ex- 
ception, infinitely often in any NEIGHBORHOOD of an 
ESSENTIAL SINGULARITY! 

Completely Regular Graph 
A POLYHEDRAL GRAPH is completely regular if the 
DUAL GRAPH is also REGULAR. There are only five 
types. Let p be the number of EDGES at each node, p* 
the number of EDGES at each node of the DUAL GRAPH, 
V the number of VERTICES, E the number of EDGES, 
and F the number of faces in the PLATONIC SOLID cor- 
responding to the given graph. The following table sum- 
marizes the completely regular graphs. 

Completeness Property 
All lengths can be expressed as REAL NUMBERS. 

Completing the Square 
The conversion of an equation of the form uz2 + bx + c 
to the form 

which, defining B E b/2a and C = c - b2/4a, simplifies 
to 

a(x + B)2 + C. 

see also ANALYTIC CONTINUATION, BRANCH CUT, 
BRANCH POINT, CAUCHY INTEGRAL FORMULA, CAW- 
CHYINTEGRALTHEOREM, CAUCHYPRINCIPALVALUE, 
CAUCHY-RIEMANN EQUATIONS, COMPLEX NUMBER, 
CONFORMAL MAP, CONTOUR INTEGRATION, DE 
MOIVRE’S IDENTITY, EULER FORMULA, INSIDE- 
OUTSIDE THEOREM, JORDAN’S LEMMA, LAURENT SE- 
RIES, LIOUVILLE’S CONFORMALITY THEOREM, MONO- 
GENIC FUNCTION, MORERA’S THEOREM, PERMANENCE 
OF ALGEBRAIC FORM, PICARD'S THEOREM, POLE, 
POLYGENIC FUNCTION, RESIDUE (COMPLEX ANALY- 
SIS) 
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Complex Conjugate 
The complex conjugate of a COMPLEX NUMBER z = 

a+bi is defined to be x* E a-bi. The complex conjugate 

is ASSOCIATIVE, (~1 +zz)* = xl* +x2*, since 

(al + bli)* + (a2 + b2i)* = al - ibl + a2 - ibz 

= (al - ibl) + (a2 - ibz) 

= (al +h)* +(a2 + bz)*, 

and DISTRIBUTIVE, (x123)* = xl*zz*, since 

[(a +hi)(az +bzi)]* = [(ma:! - b&z) + i(alba + uzbl)]* 

= (ala2 - hb2) - i(u1b2 + mbl) 

= (al - ibl)(u2 - ibz) 

= (al + ibl)*(u2 + ibz)*. 
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Mathematical Tables, 9th printing. New York: Dover, 
p. 16, 1972. 

Complex Derivative 
A DERIVATIVE of a COMPLEX function, which must sat- 

isfy the CAUCHY-RIEMANN EQUATIONS in order to be 
COMPLEX DIFFERENTIABLE. 

see also CAUCHY-RIEMANN EQUATIONS, COMPLEX 
DIFFERENTIABLE, DERIVATIVE 

Complex Differentiable 
If the CAUCHY-RIEMANN EQUATIONS are satisfied for a 
function f(s) = U(X) + iv(z) and the PARTIAL DERIVA- 
TIVES of u(x) and V(X) are CONTINUOUS, thenthe COM- 
PLEX DERIVATIVE df/dz exists. 

see UZSO ANALYTIC FUNCTION, CAUCHY-RIEMANN 
EQUATIONS, COMPLEX DERIVATIVE,PSEUDOANALYTIC 
FUNCTION 

Complex finct ion 
A FUNCTION whose RANGE is in the COMPLEX NUM- 
BERS is said to be a complex function. 

see UZSO REAL FUNCTION, SCALAR FUNCTION, VECTOR 
FUNCTION 

Complex Matrix 
A MATRIX whose elements may contain COMPLEX NUM- 
BERS. The MATRIX PRODUCT of two 2 x 2 complex 
matrices is given by 

[ 

x11 + y11i 5712 + y12i Ull + Vlli u12 +v12i 

x21+ y21i x22 + y22i I[ u21 +v21i u22 +21222 1 
I= [;;: ;;:I +i[;; p], 

where 

RII = w1a1 + 7421x12 - vllyll - 2121~12 

R12 = u12~11+~22~12 - ~12~11 - v22y12 

R21 = WlX21 + u21x22 - v11y21 - v21y22 

R22 = w2~21+u22~22 - ~12~21 - v22y22 

Ill = VllXll + ~21332 + w1y11 + u21y12 

I12 = 2312m1+'u22x12 + u12y11+ 7J22y12 

I21 = WlX21 + 'u21x22 + u11y21 + u21y22 

I22 = m2x21 +2122x22 +u12y21 +u22y22* 

see also REAL MATRIX 

Complex Multiplication 
TWO COMPLEX NUMBERS x = a + ib and y = c + id are 

multiplied as follows: 

XY = (a + ib)(c + id) = UC + ibc + iad - bd 

= (UC - bd) + i(ad + bc). 

However, the multiplication can be carried out using 
only three REAL multiplications, ac, bd, and (a+b)(c+d) 
as 

$?[(a + ib)(c + id)] = ac - bd 

3[(a + ib)(c + id)] = (a + b)(c + d) - UC - bd. 

Complex multiplication has a special meaning for EL- 
LIPTIC CURVES. 

see also COMPLEX NUMBER, ELLIPTIC CURVE, IMAGI- 
NARY PART, MULTIPLICATION, REAL PART 

References 
Cox, D. A. Primes of the Form x2 +ny2: Fermat, Class Field 

Theory and Complex Multiplication. New York: Wiley, 
1997. 

Complex Number 
The complex numbers are the FIELD c of numbers of the 
form x + iy, where x and y are REAL NUMBERS and i is 
the IMAGINARY NUMBER equal to 43. When a single 

letter z = x + iy is used to denote a complex number, it 
is sometimes called an “AFFIX." The FIELD of complex 
numbers includes the FIELD of REAL NUMBERS as a 
SUBFIELD. 

Through the EULER FORMULA, a complex number 

z=x+iy (1) 

may be written in "PHASOR" form 

z = lzl(cos8 + i sin@ = IzlP. (2) 

Here, 121 is known as the MODULUS and 0 is known as 
the ARGUMENT or PHASE. The ABSOLUTE SQUARE of 
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z is defined by 1~1~ = zz*, and the argument may be 
computed from 

ardz) =re=tan-l J! . ( ) X 
(3) 

DE MOIVRE’S IDENTITY relates POWERS of complex 
numbers 

g = Irl”[cos(nO) + i sin(&)]. (4) 

Finally, the REAL R(x) and IMAGINARY PARTS S(Z) are 
given by 

w > z = i(z + z*) (5) 

S(z) = + = -+q, - x*> = +i<z* - 2). (6) 

The POWERS of complex numbers can be written in 
closed form as follows: 

+i [(;>.-I,- (;py3+*..] l  (7) 

The first few are explicitly 

x2 = (x2 - y”) + q2xy) (8) 

x3 = (x3 - 3xy2) + i(3x2y - y3) (9) 
z4 = (x4 - 6x2y2 + y”) + i(4x3y - 4xy3) (10) 

x5 = (x5 - 1ox3y2 + 5xy4) + i(5x4y - 10X2Y3 + y") 

(11) 

(Abramowitx and Stegun 1972). 

see UZSO ABSOLUTE SQUARE, ARGUMENT (COMPLEX 
NUMBER), COMPLEX PLANE, I, IMAGINARY NUMBER, 
MODULUS, PHASE, PHASOR, REAL NUMBER,~URREAL 
NUMBER 
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Complex Plane 
Imaginary 

A 

i .l+i v -+-+i 
a 1 Real 

I -2i 
a 

The plane of COMPLEX NUMBERS spanned by the vec- 
tors 1 and i, where i is the IMAGINARY NUMBER. Every 
COMPLEX NUMBER corresponds to a unique POINT in 
the complex plane. The LINE in the plane with i = 0 is 
the REAL LINE. The complex plane is sometimes called 
the ARGAND PLANE or GAUSS PLANE, and a plot of 
COMPLEX NUMBERS in the plane is sometimes called 
an ARGAND DIAGRAM. 
see UZSO AFFINE COMPLEX PLANE, ARGAND DIAGRAM, 
ARGAND PLANE,BERGMAN SPACE, COMPLEXPROJEC- 
TIVE PLANE 

References 
Courant, R. and Robbins, H. “The Geometric Interpretation 

of Complex Numbers.” $5.2 in What is Mathematics?: An 
Elementary Approach to Ideas and Methods, 2nd ed. Ox- 
ford, England: Oxford University Press, pp. 92-97, 1996. 

Complex Projective Plane 
The set p2 is the set of all EQUIVALENCE CLASSES 

[a, b,c] of ordered triples (a, b,c) E @.“\(O,O,O) under 
the equivalence relation (a, b, c) - (a’, b’, c’) if (a, b, c) = 
(AU', Xb'Jc') for some NONZERO COMPLEX NUMBER A. 

Complex Representat ion 

see PHASOR 

Complex Structure 
The complex structure of a point x = x1, x2 in the 
PLANE is defined by the linear MAP J : R2 + R2 

Jh x2) = (-x2, Xl), 

and corresponds to a clockwise rotation by 7r/2. This 
map satisfies 

J2 = --I 

(Jx) - (Jy) = x-y 

(Jx) - x = 0, 

where I is the IDENTITY MAP. 

More generally, if V is a 2-D VECTOR SPACE, a linear 
map J : V -+ V such that J2 = -I is called a complex 
structure on V. If V = R2, this collapses to the previous 
definition. 

References 
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Complexity (Number) 
The number of 1s needed to represent an INTEGER us- 
ing only additions, multiplications, and parentheses are 
called the integer’s complexity. For example, 

2=1+1 

3=1+1+1 

4 = (l+ 1)(1+ 1) = 1+ 1+ 1+ I 

5=(1+1)(1+1)+1=1+1+l+1+1 

6 = (1 + l)(l+ 1 + 1) 

7 = (1+ 1)(1+ 1+ 1) + 1 

8 = (1 + l)(l + l)(l + 1) 

9 = (1+ 1+ I)(1 + 1+ 1) 

10 = (1+ 1+ 1)(1-t 1+ 1) + 1 

= (1+ 1)(1+ 1+ 1+ 1+ 1) 

So, for the first few n, the complexity is 1, 2, 3, 4, 5, 5, 
6, 6, 6, 7, 8, 7, 8, . . . (Sloane’s A005245). 
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Complexity (Sequence) 

seeBLocK GROWTH 

Complexity Theory 
Divides problems into “easy” and “hard” categories. 
A problem is easy and assigned to the P-PROBLEM 
(POLYNOMIAL time) class if the number of steps needed 
to solve it is bounded by some POWER of the prob- 
lem’s size. A problem is hard and assigned to the NP- 
PROBLEM (nondeterministic POLYNOMIAL time) class if 
the number of steps is not bounded and may grow ex- 
ponentially. 

However, if a solution is known to an NP-PROBLEM, it 
can be reduced to a single period verification. A prob- 
lem is NP-COMPLETE if an ALGORITHM for solving it 
can be translated into one for solving any other NP- 
PROBLEM. Examples of NP-COMPLETE PROBLEMS in- 
cludethe HAMILTONIAN CYCLE and TRAVELING SALES- 
MAN PROBLEMS. LINEAR PROGRAMMING, thought to 
be an NP-PROBLEM, was shown to actually be a P- 
PROBLEM by L. Khachian in 1979. It is not known if all 
apparently NP-PROBLEMS are actually P-PROBLEMS. 
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see also BIT COMPLEXITY, NP-COMPLETE PROBLEM, 
NP-PROBLEM,P-PROBLEM 
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Component 
A GROUP Lis acomponent of H if L is a QUASISIMPLE 
GROUP whichis ~SUBNORMAL SUBGROUP ofH. 

see also GRO 
SUBNORMAL 

UP, QUASISIMPLE GROWP, SUBGROUP, 

Composite Knot 
A KNOT which is not a PRIME KNOT. Composite knots 
are special cases of SATELLITE KNOTS. 

see also KNOT, PRIME KNOT, SATELLITE KNOT 

Composite Number 
A POSITIVE INTEGER which is not PRIME (i.e., which 
has FACTORS other than 1 and itself). 

A composite number C can always be written as a 
PRODUCT in at least two ways (since 1 m C is always 
possible). Call these two products 

C = ab = cd, (1) 

then it is obviously the case that C 1 ab (C divides ab). 
Set 

c=mn, (2) 

where m is the part of C which divides a, and n the part 
of C which divides n. Then there are p and q such that 
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Solving ab = cd for d gives 

d = “b - - (md(nq) = pq 
l  

C mn (5) 

It then follows that 

S E a2 + b2 + c2 + d2 

= m2p2 + n2q2 +m2n2 +p2q2 

= (m2 + q2)(n2 +p2). (6) 

It therefore follows that a2 +b2 +c2 +d2 is never FRIME! 
In fact, the more general result that 

S E uk -+- bk -+ ck + d” 

is never PRIME for k an INTEGER 2 0 also holds (Hons- 
berger 1991). 

There are infinitely many integers of the form L(3/2)“] 
and [(4/3)“] which are composite, where [lcj is the 
FLOOR FUNCTION (Forman and Shapiro, 1967; Guy 
1994, p. 220). The first few composite 1(3/2)“j occur 
for n = 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 
23, . . . , and the the few composite [(4/3)“] occur for 
n = 5, 8, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, . . l  . 

see UZSO AMENABLE NUMBER, GRIMM'S CONJECTURE, 
HIGHLY COMPOSITE NUMBER, PRIME FACTORIZATION 
PRIME GAPS,PRIME NUMBER 

Neferences 
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Composite Runs 

see PRIME GAPS 

Compositeness Certificate 
A compositeness certificate is a piece of information 
which guarantees that a given number p is COMPOSITE. 
Possible certificates consist of a FACTOR of a number 
(which, in general, is much quicker to check by direct 
division than to determine initially), or of the determi- 
nation that either 

up-l $ 1 (mod p), 

(i.e., p violates FERMAT'S LITTLE THEOREM), or 

A quantity a 
WITNESS to p 

a#-1,1anda2_1 (modp). 

satisfying either property is said to be a 
‘s compositeness. 

see UZSO ADLEMAN-POMERANCE-RUMELY PRIMALITY 
TEST, FERMAT'S LITTLE THEOREM, MILLER'S PRI- 
MALITY TEST, PRIMALITY CERTIFICATE, WITNESS 

Compositeness Test 
A test which always identifies PRIME numbers correctly, 
but may incorrectly identify a COMPOSITE NUMBER as 
a PRIME. 

see also PRIMALITY TEST 

Composition 
The combination of two FUNCTIONS to form a single n&w 
OPERATOR. The composition of two functions f and g 
is denoted f o g and is defined by 

f O 9 = f (g(4) 

when f and g are both functions of z. 

An operation called composition is also defined on BI- 
NARY QUADRATIC FORMS. For two numbers repre- 
sented by two forms, the product can then be repre- 
sented by the composition. For example, the composi- 
tion of the forms 2x2 + 15y2 and 3x2 + 10y2 is given by 
6x2 + 5y2, and in this case, the product of 17 and 13 
would be represented as (6 . 36 + 5 . 1 = 221). There 
are several algorithms for computing binary quadratic 
form composition, which is the basis for some factoring 
methods. 

see also ADEM RELATION 
NARY Q UADRATIC FORM 

s, BINARY OPERATOR, BI- 

Composition Series 
Every FINITE GROUP G of order greater than one pos- 
sesses a finite series of SUBGROUPS, called a composition 
series, such that 

I c Hs c . . , C H2 c HI c G, 

where Hi+1 is a maximal subgroup of Hi. The QUO- 
TIENT GROUPS G/HI, HI/HZ, . . . , H,-l/H,, Hs are 
called composition quotient groups. 

see also FINITE GROUP, JORDAN-HOLDER THEOREM, 
QUOTIENT GROUP,SUBGROUP 

References 
Lomont, J. S. Applications of Finite Groups. New York: 

Dover, p. 26, 1993. 

Composition Theorem 
Let 

Q(x, y) = x2 + y2. 

Then 

Q(x, y)Q(x’, y’) = Q(xx’ - YY’J’Y + XY’), 

since 

(x2 + y2)(xt2 + y'") = (xx' - yy’)2 + (XY’ + X’Y12 

= x2xt2 + y2yt2 + xt2y2 + x2yt2, 

see also GENUS THEOREM 
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Compound Interest Computable Function 
Let P be the PRINCIPAL (initial investment), r be the 
annual compounded rate, i(“) the “nominal rate,” 72 be 
the number of times INTEREST is compounded per year 
(i.e., the year is divided into n CONVERSION PERIODS), 
and t be the number of years (the “term”). The INTER- 
EST rate per CONVERSION PERIOD is then 

&“I 
r’ 

n ’ (1) 

If interest is compounded n times at an annual rate of r 
(where, for example, 10% corresponds to T = O.lO), then 
the effective rate over l/n the time (what an investor 
would earn if he did not redeposit his interest after each 
compounding) is 

Any computable function can be incorporated into a 
PROGRAM using while-loops (i.e., “while something is 
true, do something else”). For-loops (which have a fixed 
iteration limit) are a special case of while-loops, so com- 
putable functions could also be coded using a combina- 
tion of for- and while-loops. The ACKERMANN FUNC- 
TION is the simplest example of a well-defined TOTAL 
FUNCTION which is computable but not PRIMITIVE RE- 
CURSIVE, providing a counterexample to the belief in 
the early 1900s that every computable function was also 
primitive recursive (Dijtzel 1991). 

see also ACKERMANN FUNCTION, CHURCH'S THESIS, 
COMPUTABLE NUMBER,~RIMITIVE RECURSIVE FUNC- 
TION, TURING MACHINE 

(1 + rpn. (2) References 
D&zel, G. “A Function to End All Functions.” Algorithm: 

Recreationa Programming 2, 16-17, 1991. The total amount of holdings A after a time t when 
interest, is re-invested is then 

Computable Number 
A number which can be computed to any number of 
DIGITS desired by a TURING MACHINE. Surprisingly, 
most IRRATIONALS are not computable numbers! 

= P(l + qt. (3) 

Note that even if interest is compounded continuously, 
the return is still finite since 

References 
Penrose, R. The Emperor’s New itfind: Concerning Comput- 

ers, Minds, and the Laws of Physics. Oxford, England: 
Oxford University Press, 1989. 1 n 

lim 1+ - 
( > 

= e, 
n-+00 72 

(4) 

Computationa Complexity 
where e is the base of the NATURAL LOGARITHM. 

see COMPLEXITY THEORY 
The time required for a given PRINCIPAL to double (as- 
suming 72 = 1 CON VERSION P ERIOD) is given by solving Concatenated Number Sequences 

NONCONSECUTIVE NUMBER SEQUENCES 
2P = P(1+ +, (5) 

Concat enat ion 
The concatenation of two strings a and b is the string ab 
formed by joining a and b. Thus the concatenation of 
the strings “book” and “case” is the string “bookcase”. 
The concatenation of two strings a and b is often de- 
noted ab, aJIb, or (in IMathematic@ (Wolfram Research, 
Champaign, IL) a <> b. Concatenation is an asso- 
ciative operation, so that the concatenation of three or 
more strings, for example abc, abed, etc., is well-defined. 

In 2 

’ z ln(1 + r) ’ (6) 

where LN is the NATURAL LOGARITHM. This function 
can be approximated by the so-called RULE OF 72: 

0.72 
t -1 ,” 

r (7) 

see also e, INTEREST , LN, NATURAL LOG 
CIPAL, Ru LE OF 72, SIMPLE INTEREST 

!ARITHM, PRIN- The concatenation of two or more numbers is the num- 
ber formed by concatenating their numerals. For exam- 
ple, the concatenation of 1, 234, and 5678 is 12345678. 
The value of the result depends on the numeric base, 
which is typically understood from context. 

- n  

Heterences 
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PI IQ = PblCQ) + CL Compound Polyhedron 

where ~~~POLYHEDRON COMPOUND 

Computability is the LENGTH of 4 in base b and 1x1 is the FLOOR 
FUNCTION. see COMPLEXITY THEORY 
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see UZSO CONSECUTIVE NUMBER SEQUENCES, LENGTH 
(NUMBER),~MARANDACHE SEQUENCES 

Concave 

cuncave convex netting them gives l/3. 

A SET in IWd is concave if it does not contain all the 
LINE SEGMENTS connecting any pair of its points. If 
the SET does contain all the LINE SEGMENTS, it is called 
CONVEX. 

NECTED 

see also CONNECTED SET, CONVEX FUNCTION, CON- 
VEX HULL, CONVEX OPTIMIZATION THEORY, CONVEX 
POLYGON, DELAUNAY TRIANGULATION, SIMPLY CON- 

Concave Function 
A function f(z) is said to be concave on an interval [a, b] 
if, for any points ~1 and 5~2 in [a$], the function -f(z) 
is CONVEX on that interval. If the second DERIVATIVE 

Of f 
f’W > 0, 

on an open interval (a, b) (where f”(x) is the second 
DERIVATIVE), then f is concave up on the interval. If 

Concentric Circles 
The region between two CONCENTRIC circles of different 
RADII is called an ANNULUS. 

Given two concentric circles with RADII R and ZR, what 
is the probability that a chord chosen at random from 
the outer circle will cut across the inner circle? Depend- 
ing on how the “random” CHORD is chosen, l/2, l/3, or 
l/4 could all be correct answers. 

1. Picking any two points on the outer circle and con- 

2 

3 

so 

Picking any random point on a diagonal and then 
picking the CHORD that perpendicularly bisects it 
gives l/2. 

Picking any point on the large circle, drawing a line 
to the center, and then drawing the perpendicularly 
bisected CHORD gives l/4. 

meant by “random” in this problem. 
some care is obviously needed in specifying what is 

Given an arbitrary CHORD BB’ to the larger of two 
concentric CIRCLES centered on 0, the distance be- 
tween inner and outer intersections is equal on both 
sides (AB = A’B’). To prove this, take the PERPEN- 
DICULAR to BB’ passing through 0 and crossing at P. 
By symmetry, it must be true that PA and PA’ are 
equal. Similarly, PB and PB’ must be equal. There- 
fore, PB - PA = AB equals PB’ - PA’ = A’B’. Inci- 
dentally, this is also true for HOMEOIDS, but the proof 
1s 

f”(x) < 0 

on the interval, then f is concave down on it. 

References 
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Concentrated 
Let p be a POSITIVE MEASURE on a SIGMA ALGEBRA 
M, and let X be an arbitrary (real or complex) MEASURE 
on M. If there is a SET A E M such that X(E) = 
X(A n E) for every E E M, then Zanzbda is said to be 
concentrated on A. This is equivalent to requiring that 
X(E) = 0 whenever E I-I A = 0. 

see UZSOABSOLUTELY CONTINUOUS,MUTUALLY SINGU- 
LAR 
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Concentric 
Two geometric figures are said to be concentric if their 
CENTERS coincide. The region between two concentric 
CIRCLES is called an ANNULUS. 

see also ANNULUS, CONCENTRIC CIRCLES, CONCYCLIC, 
ECCENTRIC 

see also ANNULUS 

Concho-Spiral 
The SPACE CURVE with parametric equations 

T = pus 

0-u 

z = pc. 

see also CONICAL SPIRAL, SPIRAL 

Conchoid 
A curve whose name means “shell form.” Let C be a 
curve and 0 a fixed point. Let P and P’ be points 
on a line from 0 to C meeting it at Q, where P’Q = 
QP = /G, with k a given constant. For example, if C is a 
CIRCLE and 0 is on C, then the conchoid is a LIMA~ON, 
while in the special case that k is the DIAMETER of C, 
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then the conchoid is a CARDIOID. The equation for a 
parametrically represented curve (f(t),g(t)) with 0 = 

(x0, yo) is 

see also CONCHO-SPIRAL, CONCHOID OF DE SLUZE, 
CONCHOID OF NICOMEDES, CONICAL SPIRAL, D~~RER'S 
C~NCHOID 
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Conchoid of de Sluze 

A curve first constructed by RerG de Sluze in 1662. In 
CARTESIAN COORDINATES, 

a(x - u)(x” + y”) = k2x2, 

andin PULAR COORDINATES, 

k2 cos 0 
r= - + ased. 

a 

The above curve has k2/a = 1, a = -0.5. 

Conchoid of Nicomedes 

A curve studied by the Greek mathematician Nicomedes 
in about 200 BC, also called the COCHLOID. It is the 
LOCUS of points a fixed distance away from a line as 
measured along a line from the FOCUS point (MacTutor 
Archive). Nicomedes recognized the three distinct forms 

seen in this family. This curve was a favorite with 17th 
century mathematicians and could be used to solve the 
problems of CUBE DUPLICATION and ANGLE TRISEC- 
TION. 

In POLAR COORDINATES, 

r = b + ased. (1) 

In CARTESIAN COORDINATES, 

(x - a)2(x2 + y”) = b2x2. (2) 

The conchoid has x = a as an asymptote and the AREA 
between either branch and the ASYMPTOTE is infinite. 
The AREA of the loop is 

A = ad=-- 2abln 
b+dW 

a > 

+b2cos-l a 0 b ’ 
see also CONCHOID 

(3) 
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Concordant Form 
A concordant form is an integer TRIPLE (a, b, N) where 

a2 + b2 = c2 

a2 + Nb2 = d2, 

with c and d integers. Examples include 

146632 + 1113842 = 1123452 
146632 + 47 l  1113842 = 7637512 

{ 11412 11412 + + 53 132602 9 132602 = 1330g2 = 965412 

2873161’ + 24010802 = 37443612 
28731612 + 83 l  24010802 = 220627612. 

Dickson (1962) states that C. H. Brooks and S. Watson 
found in The Ladies ’ and Gentlemen’s Diary (1857) that 
x2 + y2 and x2 + Ny2 can be simultaneously squares for 
N < 100 only for 1, 7, 10, 11, 17, 20, 22, 23, 24, 27, 
30, 31, 34, 41, 42, 45, 49, 50, 52, 57, 58, 59, 60, 61, 
68, 71, 72, 74, 76, 77, 79, 82, 85, 86, 90, 92, 93, 94, 97, 
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Concyclic 99, and 100 (which evidently omits 47, 53, and 83 from 
above). The list of concordant primes less than 1000 
is now complete with the possible exception of the 16 
primes 103, 131, 191, 223, 271, 311, 431, 439, 443, 593, 
607, 641, 743, 821, 929, and 971 (Brown). 

which lie on a 

p4 
Pl 

see also C~NGRUUM 
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Four or more points PI, Pz, Pa, Pa, . . . of Numbers, Vol. I: 
rk: Chelsea, p. 475, CIRCLE C are said to be concyclic. Three points are 

trivially concyclic since three noncollinear points deter- 
mine a CIRCLE. The number of the n2 LATTICE POINTS 
X, y E [l, n] which can be picked with no four concyclic 
is O(n2/3 - E) (Guy 1994). 

concur 
Two or more lines which intersect in a POINT are said 
to concur l  A theorem states that if any four consecutive points of 

a POLYGON are not concyclic, then its AREA can be 
increased by making them concyclic. This fact arises in 
some PROOFS that the solution to the ISOPERIMETRIC 
PROBLEM is the CIRCLE. 

see also CONCURRENT 

Concurrent 
TWO or more LINES are said to be concurrent if they 
intersect in a single point. Two LINES concur if their 
TRILINEAR COORDINATES satisfy 

see also CIRCLE, COLLINEAR, CONCENTRIC, CYCLIC 
HEXAGON, CYCLIC PENTAGON, CYCLIC QUADRILAT- 
ERAL,ECCENTRIC,N-CLUSTER h ml 121 

I I 
12 m2 722 = 0. (1) 
13 m3 n3 

References 
Guy, R. K. 

Unsolved 

’ “Lattice Points, No 
Problems in Number 

Verlag, p. 241, 1994. 

Four on a Circle.” SF3 in 
Theory, 2nd ed. New York: 

Springer- 
Three LINES concur if their TRILINEAR COORDINATES 
satisfy 

IICY + rnlP + nly = 0 

12a+m2P+n27=0 

13a+m3P+n37= 0, 

in which case the point is 

m2n3 - 1221723 : 72213 - 12n3 : &ma - ma13 

Three lines 

Ala: + Bly + Cl = 0 

A,x+B2y+C2 = 0 

A3x + B3y + C3 = 0. 

are concurrent if their COEFFICIENTS satisfy 

see also CONCYCLIC, POINT 

Condition 
A requirement NECESSARY for a given statement or the- 
orem to hold. Also called a CRITERION. 

see also BOUNDARY CONDITIONS, CARMICHAEL CON- 
DITION, CAUCHY BOUNDARY CONDITIONS, CONDITION 
NUMBER, DIRICHLET BOUNDARY CONDITIONS, DIVER- 
SITY CONDITION, FELLER-LI?VY CONDITION, HOLDER 
CONDITION, LICHNEROWICZ CONDITIONS, LINDEBERG 
CONDITION, LIPSCHITZ CONDITION, LYAPUNOV CON- 
DITION, NEUMANN BOUNDARY CONDITIONS, ROBERT- 
SON CONDITION,ROBIN BOUNDARY CONDITIONS, TAY- 
LOR'S CONDITION, TRIANGLE CONDITION, WEIER- 
STRAB-ERDMAN CORNER CONDITION,~INKLER CON- 
DITIONS 

(2) 
(3) 
(4) 

(5) 

(6) 
(7) 
(8) 

(9) 

Condition Number 
The ratio of the largest to smallest SINGULAR VALUE of 
a system. A system is said to be singular if the condition 
number is INFTNITE, and ill-conditioned if it is too large. 

Conditional Convergence 
If the SERIES 00 

Ix un 

n=O 

CONVERGES, but 
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does not, where 1x1 is the ABSOLUTE VALUE, then the 
SERIES is said to be conditionally CONVERGENT. 

see also ABSOLUTE CONVERGENCE, CONVERGENCE 
TESTS, RIEMANN SERIES THEOREM, SERIES 

Conditional Probability 
The conditional probability of A given that B has oc- 
curred, denoted P(A]B), equals 

P(AIB) = ‘(;(;)B), (1 

which can be proven directly using 
Multiplying through, this becomes 

a VENN DIAGRAM. 

P(AIB)P(B) = P(A n B), (2) 

which can be generalized to 

P(A u B u C) = P(A)P(BIA)P(CIA u B). (3) 

Rearranging (1) gives 

Pm9 

Solving (4) for P( B n A) 
to (1) gives 

- P(B n A) 
- 

P(A) - 
(4) 

= P(A n B) and plugging in 

P(AIB) = Pbw(BI4 
P(B) - 

(5) 

see also BAYES' FORMULA 

Condom Problem 

see GLOVE PROBLEM 

Condon-Shortley Phase 
The (-1)” phase factor in some definitions of the 
SPHERICAL HARMONICS and associated LEGENDRE 
POLYNOMIALS. Using the Condon-Shortley convention 
gives 

see als 
MONIC 

o LEGENDRE POLYNOMIAL, SPHERICAL HAR- 
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Conductor 

~~~~-CONDUCTOR 

Cone 

A cone is a PYRAMID with a circular CROSS-SECTION. 
A right cone is a cone with its vertex above the center 
of its base. A right cone of height h can be described by 
the parametric equations 

x=r(h-z)cos8 (1) 
y = r(h - z) sin0 (2) 

z=z (3) 

for z E [0, h] and 0 E [O, 27~). The VOLUME of a cone is 
therefore 

V = $Abh, (4) 

where Ab is the base AREA and h is the height. If the 
base is circular, then 

V = +r’h. (5) 

This amazing fact was first discovered by Eudoxus, and 
other proofs were subsequently found by Archimedes in 
On the Sphere and Cylinder (ca. 225 BC) and Euclid in 
Proposition XII.10 of his Elements (Dunham 1990). 

The CENTROID can be obtained by setting R2 = 0 in the 
equation for the centroid of the CYNICAL FRUSTUM, 

z=L= ( > h(R12 + RIRZ + Rz2) 

V 4(R12 + 2RlR2 + 3Rz2)’ 
(6) 

(Beyer 1987, p* 133) yielding 

z= $h. (7) 

For a right circular cone, the SLANT HEIGHT s is 

s = 2/r” + h2 (8) 

and the surface AREA (not including the base) is 

S= m-s = m pzF* (9) 

In discussions of CONIC SECTIONS, the word cone is of- 
ten used to refer to two similar cones placed apex to 
apex. This allows the HYPERBOLA to be defined as the 



296 Cone Graph Confidence Interval 

intersection of a PLANE with both NAPPES (pieces) of 
the cone. 

The LOCUS of the apex of a variable cone containing 
an ELLIPSE fixed in 3-space is a HYPERBOLA through 
the FOCI of the ELLIPSE. In addition, the LOCUS of 
the apex of a cone containing that HYPERBOLA is the 
original ELLIPSE. Furthermore, the ECCENTRICITIES of 
the ELLIPSE and HYPERBOLA are reciprocals. 

see ah CONIC SECTION, CONIC 

DER, NAPPE, P YRAMID, S PHERE 

AL FRUSTUM, CYLIN- 
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Cone Graph C”(Z - zo)2 + 22 = r2 (7) 
A GRAPH C,+ Km, where &is a CYCLIC GRAPH and 
Km is a COMPLETE GRAPH. C”(Z” - 2zoz + zo2) + z2 = r2 (8) 

x2(c2 + 1) - 2c2xox + (zo2c2 - r2) = 0. (9) Cone Net 
The mapping of a grid of regularly ruled squares onto a 
CONE with no overlap or misalignment. Cone nets are 
possible for vertex angles of 90”, HO”, and 270”) and 
are beautifully illustrated by Steinhaus (1983). 
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Cone (Space) 
The JOIN of a TOPOLOGICAL SPACE X and a point P, 
C(X) = x * P. 

References 
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Cone-Sphere Intersection 
Let a CONE of openi ,ng parame ter c and vertex at 
intersect a SPHERE of RADIUS T centered at (~0, 
with the CONE oriented such that its axis does not pass 
through the center of the SPHERE. Then the equations 
of the curve of intersection are 

x2 + y2 
----2-- 

= z2 (1) 

(II: - xo)2 + (y - yo)2 + (z - zo)2 = r2* (2) 

Combining (1) and (2) gives 

1 
x2 l+- ( > c2 

- 2X0X + y2 
1 

( > l+ 2 -2yoy 

+(m2 + yo2 + aI2 -r2) - 2”“&q&=a (4) 
c 

Therefore, =I: and y are connected by a complicated 
QUARTIC EQUATION, and z, y, and z by a QUADRA- 
TIC EQUATION. 

If the CONE-SPHERE intersection is on-axis so that a 
CONE of opening parameter c and vertex at (O,O, ZO) is 
oriented with its AXIS along a radial of the SPHERE of 
radius r centered at (O,O, 0), then the equations of the 
curve of intersection are 

( z- 
x2 + y2 

x0)” = - 
C2 

(5) 

x2+y2+t2=r2* (6) 

Combining (5) and (6) gives 

Using the QUADRATIC EQUATION gives 

2c2zo It - 4(c2 + 1)(xo2c2 - r2) 
Z= 

qc2 + 1) 

c2.zo * c2(r2 - zo2) + r2 - - 
c2 + 1 

. (10) 

So the curve of intersection is planar. Plugging (10) 
into (5) shows that the curve is actually a CIRCLE, with 
RADIUS given by 

a= r2--x2* J (11) 

Confidence Interval 
The probability that a measurement will fall within a 
given CLOSED INTERVAL [a, b]. For a continuous distri- 
bution, 

s 

a 
CI(a, b) G P(x) dx, (1) 

b 

where P(x) is the PROBABILITY DISTRIBUTION FUNC- 
TION. Usually, the confidence interval of interest is sym- 
metrically placed around the mean, so 

s 

Ps-2 
CI(x) G CI(/.J - x,I_L + 2) = P(x) dx, (2) 

P-X 
x2 + y2 2zo 

(x-xo)2+(Y-Yo)2+ c2 ~ -+qq+znZ = r2 

(3) 
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where p is the MEAN. For a GAUSSIAN DISTRIBUTION, 
the probability that a measurement falls within nu of 
the mean 1~ is 

Now let u = (x - p)/fib, so du = dx@a. Then 

2 J 
n/d 

CI(na) = - 
a&i 

43 u e -u2 du 
0 

2 

s 

n/ti 
= 

d- 
e 

7T 0 

(3) 

(4) 

where erf(x) is the so-called ERF function. The variate 
value producing a confidence interval CI is often denoted 

XCIp so 
XCI = d2 erf-l(U). (5) 

To find the standard deviation range corresponding to 
a given confidence interval, solve (4) for n. 

72 = &erf-l(CI) (6) 

CI 
0.800 *1.28155a 
0.900 *1.644850 
0.950 j3.959960 
0.990 1t2.57583ti 
0.995 1t2.80703~ 
0.999 It3.290530 

Configuration 
A finite collection of points p = (pl, , , . ,pn), pi E P, 
where Rd is a EUCLIDEAN SPACE. 

see also BAR (EDGE), EUCLIDEAN SPACE, FRAME- 
WORK, RIGID 

Confluent Hypergeometric Differential 
Equation 

xy” + (b - x)y’ - ay = 0, (1) (Abramowitz and Stegun 1972, p* 505). 

where y’ E dy/dx and with boundary conditions 

&(a; b; 0) = 1 (2) 

d 
&lFl(a;b;x) 1 x-o = im (3) 

The equation has a REGULAR SINGULAR PRINT at 0 
and an irregular singularity at co. The solutions are 
called CONFLUENT HYPERGEOMETRIC FUNCTION OF 
THE FIRST or SECOND KINDS. Solutions of the first 
kind are denoted lF1 (a; b; x) or M(a, b, x). 

see also HYPERGEUMETRIC DIFFERENTIAL EQUATION, 
WHITTAKER DIFFERENTIAL EQUATION 
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Confluent Hypergeometric Function 

~~~CONFLUENT HYPERGEOMETRIC FUNCTION OF THE 
FIRST KIND, CONFLUENT HYPERGEOMETRIC FUNC- 
TION OF THE SECOND KIND 

Confluent Hypergeometric Function of the 
First Kind 
The confluent hypergeometric function a degenerate 
form the HYPERGEOMETRIC FUNCTION 2 Fl(a,b;c;z) 
which arises as a solution the the CONFLUENT HYPER- 
GEOMETRIC DIFFERENTIAL EQUATION. It is commonly 
denoted lFl(a; b; z), M(a, b, x), or @(a; b; z), and is also 
known as KUMMER'S FUNCTION of the first kind. An 
alternate form of the solution to the Confluent Hyper- 
geometric Differential Equation is known as the WHIT- 
TAKER FUNCTION. 

The confluent hypergeometric function has a HYPERGE- 
OMETRIC SERIES given by 

u(u + 1) z2 
00 

lFl(a;b;z) = l-t- %z+ -- 
b(b + 1) 2! + l  ” = k c 

(a)k zk -e 

I 
o (b)k k! ’ 

(1) 
where (a)k and (b) k are POCHHAMMER SYMBOLS. If a 
and b are INTEGERS, a < 0, and either b > 0 or b < a, 
then the series yields a POLYNOMIAL with a finite num- 
ber of terms. If b is an INTEGER < 0, then IF&; b; z) is - 
undefined. The confluent hypergeometric function also 
has an integral representation 

w s 
1 

lFl(a; b;z) = 
r@ - a>w 0 

ezttaml(l - t)b-“-l & 

(2) 

BESSEL FUNCTIONS, the ERROR FUNCTION, theincom- 
plete GAMMA FUNCTION, HERMITE POLYNOMIAL, LA- 
GUERRE POLYNOMIAL, as well as other are all special 
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cases of this function (Abramowitz and Stegun 1972, 
p. 509). 

KUMMER'S SECOND FORMULA gives 

IF& +m;2m+ 1;~) = MO,,(z) = zm+1/2 

I O” 
‘Tj7 

z2P 
x 1+ 

24Pp!(m + l)(m + 2) . . l  (m -t p> ’ (3) 
p=l 

where lFIis the CONFLUENTHYPERGEOMETRICFUNC- 
TION and m # -l/2, -1, -3/2, . . l  . 

see also CONFLUENT HYPERGEOMETRIC DIFFERENTIAL 
EQUATION$ONFLUENT HYPERGEOMETRIC FUNCTION 
OF THE SECOND KIND, CONFLUENT HYPERGEOMET- 
RIC LIMIT FUNCTION, GENERALIZED HYPERGEOMET- 
RIG FUNCTION, HEINE HYPERGEOMETRIC SERIES, 
HYPERGEOMETRIC FUNCTION, HYPERGEOMETRIC SE- 
RIES, KWMMER'S FORMULAS, WEBER-SONINE FOR- 
MULA,~HITTAKER FUNCTION 
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Confluent Hypergeometric Function of the 

Second Kind 
Gives the second linearly independent solution to the 
CONFLUENT HYPERGEOMETRIC DIFFERENTIAL EQUA- 
TION. It is also known as the KUMMER'S FUNCTION of 
the second kind, the TRICOMI FUNCTION, or the GOR- 
DON FUNCTION. It is denoted U(a, b, z) and has an in- 
tegral representation 

Ctta--l(l + t)b-a-l dt 

(Abramowitz and Stegun 1972, p. 505). The WHIT- 
TAKER FUNCTIONS give an alternative form of the solu- 
tion. For small z, the function behaves as &! 

see UZSO BATEMAN FUNCTION, CONFLUENT HYPERGE- 
OMETRIC FUNCTION OF THE FIRST KIND, CONFLU- 
ENT HYPERGEOMETRIC LIMIT FUNCTION, COULOMB 
WAVE FUNCTION, CUNNINGHAM FUNCTION, GORDON 

FUNCTION, HYPERGEOMETRIC FUNCTION, POISSON- 
CHARLIER POLYNOMIAL, TORONTO FUNCTION, WE- 
BER FUNCTIONS,WHITTAKER FUNCTION 
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Confluent Hypergeometric Limit Function 

oFl(; a;~) E lim IFI 
9-+= 

It has a series expansion 

oK(; a; z> = 
00 
x n=O ( > a ,n! 

and satisfies 
d2Y dY zp+az-y=O. 

A BESSEL FUNCTION OF THE FIRST KIND can be ex- 
pressed in terms of this function by 

Jn(x) = 
( > ix n 
F-oFl(;n + 1; -ix”) 

. 

(PetkovBek et al. 1996). 

see ~SO CONFLUENT HYPERGEOMETRIC FUNCTION, 
GENERALIZED HYPERGEOMETRIC FUNCTION, HYPER- 
GEOMETRIC FUNCTION 
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Confocal Conies 
Confocal tonics are CONIC SECTIONS sharing a common 
FOCUS. Any two confocal CENTRAL CONICS are orthog- 
onal (Ogilvy 1990, p. 77). 

see also CONIC SECTION, Focus 
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Confocal Ellipsoidal Coordinates 
The confocal ellipsoidal coordinates (called simply el- 
lipsoidal coordinates by Morse and Feshbach 1953) are 
given by the equations 

X2 Y2 + z2 
-+b2+< 

-=1 
a2 +c c2 -t-c 

(1) 

X2 

a2 +q 
Y2 + x2 

+ b2+q 
-zl 
c2 + q 

(2) 

X2 Y2 + x2 
-+ b2+[ a2 + < 

- = 1, 
c2 + < 

(3) 

where -c2 < < < 00, -b2 < 7 < -c2, and -a2 < 
c < -b2. Surfaces of constant c are confocal ELLIP- 
SOIDS, surfaces of constant 7 are one-sheeted HYPER- 
BOLOIDS, and surfaces of constant [ are two-sheeted 
HYPERBOLOIDS. For every (x,y, z), there is a unique 
set of ellipsoidal coordinates. However, (& q, <) specifies 
eight points symmetrically located in octants. Solving 
for x, y, and z gives 

x2 = (a2 + m” + w2 + c> 

(b 2 - a2)(c2 - a2) 

y2 = (b2 + a(b2 + 77) (b2 + 0 
(a2 - b2)(c2 - b2) 

z2 = cc2 + I>(c” + r7>(c2 + 5) 
(a2 - c2)(b2 - c2) * 

The LAPLACIAN is 

(4) 

(5) 

(6) 

(7) 
where 

f( > X G J(x + a2)(x + b2)(x + c2). 

Anot her definition is 

(8) 

X2 Y2 z2 

a2 - A ++A+ 
-El 
c2 - x (9) 

where 

X2 Y2 z2 

a2 - u +bLuVcLu 
- = 1, (11) 

X<c2<p<b2<v<a2 (12) 

(Arfken 1970, pp. 117-118). Byerly (1959, p. 251) uses a 
slightly different definition in which the Greek variables 
are replaced by their squares, and a = 0. Equation (9) 
represents an ELLIPSOID, (10) represents a one-sheeted 
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HYPERBOLOID, and (11) represents a two-sheeted HY- 
PmBo~oIb In terms of CARTESIAN COORDINATES, 

x2 = ( a2 - NC a2 - p)(a’ - u) 

( a2 - b2)(a2 - c2) 

(b 2 
w 2 

y2= - 
- p)(b2 - u) 

@ 2 - a2)(b2 - c2) 

x2 z 
( 

c2 - X)(c” - p)(c” - u) 

( 
c2 - a2)(c2 - b2) l  

The SCALE FACTORS are 

4(a2 - X)(b2 - X)(c2 - A) 

h, = 
J 

0 - U)(P - 4 
4(a2 - u)(b2 - u)(c2 - u)’ 

(18) 

The LAPLACIAN is 

v2 = 2 
a2b2 + a2c2 + b2c2 - 2v(a2 + b2 + c”) + 3v2 d 

(cl - 4(v - 4 dv 

+ 
4(a2 - u)(P - Y)(C2 - u) a2 

(p - u)(u - A) G 

t-2 
a2b2 + a2c2 + b2c2 - 2p(a2 + b2 + c’) + 3p2 d 

(u - P>(P - A> G 

+ 
4(a2 - p)(b2 - p)(c’ - cl> a2 

(P - w - P> 6P2 
+ 2 -(a2b2 + a2c2 + b2c2) + 2X(a2 + b2 + c’) - 3X2 a 

(CL - w - 4 dx 

+ 
4(a2 - X)(b2 - A)(c’ - A) d2 

b - w - w 
8X2 l  

(19) 

Using the NOTATION of Byerly (1959, pp. 252-253), this 
can be reduced to 

v2 = (p2-u2) a2 
3--$+(~2-u2L&2 

a2 z+(x’-p2)p7 (20) 

where 

(23) 



300 Confocal Parabolic Coordinates Conformal Latitude 

Here, F is an ELLIPTIC INTEGRAL OF THE FIRST KIND. 

In terms of a, p, and y, 

(24) 

(25) 

u (26) 

where dc, nd and sn are JACOBI ELLIPTIC FUNCTIONS. 
The HELMHOLTZ DIFFERENTIAL EQUATION isseparable 
in confocal ellipsoidal coordinates. 

see also HELMHOLTZ DIFFERENTIAL EQUATION- 
CONFOCAL ELLIPSOIDAL COORDINATES I 
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New York: Academic Press, pp, 117-118, 1970+ 
Byerly, W. E. An Elementary Treatise on Fourier’s Series, 
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Confocal Parabolic Coordinates 

see CONFOCAL PARABOLOIDAL COORDINATES 

Confocal Paraboloidal Coordinates 

X2 Y2 
a2 - X 

+b2_x=L-X 

Y2 
b2=y-v-- 

where X E (--00, b2), 1~ f (b2,u2), and v E (a2, 00). 

x2 z ( a2 - NC a2 - p)(a2 - v) 

(b 2 - a2) 

(1) 

(2) 

(3) 

(4) 

y2 = 
(b2 - X)(b2 - p)(b2 - u) 

( a2 - b2) (5) 

z=X+p+v-a2-b2, (6) 

The SCALE FACTORS are 

hx = J 
(P--x)(v--x) 

4(a2 - A)(b2 - A) (7) 

h, = 
J 

(y - P)(X - cl> 
4(a2 -P>(b2 -PI 

(8) 

h, = 
J 

0 - v>b - 4 
16(a2 - v)(b2 - v)’ (9) 

The LAPLACIAN~~ 

v2 = 2(a2 + b2 - 2v) d + 4(a2 - v)(v - b2) d2 

(p-u)(u-A) du (p-u)(u-A) y2 

+2(a2 + b2 - 2~) d + 4(a2 - p)(p - b2) d2 

(IL - w  - PI dP b - w  - PI d/J2 

2(2X - a2 - b2) d 

+ (p - X)(Y - A) dX + 

4(X - u”)(X - b2) a2 

(p - X)(u - A) ax2 - (lo) 

The HELMHOLTZ DIFFERENTIAL EQUATION is SEPARA- 
BLE. 

see also HELMHOLTZ DIFFERENTIAL EQUATION- 
CONFOCAL PARABOLOIDAL COORDINATES 
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Conformal Latitude 
An AUXILIARY LATITUDE defined by 

x E 2 tan-l {tan(+++4) [:,:,~I’-‘) - $7r 

= 2 tan-l [~(:;:;ge]“2r+T 

= 4 - (+e” + he4 + $je” + se8 + . . .) sin(24) 

+ ($e4 + j&e6 + se8 + . . .) sin(44) 

- ( %e6+fi + . . .) sin(64) 

+( fie* + l  . l ) sin(84) + . . . . 

The inverse is obtained by iterating the equation 

using 4 = x as the first trial. A series form is 

q5 = x + (Se2 + &e4 + he” + &e8 + . . .) sin(2x) 

+( &e4 + &e6 + se9 + . , J sin(4X) 

+ (he6 + &e8 + l  l  J sin(6X) 

+( fie8 + . . J sin(8X) + . . . 

The conformal latitude was called the ISOMETRIC LAT- 
ITUDE by Adams (1921), but this term is now used to 
refer to a different quantity. 

see also AUXILIARY LATITUDE, LATITUDE 
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Geological Survey Professional Paper 1395. Washington, 
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Conformal Map 
A TRANSFORMATION which preserves ANGLES is known 
as conformal. For a transformation to be conformal, it 
must be an ANALYTIC FUNCTION and have a NONZERO 
DERIVATIVE. Let 8 and 4 be the tangents to the curves 
y and f(r) at zo and WO, 

w - wo = f(x) - f(zo) = 
f (4 - f(zd 

( z- 
2 - zo 4 (1) 

arg(w - WO) = arg 

4 = arg f’(z0) + 0 (3) 

lwl = If’h)l I4 (4) 

see also ANALYTIC FUNCTION, HARMONIC FUNCTION, 
MOBIUS TRANSFORMATION, QUASICONFORMAL MAP, 
SIMILAR 
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Conformal Solution 
By letting w = f(z), the REAL and IMAGINARYPARTS of 
w  must satisfy the CAUCHY-R~EMANN EQUATIONS and 
LAPLACE'S EQUATION, so they automatically provide a 
scalar POTENTIAL and a so-called stream function. If a 
physical problem can be found for which the solution is 
valid, we obtain a solution-which may have been very 
difficult to obtain directly-by working backwards. Let 

n in8 
AC = Ar e , (1) 

the REAL and IMAGINARY PARTS then give 

q5 = AT” cos(n0) (2) 
$J = AT" sin(&). (3) 

For n = -2, 

4 
A - - 7 cos(28) (4) 

ti 
A - - -T2 sin(20), (5) 

which is a double system of LEMNISCATES (Lamb 1945, 
p. 69). For n = -1, 

4 
A - -- cos 0 
T 

(6) 

e A --- - sin 8. 
T 

(7) 

This solution consists of two systems of CIRCLES, and 
4 is the POTENTIAL FUNCTION for two PARALLEL op- 

posite charged line charges (Feynman et al. 1989, $7-5; 
Lamb 1945, p. 69). For n = l/2, 

$=Ar’/Zcos(;) =AdT (8) 

@ = AC2 sin i 
0 J 

=A m-’ 
2 l  

(9) 

# gives the field near the edge of a thin plate (Feynman 
et ~1. 1989, $7-5). For n = 1, 

+=ArcosO=Az (10) 

$ = Ar sin 8 = Ay. (11) 

This is two straight lines (Lamb 1945, p. 68). For n = 

w, 
w  = AT3/2e3ie/2 . 02) 

4 gives the field near the outside of a rectangular corner 
(Feynman et al. 1989, $7-5). For n = 2, 

w  = A(x + i~)~ = A[(x2 - y”) + 2ixy] (13) 

4 = A(x2 - y2) = Ar2 cos(20) (14 

$J = 2Axy = AT’ sin(20). (15) 

These are two PERPENDICULAR HYPERBOLAS, and #is 
the POTENTIAL FUNCTION near the middle of two point 
charges or the field on the opening side of a charged 
RIGHT ANGLE conductor (Feynman 1989, $7-3). 

see also CAUCHY-RIEMANN EQUATIONS, CONFORMAL 
MAP,LAPLACE'S EQUATION 
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Conformal Tensor 

~~~WEYL TENSOR 

Conformaf Transformation 

see CONFORMAL MAP 
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Congruence 
If b - c is integrally divisible by a, then b and c are said 
to be congruent with MODULUS a. This is written math- 
ematically as b E c (mod a). If b - c is not divisible by a, 
then we say b $ c (mod a). The (mod a) is sometimes 
omitted when the MODULUS a is understood for a given 
computation, so care must be taken not to confuse the 
symbol = with that for an EQUIVALENCE. The quantity 
b is called the RESIDUE or REMAINDER. The COMMON 
RESIDUE is taken to be NONNEGATIVE and smaller than 
nz, and the MINIMAL RESIDUE is b or b - nz, whichever 
is smaller in ABSOLUTE VALUE. In many computer lan- 
guages (such as FORTRAN or Muthematic@), the COMMON 
RESIDUE of c (mod a) is written mod(c ,a). 

Congruence arithmetic is perhaps most familiar as a 
generalization of the arithmetic of the clock: 40 min- 
utes past the hour plus 35 minutes gives 40 + 35 s 
15 (mod 60), or 15 minutes past the hour, and 10 o’clock 
a.m. plus five hours gives 10 + 5 s 3 (mod 12), or 3 
o’clock p.m. Congruences satisfy a number of impor- 
tant properties, and are extremely useful in many areas 
of NUMBER THEORY. Using congruences, simple DI- 
VISIBILITY TESTS to check whether a given number is 
divisible by another number can sometimes be derived. 
For example, if the sum of a number’s digits is divisible 
by 3 (9), then the original number is divisible by 3 (9). 

Congruences also have their limitations. For example, if 
a E b and c = d (mod n), then it follows that uz G b”, 
but usually not that zc = zd or uc = bd. In addition, 
by “rolling over ,” congruences discard absolute informa- 
tion. For example, knowing the number of minutes past 
the hour is useful, but knowing the hour the minutes are 
past is often more useful still. 

Let a = a’ (mod m) and b = b’ (mod m), then im- 
portant properties of congruences include the following, 
where + means YMPLIES": 

1. Equivalence: a E b (mod 0) + a = b. 

2. Determination: 
b (mom m). 

either a G b (mod m) or a $ 

3. Reflexivity: a = a (mod m). This method always works for m PRIME, and sometimes 
4. Symmetry: a = b (mod m) I b = a (mod m)* even form COMPOSITE. However, for a COMPOSITE rrz, 
5. Transitivity: a = b (mod m) and b = the method can fail by reaching 0 (Conway and Guy 

c (modm)+u-c (modm). 1996). 

6. a + b E a’ + b’ (mod m). 

7. a - b E al - b’ (mod m). 

8. ub s u’b’ (mod m). 

9. a E b (mod m) + ku G kb (mod m). 

10. a = b (mod m) + un E bn (mod m). 

11. a = b (mod ml) and a = b (mod mz) G- a G 
b (mod [ml, mz]), where [ml, mz] is the LEAST 
COMMON MULTIPLE. 

12. uk = bk (mod m) + a E b mod & , where 
> 

(k, m) is the GREATEST COMMON DIVISOR. 

13. If a = b (mod m), then P(a) = P(b) (mod m), for 
P(X) a POLYNOMIAL. 

Properties (6-8) can be proved simply by defining 

a = a’ + rd 

b = b’ + sd, 
(1) 

(2) 

where T and s are INTEGERS. Then 

a + b = a’ + b’ + (T + s)d 

a - b = a’ - b’ + (r - s)d 

ub = a’b’ +- (u’s + b’r + rsd)d, 

(3) 

(4) 

(5) 

so the properties are true. 

Congruences also apply to FRACTIONS. For example, 
note that (mod 7) 

2x4=1 3x3~2 6 x 6 E 1 (mod 7), (6) 

To find p/q mod m, use an ALGORITHM similar to the 
GR .EEDY ALGORITHM. Letqo = 4 and find 

1 
z- =4 +2 ,=3 2- i E 6 (mod 7). (7) 

PO= F 1 11 (8) 

where [xl is the CEILING FUNCTION, then compute 

ql = QOPO (mod m). (9) 

Iterate until qn = 1, then 

n-l 

e spnpi (modm). 
u (10) 
1 i=o 

A LINEAR CONGRUENCE 

ax E b (mod m) (11) 

is solvable IFF the congruence 

b=O (mod(u,m)) (12) 

is solvable, where d = (a, m) is the GREATEST COMMON 
DIVISOR, in which case the solutions are ~0, ~0 + m/d, 
x0 + 2m/d, l  . . , xo + (d - l)m/d, where x0 < m/d. If 
d = 1, then there is only one solution. 
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A general QUADRATIC CONGRUENCE 

a2x2 + ala: + a0 E 0 (mod n) (13) 

can be reduced to the congruence 

and can be solved using EXCLU 

general polynomial congr 'uence 

Congruence (Geometric) 
Two geometric figures are said to be congruent if they 
are equivalent to within a ROTATION. This relationship 

is written A E B. (Unfortunately, this symbol is also 
used to denote ISOMORPHIC GROUPS.) 

see also SIMILAR 
X 2 s q (mod p) (14) 

DENTS. Solution of the 

a,xm + . . . + a2x2 + alx + a0 E 0 (mod n) (15) 

is intractable. Any polynomial congruence will give con- 

gruent results when congruent values are substituted. 

Two simultaneous congruences 

are solvable only 
single solution is 

x = a (mod m) (16) 

x = b (mod n) ( 17) 

when x G b (mod (m,n)), and the 

x E x0 (mod [m, n]) , (18) 

where xcg < m/d. 

see also CANCELLATION LAW, CHINESE REMAINDER 
THEOREM, COMMON RESIDUE, CONGRUENCE AXIOMS, 
DIVISIBILITY TESTS, GREATEST COMMON DIVISOR, 
LEAST COMMON MULTIPLE,MINIMAL RESIDUE, MOD- 
ULUS (CONGRUENCE),QUADRATIC RECIPROCITY LAW, 
RESIDUE(CONGRUENCE) 
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Congruence Axioms 
The five of HILBERT'S AXIOMS which concern geometric 
equivalence. 

see also CONGRUENCE AXIOMS, CONTINUITY AXIOMS, 
HILBERT'S AXIOMS, INCIDENCE AXIOMS, ORDERING 
AXIOMS,~ARALLEL POSTULATE 
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Congruence Transformation 
A transformation of the form g = DTqD, where det( D) 
# 0 and det(D) is the DETERMINANT. 

see also SYLVESTER'S INERTIA LAW 

Congruent 
A number a is said to be congruent to b modulo m if 
mla - b (m DIVIDES a-b). 

Congruent Incircles Point 
The point Y for which TRIANGLES BYC, CYA, and 
AYB have congruent TNCIRCLES. It is a special case of 

an ELKIES POINT. 

References 
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Congruent Isoscelizers Point 

A B 

In 1989, P. Yff proved there is a unique configuration of 
ISOSCELIZERS for a given TRIANGLE such that all three 
have the same length. Furthermore, these ISOSCELIZERS 
meet in a point called the congruent isoscelizers point, 

which has TRIANGLE CENTER FUNCTION 

Q: = cos(;B) + cos($) - cos(+A). 

see also CONGRUENT ISOSCELIZERS POINT, ISOSCE- 
LIZER 
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Congruent Numbers 
A set of numbers (a, x, y, t) such that 

{ 

x2 + ay2 = z2 
X2 - ay2 = t2. 
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They are a generalization of the CONGRUUM PROBLEM, 
which is the case y = 1, For a = 101, the smallest 
solution is 

x = 2015242462949760001961 

y= 118171431852779451900 

z = 2339148435306225006961 

t=1628124370727269996961. 

see also CONGRUUM 
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Congruum 
A number h which satisfies the conditions of the CON- 
GRUUM PROBLEM: 

see also CONCORDANT FORM, CONGRUENT NUMBERS, 
SQUARE NUMBER 
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Conic 

see CONIC SECTION 

Conic Constant 

and 
x2 - h = b2. 

see also CONCORDANT FORM$ONGRUUM PROBLEM 

Congruum Problem 
Find a SQUARE NUMBER x2 such that, when a given 
number h is added or subtracted, new SQUARE NUM- 
BERS are obtained so that 

x2+h=a2 

and 
x2 - h = b2, 

This problem was posed by 
Thbodore and Jean de Palerma in 
nament organized by Frederick II 
solution (Ore 1988, pp* 188-191) is 

the mat hemat icians 
a mathematical tour- 
in Pisa in 1225. The 

(1) 

(2) 

x=m2+n2 (3) 
h = 4mn(m2 - n’), (4) 

where wx and n are INTEGERS. Fibonacci proved that 
all numbers h (the CONGRUA) are divisible by 24. FER- 
MAT'S RIGHT TRIANGLE THEOREM is equivalent to the 
result that a congruum cannot be a SQUARE NUMBER. 
A table for small m and rz is given in Ore (1988, p. 191), 

and a larger one (for h < 1000) by Lagrange (1977). - 

m n h x 

2 1 24 5 
3 1 96 10 
3 2 120 13 
4 1 240 17 
4 3 336 25 

K e -e2, 

where eisthe ECCENTRICITY of a CONIC SECTION. 

see also CONIC SECTION, ECCENTRICITY 

Conic Double Point 

see ISOLATED SINGULARITY 

Conic Equidistant Projection 

A MAP PROJECTION with transformation equations 

x = psin8 (1) 

y = po - pcose, (2) 

where 

P = (G - @> 
e = n(x - A,) 

PO = (G - 00) 

(3) 
(4) 
(5) 

G= cos +& 
n (6) 

n= 
cos $1 - cos 42 

42-h - 
(7) 
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The inverse FORMULAS are given by 

4=G-p (8) 
8 

A=&)+-, 
72 (9) 

p = sgn(n)Z/x2 + (PO - y)” 

(j E tan-l 2 

( > PO--Y - 

(10) 

(11) 

Conic Projection 

see ALBERS EQUAL-AREA CYNIC PROJECTION, C~NXC 
EQUIDISTANT PROJECTION, LAMBERT AZIMUTHAL 
EQUAL-AREA PROJ&CTION,POLYCONIC PROJECTION 

Conic Section 

The conic sections are the nondegenerate curves gener- 
ated by the intersections of a PLANE with one or two 
NAPPES of a CONE. For a PLANE parallel to a CROSS- 
SECTION, a CIRCLE is produced. The closed curve pro- 
duced by the intersection of a single NAPPE with an 
inclined PLANE is an ELLIPSE or PARABOLA. The curve 
produced by a PLANE intersecting both NAPPES is a 
HYPERBOLA. The ELLIPSE and HYPERBOLA are known 
as CENTRAL CONICS. 

Because of this simple geometric interpretation, the 
conic sections were studied by the Greeks long before 
their application to inverse square law orbits was known. 
Apollonius wrote the classic ancient work on the subject 
entitled 0~2 Co&s. Kepler was the first to notice that 
planetary orbits were ELLIPSES, and Newton was then 
able to derive the shape of orbits mathematically us- 
ing CALCULUS, under the assumption that gravitational 
force goes as the inverse square of distance. Depending 
on the energy of the orbiting body, orbit shapes which 
are any of the four types of conic sections are possible. 

A conic section may more formally be defined as the 
locus of a point P that moves in the PLANE of a fixed 
point F called the FOCUS and a fixed line d called the 

DIRECTRIX (with F not on d) such that the ratio of the 
distance of P from F to its distance from d is a constant 
e called the ECCENTRICITY. For a Focus (0,O) and 
DIRECTRIX x = -a, the equation is 

x2 + y2 = e2(x + u)“. 

If e = 1, the conic is a PARABOLA, if e < 1, the conic is 
an ELLIPSE, andife > 1,itis a HYPERBOLA. 

In standard form, a conic section is written 

y2 = 2Rx - (1 - e2)x2, 

where R is the RADIUS OF CURVATURE and e is the 
ECCENTRICITY. Five points in a plane determine a conic 
(Le Lionnais 1983, p. 56). 

see also BRIANCHON’S THEOREM, CENTRAL CONIC, 
CIRCLE, CONE, ECCENTRICITY, ELLIPSE, FERMAT 
CONIC, HYPERBOLA, NAPPE, PARABOLA, PASCAL'S 
THEOREM, QUADRATIC CURVE, SEYDEWITZ'S THEO- 
REM, SKEW CONIC, STEINER'S THEOREM 
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Conic Section Tangent 
Given a CONIC SECTION 

x2 +y2 +2gx+Zfy+c= 0, 

the tangent at (xl,yr) is given by the equation 
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Conical Coordinates 
Arfken (1970) and Morse and Feshbach (1953) use 
slightly different definitions of these coordinates. The 
system used in 2l/lathemafica@ (Wolfram Research, Inc., 
Champaign, Illinois) is 

Conical Frustum 

A conical frustum is a FRUSTUM created by slicing the 
top off a CONE (with the cut made parallel to the base). 
For a right circular CONE, let s be the slant height and 
RI and Ra the top and bottom RADII. Then 

x XX- (p” - b2)(v2 - b2) 
b J b2 - a2 ’ (3) 

where b2 > p2 > c2 > I.? The NOTATION of Byerly 
replaces X with r, and a and b with b and c. The above 
equations give 

x2 + y2 + iz2 = x2 (4) 

s = d= Rz)~ + h2. (1) 

The SURFACE AREA, not including the top and bottom 
CIRCLES, is 

ET+ 
P2 

Y2 
p2 - a2 

z2 
p2 - b2 (5) =0 + A = n(R1+R2)s = ~(RI+R~)&RI - R2j2 -+h2. (2) 

z2 
- = 0. 
u2 - b2 The VOLUME of the frustum is given by 

The SCALE FACTORS are v = 7r s h[r(z),2 dz. 
0 

(3) 

(4) 

hx =l (7) 

h, = But 
r(z)= RI +(R2 -RI);, 

(8) 

so 

V=7T lh [RI+ (R2 -Rl);j2 dz 
0 

- +h(R12 + R1R2 + R22). - (5) 

The LAPLACIAN is 

v2 = u(2v2 - a2 - b2) 8 

(p - y)(p + +x2 By 

+ ( 
a-u)(a+u)(u-b)(u+b) d2 

(v - p)(u + p)A2 au2 

+ p(2p2 - a2 - b2) d 

(y - P)(V + PP2 aE-1 

This formula can be generalized to any PYRAMID by 
letting Ai be the base AREAS of the top and bottom of 
the frustum. Then the VOLUME can be written as 

V = $(A1 + A2 + dm). (6) 
+(~-b)(CL+b)(CL--a)(CL+a) a2 

(y - p)(u + p)X2 3p 
2d a2 

+I% + mm (10) 

The weighted mean of z over the frustum is 

s 

h 

=7T x[r(z)]” dz = &h2(R12 + 2R1R2 + 3Rz2). 
0 

(7) 
The CENTROID is then given by 

The HELMHOLTZ DIFFERENTIAL EQUATION isseparable 
in conical coordinates. 

see also HELMHOLTZ DIFFERENTIAL EQUATION- 
CONICAL COORDINATES 

z=z= t > h(R12 + RI& +- R22) 

V 4(R12+ 2&Rz+3Rz2) (8) 
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(Beyer 1987, pa 133). The special case of the CONE is 
given by taking R2 = 0, yielding x = h/4. 

see UZSO CONE, FRUSTUM, PYRAMIDAL FRUSTUM, 
SPHERICAL SEGMENT 
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Beyer, W. H. (Ed.) CRC Standard Mathematical Tubles, 

28th ed, Boca Raton, FL: CRC Press, pp. 129430 and 
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Conical Function 

Conical Function 
Functions which can be expressed in terms of LEGENDRE 
FUNCTIONS OF THE FIRST and SECOND KINDS. See 
Abramowitz and Stegun (1972, p. 337). 

%l,+ip (cod) = 1+ v sin2($0) 

+ (4p2 + 12)(4p2 + 32) sin4(1e) + 
2242 2 . . l  

Conical Wedge 
cosh(pt) dt The SURFACE also called the CONOCUNEUS OF WALLIS 

2(cost - cod) and given by the parametric equation 

O” Q P -1,2rip(cos 0) = &i sinh(pr) J J cos(pt) dt 

0 2(cosh t + cos 19) + 
see also TOROIDAL FUNCTION 

References 
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1980. 

Conical Spiral 

A surface modeled after the shape of a SEASHELL. One 
parameterization (left figure) is given by 

2 = 2[1 - ,U’C6XQ cosUcos2( +I) 

Y = 2[-1 + e”/(6”)] cos”(~w) sinu 

z = 1 _ e”/(3T) - sinv + e”/(6x) sin 21, 

(1) 

(2) 

(3) 

where w  f [O, 27r), and u E [0,6~) (WoIfram). Nord 
strand gives the parameterization 

x= [(l- ;) (1+cosu)+c] cos(nw) (4 

x= F-i3 1 (1 + cosu) + c sin(W) (5 

bV 
z=-+asinu 

27r (GJ (6) 
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Gray, A. “Sea Shells.” $11.6 in Modern D$erentiaZ Geome- 

try of Curves and Surfaces. Boca Raton, FL: CRC Press, 
pp+ 223-223, 1993. 

Nordstrand, T. %onic Spiral or Seashell.” http: //www , uib , 
no/people/nfytn/shelltxt.htm. 

Wolfram Research “Mathematics Version 2.0 Graphics 
Gallery.” http://www.mathsource.com/cgi-bin/Math 
Source/Applications/Graphics/3D/0207-155* 

x = ucos’u 

y = usinv 

z = c(l - 2cos2 v). 

see also CYLINDRICAL WEDGE, WEDGE 

References 
von Seggern, D. CRC Standard Curves and Surfaces. Boca 

Raton, FL: CRC Press, p. 302, 1993. 

Conjecture 
A proposition which is consistent with known data, but 
has neither been verified nor shown to be false. It is 
synonymous with HYPOTHESIS. 

see also ABC CONJECTURE, ABHYANKAR'S CONJEC- 
TURE, ABLOWITZ-RAMANI-SEGUR CONJECTURE, AN- 
DRICA'S CONJECTURE, ANNULWS CONJECTURE, AR- 
GOH'S CONJECTURE, ARTIN'S CONJECTURE, Ax- 
IOM, BACHET'S CONJECTURE, BENNEQ~IN'S CONJEC- 
TURE, BIEBERBACH CONJECTURE, BIRCH CONJEC- 
TURE, BLASCHKE CONJECTURE, BORSUK'S CONJEC- 
TURE, BORWEIN CONJECTURES, BRAUN'S CONJEC- 
TURE, BROCARD'S CONJECTURE, BURNSIDE'S CON- 
JEc7ruR~, CARMICHAEL'S CONJECTURE, CATALAN's 
CONJECTURE, CRAMI?R CONJECTURE, DE POLIG- 
~Ac's CONJECTURE, DIESIS, D~DECAHEDRAL Cow 
JECTURE, DOUBLE BUBBLE CONJECTURE, EBER- 
HART'S CONJECTURE, EULER'S CONJECTURE, EULER 
POWER CONJECTURE,EULER QUARTIC CONJECTURE, 
FEIT-THOMPSON CONJECTURE, FERMAT'S CONJEC- 
TURE, FLYPING CONJECTURE, GILBREATH'S CONJEC- 
TURE, GIUGA'S CONJECTURE, GOLDBACH CONJEC- 
TURE, GRIMM'S CONJECTURE, GUY’S CONJECTURE, 
HARDY-LITTLEWOOD CONJECTURES, HASSE'S CON- 
JECTURE, HEAWOOD CONJECTURE, HYPOTHESIS, JA- 
COBIAN CONJECTURE, KAPLAN-Y• RKE CONJECTURE, 
KELLER'S CONJECTURE, KELVIN'S CONJECTURE, KE- 
PLER CONJECTURE, KREXSEL CONJECTURE, KUM- 
MER'S CONJECTURE, LEMMA, LOCAL DENSITY CON- 
JECTURE; MERTEW CONJECTURE, MILIN CONJEC- 
TURE, MILNOR'S CONJECTURE, MORDELL CONJEC- 
TURE, NETTO'S CONJECTURE, NIRENBERG'S CON- 
JECTURE, ORE'S CONJECTURE, PADI? CONJECTURE, 

for U,U E [O,27r] (right figure with a = 0.2, b = 1, c = 
0.1, and n = 2). 
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PALINDROMIC NUMBER CONJECTURE, PILLA CON- 
JECTURE, POINCARI? CONJECTURE, P6LYA CON- 

Conjugate Element 
Given a GROUP with elements A and X, there must 

JECTURE, PORISM, PRIME /+TUPLES CONJECTURE, be an element B which is a SIMILARITY TRANSFORMA- 
PRIME PATTERNS CONJECTURE, PRIME POWER CON- TION of A,B = X-lAX so A and B are conjugate with 
JECTURE, PROOF, QUILLEN-LICHTENBAUM CONJEC- 
TURE, RAMANUJAN-PETERSSON CONJECTURE, Ro- 

respect to X. 
properties: 

Conjugate elements have the following 

BERTSON CONJECTURE, SAFAREVICH CONJECTURE, 
SAUSAGE CONJECTURE, SCHANUEL’S CONJECTURE, 

1. Every element is conjugate with itself. 

SCHISMA, SCHOLZ CONJECTURE, SEIFERT CONJEC- 
2. If A is conjugate with B with respect to X, then B 

TURE, SELFRIDGE'S CONJECTURE, SHANKS' CON- 
is conjugate to A with respect to X. 

I  

JECTURE, SMITH CONJECTURE, SWINNERTON-DYER 3. If A is conjugate with B and C, then B and C are 

CONJECTURE, SZPIRO'S CONJECTURE, TAIT'S HAM- conjugate with each other. 

ILTONIAN GRAPH CONJECTURE, TAIT'S KNOT CON- 
JECTURES, TANIYAMA-SHIMURA CONJECTURE, TAU 

see also CONJUGACY CLASS, CONJUGATE SUBGROUP 

CONJECTURE, THEOREM, THURSTON'S GEOMETRIZA- 
TION CONJECTURE, THWAITES CONJECTURE, Vo- 
JTA'S CONJECTURE, WANG'S CONJECTURE, WARING'S 
PRIME CONJECTURE, WAR~NG’S SUM CONJECTURE, 
ZARANKIEWICZ'S CONJECTURE 

Conjugate Gradient Method 
An ALGORITHM for calculating the GRADIENT Vf(P) 
of a function at an n-D point P. It is more robust than 
the simpler STEEPEST DESCENT METHOD. 

References 
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www.sci.net.mx/-crivera/ppp/conjectures,htm. 

Conjugacy Class 
A complete set of mutually conjugate GROUP elements. 
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Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetter- 
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Conjugate Points 
Each element in a GROUP belongs to exactly one class, 
and the identity (1 = 1) element is always in its own 

see HARMONIC CONJUGATE POINTS, ISOGONAL CON- 

class. The ORDERS of all classes must be integral FAC- 
JUGATE,~SOTOMIC CONJUGATE POINT 

TORS of the ORDER of the GROUP. From the last two 
statements, a GROUP of PRIME order has one class for 
each element. More generally, in an ABELIAN GROUP, 
each element is in a conjugacy class by itself. Two opera- 
tions belong to the same class when one may be replaced 
by the other in a new COORDINATE SYSTEM which is ac- 
cessible by a symmetry operation (Cotton 1990, pm 52). 
These sets correspond directly to the sets of equivalent 

Conjugate Subgroup 
A SUBGROUP H of an original GROUP G has elements hi. 
Let it: be a fixed element of the original GROUP G which 
is not a member of H. Then the transformation xh&, 
(i = 1, 2, l  . l  ) generates a conjugate SUBGROUP zHz? 
If, for all z, zHzt? =&then H isa SELF-CONJUGATE 
(also called INVARIANT or NORMAL) SUBGROUP. Al 
SUBGROUPS of an ABELIAN GROUP are invariant. 

operation. 

Let G bea FINITE GROUP of ORDER~G~. IfIG ~~ODD, Conjugation 
then 1 2 n-1 1 2 n-1 

IGI = s (mod 16) 

(Burnside 1955, p. 295). Furthermore, if every PRIME 
pi DIVIDING [GI satisfies pi = 1 (mod 4), then A B 

PI E s (mod 32) 
I B A 

(Burnside 1955, p, 320). Poonen (1995) showed that if 
every PRIME pi DIVIDING IGI satisfies pi E 1 (mod m) 
for m > 2, then - AtypeI MARKOV MOVE. 

IGI E s (mod 2m2), 
see also MARKOV MOVES, STABILIZATION 
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Conjunction 
A product of ANDS, denoted 

York: Dover, 1955. n 
Cotton, F. A. Chemical Applications of Group Theory, 3rd 

ed. New York: Wiley, 1990. A A. 
Poonen, B. “Congruences Relating the Order of a Group to 

the Number of Conjugacy Classes.” Amer. Math. Monthly 
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Connected Graph 

1 l 

2 w 

3 - A 
4 - A 

A GRAPH which is connected (as a TOPOLOGICAL 
SPACE), i.e., there is a path from any point to any other 
point in the GRAPH. The number of ~-VERTEX (unla- 
beled) connected graphs for n = 1, 2, . m m are 1, 1, 2, 6, 
21, 112, 853, 11117, . . . (Sloane’s A001349). 

References 
Chartrand, G. “Connected Graphs.” $2.3 in Introductory 

Graph Theory. New York: Dover, pp* 41-45, 1985. 
Sloane, N. J. A. Sequence A001349/M1657 in “An On-Line 

Version of the Encyclopedia of Integer Sequences.” 

Connected Set 
A connected set is a SET which cannot be partitioned 
into two nonempty SUBSETS which are open in the rel- 
ative topology induced on the SET. Equivalently, it is 
a SET which cannot be partitioned into two nonempty 
SUBSETS such that each SUBSET has no points in com- 
mon with the closure of the other. 

The REAL NUMBERS are a connected set. 

see also CLOSED SET, EMPTY SET, OPEN SET, SET, 
SUBSET 

Connected Space 
A SPACE 13 is connected if any two points in D can be 
connected by a curve lying wholly within D. A SPACE 
is O-connected (a.k.a. PATHWISE-CONNECTED) if every 
MAP from a O-SPHERE to the SPACE extends contin- 
uously to the ~-DISK. Since the O-SPHERE is the two 
endpoints of an interval (~-DISK), every two points have 
a path between them. A space is l-connected (a.k.a. 
SIMPLY CONNECTED) if it is O-connected and if every 
MAP from the ~-SPHERE to it extends continuously to 
a MAP from the ~-DISK. In other words, every loop 
in the SPACE is contractible. A SPACE is n-MULTIPLY 
CONNECTED if it is (n - Q-connected and if every MAP 
from the n-SPHERE into it extends continuously over the 
(n + l)-DISK. 

A theorem of Whitehead says that a SPACE is infinitely 
connected IFF it is contractible. 

see also CONNECTIVITY, LOCALLY PATHWISE-CON- 
NECTED SPACE, MULTIPLY CONNECTED, PATHWISE- 
C~NNECTED,SIMPLY CONNECTED 

Connected Sum 
The connected sum Ml#Mz of n-manifolds MI and Mz 
is formed by deleting the interiors of n-BALLS Bin in 
Mp and attaching the resulting punctured MANIFOLDS 
A&&toeachotherbya HOMEOMORPHISM h:d& --+ 
dB1, so 

M1#M2 = (Ml - &)u(M2 - &). 
h 

Bi is required to be interior to Mi and 6Bi bicollared in 
Mi to ensure that the connected sum is a MANIFOLD. 

The connected sum of two KNOTS is called a KNOT SUM. 

see also KNOT SUM 

References 
Rolfsen, D. Knots and Links. Wilmington, DE: Publish or 

Perish Press, p. 39, 1976. 

Connected Sum Decomposition 
Every COMPACT S-MANIFOLD is the CONNECTED SUM 
of a unique collection of PRIME S-MANIFOLDS. 

see also JACO-SHALEN-JOHANNSON TORUS DECOMPO- 
SITION 

Connection 

see CONNECTION COEFFICIENT, GAUSS-MANIN CON- 
NECTION 

Connection Coefficient 
A quantity also known as a CHRISTOFFEL SYMBOL OF 
THE SECOND KIND. Connection COEFFICIENTS are de- 
fined by 

r”la 
“A 

E Z” l  (Ve;Zo> 
(1) 

(long form) or 

(abbreviated form), and satisfy 

(long form) and 

(abbreviated form). 

Connection COEFFICIENTS are not TENSORS, but have 
TENSOR-like C~NTRAVARIANT and COVARIANT indices. 
A fully COVARIANT connection COEFFICIENT is given 

bY 

(5) 

where the gs are the METRIC TENS ORS, the cs are COM- 
MUTATION c OEFFICIENTS, and the commas in .dicate the 
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COMMA DERIVATIVE. In an ORTHONORMAL BASIS, 
gap,r = 0 and gpr = 6,, , so 

and 

r+* 4 =o for i # j # k (7) 
1 agii r.. = --- zzk 
2 dxk 

for i # k 

r. . . 1 &Iii 
23% = rjii = - 7 

2 dxJ (9) 
r!j = 0 for i # j # Fz (10) 

rk = 
ii 

1 d&i 

2gkk hk 
for i # k 

(12) 

For TENSORS of RANK 3,the connection COEFFICIENTS 
may be concisely summarized in MATRIX form: 

Connection COEFFICIENTS arise in the computation of 
GEODESICS. The GEODESIC EQUATION of free motion 
iS 

dT2 = -qalp dc” dc’, (14) 

or 

(15) 

Expanding, 

(16) 
dc” d2xp axA a2p dxp dx” 8xX 
---+w-- dxp dr2 d<” dT dr d[” = Orn (17) 

so 

where 

(20 

see also CARTAN TORSION COEFFICIENT, CHRISTOF- 
FEL SYMBOL OF THE FIRST KIND, CHRISTOFFEL SYM- 
BOLOFTHESECONDKIND,COMMADERIVATIVE,COM- 
MUTATION COEFFICIENT, CURVILINEAR COORDINATES, 
SEMICOLON DERIVATIVE,TENSOR 

Connectivity 

see CONNECTED SPACE, EDGE CONNECTIVITY, VER- 
TEX CONNECTIVITY 

Connes Function 

a 

0.6 

i\ 

0.4 

0.2 

-1 -0.5 0.5 1 

1.25 

0.7 

05 -4- 0 5 

-3 -2 -olz5 2 3 

-0.5 

The APODIZATION FUNCTION 

Its FULL WIDTH AT HALF MAXIMUM is d4 - 2&, 
and its INSTRUMENT FUNCTION is 

I(x) = 8ad5 
J5/2 (2rka) 
(2rka)5/2 ’ 

where J&T) is a BESSEL FUNCTION OF THE FIRST 
KIND. 
see ~2s~ APODIZATION FUNCTION 

Conocuneus of Wallis 

see CONICAL WEDGE 

Conoid 

see PLUCKER'S CONOID, RIGHT CONOID 

Consecutive Number Sequences 
Consecutive number sequences are sequences con- 
structed by concatenating numbers of a given type. 
Many of these sequences were considered by Smaran- 
dache, so they are sometimes known as SMARANDACHE 
SEQUENCES. 

The nth term of the consecutive integer sequence con- 
sists of the concatenation of the first TZ POSITIVE inte- 
gers: 1, 12, 123, 1234, l  . . (Sloane’s A007908; Smaran- 
dache 1993, Dumitrescu and Seleacu 1994, sequence 1; 
Mudge 1995; Stephen 1998). This sequence gives the 
digits of the CHAMPERNOWNE CONSTANT and contains 
no PRIMES in the first 4,470 terms (Weisstein). This 
is roughly consistent with simple arguments based on 
the distribution of prime which suggest that only a sin- 
gle prime is expected in the first 15,000 or so terms. 
The number of digits of the n term can be computed 
by noticing the pattern in the following table, where 

d = bg,, n] + 1 is the number of digits in n. 

d n Range Digits 

1 l-9 
2 10-99 i+2( n - 9) 
3 100-999 9 + 90 - 2 + 3(n - 99) 
4 1000-9999 9 + 90 l  2 + 900 9 3 + 4(n - 999) 
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Therefore, the number of digits D(n) in the nth term 
can be written 

d-l 

D(n) = d(n + 1 - 10dml) + x 9k. 10kvl 

k=l 

= (n+l)d- e, 

where the second term is the REPUNIT & 

The nth term of the reverse integer sequence consists 

of the concatenation of the first n POSITIVE integers 
written backwards: 1, 21, 321, 4321, . . . (Sloane’s 
AOO0422; Smarandache 1993, Dumitrescu and Seleacu 
1994, Stephen 1998). The only PRIME in the first 
3,576 terms (Weisstein) of this sequence is the 82nd 

term 828180.. .321 (Stephen 1998), which has 155 dig- 
its. This is roughly consistent with simple arguments 

based on the distribution of prime which suggest that a 
single prime is expected in the first 15,000 or so terms. 

The terms of the reverse integer sequence have the same 
number of digits as do the consecutive integer sequence. 

The concatenation of the first n PRIMES gives 2, 23, 
235, 2357, 235711, . . . (Sloane’s A019518; Smith 1996, 
Mudge 1997). This sequence converges to the digits 
of the COPELAND-ERD~S CONSTANT and is PRIME for 
terms 1, 2, 4, 128, 174, 342, 435, 1429, . . . (Sloane’s 

A046035; Ibstedt 1998, pp. 78-79), with no others less 
than 2,305 (Weisstein). 

The concatenation of the first n ODD NUMBERS gives 
1, 13, 135, 1357, 13579, l  . . (Sloane’s AOl9519; Smith 
1996, Marimutha 1997, Mudge 1997). This sequence is 
PRIME for terms 2, 10, 16, 34, 49, 2570, . . . (Sloane’s 
AO46036; Weisstein, Ibstedt 1998, pp. 75-76), with no 

others less than 2,650 (Weisstein). The 2570th term, 
given by 1 3 5 7. l  -5137 5139, has 9725 digits and was 
discovered by Weisstein in Aug. 1998. 

The concatenation of the first n EVEN NUMBERS gives 

2, 24, 246, 2468, 246810, . . . (Sloane’s AO19520; Smith 
1996; Marimutha 1997; Mudge 1997; Ibstedt 1998, 

pp. 77-78). 

The concatenation of the first n SQUARE NUMBERS gives 
1, 14, 149, 14916, . , . (Sloane’s AO19521; Marimutha 
1997). The only PRIME in the first 2,090 terms is the 

third term, 149, (Weisstein). 

The concatenation of the first n CUBIC NUMBERS gives 
1, 18, 1827, 182764, . . . (Sloane’s AOl9522; Marimutha 
1997). There are no PRIMES in the first 1,830 terms 
(Weisstein). 

see also CHAMPERNOWNE CONSTANT, CONCATENA- 
TION, COPELAND-ERD~S CONSTANT, CUBIC N~M- 
BER,DEMLO NUMBER,EVEN NUMBER,~DD NUMBER, 
SMARANDACHE SEQUENCE@QUARE NUMBER 
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Conservation of Number Principle 
A generalization of Poncelet’s PERMANENCE OF MATH- 
EMATICAL RELATIONS PRINCIPLE made by H. Schubert 

in 1874-79. The conservation of number principle as- 
serts that the number of solutions of any determinate 
algebraic problem in any number of parameters under 

variation of the parameters is invariant in such a man- 
ner that no solutions become INFINITE. Schubert called 
the application of this technique the CALCULUS of ENU- 
MERATIVE GEOMETRY. 

see also 

PERMAN 
PLE 

DUAL 
ENCE 

ITY PRINCIPLE, 
OF MATHEMATIC 

I~ILBERT’S PROBLEMS, 
AL RELATIONS PRINCI- 
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Conservative Field 
The following conditions are equivalent for a conserva- 
tive VECTOR FIELD: 

1. For any oriented simple closed curve C, the LINE 
INTEGRAL & F4 ds = 0. 

2. For any two oriented simple curves Cr and Cz with 
the same endpoints, S,, F l  ds = S,, F l  ds. 

3. There exists a SCALAR POTENTIAL FUNCTION f 
such that F = Of, where V is the GRADIENT. 

4. The CURL V x F = 0. 

see also CURL, GRADIENT, LINE INTEGRAL, POTENTIAL 
FUNCTION, VECTOR FIELD 

Consistency 
The absence of contradiction (i.e., the ability to prove 

that a statement and its NEGATIVE are both true) in an 
AXIOMATIC THEORY is known as consistency. 

see als o COMPLETE AXIOMATIC THEORY, CONSIS- 
TENCY STRENGTH 
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Consistency Strength 
If the CONSISTENCY of one of two propositions implies 
the CONSISTENCY of the other, the first is said to have 
greater consistency strength. 

Constant 
Any REAL NUMBER which is “significant” (or interest- 
ing) in some way. In this work, the term “constant” is 
generally reserved for REAL nonintegral numbers of in- 
terest, while “NUMBER” is reserved for interesting INTE- 
GERS (e.g., BRUN’S CONSTANT, but BEAST NUMBER). 

Certain constants are known to many DECIMAL DIGITS 

and recur throughout many diverse areas of mathemat- 
ics, often in unexpected and surprising places (e.g., PI, 
e, and to some extent, the EULER-MASCHERONI CON- 
STANT y)* Other constants are more specialized and 
may be known to only a few DIGITS. S. Plouffe main- 
tains a site about the computation and identification of 
numerical constants. Plouffe’s site also contains a page 
giving the largest number of DIGITS computed for the 
most common constants. S. Finch maintains a delight- 
ful, more expository site containing detailed essays and 
references on constants both common and obscure. 

see also ABUNDANT NUMBER, ALLADI~RINSTEAD 
CONSTANT, AP~~RY’S CONSTANT, ARCHIMEDES' CON- 

STANT, ARTIN'S CONSTANT,BACKHOUSE'S CONSTANT, 
BERAHA CONSTANTS, BERNSTEIN'S CONSTANT,BLOCH 
CONSTANT, BRUN’S CONSTANT, CAMERON'S SUM- 
FREE SET CONSTANT, CARLSON-LEVIN CONSTANT, 
CATALAN'S CONSTANT, CHAITIN'S CONSTANT, CHAM- 
PERNOWNE CONSTANT, CHEISYSHEV CONSTANTS, 
CHEBYSHEV-SYLVESTER CONSTANT, COMMA OF DIDY- 
MUS, COMMA OF PYTHAGORAS, CONIC CONSTANT, 
CONSTANT FUNCTION, CONSTANT PROBLEM, CON- 
TINUED FRACTION CONSTANT, CONWAY’S CONSTANT, 
COPELAND-ERD~S CONSTANT, COPSON-DE BRUIJN 
CONSTANT, DE BRUIJN-NEWMAN CONSTANT, DELIAN 
CONSTANT, DIESIS, Du BOIS RAYMOND CONSTANTS,~, 
ELLISON-MEND&-FRANCE CONSTANT, ERD~S RECIP- 
ROCAL SUM CONSTANTS, EULER-MASCHERONI CON- 
STANT, EXTREME VALUE DISTRIBUTION, FAVARD 
CONSTANTS, FELLER'S COIN-TOSSING CONSTANTS, 
FRANS~N-ROBINSON CONSTANT, FREIMAN'S CON- 
STANT, GAUSS’S CIRCLE PROBLEM, GAUSS’S CON- 

STANT, GAUSS-KUZMIN-WIRSING CONSTANT, GEL- 
FOND-SCHNEIDER CONSTANT, GEOMETRIC PROBA- 
BILITY CONSTANTS, GIBBS CONSTANT, GLAISHER- 
KINKELIN CONSTANT, GOLDEN MEAN, GOLOMB 
CONSTANT, GOLOMB-DICKMAN CONSTANT, GOM- 
PERTZ CONSTANT, GROSSMAN'S CONSTANT, GRO- 
THENDIECK'S MAJORANT, HADAMARD-VALL~E Pous- 
SIN CONSTANTS, HAFNER-SARNAK-MCCURLEY CON- 
STANT, HALPHEN CONSTANT, HARD SQUARE EN- 

TROPY CONSTANT, HARDY-LITTLEWOOD CONSTANTS, 
HERMITE CONSTANTS, HILBERT'S CONSTANTS, INFI- 
NITE PRODUCTJTERATED EXPONENTIAL CONSTANTS, 

KHINTCHINE'S CONSTANT, KHINTCHINE-L~~vY CON- 
STANT, KOEBE'S CONSTANT, KOLMOGOROV CON- 
STANT, LAL'S CONSTANT, LANDAU CONSTANT, LAN- 
DAU-KOLMOGOROVCONSTANTS,LANDAU-RAMANUJAN 
CONSTANT, LEBESGUE CONSTANTS (FOURIER SE- 
RIES), LEBESGUE CONSTANTS (LAGRANGE INTERPO- 
LATION), LEGENDRE'S CONSTANT, LEHMER'S CON- 
STANT, LENGYEL'S CONSTANT, LEVY CONSTANT, LIN- 

NIK’S CONSTANT, LIOUVILLE'S CONSTANT, LIOUVILLE- 
ROTH CONSTANT, LUDOLPH'S CONSTANT,MADELUNG 
CONSTANTS, MAGIC CONSTANT, MAGIC GEOMETRIC 
CONSTANTS, MASSER-GRAMAIN CONSTANT, MERTENS 
CONSTANT, MILLS' CONSTANT, MOVING SOFA CON- 
STANT, NAPIER'S CONSTANT, NIELSEN-RAMANUJAN 
CONSTANTS, NIVEN'S CONSTANT, OMEGA CONSTANT, 
ONE-NINTH CONSTANT, UTTER'S TREE ENUMERA- 
TION CONSTANTS, PARITY CONSTANT, PI, PISOT- 
VIJAYARAGHAVAN CONSTANTS, PLASTIC CONSTANT, 
PLOUFFE'S CONSTANT, POLYGON CIRCUMSCRIBING 
CONSTANT, POLYGON INSCRIBING CONSTANT, POR- 
TER’S CONSTANT, PYTHAGORAS’S CONSTANT, QUAD- 
RATIC RECURRENCE, QUADTREE, RABBIT CONSTANT, 
RAMANUJAN CONSTANT, RANDOM WALK, RI?NYI’S 
PARKING CONSTANTS, ROBBIN CONSTANT, SALEM 
CONSTANTS, SELF-AVOIDING WALK, SHAH-WILSON 
CONSTANT, SHALLIT CONSTANT, SHAPIRO'S CYCLIC 
SUM CONSTANT, SIERPI~~SKI CONSTANT, SILVER CON- 
STANT, SILVERMAN CONSTANT, SMARANDACHE CON- 
STANTS, SOLDNER’S CONSTANT, SPHERE PACKING, 
STIELTJES CONSTANTS, STOLARSKY-HARBORTH CON- 
STANT, SYLVESTER'S SEQUENCE, THUE CONSTANT, 
THUE-MORSE CONSTANT, TOTIENT FUNCTION CON- 
STANTS, TRAVELING SALESMAN CONSTANTS, TREE 
SEARCHING, TWIN PRIMES CONSTANT, VARGA'S 
CONSTANT, W2-CONSTANT, WEIERSTRAB CONSTANT, 
WHITNEY-MIKHLIN EXTENSION CONSTANTS, WIL- 

BRAHAM-GIBBS CONSTANT,~IRTINGER-SOBOLEV Iso- 
PERIMETRIC CONSTANTS 
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Constant Function 
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A FUNCTION f(z) = c which does not change as its 
parameters vary. The GRAPH of a 1-D constant FUNC- 
TION is a straight LINE. The DERIVATIVE of a constant 
FUNCTION c is 

d 
-c=o, 
dx 

and the INTEGRAL is 

s cdx = CC, (2 

The FOURIER TRANSFORM of the constant function 
f(x) = 1 is given by 

F[l] ==I e-2=ikx dx = S(k), (3) 

where 6(k) is the DELTA FUNCTION. 

see UZSO FOURIER TRANSFORM-~ 
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Constant 

see CURVE 

Precession Curve 

OF CONSTANT PRECES SION 

Constant Problem 
Given an expression involving known constants, integra- 
tion in finite terms, computation of limits, etc., deter- 
mine if the expression is equal to ZERO. The constant 
problem is a very difficult unsolved problem in TRANS- 
CENDENTAL NUMBER theory. However, it is known 
that the problem is UNDECIDABLE if the expression in- 
volves oscillatory functions such as SINE. However, the 
FERGUSON-FORCADE ALGORITHM is a practical algo- 
rithm for determining if there exist integers ai for given 
real numbers xi such that 

alxl + a222 + . . . + anxn = 0, 

or else establish bounds within which no relation can 
exist (Bailey 1988). 

see ho FERGUSON-FORCADE ALGORITHM, INTEGER 
RELATION, SCHANUEL'S CONJECTURE 
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Constant Width Curve 

see CURVE OF CONSTANT WIDTH 

Constructible Number 
A number which can be represented by a FINITE num- 
ber of ADDITIONS, SUBTRACTIONS, MULTIPLICATIONS, 
DIVISIONS, and FINITE SQUARE ROOT extractionsof in- 
tegers. Such numbers correspond to LINE SEGMENTS 
which can be constructed using only STRAIGHTEDGE 
and COMPASS. 

All RATIONAL NUMBERS are constructible, and all con- 
structible numbers are ALGEBRAIC NUMBERS (Courant 
and Robbins 1996, p. 133). If a CUBIC EQUATION with 
rational coefficients has no rational root, then none of 
its roots is constructible (Courant and Robbins, pm 136). 

In particular, let Fo be the FIELD of RATIONAL NUM- 
BERS. Now construct an extension field Fl of con- 
structible numbers by the adjunction of 6, where JQ 
is in Fo, but & is not, consisting of all numbers of the 
form a0 + boa, where ao, bo E Fo. Next, construct an 
extension field F2 of Fl by the adjunction of 6, de- 
fined as the numbers al + bl&, where al, bl E Fl, and 
kl is a number in Fl for which & does not lie in Fl. 
Continue the process n times. Then constructible num- 
bers are precisely those which can be reached by such 
a sequence of extension fields F,, where n is a measure 
of the “complexity” of the construction (Courant and 
Robbins 1996) l  

see also ALGEBRAIC NUMBER, COMPASS, CON- 
STRUCTIBLE POLYGON, EUCLIDEAN NUMBER, RATIO- 
NAL NUMBER,~TRAIGHTEDGE 
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Constructible Polygon 

Equilateral Triangle Square 

B 
PI p5 % 

3 

D 

0 Nl PO N, F 0 E IV, 

Pentagon 17-gon 

CUMPASS and STRAIGHTEDGE constructions dating 
back to Euclid were capable of inscribing regular poly- 
gons of 3, 4, 5, 6, 8, 10, 12, 16, 20, 24, 32, 40, 48, 
64, .*. , sides. However, this listing is not a complete 
enumeration of “constructible” polygons. A regular n- 
gon (n > 3) can be constructed by STRAIGHTEDGE and 
COMPASS IFF 

n = 2”P1P2-P,, 

where k is in INTEGER > 0 and the pi are distinct FER- - 
MAT PRIMES. FERMAT NUMBERS are of the form 

Fm = Pm + 1, 

where vz is an INTEGER > 0. The only known PRIMES of 
this form are 3, 5, 17, 257, and 65537. The fact that this 
condition was SUFFICIENT was first proved by Gauss in 
1796 when he was 19 years old. That this condition was 
also NECESSARY was not explicitly proven by Gauss, and 
the first proof of this fact is credited to Wantzel (1836)* 

see also COMPASS, CONSTRUCTIBLE NUMBER, GE- 
OMETRIC CONSTRUCTION, GEOMETROGRAPHY, HEP- 
TADECAGON,HEXAGON, OCTAGON, PENTAGON, POLY- 
GON,SQUARE,STRAIGHTEDGE,TRIANGLE 
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Construction 

see GEOMETRIC CONSTRUCTION 

Constructive Dilemma 
A formal argument in LOGIC in which it is stated that 
(1) P + Q and R z S (where + means 6CI~~~~~~“), 
and (2) either P or R is true, from which two statements 
it follows that either Q or S is true. 

see UZSO DESTRUCTIVE DILEMMA, DILEMMA 

Contact Angle 

The ANGLE or between the normal vector of a SPHERE 
(or other geometric object) at a point where a PLANE is 
tangent to it and the normal vector of the plane. In the 
above figure, 

Q! = cos 

see also SPHERICAL CAP 

Contact Number 

see KISSING NUMBER 

Contact Triangle 

T3 

The TRIANGLE formed by the points of intersection of 
a TRIANGLE T's INCIRCLE with T. This is the PEDAL 
TRIANGLE ofTwiththe XNCENTER as the PEDAL POINT 
(c.f,, TANGENTIAL TRIANGLE). The contact triangle 
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and TANGENTIAL TRIANGLE are perspective from the is the integral part of 0 (where 1x1 is the FLOOR FUNC- 

GERGONNE POINT. TION), 

see UZSO GERGONNE POINT, PEDAL TRIANGLE, TAN- 
GENTIAL TRIANGLE 

I 
1 

al= ~ I 
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Content 

Lx-UoA 
. , 

is the integral .part of the RECIPROCAL of Z--O, a2 is the 
integral part of the reciprocal of the remainder, etc. The 
quantities ai are called PARTIAL QUOTIENTS. An ar- 
chaic word for a continued fraction is ANTHYPHAIRETIC 
RATIO. 

The generalized VOLUME for an n-D object (the "HY- 
PERVOLUME"). 

see also VOLUME 

Contiguous Function 
A HYPEE~GEOMETRXC FUNCTION in which one parame- 
ter changes by +I or -1 is said to be contiguous. There 
are 26 functions contiguous to #i (a, b, c; X) taking one 
pair at a time. There are 325 taking two or more pairs 
at a time. See Abramowitz and Stegun (1972, pp. 557- 
558) l  

Continued fractions provide, in some sense, a series of 
“best” estimates for an IRRATIONAL NUMBER. F'unc- 
tions can also be written as continued fractions, pro- 
viding a series of better and better rational approxima- 
tions. Continued fractions have also proved useful in 
the proof of certain properties of numbers such as e and 
7r (PI). Because irrationals which are square roots of 
RATIONAL NUMBERS have periodic continued fractions, 
an exact representation for a tabulated numerical value 

( i.e., 1.414.. . for PYTHAGORAS'S CONSTANT, 1/z) can 
sometimes be found. 

see UZSO HYPERGEOMETRIC FUNCTION 
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Continued Fraction 
A “general” continued fraction representation of a REAL 
NUMBER 2 is of the form 

Continued fractions are also useful for finding near com- 
mensurabilities between events with different periods. 
For example, the Metonic cycle used for calendrical pur- 
poses by the Greeks consists of 235 lunar months which 
very nearly equal 19 solar years, and 235/19 is the sixth 
CONVERGENT of the ratio of the lunar phase (synodic) 
period and solar period (365.2425/29.53059). Continued 
fractions can also be used to calculate gear ratios, and 
were used for this purpose by the ancient Greeks (Guy 
1990). 

3Z=bo+ 
a1 

7 (1) 

b1+ a2 

b2 + z 

b3 +... 

If only the first few terms of a continued fraction are 
kept, the result is called a CONVERGENT. Let Pn/Qn 
be convergents of a nonsimple continued fraction. Then 

which can be written 

x=bo+--.y 

h-t- b2-t 
(2) 

Pm1 E 1 Q-i = 0 (7) 

PO E b. Q. = 1 (8) 

and subsequent terms are calculated from the RECUR- 
RENCE RELATIONS 

The SIMPLE CONTINUED FRACTION representation ofz 
(which is usually what is meant when the term “contin- 
ued fraction” is used without qualification) of a number 
is given by 

Pj = bjPj-1 + ajPj-2 (9) 

Q j z bjQj-1 + ujQj--2 (10) 

for j = 1, 2, . . . , n. It is also true that 

n 

which can 
TION as 

x=ao+ 1 

1 
I 

a1 + 
1 

a2 + ~ 
u3 + . . . 

be written in a compact abbreviated NOTA- 

(4) 
Here, 

a0 = 1x1 (5 

PnQn-I - Pn-1Qn = (-1)“-1 n arc. (11) 
k=l 

The error in approximating a number by a given CON- 
VERGENT is roughly the MULTIPLICATIVE INVERSE of 
the square of the DENOMINATOR of the first neglected 
term. 

A finite simple continued fraction representation termi- 
nates after a finite number of terms. To “round” a con- 
tinued fraction, truncate the last term unless it is kl, 
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in which case it should be added to the previous term 
(Beeler et al. 1972, Item 1OlA). To take one over a con- 
tinued fraction, add (or possibly delete) an initial 0 term. 
To negate, take the NEGATIVE of all terms, optionally 
using the identity 

[-a,-b,-c,-d,...] = [-a- l,l,b-l,c,d,...]. (12) 

A particularly beautiful identity involving the terms of 
the continued fraction is 

[ao, a, l  l  l  , an] 1. - Un,Un-l,...,Ul,UO] 
- 

[UO,Ul,.. * ,Un-I] [ an, h-&-l, - ’  l  j  al ]  l  

(13) 

Finite simple fractions represent rational numbers and 
all rational numbers are represented by finite continued 
fractions. There are two possible representations for a 
finite simple fraction: 

[al,..* y&x] = 1 
[ax,. ’ - 7Un-1,Un - l,l] fOl‘Un > 1 
[a, l  l  ‘ ,  Un-2,Un-1 + 11 for Un = 1. 

(14) 
On the other hand, an infinite simple fraction represents 
a unique IRRATIONAL NUMBER, and each IRRATIONAL 
NUMBER has a unique infinite continued fraction. 

Consider the CONVERGENTS pn/qn of a simpEe continued 
fraction, and define 

p-1 E 0 q-1 E 1 (15) 

pQ E 1 qo = 0 (16) 

p1 = a1 q1 = 1. (17) 

Then subsequent terms can be calculated from the RE- 
CURRENCE RELATIONS 

pi = &Pi-1 +-pi-z (18) 

qi = aiqi-1 -t qi-2* (19) 

The CONTINUED FRACTION FUNDAMENTAL RECUR- 
RENCE RELATION for simple continued fractions is 

pnqn-l-Pn-147-c f=z: (-1)". (20) 

It is also true that if al # 0, 

P, 
- = 

pn-1 
I Un,Un-ly..*yUl] (21) 

4n = Unj..., 
qn-1 

[ Uz]. (22) 

Furthermore, 
Pn Pn+l -Pn-1 -ZX 

4n Qn+l -Qn-1 
(23) 

Pn = (n-UPn-l+(n- l)pn-2 +(n- 2)pnB3 

+... +3p2+2p1+p1+1. (24 

Continued Ehction 

Also, if p/q > 1 and 

then 
Q= 
P 

[O,~l,...,U,]. (26) 

Similarly, if p/q < I so 

p- 
i- 

[07Uly*.*jUn], (27) 

then 
4 

i 

= [Ul,...jUn]* 

The convergents also satisfy 

( 1) n - 

Cn - Cn-1 = - 

Qnqn-1 

Cn - Cn-2 = 
un(-l)n-l 

. 
qnqn-2 

(29) 

(30) 

The ODD convergents CZn+r of an infinite simple contin- 
ued fraction form an INCREASING SEQUENCE, and the 
EVEN convergents czn form a DECREASING SEQUENCE 
(so any ODD convergent is less than any EVEN conver- 
gent). Summarizing, 

Cl < c3 < cg  < l  l  l  < C27-&+1 < l  arn 

< C2n < ’  l  l  <cS<cq<c2* (31) 

Furthermore, each convergent for n > 3 lies between - 
the two preceding ones. Each convergent is nearer to the 
value of the infinite continued fraction than the previous 
one. Let pn/qn be the nth continued fraction represen- 
tation. Then 

1 

(Un+l+2)qn2 
(32) 

The SQUARE ROOT of a SQUAREFREE INTEGER has a 
periodic continued fraction of the form 

Jn= [Ul,U2,...,Un,2Ul] (33) 

(Rose 1994, p* 130). Furthermore, if D is not a SQUARE 
NUMBER, then the terms of the continued fraction of 
JD satisfy 

O<Un<2fi. (34) 

In particular, 

1 1 a= a+da2+4 
2 

(35) 

I1 1 ,a = 
-1+&+4u 

2 (36) 

[a,%] = da2 + 1 

b+dFTZ 
[aqz]= 2 

(37) 

(38) 
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- kl n-l - pn> + J(Qn-1 - Pn>’ + %hPn-1 - - 
2Ch-b 

The first follows from 

1 
a =n+ 

1 
n-l- 

1 
n-k- 

n+... 

1 
=n+ l  

1 
n-i- 

( 1 

1 
n-l-- 

n+... 

Therefore, 

1 
a -n72 

1 
I 

n+ 
1 

n+------ 
n+... 

so plugging (43) into (42) gives 

1 1 
a =n+ 

n + (a - n) 
=n+-•. 

a 

Expanding 
a2 -na!-l=O, 

and solving using the QUADRATIC FORMULA gives 

(39) 

(40) 

(41) 

(42) 

(43) 

(44) 

(45) 

n-l-dn2+4 
QI= 

2 - (46) 

The analog of this treatment in the general case gives 

a= 
ap, + pm-1 
Ckqn + Qn-1 l  

(47) 

The following table gives the repeating simple continued 
fractions for the square roots of the first few integers 
(excluding the trivial SQUARE NUMBERS). 

2 P,fq 
3 Pm1 - 
5 P 4 
6 [2,2’4 
7 [2,1,1,1,4 

8 P, 14 - 
10 13 6 -- 
II [3,3’ 6 
12 [3,2’6 
13 [3,1,1,1,1;6 

14 Pmm 
15 P, 1,6 - 
17 P 8 
18 [4,4’8 
19 [4,2,1,3,1,2;8 
20 [4,2,81 
21 [4,1,1,2,1,1,8] 

N %m 

22 [%1,2,4,2,1,81 
23 14,l,l 
24 P7 VI 
26 [ml 
27 [5,% 10 1 
28 [5,3,2,3,LoI 
29 [5,&l, 172,101 
30 h 2110 1 
31 [5,1,1,3,5,3,1,1,10] 

32 [umml 
33 [5,1,2, 
34 [~,1,1 
35 [5,1,101 
37 P, 12 1 
38 [6,6,121 
39 [6,4,12 I 
40 P, 3,121 

The periods of the continued fractions of the square 
roots of the first few integers 2, 3, 5, nonsquare 6, 7, 
8, 10, 11, 12, 13, . . . (Sloane’s A000037) are 1, 2, 1, 2, 
4, 2, 1, 2, 2, 5, . l  l  (Sloane’s AO13943; Williams 1981, 
Jacobson et al. 1995). An upper bound for the length is 
roughly Q(ln Da). 

An even stronger result is that a continued fraction is 
periodic IFF it is a ROOT of a quadratic POLYNOMIAL. 
Calling the portion of a number II: remaining after a 
given convergent the “tail,” it must be true that the 
relationship between the number IL: and terms in its tail 
is of the form 

ax + b 
x=- 

cd-t-d’ (48) 

which can only lead to a QUADRATIC EQUATION. 

LOGARITHMS logbo bl can be computed by defining b2, 
. . . and the POSITIVE INTEGER nl, . . l  such that 

bl n1 < bo < pS1 
b0 62 = - 

blnl (49) 

62 n2 < bl < bzn2+l 

and so on. Then 

h b3 = - 
b2n2 (50) 

logbo bl = [m, 722, n3,. . -1. (51) 
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A geometric interpretation for a reduced FRACTION y/x 

consists of a string through a LATTICE of points with 
ends at (1,O) and (z,y) (Klein 1907, 1932; Steinhaus 
1983; Ball and Coxeter 1987, pp* 86-87; Davenport 
1992). This interpretation is closely related to a simi- 
laroneforthe GREATEST COMMON DIVISOR. The pegs 
it presses against (ICY, yi) give alternate CONVERGENTS 
Yi/Xi, while the other CONVERGENTS are obtained from 
the pegs it presses against with the initial end at (0,l). 
The above plot is for e - 2, which has convergents 0, 1, 
213, 314, 517, l  . . . 

Let the continued fraction for z be written [al, GLZ, . . I , 
a,]. Then the limiting value is aIrno& always KHINT- 
CHINE'S CONSTANT 

KG lim (alazm** a,) l/n = 2.68545.. . . (52) 
n+ca 

Continued fractions can be used to express the POSI- 
TIVE ROOTS of any POLYNOMIAL equation. Continued 
fractions can also be used to solve linear D~OPHANTINE 
EQUATIONS and the PELL EQUATION. Euler showed 
that if a CONVERGENT SERIES can be written in the 
form 

cl + clc2 + clc2c3 + . . l , (53) 

then it is equal to the continued fraction 

Cl 
(54 

l- 
c2 

1+c2- 
c3 

1+c3 -*** 

Gosper has invented an ALGORITHM for performing ana- 
lytic ADDITION, SUBTRACTION, MULTIPLICATION, and 
DIVISION using continued fractions. It requires keep- 
ing track of eight INTEGERS which are conceptually ar- 
ranged at the VERTICES of a CUBE. The ALGORITHM 
has not, however, appeared in print (Gosper 1996). 

An algorithm for computing the continued fraction for 

(ax + b)l(cx + d) f rom the continued fraction for it: is 
given by Beeler et al. (1972, Item 101), Knuth (1981, 
Exercise 4.5.3.15, ppm 360 and Sol), and Fowler (1991). 
(In line 9 of Knuth’s solution, XI, +- [A/C] should be 
replaced by XI, + min( LA/C] , l(A + B)/(C + D)])*) 
Beeler et al. (1972) and Knuth (1981) also mention the 
bivariate case (uxy + bx + cy + d)/(Axy + Bx + Cy + D). 

see also GAUSSIAN BRACKETS, HURWITZ'S IRRA- 

TIONAL NUMBER THEOREM, KHINTCHINE'S CON- 
STANT, LAGRANGE'S CONTINUED FRACTION THEO- 
REM, LAM& THEOREM, Livu CONSTANT, PADS AP- 
PROXIMANT, PARTIAL QUOTIENT, PI, QUADRATIC IR- 
RATIONAL NUMBER, QUOTIENT-DIFFERENCE ALGO- 
RITHM,~EGRE'S THEOREM 
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Continued Fraction Constant 
A continued fraction with partial quotients which in- 
crease in ARITHMETIC PROGRESSION is 

[A+D,A+ZD,A+3D,...] = 
IA/D 6 ( > 

h+A/D 6 1 ( > 

where I&C) is a MODIFIED BESSEL FUNCTION OF THE 

FIRST KIND (Beeler et al. 1972, Item 99). A special case 
is 

C=0+ 
1 

1 
1+ 

1 

2+ 
1 

3+ 
1 

1 
4+- 

5+... 

which has the value 

c _ W) - - = 0.697774658.. . 
-ro (2) 

(Lehmer 1973, Rabinowitz 1990). 

see also e, GOLDEN MEAN, MODIFIED BESSEL FWNC- 

TION OF THE FIRST KIND, PI, RABBIT CONSTANT, 
THUGMORSE CONSTANT 
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Continued Fraction Factorization Algorithm 
A PRIME FACTORIZATION ALGORITHM which uses 
RESID 

hN 
UES prod uced in the CONT 
for some suitably chosen m 

INU 
to 

NUMBER. The ALGORITHM solves 

2 2 E y2 (mod n) 

'ED FR ACTION of 
obtain a SQUARE 

by finding an m for which m2 (mod n) has the small- 
est upper bound. The method requires (by conjecture) 
about exp( J2 log n log log n ) steps, and was the fastest 
PRIME FACTORIZATION ALGORITHM in use before the 

QUADRATIC SIEVE FACTORIZATION METHOD, which 
eliminates the 2 under the SQUARE ROOT (Pomerance 
1996)) was developed. 

see UZSO EXPONENT VECTOR, PRIME FACTORIZATION 
ALGORITHMS 
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Continued Fraction Fundamental 

Recurrence Relation 
For a SIMPLE CONTINUED FRACTION 0 = [ao,al,...] 
with CONVERGENTS p,/q,, the fundamental RECUR- 
RENCE RELATION is given by 

pnqn-1 -Pn-IQn = (-l)". 
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Continued Fraction Map 

I 

0.5 1 1.5 2 2.5 

f( > 
1 1 

x=-- - 
X L1 X 

for x E [O,l], where 1x1 is the FLOOR FUNCTION. The 
INVARIANT DENSITY ofthe map is 

dy) = (l+ $lnz. 
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Continued Fraction Unit Fraction Algorithm 
An algorithm for computing a UNIT FRACTION, called 
the FAREY SEQUENCE method by Bleicher (1972). 
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Continued Square Root 
Expressions of the form 

Continuity Correction 
A correction to a discrete BINOMIAL DISTRIBUTION to 
approximate a continuous distribution. 

lim ~0 + 
k-+m P(a < x < b) - - 

Herschfeld (1935) proved that a continued square root 

of REAL NONNEGATIVE terms converges IFF (x~)~-~ is 
bounded. He extended this result to arbitrary POWERS 
(which include continued square roots and CONTINUED where 

FRACTIONS as well), which is known as HERSCHFELD'S z = (x - 4 -- 
CONVERGENCE THEOREM. 

see UZSO CONTINUED FRACTION, HERSCHFELD'S CON- 
VERGENCE THEOREM, SQUARE ROOT 
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0 

is a continuous variate with a NORMAL DISTRIBUTION 
and X is a variate of a BINOMIAL DISTRIBUTION. 

see also BINOMIAL DISTRIBUTION, NORMAL DISTRIBU- 
TION 

P6lya, G. and Szeg6, G. Problems and Theorems in Analysis, 
VoZ. 1. New York: Springer-Verlag, 1997. 

Continuity Principle 

Sizer, W. S. “Continued Roots.” Math. Mag. 59, 23-27, SW PERMANENCE OF MATHEMATICAL RELATIONS 

1986e PRINCIPLE 

Continued Vector Product Continuous 

see VECTOR TRIPLE PRODUCT A general mathematical property obeyed by mathemat- 
ical objects in which all elements are within a NEIGH- 

Continuity 
BORHOOD of nearby points. 

The property of being CONTINUOUS. see UZSO ABSOLUTELY CONTINUOUS, CONTINUOUS DIS- 

see UZSO CONTINUITY AXIOMS, CONTINUITY CORREC- 
TRIBUTION, CONTINUOUS FUNCTION, CONTINUOUS 

TION, CONTINUITY PRINCIPLE, CONTINUOUS DISTRI- 
SPACEJUMP 

BUTION,~ONTINUOUS FUNCTION,~ONTINUOUS SPACE, 
FUNDAMENTAL CONTINUITY THEOREM Continuous Distribution 

A DISTRIBUTION for which the variables may take on 

Continuity Axioms 
a continuous range of values. Abramowitz and Stegun 

“The” continuity axiom is an additional AXIOM which 
(1972, p. 930) give a table of the parameters of most 

must be added to those of Euclid’s Elements in order to 
common discrete distributions. 

guarantee that two equal CIRCLES of RADIUS F intersect see UZSO BETA DISTRIBUTION, BIVARIATE DISTRIBU- 

each other if the separation of their centers is less than TION, CAUCHY DISTRIBUTION, CHI DISTRIBUTION, 

2r (Dunham 1990). The continuity axioms are the three CHI-SQUARED DISTRIBUTION, CORRELATION COEF- 

of HILBERT'S AXIOMS which concern geometric equiva- FICIENT, DISCRETE DISTRIBUTION, DOUBLE Ex- 

lence. PONENTIAL DISTRIBUTION, EQUALLY LIKELY OUT- 
COMES DISTRIBUTION, EXPONENTIAL DISTRIBUTION, 

ARCHIMEDES' LEMMA is sometimes also known as “the EXTREME VALUE DISTRIBUTION, F-DISTRIBUTION, 
continuity axiom.” FERMI-DIRAC DISTRIBUTION, FISHER’S X-DISTRIBU- 

see UZSOCONGRUENCEAXIOMS,HILBERT'S AXIOMS, IN- TION, FISHER-TIPPETT DISTRIBUTION, GAMMA DIS- 

CIDENCE AXIOMS,~RDERZNG AXIOMS,~ARALLEL Pos- TRIBUTION, GAUSSIAN DISTRIBUTION, HALF-NORMAL 
TULATE DISTRIBUTION, LAPLACE DISTRIBUTION, LATTICE Drs- 

TRIBUTION, LAY DISTRIBUTION, LOGARITHMIC DIS- 
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Continuous Function 
A continnous function is a FUNCTION f : X + Y where 
the pre-image of every OPEN SET in Y is OPEN in X. 
A function f ( ) x in a single variable x is said to be con- 
tinuous at point 20 if 

1. f(zo) is defined, so x0 is the DOMAIN off. 

2. limz+sO f(z) exists. 

3. limz+zO f(x) = f(xoL 

where lim denotes a LIMIT. If f is DIFFERENTIABLE at 
point x0, then it is also continuous at x0. If f and g are 
continuous at $0, then 

1. f + g is continuous at 20. 

2. f - g is continuous at 20. 

3. f X g is continuous at 20. 

4. f + g is continuous at 20 if g(xo) # 0 and is discon- 
tinuous at x0 if g(x0) = 0. 

5. f o g is continuous, where o denotes using g as the 
argument to f. 

SW ~SO CRITICAL POINT, 
NEIGHBORHOOD, STATIONA 

DIFFERE 
.RY POINT 

,NTIABLE, LIMIT, 

Continuous Space 
A TOPOLOGICAL SPACE. 
see also NET 

Continuum 
The nondenumerable set of REAL NUMBERS, denoted 
C. It satisfies 

No+C=C (1) 

and 
c’ = c, (2) 

where No is No (ALEPH-0). It is also true that 

No - No -c. (3) 
However, 

Cc = F (4) 

is a SET larger than the continuum. Paradoxically, there 
are exactly as many points C on a LINE (or LINE SEG- 
MENT) as in a PLANE, a 3-D SPACE, or finite HYPER- 
SPACE, since all these SETS can be put into a ONE-TO- 
ONE correspondence with each other. 

The CONTINUUM HYPOTHESIS, first proposed by Georg 
Cantor, holds that the CARDINAL NUMBER of the con- 
tinuum is the same as that of Ni. The surprising truth 
is that this proposition is UNDECIDABLE, since neither it 
nor its converse contradicts the tenets of SET THEORY. 

see also ALEPH-0 (No), ALEPH-1 (Nl), CONTINUUM HY- 
POTHESIS,DENUMERABLE SET 

Continuum Hypothesis 
The proposal originally made by Georg Cantor that 
there is no infinite SET with a CARDINAL NUMBER be- 
tween that of the “small” infinite SET of INTEGERS NO 
and the “large” infinite set of REAL NUMBERS C (the 
“CONTINUUM"). Symbolically, the continuum hypoth- 
esis is that Nl = C. Gijdel showed that no contra- 
diction would arise if the continuum hypothesis were 
added to conventional ZERMELO-FRAENKEL SET THE- 
ORY. However, using a technique called FORCING, Paul 
Cohen (1963, 1964) proved that no contradiction would 
arise if the negation of the continuum hypothesis was 
added to SET THEORY. Together, Giidel’s and Cohen’s 
results established that the validity of the continuum 
hypothesis depends on the version of SET THEORY be- 
ing used, and is therefore UNDECIDABLE (assuming the 
ZERMELO-FRAENKEL AXIOMS togetherwiththe AXIOM 
OF CHOICE). 

Conway and Guy (1996) give a generalized version of 
the Continuum Hypothesis which is also UNDECIDABLE: 
is 2NH = N,+l for every a? 

see also ALEPH-0 (No), ALEPH-1 (Nl), AXIOM OF 
CHOICE$ARDINAL NUMBER,CONTINUUM,DENUMER- 
ABLE SET,FORCING,HILBERT'S PROBLEMS,LEBESGUE 
MEASURABILITY PROBLEM, UNDECIDABLE, ZERMELO- 
FRAENKEL AXIOMS, ZERMELO-FRAENKEL SET THE- 
ORY 
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Contour 
A pathin the COMPLEX PLANE over which CONTOUR 
INTEGRATION is performed. 

see also CONTOUR INTEGRATION 

Contour Integral 

see CONTOUR INTEGRATION 

Contour Integration 
Let P(x)andQ(x)be POLYNOMIALS of DEGREES nand 
m with COEFFICIENTS b,, +. . , be and cm, l  . . , CO* Take 
the contour in the upper half-plane, replace x by z, and 
write z G Re? Then 

P(z) dz 
- = 

Q(z) 
lim 

R+m 

P(x) dz 
-. 
Q( > x 

(1) 
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Define a path 7~ which is straight along the REAL axis 
from -R to R and makes a circular arc to connect the 
two ends in the upper half of the COMPLEX PLANE. The 
RESIDUE THEOREM then gives 

so we require m > n + 1. Then 

lim 
s 

P(z) dz 

R-b- YR &(z> 

for m > 7z+ 1. - 

Since this must hold separately for REAL and IMAGI- 
NARY PARTS, this result can be extended to 

= lim ~ 
s 

R 
R-+* -R 

R p( Reie) iRei de 
Qo 

s O” P(x) -w Q(x) 
sin(ax) dx = 2x3 

It is also true that 

where Res denotes the RESIDUES. Solving, 

lim 
s 

R P(z) dz 

R+w -R &o 

= 27Ti * C3) 

Q[%] >o --?- ln(az) dz = 0. PC > 
Q( > z (13) 

Define see also CAUCHY INTEGRAL FORMULA, CAUCHY IN- 
TEGRAL THEOREM, INSIDE-OUTSIDE THEOREM, JOR- 
DAN'S LEMMA, RESIDUE (COMPLEX ANALYSIS), SINE 
INTEGRAL 

I7 S lim 
s 

7r wQ@) iReie do ~ 
R--+w o QWe) 

s 

T 
= lim 

b,(Reis)n + b,-l(ReiB)n-l + . + l  + bo iRde 

Rtw o cm(Reie)m + c,,+~(Reie)m-l + . . . + co 
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Contracted Cycloid 

see CURTATE CYCLOID s lrb 
= lim “R n+l-mi(eiB)n-m de 

R+w 
0 

Cm 

(4) 

Contraction 

see DILATION 
and set 

E3-(7%+1--m), (5) 

then equation (4) becomes Contraction (Graph) 
The merging of nodes in a GRAPH by eliminating seg- 
ments between two nodes. (6) 
Contraction (Tensor) 
The contraction of a TENSOR is obtained by setting un- 
like indices equal and summing according to the EIN- 
STEIN SUMMATION convention. Contraction reduces the 
RANK of a TENSOR by 2. For a second RANK TENSOR, 

Now, 
lim R-” = 0 

RlW 
(7) 

for E > 0. That means that for -n - 1 + nz > 1, or - 
m > n + 2, IR = 0, so - 

P(z) dz 
= 27Ti 

3goRes [%I 
(8) Q( > x 

Therefore, the contraction is invariant, and must be a 
SCALAR. In fact, this SCALAR is known as the TRACE 
of a MATRIX in MATRIX theory. 

for m > n+ 2. Apply JORDAN'S LEMMA with f(x) G - 
P(x)/Q(x). We must have 

lim f(x) = 0, (9) 
X3W 
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Contradiction Law 
No A is not-A. 

Contravariant Vector 
A C~NTRAVARIANT TENSOR of RANK 1. 

see also NOT see also CONTRAVARIANT TENSOR,VECTOR 

Contravariant Tensor 
A contravariant tensor is a TENSOR having specific 
transformation properties (c.f., a COVARIANT TENSOR). 
To examine the transformation properties of a contra- 
variant tensor, first consider a TENSOR of RANK 1 (a 
VECTOR) 

Control Theory 
The mathematical study of how to manipulate the pa- 
ram .eters affec ting the behavior 
the desired or optimal outcome. 

of a system to produce 

see also KALMAN FILTER, 
TRYAGIN MAXIMUM PRINCIP 

LINEAR ALGEBRA, PON- 
LE 

(1) References 
Zabczyk, J. Mathematical Control 

Boston, MA: Birkhguser, 1993. 
Theory: An Introduction. 

for which 

dx: = 
8X; 
zdxj. (2) 

j Convective Acceleration 
The acceleration of an element of fluid, given by the 
CONVECTIVE DERIVATIVE of the VELOCITY V, 

Now let Ai E dxi, then any set of quantities Aj which 
transform according to 

A:: = ~Aj, 
3 

Dv dv -=- 
Dt at +v*vv, (3) 

or, defining 
- 

Uij = 
aXi 

8Xj ’ (4) 
where V is the GRADIENT operator. 

see ~1s~ ACCELERATION, 
CONVECTIVE OPERATOR 

DERIVATIVE, 

according to 
A:: = aij Aj (5) References 

Batchelor, G K. An Introduction to Fluid Dynamics. Cam- 
bridge, England: Cambridge University Press, p. 73, 1977. is a contravariant tensor. Contravariant 

dicated with raised indices, i.e., a? 

tensors are in- 

Convective Derivative 
A DERIVATIVE taken with respect to a moving coordi- 
nate system, also called a LAGRANGIAN DERIVATIVE. It 
is given by 

D d -=- 
Dt dt 

+-V-V, 

COVARIANT TENSORS are atype of TENSOR with differ- 
ing transformation properties, denoted au. However, in 
3-D CARTESIAN COORDINATES, 

dXj _ 8X: 
--- 
ax; dXj = % (6) 

where V is the GRADIENT operator and v is the VE- 
LOCITY of the fluid. This type of derivative is especially 
useful in the study of Auid mechanics. When applied to 

v, 
Dv dv --- 
Dt - dt 

+ (V x v> x v-l- v($v2). 

for i,j = 1, 2, 3, meaning that contravariant and co- 
variant tensors are equivalent. The two types of tensors 
do differ in higher dimensions, however. Contravariant 
FOUR-VECTORS satisfy 

see also CONVECTIVE Up 
LOCITY 

ERATOR, DERIVATIVE, VE- where A is a LORENTZ TENSOR. 

To turn a C OVARIAN T TENSOR into a contr 
sor, use the METRIC TENSOR~~~ to write 

#avariant ten- 
References 
Batchelor, G K. An Introduction to Fluid Dynamics. Cam- 

bridge, England: Cambridge University Press, p. 73, 1977. 

Covariant and contravariant indices can be used simul- 
taneously in a MIXED TENSOR. 

see dso COVARIANT TENSOR, FOUR-VECTOR, LOR- 
ENTZ TENSOR, METRIC TENSOR, MIXED TENSOR, 
TENSOR 

Convective Operator 
Defined for a VECTOR FIELD A by (AV),where Vis 
the GRADIENT operator. 

Applied in arbitrary orthogonal 3-D coordinates to 
VECTOR FIELD B, the convective operator becomes 

a 

References 
Arfken, G. “Noncartesian Tensors, Covariant Differentia- 

tion.” $3.8 in Mathematical Methods for Physicists, 3rd 
ed. Orlando, FL: Academic Press, pp. 158-164, 1985. 

Morse, P. M. and Feshbach, H. Methods of Theoretical Phys- 
ics, Part I. New York: McGraw-Hill, pp. 44-46, 1953. 

[IA * VBlj 
Al, 8Bj Bk -- 
hk &k + hkhj 
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where the his are related to the METRIC TENSORS by 
hi = &. In CARTESIAN COORDINATES, 

Kummer’s transformation takes a convergent series 

and another convergent series 

00 

c= E ck 

k=O 

(6) 

In CYLINDRICAL COORDINATES, 
with known c such that 

lim arc =X#O. 
k+= ck 

(7) 

Then a series with more rapid convergence to the same 
value is given by 

S =Ac+Q-e)ax 

k=O 

(8) 
In SPHERICAL COORDINATES, 

(A- V)B 
(Abramowitz and Stegun 1972). 

E~LER'S TRANSFORM takes a convergent alternating se- 
ries m 

x(-l)“ak = a0 - Gtl + a2 - . l  . 

k=O 

(9) 

into a series with more rapid convergence to the same 
value to 

(4) 

S- 
see also CONVECTIVE ACCELERATION, CONVECTIVE 
DERIVATIVE, CURVILINEAR COORDINATES, GRADIENT 

where 

Convergence Acceleration 

see CONVERGENCE IMPROVEMENT 
A”@ = (11) 

(Abramowitz and Stegun 1972; Beeler et al. 1972, Item 
120). 

Convergence Improvement 
The improvement of the convergence properties of a SE- 
RIES, also called CONVERGENCE ACCELERATION, such 
that a SERIES reaches its limit to within some accuracy 
with fewer terms than required before. Convergence im- 
provement can be effected by forming a linear combina- 
tion with a SERIES whose sum is known. Useful sums 
include 

Given a series of the form 

s=cp ($ (12) 
n=l 

where f(z) is an ANALYTIC at 0 and on the closed unit 
DISK, and 

f (41 x+0 = S(z”), (13) 
n=1 

n(n + 1) (1) 

(2) 
m 
c 
n=l 

1 I - -- 
4 

then the series can be rearranged to 

n(n + l>(n + 2) 

00 
c 1 1 

n=l 
n(n + l>(n -+ 2)(n + 3) = ii 

00 
YE 1 1 

n=l 
n(n + 1) - - . (n + p> = p l  p! ’ 

(3) n=l m=2 

(4) m=2 n=l 



Convergence Tests Convergent Series 

the convergents are 
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is the MACLAURIN SERIES of f and (‘(2) is the RIEMANN 
ZETA FUNCTION (Flajolet and Vardi 1996). The trans- 
formed series exhibits geometric convergence. Similarly, 
if f(x) is ANALYTIC in IzI 5 l/no for some PUNITIVE 
INTEGER 720, then 

+ 2 fm 

[ 

C(m) - & - l  ” - (no ; 1)” 1 7 (16) 
m=2 

which converges geometrically (Flajolet and Vardi 
1996). (16) can also be used to further accelerate the 
convergence of series (14). 

see also EULER’S TRANSFORM,WILF-ZEILBERCER PAIR 
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script. 1996. http: //pauillac. inria. fr/algo/f lajolet/ 
Publications/landau.ps. 

Convergence Tests 
A test to determine if a given SERIES CONVERGES or 
DIVERGES. 

see also ABEL'S UNIFORM CONVERGENCE TEST, 
BERTRAND'S TEST,D'ALEMBERT RATIO TEST,DIVER- 
GENCE TESTS,ERMAKOFF'S TEST, GAUSS'S TEST, IN- 
TEGRAL TEST, KUMMER'S TEST, RAABE'S TEST, RA- 
TIO TEST,RIEMANN SERIES THEOREM,ROOT TEST 

References 
A&en, G. “Convergence Tests,” $5.2 in Mathematical Meth- 

ods for Physicists, 3rd ed. Orlando, FL: Academic Press, 
pp. 280-293, 1985. 

Bromwich, T. J. I’a and MacRobert, T. M. An Introduc- 
tion to the Theory of Infinite Series, 3rd ed. New York: 
Chelsea, pp. 55-57, 1991. 

Convergent 
The RATIONAL NUMBER obtained by keeping only a 
limited number of terms in a CONTINUED FRACTION is 
called a convergent . For example, in the S 
TINUED FRACTION for the GOLDE N RATIO 

1 3 1 5 
1,1+ y = 2,1+ - - - 

l++ - 3’“” 

The word convergent is also used to describe 
GENT SEQUENCE or CONVERGENT SERIES. 

a CONVER- 

see ah CONTINUED FRACTION, CONVERGENT SE- 
QUENCE, CONVERGENT SERIES, PARTIAL QUOTIENT, 
SIMPLE CONTINUED FRACTION 

Convergent Sequence 
A SEQUENCE S, converges to the limit S 

lim Sn = S 
n+m 

if, for any c > 0, there exists an N such that IS, - 
Sl < c for n > N. If Sn does not converge, it is said 
to DIVERGE. Every bounded MONOTONIC SEQUENCE 
converges. Every unbounded SEQUENCE diverges. This 
condition can also be written as 

lim Sn = lim S, = S. 
n.+m n-boo 

see also C~NDITIO NAL CONVERGE 
VERGEN 'CE, WEAK CONVERGENCE 

NCE, STRONG CON- 

Convergent Series 
The infinite SERIES c,“=l an is convergent if the SE- 
QUENCE of partial sums 

n 

k=l 

is convergent. Conversely, a SERIES is divergent if the 
SEQUENCE of partial sums is divergent. If c ?& and 
c ok are convergent SERIES, then c(Uk + wk) and 
c(‘ltk - uk) are Convergent. If c # 0, then zuk and 
cc uk both converge or both diverge. Convergence 
and divergence are unaffected by deleting a finite num- 
ber of terms from the beginning of a series. Constant 
terms in the denominator of a sequence can usually 
be deleted without affecting convergence. All but the 
highest POWER terms in POLYNOMIALS can usually be 
deleted in both NUMERATOR and DENOMINATOR of a 
SERIES without affecting convergence. If a SERIES con- 
verges absolutely, then it converges. 

see also CONVERGENCE TESTS, RADIUS OF CONVER- 
GENCE 

IMPLE CON- 
Keferences 
Bromwich, T. J. I’a. and MacRobert, T. M. An Introduc- 

tion to the Theory of Infinite Series, 3rd ed. New York: 
Chelsea, 1991. 
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Conversion Period 
The period of time between INTEREST payments. 

see also COMPOUND INTEREST, INTEREST, SIMPLE IN- 
TEREST 

Convex 

CiWlWX concave 

A SET in EUCLIDEAN SPACE @ is convex if it contains 
all the LINE SEGMENTS connecting any pair of its points. 
If the SET does not contain all the LINE SEGMENTS, it 
is called CONCAVE. 

see also CONNECTED SET, CONVEX FUNCTION, CON- 
VEX HULL,CONVEX OPTIMIZATION THEORY$ONVEX 
POLYGON, DELAUNAY TRIANGULATION, MINKOWSKI 
CONVEX BODY THEOREM, SIMPLY CONNECTED 

References 
Croft, H. T.; Falconer, K. J.; and Guy, R. K. ‘CConvexity.” 

Ch. A in Unsolved Problems in Geometry. New York: 
Springer-Verlag, pp* 6-47, 1994. 

Convex Function 

Qx 
concaveup tLYnmm?ti 

A function whose value at the MIDPOINT of every IN- 

TERVAL in its DOMAIN does not exceed the AVERAGE of 
its values at the ends of the INTERVAL. In other words, 
a function f(z) is convex on an INTERVAL [a, b] if for any 
two points 21 and ~2 in [a, b], 

fl+l+Z2)1 < +[f(sl> + f(zz)]* 

If f(z) has a second DERIVATIVE in [a$], then a NEC- 
ESSARY and SUFFICIENT condition for it to be convex on 
that INTERVAL is that the second DERIVATIVE f”(x) > 0 
for all x in [a, b]. 

see UZSOCONCAVE FUNCTION,LOGARITHMICALLY CON- 
VEX FUNCTION 

References 
Eggleton, R. B. and Guy, R. K, “Catalan Strikes Again! How 

Likely is a Function to be Convex?” Math. Msg. 61, Zll- 
219, 1988. 

Gradshteyn, I. S. and Ryzhik, I. M. Tables of Integrals, Se- 
ries, and Products, 5th ed. San Diego, CA: Academic 
Press, p. 1100, 1980. 

Convex Polyhedron 

Convex Hull 
The convex hull of a set of points S is the INTERSECTION 
of all convex sets containing S. For nT points pl, . . . , 
ply, the convex hull C is then given by the expression 

C E 
f 

: Xj > 0 for all j and 

see 

( j=l 

also 

j=l 

FUNDAMENTAL THEO- 

REM, CROSS POLYTOPE, GROEMER PACKING, GROE- 
MER THEOREM, SAUSAGE CONJECTURE, SYLVESTER’S 
FOUR-POINT PROBLEM 

References 
Santa& L. A. Integral Geometry and Geometric Probability. 

Reading, MA: Addison-Wesley, 1976. 

Convex Optimization Theory 
The problem of maximizing a linear function over a con- 
vex polyhedron, also known as OPERATIONS RESEARCH 
or OPTIMIZATION THEORY. The general problemofcon- 
vex optimization is to find the minimum of a convex (or 
quasiconvex) function f on a FINITE-dimensional con- 
vex body A. Methods of solution include Levin’s al- 
gorithm and the method of circumscribed ELLIPSOIDS, 
also called the Nemirovsky-Yudin-Shor method. 

References 
Tokhomirov, V. M. “The Evolution of Methods of Convex 

Optimization.” Amer. Math. Monthly 103, 65-71, 1996. 

Convex Polygon 
A POLYGON is CONVEX ifit contains all the LINE SEG- 
MENTS connecting any pair of its points. Let f(n) be 
the smallest number such that when W is a set of more 
than f(n) points in GENERAL POSITION (with no three 
points COLLINEAR) in the plane, all of the VERTICES of 
some convex n-gon are contained in W. The answers for 

= 2, 3, and 4 are 2, 4, and 8. It is conjectured that 

70 2 n- n-2, but only proven that 

2 n-2 < f(n) < “,“I,” , - - 
( > 

where 0 i is a I~INOMIAL COEFFICIENT. 

Convex Polyhedron 
A POLYHEDRON for which a line connecting any two 
(noncoplanar) points on the surface always lies in the 
interior of the polyhedron. The 92 convex polyhedra 
having only REGULAR POLYGONS as faces are called the 
JOHNSON SOLIDS, which include the PLATONIC SOLIDS 
and ARCHIMEDEAN SOLIDS. No method is known for 
computing the VOLUME of a general convex polyhedron 
(Ogilvy 1990, p. 173). 

see also ARCHIMEDEAN SOLID, DELTAHEDRON, JOHN- 
SON SOLID,KEPLER-POINSOT SOLID,PLATONIC SOLID, 
REGULARPOLYGON 

References 
Ogilvy, C. S. Excursions in Geometry. New York: Dover, 

1990. 
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Convolution 
A convolution is an integral which expresses the amount 
of overlap of one function g(t) as it is shifted over an- 
other function f(t). It therefore “blends” one function 
with another. For example, in synthesis imaging, the 
measured DIRTY MAP is a convolution of the “true” 
CLEAN MAP with the DIRTY BEAM (the FOURIER 

TRANSFORM of the sampling distribution). The con- 
volution is sometimes also known by its German name, 
FALTUNG (“folding”). A convolution over a finite range 
[0, t] is given by 

s t f 0) * g(t) = f Wdt - 4 d7 (1) 
0 

where the symbol f*g (occasionally also written as f@g) 
denotes convolution of f and g. Convolution is more 
often taken over an infinite range, 

f(t)*g(t) = lm f(T)g(t-+h=r rrn d4f (t-w- 
J-m J-m 

(2) 

Let f, g, and h be arbitrary functions and a a constant. 
Convolution has the following properties: 

f *9=9*f (3 > 

f * (g * h) = (f * 9) * h (4) 

f * (9 + h) = (f * 9) + (f * h) (5) 

a(f * g) = (af) * g = f * (as). (6) 

The INTEGRAL identity X ss x f(t)dtdx = 
s 

x(x - t)f(t)dt (7) 
a a a 

also gives a convolution. Taking the DERIVATIVE of a 
convolution gives 

$(f g) 
df dg * =- 
dx 

*g=f*-. 
dx (8) 

The AREA under a convolution is the product of areas 
under the factors, 

f (u)g(x - u) du 1 dx 

= [/,_f(u)du] [S_,g(x)dx]. (9) 

The horizontal CENTROIDS add 

s O” (x(f * 9)) dx = (xf> + kg> 3 (10) 
-w 

as do the VARIANCES 

where 

(x”f) = 
S” -w x”f (4 dx 

s_“, f (4 dx 
l  

(12) 

see also AUTOCORRELATION, CONVOLUTION THEOREM, 
CROSS-CORRELATION, WIENER-KHINTCHINE THEO- 
REM 

References 
Bracewell, R. “Convolution.” Ch, 3 in The Fourier Trans- 

form and Its Applications. New York: McGraw-Hill, 
pp. 25-50, 1965. 

Hirschman, I. I. and Widder, D. V. The Gonvolution Trans- 
form. Princeton, NJ: Princeton University Press, 1955. 

Morse, P. M. and Feshbach, H. Methods of Theoretical Phys- 
ics, Part I. New York: McGraw-Hill, pp. 464-465, 1953. 

Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vet- 
terling, W. T. “Convolution and Deconvolution Using the 
FFT.” $13.1 in Numerical Recipes in FORTRAN: The Art 
of Scientific Computing, 2nd ed. Cambridge, England: 
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Convolution Theorem 
Let f(t) and f(t) be arbitrary functions of time t with 
FOURIER TRANSFORMS. Take 

f(t) = F-‘[F(u)] = F(v)eaRivt du (1) 

g(t) = F1[G(u)] = G(u)ezTiut dv, (2) 

where P denotes the inverse FOURIER TRANSFORM 
(where the transform pair is defined to have constants 
A = 1 and B = -2n). Then the CONVOLUTION is 

f*g= g(t’)f (t - t’)dt’ 

= irn g(t’) 1 Irn F(v)e2”i”(t-t’) dv] dt’. (3) 
J-W LJ-m A 

Interchange the order of integration, 

f * g = /m F(v) [ Im g(t)-‘+ dt’l eaniut dv 
J--o0 LJ --oo J - - s * F(v)G(L+~~~~~ dv 

= &‘[F(v)G(v),. (4 

So, applying a FOURIER TRANSFORM to each side, we 
have 

af * 91 = ~[flW* (5) 
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The convolution theorem also takes the alternate forms 

see UZSO AUTOCORRELATION, CONVOLUTION, FOURIER 

TRANSFORM,WIENER-KHINTCHINE THEOREM 
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Conway-Alexander Polynomial 

see ALEXANDER POLYNOMIAL 

Conway’s Constant 
The constant 

X = 1.303577269034296.. . 

(Sloane’s AOI4715) giving the asymptotic rate of growth 
CX” of the number of DIGITS in the kth term of the 
LOOK AND SAY SEQUENCE. X is given by the largest 
ROOT of the POLYNOMIAL 

0 = x71 
69 

-X - zx68 - x67 + 2p + 2x65 + g4 - x63 - x62 - p 

60 
-x -x 5g + 2x58 + 5x57 + 3x= - 2x55 - 1ox54 

- 3x53 - 2x52 + 6x51 + 6x5’ + x4’ + 9x48 - 3~~~ 

- 724” - 8x45 - 81~~~ + 10~~~ + 6x42 + 8x41 - 4x4’ 

- 12x3g + 7X38 - 7X3? + 7X36 + x35 - 3x34 + 1ox33 

+x32 - 6x31 - 2x3’ - 10x2’ - 3x2’ + 2x27 + 9x26 

- 3x25 + 14224 - 8x23 - 7x21 + gxzo - 3x1g - 4x18 

- 1ox17 - 7P + 12x15 + 7x14 + 2x13 - 12x12 

- 4x11 - 2x1o - 5x9 + x7 - 7x” 

+ 7x5 - 4x4 + 12x3 - 6x2 + 3x - 6. 

The POLYNOMIAL given in Conway (1987, p. 188) con- 
tains a misprint. The CONTINUED FRACTION for X is 1, 
3, 3, 2, 2, 54, 5, 2, 1, 16, 1, 30, 1, 1, 1, 2, 2, 1, 14, 1, . . . 
(Sloane’s A014967). 

see ah CONWAY SEQUENCE, COSMOLOGICAL THEO- 
REM, LOOK AND SAY SEQUENCE 
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Conway Notation 

Finch, S. “Favorite Mathematical Constants.” http : //unu, 
mathsoft.com/asolve/constant/cnvy/cnwy.html. 

Sloane, N. J. A. Sequence A014967 in “An On-Line Version 
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ing, MA: Addison-Wesley, pp. 13-14, 1991. 

Conway’s Game of Life 

see LIFE 

Conway Groups 
The AUTOMORPHISM GROUP Co1 of the LEECH LAT- 

TICE modulo a center of order two is called “the” 
Conway group. There are 15 exceptional CONJUGACY 

CLASSES of the Conway group. This group, combined 
with the GROUPS Co2 and Cog obtained similarly from 
the LEECH LATTICE by stabilization of the 1-D and 2-D 
sublattices, are collectively called Conway groups. The 
Conway groups are SPORADIC GROUPS. 

see also LEECH LATTICE, SPORADIC GROUP 
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Wilson, R. A. “ATLAS of Finite Group Representation.” 
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Conway’s Knot 
The KNOT with BRAID WORD 

-1 -2 
~23ul~3 02 

-1 -1 
0102 UlU3 ' 

The JONES POLYNOMIAL of Conway’s knot is 

t-4(-l + 2t - 2t2 + 2t3 + t6 - 2f7 + 2t8 - 2tg + PO), 

the same as for the KINOSHITA-TERASAKA KNOT. 

Conway’s Knot Notation 
A concise NOTATION based on the concept of the TAN- 

GLE used by Conway (1967) to enumerate KNOTS up 
to 11 crossings. An ALGEBRAIC KNOT containing no 
NEGATIVE signs in its Conway knot NOTATION is an 
ALTERNATING KNOT. 

References 
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Some of Their Algebraic Properties.” In Computation 
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Conway’s Life 

see LIFE 

Conway Notation 

see CONWAY’S KNOT 
DRON NOTATION 

NOTATION, CONWAY POLYHE- 
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Conway Polyhedron Notation 
A NOTATION for POLYHEDRA which begins by speci- 
fying a “seed” polyhedron using a capital letter. The 
PLATONIC SOLIDS are denoted* T (TETRAHEDRON), 0 
(OCTAHEDRON), C (CUBE), I (ICOSAHEDRON), and D 
(DODECAHEDRON), according to their first letter. Other 
polyhedra include the PRISMS, Pn, ANTIPRISMS, An, 
and PYRAMIDS, Yn, where n 2 3 specifies the number 
of sides of the polyhedron’s base. 

Operations to be performed on the polyhedron are then 
specified with lower-case letters preceding the capital 
letter. 

see also 
SYMBOL 

POLYHEDRON, SCHL~FLI SYMBOL, WYTHOFF 

References 
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Conway Polynomial 

~~~ALEXANDER POLYNOMIAL 

Conway Puzzle 
Construct a 5 x 5 x 5 cube from 13 1 x 2 x 4 blocks, 1 
2 x 2 x 2 block, 1 1 x 2 x 2 and 3 1 x 1 x 3 blocks. 

see also BOX-PACKING THEOREM, CUBE DISSECTION, 
DE BRUIJN'S THEOREM, KLARNER'S THEOREM, POLY- 
CUBE, SLOTHOUBER-GRAATSMA PUZZLE 

References 
Honsberger, R. Mathematical Gems II. Washington, DC: 
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Conway Sequence 
The LOOK AND SAY SEQUENCE generated from a start- 
ing DIGIT of 3, as given by Vardi (1991). 

see also CONWAY'S CONSTANT, LOOK AND SAY SE- 
QUENCE 

References 
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Coordinate Geometry 

see ANALYTIC GEOMETRY 

Coordinat e System 
A system of C OORDINATES. 

Coordinates 
A set of n variables which fix a geometric object. If the 
coordinates are distances measured along PERPENDICU- 
relaxes, theyareknownas CARTESIAN COORDINATES. 
The study of GEOMETRY using one or more coordinate 
systems is known as ANALYTIC GEOMETRY. 

see also AREAL COORDINATES, BARYCENTRIC GOOR- 
DINATES, BIPOLAR COORDINATES, BIPOLAR CYLIN- 
DRICAL COORDINATES, BISPHERICAL COORDINATES, 
CARTESIAN COORDINATES, CHOW COORDINATES, CIR- 
CULAR CYLINDRICAL COORDINATES, CONFOCAL EL- 
LIPSOIDAL COORDINATES, CONFOCAL PARABOLOIDAL 
COORDINATES, CONICAL COORDINATES, CURVILINEAR 
COORDINATES, CYCLIDIC COORDINATES, CYLINDRICAL 
COORDINATES, ELLIPSOIDAL COORDINATES, ELLIPTIC 
CYLINDRICAL COORDINATES, GAUSSIAN COORDINATE 
SYSTEM, GRASSMANN COORDINATES, HARMONIC Co- 
ORDINATES, HOMOGENEOUS COORDINATES, ABLATE 
SPHEROIDAL COORDINATES, ORTHOCENTRIC COORDI- 
NATES, PARABOLIC COORDINATES, PARABOLIC CYLIN- 
DRICAL COORDINATES, PARABOLOIDAL COORDINATES, 
PEDAL COORDINATES, POLAR COORDINATES, PRO- 
LATESPHEROIDAL COORDINATES,QUADRIPLANARCO- 
ORDINATES,RECTANGULAR COORDINATES,SPHERICAL 
COORDINATES, TOROIDAL COORDINATES, TRILINEAR 
COORDINATES 
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Coordination Number 

see KISSING NUMBER 

Conway Sphere 

A sphere with four punctures 
passes through the surface. 

occurring where a KNOT 
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Orlando, FL: Academic 

Introduction to Advanced 
New York: Dover, p. 1, 

Copeland-Erd6s Constant 
The decimal 0.23571113171923.. l  (Sloane’s A033308) 
obtained by concatenating the PRIMES: 2, 23, 235, 2357, 
235711, m m m (Sloane’s A033308; one of the SMARAN- 
DACHE SEQUENCES). In 1945, Copeland and Erd& 
showed that it is a NORMAL NUMBER. The first few 
digits of the CONTINUED FRACTION of the Copeland- 
Erdes are 0, 4, 4, 8, 16, 18, 5, 1, . . . (Sloane’s A030168). 
The positions of the first occurrence of n in the CON- 
TINUED FRACTION are 8, 16, 20, 2, 7, 15, 12, 4, 17, 
254, . . . (Sloane’s A033309). The incrementally largest 
terms are 1, 27, 154, 1601, 2135, . . . (Sloane’s A0333lO), 
which occur at positions 2, 5, 11, 19, 1801, . l  l  (Sloane’s 
A033311). 
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see also CHAMPERNOWNE CONSTANT, PRIME NUMBER Copula 

References 
Sloane, N. J. A. Sequences A030168, A033308, A033309, 

A033310, and A033311 in “An On-Line Version of the En- 
cyclopedia of Integer Sequences.” 

Coplanar 
Three noncollinear points determine a plane and so are 
trivially coplanar. Four points are coplanar IFF the vol- 
ume of the TETRAHEDRON defined by them is 0, 

Xl y1 21 0 

x2 y2 z2 0 

* x3 y3 23 0 

x4 y4 24 0 

Coprime 

see RELATIVELY PRIME 

Copson-de Bruijn Constant 

see DE BRUIJN CONSTANT 

Copson’s Inequality 
Let {a,} be a NONNEGATIVE SEQUENCE and f(x) a 
NONNEGATIVE integrable function. Define 

A, = F, ak (1) 

k=l 

Bn=F ak (2) 

k=n 

and 

s 

X 

F(x) = f (t> dt (3) 
0 

G(x) = 
s” 

f (t> dt, (4 
X 

and take 0 < p < 1. For integrals, 

lW [y]” dx > (-&)pprd~ (5) 

(unless f is identically 0). For sums, 

(unless all a, = 0). 

References 
Beesack, P. R. “On Some Integral Inequalities of E. T. Cop- 

son.” In General Inequalities 2 (Ed, E. F. Beckenbach). 
Basel: Birkhauser, 1980. 

Copson, E. T. “Some Integral Inequalities.” Proc. Royal Sot. 
Edinburgh 75A, 157-164, 1975-1976. 

Hardy, G. H.; Littlewood, J. E.; and Polya, G. Theorems 
326-327, 337-338, and 345 in Inequalities. Cambridge, 
England: Cambridge University Press, 1934. 

Mitrinovic, D, S.; Pecaric, J. E.; and Fink, A. M. Inequalities 
Inuolving Functions and Their Integrals and Derivatives. 
Dordrecht, Netherlands: Kluwer, 1991. 

Cornish-Fisher Asymptotic Expansion 

A function that joins univariate distribution functions to 
form multivariate distribution functions. A 2-D copula 
is a function C : I2 -+ I such that 

C(0, t) = C(t, 0) = 0 

and 
C(1, t) = C(t, 1) = t 

for all t E I, and 

C('Ll2+2) - c(ul,vz)- c(~2,~1)+c(w,~1) 2 0 

for all ~14~2,211,~ - 2 f I such that u1 2 ~2 and v1 5 
v - 2. 

see also SKLAR'S THEUREM 

Cork Plug 
A 3-D SOLID which can stopper a SQUARE, TRIANGU- 
LAR, or CIRCULAR HOLE. There is an infinite family of 
such shapes. The one with smallest VOLUME has TRI- 
ANGULAR CROSS-SECTIONS and V = TT~; thatwiththe 
largest VOLUME is made using two cuts from the top 
diameter to the EDGE and has VOLUME V = 4?rr3/3. 

see UZSO STEREOLOGY, TRIP-LET 

Corkscrew Surface 

A surface also called the TWISTED SPHERE. 

References 
Gray, A. Modern Differential Geometry of Curves and Sur- 

faces.Boca Raton, FL: CRC Press, ppm 493-494, 1993. 

Cornish-Fisher Asymptotic Expansion 

w= ~+[Ylh1(x)]+[~2~2(~)+y12~ll(~)] 

+[Y3~3(x)+yl"lzh2(~)+y13hll(~)] 

+[~4~4(x)+y22h22(x)+wY3~13(~) 

+y12yzhllz(x)+y14hl111(x)]+ l '*) 
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where is plotted above. 

h(x) = i He2 (x) 

h2(4 = & Hes(4 

h(x) = -$&(x) + He&)] 

h(x) = A He4 (4 

h(x) = -$&He&) + b(x)] 

hll(X) = A[12 He-&) + 19 He&)] 

h(x) = & He5 (4 

h(x) = - &[3 He(x) + 6 He&) + 2 He1 (x)] 

h(x) = - & [2 He5 +3 He&)] 

huz(x) = &[14h(x) + 37Hes(x) + 8Hel(x)] 

hll(x) = - & [252 He5 (x) + 832 He3 (x) + 227 He1 (x)]. 

see also EDGEWORTH SERIES, GRAM-CHARMER SERIES 

References 
Abramowitz, M. and Stegun, C. A, (Eds.). Handbook 

of Mathematical Functions with Formulas, Graphs, and 
Mathematical Tables, 9th printing. New York: Dover, 
p. 935, 1972. 

Cornu Spiral 

A plot in the COMPLEX PLANE of the points 

I 
t 

B(z) = C(t) + is(t) = einz2’2 dx, (1) 
0 

where C(z)and S(z) are the FRESNEL INTEGRALS. The 
Cornu spiral is also known as the CLOTHOID or EULER'S 
SPIRAL. A Cornu spiral describes diffraction from the 
edge of a half-plane. 

1.75: 

1.5: 

1.25: 

1: 

0.75: 

0.25 
/ / 
!I’,, , 

1 2 3 4 5 

The SLOPE of the Cornu spiral 

The SLOPE of the curve’s TANGENT VECTOR (above 
right figure) is 

s’ (t) m&5) = - 
C’ @> 

= tan( iXt2), (3) 

plotted below. 

The CES~RO EQUATION for a Cornu spiral is p = c2/s, 
where p is the RADIUS OF CURVATURE and s the ARC 
LENGTH. The TORSION is T= 0. 

Gray (1993) d e fi nes a generalization of the Cornu spiral 
given by parametric equations 

x(t) =al’sin ($) du 

y(t) = al.., (2) du. 

(4) 

S(t) m(t) = - 
C(t) 

(2) 
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The ARC LENGTH, CURVATURE, and TANGENTIAL AN- 
GLE of this curve are 

s(t) = at (3) 
tn 

/c(t) = -- 
a (4) 

t n+l 
at> - -- - 

n+l’ 

The CES~RO EQUATION is 

(5) 

Dillen (1990) d escribes a class of “polynomial spirals” 
for which the CURVATURE is a polynomial function of the 
ARC LENGTH. These spirals are a further generalization 
of the Cornu spiral. 

see also FRESNEL INTEGRALS, NIELSEN'S SPIRAL 

References 
Dillen, F. “The Classification of Hypersurfaces of a Euclidean 

Space with Parallel Higher Fundamental Form? kfuth. 2. 
203, 635-643, 1990. 

Gray, A. "Clothoids." $3.6 in Modern Differential Geometry 
of Curves and Surfaces. Boca Raton, FL: CRC Press, 
pp. 50-52, 1993. 

Lawrence, J. D. A Catalog of Special Plane Curves. New 
York: Dover, pp* 190-191, 1972. 

Cornucopia 

The SURFACE given by the parametric equations 

x=e bv cos v + eav cos u cos v 
bV 

Y =e sin v + eav cos u sin v 

z = eav sin u. 

References 
von Seggern, D. CRC Standard Curves and Surfaces. Boca 

Raton, FL: CRC Press, p. 304, 1993. 

Corona (Polyhedron) 

~~~AUGMENTED SPHENOCORONA,HEBESPHENOMEGA- 
CORONA, SPHENOCORONA$~PHENOMEGACORONA 

Corona (Tiling) 
The first corona of a TILE is the set of all tiles that have 
a common boundary point with that tile (including the 
original tile itself). The second corona is the set of tiles 
that share a point with something in the first corona, 
and so on. 

References 
Eppstein, D. “Heesch’s Problem.” http://uvv.ics.uci.edu 

/-eppstein/junkyard/heesch. 

Correlation 

see AUTOCORRELATION, CORRELATION COEFFICIENT, 
CORRELATION (GEOMETRIC), CORRELATION (STATIS- 
TICAL), CROSS-CORRELATION 

Correlation Coefficient 
The correlation coefficient is a quantity which gives the 
quality of a LEAST SQUARES FITTING to the original 
data. To define the correlation coefficient, first consider 
the sum of squared values ssz2, ss,,, and ssYY of a set 
of n data points (xi, yi) about their respective means, 

sszz - = qxi - g” = xx2 - 25%x + cz2 

= xx2 - 2nZ2 + nZ2 = Xx2 - nZ2 (1) 
ssyy = qyi - y)” = cy2 - 2gcy + cg2 

= Cy2 _ 2ny2 -/- nfj2 = Cy2 - nlj2 
(2) 

ss,, E C(Xi - Z)(Yi - y) = qxiyi - zyi - xig + zg) 
-- 

= Cxy - nxy - 
-- -- 

nxy + nZg = Cxy - nxy. (3) 

For linear LEAST SQUARES FITTING, the COEFFICIENT 
b in 

y=a+bx (4) 

is given by 

b nxxY-CxrY S&y - - - 
72Xx2 - (xx)” 

- 7 
m4x 

and the COEFFICIENT b’ in 

x = a’ + b’y 

is given by 

b’ = nr:xy-):xry 

nxY2 - (CY)2 

. 

(5) 

(6) 

(7) 

Corollary 
An immediate consequence of a result already proved. 
Corollaries usually state more complicated THEOREMS 
in a language simpler to use and apply. 

see also LEMMA, PORISM, THEOREM 
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r2=0.903922 

The correlation coefficient ? (sometimes also denoted 
R2) is then defined by 

dK I- TG - 
n~zy-)xEY 

J[nD2 - m2] [nCY2 - (CY)‘] ’ 

(8) 
which can be written more simply as 

ssxy 
2 

r2 = - 
s s x x s s y y  l  

(9) 

The correlation coefficient is also known as the 
PRODUCT-M• MENTCOEFFICIENTOF CORRELATION or 
PEARSON'S CORRELATION. The correlation coefficients 
for linear fits to increasingly noise data are shown above. 

The correlation coefficient has an important physical in- 
terpretation. To see this, define 

A E (Xx2 - nz2)-’ 00) 

and denote the “expected” value for yi as jji. Sums of 
& are then 

a+bxi =g-- bz + bXi = a: + b(Xi - z) 
A(gCx2 - ZCxy + xiCxy - nZ?jxi) 

A[gCx2 + (xi - Z)Cxy - nZyxi] (11) 
A(n@x2 - n2Z2y) (12) 
A2 [ng2 (cZ2)2 - n2Z2fj2(Cx2) 

- 2nZfj(Cxy)(Cx2) + 2n2Z3@xy) 

+ (CX”)(CX~)~ - nZ2(Czy)] (13) 
Cyiiji = AC[yifjCx2 + yi(xi - Z)Cxy - n@xiyi] 

= A[ng2Cx2 + (c2~)~ - nSi%jCxy - nZy(xxy)] 

= A[n$Cx2 + (CXY)~ - 2nZ@xy]. (14) 

and the sum of squared errors is 

SSE E C(yi - &)” = c(yi - g + 63 - b~i)~ 

= C[Yi - y - b(Xi - z)12 

= c(yi - y)” + b2C(xi - 2)” - 2bC(xi - z)(yi - y) 

= ssyy + b2ssSs - 2bsszy. (16) 

(17) 

(18) 

b = ssxy 
ssxx 

so 

SSE = ssYy + <sszx - 23%~~~ 
-xx ssxx 

and 

SSE + SSR = ss,,(l - T”) + ssYg2 = ssYY. 

(19) 

(20) 

(21) 

The square of the correlation coefficient ~~ is therefore 
given by 

SSR ssxy 
2 

r2=-=----- (Cxy - nZy)2 
- 

ssYY ssxx ssyy CC X2 - nZ2) (Cy2 - nij2) l  

(22) 

In other words, r2 is the proportion of ssyy which is 
accounted for by the regression. 

If there is complete correlation, then the lines obtained 
by solving for best-fit (a, b) and (a’, b’) coincide (since 
all data points lie on them), so solving (6) for y and 
equating to (4) gives 

y=-$+;=a+bx. (23) 

Therefore, a = --d/b’ and b = l/b’, giving 

r2 = bb’ = 1. (24) 
The sum of squared residuals is then 

SSR = C(& - g)” = C($ - 2@& + g”) 

= A2(Cxy - ~~zy)~(Cx~ - nz2) = 
(Cxy - nZfJ2 

cx2 _ n,2 

c bssxy c 4 
2 

= ssyyr = b2ssxx, 
ssxx 

(15) 

The correlation coefficient is independent of both origin 
and scale, so 

T(% v) = r(x, Y), (25) 

where 

x - x0 
UE- 

h 
v_Y-Yo 

h ’ 

(26) 

(27) 
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see U~SO CORRELATION INDEX, CORRELATION COEFFI- 
CIENT- GAUSSIAN BIVARIATE DISTRIBUTION, CORRE- 
LATION RATIO,LEAST SQUARES FITTING,REGRESSION 
COEFFICIENT 
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Correlation Coefficient-Gaussian Bivariate 
Distribution 
For a GAUSSIAN BIVARIATE DISTRIBUTION, the distri- 
bution of correlation COEFFICIENTS is given by 

sm dP 
X 

0 
(coshp - pr)- 

= qjv _ 2)(1 _ +N--4)/2(1 - Py--1)/2 

7r 6 

; xc& 

2 

x(1 - P9 
-w-3/2)2~~ (f, +, 2N2-1; ‘y’ ) 

(N - 2)qN - I)(1 - p2)(N--1)/2(1 - g)(--4)/2 

= 

&qN- +)(I-pr)N-3/2 

+a- , 1 (1) 
where p is the population correlation COEFFICIENT, 
&(a, b;~; 2) is a HYPERGEOMETRIC FUNCTION, and 
l?(z) is the GAMMA FUNCTION (Kenney and Keeping 
1951, pp. 217-221). The MOMENTS are 

( ) p Al-P2) T= - 
2n (2) 

(1-P212 1+ w2 + 
var(r) = 72 

( 2n “’ > 
(3) 

6P 
y1=< 1+ ( 

?7p2 - 30 

d- 12n 
+ . . . 

> 
6 

y2=-(12p2-I)+*.., 
n 

where n E N - 1. If the variates are uncorrelated, then 
p = 0 and 

r(N - $)23/2-Nfi - - 
[r(:>l” ’ (5) 

so 

p( T = ) (N - 2)W - 1) (1 _ f2)w--4)/2 
&I’(N - +) 

X 
r(N - +)23’2-NJ?F 

IWI” 
- - 21-N(N - 2)r(N - l) cl _ #N--4/2) 

[r($)l” 
. (6) 

But from the LEGENDRE DUPLICATION FORMULA, 

fir(N-1) = 2N-2r($)r(~), (7) 

so 

p( ) VNm r = 
“-“>cN - 2)r($)r(v) (1 - 

fi [r($)l” 
T2)(N-4)/2 

- - 

1 - - 
d- 7r 

;r(+) 
r(; + I> (1 - Ty-2)/2 

- 1 r(F) 2 (Y-2)/2 - J;Typ-T) ’ (8) 

The uncorrelated case can be derived more simply by 
letting fl be the true slope, so that 7 = a + ps* Then 

t E (b-p)% J 
N-2 -=- (gJ 

% l- T2 

is distributed as STUDENT'S t with v = N- 2 DEGREES 
OF FREEDOM. Let the population regression COEFFI- 
CIENT p be 0, then p = 0, so 

t-r 2- 
J 1 - T2 ’ 

(10) 

and the distribution is 

P(t) dt = 1 
r v7T 

Plugging in for t and using 

dt = 

dt. (11) 
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But Y is ODD, SO v - 1 = 2n is EVEN. Therefore gives 

P(t) dt = -!-- 
r VT 

2 r(F) 2 r(n+l) 2 n! --= - 

fi r(g) fi r(n + i) - fi Pn-Wfi 
2n 

dr 

2 2nn! 2 (2n)!! 
- -- -- - 7r (2n - l)!! 7r (2n - l)!!’ (20) (1 - T2> -3/2 r(y) Z 

J 
dr 

7r 

- -~ - (1-r > 
2 b'+1)/2 dr 

- - dr , 

Combining with the result from the COSINE INTEGRAL 
gives 

2 (2n)!!(Zn - l)!! 
PC(r) = 1 - - 

T (2n - 1)!!(2n)!! 
(13) 

n-l sin -l b-l 

Ix 
(zk)!! 

‘OS 
2k+1 

k-o (2k + l)!! 
x + x 1 . (21) 

- 0 
(14) 

as before. See Bevington (1969, pp. 122-123) m Pugh 
and Winslow (1966, $12-8). If we are interested instead 
in the probability that a correlation COEFFICIENT would 
be obtained > 1~1, where T is the observed COEFFICIENT, 
then - 

Use 

cos 2k--1 x = (1 _ r2)w-1)/2 = (1 _ T2)w/2), 
(22) 

and define J E ~2 - 1 = (V - 3)/2, then 

PC (4 

1 b-1 

PC(r, N) = 2 
s 

P(r’, N) dr’ = 1 - 2 
s 

P(r’, N) dr’ 
14 0 

2 
= 1 - - 

[ 

sin-l 
7r 

/rI + ,r, g (2;;);),1(’ - T2)k+1’2 l  

.m 1 2 r(y) 
s 
lrl =l-JI;m o u- r2)(-2)/2 dr. 

(15) (23) 
LetI= $(V-- 2). For EVEN Y, the exponent I is an 
INTEGER SO, by the BINOMIAL THEOREM, 

(In Bevington 1969, this is given incorrectly.) Combin- 
ing the correct solutions 

(1 - r”>’ = I 
2k+l 

1 2 r[(y+l)/21 _ 
qcr(v/2) C[( ) -1 k.- 

(I-C)!k! Irl 2k+l 
k=O 1 (16) 

C(r) = J 

sin-l ITI + lrl C $$+(I -F2)k+1’2 . . 
k=O 1 

(24 

and 

If p # 0, a skew distribution is obtained, but the variable 
z defined by 

z = tanh-’ T (25) 

is approximately normal with 

Px = tanh-’ p 

2 1 
ur =- 

N-3 

(26) 

(27) 

For ODD V, the integral is 

s 

14 
PC(r) fls 1 - 2 P(r’) dr’ 

0 

(Kenney and Keeping 1962, p. 266). 2 r(y) ITI 
=l-J;;T(gy o s (ds),-’ dr. (18) 

Let bj be the slope of a best-fit line, then the multiple 
correlation COEFFICIENT is 

Let T = sinx so dr = cos x dx, then 

v-2 
cos xcosxdx 

2 r(y) 
sin-l 17-1 

=l-Fm+ o 
s 

cos u-1 x:x. (19) 

(28) 

where sjY is the sample VARIANCE. 
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On the surface of a SPHERE, 

JfN 
‘- J’-fdCtJ‘-gdn’ (29) 

where dS1 is a differential SOLID ANGLE. This definition 
guarantees that -1 <r < 1. Iffandgareexpandedin 
REAL SPHERICAL HARMONICS, 

Then 

The confidence levels are then given by 

Gl(T) = T 

Gz(T) = r(l+ is”> = $r(3 - r2) 

G3(r) = ~[l + ;s2(1 + ;s2)] = 9(15 - 10r2 + 3r4) 

G&-) = ~(1 + ;s’[l + ;s2(1 + $‘)I} 

- &(35 - 35r2 + 21r4 - 5r”), - 

where 

(Eckhardt 1984). 

see UZSO FISHER’S z'-TRANSFORMATION, SPEARMAN 
RANK CORRELATION, SPHERICAL HARMONIC 
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Kenney, J. F. and Keeping, E. S. Mathematics of Statistics, 
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Correlation Dimension 
Define the correlation integral as 

Correlation Exponent 

where I9 is the HEAVISIDE STEP FUNCTION. When the 
below limit exists, the correlation dimension is then de- 

If v is the CORRELATION EXPONENT, then 

lim v -+ Da* 
E-PO 

It satisfies 
de,, < dinf < dcap A dLya* - - (4) 

To estimate the correlation dimension of an M- 
dimensional system with accuracy (1 - Q) requires Nmin 
data points, where 

NW > 
R(2 - Q) M [ 1 mln - 2(1 - Q) ’ (5) 

where R > 1 is the length of the “plateau region.” If 
an ATTRACTOR exists, then an estimate of Dz saturates 
above some M given by 

M>2D+l, - (6) 

which is sometimes known as the fractal Whitney em- 
bedding prevalence theorem. 

see UZSO CORRELATION EXPONENT, Q-DIMENSION 

References 
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Correlation Exponent 
A measure v of a STRANGE ATTRACTOR which allows 
the presence of CHAOS to be distinguished from random 
noise. It is related to the CAPACITY DIMENSION D and 
INFORMATION DIMENSION 0, satisfying 

V<O<D. - (1) 

It satisfies 

v < DKY, - (2) 

where DKY is the KAPLAN-Y• RKE DIMENSION. As the 
cell size goes to zero, 

lim v -+ Dz, 
E-+0 

(3) 

where D2 is the CORRELATION DIMENSION. 

References 
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+j 
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Correlation (Geometric) 
A point-to-line and line-to-point TRANSFORMATION 
which transforms points A into lines a’ and lines b into 
points B’ such that a’ passes through B’ IFF A’ lies on 
6. 

see also POLARITY 

where 

(6) 

Correlation Index 

and &(a$;~) is the CONFLUENT HYPERGEOMETRIC 
LIMIT FUNCTION. If A = 0, then 

T Es,p 
C 

%% 

2 
Tc = 

SC 
2 

2 
=I-SSE 

SY SY 
2 . 

f (E2) = PC% b) (9) 

(Kenney and Keeping 1951, pp. 323-324). 

see also CORRELATION COEFFICIENT,REGRESSION Co- 
EFFICIENT see also CORRELATION COEFFICIENT 

References 
Kenney, J. F. and Keeping, E. S. Mathematics of Statistics, 
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Correlation Integral 
Consider a set of points Xi on an ATTRACTOR, then the 
correlation integral is 

Correlation (Statistical) 
For two variables it: and y, w 

1 
E lim -f, 

N+m N2 

where f is the number of pairs (i, j) whose distance IX;- 
Xj 1 < 2. For small 1, 

cor(x, y) = 

where oa: denotes STANDARD DEVIATION and cov(z, y) 
is the COVARIANCE of these two variables. For the gen- 
eral case of variables xi and xj, where i,j = 1, 2, . . . , 

n, 

C(1) - I”, 

where v is the CORRELATION EXPONENT. 

cor(xi, xj) = 
COV(Xi, Xj) 

Jvi,v,’ 

References 
Grassberger, P. and Procaccia, I. “Measuring the Strangeness 

of Strange Attractors.” Physica D 9, 189-208, 1983. 

(2) 

where Vii are elements of the COVARIANCE MATRIX. In 
general, a correlation gives the strength of the relation- 
ship between variables. The variance of any quantity is 
alway NONNEGATIVE by definition, so 

Correlation Ratio 
Let there be Ni observations of the ith phenomenon, 
wherei- 1, . . ..pand 

var 
( > 

E+& 20. (1) 

(2) 

(3) 

From a property of VARIANCES, the sum can be ex- 
panded 

-r(E) +var (-$ +2cov (5-9 >O (4) 
Then 

1 1 2 
2 var(x) + 2 var(y) + - 0 

ox oy 
COV(X,Y) 2 (5) 

OX OY 
Let qya: be the population correlation ratio. If Ni = Nj 
for i # j, then 2 

1+1+- cov(x, y) = 2 + - 2 cov(x,y) > 0. (6) 
ox oy ox oy 

f(E2) = 
e-X(E2)a-1(l - E2)b-1~F~(a,b;XE2) 

Bh b) 
? 

(5) Therefore, 

cor(x, y) = - cov(x7 Y> > -1 
- O&y - 

(7) 
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Similarly, 

Cosine 

The function defined by cscx E l/sinx, where sinx 
is the SINE. The MACLAURIN SERIES of the cosecant 
function is (8) 

+-)+v+-) +ZCOV(:,--$ 2 0 (9) 
1 

cscx=;+~x+&jx3+~x5+... 

, (-l)n+12(22n-1 - l)Ban 2n-1 
X + “‘1 1 

4 var(x) + - var(y) - z 
OX aY2 

2 cov(x, y) 2 0 (10) 
x Y 

1 
(2 ) n! 

where B2n is a BERNOULLI NUMBER. 

see also INVERSE COSECANT, SECANT, SINE 
1+1- 

2 
- cov(x, y) = 2 - - 2 cov(x, y) > 0. (11) 
ox uy ux oy 

Therefore, References 

cor(x, y) = ~ COVhY) < 1 
uxuy - ’ 

Abramowitz, M. and Stegun, C. A. (Eds.). “Circular Func- 
tions.” $4.3 in Handbook of Mathematical Functions with 
Formulas, Graphs, and Mathematical Tables, 9th printing. 
New York: Dover, pp. 71-79, 1972. 

Spanier, J. and Oldham, K. B, “The Secant set(z) and Cose- 
cant csc( Z) &n&ions.” Ch. 33 in An Atlas of Functions. 
Washington, DC: Hemisphere, pp. 311-318, 1987. 

(12) 

so - 1 5 cor(x, y) 2 1. For a linear combination of two 
variables, 

var(y - bx) = var(y) + var(-bx) + 2 cov(y, 4x) 

= var(y) + b2 var(x) - 2bcov(x, y) 

= uy2 + ax2 - 2bcov(x, y)* (13) 

Coset 
Consider a countable SUBGROUP H with ELEMENTS hi 
and an element x not in L?, then 

Examine the cases where cor(x, y) = *l, 
xhi (1) 

cor(x, y) = ~ COVhY) = *1 
ox uy (14) hix (2) 

for i = 1, 2, ,,. are left and right cosets of the SUB- 
GROUP H with respect to x. The coset of a SVBGROUP 
has the same number of ELEMENTS as the SUBGROUP. 
The ORDER ofany SUBGROUP is adivisorofthe ORDER 
of the GROUP. The original GROUP can be represented 

bY 
G = H + xlH + xzH -t-m.. . (3) 

var(y4x) = b2ax2+oy2 F2bs,a, = (ba, FU~)~, (15) 

The VARIANCE will be zero if b E Ttuy/uX, which re- 
quires that the argument of the VARIANCE is a constant. 
Therefore, y - bx = a, so y = a + bx. If cor(x, y) = H, 
y is either perfectly correlated (b > 0) or perfectly anti- 
correlated (b < 0) with x. 

see also COVARIANCE, COVARIANCE MATRIX, VARI- 
ANCE 

For G a not necessarily FINITE GROUP with H a SUB- 
GROUP ofG,defme an EQUIVALENCE RELATION x N y 
if x = hy for some h in H. Then the EQUIVALENCE 
CLASSES are the left (or right, depending on conven- 
tion) cosets of H in G, namely the sets 

Cosecant 

{x E G : x = ha for some h in H}, (4) 

where a is an element of G. 

see also EQUIVALENCE CLASS, GROUP, SUBGROUP 6 

? 
Cosh 

-7. 

-ii -10 

Im[Csc zl 

see HYPERBOLIC COSINE 

Cosine 

RelCsc 21 

8: 
-8: 
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Let 8 be an ANGLE measured counterclockwise from the 
z-axis along the arc of the unit CIRCLE. Then cos0 
is the horizontal coordinate of the arc endpoint. As a 
result of this definition, the cosine function is periodic 
with period 27~ 

Re[Cos 21 Im[Cos z] lcos 21 

20 
10 

[Zl 

The cosine function has a FIXED POINT at 0.739085. I 

The cosine function can be defined algebraically using 
the infinite sum 

- 
cosx E (1) 

n=O 

or the INFINITE PRODUCT Similarly, 

00 
IQ 

4x2 
cosx = l- 

n=l 1 rir2(2n - 1)” . 

A close approximation to cos(x) for x f [0, r/2] is 

(2) 

where 6(k) is the DELTA FUNCTION. 

The cosine sum rule gives an expansion of the COSINE 
function of a multiple ANGLE in terms of a sum of POW- 
ERS of sines and cosines, 

cos(n0) = 2 cod cos[(n - l)O] - cos[(n - 2)0] 

cosn 8 
n 

7~’ - - - 0 cos 0 sin2 8 
2 

n 
+ 0 4 cos n-40sin40-.... (5) 

Summing the COSINE of a multiple angle from n = 0 to 
IV - 1 can be done in closed form using 

y cos(nx) = !I? [z einX] . (6) 

n=O 

The EXPONENTIAL SUM FORMULAS give 

sinwx) i(N-l)s/2 
~cos(nx, = ~ [ sin~~x) e 
n=O 

] 

sin( +Nx) - - 
sin( ix) 

cos[+x(N - l)]. (7) 

~p”cos(nx) = !R [ ~pneinX] , 

n=O 

(8) 

where 1~1 < 1. The EXPONENTIAL SUM FORMULA gives 

(Hardy 1959). The difference between cos x and Hardy’s 
approximation is plotted below. 

-0.0000 

-0.000 

-0.0001 

The FOURIER TRANSFORM of cos(27~k~x) is given by 

F[cos(27&ox)] = 
r 

e -27rika: cos(27&x) dx 

= $;I - ko) + J(k + ko)], (4) 

~p’“cos(nx) = LR [1 s;;5;p2] 
n=O 

I- pcosx - - 
l- 2pcosx +p2’ (9) 

Cvijovie and Klinowski (1995) note that the following 
series 

O” cos(2k + l)CI 
cu(a) = >: (2k + 1)” (10) 

k=O 

has closed form for v = 2n, 

where En(x) is an EULER POLYNOMIAL. 

~~~~~~~EULERPOLYN~MIAL,EXPONENTIAL SUM FOR- 
MULAS, FOURIER TRANSFORM-COSINE, HYPERBOLIC 
COSINE, SINE, TANGENT, TRIGONOMETRIC FUNCTIONS 
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Cosine Apodization Function 

The APODIZATION FUNCTION 

A(x) = cm z . 
( > 

Its FULL WIDTH AT HALF MAXIMUM is 4a/3. Its IN- 
STRUMENT FUNCTION is 

I(k) - 4a cos(2nak) 
- 

~(1 - 16a2k2) l  

see also APODIZATION FUNCTION 

Cosine Circle 

Al Q3 

Also called the second LEMOINE CIRCLE. Draw lines 
through the LEMOINE POINT K and PARALLEL to the 

sides of the TRIANGLES. The points where the antiparal- 
lel lines intersect the sides then lie on a CIRCLE known as 
the cosine circle with center at K. The CHORDS PzQ3, 

PSQI, and PIQ2 are proportional to the COSINES of the 
ANGLES of L~AIA~A~, giving the circle its name. 

TRIANGLES P&P3 and AAIAzA~ are directly similar, 
and TRIANGLES AQlQ2Qs and AlAzA3 are similar. 
The MIQUEL POINT of APlPzP3 is at the BROCARD 
POINT s2 of ApIP&* 

see also BROCARD POINTS, LEMOINE CIRCLE, MIQUEL 
POINT,TUCKER CIRCLES 

References 
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Cosine Integral 

0 

-0 

-0 

There are (at least) three types of “cosine integrals,” 
denoted ci(x), Ci(x), and Gin(x): 

ci(x) = - 
s 

O” costdt 
- 

t 
X 

(1) 

= +[ei(ix) + ei(-ix)] 

= -+[E&x) + E+ix)J, 
(2) 

(3) 

Ci(x) Sy+lnz+ 
s 

% cost - 1 
~ dt 

t 
0 

E 
Gin(x) S 

s 

(1 cos t) dt 
- t 

0 

(4) 

(5) 

= -Ci(x)+lnx+y. (6) 

Here, ei(x) is the EXPONENTIAL INTEGRAL, E,(X) is 
the En-Fu~c~lo~, and y is the EULER-MASCHERONI 
CONSTANT. ci(x) is the function returned by the 
Mathematics@ (Wolfram Research, Champaign, IL) 
command CosIntegral [xl and displayed above. 

To compute the integral of an EVEN power times a co- 
sine, 

I= 
I 

X 2n cos(mx) dx, (7) 

use INTEGRATION BY PARTS. Let 

u = x2n du = cos(mx) dx 

du=2nx2n-1dx UC+ ’ m =n(mx> I (9) 



Cosine Integral 

so 

1 2n 
I = -x2n sin(mx) - - x2n-1 sin(mx) dx. 

m m s 

Using INTEGRATION BY PARTS again, 

272-l 
u =x dv = sin(mx) dx 

du = (2n - 1)x2n-2 dx v = -k cos(mx), 

and 

s 

X 2n cos(mx) dx 

- - 

2n - 1 
+- X 

m s 
a+2 cos(mx) dx 1 

1 2n 2n-1 - - -x2n sin(mx) + m2x cos(mx) 
m 

(2n)(2n - 1) - 
m2 s 

X 2n-2 cos(mx) dx 

1 2n - - -x2n sin(mx) + px2nS1 cos(mx) 
m 

(2 > n! 
+-+ s 

s 
x0 cos(mx) dx 

1 2n - - -x2n sin(mx) + 2x2+l cos(mx) 
m 

(2 > n! 
+ l  l  - + m2n+l  s in(mx) 

(2 > + cos(mx) k(-l)‘+’ (2k _ 2n~!l),m2k x2n-2k+1. 
l  

k=l ' 

(13) 

Letting k’ E n - k, 

s 
2 2n cos(mx) dx 

= sin(mx) k(-1)““.’ (2k),(2y)L2k+1 x2k 
.m n 

k=O 

n-1 

+ cos(mx) x( -l)“-“+l (2k - 
k=O 

= (-1)“+‘(2n)! ( 1) 
sin(mx) 2 (IB)li2nr2k+l x2k 

k=O 

n 

( 1) 
k+l - 

+ cos(mx) x (2k _ s)!m2n-2”+2 x 

2k-1 1 ’ (14) 
k=l 

Cosine Integral 341 

To find a closed form for an integral power of a cosine 
function, 

I= 
s 

cosm x dx, (15) 

perform an INTEGRATION BY PARTS so that 

77-b-l u = cos X dv = cosxdx (16) 

du = -(m - 1)coPB2xsinxdx v = sinx. (17) 

Therefore 

I = sinx cosmB1 x + (m - 1) 
s 

cos m-2 x sin2 x dx 

= sin x cos 
m-1 

X 

+(m - 1) 

V 

cos m-2 x dx - /cosmxdx] 

=sinxcosm-lx+(m-l) 
V 

cosm-2 x dx - I 1 , (18) 
so 
I[l+(m-l)] =sinxcosm-lx+(m-l) J cosmB2xdx 

(19) 
I= 

s 
cosm x dx 

sinx cosmB1 2 m-l - - +- 
s 

cos m-2 x dx. (20) 
m m 

Now, if m is EVEN so m s 2n, then 

s 
cos 2nxdx 

sin x cos 272-l 272 - 1 - - 
2n x+T s 

cos 2n-2 x dx 

sin x cos2n-T x 2n - 1 sin x ~0s~~~’ x - - 
2n 

+- 
n [ 2n - 2 

2n - 3 
+- 

272 - 2 s 

2n-4 
cos xdx 1 

= sin x [ 1 
2n-1 x + 

2n - 1 

iii cos (2n)(2n - 2) ‘OS 
2n-3 

’ 1 
(2n - 1)(2n - 3) 

+ (2n)(2n - 2) s 
cos 2n-4 x dx 

[ 

1 
=sinx -cos 

2n-1 

2n 
X 

272 - 1 
+ (2n)(2n _ 2) COS2n-3 II: + ’ ’ . 1 (2 n - 1)(2n - 3). 9 m 1 

+ (2n)(2n - 2)**.2 s 
cos’ x dx 

n 

= sin 2 
E 

(2 n - 2k)!! (2n - l)!! 

(2 > n !! (2n - 2k + l)!! 
COS2n-2k+1 

X 

k=l 

+ n- 
(2 l)!! 

(2n)!! ‘* (21) 
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Now let k’ E n - k + 1, so n - k = k’ - 1, 

s cos 27Exdx 

(22) 

NOW if m is ODD so m E 2n + 1, then 

s cos 2n+1 x dx 

sin x c0s2n x 2n 
- - 

2n+ 1 
+- 

2n + I s 
cos 2n-1 xdx 

sin x cos2n x 2n sin x cos2+’ x - - 
2n + 1 

+- 
2n + 1 2n - 1 

2n - 2 
+- 

2n- 1 s 
cos 2n-3 x dx 1 

= sin x [ 1 2n 2n-2 - 
2n + 1 ‘OS 

2nx + 
(2n + 1)(2n - 1) ‘OS x 1 

(2n)(Zn - 2) 

+ (2n+ 1)(2n - 1) s ‘OS 
2n-3 x dx 

= sinx 
[ 

1 2n - 
2n+ 1 ‘OS ’ 

2n 

+(2n + 1)(2n - 1) ‘OS 
2n-2 x  + . l  . 1 

(2n)(2n - 2) . . -2 

+(2n+ 1)(2n- 1)***3 s cosxdx 
n 

= sinx 
c 

(2n - 2k - l)!! (2 > n !! 

k=. (2n + l)!! (2n - 2k)!! ‘OS 
2n-2k 

x* 

(23) 

Now let k’ E n - k, 

s cos 
(2n)!! n (2k - l)!! 

2n xdx = (273 + I)!! sinx k=O x w !! CoS2k x* 

The general result is then 

n-l 

sin 2 c - cos2”+l x + 2 
(2k)!! 

(2k+l)!! 

k=O J 

COP xdx = for m = 27-L n 

The infinite integral of a cosine times a Gaussian can 
also be done in closed form, 

. (26) 

see also CHI, DAMPED EXPONENTIAL COSINE INTE- 
GRAL, NIELSEN’S SPIRAL, SHI, SICI SPIRAL, SINE .IN- 
TEGRAL 
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Cosines Law 

see LAW OF COSINES 

Cosmic Figure 

see PLATONIC SOLID 

Cosmological Theorem 
There exists an INTEGER IV such that every string in 
the LOOK AND SAY SEQUENCE “decays” in at most N 
days to a compound of “common” and “transuranic el- 
ements.” 

The table below gives the periodic table of atoms asso- 
ciated with the LOOK AND SAY SEQUENCE as named 
by Conway (1987). The “abundance” is the tiverage 
number of occurrences for long strings out of every mil- 
lion atoms. The asymptotic abundances are zero for 
transuranic elements, and 27.246. . l  for arsenic (As), the 
next rarest element. The most common element is hy- 
drogen (II), having an abundance of 91,970.383.. . . The 
starting element is U, represented by the string “3,” and 
subsequent terms are those giving a description of the 
current term: one three (13); one one, one three (1113); 

three ones, one three (3113), etc. 

I 
(2n)!! - 

(2n+l)!! sln x c 

(2k-I)!! cos2k x 

(2k)!! 

k=O 

for m = 2n + 1. 
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Abundance n ETl E, is the derivate of En+, 

102.56285249 92 u 

9883.5986392 91 Pa 

7581.9047125 90 Th 

6926.9352045 89 AC 

5313.7894999 88 Ra 

4076.3134078 87 Fr 

3127.0209328 86 Rn 

2398.7998311 85 At 

1840.1669683 84 PO 

1411.6286100 83 Bi 

1082.8883285 a2 Pb 

830.70513293 81 Tl 

637.25039755 80 Hg 

488.84742982 79 Au 

375.00456738 78 Pt 

287.67344775 77 Ir 

220.68001229 76 OS 

169.28801808 75 Re 

315.56655252 74 W 

242.07736666 73 Ta 

2669.0970363 72 Hf 

2047.5173200 71 LU 

1570.6911808 70 Yb 

1204.9083841 69 Tm 

1098.5955997 68 Er 

47987.529438 67 Ho 

36812.186418 66 DY 
28239.358949 65 Tb 

21662.972821 64 Gd 

20085.668709 63 Eu 

15408.115182 62 Sm 

29820.456167 61 Pm 

22875.863883 60 Nd 

17548.529287 59 Pr 

13461.825166 58 Ce 

10326.833312 57 La 

7921.9188284 56 Ba 

6077.0611889 55 CS 
4661.8342720 54 Xe 

3576.1856107 53 I 

2743.3629718 52 Te 

2104.4881933 51 Sb 

1614.3946687 50 Sn 

1238.4341972 49 In 

950.02745646 48 Cd 

728.78492056 47 Ag 
559.06537946 46 Pd 

428.87015041 45 Rh 

328.99480576 44 RU 

386.07704943 43 Tc 

296.16736852 42 MO 

227.19586752 41 Nb 

174.28645997 40 Zr 

133.69860315 39 Y 

102.56285249 38 Sr 

78.678000089 37 Rb 

60.355455682 36 Kr 

46.299868152 35 Br 

3 

12 

1113 

3113 

132113 

1113122113 

311311222113 

Ho.1322113 

1113222113 

3113322113 

Pm.123222113 

111213322113 

31121123222113 

132112211213322113 

111312212221121123222113 

3113112211322112211213322113 

1321132122211322212221121123222113 

1131221131211322113321132211221121 

3322113 

Ge.Ca.312211322212221121123222113 

13112221133211322112211213322113 

11132.Pa.H.Ca.W 

311312 

1321131112 

11131221133112 

311311222.Ca.Co 

1321132.Pm 

111312211312 

3113112221131112 

Ho.13221133112 

1113222.Ca.Co 

311332 

132.Ca.Zn 

111312 

31131112 

1321133112 

11131.H.Ca.Co 

311311 

13211321 

11131221131211 

311311222113111221 

Ho.1322113312211 

Eu.Ca.3112221 

Pm.13211 

11131221 

3113112211 

132113212221 

111312211312113211 

311311222113111221131221 

Ho.132211331222113112211 

Eu.Ca.311322113212221 

13211322211312113211 

1113122113322113111221131221 

Er.12322211331222113112211 

1112133.H.Ca.Tc 

3112112-U 

1321122112 

11131221222112 

3113112211322112 

Abundance n. E, E, is the derivate of E,,, 

35.517547944 34 Se 13211321222113222112 

27.246216076 33 As 11131221131211322113322112 

1887.4372276 32 Ge 31131122211311122113222.Na 

1447.8905642 31 Ga Ho.13221133122211332 

23571.391336 30 Zn Eu.Ca.Ac.H.Ca.312 

18082.082203 29 Cu 131112 

13871.123200 28 Ni 11133112 

45645.877256 27 Co Zn.32112 

35015.858546 26 Fe 13122112 

26861.360180 25 Mn 111311222112 

20605.882611 24 Cr 31132.Si 

15807.181592 23 V 13211312 

12126.002783 22 Ti 11131221131112 

9302.0974443 21 SC 3113112221133112 

56072.543129 20 Ca Ho.Pa.H.12.Co 

43014.360913 19 K 1112 

32997.170122 18 Ar 3112 

25312.784218 17 Cl 132112 

19417.939250 16 S 1113122112 

14895.886658 15 P 311311222112 

32032.812960 14 Si Ho.1322112 

24573.006696 13 Al 1113222112 

18850.441228 12 Mg 3113322112 

14481.448773 11 Na Pm.123222112 

11109.006696 10 Ne 111213322112 

8521.9396539 9 F 31121123222112 

6537.3490750 8 0 132112211213322112 

5014.9302464 7 N 111312212221121123222112 

3847.0525419 6 C 3113112211322112211213322112 

2951.1503716 5 B 1321132122211322212221121123222112 

2263.8860325 4 Be 11131221131211322113321132211221121 

3322112 

4220.0665982 3 Li Ge.Ca.312211322212221121123222122 

3237.2968588 2 He 13112221133211322112211213322112 

91790.383216 1 H Hf.Pa.22.Ca.Li 

see also CONWAY’S CONSTANT, LOOK AND SAY SE- 

QUENCE 
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Costa-Hoffman-Meeks Minimal Surface 

see COSTA MINIMAL SURFACE 
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Costa Minimal Surface see also BRUCARD ANGLE, BROCARD CIRCLE, BRO- 
CARD POINTS, BROCARD TRIANGLES, CIRCUMCIRCLE, 
LEMOINE POINT, SYMMEDXAN LINE 

Cotangent 

A complete embedded MINIMAL SURFACE of finite to- 
pology. It has no BOUNDARY and does not intersect 
itself. It can be represented parametrically by 

x = $R 

1 

T2 
-C(u + iv) + 7md + 4e 

1 

+$[C(u + iv - 3) - [(u + iv - ii)]} 
1 

{ 

2 

y= $32 -iC(u + iv) + 7w + & 
1 

L[ic(u+iv- $)-iC(u+iv- $,I} 

1 

where C(Z) is the WEIERSTRAJ~ ZETA FUNCTION, 
&a,g3;z) is the WEIERSTRA~~ ELLIPTIC FUNCTION, 
c = 189.07272, el = 6.87519, and the invariants are 
given by g2 = c and g3 = 0. 
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Re[Cot zl 

The function defined by cot z G l/ tanq where tana: is 
the TANGENT. The MACLAURIN SERIES for cot rr:is 

1 
cotx = - - 

2 

ix - Ax3 - 2-x5 - &x7 - . . . 

( -l)n+122nB2n 
- 

(2 > n! -**" 

where B, is a BERNOULLI NUMBER. 

00 
1 

ncot(nx) = - +2x IE 
1 

- 
X 3~2 - n2’ 

T-L=1 

It is known that, for n > 3, cot(r/n) is rational only for - 
n = 4. 

see UZSO HYPERBOLIC COTANGENT, INVERSE COTAN- 
GENT,LEHMER'S CONSTANT,TANGENT 

References 
Abramowitz, M. and Stegun, C. A. (Eds.). “Circular Func- 

tions.” 54.3 in Handbook of Mathemat&l Functions with 
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Cosymmedian Triangles 
Extend the SYMMEDIAN LINES of a TRIANGLE Cotangent Bundle 
AA~AzAJ to meet the CIRCUMCIRCLE at PI, Pz, Ps. The cotangent bundle of a MANIFOLD is similar to the 

Then the LEMOINE POINT K of AAlAzA3 is also TANGENT BUNDLE, except that it is the set (x, f) where 

the LEMOINE POINT of API P2 P3. The TRIANGLES x E M and f is a dual vector in the TANGENT SPACE 
AAlAzA3 and APlP,P3 are cosymmedian triangles, to x E M. The cotangent bundle is denoted by T*iK 

andhavethesame BRUCARD CIRCLE, second BROCARD see also TANGENT BUNDLE 
TRIANGLE, BROCARD ANGLE, BROCARD POINTS, and 
CIRCUMCIRCLE. 
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Cotes Circle Property 

x2n + 1 = 
[ 
x2 - 2x cos 

(3 +ll 

x x2 
[ 

- 2x cos (E) +1] x *..x 

x [,2-~,,,,((2~~1)*)+1]. 

Cotes Number 
The numbers X,, in the GAUSSIAN QUADRATURE for- 
mula 

&n(f) = ~Lnf(xvn)- 
Y= 1 

see also GAUSSIAN QUADRATURE 

References 
Cajori, F. A History of Mathematical Notations, Vols. l-2. 

New York: Dover, p, 42, 1993. 

Cotes’ Spiral 
The planar orbit of a particle under a T-~ force field. It 
is an EPISPIRAL. 

Coth 
see HYPERBOLIC COTANGENT. 

Coulomb Wave Function 
A special case of the CONFLUENT HYPERGEOMETRIC 
FUNCTION OF THE FIRST KIND. It givesthesolutionto 
the radial Schr6dinger equation in the Coulomb poten- 
tial (l/r) of a point nucleus 

d2W + 1 
[ 

277 w + 1) - --- P P2 1 w = 0 . dP2 (1) 
The complete solution is 

w  = ClF~(q,p) + ~~GL(w)- (2) 

The Coulomb function of the first kind is 

F~(v,p) = C&)pL+‘e+‘~F~(L + 1 - iq; 2L + 2; 2ip), 
(3) 

where 

CL(V) = 
2Le-““‘21r(L + 1 + iq)l 

r(2L + 2) 
7 (4) 

#~(a; b;z) is the CONFLUENT HYPERGEOMETRIC 
FUNCTION, r(z) is the GAMMA FUNCTION, and the 
Coulomb function of the second kind is 

Gr,(q,p)= &-fLhP) 
[ 

QL (4 
wu) + - 

0 PL (rl) I 

1 

+ (2L + Wdd 
-L x &dPK+L? (5) 

K=-L 

where qL7 13~~ and ai are defined in Abramowite and 
Stegun (1972, p. 538). 

References 
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Count 
The largest n such that 1~~1 < 4 in a MANDELBROT SET. 
Points of different count are often assigned different col- 
ors. 

Countable Additivity Probability Axiom 
For a COUNTABLE SET of 71 disjoint events El, &, . . l  , 

En. 
72 

>: P(Ei)* 
i=l 

see &O COUNTABLE SET 

Countable Set 
A SET which is either FINITE or COUNTABLY INFINITE. 

see UZSOALEPH-0, ALEPH-1, COUNTABLY INFINITE SET, 
FINITE, INFINITE, UNCOUNTABLY INFINITE SET 

Countable Space 

see FIRST-COUNTABLE SPACE 

Countably Infinite Set 
Any SET which can be put in a ONE-TO-ONE correspon- 
dencewiththe NATURAL NUMBERS (~~INTEGERS), and 
so has CARDINAL NUMBER NO. Examples of countable 
sets include the INTEGERS and ALGEBRAIC NUMBERS. 
Georg Cantor showed that the number of REAL NUM- 
BERS is rigorously larger than a countably infinite set, 
and the postulate that this number, the “CONTINUUM," 
is equal to N1 is called the CONTINUUM HYPOTHESIS. 

see also ALEPH-0, ALEPH-1, CANTOR DIAGONAL 
SLASH,~ARDINAL NUMBER$ONTINUUM HYPOTHESIS, 
COUNTABLE SET, 

Counting Generalized Principle 
If r experiments are performed with ni possible out- 
comes for each experiment i = 1,2,. . . , T, then there are 
a total of I-I:=, ni possible out comes. 

Counting Number 
A POSITIVE INTEGER: 1, 2, 3, 4, . . . (Sloane’s A000027), 
also called a NATURAL NUMBER. However, 0 is some- 
times also included in the list of counting numbers. Due 
to lack of standard terminology, the following terms 
are recommended in preference to “counting number,” 
“NATURAL NUMBER," and “WHOLE NUMBER? 
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Set Name Symbol For two independent variates x = xi and y = xj, 

l **1 -2, -1, 0, 1, 2, . , . integers z 
1, 2, 3, 4, ,. . positive integers z+ 
0, 1, 2, 3, 4 . l  . nonnegative integers Z* 
-1, -2, -3, -4, l  l  l  negative integers z- 

see also NATURAL NUMBER, WHOLE NUMBER, Z, Z-, 
z’, z* 

References 
Sloane, N. J. A. Sequence AOOO027/M0472 in “An On-Line 

Version of the Encyclopedia of Integer Sequences.” 

Coupon Collector’s Problem 
Let 72 objects be picked repeatedly with probability pi 
that object i is picked on a given try, with 

x pi = 1. 

Find the earliest titie at which all 72 objects have been 
picked at least once. 

References 
Hildebrand, M. V. “The Birthday Problem.” Amer. Math. 

Monthly 100, 643, 1993. 

Covariance 
Given n sets of variates denoted {xl}, . . . , {xn} , a 
quantity called the COVARIANCE MATRIX is defined by 

Kj = COV(Xi, Xj) (1) 

s ((Xi - /b)(Xj - Pj)) (2) 

= (Xixj) - (Xi) (Xj) 7 (3) 

where pi = (xi) and pj = (xj) are the MEANS of x:i 
and xj, respectively. An individual element Vij of the 
COVARIANCE MATRIX is called the covariance of the 
two variates xt:i and xj, and provides a measure of how 
strongly correlated these variables are. In fact, the de- 
rived quantity 

COr(Xi,Xj) E 
COV(Xi, Xj) 

~ ~ , 
i j  

(4) 

where ui, cj are the STANDARD DEVIATIONS, is called 
the CORRELATION of xi and x+ Note that if xi and xj 
are taken from the same set of variates (say, x), then 

cov(x,x) = (x2) - (x)2 = var(x), (5) 

giving the usual VARIANCE var(x). The covariance is 
also symmetric since 

cov(x7 Y) = cov(y, 2). (6) 

cov(x, y) = (xy) - pxpy = (4 (Y> - P&Y = 07 (8) 

so the covariance is zero. However, if the variables are 
correlated in some way, then their covariance will be 
NONZERO. In fact, if cov(x, y) > 0, then y tends to 
increase as x increases. If cov(x, y) < 0, then y tends to 
decrease as x increases. 

The covariance obeys the identity 

co+ + 2, y) = ((3 + Z)Y - (x + 4 (Y>> 

= (XY> + by> - ((4 + (4 (Y) 

= (XY> - (4 (Y> + by> - (4 (Y> 

= cov(x, y) + cov(z, y)m (9) 

By induction, it therefore follows that 

n 

cov 

( 1 
IE 

xi, y = $OV(Xi,Y) (10) 

i=l i=l 

(11) 

n m  

= x ~COV(yj,Xi) (l3) 
izxl j-1 

n m  

= y >1 COV(Xi, yj)- (14) 

izl j=l 

see ah CORRELATION (STATISTICAL), COVARIANCE 
MATRIX, VARIANCE 

Covariance Matrix 
Given n sets of variates denoted {xi}, l  . . , {xn} , the 
first-order covariance matrix is defined by 

Ej = COV(Xi, Xj) E ((Xi - Pi)(Xj - Pj)> 1 

where pi is the MEAN. Higher order matrices are given 

bY 
Viyn = ((Xi - /.Li)"(Xj - /Lj)“) l  

An individual matrix element Vij = COV(X~, xj) is called 
the COVARIANCE of xi and xj. 

see also CORRELATION (STATISTICAL), COVARIANCE, 
VARIANCE 

For two variables, the covariance is related to the VARI- 
ANCE by 

var(x + y) f= var(x) + var(y) + 2cov(x, y). (7) 
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Covariant Derivative 
The covariant derivative of a TENSOR A” (also called the 

SEMICOLON DERIVATIVE since its symbol is a semicolon) 

Aa:;a = V l  A = Af”, + J?$Aj, (1) 

and of Aj is 

(2) 

where r is a CONNECTION COEFFICIENT. 

see also CONNECTION COEFFICIENT, COVARIANT TEN- 
soR, DIVERGENCE 

References 
Morse, P. M. and Feshbach, EL Methods of Theoretical Phys- 

ics, Part I. New York: McGraw-Hill, pp. 48-50, 1953. 

Covariant Tensor 
A covariant tensor is a TENSOR having specific transfor- 

mation properties (c.f., a CONTRAVARIANT TENSOR). 
To examine the transformation properties of a covariant 
tensor, first consider the GRADIENT 

(1) 

for which 
w 84 aXj ---- - 
aXi dXj 8x2 ’ (2) 

where @(XI, ~2, ~3) = @‘(xi, &, 2;). Now let 

ai+, 
i 

(3) 

then any set of quantities Aj which transform according 

to 
A’ _ &A’, 

i- ax; 3 (4) 

or, defining 

t&j =1 
dXj 

ax; ’ (5) 

according to 

(6) 

is a covariant tensor, Covariant tensors are indicated 
with lowered indices, i.e., up. 

CONTRAVARIANT TENSORS are a type of TENSOR with 
differing transformation properties, denoted a? How- 
ever, in 3-D CARTESIAN COORDINATES, 

8Xj _ 8X: _ 

ax; - dXj = aij (7) 

for i,j = 1, 2, 3, meaning that contravariant and covari- 
ant tensors are equivalent. The two types of tensors do 
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differ in higher dimensions, however. Covariant FOUR- 
VECTORS satisfy 

a p = A&, (8) 

where A is a LORENTZ TENSOR. 

To turn a CONTRAVARIANT TENSOR into a covariant 
tensor, use the METRIC TENSOR gPV to write 

a, = gpvay. (9) 

Covariant and contravariant indices can be used simul- 

taneously in a MIXED TENSOR. 

see ~1~0 CONTRAVARIANT TENSOR, FOUR-VECTOR, 
LORENTZ TENSOR, METRIC TENSOR,MIXED TENSOR, 
TENSOR 

References 
A&en, G. “Noncartesian Tensors, Covariant Differentia- 

t ion.” $3.8 in Mathematical Methods for Physicists, 3rd 
ed. Orlando, FL: Academic Press, pp. 158-164, 1985. 
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Covariant Vector 
A COVARIANT TENSOR of RANK 1. 

Cover 
A group C of SUBSETS of X whose UNION contains the 
given set X (U{ s : S E C} = X) is called a cover (or 
a COVERING). A MINIMAL COVER is a cover for which 

removal of one member destroys the covering property. 
There are various types of specialized covers, includ- 

ing proper covers, antichain covers, minimal covers, k- 
covers, and k*-covers. The number of possible covers for 
a set of IV elements is 

MW = ; f31)” (327 

k=O 

the first few of which are 1, 5, 109, 32297, 2147321017, 

9223372023970362989, . . . (Sloane’s A003465). The 
number of proper covers for a set of IV elements is 

IC’(N)I = IC(N)I - +22N 

the first few of which are 
l  l  l  (Sloane’s AOO7537). 

see also MINIMAL COVER 

References 
Eppstein, D. %overing and 

0, 1, 45, 15913, 1073579193, 

Packing.” http://www.ics.uci 
.edu/-eppstein/junkyard/cover.html. 
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Cover Relation 
The transitive reflexive reduction of a PARTIAL ORDER. 
An element z of a P~SET (X, 5) covers another element 
IZ: provided that there exists no third element y in the 
poset for which it: < y 2 z. In this case, z is called an 
“upper cover” of x and z a “lower cover” of z. 

Covering 

see COVER 

Covering Dimension 

see LEBESGUE COVERING DIMENSION 

Covering System 
A system of congruences ai mod ni with 1 < i < k - - 
is called a covering system if every INTEGER y satisfies 
y E ai (mod n) for at least one value of i. 

see also EXACT COVERING SYSTEM 

References 
Guy, R. K. “Covering Systems of Congruences.” SF13 in 

Unsolved Problems in Number Theory, 2nd ed. New York: 
Springer-Verlag, pp. 251-253, 1994. 

Coversine 

covers A E 1 - sin A, 

where sin A is the SINE. 

see also EXSECANT, HAVERSINE, SINE, VERSINE 

References 
Abramowitz, M. and Stegun, C. A, (Eds.). Handbook 

of Mathematical Functions with Formulas, Graphs, and 
Mathematical Tables, 9th printing. New York: Dover, 
p. 78, 1972. 

Cox’s Theorem 
Let 01, . . . . 04 be four PLANES in GENERAL POSITION 
through a point P and let Pij be a point on the LINE 
Oi l  Oj. Let Oijk denote the PLANE PijPikPjk. Then the 
four PLANES fl234, 0134, 0124, 0123 all pass through one 
point Pl234. Similarly, let 01, . . . , 05 be five PLANES 
in GENERAL POSITION through P. Then the five points 
?&5, Pl345, Pl245, Pl235, and P1234 all lie in one PLANE. 
And so on. 

see also CLIFFORD'S CIRCLE THEOREM 

Coxeter Diagram 

see COXETER-DYNKIN DIAGRAM 

Coxeter-Dynkin Diagram 
A labeled graph whose nodes are indexed by the gen- 
erators of a COXETER GROUP having (Pi, Pj) as an 
EDGE labeled by A4ij whenever Mij > 2, where Mij is 
an element of the COXETER MATRIX. Coxeter-Dynkin 
diagrams are used to visualize COXETER GROUPS. A 
Coxeter-Dynkin diagram is associated with each RATIO- 
NAL DOUBLE POINT (Fischer 1986). 

see UZSO COXETER GROUP, DYNKIN DIAGRAM, RATIO- 
NAL DOUBLE POINT 

References 
Arnold, V. I. “Critical Points of Smooth F’unctions.” Proc. 

Int. Congr. Math. 1, 19-39, 1974. 
Fischer, G. (Ed.). Mathematical Models from the Collections 

of Universities and Museums. Braunschweig, Germany: 
Vieweg, pp. 12-13, 1986. 

Coxeter Graph 

see COXETER-DYNKIN DIAGRAM 

Coxeter Group 
A group generated by the elements Pi for i = 1, . . . , n 
subject to 

(PiPj)““’ = 1, 

where Mij are the elements of a COXETER MATRIX. 
Coxeter used the NOTATION [3p14q’] for the Coxeter 
group generated by the nodes of a Y-shaped COXETER- 
DYNKIN DIAGRAM whose three arms have p, Q, and T 
EDGES. A Coxeter group of this form is finite IFF 

1 1 1 
-+ > 1. 
P-e 

-+- 
q+l r+l 

see also BIMONSTER 

References 
Arnold, V. I. “Snake Calculus and Combinatorics of Ber- 

noulli, Euler, and Springer Numbers for Coxeter Groups.” 
Russian Math. Surveys 47, 3-45, 1992. 

Coxeter’s Loxodromic Sequence of Tangent 
Circles 
An infinite sequence of CIRCLES such that every four 
consecutive CIRCLES are mutually tangent, and the CIR- 

CLES' RADII . . . , R-,, . . . , Rml, Ro, R1, R2, R3, R4, 

. . - 1 R,, I-z, + 1, . . . > are in GEOMETRIC PROGRESSION 
with ratio 

~&&A 
RTC 

=4+&i 

where 4 is the GOLDEN RATIO (Gardner 1979ab). Cox- 
eter (1968) generalized the sequence to SPHERES. 

see also ARBELOS, GOLDEN RATIO, HEXLET, PAPPUS 
CHAIN, STEINER CHAIN 

References 
Coxeter, D, “Goxeter on ‘Firmament.“’ http://www.bangor. 

ac.uk/SculMath/image/donald.htm. 
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Coxeter Matrix Cramer’s Rule 

Gardner, M. “Mathematical Games: The Diverse Pleasures 
of Circles that Are Tangent to One Another.” Sci. Amer. 
240, 18-28, Jan. 1979a. 

Gardner, M. “Mathematical Games: How to be a Psychic, 
Even if You are a Horse or Some Other Animal,” Sci. 
Amer. 240, 18-25, May 1979b. 

Coxeter Matrix 
Ann x n SQUARE MATRIX M with 

Mii = 1 

Cram&-Euler Paradox 
A curve of order n is generally determined by n(n + 

3)/2 points. So a CONIC SECTION is determined by five 
points and a CUBIC CURVE should require nine. But the 
MACLAURIN-BEZOUT THEOREM saysthattwocurvesof 
degree n intersect in n2 points, so two CUBICS intersect 
in nine points. This means that n(n + 3)/2 points do 
not always uniquely determine a single curve of order n. 
The paradox was publicized by Stirling, and explained 
by Plficker. 

Mij = Mji > 1 

for all&j= 1, .*., n. 

see also C~XETER GROUP 

see also CUBIC CURVE,MACLAWRIN-BEZOUT THEOREM 

Cramer’s Rule 
Given a set of linear equations 

Coxeter-Todd Lattice 
The complex LATTICE At corresponding to real lattice 
Klz having the densest HYPERSPHERE PACKING (KISS- 
ING NUMBER) in 12-D. The associated AUTOMORPHISM 
GROUP Go was discovered by Mitchell (1914). The order 
of Go is given by 

alx + bly + CIZ = dl 
a2x + bay + c2z = d2 
ax + by + ~32 = da, 

consider the DETERMINANT 

IAut(A;)I =2’ 47-5-7=39,191,040. 

The order of the AUTOMORPHISM GROUP of ICI2 is given 

bY 
JAut(KIP)I = 21° l 37 -5 m 7 

(Conway and Sloane 1983). 

see also BARNES-WALL LATTICE, LEECH LATTICE 

References 

Now multiply D by x, and use the property of DETERMI- 
NANTS that MULTIPLICATION by a constant is equivalent 
to MULTIPLICATION of each entry in a given row by that 
constant 

Conway, J. H. and Sloane, N. J. A. “The Coxeter-Todd Lat- 
tice, the Mitchell Group and Related Sphere Packings.” 
Math. Proc. Camb. Phil. Sot. 93, 421-440, 1983. 
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Mitchell, H. H. “Determination of All Primitive Collineation 

Groups in More than Four Variables.” Amer. J. Math. 36, 
l-12, 1914. 

Another property of DETERI ~INANTS enables us to add 
a constant times any column to any column and obtain 
the same DETERMINANT, so add y times column 2 and 
x times column 3 to column 1, 

Todd, J. A. “The Characters of a Collineation Group in Five 
Dimensions .” Proc. Roy. Sot. London Ser. A 200, 320- 
336,1950. 

alx+hy+clz bl cl 
XD = ma: + by + w b2 

asx+bsy+c3z b3 ~3 

Cram& Conjecture 
An unproven CONJECTURE that 

lim Pn+l - Pn 

n+m (lnpn)2 = I’ 

where pn is the nth PRIME. 

If d = 0, then (4) reduces to xD = 0, so the system 
has nondegenerate solutions (i.e., solutions other than 
(0, 0, 0)) only if D = 0 (in which case there is a family 
of solutions). If d # 0 and D = 0, the system has no 
unique solution. If instead d # 0 and D # 0, then 
solutions are given by 
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New York: Springer-Verlag, p. 7, 1994. 
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and similarly for 

al dl ~1 
u2 dz 452 

u3 & ~3 
Y= 

D (6) 

x= 
D - 

(7) 

This procedure can be generalized to a set of n equations 
so, given a system of n linear equations 

a11 a12 -0 aln Xl dl . . . . . . . . l  . I[1 [I . = l  
I 

. 1  
. 

. . 
(8) 

alnl an2 '*' arm Xn ix 

let 

If d = 0, then nondegenerate solutions exist only if D = 
0. If d # 0 and D = 0, the system has no unique 
solution. Otherwise, compute 

a11 ... q&l) & al(k+l) ". a172 

Dks:*. : : : l . 1. 
l  

. 
l  . l  

. . 

G&l am.  %(k-1) dn %-&(k+l) *** arm 

(10) 

Then ok = Dk/D for 1 < k < n. In the 3-D case, the - - 
VECTOR analog of Cramer’s rule is 

(AxB)x(CxD) = (A=BxD)C-(A*BxC)D. (11) 

see UZSO DETERMINANT, LINEAR ALGEBRA, MATRIX, 
SYSTEM OF EQUATIONS,VECTOR 

Cram&% Theorem 
If X and Y are INDEPENDENT variates and X + Y is 
a GAUSSIAN DISTRIBUTION, then both X and Y must 
have GAUSSIAN DISTRIBUTIONS. This was proved by 
Cram& in 1936. 

Craps 
A game played with two DICE. If the total is 7 or I1 
(a “natural”), the thrower wins and retains the DICE 
for another throw. If the total is 2, 3, or 12 (“craps”), 
the thrower loses but retains the DICE. If the total is 
any other number (called the thrower’s “point”), the 
thrower must continue throwing and roll the “point” 
value again before throwing a 7. If he succeeds, he wins 
and retains the DICE, but if a 7 appears first, the player 
loses and passes the dice. The probability of winning is 
2441495 z 0.493 (Kraitchik 1942). 

References 
Kenney, J. F. and Keeping, E. S. Mathematics of Statistics, 

Pt. 2, 2nd ed. Princeton, NJ: Van Nostrand, pp. 12-13, 
1951. 

Kraitchik, M. “Craps.” 36.5 in Mathematical Recrea 
New York: W. W. Norton, pp. 123426, 1942. 

tions. 

CRC 

Criss-Cross Method 

see CYCLIC REDUNDANCY CHECK 

Creative Telescoping 

see TELESCOPING SUM, ZETLBERGER'S ALGORITHM 

Cremona Dansformation 
An entire Cremona transformation is a BIRATIONAL 
TRANSFORMATION of the PLANE. Cremona transfor- 
mations are MAPS of the form 

xi+1 = f(Xi,Yi) 

yi+1 = $(Xi,Yi), 

in which f and g are POLYNOMIALS. A quadratic Cre- 
mona transformation is always factorable. 

see U~SO NOETHER'S TRANSFORMATION THEOREM 

References 
Coolidge, J. L. A Treatise on Algebraic Plane Curves. New 

York: Dover, pp. 203-204, 1959. 

Cribbage 
Cribbage is a game in which each of two players is dealt a 
hand of six CARDS. Each player then discards two of his 
six cards to a four-card “crib” which alternates between 
players. After the discard, the top card in the remaining 
deck is turned up. Cards are then alternating played out 
by the two players, with points being scored for pairs, 
runs, cumulative total of 15 and 31, and playing the 
last possible card (“go”) not giving a total over 31. All 
face cards are counted as 10 for the purpose of playing 
out, but the normal values of Jack = 11, Queen = 12, 
King = 13 are used to determine runs. Aces are always 
low (ace = 1). After all cards have been played, each 
player counts the four cards in his hand taken in con- 
junction with the single top card. Points are awarded 
for pairs, flushes, runs, and combinations of cards giv- 
ing 15. A Jack having the same suit as a top card is 
awarded an additional point for “nobbs.” The crib is 
then also counted and scored. The winner is the first 
person to “peg” a certain score, as recorded on a “crib- 
bage board.” 

The best possible score in a hand is 29, corresponding 
to three 5s and a Jack with a top 5 the same suit as 
the Jack. Hands with scores of 25, 26, and 27 are not 
possible. 

see &O BRIDGE CARD GAME, CARDS, POKER 

Criss-Cross Method 
A standard form of the LINEAR PROGRAMMING problem 
of maximizing a linear function over a CONVEX POLY- 
HEDRON is to maximize c . x subject to mx 5 b and 
x 2 0, where m is a given s x d matrix, c and b are 
given d-vector and s-vectors, respectively. The Criss- 
cross method always finds a VERTEX solution if an op- 
timal solution exists. 

see also CONVEX POLYHEDRON, LINEAR PROGRAM- 
MING,VERTEX (POLYHEDRON) 
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Criterion 
A requirement NECESSARY for a given statement or the- 
orem to hold. Also called a CONDITION. 

References 
Milnor, J. W. “On the Total Curvature of Knots.” Ann. 

Math. 52, 248-257, 1950. 
Rolfsen, D. Knots and Links. Wilmington, DE: Publish or 

see also BROWN’S CRITERION, CAUCHY CRITERION, Perish Press, p. 115, 1976. 

EULER'S CRITERION, GAUSS'S CRITERION, KORSELT'S 
CRITERION,LEIBNIZ CRITERION,POCKLINGTON'S CRI- cross 
TERION, VANDIVER'S CRITERIA, WEYL’S CRITERION In general, a cross is a figure formed by two intersect- 

ing LINE SEGMENTS. In LINEAR ALGEBRA, a cross is 
Critical Line defined as a set of n mutually PERPENDICULAR pairs 
The LINE B(s) = l/Z inthe COMPLEX PLANE on which of VECTORS of equal magnitude from a fixed origin in 

the RIEMANN HYPOTHESIS asserts that all nontrivial 
(COMPLEX) ROUTS of the RIEMANN ZETA FUNCTION 
c(s) lie. Although it is known that an INFINITE number 
of zeros lie on the critical line and that these comprise 
at least 40% of all zeros, the RIEMANN HYPOTHESIS is 
still unproven. 

see also RIEMANN HYPOTHESIS,RIEMANN ZETA FUNC- 

References 
Vardi, I. Computational Recreations in Mathematica. Read- 

ing, MA: Addison-Wesley, p+ 142, 1991. 

EUCLIDEAN n-SPACE. 

The word “cross” is also used to denote the operation 
of the CROSS PRODUCT, so a x b would be pronounced 
“a cross b.” 

see also CROSS PRODUCT, DOT, EUTACTIC STAR, 
GAULLIST CROSS, GREEK CROSS, LATIN CROSS, MAL- 
TESE CROSS, PAPAL CROSS, SAINT ANDREW’S CROSS, 
SAINT ANTHONY’S CROSS, STAR 

Cross-Cap 

Critical Point 
A FUNCTION y = f(z) h as critical points at all points 
x0 where f'(zo) = 0 or f(z) is not DIFFERENTIABLE. 
A FUNCTION z = f&y) has critical points where the 

GRADIENT Of = 0 or af/&c or the PARTIAL DERIVA- 

see also FIXED POINTJNFLECTION POINT,~NLY CRIT- 
ICAL POINT IN TOWN TEST, STATIONARY POINT 

TIVE aflay is not defined. 

Critical Strip 

see CRITICAL LINE 

from its opposite point (from a topological viewpoint, 
both singular points on the cross-cap are equivalent). 

The self-intersection of a one-sided SURFACE. It can be 

The cross-cap has a segment of double points which ter- 

described as a circular HOLE which, when entered, exits 

minates at two “PINCH POINTS" known as WHITNEY 
SINGULARITIES. 

Crook 
A 

The cross-cap can be generated using the general 
method for NONORIENTABLE SURFACES using the poly- 
nomial function 

vm7 
A 6-POLYIAMOND. 

f(x, y,z) = (xx, yx, i(z” - x2)) (1) 

References 
Golomb, S. W. Polyominoes: Puzzles, Putterns, Problems, 

and Packings, 2nd ed. Princeton, NJ: Princeton University 
Press, p+ 92, 1994. 

(Pinkall 1986). Tr ansforming to SPHERICAL COORDI- 
NATES gives 

x(u, v) = + cos u sin(2v) (2) 

Crookedness 
Let a KNOT K be parameterized by a VECTOR FUNC- 
TION v(t) with t E $, and let w  be a fixed UNIT VEC- 
TOR in R3. Count the number of RELATIVE MINIMA of 
the projection function w-v(t). Then the MINIMUM such 
number over all directions w  and all K of the given type 
is called the crookedness p(K). Milnor (1950) showed 
that 27rp(K) is the INFIMUM of the total curvature of 
K. For any TAME KNOT K in iw3, p(K) = b(K) where 
b(K) is the BRIDGE INDEX. 

see also BRIDGE INDEX 

y(u, v) = + sin usin(2v) (3) 

z(u, v) = + (cos2 v - cos2 Usin v) (4) 

for u E [O, 274 and v f [0,~/2]. To make the equa- 
tions slightly simpler, all three equations are normally 
multiplied by a factor of 2 to clear the arbitrary scaling 
constant. Three views of the cross-cap generated using 
this equation are shown above. Note that the middle one 
looks suspiciously like MAEDER'S OWL MINIMAL SUR- 
FACE. 
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Cross-Correlation 
Let jc denote cross-correlation. Then the CFOSS- 
correlation of two functions f(t) and g(t) of a real vari- 
able t is defined by 

f *g = f *c-t> * g(t), (1) 

where * denotes CONVOLUTION and f*(t) is the COM- 
PLEX CONJUGATE of f(t). The CONVOLUTION isdefined 

bY 

f(t) * 9(t) = f mv - TNT7 (2) 

Another representation is therefore 

f(X> Y, 4 = (Y? 2XY, x2 - Y”), 

(Gray 1993)) giving parametric equations 

(5) 
(3) 

x = $ sinusin(221) (6) 

y = sin(2u) sin2 21 (7) 

z = cos(2u) sin’ 21, (8) 

(Geometry Center) where, for aesthetic reasons, the y- 
and x-coordinates have been multiplied by 2 to produce 
a squashed, but topologically equivalent, surface. Nord- 

Let # s -7, SC dT’ = --do and 

--OO f*9= 
L 

f *(r’)g(t + T’)(-dT’) 

= f *(T)g(t + T) dT. (4 

strand gives the implicit equation The cross-correlation satisfies the identity 

4x2(x2+y2+z2+z)+y2(y2+z2-l)=O (9) (g*h) * (g*h) = (9*9) * ww  (5) 

which can be solved for x to yield 
If f or g is EVEN, then 

z== 
-2x2 * J( y2 + 2x2)(1 - 4x2 - y”) 

4x2 + y2 
. (10) f*g=f*iL (6) 

where * denotes CONVOLUTION. 
see UZSO AUTOCORRELATION, CONVOLUTION, CROSS- 
CORRELATION THEOREM 

Cross-Correlation Coefficient 
The COEFFICIENT pin a GAUSSIAN BIVARIATE DISTRI- 
BUTION. 

Cross-Correlation Theorem 
Let f *g denote the CROSS-CORRELATION of functions 

Taking the inversion of a cross-cap such that (0, 0, --l/2) 
is sent to 00 gives a CYLINDROID, shown above (Pinkall 
1986). 

The cross-cap is one of the three possible SURFACES ob- 
tained by sewing a MOBIUS STRIP to the edge of a DISK. 

f (Q and g(t)* Then 

The other two are the BOY SURFACE and ROMAN SUR- 
FACE. 

see also BOY SURFACE, Mhus STRIP, NONORI- 
ENTABLE SURFACE, PROJECTIVE PLANE, ROMAN SUR- 

SW 
G(u’)e- hiv’(t+-r) &,f  dr 

-W I  

F*(u)G(u’)e-27Ti’(V’-v)e-2”‘“rt &&,&,' 

FACE 
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-  

swsw 

F* (u)G(u’)e -2miv’t 
em2 

TiT(U’-v) 
- dr dudv’ 

-w -W 1 - - sw/w F*(u)G(u’)e-2~iy’fd(v’ - u) du’ dv 

-W -W 

- - 

SW 
Fm (u)G(v)e-2Tiut du 

= $‘(v)G(v),, (1) 
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where F denotes the FOURIER TRANSFORM and Identities involving the cross product include 

f(t) E F[F(v)] = Irn F(z+-‘~~~~ dt (2) 
J-m 

g(t) = F[G(V)] = r G(v)~-~+~ dt. (3) 
-m 

Applying a FOURIER TRANSFORM on each side gives the 
cross-correlation theorem, 

f *g = F[F* (v)G(v)]. (4) 

If F = G, then the cross-correlation theorem reduces to 
the WIENER-KHINTCHINE THEOREM. 

see UZSO FOURIER TRANSFORM, WIENER-KHINTCHINE 
THEOREM 

Cross Curve 

see CRUCIFORM 

Cross Fkactal 

~~~CANTOR SQUARE FRACTAL 

Cross of Lorraine 

see GAULLIST CROSS 

Cross Polytope 
A regular POLYTOPE in n-D (generally assumed to sat- 
isfy 12 2 5) corresponding to the CONVEX HULL of the 
points formed by permuting the coordinates (& 1, 0, 0, 

’ ’ . 7 0). It is denoted Pn and has SCHL~~FLI SYMBOL 
-3 n-2,4}. In 3-D, the cross polytope is the OCTAHE- 
DRON. 

see also MEASURE POLYTOPE, SIMPLEX 

Cross Product 
For VECTORS u and V, 

uxv = quyv, -wy) -f(uxv, -uUavx)+q'1Lxvy--yvx). 

(1) 
This can be written in a shorthand NOTATION which 
takes the form of a DETERMINANT 

2 9 ii 
u x  v  = ux  uy  uz  l  I I v x  v y  v z  

It is also true that 

Iu x VI = 1111 Iv1 sin& 
I 

= IUI Iv@ - (cl l  C)“, (4) 

where 8 is the angle between u and v, given by the DOT 
PRODUCT 

case E ti*+. (5) 

x I'm1 

dr2 drl 
= n(t) x dt + --&- x rz(t) (6) 

AxB=-BxA (7) 

A x (B + C) =AxB+AxC (8) 

(tA) x B = t(A x B). (9) 

For a proof that A x B is a PSEUDOVECTOR, see Arfken 
(1985, pp. 22-23). In TENSOR notation, 

A X B = EijkAjBk, (10) 

where cijk is the LEVI-CIVITA TENSOR. 

see also DOT PRODUCT,~CALAR TRIPLE PRODUCT 

References 
Arfken, G. “Vector or Cross Product.” $1.4 in Mathematical 

Methods for Physicists, 3rd ed. Orlando, FL: Academic 
Press, pp. 18-26, 1985. 

Cross-Ratio 

(1) 

For a MOBIUS TRANSFORMATION f, 

[a, b, c, 4 = VW7 f@>, f(c), fW (2) 

There are six different values which the cross-ratio may 
take, depending on the order in which the points are 
chosen. Let X E [a, b, c, d]. Possible values of the cross- 
ratio are then X, 1 - X, l/X, (X - I)/& l/(1 - X), and 
X/(X - 1). 

Given lines a, b, c, and d which intersect in a point 0, 
let the lines be cut by a line 1, and denote the points of 
intersection of I with each line by A, B, C, and D. Let 
the distance between points A and B be denoted AB, 
etc. Then the cross-ratio 

(3) 

is the same for any position of the 2 (Coxeter 
and Greitzer 1967). Note that the definitions 

wIwIwIw and (CA/CB)/(DA/DB) are 
used instead by Kline (1990) and Courant and Robbins 
(1966), respectively. The identity 

[AD, BC] + [AB, DC] = 1 (4) 

holds IFF AC//BD, where // denotes SEPARATION. 

The cross-ratio of four points on a radial line of an IN- 
VERSION CIRCLE is preserved under INVERSION (Ogilvy 
1990, p. 40). 

see U~SO MOBIUS TRANSFORMATION, SEPARATION 
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References Crossing Number (Graph) 
Courant, R. and Robbins, H. What is Mathematics?: An El- 

ementary Approach to Ideas and Methods, 2nd ed. Oxford, 
England: Oxford University Press, 1996. 
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Times, Vol. I. Oxford, England: Oxford University Press, 

1990. 
Ogilvy, C. S. Excursions in Geometry. New York: Dover, 

pp. 39-41, 1990. 

Given a “good” GRAPH (i.e., one for which all intersect- 
ing EDGES intersect in a single point and arise from 
four distinct VERTICES), the crossing number is the 
minimum possible number of crossings with which the 
GRAPH can be drawn. A GRAPH with crossing num- 
ber 0 is a PLANAR GRAPH. Garey and Johnson (1983) 
showed that determining the crossing number is an NP- 
COMPLETE PROBLEM. GUY'S CONJECTURE suggests 
that the crossing number for the COMPLETE GRAPH Kn 

Cross-Section 
The cross-section of a SOLID is a LAMINA obtained by 
its intersection with a PLANE. The cross-section of an 
object therefore represents an infinitesimal “slice” of a 
solid, and may be different depending on the orientation 
of the slicing plane. While the cross-section of a SPHERE 
is always a DISK, the cross-section of a CUBE may be a 
SQUARE, HEXAGON, or other shape. 

see also AXON OMETRY, CAVALI ERI'S PRI NCIPLE, LAM- 

INA, PLANE, PROJECTION, RADON TRANSFORM, 
STEREOLOGY 

Crossed Ladders Problem 
Given two crossed LADDERS resting against two build- 
ings, what is the distance between the buildings? Let 
the height at which they cross be c and the lengths of 
the LADDERS a and b. The height at which b touches 
the building k is then obtained by solving 

k4 - 2ck3 + k2(a2 - b2) - 2ck(a2 - b2) + ~“(a” - b2) = 0. 

Call the horizontal distance from the top of a to the 
crossing U, and the distance from the top of b, ‘u. Call 
the height at which a touches the building h. There are 
solutions in which a, b, h, k, U, and v are all INTEGERS. 
One is a = 119, b = 70, c = 30, and u + w  = 56. 

see also LADDER 

References 
Gardner, M. Mathematical Circus: More Puzzles, Games, 

Paradoxes and Other Mathematical Entertainments from 
Scientific American. New York: Knopf, pp, 62-64, 1979. 

Crossed Trough 

The SURFACE 
Z= cz2y2. 

see also MONKEY SADDLE 

References 
von Seggern, D. CRC Standard Curves and Surfaces. Boca 

Raton, FL: CRC Press, p. 286, 1993. 

1s 

which can be rewritten 

&n(n - 2)2(n - 4) for n even 
&(n - Q2(n - 3)2 for n odd. (2) 

The first few predicted and known values are given in 
the following table (Sloane’s A000241). 

Order Predicted Known 
1 0 0 
2 0 0 
3 0 0 
4 0 0 
5 1 1 
6 3 3 
7 9 9 
8 18 18 
9 36 36 
10 60 60 
11 100 
12 150 
13 225 
14 315 
15 441 
16 588 

ZARANKIEWI~Z ‘s CONJECTURE asserts 
number for a C O~~PLETE BIGRAPH is 

that the crossing 

(3) 

It has been checked up to m, n = 7, and Zarankiewicz 
has shown that, in general, the FORMULA provides an 
upper bound to the actual number. The table below 
gives known results. When the number is not known ex- 
actly, the prediction of ZARANKIEWICZ'S CONJECTURE 
is given in parentheses. 

1 2 3 4 5 6 7 
0 0 0 0 0 0 0 

0 0 0 0 0 0 
1 2 4 6 9 

4 8 12 18 

16 24 36 
36 54 

77, 79, or (81) 
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Consider the crossing number for a rectilinear GRAPH 

G which may have only straight EDGES, denoted v(G). 
For a COMPLETE GRAPH of order n > 10, the rectilinear - 
crossing number is always larger than the general graph 
crossing number. The first few values for COMPLETE 
GRAPHS are 0, 0, 0, 0, 1, 3, 9, 19, 36, 61 or 62, . . . 
(Sloane’s AOl454O). The n = 10 lower limit is from 
Singer (1986), who proved that 

+Q 5 &5n4 - 39n3 + 91n2 - 57n). (4) 

Jensen (1971) has shown that 

Consider the crossing number for a toroidal GRAPEI. For 
a COMPLETE GRAPH, the first few are 0, 0, 0, 0, 0, 0, 
0, 4, 9, 23, 42, 70, 105, 154, 226, 326, . . . (Sloane’s 
A014543). The toroidal crossing numbers for a CoM- 

PLETE BIGRAPH are given in the following table. 

11 2 3 4 5 6 7 

1 
2 
3 
4 
5 
6 

7 1 

0 0 0 0 0 0 
0 0 0 0 0 

0 0 0 0 
2 
5 8 

12 

Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetter- 
ling, W. T. Numerical Recipes in FORTRAN: The Art of 
Scientific Computing, 2nd ed. Cambridge, England: Cam- 
bridge University Press, pp* 36-38, 1992. 

Crowd 
A group 

see also GUY’S CONJECTURE, ZARANKIEWICZ'S CON- crown 
JECTURE 
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Crossing Number (Link) 
The least number of crossings that occur in any pro- 
jection of a LINK. In general, it is difficult to find the 
crossing number of a given LINK. 

References 
Adams, C. C. The Knot Book: An Elementary Introduction 

to the Mathematical Theory of Knots. New York: W. H. 
Freeman, pp. 67-69, 1994, 

Grout’s Method 
A ROOT finding technique used in LU DECOMPOSITION. 
It solves the N2 equations 

i<j Oilplj + ai2PZj + l  l  l  

i=j WlPlj + ai2P2j + l  l  l  + aiifljj = aij 

2>j LkilPlj + aiZ@Zj + l  8. + ai jPj j  = a i j  

for the N2 + N unknowns aij and flij. 

see also LU DECOMPOSITION 

References 

of SOCIABLE NUMBERS of order 3. 
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Crucial Point 
The HOMOTHETIC CENTER of the ORTHIC TRIANGLE 
and the triangular hull of the ‘three EXCIRCLES. It has 
TRIANGLE CENTER FUNCTION 

a = tanA = sin(2B) + sin(E) - sin(2A). 

References 
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356 Cruciform 

Cruciform 

Crystallography Restriction 

-J 

-7 

L 

r- 
A plane curve also called the CROSS CURVE and PO- 

LICEMAN ON POINT DUTY CURVE (Cundy and Rollett 
1989). It is given by the equation 

x2y2 - a2x2 - a2y2 = 0, (1) 

which is equivalent to 

a2 a2 
1---2=o Y2 

a2 6’ 
2+,=1, 

Y 

or, rewriting, 
a2x2 

y2 = - 
x2 - a2’ 

(2) 

(3) 

(4) 

In parametric form, 

x = asect (5) 

y = bcsct. (6) 

The CURVATURE is 

tG= 
3ab csc’ t sec2 t 

( b2 cos2 t csc2 t + a2 sec2 t tan2 t) 3/2 ’ (7) 
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Crunode 

A point where a curve intersects itself so that two 
branches of the curve have distinct tangent lines. The 
MACLAURIN TRISECTRIX, shown above, has a crunode 
at the origin. 

see also ACNODE, SPINODE, TACNODE 

Cryptarithm 

see CRYPTARITHMETIC 

Cryptarit hmet ic 
A number PUZZLE in which a group of arithmetical oper- 
ations has some or all of its DIGITS replaced by letters or 
symbols, and where the original DIGITS must be found. 
In such a puzzle, each letter represents a unique digit. 

see also ALPHAMETIC, DIGIMETIC, SKELETON DIVISION 
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Cryptography 
The science and mathematics of encoding and decoding 
information. 

see also CRYPTARITHM,KNAPSACK PROBLEM,PUBLIC- 
KEY CRYPTOGRAPHY 
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Crystallography Restriction 
If a discrete GROUP of displacements in the plane has 
more than one center of rotation, then the only rotations 
that can occur are by 2, 3, 4, and 6. This can be shown 
as follows. It must be true that the sum of the interior 
angles divided by the number of sides is a divisor of 360’. 

180”(n - 2) 360” - - 
n m ’ 

where m is an INTEGER. Therefore, symmetry will be 
possible only for 

2n 
- = m, 
n-2 

where m is an INTEGER. This will hold for l-, 2-, 3-, 4-, 
and 6-fold symmetry. That it does not hold for n > 6 is 
seen by noting that n = 6 corresponds to m = 3. The 
m = 2 case requires that n = n - 2 (impossible), and 
the m = 1 case requires that n = -2 (also impossible). 

see also POINT GROUPS, SYMMETRY 



C&s&r Polyhedron 

Cszisz~r Polyhedron 
A P~LYHEDE~ON topologically equivalent to a TORUS 

discovered in the late 1940s. It has 7 VERTICES, 14 
faces,and 21 EDGES, and is the DUAL POLYHEDRON of 
the SZILASSI POLYHEDRON. Its SKELETON is ISOMOR- 
PHIC tothe COMPLETE GRAPH K7* 

see U~SO SZILASSI POLYHEDRON, TOR~IDAL POLYHE- 
DRON 
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Csch 

see HYPERBOLIC COSECANT 

Cube 

The three-dimensional PLATONIC SOLID (Ps) which is 
also called the HEXAHEDRON. The cube is composed of 
six SQUARE faces 6{4} which meet each other at RIGHT 
ANGLES, and has 8 VERTICES and 12 EDGES. It is de- 
scribed by the SCHL~FLI SYMBOL {4,3}. It is a ZONO- 
HEDRON. It is also the UNIFORM POLYHEDRON & with 
WYTHOFF SYMBOL 3 124. Ithasthe Oh OCTAHEDRAL 
GROUP of symmetries. The DUAL POLYHEDRON ofthe 
cubeisthe OCTAHEDRON. 

Because the VOLUME of a cube of side length n is given 
by n3, a number of the form n3 is called a CUBIC NUM- 
BER (or sometimes simply “a cube”). Similarly, the op- 
eration of taking a number to the third POWER is called 
CUBING. 

Cube 357 

The cube cannot be STELLATED. A PLANE passing 
through the MIDPOINTS of opposite sides (perpendic- 
ular to a C3 axis) cuts the cube in a regular HEXAG- 
ONAL CROSS-SECTION (Gardner 1960; Steinhaus 1983, 
p. 170; Cundy and Rollett 1989, p. 157; Holden 1991, 
pp. 22-23). Since there are four such axes, there are four 
possibly hexagonal cross-sections. If the vertices of the 
cube are (fl, *l k l), then the vertices of the inscribed 
HEXAGON are (0, -1, -l>, (ho, 4, (171, o), (0, 1, 11, 
(-l,O, l), and (-1, -l,O). The largest SQUARE which 
will fit inside a cube of side a has each corner a distance 
l/4 from a corner of a cube. The resulting SQUARE has 
side length 3&a/4, and the cube containing that side 
is called PRINCE RUPERT'S CUBE. 

The solid formed by the faces having the sides of the 
STELLA OCTANGULA (left figure) as DIAGONALS is a 
cube (right figure; Ball and Coxeter 1987). 

The VERTICES of a cube of side length 2 with face- 
centered axes are given by (&1,&1,&l). If the cube is 
oriented with a space diagonal along the x-axis, the coor- 
dinates are (0, 0, A), (0, 2&@, l/d), (a, J2/3, 

-l/J3), (J2, -J2/3, l/A), (0, -2$p, -l/d>, 

(-a, -J2/3, l/A), (-fi, d@, -l/a), and the 
negatives of these vectors. A FACETED version is the 
GREAT CUBICUBOCTAHEDRON. 

A cube of side length 1 has INRADIUS, MIDRADIUS, and 
CIRCUMRADIU~ of 

T  = $ = 0.5 

p = +& = 0.70710 

R= f&x 0.86602. 

The cube has a DIHEDRAL ANGLE of 

(1) 

(2) 

(3) 

a= +r. (4) 

The SURFACE AREA and VOLUME ofthe cube are 

S = 6a2 (5) 

V=a”. (6) 

see also AUGMENTED TRUNCATED CUBE, BIAUG- 
MENTED TRUNCATED CUBE, BIDIAKIS CUBE, BIS- 
LIT CUBE, BROWKIN'S THEOREM, CUBE DISSECTION, 
CUBE DOVETAILING PROBLEM, CUBE DUPLICATION, 
CUBIC NUMBER, CUBICAL GRAPH, HADWIGER PROB- 
LEM, HYPERCUBE, KELLER'S CONJECTURE, PRINCE 



358 Cube 2-Compound Cube 5-Compound 

RWPERT’S CUBE, RUBIK’S CUBE, SOMA CUBE, STELLA Cube 4-Compound 
OCTANGULA,TESSERACT 
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A compound with the symmetry of the CUBE which 
arises by joining four CUBES such that each C3 axis falls 
along the C’s axis of one of the other CUBES (Holden 
1971, p. 35). 

see also CUBE, CUBE %COMPOUND, CUBE 3- 
COMPOUND, CUBE ~-COMPOUND, POLYHEDRON COM- 

Cube 2-Compound POUND 

A POLYIIEDRON COMPOUND obtained by allowing two 
CUBES to share opposite VERTICES, then rotating one a 
sixth of a turn (Holden 1971, p. 34). 

see ~2~0 CUBE, CUBE 3-CoMPoum, CUBE 4- 
COMPOUND,CUBE ~-COMPOUND, POLYHEDRON CAM- 
POUND 
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Cube 5-Compound 
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> 

8 

X x 
a a 

Cube 3-Compound 
A POLYHEDRON COMPOUND consisting of the arrange- 
ment of five CUBES in the VERTICES of a DODECAHE- 
DRON. In the above figure, let a be the length of a CUBE 
EDGE. Then 

x= $a(3 - 6) 

x 20”54’ 

72 31”43’ 

A compound with the symmetry of the CUBE which 
arises by joining three CUBES such that each shares two 
Cz axes (Holden 1971, p, 35). 

see also CUBE, CUBE 2-COMPOUND, CUBE 4- 
COMPOUND,CUBE 5-COMP~UND,POLYHEDRON CAM- 
POUND 
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a = 90° - 0 = 69’6’. 

The compound is most easily constructed using pieces 
like the ones in the above line diagram. The cube 5- 
compound has the 30 facial planes of the RHOMBIC TRI- 
AC~NTAHEDRON (Ball and Coxeter 1987). 

see also CUBE, CUBE ~-COMPOUND, CUBE 3- 
COMPOUND, CUBE ~-COMPOUND, DODECAHEDRON, 
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POLYHEDRON COMPOUND, RHOMBIC TRIACONTAHE- 
DRON 

Keferences 
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Cube Dissection 
A CUBE can be divided into 
8, 15, 20, 22, 27, 29, 34, 36, 
n 2 48 (Sloane’s AOl4544). 

n subcubes for only n = 1, 
38, 39, 41, 43, 45, 46, and 

The seven pieces used to construct the 3 x 3 x 3 cube dis- 
section known as the SOMA CUBE are one 3-POLYCUBE 
and six 4-POLYCUBES (1 l  3 + 6 l  4 = 27), illustrated 
above. 

Another 3 x 3 x 3 cube dissection due to Steinhaus uses 
three &POLYCUBES and three 4-POLYCUBES (36+3-4 = 

27), illustrated above. 

It is possible to cut a 1 x 3 RECTANGLE into two identical 
pieces which will form a CUBE (without overlapping) 
when folded and joined. In fact, an INFINITE number of 
solutions to this problem were discovered by C. L. Baker 
(Hunter and Madachy 1975). 

see UZSO CONWAY PUZZLE, DISSECTION, HADWIGER 
PROBLEM, POLYCUBE, SLOTHOUBER-GRAATSMA Puz- 
ZLE, SOMA CUBE 
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Cube Dovetailing Problem 

Given the figure on the left (without looking at the so- 
lution on the right), determine how to disengage the 
two slotted CUBE halves without cutting, breaking, or 
distorting. 
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Cube Duplication 
Also called the DELIAN PROBLEM or DUPLICATION OF 

THE CUBE. A classical problem of antiquity which, given 
the EDGE of a CUBE, requires a second CUBE to be 
constructed having double the VOLUME of the first using 
only a STRAIGHTEDGE and COMPASS 

Under these restrictions, the problem cannot be solved 
because the DELIAN CONSTANT 21/3 (the required RA- 
TIO of sides of the original CUBE and that to be con- 
structed) is not a EUCLIDEAN NUMBER. The problem 
can be solved, however, using a NEUSIS CONSTRUCTION. 

see UZSO ALHAZEN’S BILLIARD PROBLEM, COMPASS, 
CUBE, DELIAN CONSTANT, GEOMETRIC PROBLEMS OF 

ANTIQUITY, NEUSIS CONSTRUCTION, STRAIGHTEDGE 
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Cube-Octahedron Compound 

A POLYHEDRON COMPOUND composed of a CUBE and 
its DUAL POLYHEDRON, the OCTAHEDRON. The 14 ver- 
tices are given by (&l, 411, fl), (f2, 0, 0), (0, &2, 0), 

(0, 0, *a* 

The solid common to both the CUBE and OCTAHEDRON 
(left figure) in a cube-octahedron compound is a CUB- 
OCTAHEDRON (middle figure). The edges intersecting 
in the points plotted above are the diagonals of RHOM- 
BUSES, and the 12 RHOMBUSES form a RHOMBIC Do- 
DECAHEDRON (right figure; Ball and Coxeter 1987). 

see also CUBE, CUBOCTAHEDRON, OCTAHEDRON, 
POLYHEDRON COMPOUND 
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Cube Point Picking 
N.B. A detailed on-line essay by S. Finch was the start- 
ing point for this entry. 

Let two points be picked randomly from a unit n-D HY- 

PERCUBE. The expected distance between the points 
A(N) is then 

AU> -1 -- 3 

42) - - &[fi+ 2 + 5ln(l+ Jz)] = 0.521405433. l  l  

40 = &[4+17fi-6&+2lln(l+fi) 

+ 421n(2 + &) - 7n] = 0.661707182.. . 

A(4) = 0.77766... 

A(5) = 0.87852... 

A(6) = 0.96895.. . 

A(7) = 1.05159.. . 

A@> = 1.12817.. . . 

The function a(n) satisfies 

in112 < A(n) < (gn) - - l 

(Anderssen et al. 1976) l  

Pick hr points pl, I, + , PN randomly in a unit n-cube. 
Let C be the CONVEX HULL, so 

C E 5 Xjpj 1 Aj 2 0 for all 
j-1 

Let V(n, N) be the expected n-D VOLUME (the CON- 
TENT) of C, S(n, N) be the expected (n-1)-D SURFACE 
AREA of C, and P(n, N) the expected number of VER- 
TICES on the POLYGONAL boundary of C. Then 

lirn N[l - V(2, N)l 8 
N-boo 1nN =? 

lim fi[4 - S(2, N)] 
N+clo 

1 = 4.2472965.. . , 
and 

lim F(2,N) - 
N+m 

$lnN= $(Y-ln2) 

- -0.309150708.. . - 

(Renyi and Sulanke 1963, 1964). The average DISTANCE 
between two points chosen at random inside a unit cube 
1s 

(Robbins 1978, Le Lionnais 1983). 

Pick n points on a CUBE, and space them as far apart 
as possible. The best value known for the minimum 
straight LINE distance between any two points is given 
in the following table. 

n 4 > n 

5 1.1180339887498 
6 1.0606601482100 
7 1 

8 1 
9 0.86602540378463 
10 0.74999998333331 
11 0.70961617562351 
12 0.70710678118660 
13 0.70710678118660 
14 0.70710678118660 
15 0.625 
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see UZSO CUBE TRIANGLE PICKING, DISCREPANCY THE- 
OREM, POINT PICKING 
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Cube Power 
A number raised to the third POWER. x3 is read as “x 
cubed.” 

see also Cuwc NUMBER 

Cube Root 

Im[Cubert z] 

Given a number z, the cube root of z, denoted fi or 
z?/~ (z to the I/3 POWER), is a number a such that 
a3 - - z. There are three (not necessarily distinct) cube 
roots for any number. 

1 

0.5 

ii 

-2 -1 1 2 

-0. 

-1 

For real arguments , the cube root is an INCREASING 
FUNCTION, although the usual derivative test cannot 
be used to establish this fact at the ORIGIN since the 
the derivative approaches infinity there (as illustrated 
above). 

see also CUBE DUPLICATION, CUBED, DELIAN CON- 
STANT, GEOMETRIC PROBLEMS OF ANTIQUITY, k- 
MATRIX, SQUARE ROOT 

Cube Triangle Picking 
Pick 3 points at random in the unit n-HYPERCUBE. De- 
note the probability that the three points form an OB- 
TUSE TRIANGLE II(n). Langford (1969) proved 

w -g++ - = 0.725206483.... 

see also BALL TRIANGLE PICKING, CUBE POINT PICK- 

ING 
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Cubed 
A number to the POWER 3 is said to be cubed, so that 
x3 is called “11: cubed.” 

see also CUBE ROOT, SQUARED 

Cubefree 

80 - 

60- 

20- 

20 40 60 80 100 

A number is said to be cubefree if its PRIME decom- 
position contains no tripled factors. All PRIMES are 
therefore trivially cubefree. The cubefree numbers are 
1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, . . . 
(Sloane’s AOO4709). The cubeful numbers (i.e., those 
that contain at least one cube) are 8, 16, 24, 27, 32, 40, 
48, 54, . . . (Sloane’s A046099). The number of cube- 
free numbers less than 10, 100, 1000, . . . are 9, 85, 833, 
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8319, 83190, 831910, . . . , and their asymptotic density 

is l/W z 0.831907, where ((n) is the RIEMANN ZETA 
FUNCTION. 

see UZSO BIQUADRATEFREE,PRIME NUMBER, RIEMANN 
ZETA FUNCTION, SQUAREFREE 
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Cubic Curve 
A cubic curve is an ALGEBRAIC CURVE of degree 3. 
An algebraic curve over a FIELD K is an equation 
f(X, Y) = 0, where f(X, Y) is a POLYNOMIAL in X and 
Y with COEFFICIENTS in K, and the degree of f is the 
MAXIMUM degree of each of its terms (MONOMIALS). 

Newton showed that all cubits can be generated by the 
projection of the five divergent cubic parabolas. New- 
ton’s classification of cubic curves appeared in the chap- 
ter “Curves” in Lezicolrz Technicurn by John Harris pub- 
lished in London in 1710. Newton also classified all cu- 
bits into 72 types, missing six of them. In addition, he 
showed that any cubic can be obtained by a suitable 
projection of the ELLIPTIC CURVE 

y2 = ax3 + bx2 + cx + d, (1) 

where the projection is a BIRATION AL TRANSFORMA- 
TION, and the general cubi .c can also be written as 

y2 = x3 + ax + b. (2) 

Pick a point P, and draw the tangent to the curve at P. 
Call the point where this tangent intersects the curve Q. 
Draw another tangent and call the point of intersection 
with the curve R. Every curve of third degree has the 
property that, with the areas in the above labeled figure, 

B = 16A (5) 

(Honsberger 1991). 

~~~&~CAYLEY-BACHARACHTHEOREM,CUBICEQUA- 
TION 
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Cubic Equation 
A cubic equation is a POLYNOMIAL equation of degree 
three. Given a general cubic equation 

x3 + a2z2 + ulz + a0 = 0 (1) 

(the COEFFICIENT a3 ofz3 may be taken as 1 without 
loss of generality by dividing the entire equation through 
by as), first attempt to eliminate the a2 term by making 
a substitution of the form 

Newton’s first class is equations of the form 
Z-X-X. = (2) 

xy’ + ey = ax3 + 6x2 + cx + d. (3) 
Then 

This is the hardest case and i .ncludes the SER #PENTINE 
CURVE as one of the subcases. The third class was 

ay2 = x(x” - 26x + c), (4) 

which is called NEWTON’S DIVERGING PARABOLAS. 
Newton’s 66th curve was the TRIDENT OF NEWTON. 
Newton’s classification of cubits was criticized by Euler 
because it lacked generality. Plucker later gave a more 
detailed classification with 219 types. 

( x - A>” + az(x -X)2+a~(x-X)+ao=0 (3) 

( x3 - 3Xx2 +3X2x - A”) + a2(x2 - 2Xx + A”) 

+a&-X)+ao =o (4) 

x3 + x”(a2 - 3X) + x(al - 2a2X + 3X2) 

+(a0 -ulX+a2X2 -A”) -0. (5) 

The x2 is eliminated by letting X = a2/3, SO 

Z-X- +a2. (6) 

Then 

z3 = (x - $u2), z x3 - u2x2 + +az2x - $a23 (7) 

a2z2 = az(x - $a2)’ = a2x2 - $a22x + iaz3 (8) 

alx = a,(x - $a2) = alx - +a2, (9) 

so equation (1) becomes 

x3 + (-a2 + a2)x2 + <&22 - $a22 + a& 

( 
3 - &a2 - ia23 + iala - a0) = 0 (10) 
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x3 +(a1 - +,2)x - (+,a2 - &uz3 - a()) = 0 (11) (which are identical to p and Q up to a constant factor). 
The general cubic equation (12) then becomes 

x3+3* 3ar 
- 

u22 gala2 
- 

27uo 
- 

2az3 x _ 2 . = 
9 54 

0. (12) 
x3+3Qx-2R=O. (22) 

Defining 
Let B and C be, for the moment, arbitrary constants. 
An identity satisfied by PERFECT CUBIC equations is 3al - uz2 

p= 
3 (13) 

gala2 - 27~0 - 2~2~ 
q= 

27 (14) 

x3 - B3 = (x - B)(x2 +Bx+B2). (23) 

The general cubic would therefore be directly factorable 
if it did not have an EI: term (i.e., if Q = 0). However, 
since in general Q # 0, add a multiple of (z - @-say 
C(x-B)-to both sides of (23) to give the slightly messy 
identity 

then allows (12) to be written in the standard form 

x3 +px = q. (15) 

The simplest way to proceed is to make VIETA’S SUB- ( x3-B’)+C(x-B) = (x-B)(x2+Bx+B2+C) =O, 

(24) 
(16) which, after regrouping terms, is 

STITUTION 
P 

x=w-3w7 

x3+Cx-(B3+BC) = (x -B)[x2+Bx+(B2+C)] = 0. 

(25) 
We would now like to match the COEFFICIENTS C and 
-(B” + BC) with those of equation (22), so we must 
have 

C = 3Q (26) 

which reduces the cubic to the equation 

P3 w3 - - 
27w3 

-q=o, (17) 

which is easily turned into a QUADRATIC EQUATION in 
w3 by multiplying through by w3 to obtain 

B3+BC=2R. (27) 

(w”)” - q(w”) - &p3 = 0 (18) Plugging the former into the latter then gives 

B3 +- 3QB = 2R. (28) @irkhoff and Mac Lane 1965, p. 106). The result from 
the QUADRATIC EQUATION is 

Therefore, if we can find a value of B satisfying the above 
identity, we have factored a linear term from the cubic, 
thus reducing it to a QUADRATIC EQUATION. The trial 
solution accomplishing this miracle turns out to be the 
symmetrical expression 

- - RfdR2+Q3, (19) 

B = [R+ d3+Rz]1’3 + [R- dm]1'3. (29) where Q and R are are sometimes more useful to deal 
with than are p and Q* There are therefore six solutions 
for w  (two corresponding to each sign for each ROOT 
of UI”), Plugging w  back in to (17) gives three pairs 
of solutions, but each pair is equal, so there are three 
solutions to the cubic equation. 

Taking the second and third POWERS of B gives 

~~ = [R + dQ3 + R2]2’3 + 2[R2 - (Q" + R2)]1'3 

+ [R - J&3 + R2J2j3 

=Z [R + JQ3+Rz12’3 + [R - dG]2’3 - 2Q (30) 

B3 = -2QB + 
1 

[R + dG]1’3 + [R - dG]1’3 
> 

x (,,, d-1 2/3 + [R - dG]2’3 
> 

= [R+dG]+[R-+=I 

+ [R - J&“+R”]““[R - dG]2’3 

+ [R - dG]““[R - dG]“3 - 2QB 

= -2QB + 2R + [R2 - (Q” + R2)]1’3 

Equation (12) may also be explicitly factored by at- 
tempting to pull out a term of the form (z - B) from 
the cubic equation, leaving behind a quadratic equa- 
tion which can then be factored using the QUADRATIC 
FORMULA. This process is equivalent to making Vieta’s 
substitution, but does a slightly better job of motivat- 
ing Vie t a’s “magic” substitution, and also at producing 
the explicit formulas for the solutions. First, define the 
intermediate variables 

Q 
3al - uz2 - - - 

9 
(20) 

X 

[( 

R+ &%)I” + (R - &%)“3] R _ guzul - 27uo - 2az3 
54 

(21) 
= -2QB + 2R - QB = -3QB + 2R. (31) 
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Plugging B3 and B into the left side of (28) gives giving the three ROOTS of the cubic equation are some- 
times known as CARDANO'S FORMULA. Note that if the 
equation is in the standard form of Vieta (-3QB + 2R) + 3QB = 2R, (32) 

x3+px=q, (46) so we have indeed found the factor (x - B) of (22), and 
we need now only factor the quadratic part. Plugging 
C = 3Q into the quadratic part of (25) and solving the 
resulting 

x2+Bx+(B2+3Q)=U (33) 

in the variable x, then a2 = 0, al = p, and a0 = -Q, 
and the intermediate variables have the simple form (cf. 
Beyer 1987) 

Q = ;p 
R= $q 

(47) 
(48) 

then gives the solutions 

5= +[-B * @ - 4(B2 + 3Q)] 
D=Q3+R2= (5>” + (%>‘. (49) -- - +B xt 3 &3B2 - 12Q 

-- - ;Bf$%&32+4Q. (34) 
The equation for z1 in CARDANO'S FORMULA does not 
have an i appearing in it explicitly while x2 and z3 do, 
but this does not say anything about the number of 
REAL and COMPLEX ROOTS (since S and T are them- 
selves, in general, COMPLEX), However, determining 
which ROOTS are REAL and which are COMPLEX can 
be accomplished by noting that if the DISCRIMINANT 
D > 0, one ROOT is REAL andtwoare COMPLEX CON- 
JUGATES; if D = 0, all ROOTS are REAL and at least 
two are equal; and if D < 0, all ROOTS are REAL and 
unequal. If D < 0, define 

These can be simplified by defining 

A E [R + dw]1’3 - [R - dm]1’3 (35) 

A2 = [R+ JQ3fRz]2’3 - 2[R2 - (Q3 + R2)]1’3 

+ [R - dm]2’3 

= [R + dm]2’3 + [R - dm]2’3 + 2Q 

=B~+~Q, (36) 

so that the solutions to the quadratic part can be written 

Then the REAL solutions are of the form Defining 

251 = 2dqjcos ; - ;a2 
0 (51) 

z2 = 2&&os (Y) - +a2 (52) 

z3 = 2dzjcos (Y) - +2. (53) 

D=Q3+R2 (38) 

where D is the DISCRIMINANT (which is defined slightly 
differently, including the opposite SIGN, by Hirkhoff and 
Mac Lane 1965) then gives very simple expressions for 
A and B, namely 

This procedure can be generalized to find the REAL 
ROOTS for any equation in the standard form (46) by 
using the identity 

sin3 0 - i sin 8 + + sin(38) = 0 (54) B=S+T (41) 
A=S-T. (42) (Dickson 1914) and setting 

Therefore, at last, the 
in z are then given by 

ROOTS of the 

Xz: 

/ 

4lPl 
TY (55) 

z1 = -ia2 + (S+T) (43) 

252 = -ta2- +(S+T)++ih(S-T) (44) 

23 = -iaz-- +(S + T) - ;ih(S - T), (45) 

(Birkhoff and Mac Lane 1965, pp. 90-91), then 

(56) 
with a2 the COEFFICIENT of x2 in the original equation, 
and S and T as defined above. These three equations 3 ( > 

3/2 
313 

y3+4-y= - q 
IPl 4lPl 

(57) 
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3 ( > 
w 

4y3 +- 3sgn(p)y = $q - 
IPl 

= c. 

If p > 0, then use 

sinh(38) = 4 sinh3 0 + 3 sinh 8 

to obtain 
y = sinh( i sinh-1 C). 

Ifp<Oand ICI > 1, use - 

cosh( 30) = 4 cosh3 0 - 3 cash 8, 

and if p < 0 and ICI 5 1, use 

cos(38) =4cos3,-3cos0, 

(58) 

(59) 

(60) 

(61) 

(62) 

to obtain 

i 

cosh( 3 cash-’ C) for c > 1 
y= - cosh(; cash-’ ICI) forC7 -1 

cos( 5 co6 C) [three solutions] for /Cl< 1. 

(63) 
The solutions to the original equation are then 

I  

Xi =2 
d 

IPI 3 yi - +2. (64 

An alternate approach to solving the c ubic equation is 
to USA LAGRANGE RES OLVENTS. Letw E e2 Ti/3, define 

(1,x1) = x1+22 +x3 (65) 

(WY Xl) =x1 +wx2 +w2x3 (66) 

(w2,z1) = XI +w2x2 +wx3, (67) 

where xi are the ROOTS of 

x3+px+q=o, (68) 

and consider the equation 

[~-(~1+~2)][x-(wu1 +w2u2)][x-(w2u1 +wu2)] = 0, 

(69) 

where u1 and u2 are COMPLEX NUMBERS. The ROOTS 
are then 

Xj = W3Ul + W 
2j 

U2 (70) 

for j = 0, 1, 2. Multiplying through gives 

x3 - 32112122 - (u13 + uz3> = 0, (71) 

or 

(72) 

where 

u13+u23 = -q 

u13u23 = - 1 3 

0 3 . 
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The solutions satisfy NEWTON'S IDENTITIES 

a + z2 + z3 = -a2 

zlz2 + x223 + xlz3 = al 

ZlZ2Z3 = -ao. 

(75) 

(76) 

(77) 

In standard form, a2 = 0, al = p, and a0 = -q, so we 
have the identities 

p = ZlZ2 - z32 

(Zl - z2)2 = -(4p - 3z32) 

Xl2 + 2z2 + z32 = -2p. 

(78) 

(79) 

(80) 

Some curious identities involving the roots of a cubic 
equation due to Ramanujan are given by Berndt (1994). 

see also QUADRATIC EQUATION, QUARTIC EQUATION, 
QUINTIC EQUATION, SEXTIC EQUATION 
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Cubic Number 

A FIGURATE NUMBER of the form n3, for n a POSITIVE 
INTEGER. The first few are 1, 8, 27, 64, l  . . (Sloane’s 
A000578). The GENERATING FUNCTION giving the cu- 
bic numbers is 

x(x" +4&T+ 1) 

(x - 1)" 
=x+8x2 +27x3 +.... 

11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 
26,... (Sloane’s A001476). The following table gives the 
numbers which can be represented in VV different ways 
as a sum of 1v positive cubes. For example, 

157=43+43+33+13+13 = 53+23+23+23+23 (2) 

can be represented in T/T/’ = 2 ways by 1v = 5 cubes. The 
smallest number representable in IV = 2 ways as a sum 
of 1v = 2 cubes, 

1729 = l3 + 123 = g3 + 103, (3) 

The HEX PYRAMIDAL NUMBERS are equivalent to the 
cubic numbers (Conway and Guy 1996). 

N Sloane Numbers 

is called the HARDY-RAMANUJAN NUMBER and has spe- 
cial significance in the history of mathematics as a result 
of a story told by Hardy about Ramanujan. Sloane’s 
A001235 is defined as the sequence of numbers which 
are the sum of cubes in two 01” more ways, and so ap- 
pears identical in the first few terms. 

(1) 
N W Sloane Numbers 

The number of positive cubes needed to represent the 
numbers 1, 2, 3, . . . are 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 
5, 6, 7, 8, 2, . . . (Sloane’s A02376), and the number of 
distinct ways to represent the numbers 1, 2, 3, . . . in 
terms of positive cubes are 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 

2, 2, 2, 2, 2, 3, 3, 3, 3, 37 3, 3, 3, 4, 4, 4, 5, 5, 5, 5, 
. (Sloane’s A003108). In the early twentieth century, 

Dickson, Pillai, and Niven proved that every POSITIVE 
INTEGER is the sum of not more than nine CUBES (so 

g(3) = 9 in WARING’S PROBLEM). 

In 1939, Dickson proved that the only INTEGERS requir- 
ing nine CUBES are 23 and 239. Wieferich proved that 
only 15 INTEGERS require eight CUBES: 15, 22, 50, 114, 
167, 175, 186, 212, 213, 238, 303, 364, 420, 428, and 454 
(Sloane’s A018889). The quantity G(3) in WARING’S 
PROBLEM therefore satisfies G(3) < 7, and the largest 
number known requiring seven cubes is 8042, The fol- 
lowing table gives the first few numbers which require 
at least N = 1, 2, 3, . . . , 9 (positive) cubes to represent 
them as a sum. 

000578 1, 8, 27, 64, 125, 216, 343, 512, ..m 
003325 2, 9, 16, 28, 35, 54, 65, 72, 91, . . . 
003072 3, 10, 17, 24, 29, 36, 43, 55, 62, am. 
003327 4, 11, 18, 25, 30, 32, 37, 44, 51, . . . 
003328 5, 12, 19, 26, 31, 33, 38, 40, 45, . . . 

6, 13, 20, 34, 39, 41, 46, 48, 53, l  . . 

018890 7, 14, 21, 42, 47, 49, 61, 77, . . , 
018889 15, 22, 50, 114, 167, 175, 186, . . . , 

23,239 

1 1 000578 1, 8, 27, 64, 125, 216, 343, 512, . . . 
2 1 025403 2, 9, 16, 28, 35, 54, 65, 72, 91, . . . 
2 2 1729,4104, 13832, 20683,32832,... 
2 3 003825 87539319,119824488,143604279,... 
2 4 003826 6963472309248, 12625136269928, . . . 
2 5 48988659276962496, . . , 
2 6 8230545258248091551205888, . q. 
3 1 025395 3, 10, 17, 24, 29, 36, 43, 55, 62, . . . 

It is believed to be possible to express any number as a 
SUM of four (positive or negative) cubes, although this 
has not been proved for numbers of the form 9n & 4. In 
fact, all numbers not of the form 9n & 4 are known to 
be expressible as the SUM of three (positive or negative) 
cubes except 30, 33, 42, 52, 74, 110, 114, 156, 165, 195, 
290, 318, 366, 390, 420, 435, 444, 452, 462, 478, 501, 
530, 534, 564, 579, 588, 600, 606, 609, 618, 627, 633, 
732, 735, 758, 767, 786, 789, 795, 830, 834, 861, 894, 
903, 906, 912, 921, 933, 948, 964, 969, and 975 (Guy 
1994, p* 151). 

The following table gives the possible residues (mod n) 
for cubic numbers for n = 1 to 20, as well as the number 
of distinct residues s(n). 

There is a finite set of numbers which cannot be ex- 
pressed as the sum of distinct cubes: 2, 3, 4, 5, 6, 7, 10, 
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2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

2 0,l 

3 0, 1, 2 
3 0, 1, 3 
5 0, 1, 2, 3, 4 
6 0, 1, 2, 3, 4, 5 
3 0, 1, 6 
5 0, 1, 3, 5, 7 
3 0,1,8 

10 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 
11 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 

9 0, 1, 3, 4, 5, 7, 8, 9, 11 
5 0, 1, 5, 8, 12 
6 0, I, 6, 7, 8, 13 

15 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 
lo 0, 1, 3, 5, 7, 8, 9, 11, 13, 15 
17 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 

6 0, 1, 8, 9, 10, 17 
7 0, 1, 7, 8, 11, 12, 18 

15 0, 1, 3, 4, 5, 7, 8, 9, 11, 12, 13, 15, 16, 17, 19 

Dudeney found two RATIONAL NUMBERS other than 1 
and 2 whose cubes sum to 9, 

415280564497 and 676702467503 

348671682660 348671682660’ (4) 

The problem of finding two RATIONAL NUMBERS whose 
cubes sum to six was “proved” impossible by Legendre. 
However, Dudeney found the simple solutions 17/21 and 
37/21. 

The only three consecutive INTEGERS whose cubes sum 
to a cube are given by the DIOPHANTINE EQUATION 

33 + 43 + 53 = 63. (5) 

CATALAN'S CONJECTURE states that 8 and 9 (2” and 
32) are the only consecutive POWERS (excluding 0 and 
l), i.e., the only solution to CATALAN'S D~OPHANTINE 
PROBLEM. This CONJECTTJRE has not yet been proved 
or refuted, although R. Tijdeman has proved that there 
can be only a finite number of exceptions should the 
CONJECTURE not hold. It is also known that 8 and 9 
are the only consecutive cubic and SQUARE NUMBERS 
(in either order). 

There are six POSITIVE INTEGERS equal to the sum of 
the DIGITS of their cubes: 1, 8, 17, 18, 26, and 27 (Moret 
Blanc 1879). There are four POSITIVE INTEGERS equal 
to the sums of the cubes of their digits: 

153 = l3 + 53 + 33 (6) 

370 = 33 + 73 + o3 (7) 

371 = 33 + 7” + l3 (8) 

407 = 43 + o3 + 73 (9) 

(Ball and Coxeter 1987). There are two SQUARE NUM- 
BERS of the form n3 -4: 4 = 23 -4 and 121 = 53 -4 (Le 
Lionnais 1983). A cube cannot be the concatenation of 
two cubes, since if c3 is the concatenation of a3 and b3, 

then c3 = 10”a3 + b3, where Fz is the number of digits 
in b3. After shifting any powers of 1000 in 10” into u3, 
the original problem is equivalent to finding a solution 
to oneof the DIOPHANTINE EQUATIONS 

c3 - b3 = a3 

c3 - b3 = 10a3 

c3 - b” = 100a3. 

w  

(11) 

(12) 

None of these have solutions in integers, as proved in- 
dependently by Sylvester, Lucas, and Pepin (Dickson 
1966, pp. 572-578). 

see also BIQUADRATIC NUMBER, CENTERED CUBE 
NUMBER, CLARK'S TRIANGLE, DIOPHANTINE EQUA- 
TION-CUBIC, HARDY-RAMANUJAN NUMBER, PARTI- 

TION,SQUARE NUMBER 
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Cubic Reciprocity Theorem 
A RECIPROCITY THEOREM for the case n = 3 solved by 
Gauss using “INTEGERS" of the form a + bp, when p is 
a root if lc2 + x + 1 = 0 and a, b are INTEGERS. 

see also RECIPROCITY THEOREM 
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Cubic Spline 
A cubic spline is a SPLINE constructed of piecewise third- 
order POLYNOMIALS which pass through a set of control 
points. The second DERIVATIVE of each POLYNOMIAL 
is zero at the endpoints. 
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Cubic Surface 
An ALGEBRAIC SURFACE of ORDER 3. SchlUi and 
Cayley classified the singular cubic surfaces. On the 
general cubic, there exists a curious geometrical struc- 
ture called DOUBLE SIXES, and also a particular ar- 
rangement of 27 (possibly complex) lines, as discovered 
by Schlgfli (Salmon 1965, Fischer 1986) and sometimes 
called SOLOMON’S SEAL LINES. A nonregular cubic sur- 
face can contain 3, 7, 15, or 27 real lines (Segre 1942, 
Le Lionnais 1983). The CLEBSCH DIAGONAL CUBIC 
contains all possible 27. The maximum number of OR- 
DINARY DOUBLE POINTS on a cubic surface is four, and 
the unique cubic surface having four ORDINARY DOU- 
BLE POINTS is the CAYLEY CUBIC. 

Schoutte (1910) showed that the 27 lines can be put 
into a ONE-TO-ONE correspondence with the vertices of 
a particular POLYTOPE in 6-D space in such a manner 
that all incidence relations between the lines are mir- 
rored in the connectivity of the POLYTOPE and con- 
versely (Du Val 1931). A similar correspondence can 
be made between the 28 bitangents of the general plane 
QUARTIC CURVE and a 7-D POLYTOPE (Coxeter 1928) 
and between the tritangent planes of the canonical curve 
of genus 4 and an 8-D POLYTOPE (Du Val 1933). 

A smooth cubic surface contains 45 TRITANGENTS 
(Hunt). The Hessian of smooth cubic surface contains 
at least 10 ORDINARY DOUBLE POINTS, although the 
Hessian of the CAYLEY CUBIC contains 14 (Hunt). 

see ah CAYLEY CUBIC, CLEBSCH DIAGONAL CUBIC, 
DOUBLE SIXES, ECKARDT POINT, ISOLATED SINGU- 
LARITY, NORDSTRAND’S WEIRD SURFACE, SOLOMON’S 
SEAL LINES,TRITANGENT 
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Cubical Conic Section 

see CUBICAL ELLIPSE, CUBICAL HYPERBOLA, CUBICAL 
PARABOLA,~KEW CONIC 

Cubical Ellipse 

An equation of the form 

Y = ax3 + bx2 + cx + d 

where only one ROOT is real. 

see also CUBICAL CONIC SECTION, CUBICAL HYPER- 
BOLA, CUBICAL PARABOLA, CUBICAL PARABOLIC HY- 
PERBOLA, ELLIPSE, SKEW CONIC 

Cubical Graph 

An g-vertex POLYHEDRAL GRAPH. 

see &~BIDIAKIS CUBE, BISLIT CUBE,DODECAHEDRAL 
GRAPH, ICOSAHEDRAL GRAPH, OCTAHEDRAL GRAPH, 
TETRAHEDRAL GRAPH 

Cubical Hyperbola 
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An equation of the form 

Y = ax3 + bx2 + cx + d, 

where the three RENTS are REAL and distinct, i.e., 

y = a(x - 7$(x - 7-2)(x - Y-3) 

- - a[X3 - (TI + T2 + T3)X2 + (9-17-2 + T1T3 + T2T3)x 

- TlW3]- 

see also CUBICAL CONIC SECTION, CUBICAL ELLIPSE, 
CUBICAL HYPERBOLA, CUBICAL PARABOLA, HYPER- 
BOLA 

Cubical Parabola 

An equation of the form 

y = ax3 + bx2 + cx + d, 

where the three ROOTS of the equation coincide (and 
are therefore real), i.e., 

y = a(X - T)” = a(X3 - 3TX2 - 3T2X - T3). 

see also CUBICAL CONIC SECTION, CUBICAL ELLIPSE, 
CUBICAL HYPERBOLA, CUBICAL PARABOLIC HYPER- 
BOLA,PARABOLA,SEMICUBICAL PARABOLA 

Cubical Parabolic Hyperbola 

An equation of the form 

y = ax3 + bx2 + cx + d, 

where two of the ROOTS of the equation coincide (and 
all three are therefore real), i.e., 

y = a(x - T1)2(x - T2) 

= a[x3 - (2n + r,>z” + Tl(T1 + 2r2)x - T12T2]. 

see ah CUBICAL CONIC SECTION, CUBICAL ELLIPSE, 
CUBICAL HYPERBOLA, CUBICAL PARABOLA, HYPER- 
BOLA 

Cubicuboctahedron 

~~~GREAT CUBICUBOCTAHEDRON,SMALLCUBICUBOC- 
TAHEDRON 

Cubique d’Agnesi 

see WITCH OF AGNESI 

Cubitruncated Cuboctahedron 

The UNIFORM POLYHEDRON &6 whose DUAL is the 
TETRADYAKIS HEXAHEDRON. It has WYTHOFF SYM- 
BOL 3 $ 4 1. Its faces are 8{6} + 6{8} + S{i}. It is a 
FACETED OCTAHEDRON. The CIRCUMRADIUS for a CU- 

bitruncated cuboctahedron of unit edge length is 

R=+fi. 

References 
Wenninger, M. J. PoZyhedron Models. Cambridge, England: 

Cambridge U niversity Press, pp* 113-114, 1971. 

Cuboctahedron 

L 
An ARCHIMEDEAN SOLID (also called the DYMAXION or 
HEPTAPARALLELOHEDRON) whose D~~~isthe RHOM- 
BIC DODECAHEDRON. It is one of the two convex 
QUASIREGULAR POLYHEDRA and has SCHL;~FLI SYM- 
BOL{;}.It is also UNIFORM POLYHEDRON UT andhas 
WYTHOFF SYMBOL 2 134. Its faces are (3) + 6{4}. It 
has the oh OCTAHEDRAL GROUP of symmetries. 
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The VERTICES of a cuboctahedron with EDGE length 
of fi are (0, H, H), (fl, 0, fl), and (U, *l,O). The 
INRADIUS, MIDRADIUS, and CIRCUMRADIUS for a = 1 
are 

p = $h z 0.86602 

R- 1. 

FACETED versions include the CUBOHEMI~CTABEDRON 
and OCTAHEMIOCTAHEDRON. 

The solid common to both the CUBE and OCTAHEDRON 
(left figure) in a CUBE~CTAHEDRO N COMPOUND is a 
CUBOCTAHEDRON (right figure; Ball and Coxeter 1987). 

see also ARCHIMEDEAN SOLID, CUBE, CUBE-OCTAHE- 
moN COMPOUND, CUB~HEMIOCTAHEDRON, OCTAHE- 
DRON, OCTAHEMIOCTAHEDRON,QUASIREGULAR POLY- 
HEDRON,RHOMBIC DODECAHEDRON, RHOMBUS 

References 
Ball, W. W. R. and Coxeter, H. 

ations and Essays, 13th ed. 
1987. 

Ghyka, M. The Geometry of Art 
p* 54, 1977. 

S. M. Mathematical Recre- 

New York: Dover, p. 137, 

and Life. New York: Dover, 

Cuboctatruncated Cuboctahedron 

~~~CUB~TRUNCATED CUBOCTAHEDRON 

Cubocycloid 

see ASTROID 

Cubohemioctahedron 

The UNIFORM POLYHED RON &5 whose DU 'AL is the 
HEX AHEMIOCTAHEDRON. It has WYTHOFF SYMBOL 
+ 4 13. Its faces are 4{6} + 6{4}. It is a FACETED ver- 
Gon of the CUBOCTAHEDRON. 
unit edge length is 

Its CIRCUMRADIUS for 

R= 1. 

References +5~;(6p;~ - pi) + p;] + . . . , (3) 
Wenninger, M. 5. Polyhedron Models. Cambridge, England: 

Cambridge University Press, pp. 121-122, 1971. 

Cuboid 
A rectangular PARALLELEPIPED. 

see also EULER BRICK, PARALLELEPIPED, SPIDER AND 
FLY PROBLEM 

Cullen Number 
A number of the form 

c, = 2”n + 1. 

The first few are 3, 9, 25, 65, 161, 385, . l  l  (Sloane’s 
A002064). The only Cullen numbers Cn for n < 300,000 
which are PRIME are for n = 1, 141, 4713, 5795, 6611, 
18496, 32292,32469, 59656, 90825, 262419, . . . (Sloane’s 
A005849; Ballinger). Cullen numbers are DIVISIBLE by 

P = 2n - 1 if p is a PRIME of the form 81C * 3. 

see also CUNNINGHAM NUMBER, FERMAT NUMBER, 
SIERPI~~SKI NUMBER OF THE FIRST KIND, WOODALL 
NUMBER 

References 
Ballinger, R. ‘Cullen Primes: Definition and Status.” 

http://ballingerr,xray.ufl.edu/proths/cullen.html. 
Guy, R. K. “Cullen Numbers.” §B20 in Unsolved Problems 

in Number Theory, 2nd ed. New York: Springer-Verlag, 
p* 77, 1994. 

Keller, W. ‘(New Cullen Primes.” Math. Comput. 64, 1733- 
1741, 1995. 

Leyland, P. ftp://sable.ox.ac.uk/pub/math/factors/ 
cullen. 

Ribenboim, P. The Nezo Book of Prime Number Records. 
New York: Springer-Verlag, pp. 360-361, 1996. 

Sloane, N. J. A. Sequences A002064/M2795 and A005849/ 
M5401 in “An On-Line Version of the Encyclopedia of In- 
teger Sequences.” 

Cumulant 
Let 4(t) be the CHARACTERISTIC FUNCTION, defined as 
the FOURIER TRANSFORM of the PROBABILITY DEN- 
SITY FUNCTION, 

qb(t) = F[P(x)] = eitxP(x) dx. (1) 

Then the cumulants &,n are defined by 

Taking the MACLAURIN SERIES gives 

l+b(t) = (ii+\ + +(it)‘(p~ - pi”) 

-++@)3(2p;3 - 3p;p; + p$) 

+-$,(it)4(-6p;4 + 12/~‘1~/& - 3~;~ - 4p;p$ + pi) 

+&(it)“[-24pi5 + 60/~‘1~p; + 20/~‘1~p; + lOp;p; 
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where p: are MOMENTS about 0, so 

In terms of the MOMENTS plz about the MEAN, 

K3 = p3 (11) 

tC4=/L4+h2 (12) 

K5 = p5 - 1@2/% (13) 

where ~1 is the MEAN and g2 E ~2 is the VARIANCE. 

The ~-STATISTICS are UNBIASED ESTIMATORS of the 
cumulant s . 

see also CHARACTERISTIC FUNCTION, CUMULANT- 
GENERATING FUNCTION, ~-STATISTIC, KURTOSIS, 
MEAN, MOMENT, SHEPPARD'S CORRECTION, SKEW- 
NESS, VARIANCE 

References 
Abramowitz, M. and Stegun, C. A. (Eds.). Handbook 

of Mathematical Functions with Formulas, Graphs, and 
Mathematical Tables, 9th printing. New York: Dover, 
p. 928, 1972. 

Kenney, J. F, and Keeping, E. S. “Cumulants and the 
Cumulant-Generating Function,” “Additive Property of 
Cumulants,” and “Sheppard’s Correction.” §4.10-4.12 in 
Mathematics of Statistics, Pt. 2, 2nd ed. Princeton, NJ: 
Van Nostrand, pp. 77-82, 1951. 

Cumulant-Generating Function 
Let, M(h) be the MOMENT-GENERATING FUNCTION. 
Then 

K(h) = lnM(h) = hlh + $,h2K2 + $h3tc3 + . . . . 

If 
M 

L = x CjXj 

j=l 

is a function of N independent variables, the cumulant 
generating function for L is then 

K(h) = fl Kj(Cjh)* 
j=l 

see also CUMULANT, MOMENT-GENERATING FUNCTION 

Mathematical Tables, 9th printing. New York: Dover, 
p. 928, 1972. 

Kenney, J. F. and Keeping, E. S. “Cumulants and the 
Cumulant-Generating Function” and “Additive Property 
of Cumulants.” 54.10-4.11 in Mathematics of Statistics, 
Pt. 2, 2nd ed. Princeton, NJ: Van Nostrand, pp. 77-80, 
1951. 

Cumulative Distribution Function 

see DISTRIBUTION FUNCTION 

Cundy and Rollett’s Egg 

An OVAL dissected into pieces which are to used to cre- 
ate pictures. The resulting figures resemble those con- 
structed out of TANGRAMS. 

see also DISSECTION, EGG, OVAL, TANGRAM 

References 
Cundy, H. and Rollett, A. Mathematical Models, 3rd ed. 

St&broke, England: Tarquin Pub., pp* 19-21, 1989. 
Dixon, R. Mathographics. New York: Dover, p. 11, 1991. 

Cunningham Chain 
A SEQUENCE of PRIMES g1 < q2 < . . . < qk is a Cun- 
ningham chain of the first kind (second kind) of length 

k if qi+l = 2qi + 1 (qi+l = 2qi - 1) for i = 1, l  . l  , 
k - 1. Cunningham PRIMES of the first kind are SOPHIE 
GERMAIN PRIMES. 

The two largest known Cunningham chains (of the 
first kind) of length three are (384205437 . 24000 - 
1, 384205437 l  24001 - 1, 384205437 l  24002 - 1) and 
(651358155 l  232g1 - 1, 651358155 n 232g2 - 1, 651358155 l  

23293 _ l), both discovered by W. Roonguthai in 1998. 

see also PRIME ARITHMETIC PROGRESSION, PRIME 
CLUSTER 

References 
Guy, R. K. “Cunningham Chains.” §A7 in Unsolved Prob- 

lems in Number Theory, 2nd ed. New York: Springer- 
Verlag, pp. 18-19, 1994. 

Ribenboim, P. The New Book of Prime Number Records. 
New York: Springer-Verlag, p, 333, 1996, 
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Cunningham Function 
Sometimes also called the PEARSON-CUNNINGHAM 
FUNCTION. It can be expressed using WHITTAKER 

FUNCTIONS (Whittaker and Watson 1990, p. 353). 

e7ri(m/2-n)+x 

wn,m x = ( > 
l?(l+n-$m) 

U(+m - n, 1+ m, x), 

where Uis a CONFLUENTHYPERGEOMETRICFUNCTXON 
OF THE SECOND KIND (Abramowitz and Stegun 1972, 
p* 510). 

see ~2s~ CONFLUENT HYPERGEOMETRIC FUNCTION OF 
THE SECOND KIND, WHITTAKER FUNCTION 

References 
Abramowitz, M. and Stegun, C. A. (Eds.). Handbook 

of Mathematical Functions with Formulas, Graphs, and 
Mathematical Tables, 9th printing. New York: Dover, 
1972. 
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Cunningham Number 
A BINOMIAL NUMBER of the form C*(b, n) E bn * 1. 

Bases b” which are themselves powers need not be con- 
sidered since they correspond to (bk)” & 1 = b”” * 1. 
PRIME NUMBERS of the form C*(b, n) are very rare. 

A NECESSARY (but not SUFFICIENT) condition for 

c+ c&n> = 2n + 1 to be PRIME is that n be of the 
form n = 2? Numbers of the form Fm = C+(2,2”) = 
22m + 1 are called FERMAT NUMBERS, and the only 
known PRIMES occur for C+(2,1) = 3, C+(2,2) = 5, 
Cf(2,4) = 17, C+(2,8) = 257, and Cf(2, 16) = 65537 

( i.e., n = 0, 1, 2, 3, 4). The only other PRIMES 
C+ (b, n) for nontrivial b 5 11 and 2 5 n 5 1000 are 
Cs(6, 2) = 37, @(6,4) = 1297, and C+(lO, 2) = 101. 

PRIMES of the form C-(b, n) are also very rare. The 
MERSENNE NUMBERS AL?* = C-(2,n) = 2n - 1 are 
known to be prime only for 37 values, the first few 
of which are n = 2, 3, 5, 7, 13, 17, 19, l  . . (Sloane’s 
A000043). There are no other PRIMES C-(b, n) for non- 
trivial b 2 20 and 2 2 n 2 1000. 

In 1925, Cunningham and Woodall (1925) gathered to- 
gether all that was known about the PRIMALITY and 
factorization of the numbers C*(b, n) and published a 
small book of tables. These tables collected from scat- 
tered sources the known prime factors for the bases 2 and 
10 and also presented the authors’ results of 30 years’ 
work with these and other bases. 

Since 1925, many people have worked on filling in these 
tables. D. H. Lehmer, a well-known mathematician who 
died in 1991, was for many years a leader of these efforts. 
Lehmer was a mathematician who was at the forefront 
of computing as modern electronic computers became 
a reality. He was also known as the inventor of some 

ingenious pre-electronic computing devices specifically 
designed for factoring numbers. 

Updated factorizations were published in Brillhart et al. 
(1988). The current archive of Cunningham number fac- 
torizations for b = 1, . . . , &12 is kept on ftp://sable. 
ox, ac . uk/pub/math/cunningham. The tables have been 
extended by Brent and te Riele (1992) to b = 13, . . . , 
100 with m < 255 for b < 30 and m < 100 for b 2 30. 
All numbers with exponent 58 and smaller, and all com- 
posites with 5 90 digits have now been factored. 

see UZSU BINOMIAL NUMBER, CULLEN NUMBER, FER- 

MAT NUMBER, MERSENNE NUMBER, REPUNIT, RIESEL 
NUMBER, SIERPI~SKI NUMBER OF THE FIRST KIND, 

WOODALL NUMBER 
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Cunningham Project 

see CUNNINGHAM NUMBER 

Cupola 

An n-gonal cupola Qn (possible for only n = 3, 4, 5) is 
a POLYHEDRON having n TRIANGULAR and n SQUARE 
faces separating an {n} and a (2n) REGULAR POLYGON. 
The coordinates of the base VERTICES are 

(Rcos [r’2tn+ “1 ,&in [T’2&+1’] ,0) , (1) 

and the coordinates of the top VERTICES are 

(7x0s [F] qsin [$I ,z), (2) 



Cupolarotunda Curl Theorem 

where R and T are the CIRCUMRADII of the base and top and V x F is normal to the PLANE in which the “circula- 
tion” is MAXIMUM. Its magnitude is the limiting value 

(3) 

(4) 

and z is the height, obtained by letting k = 0 in the 
equations (1) and (2) to obtain the coordinates of neigh- 
boring bottom and top VERTICES, 

of circulation per unit AREA, 

4 (VXF)~E lim 9. 
A+0 

Let 
F = F& + F2ti2 + F& 

and 

then 

Rcos (2) 

b= Rsin($-) [ 1 0 

Since all side lengths are a, 

lb - t12 = a2. 

Solving for z then gives 

[Rcos(z) -r12+R2sin2 ($) +z2=a2 

x2 + R2 +r2 -2rRcos = a2 

z= 
J 

- $ _ R2 

(5) 

(6) 

(7) 

(10) 

see also BICUPOLA, ELONGATED CUPOLA, GYRO- 
ELONGATED CUPOLA,PENTAGONAL CUPOLA, SQUARE 
CUPOLA,TRIANGULAR CUPOLA 

References 
Johnson, N. W. “Convex Polyhedra with Regular Faces.” 

Chad. J. Math. 18, 169-200, 1966. 

Cupolarotunda 
A CUPOLA adjoined to a ROTUNDA. 

see also GYROCUPOLAROTUNDA, ORTHOCUPOLARO- 
TUNDA 

Curl 
The curl of a TENSOR field is given by 

(V x A)” = F’AV;p, (1) 

where eijk is the LEVI-CIVITA TENSOR and “;” is the 
COVARIANT DERIVATIVE. For a VECTOR FIELD, the 
curl is denoted 

curl(F) = V x F, (2) 
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(3) 

(4) 

(5) 

1 1 - - 
[ 
&d?s) - &(hzFz)j fil 

h&3 au2 

1 
+- 

[ 
+d'l)- &@3F3)]fia 

hh 8~3 

+ & [&2F2) - &(hFd] fi3. (6) 

Special cases of the curl formulas above can be given for 
CURVILINEAR COORDINATES. 

see also CURL THEOREM, DIVERGENCE, GRADIENT, 
VECTOR DERIVATIVE 

References 
A&en, G. “Curl, V x .” $1.8 in Mathematical Methods for 

Physicists, 3rd ed. Orlando, FL: Academic Press, pp. 42- 
47, 1985. 

Curl Theorem 
A special case of STOKES' THEOREM in which F is a 
VECTOR FIELD and M is an oriented, compact embed- 
ded Z-MANIFOLD with boundary in R3, given by 

I (V x F) . da = 
I 

F . ds. (1) 
s dS 

There are also alternate forms. If 

then 

and if 

J 
daxVF= J Fds. (3) 

S c 

FEcxP, (4 

then 

I 
(da x V) x P = 

I 
ds x P. (5) 

S C 

see also CHANGE OF VARIABLES THEOREM, CURL, 
STOKES' THEOREM 

References 
Arfken, G. “Stokes’s Theorem.” 51.12 in Mathematical Meth- 
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ppe 61-64, 1985. 



374 Curlicue fiactal Curtate Cycloid Evolute 

Curlicue Fkactal 

The curlicue fractal is a figure obtained by the following 
procedure. Let s be an IRRATIONAL NUMBER. Begin 
with a line segment of unit length, which makes an AN- 
GLE 40 = 0 to the horizontal. Then define 8, iteratively 

8 n+l = (0, + 2~s) (mod 2~), 

with 80 = 0. To the end of the previous line segment, 
draw a line segment of unit length which makes an angle 

to the horizontal (Pickover 1995). The result is a FRAC- 
TAL, and the above figures correspond to the curlicue 
fractals with 10,000 points for the GOLDEN RATIO 4, 
ln2, e, fi, the EULER-MASCHERONI CONSTANT 7, r, 
and FEIGENBAUM CONSTANTS. 

The TEMPERATURE of these curves is given in the fol- 
lowing table. 

Constant Temperature 

golden ratio 4 46 
In 2 51 
e 58 
J2 58 
Euler-Mascheroni constant y 63 
7r 90 
Feigenbaum constant 6 92 
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Current 
A linear FUNCTIONAL on a smooth differential form. 

see also FLAT NORM, INTEGRAL CURRENT, RECTIFI- 
ABLE CURRENT 

Curtate Cycloid 

The path traced out by a fixed point at a RADIUS b < a, 
where a is the RADIUS of a rolling CIRCLE, sometimes 
also called a CONTRACTED CYC~,OID. 

x = aq5 - bsin+ (1) 

Y = a - bcosqi (2) 

The ARC LENGTH from 4 = 0 is 

s = 2(a + b)E(u), (3) 

where 
sin@) = snu (4 

4ab 
k2=Ta+c)a, 

and E(u) is a complete ELLIPTIC INTEGRAL OF THE 
SECOND KIND and snu is a JACOBI ELLIPTIC FUNC- 
TION. 

see also CYCLOID, PROLATE CYCLOID 

References 
Cundy, H. and Rollett, A. Mathematical Models, 3rd ed. 
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Wagon, S. Mathematics in Action. New York: W, H. F’ree- 
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Curtate Cycloid Evolute 
The EVOLUTE ofthe CURTATE CYCLOID 

x = a+ - bsin$ (1) 

y = a - bcoqb. (2) 

is given by 

X= 
a[-2bq5 + 24cos q5 - 2usin q5 + bsin(2+)] 

2(u cos (b - b) (3) 

u(u - bcos@2 
‘= b(acos+b) ’ (4) 
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Curvature 
In general, there are two important types of curva- 
ture: EXTRINSIC CURVATURE and INTRINSIC CURVA- 
TURE. The EXTRINXC CURVATURE of curves in 2- and 
3-space was the first type of curvature to be studied his- 
torically, culminating in the FRENET FORMULAS, which 
describe a SPACE CURVE entirely in terms of its “cur- 
vature,” TORSION, and the initial starting point and 
direction. 

After the curvature of 2- and 3-D curves was studied, 
attention turned to the curvature of surfaces in 3-space. 
The main curvatures which emerged from this scrutiny 
are the MEAN CURVATURE, GAUSSIAN CURVATURE, and 
the WEINGARTEN MAP. MEAN CURVATURE was the 
most important for applications at the time and was 
the most studied, but Gauss was the first to recognize 
the importance of the GAUSSIAN CURVATURE. 

Because GAUSSIAN CURVATURE is “intrinsic,” it is de- 
tectable to Sdimensional “inhabitants” of the surface, 
whereas MEAN CURVATURE and the WEINGARTEN MAP 

are not detectable to someone who can’t study the 3- 
dimensional space surrounding the surface on which he 
resides. The importance of GAUSSIAN CURVATURE to 
an inhabitant is that it controls the surface AREA of 
SPHERES around the inhabitant. 

Riemann and many others generalized the concept of 
curvature to SECTIONAL CURVATURE, SCALAR CURVA- 
TURE, the RIEMANN TENSOR, RICCI CURVATURE, and 
a host of other INTRINSIC and EXTRINSIC CURVATURES. 
General curvatures no longer need to be numbers, and 
can take the form of a MAP, GROUP, GROUPOID, tensor 
field, etc. 

The simplest form of curvature and that usually first 
encountered in CALCULUS is an EXTRINSIC CURVATURE. 
In 2-Q let a PLANE CURVE be given by CARTESIAN 
parametric equations z = z(t) and y = y(t). Then the 
curvature K is defined by 

dt -- 
ds - 
dt 

(1) 

where q5 is the POLAR ANGLE and s is the ARC LENGTH. 

As can readily be seen from the definition, curvature 
therefore has units of inverse distance. The dqb/dt de- 
rivative in the above equation can be eliminated by using 
the identity 

dY dyldt Yl tan4= dz = -= - 
dx/dt x’ ’ (2) 

d$ 
sec2 #z = 

x’y” - ytxfl 

Xl2 
co 

and 

d4 1 xJyf” - yy 
z= 1+ tan2 4 Xf2 

1 xly’f - y’$ xfyJf - y’x” 
- - - - 

Y r2 
Xl2 x l2  + y t2  l  

(4) 

, i2 

Combining (2) and (4) gives 

xlylt - yy 
fc = cxt2 + yt2)3/2 l  (5) 

For a 2-D curve written in the form y = f(x), the equa- 
tion of curvature becomes 

3/2 l  
(6) 

If the 2-D curve is instead parameterized in POLAR CO- 
ORDINATES, then 

~ _ T2 + 27x2 - TTeo - 
(7-2 + r82)3/2 1 (7) 

where TO = Br/dO (Gray 1993). In PEDAL COORDI- 
NATES, the curvature is given by 

(8) 

The curvature for a 2-D curve given implicitly by 
g(x,y) = 0 is given by 

SXdY 
2 

tC= 
- 29x,9x9, + 9YYh2 

(9x2 + gy2)3’2 

(Gray 1993). 

(9) 

Now consider a parameterized SPACE CURVE r(t) in 3-D 
for which the TANGENT VECTOR * is defined as 

(10) 

Therefore, 
dr d”+ 

x = dt 

(12) 

where R is the NORMAL VECTOR. But 
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SO 

dr I I 
3 . 

clt 

(15) 

The curvature of a 2-D curve is related to the RADIUS OF 
CURVATURE of the curve’s OSCULATING CIRCLE. Con- 
sider a CIRCLE specified parametrically by 

x = acost (16) 

y = mini5 (17) 

which is tangent to the curve at a given point. The 
curvature is then 

K = c2t2 + yt2)3/2 = ~3 - a’ (18) 

or one over the RADIUS OF CVRVATURE. The curvature 
of a CIRCLE can also be repeated in vector notation For 
the CIRCLE with 0 5 t < 2~, the ARC LENGTH is 

s(t) = l /G,” + G)2dt 
a2 cos2 t + a2 sin2 t dt = at, (19) 

so t = s/a and the equations of the CIRCLE can be 
rewritten as 

x=ucos 5 
0 U 

(20) 

y = asin 5 , 
0 U 

The POSITION VECTOR is then given by 

r(s) = ucos f 
0 

2 + usin S * 
U 0 a y1 

(21) 

(22) 

and the TANGENT VECTOR is 

dr 
+ = ds c - sin (i) k+cos (i) 9, (23) 

SO the curvature is related to the RADIUS OF CURVA- 
TURE a by 

J cos2 (z) +sin2 (z) 1 - - 
u2 =a’ (24) 

as expected. 

Curvature 

Four very important derivative relations in differential 
geometry related to the FRENET FORMULAS are 

k=T (25) 
if=kGN (26) 
F=~N+K(~B-KT) (27) 

[e, i;, ;;‘I = K2T, (28) 

where T is the TANGENT VECTOR, N is the NORMAL 
VECTOR, B is the BINORMAL VECTOR, and 7 is the 
TORSION (Coxeter 1969, p. 322). 

The curvature at a point on a surface takes on a variety 
of values as the PLANE through the normal varies. As 
K varies, it achieves a minimum and a maximum (which 
are in perpendicular directions) known as the PRINCIPAL 
CURVATURES. As shown in Coxeter (1969, pp. 352-353), 

IE2 - 
x 

bftc + det(bi) = 0 (29) 

K2 -~HIE+K=O, (30) 

where K is the GAUSSIAN CURVATURE, H is the MEAN 
CURVATURE, and det denotes the DETERMINANT. 

The curvature K is sometimes called the FIRST CURVA- 
TURE and the TORSION 7 the SECOND CURVATURE. In 
addition, a THIRD CURVATURE (sometimes called TO- 
TAL CURVATURE) 

&&-zT (31) 

is also defined. A signed version of the curvature of a 
CIRCLE appearinginthe DESCARTES CIRCLE THEOREM 
for the radius of the fourth of four mutually tangent 
circles is called the BEND. 
see also BEND (CURVATURE), CURVATURE CENTER, 

CURVATURE SCALAR, EXTRINSIC CURVATURE, FIRST 
CURVATURE, FOUR-VERTEX THEOREM, GAUSSIAN 
CURVATURE, INTRINSIC CURVATURE, LANCRET EQUA- 
TION, LINE OF CURVATURE, MEAN CURVATURE,NOR- 
MAL CURVATURE,PRINCIPAL CURVATURES,RADIUS OF 
CURVATURE, RICCI CURVATURE, RIEMANN TENSOR, 
SECOND CURVATURE,SECTIONAL CURVATURE,~ODDY 
CIRCLES, THIRD CURVATURE, TORSION (DIFFEREN- 
TIAL GEOMETRY),~EINGARTEN MAP 

References 
Coxeter, H. S. M. Introduction to Geometry, 2nd ed. New 

York: Wiley, 1969. 
Fischer, G. (Ed.). Plates 79-85 in Mathematische Mod- 

eEle/MathematicaZ Models, Bildband/Photograph Volume. 
Braunschweig, Germany: Vieweg, pp. 74-81, 1986. 

Gray, A. “Curvature of Curves in the Plane,” “Drawing Plane 
Curves with Assigned Curvature,” and “Drawing Space 
Curves with Assigned Curvature.” 51.5, 6.4, and 7.8 in 
Modern Differential Geometry of Curves and Surfaces. 
Boca Raton, FL: CRC Press, pp. 11-13, 68-69, 113-118, 
and 145-147, 1993, 

Kreyszig, E. “Principal Normal, Curvature, Osculating Cir- 
cle.” 512 in Diflerential Geometry. New York: Dover, 
pp. 34-36, 1991. 

Yates, R. C. “Curvature.” A Handbook on Curves and Their 
Properties. Ann Arbor, MI: J. W. Edwards, pp. 60-64, 
1952. 



Curvature Center Curve 377 

Curvature Center 
The point on the POSITIVE RAY of the NORMAL VEC- 
TOR at a distance p(s), where p is the RADIUS OF CUR- 
VATURE. It is given by 

2T z=x+pN=x+p ds7 

whereNisthe NORMALVECTOR andTisthe TANGENT 
VECTOR. It can be written in terms of x explicitly as 

z=x+  

#(XI - x y 2  - x1(x1 l  x ’)(x’  l  xl!) 

( 

x ’  . x1)(x” . x”) - (x’  I x92 l  
(2) 

For a CURVE represented parametrically by (f(t),g(t)), 
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Curvature Scalar 
The curvature scalar is given by 

R = gPKR,, , 

where g’lK is the METRIC TENSOR and R,, isthe RICCI 
TENSOR. 

see also CURVATURE, GAUSSIAN CURVATURE, MEAN 
CURVATURE, METRIC TENSOR, RADIUS OF CURVA- 
TURE, RICCI TENSOR, RIEMANN-CHRISTOFFEL TEN- 
SOR 

Curvature Vector 

1 

where T is the TANGENT VECTOR defined by 

Curve 
A CONTINUOUS MAP from a 1-D SPACE to an n-D 
SPACE. Loosely speaking, the word “curve” is often used 
to mean the GRAPH of a 2- or 3-D curve. The simplest 
curves can be represented parametrically in n-D SPACE 

Xl = fl@> 

x2 = f2(t) 

Xn = fn(t)* 

Other simple curves can be simply defined only implic- 
itly, i.e., in the form 

f(m,x2,*..) =o. 

see UZSO ARCHIMEDEAN SPIRAL, ASTROID, ASYMP- 
TOTIC CURVE, BASEBALL COVER, BATRACHION, Br- 
CORN, BIFOLIUM, BOW, BULLET NOSE, BUTTERFLY 
CURVE, CARDIUID, CASSINI OVALS, CATALAN'S TRI- 
SECTRIX, CATENARY, CAUSTIC, CAYLEY'S SEXTIC, 
CESARO EQUATION, CIRCLE, CIRCLE INVOLUTE, CIS- 

SOID, CISSOID OF DIOCLES, COCHLEOID, CONCHOID, 
CONCHOID OF NICOMEDES, CROSS CURVE, CRUCI- 
FORM, CUBICAL PARABOLA, CURVE OF CONSTANT 
PRECESSION, CURVE OF CONSTANT WIDTH, CUR- 
TATE CYCLOID, CYCLOID, DELTA CURVE, DELTOID, 
DEVIL’S CURVE, DEVIL ON Two STICKS, DUMBBELL 
CURVE,D~~RER'S CONCHOID,EIGHT CURVE, ELECTRIC 

MOTOR CURVE, ELLIPSE, ELLIPSE INVOLUTE, ELLIP- 
TIC CURVE, ENVELOPE, EPICYCLOID, EQUIPOTENTIAL 
CURVE, EUDOXUS'S KAMPYLE, EVOLUTE, EXPONEN- 
TIAL RAMP, FERMAT CONIC, FOLIUM OF DESCARTES, 
FREETH'S NEPHROID, FREY CURVE, GAUSSIAN FUNC- 
TION, GERONO LEMNISCATE, GLISSETTE, GUDER- 
MANNIAN FUNCTION, GUTSCHOVEN'S CURVE, HIP- 
POPEDE, HORSE FETTER, HYPERBOLA, HYPEREL- 
LIPSE, HYPOCYCLOID, HYPOELLIPSE, INVOLUTE, ISOP- 
TIC CURVE, KAPPA CURVE, KERATOID CUSP, KNOT 
CURVE, LAMP CURVE, LEMNISCATE, L'HOSPITAL'S 
CUBIC, LIMA~ON, LINKS CURVE, LISSAJOUS CURVE, 
L~TUUS, LOGARITHMIC SPIRAL, MACLAURIN TRISEC- 
TRIX, MALTESE CROSS, MILL, NATURAL EQUATION, 
NEGATIVE PEDAL CURVE, NEPHROID, NIELSEN’S SPI- 
RAL, ORTHOPTIC CURVE, PARABOLA, PEAR CURVE, 
PEAR-SHAPED CURVE, PEARLS OF SLUZE, PEDAL 
CURVE, PEG TOP, PIRIFORM, PLATEAU CURVES, Po- 
LICEMAN ON POINTDUTY CURVE,~ROLATE CYCLOID, 
PURSUIT CURVE, QUADRATRIX OF HIPPIAS, RADIAL 
CURVE, RHODONEA, ROSE, ROULETTE, SEMICUBICAL 
PARABOLA, SERPENTINE CURVE, SICI SPIRAL, SIG- 
MOID CURVE, SINUSOIDAL SPIRAL, SPACE CURVE, 
STROPHOID, SUPERELLIPSE, SWASTIKA, SWEEP SIG- 
NAL,TALBOT'S CURVE,TEARDROPCURVE,TRACTRIX, 
TRIDENT,TRIDENT OFDESCARTES,TRIDENTOFNEW- 
TON, TROCHOID, TSCHIRNHAUSEN CUBIC, VERSIERA, 
WATT'S CURVE,~HEWELL EQUATION,~ITCH OF AG- 
NESI 
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Curve of Constant Breadth 

see CURVE OF CONSTANT WIDTH 

Curve of Constant Precession 
A curve whose CENTRODE revolves about a fixed axis 
with constant ANGLE and SPEED when the curve is tra- 
versedwithunit SPEED. The TANGENT INDICATRIX ofa 
curve of constant precession is a SPHERICAL HELIX. An 
ARC LENGTH parameterization of a curve of 
precession with NATURAL EQUATION ‘S 

K(s) = -w sin(p) 

T(S) = w  cos(ps) 

constant 

(1) 
(2) 

is 

ct + p sin[(Q - p)s] 
44 = x 

Q! - p sin[(a + p)s] 
~ -p -2a! a+cL 

(3) 

Y( > 
Qr + p co+ - p)s] 

s=- 2a 
+ Q: - P co+ + Pbl 

a-c1 2a a+I-1 

(4) 

z(s) = s sin(ps), (5) 

where 
a- d w2 + p2 (6) 

and w, and p are constant. This curve lies on a circular 
one-sheeted HYPERBOLOID 

x2 + y2 - 
P2 2 4P2 
w22 =w4. (7) 

The curve is closed IFF p/a is RATIONAL. 
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Curve of Constant Slope 

see GENERALIZED HELIX 

Curve of Constant Width 
Curves which, when rotated in a square, make contact 
with all four sides. The “width” of a closed convex 
curve is defined as the distance between parallel lines 
bounding it (“supporting lines”). Every curve of con- 
stant width is convex. Curves of constant width have 
the same “width” regardless of their orientation between 
the parallel lines. In fact, they also share the same PER- 
IMETER ( BARBIER’S THEOREM). Examples include the 
CIRCLE (with largest AREA), and REULEAUX TRIANGLE 
(with smallest AREA) but there are an infinite number. 
A curve of constant width can be used in a special drill 
chuck to cut square “HOLES." 

A generalization gives solids of constant width. These 
do not have the same surface AREA for a given width, 
but their shadows are curves of constant width with the 
same width! 

see also DELTA CURVE, KAKEYA NEEDLE PROBLEM, 
REULEAUX TRIANGLE 
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Curvilinear Coordinates 
A general METRIC gpv has a LINE ELEMENT 

ds2 = gpvdupduy, (1) 

where EINSTEIN SUMMATION is being used. Curvilinear 
coordinates are defined as those with a diagonal METRIC 
so that 

QCL” - = 6;hp2, (2) 

where SF is the KRON ECKER D ELTA. Curvilinear 
dinates therefore have a simple LINE ELEMENT 

coor- 

ds2 = b;hp2dupdu” = hp2dup2, (3) 
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which is just the PYTHAGOREAN THEOREM, so the dif- 
ferential VECTOR is 

dr = h,duptip, (4) 

or 

dr = 
dr ar 

dzll dw+ du duz + 
dr 

dUQdU3, (5) 
2 

where the SCALE FACTORS are 

ar 
hi= du 

I I i 

and 
1 ar -- 
hi dui - 

(6) 

(7) 

Equation (5) may therefore be Fe-expressed as 

dr = hldw& + hzdu& + hSdu&. 

The GRADIENT is 

(8) 

the DIVERGENCE is 

div(F) E V 9 F = 1 
hhh 
d 

+auz 3 @ h 

and the CURL is 

hliil h& 
VXFEL - 

h3fi3 
a a a 

au1 au2 
h1h2h3 hlFl h2F2 h:fi3 

- - - &(h&)] fu 

1 
+- 

1 
a(Mz) - & 

hh dul 

Orthogonal curvilinear coordinates sa 
tional constraint that 

hF3) it2 
1 

hF1) fi341) 1 
isfy the addi- 

and the VOLUME ELEMENT is 

dV = I(hliil dul) l  (h2ti2 duz) x (h3C3 du3)I 

= hl ha h3 du1 duz du3 
ar dr dr -- .- - 

au1 au2 u3 
x d dul du2 du3 

ax 

au3 

e dul duz du3 
da 

au3 

where the latter is the JACOBIAN. 

Orthogonal curvilinear coordinate systems include 
BIPOLAR CYLINDRICAL COORDINATES, BISPHERICAL 
COORDINATES, CARTESIAN COORDINATES, CONFO- 
CAL ELLIPSOIDAL COORDINATES,~ONFOCAL PARABO- 
LOIDAL COORDINATES, CYNICAL COORDINATES, CY- 
CLIDIC COORDINATES, CYLINDRICAL COORDINATES, 
ELLIPSOIDAL COORDINATES, ELLIPTIC CYLINDRICAL 
COORDINATES, OBLATE SPHEROIDAL COORDINATES, 
PARABOLIC COORDINATES, PARABOLIC CYLINDRICAL 
COORDINATES, PARABOLOIDAL COORDINATES, POLAR 
COORDINATES, PROLATE SPHEROIDAL COORDINATES, 

SPHERICAL COORDINATES, and TOROIDAL COORDI- 
NATES. These are degenerate cases of the CONFOCAL 
ELLIPSOIDAL COORDINATES. 

see also CHANGE OF VARIABLES THEOREM, CURL,DI- 
VERGENCE, GRADIENT, JACOBIAN, LAPLACIAN 
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Cushion 

Therefore, the LINE ELEMENT is 

ds2 = dr l  dr = h12du12 + hz2duz2 + hs2dua2 (13) 
The QUARTIC SURFACE resembling a squashed round 
cushion on a barroom stool and given by the equation 

z2x2 - x4 - 2nz2 + 2x3 + x2 - z2 

- x2 - z)” - y4 - 2x2y2 - y2z2 + 2y2z + y2 = 0. ( 
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see also QUARTIC SURFACE 
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cusp 

C usp Map 

The function 
f(z) = 1 - 21sp2 

A function f(z) has a cusp (also called a SPINODE) at a 
point z. if f(z) is CONTINUOUS at ~0 and 

lim f’(x) = 00 
x+x0 

from one side while 

lim f’(z) = --0o 
x+x0 

from the other side, so the curve is CONTINUOUS but the 
DERIVATIVE is not. A cusp is a type of DOUBLE POINT. 
The above plot shows the curve z3 - y2 = 0, which has 
a cusp at the ORIGIN. 
see also DOUBLE CUSP, DOUBLE POINT, ORDINARY 
DOUBLE POINT, RAMPHOID CUSP, SALIENT POINT 
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Cusp Catastrophe 
A CATASTROPHE which can occur for two control factors 
and one behavior axis. The equation y = it: 2/3 has a cusp 
catastrophe. 

see dso CATASTROPHE 
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Cusp Form 
A cusp form on P&V), the group of INTEGER matri- 
ces with determinant 1 which are upper triangular mod 
N, is an ANALYTIC FUNCTION on the upper half-plane 
consisting of the COMPLEX NUMBERS with POSITIVE 
IMAGINARY PART. Weight n cusp forms satisfy 

f( 
ax + b 
~ 
cz + d > 

= (cz+d)nf(z) 

for all matrices 

a b [ 1 c d E rdN)* 

see also MODULAR FORM 

for II: E [-l,l]. The INVARIANT DENSITY is 

PM = $(l- y)- 
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Cusp Point 

see CUSP 

Cut-Vertex 

see ARTICULATION VERTEX 

Cutting 

see ARRANGEMENT, CAKE CUTTING, CIRCLE CUT- 
TING, CYLINDER CUTTING, PANCAKE CUTTING, PIE 
CUTTING,~QUARE CUTTING,TORUS CUTTING 

CW-Approximation Theorem 
If X is any SPACE, then there is a CW-COMPLEX Y 
and a MAP f : Y -+ X inducing ISOMORPHISMS on all 
HOMOTOPYJIOMOLOGY, and COHOMOLOGY~~~U~~. 

CW-Complex 
A CW-complex is a homotopy-theoretic generalization 
of the notion of a SIMPLICIAL COMPLEX. A CW- 
complex is any SPACE X which can be built by starting 
off with a discrete collection of points called X0, then 
attaching 1-D DISKS D1 to X0 along their boundaries 
So, writing X1 for the object obtained by attaching the 
D’s to X0, then attaching 2-D DISKS D2 to X1 along 
their boundaries S1, writing X2 for the new SPACE, and 
so on, giving spaces Xn for every n. A CW-complex 
is any SPACE that has this sort of decomposition into 
SUBSPACES Xn built up in such a hierarchical fashion 
(so the X”s must exhaust all of X). In particular, Xn 
may be built from X”-l by attaching infinitely many 
n-DISKS, and the attaching MAPS S"-' --+ Xnvl may 
be any continuous MAPS. 
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The main importance of CW-complexes is that, for 
the sake of HOMOTOPY, HOMOLOGY, and COHOMOL- 
OGY groups, every SPACE is a CW-complex. This is 
called the CW-APPROXIMATION THEOREM. Another 
is WHITEHEAD% THEOREM, which says that MAPS be- 
tween CW-complexes that induce ISOMORPHISMS on all 
H~M~ToPY GRoups are actually H0~0~0py equiva- 
lences. 

see also COHOMOLOGY, CW-APPROXIMATION THEO- 
REM, HOMOLOGY GROUP, HOMOTOPY GROUP, SIM- 
PLICIAL COMPLEX, SPACE, SUBSPACE, WHITEHEAD'S 
THEOREM 

Cycle (Circle) 
A CIRCLE with an arrow indicating a direction. 

Cycle (Graph) 
A subset of the EDGE-set of a graph that forms a CHAIN 
(GRAPH), the first node of which is also the last (also 
called a CIRCUIT). 

see ~230 CYCLIC GRAPH, HAMILTONIAN CYCLE, WALK 

Cycle Graph 
22 Z3 =4 zp’5 * Zs 26 

A cycle graph is a GRAPH which shows cycles of a 
GROUP as well as the connectivity between the cycles. 
Several examples are shown above. For 24, the group 
elements Ai satisfy Ai = 1, where 1 is the IDENTITY 
ELEMENT, and two elements satisfy Al2 = As2 = 1. 

For a CYCLIC GROUP of COMPOSITE ORDER ?Z (e.g., 
24, &, &), the degenerate subcycles corresponding to 
factors dividing rz are often not shown explicitly since 
their presence is implied. 

see also CHARACTERISTIC FACTOR, CYCLIC GROUP 
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Cycle (Map) 
An n-cycle is a finite sequence of points Yo, . . l  , Y,-l 
such that, under a MAP G, 

Yt = G(G) 

Yz = G(K) 

K-1 = G(K-2) 

Y. = G(Y,-1). 

In other words, it is a periodic trajectory which comes 
back to the same point after 72 iterations of the cycle. 
Every point Yj of the cycle satisfies Yj = G” (Yj) and is 
therefore a FIXED POINT of the mapping Gn. A fixed 
point of G is simply a CYCLE of period 1. 

Cycle (Permutation) 
A SUBSET of a PERMUTATION whose elements trade 
places with one another. A cycle decomposition of a 
PERMUTATION can therefore be viewed as a CLASS of 
a PERMUTATION GROUP. For example, in the PER- 
MUTATION GROUP (4, 2, 1, 3}, {l, 3, 4) is a 3-cycle 
(1 + 3, 3 -+ 4, and 4 + I) and (2) is a l-cycle 
(2 + 2). Every PERMUTATION GROUP on n symbols 
can be uniquely expressed as a product of disjoint cycles. 
The cyclic decomposition of a PERMUTATION can be 
computed in Mathematic@ (Wolfram Research, Cham- 
paign, IL) with the function ToCycles and the PERMU- 
TATION corresponding to a cyclic decomposition can be 
computed with FromCycles. According to Vardi (1991), 
the Mathematics code for ToCycles is one of the most 
obscure ever written. 

To find the number N(m, n) of nz cycles in a PERMU- 
TATION GROUP of order n, take 

N(n,m) = (-l)“-“&(n,m), 

whereslisthe STIRLING NUMBER OFTHEFIRST KIND. 

see also GOLOMB-DICKMAN CONSTANT, PERMUTA- 
TION,PERMUTATION GROUP,SWBSET 
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Cyclic Graph 

A GRAPH of n nodes and n edges such that node i is 
connected to the two adjacent nodes i+ 1 and i - 1 (mod 
n), where the nodes are numbered 0, 1, . . . , n - 1. 

see also CYCLE (GRAPH), CYCLE GRAPH, STAR 
GRAPH,WHEEL GRAPH 
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Cyclic Group 
A cyclic group 2, of ORDER n is a GROUP defined by 
the element X (the GENERATOR) and its n POWERS up 
to 

X” = I, 

where 1 is the IDENTITY ELEMENT. Cyclic groups are 
both ABELIAN and SIMPLE. There exists a unique cyclic 
group of every order n 2 2, so cyclic groups of the same 
order are always isomorphic (Shanks 1993, p. 74), and 
all GROUPS of PRIME ORDER are cyclic. 

Examples of cyclic groups include 22, 23, 24, and 
the MODULO MULTIPLICATION GROUPS Mm such that 
m = 2, 4, p”, or 2p”, for p an ODD PRIME and n > 1 - 
(Shanks 1993, pa 92). By computing the CHARACTERIS- 
TIC FACTORS, any ABELIAN GROUP canbeexpressedas 
a DIRECT PRODUCT of cyclic SUBGROUPS, for example, 
z2@z40r22@22@22m 

see also ABELIAN GROUP, CHARACTERISTIC FAC- 
TOR, FINITE GROUP-Z2, FINITE GROUP--&, FINITE 
GROUP-Z2,F1~1~~ CROUP-&FINITE GROUP--&, 
MODULO MULTIPLICATION GROUP, SIMPLE GROUP 
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Cyclic Hexagon 
A hexagon (not necessarily regular) on whose VERTICES 
a CIRCLE may be CIRCUMSCRIBED. Let 

where the sum runs over all distinct 
SQUARES of the six side lengths, so 

permutations of the 

01 = aI2 + a22 + a3’ + ad2 + as2 + ug2 (2) 

= a12az2 + a12as2 + a12aG2 + a12as2 + alzaG 
2 

02 

+ a22a32 + a22a42 + az2as2 + a22a62 

+ as2ad2 + ag2as2 + a32a62 

+ ad2as2 + ad2ag2 + as2aG2 (3) 

03 = a12a22a32 + a12az2ad2 + a12az2as2 + a12az2ae2 

+ az2as2ad2 + a22a32a52 + a2’aa2aG2 

+ aa2ad2as2 + aa2aq2ae2 + ad2as2aG2 (4) 

04 = a12az2as2ad2 + a12a22a32a52 + a12a22a32a62 

+ a12a32a42a52 + a12a32aq2u62 

+ a12as2as2aG2 + a12ad2as2aG2 

+.a22a32a42a52 + az2az2aq2ag2 + az2aa2as2ag2 

+ az2aq2as2aG2 + aa2aq2as2ag2 (5) 

05 = u12a22a32a42a52 + iz12a22a32aq2a6 2 

2 2 
+ al a2 us2as2aG2 + a12a22a42a52a62 

+ a12aa2ad2as2ae2 + az2aa2ad2as2ag2 (6) 

fl6 = a12a22a32a42a52a62. (7) 

Then define 

t2 =‘u.-4u2+~1~ (8) 

t3 = 8u3 +ult2 - 166 (9) 
t4 = tz2 - 6404 +64alfi (10) 
t5 = 12805 + 32526 (11) 

u = 16K2. (12) 

The AREA of the hexagon then satisfies 

utd3 + t32t42 - 16t33ts - 18ut3t& - 27u2ts2 = 0, (13) 

or this equation with Jas replaced by -fi, a seventh 
order POLYNOMIAL in u. This is 1/(4u2) times the DIS- 
CRIMINANT ofthe CUBIC EQUATION 

x3 + 2t3z2 - utqz + 2y2t5. (14) 

see ah CONCYCLIC, CYCLIC PENTAGON, CYCLIC 

POLYGON,FUHRMANN'S THEOREM 
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Cyclic-Inscriptable Quadrilateral 

see BICENTRIC QUADRILATERAL 

Cyclic Number 
A number having n-1 DIGITS which, when MULTIPLIED 

by 1, 2, 3, . . . , n - 1, produces the same digits in a dif- 
ferent order. Cyclic numbers are generated by the UNIT 
FRACTIONS l/n which have maximal period DECIMAL 

EXPANSIONS (which means n must be PRIME), The first 
few numbers which generate cyclic numbers are 7, 17, 
19, 23, 29, 47, 59, 61, 97, . . . (Sloane’s A001913). A 
much larger generator is 17389. 

It has been conjectured, but not yet proven, that an 
INFINITE number of cyclic numbers exist. In fact, the 
FRACTION of PRIMES which generate cyclic numbers 
seems to be approximately 3/8. See Yates (1973) for a 
table of PRIME period lengths for PRIMES < 1,370,471. 
When a cyclic number is multiplied by its generator, the 
result is a string of 9s. This is a special case of MIDY’S 
THEOREM. 

07= 0.142857 
17 = 0.0588235294117647 
19 = 0.052631578947368421 
23 = 0.0434782608695652173913 
29 = 0.0344827586206896551724137931 
47 = 0.021276595744680851063829787234042553191 l  . = 

. . a4893617 
59 = 0.016949152542372881355932203389830508474~~~ 

. ..5762711864406779661 
61= 0.016393442622950819672131147540983606557~~~ 
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. - 4 377049180327868852459 
97= 0.010309278350515463917525773195876288659~~ 

~~~79381443298969072164948453608247422680412~~ 
l  4 l  3711340206185567 

see U~SO DECIMAL EXPANSION, MIDY’S THEOREM 
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Cyclic Pentagon 
A cyclic pentagon is a not necessarily regular PENTAGON 

on whose VERTICES a CIRCLE may be CIRCUMSCRIBED. 

where the SU 
the SQUARES 

ui E 
x 

ai2a j2 l  l  2  l t 

i,j ,...,T-&=l 

M runs over all distinct PERM 
of the 5 side lengths, so 

(1) 

UTATIONS of 

u1 =a1~+a2~+a32+a4~+a5~ (2) 
02 = u12a22 +a12az2 +a12a42 +a12a52 +a22a32 

+a22a42 +a22a52 +as2izd2 +as2as2 

+ Q2Us2 (3) 
03 = (2.12a22a32 + C&12C&22a42 + a12a22tZ52 

+ a22a32a42 + tZ22tX32lZ52 + i232a42a5 
2 

(4 

04 = a12a22a32a42 +a12a22a32as2 +t212t232t242t25 2 

+ a22a32a42a52 (5) 
2 

05 z U~2~221X32a42C?5 . (6) 

Then define 

t2 =u-4o2+c~1~ (7) 
t3 = 803 + 01t2 (8) 

t4 = -64~~ + t22 (9) 

t5 = I2805 (10) 

u = 16K2. (11) 

The AREA of the pentagon then satisfies 

utd3 + t32t42 - 16ta3ts - 18ut3t4t5 - 27u2ts2 = 0, (12) 

a se venth order POLYNOMIAL in u. This is 1/ 
the DISCRIMINANT of the CUBIC EQUATION 

(42~~) times 

z3 + 2t3z2 - ut42 + 2y2t5. (13) 

see ~2s~ CONCYCLIC, CYCLIC HEXAGON,~YCLIC Pow 
GON 
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Cyclic Permutation 
A PERMUTATION which shifts all elements of a SET by a 
fixed offset, with the elements shifted off the end inserted 
back at the beginning. For a SET with elements a~, al, 

“‘? G-b-1, this can be written ai -+ ai+k (mod n) for a 
shift of k. 

see UZSU PERMUTATION 

Cyclic Polygon 
A cyclic polygon is a POLYGON with VERTICES upon 
which a CIRCLE can be CIRCUMSCRIBED. Since every 
TRIANGLE has a CIRCUMCIRCLE, every TRIANGLE is 
cyclic. It is conjectured that for a cyclic polygon of 
2771 + 1 sides, 16K2 (where K is the AREA) satisfies a 
MONIC POLYNOMIAL of degree Am, where 

(1) 

= i [(2m+l)(z) -22-] (2) 

(Robbins 1995). It is also conjectured that a cyclic poly- 
gon with 2nz+ 2 sides satisfies one of two POLYNOMIALS 
of degree A,. The first few values of A, are 1, 7, 38, 
187, 874, . . . (Sloane’s AOOO531). 

For TRIANGLES (n = 3 = 2 l  l+ 1), the POLYNOMIAL is 
HERON'S FORMULA, which may be written 

16K2 = 2a2b2 + 2a2c2 -p 2b2C2 - a4 - b4 - c4, (3) 

and which is of order A, = 1 in 16K2. For a CYCLIC 
QUADRILATERAL, the POLYNOMIAL is BRAHMAGUPTA'S 
FORMULA, which may be written 

16K2 = -a4 + 2a2b2 - b4 + 2a2c2 + 2b2c2 - c4 

+ 8abcd + 2a2d2 + 2b2d2 + 2C2d2 - d4, (4) 

which is of order A, = 1 in 16K2. Robbins (1995) 
gives the corresponding FORMULAS for the CYCLIC PEN- 
TAGON and CYCLIC HEXAGON. 
see also CONCYCLIC, CYCLIC HEXAGON, CYCLIC PEN- 
TAGON, CYCLIC QUADRANGLE, CYCLIC QUADRILAT- 
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Cyclic Quadrangle Solving for the CIRCUMRADIUS gives 

Let Al, AZ, AZ, and Ad be four POINTS on a CIRCLE, 
and H~,&,I&H~ the ORTHOCENTERS of TRIANGLES 
AAzAsAd, etc. If, from the eight POINTS, four with 
different subscripts are chosen such that three are from 
one set and the fourth from the other, these POINTS 
form an ORTHOCENTRIC SYSTEM. There are eight such 
systems, which are analogous to the six sets of ORTHO- 
CENTRIC SYSTEMS obtained using the feet of the ANGLE 
BISECTORS, ORTHOCENTER, and VERTICES of ageneric 
TRIANGLE. 

R+ 
(UC + bd)(ad + bc)(ab + cd) 

( s - a)(s - b)(s - c)(s - d) ’ (4) 

The DIAGONALS of a cyclic quadrilateral have lengths 

P= J (ab + cd)(ac + bd) 

ad+bc (5) 

4= 
(UC + bd)(ad -!- bc) 

ab + cd 
1 

On the other hand, if all the POINTS are chosen from one 
set, or two from each set, with all different subscripts, 
the four POINTS lie on a CIRCLE. There are four pairs 
of such CIRCLES, and eight POINTS lie by fours on eight 
equal CIRCLES. 

The SIMSON LINE of A4 with regard to TRIANGLE 
A&AzAs is the same as that of H4 with regard to the 
TRIANGLE A&A~AQ. 

see also ANGLE BISECTOR,~ONCYCLIC, CYCLIC POLY- 
GON, CYCLIC QUADRILATERAL, ORTHOCENTRIC SYS- 
TEM 
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Cyclic Quadrilateral 

B 

A QUADRILATERAL for whicha CIRCLE can be circum- 
scribed so that it touches each VERTEX. The AREA is 
then given by a special case of BRETSCHNEIDER'S FOR- 
MULA. Let the sides have lengths a, b, c, and d, let s be 
the SEMIPERIMETER 

SE ;(a+b+c+d), (1) 

and let R be the CIRCUMRADIUS. Then 

A = & - a)@ - b)(s - c)(s - d) (2) 

&xc + bd)(ad + bc)(ab + cd) - - . 
4R (3) 

Cyclic Quadrilateral 

(6) 

so that pq = ac + bd. In general, there are three essen- 
tially distinct cyclic quadrilaterals (modulo ROTATION 
and REFLECTION) whose edges are permutations of the 
lengths a, b, c, and d. Of the six corresponding DIAG- 
ONAL lengths, three are distinct. In addition to p and 
g, there is therefore a “third” DIAGONAL which can be 
denoted T. It is given by the equation 

r= J (ad + bc)(ab + cd) 

ac + bd ’ 
(7) 

This allows the AREA formula to be written in the par- 
ticularly beautiful and simple form 

A=‘z. (8) 

The DIAGONALS are sometimes also denoted p, q, and 
T. 

The AREA of a cyclic quadrilateral is the MAXIMUM 
possible for any QUADRILATERAL with the given side 
lengths. Also, the opposite ANGLES of a cyclic quadri- 
lateral sum to r RADIANS (Dunham 1990). 

A cyclic quadrilateral with RATIONAL sides a, b, c, and 
d, DIAGONALS p and q, CIRCUMRADIUS R, and AREA 
A is given by a = 25, b = 33, c = 39, d = 65, p = 60, 
q = 52, R = 6512, and A = 1344. 

Let AHBO be a QUADRILATERAL such that the angles 
LHAB and LHOB are RIGHT ANGLES, then AHBO is 
a cyclic quadrilateral (Dunham 1990). This is a COROL- 
LARY of the theorem that, in a RIGHT TRIANGLE, the 
MIDPOINT of the HYPOTENUSE is equidistant from the 
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three VERTICES. Since 2M is the MIDPOINT of both 
RIGHT TRIANGLES AAHB and ABOH, it is equidis- 
tant from all four VERTICES, so a CIRCLE centered at 
M may be drawn through them. This theorem is one 
of the building blocks of Heron’s derivation of HERON'S 
FORMULA. 

A 

Place four equal CIRCLES so that they intersect in a 
point. The quadrilateral Al3CD is then a cyclic quadri- 
lateral (Honsberger 1991). For a CONVEX cyclic quad- 
rilateral Q, consider the set of CONVEX cyclic quadri- 
laterals &ii whose sides are PARALLEL to Q* Then the 
&II of maximal AREA is the one whose DIAGONALS are 
PERPENDICULAR (Giirel 1996). 

see UZSO BRETSCHNEIDER’S FORMULA, CONCYCLIC, 
CYCLIC POLYGON, CYCLIC QUADRANGLE, EULER 

BRICK, HERON’S FORMULA, PTOLEMY’S THEOREM, 

QUADRILATERAL 
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Cyclic Redundancy Check 
A sophisticated CHECKSUM (often abbreviated CRC), 
which is based on the algebra of polynomials over the 
integers (mod 2). It is substantially more reliable in 
detecting transmission errors, and is one common error- 
checking protocol used in modems. 

see also CHECKSUM, ERROR-CORRECTING CODE 
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Cyclid 

see C~CLIDE 

Cyclide 

A pair of focal tonics which are the envelopes of two 
one-parameter families of spheres, sometimes also called 
a CYCLID. The cyclide is a QUARTIC SURFACE, and the 
lines of curvature on a cyclide are all straight lines or 
circular arcs (Pinkall 1986). The STANDARD TORI and 
their inversions in a SPHERE S centered at a point x0 
and of RADIUS T, given by 

qxopg = x0 + 
X- XOT2 

(x - x012 ’ 

are both cyclides (Pinkall 1986). Illustrated above are 
RING CYCLIDES, HORN CYCLIDES, and SPINDLE CY- 
GLIDES. The figures on the right correspond to x0 lying 
on the torus itself, and are called the PARABOLIC RING 
CYCLIDE, PARABOLIC HORN CYCLIDE, and PARABOLIC 
SPINDLE CYCLIDE, respectively. 

see also CYCLIDIC COORDINATES, HORN CYCLIDE, 

PARABOLIC HORN CYCLIDE, PARABOLIC RING CY- 
CLIDE, RING CYCLIDE, SPINDLE CYCLIDE, STANDARD 
TORI 

References 
Bierschneider-Jakobs, A. “Cyclides.” http://www.mi.mi- 

erlangen.de/-biersch/cyclides.htrnl. 
Byerly, W. E. An Elementary Treatise on Fourier’s Series, 

and Spherical, Cylindrical, and Ellipsoidal Harmonics, 
with Applications to Problems in Mathematical Physics. 
New York: Dover, p. 273, 1959. 

Eisenhart, L. P. “Cyclides of Dupin.” 5133 in A Treatise on 
the Differential Geometry of Curues and Surfaces. New 
York: Dover, pp. 312-314, 1960. 



386 Cyclidic Coordinates Cycloid 

Fischer, G. (Ed.). Plates 71-77 in Mathematische Mod- 
elle/Mathematical Models, Bildband/Photograph Volume. 
Braunschweig, Germany: Vieweg, pp. 66-72, 1986. 

Nordstrand, T. “Dupin Cyclide.” http://www.uib.no/ 
people/nfytn/dupintxt.htm. 

Pinkall, U. “Cyclides of Dupin.” $3.3 in Muthematical Models 
from the Collections of Universities and Museums (Ed. 
G. Fischer). Braunschweig, Germany: Vieweg, pp* 28-30, 

1986. 
Salmon, G. Analytic Geometry of Three Dimensions. New 

York: Chelsea, p. 527, 1979. 

Cyclidic Coordinates 
A general system of CURVILINEAR COORDINATES based 
on the CYCLIDE in which LAPLACE'S EQUATION is SEP- 
ARABLE. 
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x = a(t - sint) (2) 

Y = a(1 - cost). (3) 

Cycloid 

The cycloid is the locus of a point on the rim of a CIRCLE 
of RADIUS a rolling along a straight LINE. It was studied 
and named by Galileo in 1599. Galileo attempted to 
find the AREA by weighing pieces of metal cut into the 
shape of the cycloid. Torricelli, Fermat, and Descartes 
all found the AREA. The cycloid was also studied by 
Roberval in 1634, Wren, in 1658, Huygens in 1673, and 
Johann 8ernoulli in 1696. Roberval and Wren found the 
ARC LENGTH (MacTutor Archive). Gear teeth were also 
made out of cycloids, as first proposed by Desargues in 
the 1630s (Cundy and Rollett 1989). 

In 1696, Johann Bernoulli challenged other mathemati- 
cians to find the curve which solves the BRACHISTO- 
CHRONE PROBLEM, knowing the solution to be a cy- 
cloid. Leibniz, Newton, Jakob Bernoulli and L’Hospital 
all solved Bernoulli’s challenge. The cycloid also solves 
the TAUTOCHRONE PROBLEM. Because of the frequency 
with which it provoked quarrels among mathematicians 

in the 17th century, the cycloid became known as the 
“Helen of Geometers” (Boyer 1968, p. 389). 

The cycloid is the CATACAUSTIC of a CIRCLE for a RA- 
DIANT POINT on the circumference, as shown by Jakob 
and Johann Bernoulli in 1692. The CAUSTIC of the cy- 
cloid when the rays are parallel to the y-axis is a cycloid 
with twice as many arches. The RADIAL CUR'JE of a 
CYCLOID is a CIRCLE. The EVOLUTE and INVOLUTE of 
a cycloid are identical cycloids. 

If the cycloid has a CUSP at the ORIGIN, its equation in 
CARTESIAN COORDINATES is 

X = aces -l(Y) F &ipy. (1) 

If the cycloid is upside-down with a cusp at (0, a), (2) 
and (3) become 

x = 2a sin -l(E) + &F-7 (4) 
or 

X = a(t + sini!) (5) 

Y = a(1 - cos t) (6) 

(sign of sin t flipped for x). 

The DERIVATIVES of the parametric representation (2) 
and (3) are 

x’ = a(1 - cost) (7) 

y’ = a sin t (8) 

dY _ Y’ asint sin t 

dz- Ic’= a(l-cost) = l-cost 

- 2sin(+t)cos(+t) 
- 

2sin2($t) 
= cot( ft)* (9) 

The squares of the derivatives are 

I2 
X = a2(1 - 2cost + cos2 t) (10) 

r2 
Y = a2 sin2 t, (11) 

so the ARC LENGTH of a single cycle is 

L= 
s s 

ds = 2rr dmdt 
0 

27r 

=fZ 
s J 

(1 - 2 cos t + cos2 t) + sin2 t dt 
0 

s 

27r 

=a& &TETdt = 2a 12= /F& 

= 2a 
s 

2”, Isin 1 dt. (12) 
0 
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Now let u E t/2 so du = dt/2. Then 7r 
Ll = 4a s. sinudu = 4a[- cos 211; 

= -4&l) - l] = 8a. (13) 

The ARC~NGTH, 

GLE are 

u 
.-I 

El 

c 
a 

TANGENTIAL AN- 

s = 8asin’(~t) (14) 

K = -~acsc(~t) (15) 

4 
- - - iat. (16) 

The AREA under a single cycle is 

25T 

/ 

27r 

A= ydz=a2 (1 - cos$)(l - cos#)d@ 
Jo JO 

s 

27r 

= a2 (1 - coqb)” dqb 
0 

s 

27r 

= a2 (1 -2cos$+cos24)d& 
0 

s 

27T 
= a2 { 1 - 2 cos 4 + + [l + cos(2~)]} d# 

0 

s 27r = a2 t $ - 2 cos q5 + + cos(2&] d4 
0 

= a”[%g3 - 2 sin+ + + sin(24)]:” 

= a 23 22~ = 37~2~. 

The NORMAL is 

+= 
1 1 -cost 

d2 - 2cost [ 1 sint ’ 

(17) 

(18) 

see also CURTATE CYCLOID, CYCLIDE, CYCLOID Evo- 
LUTE, CYCLOID INVOLUTE, EPICYCLOID, HYPOCY- 

CLOID, PROLATE CYCLOID, TROCHOID 
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Cycloid Evolute 

I---\ -- 
/ \ /’ .\ 

\/ \ 

The EVOLUTE of the CYCLOID 

x(t) = a(t - sin t) 
y(t) = a(1 - cost) 

is given by 

x(t) = a(t + sin t) 
y(t) - a(cost - 1). - 

As can be seen in the above figure, the EVOLUTE is 
simply a shifted copy of the original CYCLOID, so the 
CYCLOID is its own EVOLUTE. 

Cycloid Involute 

The INVOLUTE of the CYCLOID 

x(t) = a(t - sin t) 
y(t) = a( 1 - cos t) 

is given by 

x(t) = a(t + sint) 

YW = a(3 + cost). 

As can be seen in the above figure, the INVOLUTE is 
simply a shifted copy of the original CYCLOID, so the 
CYcLorD is its own INVOLUTE! 



388 Cycloid Radial Curve 

Cycloid Radial Curve 

The RADIAL CURVE of the CYCLOID is the CIRCLE 

x = x0 + 2asin4 

y = -2a + yo + 2acos cp* 

Cyclomatic Number 

see CIRCUIT RANK 

Cyclotomic Equation 
The equation 

xp = 1 7 

where solutions & = eamiklp are the RENTS OF UNITY 
sometimes called DE MOIVRE NUMBERS. Gauss showed 
that the cyclotomic equation can be reduced to solving a 
series of QUADRATIC EQUATIONS whenever p is a FER- 
MAT PRIME. Wantzel (1836) subsequently showed that 
this condition is not only SUFFICIENT, but also NECES- 
SARY. An “irreducible” cyclotomic equation is an ex- 
pression of the form 

xp - 1 

x-l 
= xp- l  + xp-2 + l  l  , + 1 = 0, 

where p is PRIME. Its ROOTS xi satisfy I.zil = 1. 

see UZSO CYCLOTOMIC POLYNOMIAL, DE MOIVRE NUM- 
BER, POLYGON, PRIMITIVE ROOT OF UNITY 
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Cyclotomic Factorization 

zp  - yp  = (z - y)(z - [y) l  - l  (z - c”-‘Y)> 

where C E e2Tiip (a DE MOIVRE NUMBER) and pis a 
PRIME. 

Cyclotomic Polynomial 

Cyclotomic Field 
The smallest field containing KQ E z > 1 with c a PRIME 
ROOT OF UNITY is denoted I&-&).- 

xp +yp = fi(x + ["y). 
k-l 

Specific cases are 

R,=Q(J-3) 

R,=Q(J--?) 

R6 =Q(J-3), 

where Q denotes a QUADRATIC FIELD. 

Cyclotomic Integer 
A number of the form 

a0 + a& + ’ ’ - + up4cp--l, 

where 

c 
E p/P 

is a DE MOIVRE NUMBER and p is a PRIME number. 
Unique factorizations of cyclotomic INTEGERS fail for 
p > 23. 

Cyclotomic Invariant 
Let p be an ODDPRIME and & the CYCLOTOMICFIELD 
of pn+l th ROOTS of unity over the rational FIELD. Now 
let p +) be the POWER of p which divides the CLASS 
NUMBER h, of & Thenthereexist INTEGERS pp,Ap > - 
0 and up such that 

e(n) = p,p” + X,n + up 

for all sufficiently large n. For REGULAR PRIMES, pp = 

XP = up = 0. 

References 
Johnson, W. “Irregular Primes and Cyclotomic Invariants.” 

Math. Comput. 29, 113420, 1975. 

Cyclotomic Number 

see DE MUIVRE NUMBER, SYLVESTER CYCLUTOMIC 
NUMBER 

Cyclot omit Polynomial 
A polynomial given by 

@d(x) = fi(x - Sk), 

k=l 

(1) 

where ci are the primitive dth ROOTS OF UNITY in c 
given by [k = eaTik? The numbers [k are sometimes 
called DE MOIVRE NUMBERS. @d(x) is an irreducible 
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POLYNOMIAL in Z[x] with degree 4(d), where 4 is the 
TOTIENT FUNCTION. For d PRIME, 

P--l 

a, = F;xk, 

k=O 

(2) 

i.e., the coefficients are all 1. @lo5 has coefficients of -2 
for x7 and x41, making it the first cyclotomic polynomial 
to have a coefficient other than H and 0. This is true 
because 105 is the first number to have three distinct 
ODD PRIME factors, i.e., 105 = 3 4 5 l  7 (McClellan and 
Rader 1979, Schroeder 1997). Migotti (1883) showed 
that COEFFICIENTS of !Bpq for p and Q distinct PRIMES 

can be only 0, kl. Lam and Leung (1996) considered 

P4--1 

apq = x akxk 

k=O 

(3) 

for p,~ PRIME. Write the TOTIENT FUNCTION as 

4(Pq> = (P - l)(a - 1) = TP + sq (4) 

and let 

0 < Jc I (P - l)(q - I>, (5) 

then 

1. ak = 1 IFF /G = ip + jq for some i E [0, ~1 and j E 
cn = 1 - 2 L$(n + 2)] + I++ 1)J + [in] ? (lo) 

Lo 1 9s f where 1x1 is the FLOOR FUNCTION. 

2. al, = -1 IFF k + pq = ip + jq for i E [T + l,q - 1] see also AURIFEUILLEAN FACTORIZATION, M&us IN- 
and j E [s + l,p - 11, VERSION FORMULA 

3. otherwise ak = 0. 

The number of terms having ak = 1 is (T + 1) (s -f- 1), and 
the number of terms having uk = - 1 is (p - s - 1) (q - 
T- l)* Furthermore, assume q > p, then the middle 
COEFFICIENT of tDpq is (-1)‘. 

The LOGARITHM of the cyclotomic polynomial 

an(x) = U(l - xn’d)pcd) (6) 
din 

is the MOBIUS INVERSION FORMULA (Vardi 1991, 
p. 225). 

The first few cyclotomic POLYNOMIALS are 

@l(X) = 2 - 1 

@2 (2) =x+1 

@3(x)= x2+x+1 

@4(x) =x2+1 

@5 cx> =x4+x3+x2+Iz:+1 

@6(X) = x2 - x + 1 

@7 cx> = x6 + x5 + x4 + x3 + x2 + 2 + 1 

@8 (2) =x4+1 

+9 (2) = x6 + x3 + 1 

@10(x) = x4 - x3 + x2 - x + 1. 

The smallest values of n for which an has one or more 
coefficients &l, *2, zk3, . . . are 0, 105, 385, 1365, 1785, 
2805, 3135, 6545, 6545, 10465, 10465, 10465, 10465, 
10465, 11305, . . . (Sloane’s A013594). 

The POLYNOMIAL xn - 1 can be factored as 

(7) 

where @d(x) is a CYCLOTOMIC POLYNOMIAL. F’urther- 

x2n-l 

x”+l=r= 
rI 

X 1 
d12n “(‘) = n +$d(x). 

rId,n Wx) 
(8) 

db 

The COEFFICIENTS of the inverse of the cyclotomic 
POLYNOMIAL 

1 

1+x+x2 
= 1 - x + x3 - x4 + x6 - x7 + x9 - xl0 + . . . 

00 
- - - 

IE CnXn. (9) 
r&=0 

can also be computed from 
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Cylinder 

A cylinder is a solid of circular CROSS-SECTION in which 
the centers of the CIRCLES all lie on a single LINE. The 
cylinder was extensively studied by Archimedes in his 
2-volume work On the Sphere and Cylinder in cit. 225 
BC. 

A cylinder is called a right cylinder if it is “straight” 
in the sense that its cross-sections lie directly on top 
of each other; otherwise, the cylinder is called oblique. 
The surface of a cylinder of height h and RADIUS T can 
be described parametrically by 

2 = rcose (1) 

y = T  sin 0 (2) 

z = z, (3) 

for z f [0, h] and 0 E [0,2~). These are the basis for 
CYLINDRICAL COORDINATES. The SURFACE AREA (of 
the sides) and VOLUME of the cylinder of height h and 
RADIUS T are 

S = 2mh (4) 

V = nr’h. (5) 

Therefore, if top and bottom caps are added, the 
volume-to-surface area ratio for a cylindrical container 
is 

V 

s= (6) 

which is related to the HARMONIC MEAN of the radius 
T and height h. 

see also CONE, CYLINDER-SPHERE INTERSECTION, 
CYLINDRICAL SEGMENT, ELLIPTIC CYLINDER, GEN- 
ERALIZED CYLINDER, SPHERE, STEINMETZ SOLID, VI- 
VIANI'S CURVE 
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Cylinder Cutting 
The maximum number of pieces into which a cylinder 
can be divided by n oblique cuts is given by 

f( > n+l 
n= ( > 3 

+ n + 1 = i(n + 2)(n + 3), 

where (9) isa BINOMIAL COEFFICIENT. Thisproblemis 
sometimes also called CAKE CUTTING or PIE CUTTING. 
For n = 1, 2, . . , cuts, the maximum number of pieces 
is 2, 4, 8, 15, 26, 42, . . . (Sloane’s A000125). 

see U~SO CIRCLE CUTTING, HAM SANDWICH THEOREM, 
PANCAKE THEOREM, TORUS CUTTING 
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Cylinder-Cylinder Intersection 

see STEINMETZ SOLID 

Cylinder Function 
The cylinder function is defined as 

C(X,Y> = 
C 

1 for $FQ < a 

0 for Jw > a. 
(1) 

The BESSEL FUNCTIONS are sometimes also called cyl- 
inder functions. To find the FOURIER TRANSFORM of 
the cylinder function, let 

k, = k cos a (2) 

k, = k sin Q (3) 

2 = TCOSB (4) 

y = rsin0. (5) 

Then 

27r a 

- - 

ss 

e 
i( k cos QIT cos 0-f-k sin ar sin t?jr dr &) 

0 0 

27~ a 

- - 

ss 

e 
ikr COS(b-a)$ dr de 

l  

0  0  

(6) 

Let b = 0 - cy, so db = do. Then 

2x--a: a 

F(k,a) = 
s s 

e 
ikr cos by dr de 

-a 0 

27r a 

Z 

ss 

e 
ikr COS by dr d$ 

0 0 

s 

a 

= 2n Jo (kr)r dr, (7) 
0 

where Jo is a zeroth order BESSEL FUNCTION OF THE 
FIRST KIND. Let u E Jcr, so du = kdr, then 

F(k,a) = $ 
s 

ka 

0 

Jo(u)u du = $[uJ~(u)];” 

- FJl(ka) = 2na 2 Jl(k4 - ka. (8) 
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As defined by Watson (1966), a “cylinder function” is 
any function which satisfies the RECURRENCE RELA- 

TIONS 

cl4(~)+ClI+l(~)= $c ( YZ ) (9) 

cl++> - Cv+l(x) = 2C(t). (10) 

This class of functions can be expressed in terms of BES- 

SEL FUNCTIONS. 

~~~UZSUBESSELFUNCTION OFTHE FIRSTKIND,CYLIN- 
DER FUNCTION,~YLINDRICAL FUNCTION, HEMISPHER- 
ICAL FUNCTION 

References 
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Cylinder-Sphere Intersection 

see VIVIANI'S CURVE 

Cylindrical Coordinates 

Cylindrical coordinates are a generalization of Z-D PO- 
LAR COORDINATES to 3-D by superposing a height (z) 
axis. Unfortunately, there are a number of different no- 
tations used for the other two coordinates. Either T or 
p is used to refer to the radial coordinate and either 4 
or B to the azimuthal coordinates. A&en (1985), for 
instance, uses (p, 4, z), while Beyer (1987) uses (T, 8, z). 
In this work, the NOTATION (T, 8, z) is used. 

where T E [0, OO), 8 E [O, 24, and x E (---00, 00). In 
terms of z, y, And z 

r= dx2 + y2 

0 = tan-' J! 
0 X 

z = 2, 

(1) 

(2) 

(3) 

x = TCOSO (4 
y = r sin 0 (5) 
% = z. (6) 

Morse and Feshbach (1953) define the cylindrical coor- 
dinates by 

where & = T and & = cos 8. The METRIC elements of 
the cylindrical coordinates are 

a-r =l (10) 

m = T2 (11) 

s= = 1, (12) 

SO the SCALE FACTORS are 

Sr =l 

ge = T 

gz = 1. 

The LINE ELEMENT is 

ds=dr?+rd&+dzi, 

and the VOLUME ELEMENT is 

dV = rdr d9 dz. 

The JACOBIAN is 

(13) 

(14) 

(15) 

(16) 

(17) 

a(x, Y, 4 I I a(r,B,z) =Ta (18) 

A CARTESIAN VECTOR isgivenin CYLINDRICAL COOR- 
DINATES by 

r= 

TO find the UNIT VECTORS, 

dr cos 0 dr :zF= 1 1 [ 1 sin 8 
z 0 

dr - sin 8 A 
8 - a 

=-z= I I 
cos 8 

0 

(19) 

(20) 

(21) 

(22) 

Derivatives of unit VECTORS with respect to the coor- 
dinates are 

36 
dr 

=o (23) 

(24) 

(25) 

ae 

ar 
=0 (26) 

(27) 

(28) 
dii -=o 
dT 

(29) 
dii 
ae =o 
dii 
dz = 0. 

(30) 

(31) 
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The GRADIENT of a VECTOR FIELD in cylindrical COOT- 

dinates is given by 
CROSS PRODUCTS of the coordinate axes are 

so the GRADIENT components become 

The COMMUTATION COEFFICIENTS are given by 

But 
[C, ?] = [h, 61 = [& $1 = 0, (60) 

SO cFr = c& = c& = 0, where a = T, 8,qk Also 

c 

[  01 E, 
=-[e,;]=v,~-Vef=O-le=-li), (61) 

T T 

so cffj = # -& = -$ &, = cT8 = 0. Finally, 

[e, &J = [b, 41 = a (62) 
Now,sincethe CONNECTION COEFFICIENTS are defined 

Summarizing, 

CT = [ 

0 0 0 
0 0 0 
0 0 0 I 

[ 
0 -1. 0 

cd = I 0 ;i or 0 0 1 [ 0 0 0 c# = 0 0 0 0 0 0 1 . 

(63) 

(64) 

(65) 

r’ = [ 0 0 0 0 -; 0 1 (43) 0 0 0 
0 0 

p = [ 0 0 $ 0 (44 0 0 0 1 0 0 0 r” = [ 0 0 0 I . (45) 0 0 0 
Time DERIVATIVES ofthe VECTOR are 

The COVARIANT DERIVATIVES, given by 

(66) (46) 

are 

[ 

.* 
- sin0+l9+cost3i; - sinfld - rcos0$ -rsin00 
cos0ib+sinBi:+ cos0ii4 - rsin06’ +rcos08 

2 I A r;r = 
aA- ‘A, -ri A- 

dr rr z = ar 

A 
1 dAr 1 dAe 

+j = - - 
T 88 

- I$Ai = - - - rfoAe 
T a?- 

(47) 

[ 

-2sin0$ +cos0i; -rcos0i!j2 - An04 
2cos0+0 + sin0i: - rsirA2 + rcos0t9 

2 1 = 
1 dAr Ae - --_- - 
r de T 

A 
dAT dAr 

r;z = x - FtzAi = dx 

&;r = 
dAe . aA0 
xr;rAi = x 

(48) 

(49) 

(50) 

(51) 

(52) 

(53) 

(54) 

(55) 

(i’ - rb2)? + (2+8 + .@ + 2 it. (67) = 

SPEED is given by 

Time derivatives of the unit VECTORS are - sin t9 4 . 
*= 1 I Cd8 =dh (69) 

0 - :. cosee 
8 - - [ - sin08 1 = -& (70) 

0 

0 B= [I 0 = 0. (71) 
0 
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CROSS PRODUCTS of the axes are 

The CONVECTIVE DERIVATIVE is 

(75) 

To rewrite this, use the identity 

V(A.B)=Ax(VxB)+Bx(VxA)+(A-V)B+(B*V)A 
(76) 

and set A = B, to obtain 

V(A*A)=2Ax(VxA)+2(AT)A, (77) 

SO 

(A. V)A = V(+A2) -A x (V x A). (78) 

Then 

g = ~+V(~i2)-~x(Vxi) = i;+(vx~)x~+v(~i’2). 
(79) 

The CURL in the above expression gives 

so 

(80) 

-k x (V x k) = -28(+? x k + ree x ii) 

- -a~(-& + de) = 2+d - 2rd2t. - (81) 

We expect the gradient term to vanish since SPEED does 
not depend on position. Check this using the identity 

V(f2) = 2fVf7 

v(+ti2) = $V(i2 + r2e2 + -i-“) = +v+ + reqre> + Jimi:. 
(82) 

Examining this term by term, 

(83) 

so, as expected, 
V(ik2) = 0. (86) 

We have already computed ir;, so combining all three 
pieces gives 

Dk 
-= 
Dt ( 7 - ye2 - 2Td2)F + (2+8 + 2+e + rti>e + i% 

= (;; - 3rd2)F + (4d + re)h + 2%. (87) 

The DIVERGENCE is 

v 4 A = AYe = Arr + (r:,At + riyA8 + r;rA”) + A$ 

+ (&A’ + r;eA’ + r’t,A”) 

+A:‘, + (I’:,A’ + r&A’ + rf,A”) 

=A;.+A;o+A:,+(O+O+O)+(;+O+O) 

+ (0 + 0 + 0) 

(88) 

or, in VECTOR notation 

The CROSS PRODUCT~S 

VxF- 

and the LAPLACIAN is 

1 a2f a”f 
Vaf=g(rg)+--+~ 

+ de2 
B2f 1 Bf 1 d2f a2f - - w+--+-2+=. 

T dr + de (91) 

The vector LAPLACIAN is 

v2v = 

The HELMHOLTZ DIFFERENTIAL EQUATION isseparable 
in cylindrical coordinates and has ST~KEL DETERMI- 
NANT S = 1 (for T, 8, z) or S = l/(1 - cz2) (for Morse 
and Feshbach’s &, &, &). 

see also ELLIPTIC CYLINDRICAL COORDINATES, HELM- 
HOLTZ DIFFERENTIAL EQUATION-CIRCULAR CYLIN- 
DRICAL COORDINATES, POLAR COORDINATES, SPHER- 
ICAL COORDINATES 
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Cylindrical Equal-Area Projection 
p: 

A transverse form of the cylindrical equal-area projec- 
tion is given by the equations 

X = cos 4 sin(A - X0) (9) 

Y = tan-1 [ cos;~~~Ao)] - $0, (10) 

The MAP PROJECTION having transformation equa- 
tions, 

and the inverse FORMULAS are 

x=(x-xo)cos~, (1) 
sin 4 

y=- 

cos $s 
(2) 

for the normal aspect, and inverse transformation equa- 
t ions 

., ” 

. ...; 
: 

‘ .  

4 = sin -l(Ycos~s) (3) 

A= 
iz& +xo* (4) 

An oblique form of the cylindrical equal-area projection 
is given by the equations 

X, = tan-l 
( 

cos $1 sin $2 cos XI - sin 41 cos 4$z cos X2 

sin $1 cos 42 sin X2 - cos 41 sin 42 sin X1 > 

(5) 

4 = tan-l 
[ 

cos(Xp - A,) - 
P 1 tan& ’ (6) 

and the inverse FORMULAS are 

4 = sin -’ (y sin $p + &J7 cos gSp sin 2) (7) 

X = X0 + tan-l 

( 

&jF sin& sins - ycos& 

J1-yz cosx ) 

l  

(8) 

4 = sin -‘[& - x2 sin(y + +o)] (11) 

X = X0 + tan-l 
[ 

--os(y+$o) ’ 
A - x2 1 (12) 

References 
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Cylindrical Equidistant Projection 

The MAP PROJECTION having transformation equations 

2 = (A - AO)COS(bl (1) 

Y = $1 (2) 

and the inverse FORMULAS are 

References 
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Cylindrical ,Function 

R ( y) - Jk(x)yA(Y) - J:,(dy~(z) 
rnx, = 

Jm(+A(y) - JAx(y)Ym(x) 

Sm(x, y) _ JAILS - Jm(y>yA(x) 
= Jm(x)Ym(Y) - Jm(Y)Ym(x) ’ 

see also CYLINDER FUNCTION, HEMISPHERICAL FUNC- 
TION 
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Cylindrical Harmonics 

see BESSEL FUNCTION OF THE FIRST KIND 

Cylindrical Hoof 

see CYLINDRICAL WEDGE 

Cylindrical Projection 

see BEHRMANN CYLINDRICAL EQUAL-AREA PROJEC- 
TION, CYLINDRICAL EQUAL-AREA PROJECTION, CYL- 
INDRICAL EQUIDISTANT PROJECTION,GALL’S STEREO- 
GRAPHIC PROJECTION,MERCATOR PROJECTION, MIL- 
LER CYLINDRICAL PROJECTION,PETERS PROJECTION, 
PSEUDOCYLINDRICAL PROJECTION 

Cylindrical Segment 
A 

The solid portion of a CYLINDER below a cutting PLANE 
which is oriented PARALLEL to the CYLINDER’S axis of 
symmetry. For a CYLINDER of RADIUS T and length 
L, the VOLUME of the cylindrical segment is given by 
multiplying the AREA of a circular SEGMENT of height 

h bY L, 

- (r - h)LJ2rh--hz. 

see also C YLINDRICA 
SPHERICAL SEGMENT 

.L WEDGE, S ECTOR, SEGMENT, 

writing t = x1 then gives the 
the “tongue’ ‘I of the wedge aIS 

parametric equation .s of 

X =t (2) 

y=*dr2-t2 
ht 

z=- 
T 

(3) 

(4) 

for t E [0, T]. To examine the form of the tongue, it 
needs to be rotated into a convenient plane. This can 
be accomplished by first rotating the plane of the curve 
by 90” about the X-AXIS using the ROTATION MATRIX 
R,(90") and then by the ANGLE 

above the z- 
the xz-plane 

AXIS 
and 

(5) 

. The transformed plane 
has parametric equations 

now rests in 

t&?T-F 
X= (6) T 

and is shown below. 

The length of the tongue (measured down its middle) is 
obtained by plugging t = T into the above equation for 
x, which becomes 

Cylindrical Wedge 
L = dh2 + r2 (8) 

O-, 0, h) (and which follows immediately from the PYTHAGO- 
REAN THEOREM). The VOLUME of the wedge is given 

bY 
V = ;r2h. (9) 

see also CONICAL WEDGE, CYLINDRICAL SEGMENT 

Cylindroid 

The solid cut from a CYLINDER by a tilted PLANE pass- see PL~KER'S CONOID 

ing through a DIAMETER of the base. It is also called a 
CYLINDRICAL HOOF. Let the height of the wedge be h 
and the radius of the CYLINDER from which it is cut r. 
Then plugging the points (0, -T, 0), (O,T, 0), and (T, 0, h) 
into the Spoint equation for a PLANE gives the equation 
for the plane as 

hx - TZ = 0. (1) 

Combining with the equation of the CIRCLE which de- 
scribes the curved part remaining of the cylinder (and 
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D D-Number 
A NATURAL NUMBER n > 3 such that 

d’Alembert% Equation 
The ORDINARY DIFFERENTIAL EQUATION 

y = xf (Y’> + dY’)Y 

where y’ G dy/dx and f and g are given functions. 

d’Alembert Ratio Test 

see RATIO TEST 

d’ Alembert’s Solution 
A method of solving the 1-D WAVE EQUATION. 

see also WAVE EQUATION 

d’Alembert% Theorem 
If three CIRCLES A, B, and C are taken in pairs, the ex- 
ternal similarity points of the three pairs lie on a straight 
line. Similarly, the external similarity point of one pair 
and the two internal similarity points of the other two 
pairs lie upon a straight line, forming a similarity axis 
of the three CIRCLES. 

References 
Dijrrie, H. 100 Great Problems of Elementary Mathematics: 

Their History and Solutions. New York: Dover, p. 155, 
1965. 

d’Alembertian Operator 
Written in the NOTATION of PARTIAL DERIVATIVES, 

where c is the speed of light. Writing in TENSOR nota- 
tion 

see UZSO HARMONIC COORDINATES 

d-Analog 
The d-analog of INFINITY FACTORIAL is given by 

[oo!]d = f i  (1 - $) l  

n=3 

This INFINITE PRODUCT can be evaluated in closed form 
for small POSITIVE integral d > 2. - 

see also q-ANALOG 

n[(anB2 - a) 

whenever (a, n) = 1 (a and n are RELATIVELY PRIME) 

and a 5 n. There are an infinite number of such 
numbers, the first few being 9, 15, 21, 33, 39, 51, l  . . 
(Sloane’s AO33553). 

see UZSO KN~DEL NUMBERS 

Heierences 
Makowski, A. “Generalization of Morrow’s D-Numbers.” Si- 

mon Stevin 38, 71, 1962/1963. 
Sloane, N. J. A. Sequence A033553 in “An On-Line Version 

of the Encyclopedia of Integer Sequences.” 

D-Statistic 

see KOLM~GOROV-SMIRNOV TEST 

D-Triangle 
Let the circles c2 and c$ used in the construction of the 
BROCARD POINTS which are tangent to AzA3 at A2 and 
AS, respectively, meet again at D1. The points D1 D2 DJ 
then define the D-triangle. The VERTICES of the D- 
triangle lie on the respective APOLL~NIUS CIRCLES. 

see also APOLL~NIUS CIRCLES, BROCARD PRINTS 

References 
Johnson, R. A. Modern Geometry: An Elementary D-eatise 

on the Geometry of the Triangle and the Circle. Boston, 
MA: Houghton Mifflin, pp. 284-285, 296 and 307, 1929. 

Daisy 

A figure resembling a daisy or sunflower in which copies 
of a geometric figure of increasing size are placed at regu- 
lar intervals along a spiral. The resulting figure appears 
to have multiple spirals spreading out from the center. 

see also PHYLLOTAXIS, SPIRAL, SWIRL, WHIRL 

References 
Dixon, R. “On Drawing a Daisy.” 55.1 in Mathographics. 

New York: Dover, pp 122-143, 1991. 

References 
Finch, S. “Favorite Mathematical Constants.” http: //wuw. 

mathsoft.com/asolve/constant/infprd/infprd.html. 
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Damped Exponential Cosine Integral 

J 
e -wT cos(wt) dw. (1) 

0 

Integrate by parts with 

use 
-wT 

dv = cos(wt) dw (2) 

du = -TCWT dw 
1 

v = t sin(wt), (3) 

so 

J 
e -wT cos(wt) dw 

T - - ieBwt sin(wt) + t 
t s 

CwT sin(wt) dw. (4) 

Now integrate 

e --wT sin(wt) dw (5) 

by parts. Let 

--wT 
‘U=e dv = sin(&) dw 

1 
du=-TeBwTdw v=-- t cos(wt) 7 (7 

so 

The inner and outer SPHERES TANGENT internally to a 
CONE and also to a PLANE intersecting the CONE are 
called Dandelin spheres. 

(,, 5) /e-w%os(wt)dw 

Dandelin Spheres 

s 1 T . 
e -wt sin(d) dw = -7 cos(wt) - t 

s 
eBwT cos(wt) dw 

(8) 
and 

s 
1 -wt 

e wT cos(wt) dw = -e 
t 

sin(wt) 

T -wt T2 -- 
t2 e 

cos(wt) - t2 
s 

e -wT cos(ot) dw (9) 

-wT 1 T 
=e 7 sin(wt) - F cos(wt) 1 (10) 

t2 + T2 7 e s -wT cos(wt) dw 

- - <[t sin(wT) - Tcos(wt)] (11) 

s 
e -wT cos(wt) dw = & [t sin(wt) - T cos(wT)]. 

Therefore, 
(12) 

T T 
e -wT cos(wt) dw = 0 + - - - 

t2 +T2 - t2 + T2 l  

(13) 

see also COSINE INTEGRAL, FOURIER TRANSFORM- 
LORENTZIAN FUNCTION,LORENTZIAN FUNCTION 

The SPHERES can be used to show that the intersection 
of the PLANE with the CONE is an ELLIPSE. Let ;TT be 
a PLANE intersecting a right circular CONE with vertex 
0 in the curve E. Call the SPHERES TANGENT to the 
CONE and the PLANE S1 and S2, and the CIRCLES on 
which the CIRCLES are TANGENTS the CONE RI and 
R2. Pick a line along the CONE which intersects RI at 
Q, E at P, and R2 at T. Call the points on the PLANE 
where the CIRCLES are TANGENT F-1 and F2. Because 
intersecting tangents have the same length, 

FIP = QP 

F2P = TP. 

Therefore, 

which is a constant independent of P, so E is an ELLIPSE 
with a = QT/2. 

see also CONE, SPHERE 

References 
Honsberger, R. “Kepler’s Conic0 Ch. 9 in lMuthematica2 

Plums (Ed. R. Honsberger). Washington, DC: Math. As- 
soc. Amer., p+ 170, 1979. 

Honsberger, R. More Mathematical Morsels. Washington, 
DC: Math. Assoc. Amer., pp. 40-44, 1991. 

Ogilvy, C. S. Excursions in Geometry. New York: Dover, 
pp. 80-81, 1990. 

Ogilvy, C. S. E xcursions in Mathematics. New York: Dover, 
pp. 68-69, 1994. 
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Danielson-Lanczos Lemma 
The DISCRETE FOURIER TRANSFORM of length N 
(where IV is EVEN) can be rewritten as the sum of two 
DISCRETE FOURIER TRANSFORMS, each of length N/2. 
One is formed from the EVEN numbered points; the 
other from the ODD numbered points. Denote the I&h 
point of the DISCRETE FOURIER TRANSFORM by Fn. 
Then 

N-l 

F, = 
x he 

-2dnk/N 

k=O 

N/2-1 N/2-1 

- - 
IE 

e-2rikn/(N/2) f2k+Wn x e-2riknl(N12> f2k+1 

k=O k=O 

= Fi + WnFi, 

where W = e-2Ti’N and 72 = 0,. . . , N. This procedure 
can be applied recursively to break up the N/2 even 
and ODD points to their N/4 EVEN and ODD points. 
If Iv is a POWER of 2, this procedure breaks up the 
original transform into lg N transforms of length 1. Each 
transform of an individual point has Fi”““’ = fk for 
some IL By reversing the patterns of evens and odds, 
then letting e = 0 and o = 1, the value of Fz in BINARY 
is produced. This is the basis for the FAST FOURIER 
TRANSFORM. 

see also DISCRETE FOURIER TRANSFORM, FAST FOUR- 
IER TRANSFORM,FOURIER TRANSFORM 

References 
Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetter- 

ling, W. T. Numerical Recipes in C: The Art of Scientific 
Computing. Cambridge, England: Cambridge University 
Press, pp, 407-411, 1989. 

Darboux Integral 
A variant of the RIEMANN INTEGRAL defined when the 
UPPER and LOWER INTEGRALS, taken as limits of the 
LOWERSUM 

L(f; 4; N) = 2 m(f; 6,) - ~$(Ic~-~) 

TX1 

and UPPER SUM 

ULf; 4; N) = 2 M(f; ST) - $(X,-l), 
r=l 

are equal. Here, f(x) is a REAL FUNCTION, 4(X) is 
a monotonic increasing function with respect to which 
the sum is taken, m(f;S) denotes the lower bound of 
f(x) over the interval S, and M(f; S) denotes the upper 

see also LOWERINTEGRAL,LOWER SUM, RIEMANN IN- 
TEGRALJPPER INTEGRALJPPER SUM 

References 
Kestelman, H. Modern Theories of Integration, 2nd rev. ed. 

New York: Dover, p. 250, 1960. 

Darboux-Stieltjes Integral 
~~~DARBOUX INTEGRAL 

Darboux Vector 
The rotation VECTOR of the TRIHEDRON of a curve with 
CURVATURE K # 0 when a point moves along a curve 
with unit SPEED. It is given by 

D- TT+KB, (1) 

where 7 is the TORSION, T the TANGENT VECTOR, and 
B the BINORMAL VECTOR. The Darboux vector field 

T=DxT (2) 

T;J=DxN (3) 

B-DxB. (4) 

see also BINORMAL VECTOR, CURVATURE, TANGENT 
VECTOR,TORSION (DIFFERENTIAL GEOMETRY) 

References 
Gray, A. Modern Differential Geometry of Curves and Sur- 

faces. Boca Baton, FL: CRC Press, p. 151, 1993. 

Darling’s Products 
A generalization of the I-IYPERGEOMETRIC FUNCTION 
identity 

zF~(a,p;r;z)2~l(l-cu,l-p;2-y;z) 

= 2~1(ar+l-y,~+l-+y;2-y;x)2F&y-a,y-~;y;z) 

(1) 

to the GENERALIZED HYPERGEOMETRIC FUNCTION 
3F&, b, c; d, e; x)* Darling’s products are 

E-l -- - 
c-6 

3F2 
a+1-6,p+1-6,y+1-6;z 

2-S,E$l-6 1 S-a,S-p,8-y;x 
6,6+1-E 1 

a+l-qp+1-E,y+l-E;z 
2-EJ+l-E 1 

x 3fi 
E-a,E-p,~-y;x 

E,E+l-d 1 (2) 
and 

(1 - 4 
a+P+74-E 

C-1 - - 
e-6 45 - a, 45 - p, c - y; z 1 s-1 +6--E E-a,~-p,~-y;z 

(3) 
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which reduce to (1) when y = E -+ 00. 

References 
Bailey, W. N. “Darling’s Theorems of Products.” 510.3 in 

Generalised Hypergeometric Series. Cambridge, England: 
Cambridge U niversity Press, pp. 88-92, 1935. 

Dart’ 

see PENROSE TILES 

Darwin-de Sitter Spheroid 
A SURFACE OF I~EVOLUTION of the form 

T(4) = a[1 - e sin2 4 - (ie” + k) sin2(2@)], 

where k is a second-order correction to the figure of a 
rotating fluid. 

see also ABLATE SPHEROID, PROLATE SPHEROID, 
SPHEROID 

References 
Zharkov, V. N. and Trubitsyn, V, P. Physics of Planetary 

Interiors. Tucson, AZ: Pachart Publ. House, 1978. 

Darwin’s Expansions 
Series expansions of the PARABOLIC CYLINDER FUNC- 
TION U(U,Z) and W(U,X). The formulas can be found 
in Abramowitz and Stegun (1972). 

References 
Abramowita, M. and Stegun, C. A. (Eds.). Handbook 

of Mathematical Functions with Formulas, Graphs, and 
Mathematical Tables, 9th printing. New York: Dover, 
pp. 689-690 and 694-695, 1972. 

Data Structure 
A formal structure for the organization of information. 
Examples of data structures include the LIST, QUEUE, 
STACK, and TREE. 

Database 
A database can be roughly defined as a structure con- 
sisting of 

1. A collection of information (the data), 

2. A collection of queries that can be submitted, and 

3. A collection of algorithms by which the structure 
responds to queries, searches the data, and returns 
the results. 

References 
Petkovgek, M.; Wilf, H. S.; and Zeilberger, D. A=B. Welles- 

ley, MA: A. K, Peters, p. 48, 1996, 

Daubechies Wavelet Filter 
A WAVELET used for filtering signals. Daubechies (1988, 
p. 980) has tabulated the numerical values up to order 
p = 10. 

References 
Daubechies, I. “Orthonormal Bases of Compactly Supported 

Wavelets? Comm. Pure AppE. Math. 41, 909-996, 1988. 
Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vet- 

terling, W. T. “Interpolation and Extrapolation.” Ch. 3 
in Numerical Recipes in FORTRAN: The Art of Scien- 
tific Computing, 2nd ed. Cambridge, England: Cambridge 
University Press, pp. 584-586, 1992. 

Davenport-Schinzel Sequence 
Form a sequen .ce from an ALP HABET of letters [l, n] such 
that th .ere are no consecutive letters and no alternating 
subsequences of length greater than d. Then the se- 
quence is a Davenport-Schinzel sequence if it has max- 
imal length IV&). The value of Nl(n) is the trivial 
sequence of 1s: 1, 1, 1, . . . (Sloane’s AOOOOl2). The val- 
ues of Nz(n) are the POSITIVE INTEGERS 1, 2, 3, 4, . . . 
(Sloane’s A000027). The values of Na(n) are the ODD 
INTEGERS 1, 3, 5, 7, . . . (Sloane’s A005408). The first 
nontrivial Davenport-Schinzel sequence N4 (n) is given 
by 1, 4, 8, 12, 17, 22, 27, 32, . . . (Sloane’s A002004). 
Additional sequences are given by Guy (1994, pa 221) 
and Sloane. 

References 
Davenport, H. and Schinael, A. “A Combinatorial Problem 

Connected with Differential Equations.” Amer. J. Math. 
87, 684-690,1965. 

Guy, R. K. “Davenport-Schinael Sequences.” SE20 in Un- 

solved Problems in Number Theory, 2nd ed. New York: 
Springer-Verlag, pp. 220-222, 1994. 

Roselle, D. P. and Stanton, R. G. “Results of Davenport- 
Schinzel Sequences.” In Proc. Louisiana Conference on 
Combinatorics, Graph Theory, and Computing. Louisiana 
State University, Baton Rouge, March l-5, 1970 (Ed. 
R. C. Mullin, K. B. Reid, and D. P. Roselle). Winnipeg, 
Manitoba: Utilitas Mathematics, pp. 249-267, 1960. 

Sharir, M. and Agarwal, P. Davenport-Schinzel Sequences 
and Their Geometric Applications. New York: Cambridge 
University Press, 1995. 

Sloane, N. J. A. Sequences A000012/M0003, A000027/ 
M0472, A002004/M3328, and A005408/M2400 in “AnOn- 
Line Version of the Encyclopedia of Integer Sequences.” 

Dawson’s Integral 

0.4 

0.2 

-4 -2 

-0. +Y -0 4 

An INTEGRA 
lineshape: 

.L , which arises in computation of the Voigt 

\ 
2 4 

s 

2 ,2 
ey2 dy. (1) 

0 

D(x) = e-” 
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It is sometimes generalized such that 

s 

X 

D&(X) E eTX2 efy2 dy, 
I 
(2) 

0 

giving 

D+(x) = 3 d- 7re+ 2 erfi(x) 

D-(x) = $fie x2 erf(x), 

(3) 

(4 

where erf(r) is the ERF function and e&(z) is the imag- 
inary error function ERFI. D+(x) is illustrated in the 
left figure above, and D-(x) in the right figure. D+ has 
a maximum at D>(x) = 0, or 

l-J;;e-x2 2 x erfi(x) = 0, (5) 

giving 

D+(0.9241388730) = 0.5410442246, (6) 

and an inflection at D!# = 0, or 

-2x + &ieDx2(2x2 - 1) erfi(x) = 0, (7) 

giving 

D+(1.5019752683)= 0.4276866160. (8) 

References 
Abramowitz, M. and Stegun, C. A. (Eds.). Handbook 

of Mathematical Functions with Formulas, Graphs, and 
Mathematical Tables, 9th printing. New York: Dover, 
p. 298, 1972. 

Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vet- 
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2nd ed. Cambridge, England: Cambridge University Press, 
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Day of Week 
see FRIDAY THE THIRTEENTH, WEEKDAY 

de Bruijn Constant 
Also called the C~PSON-DE BRUIJN CONSTANT. It is 
defined by 

where 
c = 1.0164957714.... 

References 
Copson, E. T. “Note on Series of Positive Terms.” J. London 

Math. Sot. 2, 9-12, 1927. 
Copson, E. T. “Note on Series of Positive Terms.” J. London 

Math. Sot. 3, 49-51, 1928. 
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de Bruijn Diagram 

see DE BRUIJN GRAPH 

de Bruijn Graph 
A graph whose nodes are sequences of symbols from 
some ALPHABET and whose edges indicate the sequences 
which might overlap. 

References 
Golomb, S. Wm Sh$ Register Sequences. San Francisco, CA: 

Holden-Day, 1967. 
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ence? Math. Mug. 55, 131-143, 1982. 

de Bruijn-Newman Constant 
NJ3. A detailed on-line essay by S. Finch was the start- 
ing point for this entry. 

Let E be the XI FUNCTION defined by 

E(z/2)/8 can beviewed as the FOURIER TRANSFORM of 
the signal 

a(t) = F(2r2n4egt - 3nn2e5t)e--an2e4t (2) 
n=l 

for t f Iw > 0. Then denote the FOURIER TRANSFORM 
of +(t)e XtZas H(X, z), 

F[Q(t)ext2] = H(A, 2). (3) 

de Bruijn (1950) proved that H has only REAL zeros 
for A > l/Z. C. M. Newman (1976) proved that there - 
exists a constant A such that H has only REAL zeros 
IFF X > A. The best current lower bound (Csordas et 
al. 1993, 1994) is A > -5.895 x lo-‘. The RIEMANN 
HYPOTHESIS is equivalent to the conjecture that A < 0. - 
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Newman, C. M. “Fourier Transforms with only Real Zeros.” 
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de Bruijn Sequence 
The shortest sequence such that every string of length 
n on the ALPHABET a occurs as a contiguous subrange 
of the sequence described by a. Every de Bruijn se- 
quence corresponds to an EULERIAN CYCLE on a “DE 
BRUIJN GRAPH." Surprisingly, it turns out that the 
lexicographic sequence of LYNDON WORDS of lengths 
DIVISIBLE by n gives the lexicographically smallest de 
Bruijn sequence (Ruskey) . 

References 
Ruskey, F. “Information on Necklaces, Lyndon Words, de 

Bruijn Sequences.” http://sue.csc.uvic.ca/lcas/inf/ 
neck/NecklaceInfo.html. 

de Bruijn’s Theorem 
A box can be packed with a HARMONIC BRICK a x ab x 
abc IFF the box has dimensions ap x abq x abcr for some 
natural numbers p, 4, T (Le., the box is a multiple of the 
brick). 

see also BOX-PACKING THEOREM, CONWAY PUZZLE, 
DE BRUIJN'S THEOREM,KLARNER'S THEOREM 

References 
Honsberger, R. Mathematical Gems II. Washington, DC: 

Math. Assoc. Amer., pp. 69-72, 1976. 

de Jonquikres Theorem 
The total number of groups of a 9;; consisting in a point 
of multiplicity kr , one of multiplicity kz, . . . , one of mul- 
tiplicity k,, where 

IE ki =N (1) 

>(ki - I) = T, (2) 

and where al points have one multiplicity, ~2 another, 
etc., and 

(3) 

nP(P - 1) ’ l  ’ (P - P) 

a1!a2! ’  l  l  

I-I 

an 

c- i ski c  

a2n 

ij akiakj 
- - 

P-P+1 
+ + l  l  . l  (4) 

P-P P-P+2 1 
References 
Coolidge, J. L. A Treatise on Algebraic Plane Curves. New 

York: Dover, p. 288, 1959. 

de Jonqui&res Transformation 
A transformation which is of the same type as its inverse. 
A de Jonquikres transformation is always factorable. 

References 
Coolidge, J. L. A Treatise on Algebraic Plane Curves. New 

York: Dover, pp. 203-204, 1959. 

de la Loubere’s Method 
A method for constructing MAGIC SQUARES of ODD or- 
der, also called the SIAMESE METHOD. 

see also MAGIC SQUARE 

de Longchamps Point 
The reflection of the ORTHOCENTER about the CIRCUM- 
CENTER. This point is also the ORTHOCENTER of the 
ANTICOMPLEMENTARY TRIANGLE. It has TRIANGLE 
CENTERFUNCTION 

a = cosA - cosBcosC. 

It lies on the EULER LINE. 

References 
Altshiller-Court, N. “On the de Longchamps Circle of the 

Triangle.” Amer. Math. Monthly 33, 368-375, 1926. 

Kimberling, C. “Central Points and Central Lines in the 
Plane of a Triangle.” Math. Mug. 67, 163-187, 1994. 

Vandeghen, A. Toddy’s Circles and the de Longchamps 
Point of a Triangle.” Amer. Math. Monthly 71, 176479, 
1964. 

de Mere’s Problem 
The probability of getting at least one “6” in four rolls 
of a single 6-sided DIE is 

1 - ; 4 = 0.518.. l  , 

( > 
(1) 

which is slightly higher than the probability of at least 
one double 6 in 24 throws, 

1 - (E)“” = 0.491.. l  . (2) 

de Mere suspected that (1) was higher than (2). He 
posed the question to Pascal, who solved the problem 
and proved de Mere correct. 

see also DICE 

References 
Kraitchik, M. “A Dice Problem.” 56.2 in Mathematical 

Recreations. New York: W. W. Norton, pp. 118-119,1942. 

de Moivre’s Identity 

e 
i(d) = eie n 

( 1 . (1) 

From the EULER FORMULA it follows that 

cos(n0) + i sin(&) = (cos8 + i sin 8)? (2) 

A similar identity holds for the HYPERBOLIC 
TIONS, 

FUNC- 

(cash x + sinh z)~ = cosh(nz) + sinh(nz). (3) 

Heferences 
A&en, G. Mathematical Methods for Physicists, 3rd ed. Or- 

lando, FL: Academic Press, pp. 356-357, 1985. 
Courant, R. and Robbins, H. What is Mathematics?: An El- 

ementary Approach to Ideas and Methods, 2nd ed. Oxford, 
England: Oxford University Press, pp. 96-100, 1996. 
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de Moivre Number 
A solution & = easrilc” to the CYCLOTOMIC EQUATION 

xd = 1. 

The de Moivre numbers give the coordinates in the 
COMPLEX PLANE of the VERTICES of a regular POLY- 
GON with d sides and unit RADIUS. 

n de Moivre Numbers 

3 1, $(-l&iv%) 
4 zkl,Iki 

5 1, a (-1+J5*(1+J5)&z), 

see also CYCLOTOMIC EQUATION, CYCLOTOMIC POLY- 
NOMIAL, EUCLIDEAN NUMBER 

References 
Conway, J. H. and Guy, R. K. The Book of Numbers. New 

York: Springer-Verlag, 1996. 

de Moivre-Laplace Theorem 
The sum of those terms of the BINOMIAL SERIES of (p+ 
q)” for which the number of successes II: falls between dr 
and cl2 is approximately 1 s t2 

Q E e -t2/2 dt, 

t1 

where 

(2) 

(3) 

(4) 

Uspensky (1937) has shown that 

t2 
1 --t2/2 

t2 

Q 
1 - - 

J2 
e 

7T s t1 

-t2/2dt+ y [(l - t2)Ge ] 
t1 

+ 0, (5) 

for 0 > 5. - 

A COROLLARY states that the probability that ~1: suc- 
cesses in s trials will differ from the expected value sp 
by more than d is 

s 

s 

P& z l-2 4(t) dt, (7) 
0 

where 
d+$ 

SE- 
tT ’ 

Uspensky (1937) showed that 

(8) 

Qsl = P(lx - spl < d) 

s 

61 

=2 +(t)dt+ ‘--” -e2$(6~)+&, (9) 
0 

0 

where 

81 = (sq + d) - Lsq + d] 

02 = (sp + d) - [sp + dJ 

(11) 

(12) 

and 
o*20 + o*251P - ql + e-3u/2 

9 (13) 

for 0 > 5. - 
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de Moivre’s Quintic 

x5 + ax3 + ;u2x + b = 0. 

see also QUINTIC EQUATION 

de Morgan’s and Bertrand’s Test 

see BERTRAND’S TEST 

de Morgan’s Duality Law 
For every proposition involving logical addition and mul- 
tiplication (“or” and “and”), there is a corresponding 
proposition in which the words “addition” and “multi- 
plication” are interchanged. 

de Morgan’s Laws 
Let U represent “or”, I-I represent “and”, and ’ represent 
“not.” Then, for two logical units E and F, 

(E u F)’ = E’ n F’ 

(En F)’ =E’uF’. 

de Polignac’s Conjecture 
Every EVEN NUMBER is the difference of two consec- 
utive PRIMES in infinitely many ways. If true, taking 
the difference 2, this conjecture implies that there are 
infinitely many TWIN PRIMES (Ball and Coxeter 1987). 
The CONJECTURE has never been proven true or refuted. 

see also EVEN NUMBER, TWIN PRIMES 
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de Rham Cohomology see ah HANKEL FUNCTION OF THE FIRST KIND 

de Rham cohomology is a formal set-up for the analytic 
problem: If you have a DIFFERENTIAL &FORM w on a 
MANIFOLD i'W, is it the EXTERIOR DERIVATIVE of an- 
other DIFFERENTIAL &FORM w’? Formally, if w  = dw’ 
then dw = 0. This is more commonly stated as dad = 0, 
meaning that if w is to be the EXTERIOR DERIVATIVE of 
a DIFFERENTIAL &FoRM,~ NECESSARY condition that 
w must satisfy is that its EXTERIOR DERIVATIVE is zero. 

References 
Iyanaga, S. and Kawada, Y. (Eds.). Encyclopedic Dictionary 
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Debye Functions 

x t” dt B2kx 
2k 

et - 1 l CC (2k+n)(2k!) ’ 
k=l 1 de Rham cohomology gives a formalism that aims to 

answer the question, “Are all differential k-forms on a 
MANIFOLD with zero EXTERIOR DERIVATIVE the Ex- 
TERIOR DERIVATIVES of (k + 1)-forms?” In particular, 
the kth de Rham cohomology vector space is defined to 
be the space of all k-forms with EXTERIOR DERIVATIVE 
0, modulo the space of all boundaries of (k + 1)-forms. 
This is the trivial VECTOR SPACE IFF the answer to our 
question is yes. 

The fundamental result about de Rham cohomology 
is that it is a topological invariant of the MANIFOLD, 
namely: the kth de Rham cohomology VECTOR SPACE 
of a MANIFOLD A4 is canonically isomorphic to the 
ALEXANDER-SPANIER COHOMOLOGY VECTOR SPACE 
Hk (M; IQ (also called cohomology with compact sup- 
port). In the case that A4 is compact, ALEXANDER- 
SPANIER COHOMOLOGY is exactly singular cohomology. 

see &~ALEXANDER-SPANIER COHOMOLOGY,&ANGE 
OFVARIABLES THEOREMJXFFERENTIAL ~-FORM, Ex- 
TERIOR DERIVATIVE, VECTOR SPACE 

de Sluze Conchoid 

see CONCHOID OF DE SLUZE 

de Sluze Pearls 

see PEARLS OF SLUZE 

Debye’s Asymptotic Representation 
An asymptotic expansion for a HANKEL FUR 
THE FIRST KIND 

H@)(x) - 1 exp{iz[coscr + (cu - n/Z) Y 
J 

sin a] 
7T 

[ 

e h/4 3e 3Ti/4 

X --jj---t(~+&tan2a)~ 

JCTION OF 

where 
u 
- = sina, 
2 

l- 
3 l/2 

b>-u , 
X 

and 

(1) 
where 1x1 < 27r and B, are BERNOULLI NUMBERS. 

tn dt 

et - 1 
- - 

?lX 
n-l 

k2 

n(n - l)xnB2 n! 
+ 

k3 
+.-.+k”+l 1 (2) 1 

where x > 0. The sum of these two integrals is 

I O” t” dt 
~ = n![(n + l), 
et - 1 (3) 

0 

where c(z) is the RIEMANN ZETA FUNCTION. 
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Decagon 

(> 
The constructible regular lo-sided POLYGON with 
SCHL~FLI SYMBOL (10). The INRADIUS r, CIRCUM- 
RADIUS R, and AREA can be computed directly from 
the formulas for a general regular POLYGON with side 
length s and n = 10 sides, 

r = iscot 1o (“) = @Tizs (1) 

R= +csc x = l 
( > 10 

5(1+ Js)s = 4s (2) 

A = ins2 cot ($) = ~&-Tzs2. (3) 

Here, 4 is the GOLDEN MEAN. 

see UZSO DECAGRAM, DODECAGON, TRIGONOMETRY 
VALUES-T/IO, UNDECAGON 

References 
Dixon, R. Mathographics. New York: Dover, p. 18, 1991. 
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Decagonal Number 

A FIGURATE NUMBER of the form 4n2 - 3n. The first 
few are 1, 10, 27, 52, 85, l  . . (Sloane’s AOO1107). The 
GENERATING FUNCTION giving the decagonal numbers 
is 

2(7a: + 1) - x + 10x2 + 27x3 + 52x4 + . . . . 
(1 -x)3 - 

References 
Sloane, N. J. A. Sequence A001107/M4690 in “An On-Line 

Version of the Encyclopedia of Integer Sequences.” 

Decagram 

The STAR POLYGON ('3"). 

see &O DECAGON, STAR POLYGON 

Decic Surface 
A SURFACE which can be represented implicitly by a 
POLYNOMIAL of degree 10 in x, y, and z. An example 
is the BARTH DECIC. 

see also BARTH DECE, CUBIC SURFACE, QUADRATIC 
SURFACE,QUARTIC SURFACE 

Decidable 
A “theory” in LOGIC is decidable if there is an ALGO- 
RITHM that will decide on input 4 whether or not 4 is a 
SENTENCE true ofthe FIELD of REAL NUMBERS R. 

see UZSO CHURCH'S THESIS, G~DEL'S COMPLETE- 
NESSTHEOREM,G~DEL'SINCOMPLETENESS THEOREM, 
KREISEL CONJECTURE,TARSKI'S THEOREMJJNDECID- 
ABLEJNIVERSAL STATEMENT 

References 
Kemeny, J. G. “Undecidable Problems of Elementary Num- 

ber Theory.” Math. Ann. 135, 160~169,1958. 

Decillion 
In the American system, 1033. 

see &O LARGE NUMBER 

Decimal 
The base 10 notational system for representing REAL 
NUMBERS. 

see also 10, BASE (NUMBER), BINARY, HEXADECIMAL, 
OCTAL 
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Decimal Expansion 
The decimal expansion of a number is its representation 
in base 10. For example, the decimal expansion of 252 
is 625, of n is 3.14159.. . , and of l/9 is 0.1111.. l  . 

If T E p/q has a finite decimal expansion, then 

allOn--l + a210n-2 + . * l  + a72 - - 
lon 

aJ0n-1+az10n-2 +... +& - - . 
2n5n (1) 

FACTORING possible common multiples gives 

P 
’ = 2a5Py (2) 

where p $ 0 (mod 2, 5). Therefore, the numbers with 
finite decimal expansions are fractions of this form. The 
number of decimals is given by max(q p). Numbers 
which have a finite decimal expansion are called REGU- 
LARNUMBERS. 

Any NONREGULAR fraction m/n is periodic, and has a 
period x(n) independent of m, which is at most n - 1 
DIGITS long. If n is RELATIVELY PRIME to 10,thenthe 
period of m/n is a divisor of 4(n) and has at most 4(n) 
DIGITS, where 4 is the TOTIENT FUNCTION. When a 
rational number m/n with (m, n) = 1 is expanded, the 
period begins after s terms and has length t, where s 
and t are the smallest numbers satisfying 

IO2 E 109+t (mod n) . (3) 

When n $ 0 (mod 2, 5), s = 0, and this becomes a 
purely periodic decimal with 

10t = 1 (mod n). (4) 

As an example, consider n = 84. 

loo = 1 lo1 E 10 lo2 G 16 lo3 E -8 
lo4 ~4 lo5 ~40 lo6 E -20 lo7 = -32, 

lo8 E 16 
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so s = 2, t = 6. The decimal representation is l/84 = 
0.01190476. When the DENOMINATOR of a fraction m/n 
has the form n = no2&5O with (noJO> = 1, then the 
period begins after max(aJ) terms and the length of 
the period is the exponent to which 10 belongs (mod no), 
i.e., the number z such that 10” = 1 (mod no). If Q is 
PRIME and X(q) is EVEN, then breaking the repeating 
DIGITS into two equal halves and adding gives all 9s. 
For example, l/7 = 0.142857, and 142 + 857 = 999. 
For l/q with a PRIME DENOMINATOR other than 2 or 5, 
all cycles n/q have the same length (Conway and Guy 
1996). 

If n is a PRIME and 10 is a PRIMITIVE ROOT of n, then 
the period A(n) of the repeating decimal l/n is given by 

qn> = fP(47 (5) 

where qS(n) is the TOTIENT FUNCTION. Furthermore, 
the decimal expansions for p/n, with p = 1, 2, l  l  . , n - 1 
have periods of length n - 1 and differ only by a cyclic 
permutation. Such numbers are called LONG PRIMES 
by Conway and Guy (1996). An equivalent definition is 
that 

1Oi = 1 (mod n) (6) 

for i = n - 1 and no i less than this. In other words, a 
NECESSARY (but not SUFFICIENT) condition is that the 
number 9R,-l (where R, is a REPUNIT) is DIVISIBLE 
by n, which means that R, is DIVISIBLE by n. 

The first few numbers with maximal decimal expansions, 
called FULL REPTEND PRIMES, are 7, 17, 19, 23, 29, 
47, 59, 61, 97, 109, 113, 131, 149, 167, . . . (Sloane’s 
A001913). The decimals corresponding to these are 
called CYCLIC NUMBERS. No general method is known 
for finding FULL REPTEND PRIMES. Artin conjectured 
that ARTIN'S CONSTANT C = 0.3739558136.. . is the 
fraction of PRIMES p for with l/p has decimal maximal 
period (Conway and Guy 1996). D. Lehmer has gen- 
eralized this conjecture to other bases, obtaining values 
which are small rational multiples of C. 

TO find DENOMINATORS with short periods, note that 

lo1 - 1 = 32 

lo2 - 1 = 32 ml1 

lo3 - 1 = 33 ’ 37 

lo4 - 1 = 32 ’ 11’ 101 

lo5 - 1 = 32 .41 l  271 

lo6 - 1 = 33 l  7 ’ 11 l  13 l  37 

lo7 - 1 = 32 l  239 n 4649 

lo8 - 1 = 32 l  11’ 73 l  101’ 137 

10’ - 1 = 34 l  37 l  333667 

1o1O - 1 = 32 l  11.41.271.9091 

loll - 1 = 32 l  21649.513239 

1o12 - 1 = 33 ’ 7.11.13.37 * 101’ 9901. 

The period of a fraction with DENOMINATOR equal to a 
PRIME FACTOR above is therefore the POWER of 10 in 
which the factor first appears. For example, 37 appears 
in the factorization of 103 - 1 and 10’ - 1, so its period 
is 3. Multiplication of any FACTOR by a 2”5@ still gives 
the same period as the FACTOR alone. A DENOMINA- 
TOR obtained by a multiplication of two FACTORS has 
a period equal to the first POWER of 10 in which b&h 
FACTORS appear. The following table gives the PRIMES 
having small periods (Sloane’s A046106, A046107, and 
A046108; Ogilvy and Anderson 1988). 

period primes 
1 3 
2 11 
3 37 
4 101 
5 41, 271 
6 7, 13 
7 239, 4649 
8 73, 137 
9 333667 

10 9091 
11 21649, 513239 
12 9901 
13 53, 79, 265371653 
14 909091 
15 31, 2906161 
16 17, 5882353 
17 2071723, 5363222357 
18 19, 52579 
19 1111111111111111111 
20 3541, 27961 

A table of the periods e of small PRIMES other than the 
special p = 5, for which the decimal expansion is not 
periodic, follows (Sloane’s A002371). 

P e P e P e 

3 1 31 67 33 
7 6 37 3 71 35 

11 2 41 5 73 8 
13 6 43 21 79 13 
17 16 47 46 83 41 
19 18 53 13 89 44 
23 22 59 58 97 96 
29 28 61 60 101 4 

Shanks (1873ab) computed the periods for all PRIMES 

up to 120,000 and published those up to 29,989. 

see also FRACTION, MIDY’S THEOREM, REPEATING 
DECIMAL 
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Decimal Period 

see DECIMAL EXPANSX~N 

Decision Problem 
Does there exist an ALGORITHM for deciding whether 
or not a specific mathematical assertion does or does 
not have a proof ? The decision problem is also known 
as the ENTSCHEIDUNGSPROBLEM (which, not SO coinci- 
dentally, is German for “decision problem”). Using the 
concept of the TURING MACHINE, Turing showed the an- 
swertobe NEGATIVE for elementary NUMBER THEORY. 
J. Robinson and Tarski showed the decision problem is 
undecidable for arbitrary FIELDS. 

Decision Theory 
A branch of GAME THEORY dealing with strategies to 
maximize the outcome of a given process in the face of 
uncertain conditions. 

see 
SEA 

UlSO 

RCH, 

NEWCOMB'S 
PRISONER'S DI 

PARADOX, 
LEMMA 

OPERATIONS RE- 

Decomposition 
A rewriting of a given quantity (e.g., a MATRIX) in terms 
of a combination of %impler” quantities. 

~~~UZSOC~OLESKYDECOMPOSIT~ON,CON~ECTED SUM 
DECOMPOSITION, JACO-SHALEN-JOHANNSON TORUS 
DECOMPOSITION, LU DECOMPOSITTON, QR DECOM- 
POSITION, SINGULAR VALUE DECOMPOSITION 

Deconvolution 
The inversion of a CONVOLUTION equation, i.e., the so- 
lution for f of an equation of the form 

given g and h, where E is the NOISE and * denotes the 
coNv0Lu~10~ Deconvolution is ill-posed and will usu- 
ally not have a unique solution even in the absence of 
NOISE. 

Linear deconvolution ALGORITHMS include INVERSE 
FILTERING and WIENER FILTERING. Nonlinear ALGO- 
RITHMS include the CLEAN ALGORITHM, MAXIMUM 
ENTROPY METHOD, andLUCY. 

see also CLEAN ALGORITHM, CONVOLUTION, LUCY, 
MAXIMUM ENTROPY METHOD,~IENER FILTER 
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Decreasing finct ion 
A function f(z) d ecreases on an INTERVAL 1 if f(b) < 
f(a) for all b > a, where a, b E I. Conversely, a function 
f(z) increases on an INTERVAL I if f(b) > f(a) for all 
b>awitha,bfI. 

If the DERIVATIVE f'(z) of a CONTINUOUS FUNCTION 
f(z) satisfies f’(z) < 0 on an OPEN INTERVAL (a$), 

then f(z) is decreasing on (a, b). However, a fupction 
may decrease on an interval without having a derivative 
defined at all points. For example, the function -z113 
is decreasing everywhere, including the origin x = 0, 
despite the fact that the DERIVATIVE is not defined at 
that point. 

see also D ERIVATIVE, IN CREASING FUNCTION, NON 
CREASIN G FUNCTION J 'ONINCREA SING FUNCTION 

Decreasing Sequence 
A SEQUENCE {al, a2, . . .} for which al > a2 > . . .* - - 

DE- 

see also INCREASING SEQUENCE 

Decreasing Series 
A SERIES sl, So,... for which sr > s2 > . . . . 

Dedekind’s Axiom 
For every partition of all the points on a line into two 
nonempty SETS such that no point of either lies between 
two points of the other, there is a point of one SET which 
lies between every other point of that SET and every 
point of the other SET. 

f *g=h+e, 
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Dedekind Cut 
A set partition of the RATIONAL NUMBERS into two 
nonempty subsets S1 and S2 such that all members of 
S1 are less than those of Sz and such that S1 has no 
greatest member. REAL NUMBERS can be defined using 
either Dedekind cuts or CAUCHY SEQUENCES. 

see UZSO CANTOR-DEDEKIND AXIOM, CAUCHY SE- 
QUENCE 
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Dedekind Eta Function 
ReIDedekindEta z] Im[DedekindEta z] IDedekindEta zI 

Let 
27riz 

Q =e 7 (1 

then the Dedekind eta function is defined by 

r](x) = q1i24 n(l- q”), 

n=l 

which can be written as 

(Weber 1902, pp. 85 and 112; Atkin and Morain 1993). 
7 is a MODULAR FORM. Letting [24 = 22Ti/24 be a 
ROOT OF UNITY, q(z) Satisfies 

r)(Z -t 1) = hqk) (4) 
rl = -Grl(x) (5) 

(Weber 1902, p. 113; Atkin and Morain 1993). 

see also DIRICHLET ETA FUNCTION,THETA FUNCTION, 
WEBER FUNCTIONS 
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Dedekind Sum 

Dedekind Function 

*( > n = n n (l+p-I), 
distinct prime 
factors p of n 

wherethe PRODUCT isoverthedistinct PRIME FACTORS 
of n. The first few values are 1, 3, 4, 6, 6, 12, 8, 12, 12, 
18, . . . (Sloane’s A001615). 

see U~SO DEDEKIND ETA FUNCTION, EULER PRODUCT, 
TOTIENT FUNCTION 
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Dedekind’s Problem 
The determination of the number of monotone 
BOOLEAN FUNCTIONS of 72 variables is called Dedekind’s 
problem. 

Dedekind Ring 
A abstract commutative RING in which every NONZERO 
IDEAL is a unique product of PRIME IDEALS. 

Dedekind Sum 
Given RELATIVELY PRIME INTEGERS p and q, the 
Dedekind sum is defined by 

where 

Dedekind sums obey 2-term 

S(P, q> + s(q, P> = -;+g;+;+-$ (3) 

and 3-term 

s(bc’, a)fs(ca’, b)+s(ab’,c) = -;+A (; + b -I- ;) 
Ca 

(4) 
reciprocity laws, where a, b, c are pairwise COPRIME and 

au’ E 1 (mod b) 

bb’ E 1 (mod c) 

(5) 

(6) 
cc’ E 1 (mod a). (7) 



Deducible Definite Integral 

Let p, q, u, u E N with (p, q) = (u, w) = 1 (i.e., are 
pairwise RELATIVELY PRIME), then the Dedekind sums 
also satisfy 

Deficient Number 
Numbers which are not PERFECT and for which 

s(N) s a(N) - N < N, 

s(p,q) +s(u,v) = s(pu’ - qv’,pv+ qu) - a 
or equivalently 1 

( 

t 
+E ;+;+- 7 (8) 

> P 

where t = pi + qu, and u', v' are any INTEGERS such 
that uu’ + VW’ = 1 (Pommersheim 1993). 
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Deducible 
If q is logically deducible from p, this is written p t- q. 

Deep Theorem 
Qualitatively, a deep theorem is a theorem whose proof 
is long, complicated, difficult, or appears to involve 
branches of mathematics which are not obviously related 
to the theorem itself (Shanks 1993). Shanks (1993) cites 
the QUADRATIC RECIPROCITY THEOREM asanexample 
of a deep theorem. 

see also THEOREM 
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Defective Matrix 
A MATRIX whose EIGENVECTORS are not COMPLETE. 

Defective Number 

see DEFICIENT NUMBER 

Deficiency 
The deficiency of a BINOMIAL COEFFICIIENT (nLk) with 
JC < n as the number of i for which bi = 1, where - 

n+i = aibi, 

1 5 i 5 k, the PRIME factors of bi are > /c, and n ai = 
kf '1 where His the FACTORIAL. 

see also ABUNDANCE 
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o(n) < 2n, 

where g(N) is the DIVISOR FUNCTION. Deficient num- 
bers are sometimes called DEFECTIVE NUMBERS (Singh 
1997). PRIMES, POWERS of PRIMES, and any divisors 
of a PERFECT or deficient number are all deficient. The 
first few deficient numbers are 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 
13, 14, 15, 16, 17, 19, 21, 22, 23, . . I (Sloane’s A002855). 

ER,LEAST DEFICIENT NUM- see also ABUND ANTNUMB 
BER,PERFECT NUMBER 
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Definable Set 
An ANALYTIC, BOREL, or COANALYTIC SET. 

Defined 
If A and B are equal by definition (i.e., A is defined 
as B), then this is written symbolically as A s B or 
A := B. 

Definite Integral 
An INTEGRAL 

s 

b 
f (4 dx 

a 

with upper and lower limits. The first FUNDAMENTAL 
THEOREM OF CALCULUS allows definite integrals to be 
computed in terms of INDEFINITE INTEGRALS, since if 
F is the INDEFINITE INTEGRAL for f(x), then 

I’ 
b 

f(x) dx = F(b) - F(a). 

see also C ALCULUS, FUNDAMENTAL 
CALCULUS, INDEFINIT 'E INTEGRAL, IN T 

THEOREMS OF 
EGRAL 
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Degenerate 
A limiting case in which a class of object changes its na- 
ture so as to belong to another, usually simpler, class. 
I?or example, the PRINT is a degenerate case of the CIR- 
CLE as the RADIUS approaches 0, and the CIRCLE is 
a degenerate form of an ELLIPSE as the ECCENTRIC- 
ITY approaches 0. Another example is the two identical 
ROOTS of the second-order POLYNOMIAL (X - 1)“. Since 
the rt ROOTS of an nth degree POLYNOMIAL are usually 
distinct, ROOTS which coincide are said to be degener- 
ate. Degenerate cases often require special treatment in 
numerical and analytical solutions. For example, a sim- 
ple search for both ROOTS of the above equation would 
find only a single one: 1 

The word degenerate also has several very specific and 
t ethnical meanings in different branches of mathematics. 

References 
A&en, G. lkfathematical Methods for Physicists, 3rd ed. Or- 

lando, FL: Academic Press, pp. 513-514, 1985. 

Degree 
The word “degree” has many meanings in mathematics. 
The most common meaning is the unit of ANGLE mea- 
sure defined such that an entire rotation is 360”. This 
unit harks back to the Babylonians, who used a base 60 
number system. 360” likely arises from the Babylonian 
year, which was composed of 360 days (12 months of 30 
days each). The degree is subdivided into 60 MINUTES 
per degree, and 60 SECONDS per MINUTE. 

see also ARC MINUTE, ARC SECOND, DEGREE OF 
FREEDOM, DEGREE (MAP), DEGREE (POLYNOMIAL), 
DEGREE (VERTEX),INDEGREE,LOCAL DEGREE, OUT- 
DEGREE 

Degree (Algebraic Surface) 

see ORDER (ALGEBRAIC SURFACE) 

Degree of Freedom 
The number of degrees of freedom in a problem, distri- 
bution, etc., is the number of parameters which may be 
independently varied. 

see also LIKELIHOOD RATIO 

Degree (Map) 
Let f : A4 t+ nT be a MAP between two compact, 
connected, oriented n-D MANIFOLDS without boundary. 
Then f induces a HOMEOMORPHISM f* from the HO- 
MOLOGY GROUPS H,(M) to H,(N), both canonically 
isomorphic to the INTEGERS, and so f* can be thought 
of as a HOMEOMORPHISM of the INTEGERS. The INTE- 
GER d(f) to which the number 1 gets sent is called the 
degree of the MAP f. 

There is an easy way to compute d(f) if the MANIFOLDS 
involved are smooth. Let x E N, and approximate f 
by a smooth map HOMOTOPIC to f such that z is a 
“regular value” of f (which exist and are everywhere by 

SARD’S THEOREM). By the IMPLICIT FUNCTION THE- 
OREM, eachpointin f-‘(x) has a NEIGHBORHOOD such 
that f restricted to it is a DIFFEOMORPHISM. If the 
DIFFEOMORPHISM is orientation preserving, assign it the 
number +l, and if it is orientation reversing, assign it 
the number -1. Add up all the numbers for all the 
points in f-l(z), and that is the d(f), the degree of 
f. One reason why the degree of a map is important is 
because it is a HOMOTOPY invariant. A sharper result 
states that two self-maps of the n-sphere are homotopic 
IFF they have the same degree. This is equivalent to the 
result that the nth HOMOTOPY GROUP of the ~-SPHERE 
is the set Z of INTEGERS. The ISOMORPHISM is given 
by taking the degree of any representation. 

One important application of the degree concept is that 
homotopy classes of maps from n-spheres to n-spheres 
are classified by their degree (there is exactly one homo- 
topy class of maps for every INTEGER n, and n is the 
degree of those maps) l  

Degree (Polynomial) 

see ORDER (POLYNOMIAL) 

Degree Sequence 
Given an (undirected) GRAPH, a degree sequence is a 
monotonic nonincreasing sequence of the degrees of its 
VERTICES. A degree sequence is said to be k-connected 
if there exists some &CONNECTED GRAPH correspond- 
ing to the degree sequence. For example, while the de- 
gree sequence (1, 2, 1) is 1- but not 2-connected, (2, 2, 
2) is 2-connected. The number of degree sequences for 

= 1, 2, . l  . 

hO4251). 
is given by 1, 2, 4, 11, 31, 102, . . . (Sloane’s 

see UZSO GRAPHICAL PARTITION 

References 
Ruskey, F. “Information on Degree Sequerices.” http : //sue 

.csc.uvic.ca/-cos/inf/nump/DegreeSequences.html. 
Ruskey, F.; Cohen, R.; Eades, P.; and Scott, A. “Alley CATS 

in Search of Good Homes.” Congres. Numer. 102,97-110, 
1994. 

Sloane, N. J. A. Sequence A00425l/M1250 in “An On-Line 
Version of the Encyclopedia of Integer Sequences.” 

Degree (Vertex) 

~~~VERTEX DEGREE 

Dehn Invariant 
An invariant defined using the angles of a 3-D POLYHE- 
DRON. It remains constant under solid I)TSSECTION and 
reassembly. However, solids with the same volume can 
have different Dehn invariants. Two POLYHEDRA can 
be dissected into each other only if they have the same 
volume and the same Dehn invariant. 

see UZSO DISSECTION, EHRHART POLYNOMIAL 
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Dehn’s Lemma 
If you have an embedding of a ~-SPHERE in a 3- 
MANIFOLD which exists continuously over the ~-DISK, 
then it also extends over the DISK as an embedding. 
It was proposed by Dehn in 1910, but a correct proof 
was not obtained until the work of Papakyriakopoulos 
(1957ab). 

References 
Hempel, J. 3-Man+Zds. Princeton, NJ: Princeton University 

Press, 1976. 
Papakyriakopoulos, C. D. “On Dehn’s Lemma and the As- 

phericity of Knots.” Proc. Nat. Acad. Sci. USA 43, 169- 
172, 1957a. 

Papakyriakopoulos, C. D. “On Dehn’s Lemma and the As- 
phericity of Knots.” Ann. Math. 66, 1-26, 1957. 

Rolfsen, D. Knots and Links. Wilmington, DE: Publish or 
Perish Press, pp. 100-101, 1976. 

Dehn Surgery 
For 12 E a = b, the Delannoy numbers are the number 
of “king walks” 

The operation of drilling a tubular NEIGHBORHOOD of a 
KNOT K in S3 and then gluing in a solid TORUS so that 
its meridian curve goes to a (p, q)-curve on the TORUS 
boundary of the KNOT exterior. Every compact con- 
nected S-MANIFOLD comes from Dehn surgery on a LINK 
in S3. 

D(n,n) = Pn(3), 

where P&Y) is ~LEGENDRE POLYNOMIAL (Moser 1955, 
Vardi 1991). Another expression is 

see also KIRBY CALCULUS 
D(n,n) = = zFl(-n, n + 1; 1, -l), 

References 
Adams, C. C. The Knot Book: An Elementary Introduction 

to the Mathematical Theory of Knots. New York: W. H. 
Freeman, p. 260, 1994. 

Del 

see GRADIENT 

where E is a 0 BINOMIAL COEFFICIENT and 
&(a, b;c; Z) is a HYPERGEOMETRIC FUNCTION. The 
values of D(n,n) for n = 1, 2, . . . are 3, 13, 63, 321, 
1683, 8989, 48639, . . l  (Sloane’s A001850). 

Del Pezzo Surface 
A SURFACE which is related to CAYLEY NUMBERS. 

The SCHR~DER NUMBERS bear the same relation to the 
Delannoy numbers as the CATALAN NUMBERS do to the 
BINOMIAL COEFFICIENTS. 

References 
Coxeter, H. S. M. Regular Polytopes, 3rd ed. New York: 

Dover, p. 211, 1973. 

see also BINOMIAL COEFFICIENT, CATALAN NUMBER, 
MOTZKIN NUMBER,SCHR~~DERNUMBER 

References 
Hunt, B. “Del Pezzo Surfaces.” 54.1.4 in The Geometry of 

Some Special Arithmetic Quotients. New York: Springer- 
Verlag, pp, 128-129, 1996+ 

Sloane, N. J. A. Sequence A001850/M2942 in “An On-Line 
Version of the Encyclopedia of Integer Sequences.” 

Delannoy Number 
The Delannoy numbers are defined by 

D(a, b) = D(a - 1, b) + D(a, b - 1) + D(a - 1, b - 1), 

where D(O,O) = 1. They are the number of lattice paths 
from (0,O) to (b,a) in which only east (1, 0), north (0, 
1), and northeast (1, 1) steps are allowed (i-e, +, T, and 

A l  

Delaunay Triangulation 
The NERVE ofthe cellsin a VORONOI DIAGRAM, which 
is the triangular of the CONVEX HULL of the points in 
the diagram. The Delaunay triangulation of a VORONOI 

DIAGRAM in 8X2 is the diagram’s planar dual. 

see also TRIANGULATION 

Delian Constant 
The number 2 ‘j3 (the CUBE ROOT of 2) which is to be 
constructed in the CUBE DUPLICATION problem. This 
number is not a EUCLIDEAN NUMBER althoughitis an 
ALGEBRAIC of third degree. 

411 

References 
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Delian Problem 

see CUBE DUPLICATION 

Delta Amplitude 
Given an AMPLITUDE 6 and a MODULUS m, in an EL- 

LIPTIC INTEGRAL, 

see also AMPLITUDE, ELLIPTIC INTEGRAL, MODULUS 
(ELLIPTIC INTEGRAL) 

Delta Curve 
A curve which can be turned continuously inside an 
EQUILATERAL TRIANGLE. There are an infinite num- 
ber of delta curves, but the simplest are the CIRCLE and 
lens-shaped A-biangle. All the A curves of height h have 
the same PERIMETER 2rh/3. Also, at each position of 
a A curve turning in an EQUILATERAL TRIANGLE, the 
perpendiculars to the sides at the points of contact are 
CONCURRENT at the instantaneous center of rotation. 

see also REULEAUX TRIANGLE 

References 
Honsberger, FL Mathematical Gems I. Washington, DC: 

Math. Assoc. Amer., pp. 56-59, 1973. 

Delta Function 
Defined as the limit of a class of DELTA SEQUENCES. 

Sometimes called the IMPULSE SYMBOL. The most com- 
monly used (equivalent) definitions are 

a( > X 
= lim 1 sin[(n + ~>~I 

n+m 27r sin( ix) 

(the so-called DIRICHLET KERNEL) and 

6( 1 
sin(nx) 

x E lim - 
n.-+oo TX 

--ikx & 

1 O” - -- 
2Jr --oae l 

--ikx dk 

(1) 

(2) 

(3) 

(4) 

Z ml 7 (5) 

where F is the FOURIER TRANSFORM. Some identities 
include 

6(x - a) = 0 (6) 

for x # a, 

s 

a-Fe 

6( X- a) dx = 1, (7) 
u--E 

where e is any POSITIVE number, and 

f(x)d(x - a) dx = f (a> (8) 

r 
f (x)S’(x - a)dx = -f’(a) (9) 

-m 

x 
s 

f(x)S(x - x0) dx = xo 
s 

f(x)6(x - xo) dx (10) 

6’ * f = 
r 

6’(a - x) f (x) dx = f I(x) (11) 
--oo 

s 
O” IS’(x)]dx = 00 (12) 

-m 

x26’(x) = 0 (13) 

61(-x) = -S’(x) (14) 

x6’(x) = -J(x). (15) 

(15) can be established using INTEGRATION BY PARTS 
as follows: 

s 
f (x)x6’(x) dx = - 

s 
6(x)-&xf(x)] dx 

- - - 
s 

d[f(x) + xf’(x)] dx 

- - - 
s 

f(x)d(x) dx. (16) 

Additional identities are 

6(ax) = b(x) 
a (17) 

SC x2 - a”> = &5(x + a) + 6(x - a)] (18) 

~[s(z>l = x $,$Y (19) 
i 

where the xis are the ROOTS of g* For example, examine 

d(x2 + x - 2) = d[(x - 1)(x + 2)]* w  

Then g’(x) = 2x + 1, so g’(xl) = g’(1) = 3 and g’(xz) = 
g’(-2) = -3, and we have 

6(x2 + x - 2) = + 6(x - 1) + $(x + 2). 

A FOURIER SERIES expansion of 6(x - a) gives 

1 ‘TT 1 
a, = - 

r s 
6(x - a) cos(nx) dx = - cos(na) 

7T -7r 

b, = 1 
7r 

1 

7T s 
S(x - a) sin(nx) dx = - ~ sin(na), 

-7r 
so 

00 -I 1 

(21) 

(22) 

(23) 

SC X- a) = & + 1 x[cos(na) cos(nx) + sin(na) sin(nx)] 
7T 

n=l 

- 2’, + i c cos[n(x - a)]. -- (24) 

n=l 
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The FOURIER TRANSFORM of the delta function is so that in the limit as n + 00, the sequences become 
DELTA FUNCTIONS. Examples include 

Delta functions can also be defined in 2-D, so that in 
2-D CARTESIAN COORDINATES 

S2(x - xo,y - yo) = qx - Xo)J(Y - Yo), (26) 

andin 3-D, sothatin 3-D CARTESIAN COORDINATES 

6”(x - x0, y - po,z - zo) = qx - xo)6(y - yo)@ - zo), 
(27) 

in CYLINDRICAL COORDINATES 

(28) 

andin SPHERICAL COORDINATES, 

s3(r,e,4) = 3. (2% 

Aseriesexpansionin CYLINDRICAL COORDINATES gives 

1 
S3(n - r2) = -$Tl - T2)Qb - $2)@1 - x2) 00 

c 1 O” p(41-#2 > - 

27r J 
p~l-2) & . 

m=--oo -m 

(30) 

The delta function also obeys the so-called SIFTING 
PROPERTY 

J f (Y>J(X - Y) dY = f (4. (31) 

SE &O DELTA SEQUENCE, DOUBLET FUNCTION, 
FOURIER TRANSFORM-DELTA FUNCTION 

References 
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Delta Sequence 
A SEQUENCE of strongly peaked functions for which 

lim 
Jrn 

6n(x>f Cx) dx = f Cn> 
n+oo 

--oo 

(1) 

0 x<+ 
n -&<x<& 
0 x>& 

2 2 
- - 

n e-n x 

d- 7r 

sin( nx) 
= isinc(ax) E Y 

1 einx _ e--inx 
- -- 

TX 2i 
1 ixt n - - -e 

2nix [ 1 -n 

1 n - -- J 2n --n 
eixt dt 

- 1 sin [(n+ +)x] 
- 

27r sin $z ( > 
1 

where (8) is known as the DIRICHLET KERNEL. 

Delta Variation 

see VARIATION 

Deltahedron 

(5) 

(6) 

(7) 

(8) 

A semiregular POLYHEDRON whose faces are all EQUI- 
LATERAL TRIANGLES. There are an infinite number of 
deltahedra, but only eight convex ones (Freudenthal and 
van der Waerden 1947). They have 4, 6, 8, 10, 12, 14, 
16, and 20 faces. These are summarized in the table 
below, and illustrated in the following figures. 

n 
4 
6 
8 

10 
12 
14 
16 
20 

Name 
tetrahedron 
triangular dipyramid 
octahedron 
pentagonal dipyramid 
snub disphenoid 
triaugment ed triangular prism 
gyroelongated square dipyramid 
icosahedron 

The STELLA OCTANGULA is a concave deltahedron with 
24 sides: 
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Another with 60 faces is a “caved in” D~DECAHEDRON 
which is ICOSAHEDRON STELLATION Izo* 

Cundy (1952) identifies 17 concave deltahedra with two 
kinds of VERTICES. 

see also GYROELONGATED SQUARE DIPYRAMID, Icos- 
AHEDRON, OCTAHEDRON, PENTAGONAL DIPYRAMID, 
SNUB DISPHENOID TETRAHEDRON, TRIANGULAR DI- 
PYRAMID,TRIAUGMENTED TRIANGULAR PRISM 

References 
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Deltoid 

A 3-cusped HYPOCYCLOID, also called a TRICUSPOID, 
which has rt = a/b = 3 or 3/2, where a is the RADWS 
of the large fixed CIRCLE and b is the RADIUS of the 
small rolling CIRCLE. The deltoid was first considered 
by Euler in 1745 in connection with an optical prob- 
lem. It was also investigated by Steiner in 1856 and 
is sometimes called STEINER’S HYPOCYCLOID (Mach- 
tor Archive). The equation of the deltoid is obtained 

Del toid 

by setting n = 3 in the equation of the HYPOCYCLOID, 
yielding the parametric equations 

zc = [; coqb - 5 cos(2$)]a = Zbcos(b+ bcos(24) (1) 

y = [g sin+ + $ sin(2+)]a = 2bsin4 - bsin(2#). (2) 

The ARC LENGTH,~URVATURE, and TANGENTIAL AN- 
GLE are 

s 

t 

s(t) = 4 1 sin( $‘)I dt’ = y sin2( !t) 
0 

K(t) = -i csc($) 

w 
- -- - it. 

(3) 

(4 

(5) 

As usual, care must be taken in the evaluation of s(t) 
for t > 2;rr/3. Since the form given above comes from an 
integral involving the ABSOLUTE VALUE of a function, 
it must be monotonic increasing. Each branch can be 
treated correctly by defining 

3t 
n= L 1 G +1, (6) 

where 1x1 is the FLOOR FUNCTION, giving the formula 

s(t) = (-1) l+[n (mod 2)] 16 - 2 3 
3 sin (zt) + 

The total ARC LENGTH is computed from the general 
HYPOCYCLOID equation 

sn = 
8a(n - 1) 

n l  

(8) 

With n = 3, this gives 

s3 = yu. (9) 

The AREA is given by 

A 
n 

= b - ‘>b - ‘),& 
n2 (10) 

with n = 3, 
A3 = ;m2. (11) 

The length of the tangent to the tricuspoid, measured 
between the two points P, Q in which it cuts the curve 
again, is constant and equal to 4a. If you draw TAN- 
GENTS at P and Q, they are at RIGHT ANGLES. 
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Deltoid Caustic 
The caustic of the DELTOID when 
in any direction is an ASTROID. 

the rays are PARALLEL 

A HYPOCYCLOID EVOLUTE for n = 3 is another DEL- 
TOID scaled by a factor n/(n - 2) = 3/l = 3 and rotated 
l/(2 l  3) = l/6 of a turn. 

Deltoid Involute 

A I~YPOCYCLOID INVOLUTE for n = 3 is another DEL- 
TOID scaled by a factor (n - 2)/n = l/3 and rotated 
l/(2 -3) = l/6 of a turn. 

Deltoid Pedal Curve 

The PEDAL CURVE for a DELTOID with the PEDAL 

POINT at the CUSP is a FOLIUM. For the PEDAL POINT 
at the CUSP (NEGATIVE x-intercept), it is a BIFOLIUM. 
At the center, or anywhere on the inscribed EQUILAT- 

ERAL TRIANGLE, it is a TRIFOLIUM. 

X = x0 + 4a cos 4 - 4a cos(24) 

y = y0 + 4a sin $ + 4a sin(2qb). 

The DUAL POLYHEDRON of the RHOMBICOSIDODECA- 
HEDRON. 

Deltoidal Icositetrahedron 
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The DUAL POLYHEDRON of the SMALL RHOMBICUB- 

OCTAHEDRON. It is also called the TRAPEZOIDAL Icos- 

ITETRAHEDRON. 

Demlo Number 
The initially PALINDROMIC NUMBERS 1, 121, 12321, 
1234321, 123454321, . . . (Sloane’s A002477). For the 
first’ through ninth terms, the sequence is given by the 
GENERATING FUNCTION 

10x + 1 - 
(x - 1)(10x - 1)(100x - 1) 

= l+ 121x + 12321x2 + 1234321x3 + . . . 

(Plouffe 1992, Sloane and Plouffe 1995). The definition 
of this sequence is slightly ambiguous from the tenth 
term on. 

see also CONSECUTIVE NUMBER SEQUENCES, PALIN- 
DROMIC NUMBER 
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Plouffe, S. “Approximations de Shries G&&ratrices et 

quelques conjectures.” Montr&al, Canada: Universith du 
Quebec & Montrhal, M&moire de Ma îtrise, UQAM, 1992. 

Sloane, N. J. A. Sequence A002477/M5386 in “An On-Line 
Version of the Encyclopedia of Integer Sequences.” 

Dendrite Fkactal 

A JULIA SET with c = i. 

Denjoy Integral 
A type of INTEGRAL which is an extension of both 
the RIEMANN INTEGRAL andthe LEBESGUE INTEGRAL. 
The original Denjoy integral is now called a Denjoy inte- 
gral “in the restricted sense,” and a more general type is 
now called a Denjoy integral “in the wider sense.” The 
independently discovered PERON INTEGRAL turns out to 
be equivalent to the Denjoy integral “in the restricted 
sense .” 

see also INTEGRAL , LEE SESGUE 
TEGRAL, RIEMANN INTE GRAL 

INTEGRAL, PERON IN- 
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Denominator 
The number q in a FRACTION p/q* 

see also FRACTION, NUMERATOR, 
NUMBER 

RATIO, RATIONAL 

Dense 
A set A in a FIRST-COUNTABLE SPACE is dense in Bif 
B = AU L, where L is the limit of sequences of elements 
of A. For example, the rational numbers are dense in 
the reals. In general, a SUBSET A of X is dense if its 
CLOSURE cl(A)=X. 

see als 
SET 

o CLOSURE, DENSITY, DERIVED SET, P 

Density 

see D ENSITY (POLYGON), 
URAL DENSITY 

ERFECT 

DENSITY (SEQUENCE),NAT- 

Density (Polygon) 
The number Q in a STAR POLYGON {F}. 

see also STAR POLYGON 

Density (Sequence) 
Let a SEQUENCE {ai}gl be strictly increasing and com- 
posed of NONNEGATIVE INTEGERS. Cal A(z) the num- 
ber of terms not exceeding 2. Then the density is given 

by limz+oo A(x)/x if the LIMIT exists. 

References 
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Denumerable Set 
A SET is denumerable if a prescription can be given 
for identifying its members one at a time. Such a set is 
said to have CARDINAL NUMBER No. Examples of denu- 
merable sets include ALGEBRAIC NUMBERS, INTEGERS, 
and RATIONAL NUMBERS. Once one denumerable set S 
is given, any other set which can be put into a ONE-TO- 
ONE correspondence with S is also denumerable. Ex- 
amples of nondenumerable sets include the REAL, COM- 
PLEX,~RRATIONAL, and TRANSCENDENTAL NUMBERS. 

see also A LEPH-0, 
SLASH, CON TINUUM 

AL 
, HIL 

EPH-1 
BERT H 

CAN 
OTEL 

TOR DIAGONAL 
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Denumerably Infinite 

~~~DENUMERABLE SET 
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Depth (Graph) 
The depth E(G) of a GRAPH G is the minimum num- 
ber of PLANAR GRAPEE Pi needed such that the union 
UiPi = G. 

see &O PLANAR GRAPH 

Depth (Size) 
The depth of a box is the horizontal DISTANCE from 
front to back (usually not necessarily defined to be 
smaller than the WIDTH, the horizonta 
side to side). 

see also HEIGHT, WIDTH (SIZE) 

Depth (Statistics) 
The smallest RANK (either up or down 

References 

DISTANCE from 

of a set of data. 

Tukey, J. W. Explanatory Data Analysis. Reading, MA: 
Addison-Wesley, p. 30, 1977. 

Depth (Xkee) 
The depth of a RESOLVING TREE is the number of lev- 
els of links, not including the top. The depth of the link 
is the minimal depth for any RESOLVING TREE of that 
link. The only links of length 0 are the trivial links. A 
KNOT of length 1 is always a trivial KNOT and links 
of depth one are always HOPF LINKS, possibly with a 
few additional trivial components (Bleiler and Scharle- 
mann). The LINKS of depth two have also been classified 
(Thompson and Scharlemann) . 
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Derangement 
A PERMUTATION of n ordered objects in which none of 
the objects appears in its natural place. The function 
giving this quantity is the SUBFACTORIAL !n, defined by 

or 

n 

( 1) 
k 

IE 

- 

!n E n! - 
k! 

k=O 

n! 
!nE - , [ 1 e (2) 

where k! is the usual FACTORIAL and [z] is the NINT 
function. These are also called RENCONTRES NUMBERS 
(named after rencontres solitaire), or COMPLETE PER- 
MUTATIONS, or derangements. The number of derange- 
ments !n = d(n) of length n satisfy the RECURRENCE 
RELATIONS 

d(n) = (n - l)[d(n - 1) + d(n - 2)] (3) 

and 
d(n) = nd(n - 1) + (-1)“1 (4 

with d(1) = 0 and d(2) = 1. The first few are 0, 1, 2, 
9, 44, 265, 1854, . . . (Sloane’s A000166). This sequence 
cannot be expressed as a fixed number of hypergeometric 
terms (Petkovgek et al. 1996, pp. 157-160). 

see UZSO MARRIED COUPLES PROBLEM,PERMUTATION, 
ROOT,SUBFACTORIAL 
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Derivative 
The derivative of a FUNCTION represents an infinites- 
imal change in the function with respect to whatever 
parameters it may have. The “simple” derivative of a 
function f with respect to z is denoted either f’(z) or g 
(and often written in-line as df/dz). When derivatives 
are taken with respect to time, they are often denoted 
using Newton’s FLUXI~N notation, 2 = k:. The deriva- 
tive of a function f(z) with respect to the variable x is 
defined as 

f’(x) = lim f (x + h) - f(x) 
- 

h-+0 h ’ 

Note that in order for the limit to exist, both limh+o+ 
and limh+o- must exist and be equal, so the FUNCTION 
must be continuous. However, continuity is a NECES- 
SARY but not SUFFICIENT condition for differentiabil- 
ity. Since some DISCONTINUOUS functions can be inte- 
grated, in a sense there are “more” functions which can 
be integrated than differentiated. In a letter to Stielt- 
jes, Hermite wrote, “1 recoil with dismay and horror at 
this lamentable plague of functions which do not have 
derivatives.” 

A 3-D generalization of the derivative to an arbitrary 
direction is known as the DIRECTIONAL DERIVATIVE. 



418 Derivative Derivative 

d 

dz 
cschx = - csch x coth x (23) 

d 

dzsnx 
= cnxdnx (24) 

In general, derivatives are mathematical objects which 
exist between smooth functions on manifolds. In this 
formalism, derivatives are usually assembled into “TAN- 
GENT MAPS? 

d 
:cnx = -snxdnx 
dx 
d 

&dnx = -k2snxcnx. 

(25) _ _ 

(26) 

Simple derivatives of some simple functions follow. 

d -xn = &--l 
dx (2) 

Derivatives of sums are equal to the sum of derivatives 
so that 

d 1 
z In 1x1 = - 

X 
(3) 

d 
z sinx = cosx 

d 
da:~~~~=-sinx 

(4) 

(5) 

[f(x) + . . . + h(x)]’ = f’(x) + l  l  l  + h’(x). (27) 

In addition, if c is a constant, 

cosxcosx - sinx(-sinx) 

cos2 x &[cf WI = dw (28) 
1 - -- 

cos2 2 
= sec2 x (6) 

Furthermore, 
d 

d(sinx)-l c -(sinx)-2cosx = -coS 
da: ‘SC x = dx sin2 x 

- - csc x cot x - (7) $[f Wd~>l = f (2km + f’mw (29) 
d d 

&secx = J--(cosx)+ = -(cosx)-2(-sinx) = sin 
cos2 x where f’ denotes the DERIVATIVE of f with respect to x, 

This derivative rule can be applied iteratively to yield 
derivate rules for products of three or more functions, 
for example, 

= secxtanx (8) 
d sinx(-sinx) - cosxcosx 

dz cos2 x 
1 --- - - - cs2 x 

cos2 x - (9) 

d 
zex = ex (10) 

d d In a” d 
zax=ze =ze 

2 In a 

= (lna)exlna = (1na)a” (11) 

WI’ = (fdh’ + (fdh = m’ + (fs’ + f’dh 
= f’gh + fg’h + fgh’. (30) 

Other rules involving derivatives include the CHAIN 
RULE, POWER RULE, PRODUCT RULE, and QUOTIENT 
RULE. Miscellaneous other derivative identities include 

d 

dz sin 

1 
-lx= m 

d -1 1 
zcos x=-Ji-J 

d 1 
da: tar? x = ~ 

1+ x2 
d 

- cot-” 
1 

dx x=-1+z2 

(12) 

(13) 
dY 1 --- 
da:-%’ (32) (14) 

(15) If F(x, y) = C, where C is a constant, then 

d 1 

dz set 
-lx = 

XdS=T 
(16) dF=rdy+aF 

3Y 
%dx = 0, (33) 

d -1 1 
zCSC x=--Ic@--q (17) so 

dY $E ---- 
dx- z’ (34) d 

da: 
sinh x = coshx 

d 
dz 

cash x = sinhx 

d 
z tanhx = sech2 x 

d 

dz 
coth x = - csch2 x 

(18) 

(19) 

(20) 

(21) 

A vector derivative of a vector function 

’ x1(t) 
x2(t) 

. . 
i(t) 

(35) X(t) - = 

d 

clz 
sechx = - sech x tanh x (22) 
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can be defined by where w  is a parameter (EndraB). The surface can also 
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dX 
(36) 

see ah BLANCMANGE FUNCTION, CARAT~ODORY 
IIERI~ATIVE, COMMA DERIVATIVE, CONVECTIVE DE- 
RIVATIVE, COVARIANT DERIVATIVE, DIRECTIONAL DE- 

RIVATIVE, EULER-LAGRANGE DERIVATIVE, FLUXION, 
FRACTIONAL CALCULUS, FR~CHET DERIVATIVE, LA- 
GRANGIAN DERIVATIVE, LIE DERIVATIVE, POWER 
RULE, SCHWARZIAN DERIVATIVE, SEMICOLON DERIVA- 
TIVE, WEIERSTRAJ~ FUNCTION 
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Derivative Test 

see FIRST DERIVATIVE TEST, SECOND DERIVATIVE 
TEST 

Derived Set 
The LIMIT POINTS of a SET P, denoted P’. 

see ah DENSE,LIMIT POINT, PERFECT SET 

Dervish 

i I 
I 

A QUINTIC SURFACE having the maximum possible 
number of ORDINARY DOUBLE POINTS (31), which was 
constructed by W. Barth in 1994 (EndraB). The implicit 
equation of the surface is 

64(x-w)[x4 -4x3w- fox2y2 -4x2w2 

+16xw3 -20xy2w+ 5y4+16w4 -20y2w2] 

-5~~(2z-&-&) 

x[4(x2 +y2 +z2)+(1 +3&)w212, 

be described by the equation 

aF+q=O, 

where 
F = hlh2h3h4h5, 

ha=cos($)x-sin($)y-2 

h4 = cos ($)x-sin(F),-z 

hs =cos($>.-sin(F)y--z 

q=(l- cz)(x2 + y2 - 1+ ?-z2)2, 

and 

r= ;(1+&) 

a 

c= +&z 

(Nordstrand) . 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

PO> 

(11) 

1 
The dervish is invariant under the GROUP Dg ana con- 
tains exactly 15 lines. Five of these are the intersection 
of the surface with a &-invariant cone containing 16 
nodes, five are the intersection of the surface with a Ds- 
invariant plane containing 10 nodes, and the last five 
are the intersection of the surface with a second Ds- 
invariant plane containing no nodes (EndraB). 

References 
End& S. “Togliatti Surfaces.” http://www.mathematik. 

uni- mains . de / Algebraische Geometric / dots / 
Etogliatti.shtml. 

EndraB, S. “Flgchen mit vielen Doppelpunkten.” DMV- 
Mitteilungen 4, 17-20, 411995. 

EndraB, S. Symmetrische Fl6che mit vielen gew6hnEichen 
Doppelpunkten. Ph.D. thesis. Erlangen, Germany, 1996. 

Nordstrand, T. “Dervish.” http://www.uib.no/people/ 
nfytn/dervtxt .htm. 

Desargues’ Theorem 

0 
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If the three straight LINES joining the corresponding 
VERTICES of two TRIANGLES ABC and A’B’C’ all meet 
in a point (the PERSPECTIVE CENTER), then the three 
intersections of pairs of corresponding sides lie on a 
straight LINE (the PERSPECTIVE AXIS). Equivalently, if 
two TRIANGLES are PERSPECTIVE from a POINT, they 
are PERSPECTIVE from a LINE. 

Desargues’ theorem is essentially its own dual according 
to the DUA LITY PRINCIPLE of PROJECTIVE G EOMETRY. 

see also DUALITY PRINCIPLE, PAPPUS% HEXAGON 

THEOREM, PASCAL LINE, PASCAL’S THEOREM, PER- 
SPECTIVE AXIS, PERSPECTIVE CENTER, PERSPECTIVE 
TRIANGLES 
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Descartes Circle Theorem 
A special case of APOLLONIUS’ PROBLEM requiring the 
determination of a CIRCLE touching three mutually tan- 
gent CIRCLES (also called the KISSING CIRCLES PROB- 
LEM). There are two solutions: a small circle surrounded 
by the three original CIRCLES, and a large circle sur- 
rounding the original three. Frederick Soddy gave the 
FORMULA for finding the RADIUS of the so-called inner 
and outer SODDY CIRCLES given the RADII of the other 
three. The relationship is 

qm2 + fi22 + m2 + m2) = (K1+ K2 + K3 + Kq)2, 

where pi are the CURVATURES of the CIRCLES. Here, 
the NEGATIVE solution corresponds to the outer SODDY 
CIRCLE and the POSITIVE solution to the inner SODDY 

CIRCLE. This formula was known to Descartes and Vikte 
(Bayer and Merzbach 1991, p. 159), but Soddy extended 
it to SPHERES. In n-D space, n + 2 mutually touching 
n-SPHERES can always be found, and the relationship of 
their CURVATURES is 

see also APO ‘LLONIUS’ PROBLEM, FOUR COINS PROB- 
LEM, SODDY CIRCLES, SPHERE PACKING 

n+2 
( ) x 2 72 Ki = i=l 

n+2 
( ) 

2 

E PC; . 
i=l 
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Descartes Folium 

see FOLIUM OF DESCARTES 

Descartes’ Formula 

see DESCARTES TOTAL 

Descartes Ovals 

see CARTESIAN OVALS 

ANGULAR DEFECT 

Descartes’ Sign Rule 
A method of determining the maximum number of POS- 
ITIVE and NEGATIVE REAL ROOTS of a POLYNOMIAL. 

For POSITIVE ROOTS, start with the SIGN of COEFFI- 
CIENT of the lowest (or highest) POWER. Count the 
number of SIGN changes n as you proceed from the low- 
est to the highest POWER (ignoring POWERS which do 
not appear). Then n is the maximum number of POS- 
ITIVE ROOTS. Furthermore, the number of allowable 
ROOTS is n, n - 2, n - 4, . . . . For example, consider the 
POLYNOMIAL 

f( > X = x7 + 2 - x4 - x3 - x2 + x - 1. 

Since there are three SIGN than .ges, there 
mum of three p ossible POSITIVE ROOTS. 

are a maxi- 

For NEGATIVE ROOTS, starting with a POLYNOMIAL 
f(z), write a new POLYNOMIAL g(x) with the SIGNS 
of all ODD POWERS reversed, while leaving the SIGNS of 
the EVEN POWERS unchanged. Then proceed as before 
to count the number of SIGN changes n. Then n is the 
maximum number of NEGATIVE ROOTS. For example, 
consider the POLYNOMIAL 

f( > X = x7 + x6 - x4 - x3 - x2 + II: - 1, 

and compute the new POLYNOMIAL 

g(x) = -x7 + 2 - x4 + x3 - x2 - 2 - 1. 

There are four SIGN changes, so there are a m 
of four NEGATIVE ROOTS. 

see also BOUND, STURM FUNCTION 

aximum 
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Descartes-Euler Polyhedral Formula 

see POLYHEDRAL FORMULA 
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Descartes Total Angular Defect 
The total angular defect is the sum of the ANGULAR 
DEFECTS over all VERTICES of a POLYHEDRON, where 
the ANGULAR DEFECT 6 at a given VERTEX is the dif- 
ference between the sum of face angles and 2~. For any 
convex POLYHEDRON, the Descartes total angular defect 
1s 

A=>]& -47~. (1) 

This is equivalent to the POLYHEDRAL FORMULA for a 
closed rectilinear surface, which satisfies 

A = 27~(V - E + F). (2) 

A POLYHEDRON with No equivalent VERTICES is called a 
PLATONIC SOLID and can be assigned a SCHL;~FLI SYM- 

BOL {p, g}. It then satisfies 

see aZso ANGU LAR D EFECT, PLATONIC SOLID, POLY- 
HEDRAL FORM ULA,P 'OLYHED RON 

N =4” 0 s (3) 

6=2x--q l-2 7T, 
( > P 

No = 4P 

2P+&?-Pq’ 

(4) 

(5) 

Descriptive Set Theory 
The study of DEFINABLE SETS and functions in POLISH 
SPACES. 

References 
Becker, H. and Kechris, A. S. The Descriptive Set Theory of 
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Design 
A formal description of the constraints on the possi- 
ble configurations of an experiment which is subject to 
given conditions. A design is sometimes called an EX- 
PERIMENTAL DESIGN. 

see also BLOCK DESIGN, COMBINATORICS, DESIGN 
THEORY, HADAMARD DESIGN, HOWELL DESIGN, 
SPHERICAL DESIGN, SYMMETRIC BLOCK DESIGN, 
TRANSVERSAL DESIGN 

Design Theory 
The study of DESIGNS and, in particular, NECESSARY 
and SUFFICIENT conditions for the existence of a BLOCK 
DESIGN. 

References 
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Desmic Surface 
Let Ar , AZ, and A3 be tetrahedra in projective 3-space 
IP3. Then the tetrahedra are said to be desmically re- 
lated if there exist constants a, ,O, and y such that 

A desmic surface is then defined as a QUARTIC SURFACE 
which can be written as 

for desmically related tetrahedra A,, A,, and As. 
Desmic surfaces have 12 ORDINARY DOUBLE POINTS, 
which are the vertices of three tetrahedra in &space 
(Hunt). 

see also QUARTIC SURFACE 
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Destructive Dilemma 
A formal argument in LOGIC in which it is stated that 

1. P + & and R + S (where 3 means “IMPLIES"), 
and 

2. Either not-Q or not-S is true, .from which two state- 
ments it follows that either not-P or not-R is true. 

see ah CONSTRUCTIVE DILEMMA, DILEMMA 

Determinant 
Determinants are mathematical objects which are very 
useful in the analysis and solution of systems of linear 
equations. As shown in CRAMER'S RULE, a nonhomo- 
geneous system of linear equations has a nontrivial so- 
lution IFF the determinant of the system’s MATRIX is 
N~NZERO (so that the MATRIX is nonsingular) l  A 2 x 2 
determinant is defined to be 

(1) 

see also BRUCK-RYSER-CHO 
BLOCK DESIGN INEQUALITY 

WLA THEOREM, FISHER'S 
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A k x IC determinant can be expanded by MINORS to 
obtain 

and 

a11 a12 a13 l  ** alk 

a21 a22 a23 l  ** a2k ’ 

l  l  . . l  

. . l  l  l  

l  l  . 
l  

l  

akl ak2 ak3  l  ” akk 

I 
a22 a23 m-m a2k 1 1 a21 a23 l  l  l  a2k 1 

= a11 : : -. l  ; 

l  . 

I I 

-a12 : ; l . . 
. 

. 
l  . 

akk 

The determinant of the SIMILARITY TRANSFORMATION 
of a matrix is equal to the determinant of the original 
MATRIX 

. (2) IBAB-ll = IBI IAl IB-‘l = 1Bl IAl--&, = JAI. (11) 

1 ak2 @3 “- akk 1 1 akl ak3 " ' 

a21 a22 - a2(k-1) 

+...Ikalk : : '. : 
. . . . 

akl ak2  l  l  ak(k-1) 

The determinant of a similarity transformation minus a 
multiple of the unit MATRIX is given by A general determinant for a MATRIX A has a value 

IB-“AB - xl1 = IB-lAB - B-‘NBl = IB-l(A - xI)BI 

= IB-‘l IA - XII IBI = ]A - XII. (12) 

with no implied summation 
COFACTOR of aij defined by 

over i and where aij is the The determinant of a MATRIX TRANSPOSE equals the 
determinant of the original MATRIX, 

a ij E (-l)i+jcij, (4) IAl = IATI, (13) 

Here, C is the (n - 1) x (n - 1) MATRIX formed by 
eliminating row i and column j from A, i.e., by DETER- 
MINANT I~XPANSION BY MINORS. 

Given an rz x n determinant, the additive inverse is 

and the determinant of a COMPLEX C ONJUGATEis 

to the COMPLEX CONJUGATE ofthe determinant 
equal 

IA*\ = IAl*. (14) 

1 - A] = (-1)“lAl. (5) Let E be a small number. Then 

II+ EAI = I+ en(A) + O(c2), (15) Determinants are also DISTRIBUTIVE, so 

where Tr(A) is the trace of A. The determinant takes on 
a particularly simple form for a TRIANGULAR MATRIX 

lABI = IAI PI* (6) 

This means that the determinant of a MATRIX INVERSE 
can be found as follows: I all . . l  

0 a22 . l  l  ak2 
k 

- 
- 

l  . 
. 

l  G&n - 
(16) 

l  . . l  rI 

0 0 ..: a;l, 
n=l 

III = IAA-ll = IAl IA-‘/ = 1, (7) 

where I is the IDENTITY MATRIX, so 

Important properties of the determinant include the fol- 
1 

IAl = IA-11 l  (8) lowing. 

1. Switching two rows or columns changes the sign. 

2. Scalars can be factored out from rows and columns. Determinants are MULTILINEAR in rows and columns, 

3. Multiples of rows and columns can be added 
without changing the determinant’s value. 

4. Scalar multiplication of a row by a constant c multi- 
plies the determinant by c. 

5. A determinant with a row or column of zeros has 0 0 a3 

a4 a5 a6 

a7 aa a9 

value 0. (9) 
6. Any determinant 

value 0. 
with two rows or columns equal has 
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Property 1 can be established by induction. For a 2 x 2 
MATRIX, the determinant is 

al h 
I I a2 62 

= a& - bla2 = - (ha2 -alb2) 

bl al - -- 

I I 
b2 a2 

w 

For a 3 x 3 MATRIX, the determinant is 

al bl cl 
a2 62 c2 
a3 b3 ~3 

al ~1 h - -- 
I I 
a2 ~2 b2 
a3 ~3 b3 

h al ~1 
- - bz a2 c2 - 

I I b3 a3 ~3 

(18) 

Property 2 follows likewise. For 2 x 2 and 3 x 3 matrices, 

h bl I I = k(alb2) - k(bla2) = k 
al h 

ka2 bz I I a2 b2 w  

and 

kal bl ~1 
kaz bz ~2 

km b3 ~3 

= J-a b2 ” - b 
l b3 c3 I I ’ 

km bz 
+Q ka3 b3 I I =k 

Property 3 follows from the identity 

ka2 c2 

I I km ~3 

al bl ~1 
a2 b2 cz 
~3 b3 ~3 

al + kbl 61 cl 
a2 + kb2 62 c2 
a3 -I- kb3 b3 ~3 

l=(a+h)~~~ ~1 

. (20) 

-4 
a+& c2 I I + Cl 

a2 + kb2 b2 

a3 + kbs ~3 a3 + kbs b3 ' 
(21) 

by the column vectors [ai,l], . . . , [ai,,] in Iw”. Here, “ori- 
ented” means that, up to a change of + or - SIGN, the 
number is the n-dimensional CONTENT, but the SIGN 
depends on the “orient ation” of the column vectors in- 
volved. If they agree with the standard orientation, 
there is a + SIGN; if not, there is a - SIGN. The PAR- 
ALLELEPIPED spanned by the n-D vectors v1 through vi 
is the collection of points 

t1v1 + . . l  -I- &Vi, 
(22) 

where tj is a REAL NUMBER in the CLOSED INTERVAL 

P 11 ? l  

There are an infinite number of 3 x 3 determinants with 
no 0 or 311 entries having unity determinant. One para- 
metric family is 

-8n2 - 871 2n+ 1 4n 
-4n2 - 412 n+l 2n+l 

-4n2 -4n-1 n 2n - 1 

Specific examples having small entries include 

l  
(23) 

(Guy 1989, 1994). 

see also CIRCULANT DETERMINANT, COFACTOR, 
HESSIAN DETERMINANT, HYPERDETERMINANT, IM- 
MANANT, JACOBIAN, KNOT DETERMINANT, MATRIX, 
MINOR, PERMANENT, VANDERMONDE DETERMINANT, 
WRONSKIAN 

References 
A&en, G. “Determinants.” 54.1 in Mafhematical Meth- 

ods for Physicists, 3rd ed. Orlando, FL: Academic Press, 
pp. 168-176, 1985. 

Guy, R. K. “Unsolved Problems Come of Age.” Amer. Math. 
Monthly 96, 903-909, 1989. 

Guy, R. K. “A Determinant of Value One.” SF28 in Unsolved 
Problems in Number Theory, 2nd ed. New York: Springer- 
Verlag, pp. 265-266, 1994. 

Determinant (Binary Quadratic Form) 
The determinant of a BINARY QUADRATIC FORM 

Au2 + 2Buv + Cv2 

iS 

D E B2 - AC. 

It is equal to l/4 of the corresponding DISCRIMINANT. 

If aij is an n x n MATRIX with aij REAL NUMBERS, 
then det[aij] has the interpretation as the oriented n- 
dimensional CONTENT of the PARALLELEPIPED spanned 
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Determinant Expansion by Minors 
Ah known as LAPLACIAN DETERMINANT EXPANSION 
BY MINORS. Let IM 1 denote the DETERMINANT of a 
MATRIX M, then 

where A& is called a MINOR, 

where Cij is called a COFACTOR. 

see also COFACTOR, DETERMINANT 

References 
A&en, G. Mathematical Methods for Physicists, 3rd ed. Or- 

lando, FL: Academic Press, pp. 169-170, 1985. 

Determinant (Knot) 

seeKNOT DETERMINANT 

Determinant Theorem 
Given a MATRIX m , the following are equivalent: 

1. Irn/ # 0. 

2. The columns of m are linearly independent. 

3. The rows of m are linearly independent. 

4. Range(m) = R”. 

5. Null(m) = (0). 

6. m has a MATRIX INVERSE. 

see &ODETERMINANT,MATRIX INVERSE,NULLSPACE, 
RANGE (IMAGE) 

Developable Surface 
A surface on which the GAUSSIAN CURVATURE K is ev- 
erywhere 0. 

see also BINORMAL DEVELOPABLE, NORMAL DEVEL- 
OPABI,E,SYNCLASTIC,TANGENT DEVELOPABLE 

Deviation 
The DIFFERENCE of a quantity from some fixed value, 
usually the “correct” or “expected” one. 

~~~ABS~LUTE DEVIATION,AVERAGEABSOLUTE DEVI- 
ATION, DIFFERENCE, DISPERSION (STATISTICS), MEAN 
DEVIATION, SIGNED DEVIATION, STANDARD DEVIA- 
TION 

Devil’s Curve 

The devil’s curve was studied by G. Cramer in 1750 and 
Lacroix in 1810 (MacTutor Archive). It appeared in 
Nowelles Annales in 1858. The Cartesian equation is 

y4 - a2y2 = x4 - bzx2, 

equivalent to 

y2(y2 - a”) = x2(x2 - b’), (2) 

the polar equation is 

T’ (sin’ 0 - cos’ 0) = a2 sin’ 8 - b2 cos’ 8, (3) 

and the parametric equations are 

(4) 

J a2 sin’ t - b2 cos2 t 
Y = sin t 

sin’ t - cos2 t l  

(5) 

A special case of the Devil’s curve is the so-called ELEC- 
TRIC MOTOR CURVE: 

\, A/ 

Y2(Y2 - 96) = x2(x2 - 100) (6) 

(Cundy and Rollett 1989). 

see also ELECTRIC MOTOR CURVE 

References 
Cundy, H. and Rollett, A. Mathematical Models, 3rd ed. 

Stradbroke, England: Tarquin Pub,, p. 71, 1989. 
Gray, A. Modern Differential Geometry of Curves and Sur- 

faces. Coca Raton, FL: CRC Press, p. 71, 1993. 
Lawrence, J. D. A Catalog of Special Plane Curves, New 

York: Dover, pp. 151-152, 1972. 
MacTutor History of Mathematics Archive. “Devil’s Curve.” 

http://www-groups.dcs.st-and.ac.uk/~hist~ry/Curves 
/Devils. html. 



Devil ‘s Staircase 

Devil’s Staircase 
A plot of the WINDING NUMBER VV resulting from 
MOORE LOCKING as a function of s1 for the CIRCLE MAP 
with K = 1, At each value of 0, the WINDING NUM- 
BER is some RATIONAL NUMBER. The result is a mono- 
tonic increasing ‘ktaircase” for which the simplest RA- 
TIONAL NUMBERS have the largest steps. For K = 1, the 
MEASURE of quasiperiodic states (s1 IRRATIONAL) on 
the &axis has become zero, and the measure of MODE- 
LOCKED state has become 1. The DIMENSION of the 
Devil’s staircase ==: 0.8700 * 3.7 X 10B4. 

see also CANTOR FUNCTION 

References 
Mandelbrot, B. B. The FructaZ Geometry of Nature. New 

York: W* H. Freeman, 1983, 
Ott, E. Chaos in Dynamical Systems. New York: Cambridge 

University Press, 1993. 
Rasband, S. N. Chaotic Dynamics of Nonlinear Systems. 

New York: Wiley, p. 132, 1990. 

Devil on Two Sticks 

see DEVIL’S CURVE 

Diabolical Cube 
A 6-piece POLYCUBE DISSECTION ofthe 3 x 3 CUBE. 

see also CUBE DISSECTION, SOMA CUBE 

References 
Gardner, M. “Polycubes.” Ch+ 3 in Knotted Doughnuts and 

Other Mathematical Entertainments. New York: W. H. 
Freeman, pp. 29-30, 1986. 

Diabolical Square 

~~~PANMAGIC SQUARE 

Diabolo 
A %POLYABoLO. 

Diacaustic 
The ENVELOPE of refracted rays for a given curve. 

see also CATACAUSTIC, CAUSTIC 

References 
Lawrence, J. D. A Cutalog of Special Plane Curves, New 

York: Dover, p. 60, 1972. 

Diagonal Matrix 
A diagonal matrix is a MATRIX A of the form 

aij = CitSij, (1) 

where 6 is the KRONECKER DELTA, ci are constants, 
and there is no summation over indices. The general 
diagonal matrix is therefore SQUARE and of the form 
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Given a MATRIX equation of the form 

l  l  . 

l  . l  

ain 

I[ 
Xl 

. l  

. . 

. . 

a nn 0 

(3) 

multiply through to obtain 

[ 

alJl l  +’ alnL 

l  
. 

l  - 
l  l  . 1 - . 
l  

. 
l  

&1X1 l  *- @nn An 1 
(4 

Since in general, Xi # Xj for i # j, this can be true only 
if off-diagonal components vanish. Therefore, A must 
be diagonal. 

Given a diagonal matrix T, 

T” = 

t1 

0 

0 

0 
f J2 

0 

l  l  . 

l  l  . 

l  . . 

0 n 
0 1 - - . . . 

tk L 
t1” 

0 
m 
l  

0  

0 

tzn 

0 

. . l  

l  . . 

l  . . 

0 
0 
. 1 . l  

l  

tkn 

(5) 
see also MATRIX, TRIANGULAR MATRIX,TRIDIAGONAL 
MATRIX 

References 
Arfken, CT. Mathematical Methods for Physicists, 3rd ed. 

Orlando, FL: Academic Press, pp. 181-184 and 217-229, 
1985. 

Diagonal Metric 
A METRIC gij which is zero for i # j. 

see also METRIC 

Diagonal (Polygon) 
A LINE SEGMENT connecting two nonadjacent VER- 
TICES of a POLYGON. The number of ways a fixed con- 
vex n-gon can be divided into TRIANGLES by noninter- 
secting diagonals is Cm-2 (with Cn-3 diagonals), where 
Cn is a CATALAN NUMBER. This is EULER'S POLYGON 
DIVISION PROBLEM. Counting the number of regions 
determined by drawing the diagonals of a regular n-gon 
is a more difficult problem, as is determining the num- 
ber of n-tuples of CONCURRENT diagonals (Beller et al. 
1972, Item 2). 

The number of regions which the diagonals of a CONVEX 
POLYGON divide its center 
its interior is 

f no three are concurrent in 

n- l)(n - 2)(n” - 3n+ 12). 
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The first few values are 0, 0, 1, 4, 11, 25, 50, 91, 154, 
246, . . . (Sloane’s A006522). 

References 
Beeler, M.; Gosper, R. W.; and Schroeppel, R. 

Cambridge, MA: MIT Artificial Intelligence 
Memo AIM-239, Feb. 1972. 

HAKMEM. 
Laboratory, 

Sloane, N. J. A. Sequence A006522/M3413 in “ An On-Line 
Version of the Encyclopedia of Integer Sequen .ces .” 

Diagonal (Polyhedron) 
A LINE SEGMENT connecting two nonadjacent sides 
of a POLYHEDRON. The only simple PULYHEDRON 
with no diagonals is the TETRAHEDRON. The only 
known TOROIDAL POLYHEDRON with no diagonals is the 
CSASZ~R POLYHEDRON. 

see also DIAGONAL (POLYGON), EULER BRICK, POLY- 
HEDRON,~PACE DIAGONAL 

Diagonal Ramsey Number 
A RAMSEY NUMBER of the form R(JE, K; 2). 

see UZSO RAMSEY NUMBER 

Diagonal Slash 

see CANTOR DIAGONAL SLASH 

Diagonal (Solidus) 

see SULIDUS 

Diagonalization 

see MATRIX DIAGO NALIZ 

Diagonals Problem 

see EumR BRICK 

ATION 

Diagram 
A schematic mathematical illustration showing the rela- 
tionships between or properties of mathematical objects. 

see also ALTERNATING KNOT DIAGRAM, ARGAND DI- 
AGRAM,~OXETER-DYNKIN DIAGRAM,DE BRUIJN DIA- 
GRAM, DYNKIN DIAGRAM, FERRERS DIAGRAM, HASSE 
DIAGRAM, HEEGAARD DIAGRAM, KNOT DIAGRAM, 
LINK DIAGRAM,STEM-AND-LEAF DIAGRAM,VENN DI- 
AGRAM,~ORONOI DIAGRAM,~OUNG DIAGRAM 

Diameter 
The diameter of a CIRCLE is the DISTANCE from a point 
on the CIRCLE to point r RADIANS away. If T is the 
RADIUS, d = 2T. 

see also BROCARD DIAMETER, CIRCUMFERENCE, DI- 
AMETER (GENERAL), DIAMETER (GRAPH), PI, RA- 
DIUS, TRANSFINITE DIAMETER 

Diameter (General) 
The farthest DISTANCE between two points on the 
boundary of a closed figure. 

see also BORSUK'S CONJECTURE 

References 
Eppstein, D. “Width, Diameter, and Geometric 

Inequalities.” http://wwu . its . uci , edu / y eppstein/ 
junkyard/diam.html. 

Diameter (Graph) 
The length of the “longest shortest path” between two 
VERTICES of a GRAPH. In other words, a graph’s di- 
ameter is the largest number of vertices which must be 
traversed in order to travel from one vertex to another 
when paths which backtrack, detour, or loop are ex- 
cluded from consideration. 

Diamond 

a000 
A convex QUADRILATERAL having sides of equal length 
and PERPENDICULAR PLANES of symmetry passing 
through opposite pairs of VERTICES. The LOZENGE is a 
special case of a diamond. 

see also KITE, LOZENGE, PARALLELOGRAM, QUADRI- 
LATERAL, RHOMBUS 

Dice 
A die (plural “dice”) is a SOLID with markings on each of 
its faces. The faces are usually all the same shape, mak- 

of its faces. Dice are used in many games of chance as a 

COIN can be viewed as a degenerate 2-sided case of a 
1. 

The most common type of die is a six-sided CUBE with 
the numbers l-6 placed on the faces. The value of the 
roll is indicated by the number of “spots” showing on the 
top. For the six-sided die, opposite faces are arranged to 
always sum to seven. This gives two possible MIRROR 
IMAGE arrangements in which the numbers 1, 2, and 3 
may be arranged in a clockwise or counterclockwise or- 
der about a corner. Commercial dice may, in fact, have 
either orientation. The illustrations below show 6-sided 
dice with counterclockwise and clockwise arrangements, 
respectively. 
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The CUBE has the nice property that there is an upward- 
pointing face opposite the bottom face from which the 
value of the “roll” can easily be read. This would not 
be true, for instance, for a TETRAHEDRAL die, which 
would have to be picked up and turned over to reveal the 
number underneath (although it could be determined 
by noting which number l-4 was not visible on one of 
the upper three faces). The arrangement of spots :*I 
corresponding to a roll of 5 on a six-sided die is called 
the QUINCUNX. There are also special names for certain 
rolls of two six-sided dice: two Is are called SNAKE EYES 
and two 6s are called BOXCARS. 

Shapes of dice other than the usual 6-sided CUBE are 
commercially available from companies such as Dice & 
Games, Ltd.@ 

Diaconis and Keller (1989) show that there exist “fair” 
dice other than the usual PLATONIC SOLIDS and duals 
of the ARCHIMEDEAN SOLIDS, where a fair die is one for 
which its symmetry group acts transitively on its faces. 
However, they did not explicitly provide any examples. 

The probability of obtaining p points (a roll of p) on n 
s-sided dice can be computed as follows. The number of 
ways in which p can be obtained is the COEFFICIENT of 
xp in 

f (2) = (x + x2 + l  . . + xS)n, (1) 

since each possible arrangement contributes one term. 
f(x) can be written as a MULTINOMIAL SERIES 

s-l 

( 9 
n 

f( > X = xn x XZ 
1-x” n =xn - 

( > l-x ’ (2) 
i=o 

so the desired number c is the COEFFICIENT of xp in For n = 3 six-sided dice, 

xn(l - 2”)“(1 - x)-Y (3) 

Expanding, 

x+-l)~(;)xs~~ (n+; - qxz, (4) 

k=O 

so in order to get the COEFFICIENT of xp, include all 
terms with 

P = n + sk -+ 1. (5) 

c is therefore 

(6) 

But p - sk - n > 0 only when k < (p - n)/s, so the other 
terms do not contribute. Furthermore, 

c= 1(pg3J(-l)k(;) (yy), (8) 

where 1x1 is the FLOOR FUNCTION, and 

P(PlW) = z l ':pg'(-l)k (;) (p ,""; '>. (9) 
- 

Consider now s = 6. For n = 2 six-sided dice, 

and 

k 

P(p, 2,6) = $ F 
k=O 

k=O 

2! (-l)” k!(‘J _ k)! ’ ( - 6k- 1) 

k 
1 

max 
I 

- -- 

36 
lE( 1 - 2k)(k + l)(p - 6k - 1) 

k=O 

(11) 

The most common roll is therefore seen to be a 7, with 
probability 6/36 = l/6, and the least common rolls are 
2 and 12, both with probability l/36. 

0 for3<p<8 

1 for 9 < < 14 p (12) 
2 for 15 < < 18, - p - 

and 

P(P, 396) 

k=O 

k maz 
1 

(-lJk 

3! (p - 6k - l)(p - 6/c - 2) 
=- 

63 k!(3 - k)! 2 
k=O 

for 3 5 5 8 p 

for 9 5 5 14 p 

+ 3 CP--13)(P--14) 2 for 15 5 p 5 18 

for 3 2 2 8 p 

for 9 5 5 14 p (13) 
$(19-p)(ZO-p) forl5<p<lB.’ - - 

For three six-sided dice, the most common rolls are 10 . 
and 11, both with probability l/8; and the least common 
rolls are 3 and 18, both with probability l/216. 
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For four six-sided dice, the most common roll is 14, with 
probability 73/648; and the least common rolls are 4 and 
24, both with probability l/1296* 

References 

In general, the likeliest roll 13~ for n s-sided dice is given 

bY 
PL(~, s> = I$@ ;t- I)] I 

which can be written explicitly as 

i 

b(s + 1) for n even 

PLh 4 = i[n(s + 1) - 11 for n odd, s even (15) 
+n(s + 1) for n odd, s odd. 
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Fair Sums.” Amer. Math. Monthly 95, 316-328, 1988. 

Sloane, N. J. A. Sequence A030123 in “An On-Line Version 
of the Encyclopedia of Integer Sequences.” 

Dichroic Polynomial 

For 6-sided dice, the likeliest rolls are given by 

{ 

ha for n even 
p&,6) = L$n] = f(7n - 1) for n odd, s even 

P for n odd, s odd, 

(16) 
or 7, 10, 14, 17, 21, 24, 28, 31, 35, . l  . for n = 2, 3, . l  l  

(Sloane’s AO3OIZ3) dice. The probabilities correspond- 
ing to the most likely rolls can be computed by plugging 
p = pi into the general formula together with 

A POLYNOMIAL Z&, w) in two variables for abstract 
GRAPHS. A GRAPH with one VERTEX has 2 = q. 
Adding a VERTEX not attached by any EDGES multiplies 
the 2 by q. Picking a particular EDGE of a GRAPH G, 
the POLYNOMIAL for G is defined by adding the POLY- 
NOMIAL of the GRAPH with that EDGE deleted to 21 times 
the POLYNOMIAL of the graph with that EDGE collapsed 
to a point. Setting 21 = -1 gives the number of distinct 
VERTEX colorings of the GRAPH. The dichroic POLY- 
NOMIAL of a PLANAR GRAPH can be expressed as the 
SQUARE BRACKET POLYNOMIAL of the corresponding 
ALTERNATING LINK by in for n even 

kL(n,s) = 1 
7+-1)-l 
- 

L”‘;;+ 
J for n odd, s even (17) 

for n odd, s odd. 

Unfortunately, P(PL, n, s) does not have a simple closed- 
form expression in terms of s and n. However, the proba- 
bilities of obtaining the likeliest roll totals can be found 
explicitly for a particular s. For n 6-sided dice, the 
probabilities are l/6, l/8, 731648, 651648, 36113888, 
240171279936, 7553193312, . l  . for n = 2, 3, l  . . . 
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four dice 

The probabilities for obtaining a given total using n 6- 
sided dice are shown above for n = 1, 2, 3, and 4 dice. 
They can be seen to approach a GAUSSIAN DISTRIBU- 
TION as the number of dice is increased. 

see &O BOXCARS, COIN TOSSING, CRAPS, DE MERE'S 
PROBLEM,EFRON'S DICE,POKER,QUINCUNX,SICHER- 
MAN DICE,SNAKE EYES 

where N is the number of VERTICES in G. Dichroic 
POLYNOMIALS for some simple GRAPHS are 

zK1 = 4 

ZKz = q2 + vq 

ZK3 = q3 + 3vq2 + 3v2q + u3q. 

References 
Adams, C. C. The Knot Book: An Elementary Introduction 

to the jLZathematica1 Theory of Knots. New York: W. H. 
Freeman, pp. 231-235, 1994. 

Dido’s Problem 
Find the figure bounded by a line which has the maxi- 
mum AREA for a given PERIMETER. The solution is a 
SEMICIRCLE. 

see also ISOPERIMETRIC PROBLEM, ISOVOLUME PROB- 
LEM, PERIMETER, SEMICIRCLE 

Diesis * 
The musical interval by which an octave exceeds three 
major thirds, 

2 27 128 
---= 

s3- 53 = 1.024. 
( > 4 

125 

Taking CONTINUED FRACTION CONVERGENTS of 

wv4)/lod2) g ives the increasing accurate approxi- 
mations m/n of m octaves and n major thirds: l/3, 
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9128, 19159, 471146, 2071643, 1289/4004, . . . (Sloane’s Examples of difference equations often arise in DYNAM- 
A046103 and A046104). Other near equalities of KQ oc- ICAL SYSTEMS. Examples include the iteration involved 
taves and n major thirds having in the MANDELBROT and JULIA SET definitions, 

m m+27L 

R&=& 
( > 4 

with IR - 11 < 0.02 are given in the following table. f (n + 1) = Tf(n)[l - f b>L (4) 
m n Ratio m n Ratio 

9 28 0.9903520314 104 323 1.012011267 
10 31 1.01412048 113 351 1.002247414 
18 56 0.9807971462 122 379 0.9925777621 
19 59 1.004336278 123 382 1.016399628 
28 87 0.9946464728 131 407 0.983001403 
29 90 1.018517988 132 410 1.006593437 
37 115 0.9850501549 141 438 0.9968818549 
38 118 1.008691359 150 466 0.9872639701 
47 146 0.9989595361 151 469 1.010958305 
56 174 0.9893216059 160 497 1.001204611 
57 177 1.013065324 169 525 0.9915450208 
66 205 1.003291302 170 528 1.015342101 
75 233 0.9936115791 178 553 0.9819786256 
76 236 1.017458257 179 556 1.005546113 
84 261 0.9840252458 188 584 0.9958446353 
85 264 1.007641852 189 587 1.019744907 
94 292 0.9979201548 197 612 0.9862367575 

103 320 0.9882922525 198 615 1.00990644 

see ~1~0 COMMA 

RAS , SCHISMA 
OF DIDYMUS, COMMA OF PYTHAGO- 

References 
Sloane, N. J. A. Sequences A046103 and A046104 in “An On- 
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Diffeomorphism 
A diffeomorphism is a MAP between MANIFOLDS which 
is DIFFERENTIABLE and has a DIFFERENTIABLE inverse. 

see &OANOSOV DIFFEOMORPHISM, AXIOM A DIFFEO- 
MORPHISM, SYMPLECTIC DIFFEOMORPHISM, TANGENT 
MAP 

Difference 
The difference of two numbers nl and n2 is n1 - n2, 
where the MINUS sign denotes SUBTRACTION. 

see also BACKWARD DIFFERENCE, FINITE DIFFERENCE, 
FORWARD DIFFERE NCE 

Difference Equation 
A difference equation is the discrete analogue of a DIF- 
FERENTIAL EQUATION. A difference equation involves 
a FUNCTION with INTEGER-valued arguments f(n) in a 
form like v 

f (4 - f b - 1) = dn>, (1) 
where g is some FUNCTION. The above equation is the 
discrete analog of the first-order ORDINARY DIFFEREN- 
TIAL EQUATION 

f’(x) = 9(4* (2) 

f (n + 1) = f(@ + 5 (3) 

with c a constant, as well as the LOGISTIC EQUATION 

with T a constant. 

see also FINITE DIFFERENCE, RECURRENCE RELATION 
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Publishers, 1967. 

Difference Operator 

see BACKWARD DIFFERENCE, FORWARD DIFFERENCE 

Difference Quotient 

n f(x) - fb+W - f(x) Af 
h Y 

h =h’ 

It gives the slope of the SECANT LINE passing through 
f(z) and f(a: + h). In th e 1 imit n + 0, the difference 
quotient becomes the PARTIAL DERIVATIVE 

Difference Set 
Let G be a GROUP of ORDER h and D be a set of k 
elements of G. If the set of differences di - dj contains 
every NONZERO element of G exactly A times, then D 
is a (h, k, X)-difference set in G of ORDER n = k - A. If 
X = 1, the difference set is called planar. The quadratic 
residues in the GALOIS FIELD GF(11) form a difference 
set. If there is a difference set of size k in a group G, 
then 2 (i) must be a multiple of 1 GI - 1, where (i) is a 
BINOMIAL COEFFICIENT. 
see also BRUCK-RYSER-CHOWLA THEOREM, FIRST 
MULTIPLIER THEOREM, PRIME POWER CONJEC TURE 
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Difference of Successes 
If z& and xz/nz are the observed proportions from 
standard NORMALLY DISTRIBUTED samples with pro- 
portion of success 8, then the probability that 

Xl 572 WE---- 

721 n2 
(1) 

will be as great as observed is 

s 

ISI 
ps =1--Z 4(t) 4 (2) 

0 

(3) 

,,+1-8)($+$) (4) 

x1+x2 j=- 
721-k 722 l  

(5) 

Here, 6 is the UNBIASED ESTIMATOR. The SKEWNESS 
and KURTOSIS of this distribution are 

(6) Y12 = (nl - n2)’ 1 - 4&l - 8) 
mn2(m -I- n2) e(1 - 4) 

n12 - 
72 = 

nln2 + nz2 1 - S&l - 8) 

nm2(m -I- n2) 8(1-e) l  

(7) 

Difference Table 
A table made by subtracting adjacent entries in a se- 
quence, then repeating the process with those numbers. 

see also FINITE DIFFERENCE, QUOTIENT-DIFFERENCE 
TABLE 

Different 
Two quantities are said to be different (or “unequal”) if 
they are not EQUAL. 

The term “different” also has a technical usage related to 
MODULES. Let a MODULE A4 inan INTEGRAL DOMAIN 
D1 for R(JD) b e expressed using a two-element basis 
as 

hf = [Sl,S23, 

where & and & are in D1. Then the different of the 
MODULE is defined as 

The different A # 0 IFF cl, and & are linearly indepen- 
dent. The DISCRIMINANT is defined as the square of the 
different. 

see also DI~CRIMINANT (MODULE), EQUAL, MODULE 

References 
Cohn, H. Advanced Number Theory. New York: Dover, 

pp. 72-73, 1980. 

Different Prime Factors 

see DISTINCT PRIME FACTORS 

Different iable 
A FUNCTION is said to be differentiable at a point if its 
DERIVATIVE exists at that point. Let z = x + iy and 

f (4 = 4x, Y> +4x, Y> on some region G containing the 
point ~0. If f(z) satisfies the CAUCHY-RIEMANN EQWA- 
TIONS and has continuous first PARTIAL DERIVATIVES 
at ~0, then f’(zo) exists and is given by 

fl(xo) = lim f(4 - f(Jd 
r+q z-250 ’ 

and the function is said to be COMPLEX DIFFEREN- 
TIABLE. Amazingly, there exist CONTINUOUS FUNC- 
TIONS which are nowhere differentiable. Two exam- 
plesarethe BLANCMANGE FUNCTION and WEIERSTRAJ~ 
FUNCTION. 

see also BLANCMANGE FUNCTION, CAUCHY-RIEMANN 
EQUATIONS,COMPLEXDIFFERENTIABLE,CONTINUOUS 
FUNCTION, DERIVATIVE, PARTIAL DERIVATIVE, WEI- 
ERSTRAB FUNCTION 

Differentiable Manifold 

see SMOOTH MANIFOLD 

Different ial 
A DIFFERENTIAL ~-FORM. 

see also EXACT 

TIAL 
DIFFERENTIAL, INEXACT DIFFEREN- 

Differential Calculus 
That portion of “the” CALCULUS dealing with DERIVA- 

see ~2~0 INTEGRAL Cfmcuws 
TIVES. 

Differential Equation 
An equation which involves the DERIVATIVES of a func- 
tion as well as the function itself. If PARTIAL DERIVA- 
TIVES are involved, the equation is called a PARTIAL 
DIFFERENTIAL EQUATION; if only ordinary DERIVA- 
TIVES are present, the equation is called an ORDINARY 
DIFFERENTIAL EQUATION. Differential equations play 
an extremely important and useful role in applied math, 
engineering, and physics, and much mathematical and 
numerical machinery has been developed for the solution 
of differential equations. 

see also INTEGRAL EQUATION, ORDINARY DIFFEREN- 
TIAL EQUATION, PARTIAL DIFFERENTIAL EQUATION 

References 
A&en, G. “Differential Equations.” Ch. 8 in Mathematical 

Methods for Physicists, 3rd ed. Orlando, FL: Academic 
Press, pp. 437-496, 1985. 

Dormand, J. FL Numerical Methods for Differential Equa- 
tions: A Computational Approach. Boca Raton, FL: CRC 
Press, 1996. 
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Differential Form 
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see DIFFERENTIAL ~-FORM 

Differential Geometry 
Differential geometry is the study of RIEMANNIAN MAN- 
IFOLDS. Differential geometry deals with metrical no- 
tions on MANIFOLDS, while DIFFERENTIAL TOPOLOGY 
deals with those nonmetrical notions of MANIFOLDS. 

see also DIFFERENTIAL TOPOLOGY 

References 
Eisenhart, L. P. A Treatise on the Differential Geometry of 

Curves and Surfaces. New York: Dover, 1960. 
Gray, A. Modern DifferentiaE Geometry of Curves and Sur- 

faces. Boca Raton, FL: CRC Press: 1993. 
Kreyszig, E. Diflerential Geometry. New York: Dover, 1991. 
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ometry. New York: McGraw-Hill, 1969. 
Spivak, M. A Comprehensive Introduction to Differential Ge- 

ometry, 2nd ed, 5 vols. Berkeley, CA: Publish or Perish 
Press, 1979. 

Struik, D. J. Lectures on Classical Differential Geometry, 
New York: Dover, 1988. 

Weatherburn, C. E, Differential Geometry of Three Dimen- 
sions, 2 vols. Cambridge, England: Cambridge University 
Press, 1961. 

Differential k-Form 
A differential k-form is a TENSOR of RANK k which is 
antisymmetric under exchange of any pair of indices. 
The number of algebraically independent components in 
n-D is (i) , where this is a BINOMIAL COEFFICIENT. In 
particular, a l-form (often simply called a “differential”) 
is a quantity 

w1 = bl dxl + b2 dxz, (1) 

where bl = bl(x1,x2) and b2 = b&,xz) are the com- 
ponents of a COVARIANT TENSOR. Changing variables 
from x to y gives 

(3) 

which is the covariant transformation law. 2-forms can 
be constructed from the WEDGE PRODUCT of l-forms. 

Let 
01 = bl dxl + b2 dxz (4) 

02 = cldxl +c2dx2, (5) 

then 01 A 02 is a 2-form denoted w2. Changing variables 

m(y1,y2) to x2(y1,y2) gives 

dXl ax2 8x1 8x2 
-- - -- 
&/l dy2 ay2 dy1 

a(xlJ2) - - -dyl A dyz. 
qY1 I Y2 > 

(8) 

Similarly, a 4-form can be constructed from WEDGE 
PRODUCTS of two 2-forms or four I-forms 

w4 = WI2 A w22 = (d Aw2L)A(W31 A w4l). (9) 

see also ANGLE BRACKET, BRA, EXTERIOR DERIVA- 
TIVE, KET, ONE-FORM, SYMPLECTIC FORM, WEDGE 
PRODUCT 

References 
Weintraub, S. l3. Differential Forms: A Complement to Vec- 

tor Calculus. San Diego, CA: Academic Press, 1996. 

Differential Operator 
The OPERATOR representing the computation of a DE- 
RIVATIVE, 

,=A - 
dx’ 

The second derivative is then denoted B2, the third 03, 
etc. The INTEGRAL is denoted B-l. 

see also CONVECTIVE DERIVATIVE, DERIVATIVE,FRAC- 
TIONAL DERIVATIVE, GRADIENT 

Differential Structure 

see EXOTIC R4, EXOTIC SPHERE 

Differential Topology 
The motivating force of TOPOLOGY, consisting of the 
study of smooth (differentiable) MANIFOLDS. Differen- 
tial topology deals with nonmetrical notions of MAN- 
IFOLDS, while DIFFERENTIAL 
metrical notion .s of MANIFOLDS 

GEUMETRY deals with 

see &O DIFFERENTIAL GEOMETRY 

References 
Dieudonne, J. A History of Algebraic and Differential Topol- 

ogy; 1900-1960. Boston, MA: Birkhauser, 1989. 
Munkres, 3. R. EEementary Differential Topology. Princeton, 

NJ: Princeton University Press, 1963. 

Differentiation 
The computation of a DERIVATIVE. 

see also CALCULUS, DERIVATIVE, INTEGRAL, INTEGRA- 

8x1 ax1 
dxl = -dyl + -dyz 

dYl dY2 
(6) 

dx2 = 
3x2 3x2 
-&/I + -dya, 
aY1 dY2 

(7) 



432 Digamma Function Digamma Function 

Digamma Function function is the zeroth derivative of Q(z) (i.e., the func- 
tion itself), it is also denoted @O(Z). 

The digamma function satisfies 

SY 

e -t e --;rt 

*( > z = --- 

> 
dt. 

t 1 - e-t (9) 
0 

For integral z E n, 

n-l 

XIX(n) = -7+x;= -7 + Hn-17 (10) 

k=1 

where y is the EULER-MASCHERONI CONSTANT and Hn 
is a HARMONIC NUMBER. Other identities include 

Re[Digarmna zl Im[Disamna z 1 IDigarmna zI 

dXP 

dx 
- - 

n=o 6 ) 
1 n2 

(11) 

- sP(z) = mot(7rz) (12) Two notations are used for the digamma function. The 
XP( z) digamma function is defined by 

t 1) 
1 = qx> + - Y (13) 

\k(2z) = $!(.z) + $P(z + +) + ln2. (14) (1) 

Special values are 
where r is the GAMMA FUNCTION, and is the 
function returned by the function PolyCamma[z] in 
Muthematica@ (Wolfram Research, Champaign, IL). 
The F digamma function is defined by 

W) 
& 

---y-2ln2 - (15) 
= -7. (16) 

At integral values, 
F(z) E $ lnz! (2) 

$0(7x + 1) = - (17) 
k=l 

and is equal to 

F(z) = xP(z + 1). (3) 

From a series expansion of the FACTORIAL function, 

and at half-integral values, 

~o(+x)=-ln(4y)+2j:1- 
k 12k-l’ (18) 

zz 
d 

dz F( > z lim [In n! 
n+m 

Ann + - - 
At rational arguments, Q&/Q) is given by the explicit 
equation - ln(z + 1) - ln(z + 2) - l  l  l  - ln(z + n)] (4) 

1 = lim Inn----- 
( 

1 1 
2+2 l **- 

- 
n-boo z+l z+n > $0 0 p_ 

Q 
= -y - ln(2q) - +ot 

( > 
% 

+2 “z’cos (y) l:[sin ($J] (19) 

(5) 

- - -7 - 7; (-& - ‘> n (6) 
n=l 

- - -y+f&) (7) 
n-1 

for 0 < p < q (Knuth 1973). These give the special 
values 

1 - B2n 
=lnz+g-x------ 

2nx2n ’ 
*o(+) = -y - 2ln2 (20) 

@o(i) = i(-67 - nh- 9ln3) (21) 

~o<~> = i(-6y+d% 9ln3) (22) 

TM+> = -y- $7r-3ln2 (23) 

COCK, = $(-2y+r-6ln2) (24) 

$0(l) = -7, (25) 

where y isthe EULER-MASCHERONI CONSTANT and&, 
are BERNOULLI NUMBERS. 

The nth DERIVATIVE of1Zl(z)is called the POLYGAMMA 
FUNCTION and is denoted @n(z)* Since the digamma 
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where y is the EULER-MASCHERONI CONSTANT. Sums 
and differences of &(T/s) for small integral T and s can 
be expressed in terms of CATALAN’S CONSTANT and 7~ 

see ~SO GAMMA FUNCTION, HARMONIC NUMBER, 

HURWITZ ZETA FUNCTION, P~LYGAMMA FUNCTION 
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Digimet ic 
A CRYPTARITHM in which DIGITS are used to represent 
other DIGITS. 

Digit 
The number of digits D in an INTEGER n is the number 
of numbers in some base (usually 10) required to repre- 
sent it. The numbers 1 to 9 are therefore single digits, 
while the numbers 10 to 99 are double digits. Terms such 
as “double-digit inflation” are occasionally encountered, 
although this particular usage has thankfully not been 
needed in the U.S. for some time. The number of (base 
10) digits in a number n can be calculated as 

D = [log,, n + 1J , 

where 1x1 is the FLOOR FUNCTION. 

see also 196-ALGORITHM, ADDITIVE PERSISTENCE, 
DIGITADITION, DIGITAL ROOT, FACTORION, FIGURES, 
LENGTH (NUMBER), MULTIPLICATIVE PERSISTENCE, 

NARCISSISTIC NUMBER, SCIENTIFIC NOTATION, SIG- 
NIFICANT DIGITS, SMITH NUMBER 

Digitadition 
Start with an INTEGER n, known as the GENERATOR. 
Add the SUM of the GENERATOR’S digits to the GEN- 
ERATOR to obtain the digitadition n’. A number can 
have more than one GENERATOR. If a number has no 
GENERATOR, it is called a SELF NUMBER. The sum of 
all numbers in a digitadition series is given by the last 
term minus the first plus the sum of the DIGITS of the 
last. 

If the digitadition process is performed on n’ to yield its 
digit adition n”, on nff to yield n”‘, etc., a single-digit 
number, known as the DIGITAL ROOT of n, is eventually 
obtained. The digital roots of the first few integers are 
1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 9, 1, . . . 
(Sloane’s A010888). 

Digitadition 433 

If the process is generalized so that the tcth (instead of 
first) powers of the digits of a number are repeatedly 
added, a periodic sequence of numbers is eventually ob- 
tained for any given starting number n. If the original 
number n is equal to the sum of the lath powers of its dig- 
its, it is called a NARCISSISTIC NUMBER. If the original 
number is the smallest number in the eventually periodic 
sequence of numbers in the repeated k-digitaditions, it 
is called a RECURRING DIGITAL INVARIANT. Both NAR- 
CISSISTIC NUMBERS and RECURRING DIGITAL TNVARI- 
ANTS are relatively rare. 

The only possible periods for repeated Z-digitaditions 
are 1 and 8, and the periods of the first few positive 
integers are 1, 8, 8, 8, 8, 8, 1, 8, 8, 1, l  . . . The possi- 
ble periods p for n-digitaditions are summarized in the 
following table, together with digitaditions for the first 
few integers and the corresponding sequence numbers. 

n Sloane ps n-Digitaditions 

2 031176 1, 8 1, 8, 8, 8, 8, 8, 1, 8, 8, . . l  

3 031178 1,2,3 1, 1, 1, 3, 1, 1, 1, 1, 1, l  . . 
4 031182 1,2,7 1, 7, 7, 7, 7, 7, 7, 7, 7, l  l  . 
5 031186 1, 2, 4, 6, 1, 12, 22, 4, 10, 22, 28, 

10, 12, 22, 28 10, 22, 1, .* l  

6 031195 1, 2, 3, 4, 1, 10, 30, 30, 30, 10, 10, 
10, 30 10, 3, 1, 10, . l  l  

7 031200 1, 2, 3, 6, 1, 92, 14, 30, 92, 56, 6, 
12, 14, 21, 27, 92, 56, 1, 92, 27, l  . . 
30, 56, 92 

8 031211 1, 25,154 1, 25, 154, 154, 154, 154, 
25, 154, 154, 1, 25, . . . 

9 031212 1, 2, 3, 4, 8, 1, 30, 93, 1, 19, 80, 4, 30, 
10, 19, 24, 28, 80, 1, 30, 93, 4, 10, . . . 
30, 80, 93 

10 031212 1, 6, 7, 17, 1, 30, 93, 1, 19, 80, 4, 30, 
81, 123 80, 1, 30, 93, 4, 10, . . l  

The numbers having period-l 2-digitaded sequences are 
also called HAPPY NUMBERS. The first few numbers 
having period p n-digitaditions are summarized in the 
following table, together with their sequence numbers. 
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n D Sloane Members 

2 1 007770 1, 7, 10, 13, 19, 23, 28, 31, 32, . . . 
2 8 031177 2, 3, 4, 5, 6, 8, 9, 11, 12, 14, 15, . . . 
3 1 031179 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, . . . 
3 2 031180 49, 94, 136, 163, 199, 244, 316, . . . 
3 3 031181 4, 13, 16, 22, 25, 28, 31, 40, 46, . . . 
4 1 031183 1, 10, 12, 17, 21, 46, 64, 71, 100, . l  . 

4 2 031184 66, 127, 172, 217, 228, 271, 282, . . . 
4 7 031185 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 14, . l  . 
5 1 031187 1, 10, 100, 145, 154, 247, 274, .*. 
5 2 031188 133, 139, 193, 199, 226, 262, . . . 

5 4 031189 4, 37, 40, 55, 73, 124, 142, . . . 
5 6 031190 16, 61, 106, 160, 601, 610, 778, . . . 
5 10 031191 5, 8, 17, 26, 35, 44, 47, 50, 53, . . . 
5 12 031192 2, 11, 14, 20, 23, 29, 32, 38, 41, .a. 
5 22 031193 3, 6, 9, 12, 15, 18, 21, 24, 27, .e. 
5 28 031194 7, 13, 19, 22, 25, 28, 31, 34, 43, .a. 
6 1 011557 1, 10, 100, 1000, 10000, 100000, .*. 
6 2 031357 3468, 3486, 3648, 3684, 3846, . . . 
6 3 031196 9, 13, 31, 37, 39, 49, 57, 73, 75, . . . 
6 4 031197 255, 466, 525, 552, 646, 664, ..: 
6 10 031198 2, 6, 7, 8, 11, 12, 14, 15, 17, 19, l  . . 
6 30 031199 3, 4, 5, 16, 18, 22, 29, 30, 33, . . . 
7 1 031201 1, 10, 100, 1000, 1259, 1295, . . . 
7 2 031202 22, 202, 220, 256, 265, 526, 562, . . . 
7 3 031203 124, 142, 148, 184, 214, 241, 259, . . . 
7 6 7, 70, 700, 7000, 70000, 700000, .-. 
7 12 031204 17, 26, 47, 59, 62, 71, 74, 77, 89, ..- 
7 14 031205 3, 30, 111, 156, 165, 249, 294, w.. 
7 21 031206 19, 34, 43, 91, 109, 127, 172, 190, a.. 
7 27 031207 12, 18, 21, 24, 39, 42, 45, 54, 78, . . . 
7 30 031208 4, 13, 16, 25, 28, 31, 37, 40, 46, . . . 
7 56 031209 6, 9, 15, 27, 33, 36, 48, 51, 57, . . . 
7 92 031210 2, 5, 8, 11, 14, 20, 23, 29, 32, 35, . . . 
8 1 1, 10, 14, 17, 29, 37, 41, 71, 73, . . . 
8 25 2, 7, 11, 15, 16, 20, 23, 27, 32, l  . . 

8 154 3, 4, 5, 6, 8, 9, 12, 13, 18, 19, . . . 
9 1 1, 4, 10, 40, 100, 400, 1000, 1111, l  . . 
9 2 127, 172, 217, 235, 253, 271, 325, . . . 
9 3 444, 4044, 4404, 4440, 4558, . . . 
9 4 7, 13, 31, 67, 70, 76, 103, 130, .e. 
9 8 22, 28, 34, 37, 43, 55, 58, 73, 79, . . . 
9 10 14, 38, 41, 44, 83, 104, 128, 140, l  l  . 

9 19 5, 26, 50, 62, 89, 98, 155, 206, . . . 
9 24 16, 61, 106, 160, 337, 373, 445, . . . 
9 28 19, 25, 46, 49, 52, 64, 91, 94, . . . 
9 30 2, 8, 11, 17, 20, 23, 29, 32, 35, . . . 
9 80 6, 9, 15, 18, 24, 33, 42, 48, 51, . a. 
9 93 3, 12, 21, 27, 30, 36, 39, 45, 54, . . . 

10 1 011557 1, 10, 100, 1000, 10000, 100000, l  *. 
10 6 266, 626, 662, 1159, 1195, 1519, ..a 
10 7 46, 58, 64, 85, 122, 123, 132, . . . 
10 17 2, 4, 5, 11, 13, 20, 31, 38, 40, . . . 
10 81 17, 18, 37, 71, 73, 81, 107, 108, . . . 
10 123 3, 6, 7, 8, 9, 12, 14, 15, 16, 19, . . . 

see ah 196-ALGORITHM, ADDITIVE PERSISTENCE, 
DIGIT,DIGITAL ROOT,MULTIPLICATIVE PERSISTENCE, 

NARCISSISTIC NUMBER, RECURRING DIGITAL INVARI- 
ANT 

Digital Root 
Consider the process of taking a number, adding its DIG- 
ITS, then adding the DIGITS of numbers derived from it, 
etc., until the remaining number has only one DIGIT. 
The number of additions required to obtain a single 
DIGIT from a number n is called the ADDITIVE PER- 
SISTENCE of n, and the DIGIT obtained is called the 
digital root of n. 

For example, the sequence obtained from the starting 
number 9876 is (9876, 30, 3), so 9876 has an ADDITIVE 
PERSISTENCE of 2 and a digital root of 3. The digital 
roots of the first few integers are 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 
2, 3, 4, 5, 6, 7, 9, 1, . . . (Sloane’s A010888). The digital 
root of an INTEGER 72 can therefore be computed with- 
out actually performing the iteration using the simple 
congruence formula 

n (mod 9) n $ 0 (mod 9) 
9 n E 0 (mod 9). 

see also ADDITIVE PERSISTENCE, DIGITADITION, 
KAPREKARNUMBER,MULTIPLICATIVE DIGITAL ROOT, 
MULTIPLICATIVE PERSISTENCE, NARCISSISTIC NUM- 
BER,RECURRING DIGITAL INVARIANT, SELF NUMBER 

References 
Sloane, N. J. A. Sequences A010888 and A007612/M1114 in 
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Digon 

The DEGENERATE POLYGON (corresponding to a LINE 
SEGMENT) with SCHLXFLI SYMBOL (2). 

see UZSO LINE SEGMENT, POLYGON, TRIGONOMETRY 
VALUES--n/z 

Digraph 

see DIRECTED GRAPH 

Dihedral Angle 
The ANGLE between two PLANES. The dihedral angle 
between the planes 

Aa: + Bly + Clr + D1 = 0 (1) 

Azx+&y+Czz+D2 =o (2) 

is 

cos8 = 
&Az+BlBz+C1Cz 

JA12 + B12 + Cl2 JAz2 + Bz2 + Cz2 ’ 
(3) 

see also ANGLE, PLANE, VERTEX ANGLE 
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Dihedral Group 
A GROUP of symmetries for an n-sided REGULAR POLY- 
GON, denoted D,. The ORDER of D, is 2n. 

see also FINITE GROUP-&, FINITE GROUP---& 

References 
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Dijkstra’s Algorithm 
An ALGORITHM for finding the shortest path between 
two VERTICES. 

see ~2s~ FLOYD'S ALGORITHM 

Dijkstra Tree 
The shortest path-spanning TREE from a VERTEX of a 
GRAPH. 

Dilation 
An AFFINE TRANSFORMATION in which the scale is re- 
duced. A dilation is also known as a CONTRACTION or 
HOMOTHECY. Any dilation which is not a simple trans- 
lation has a unique FIXED POINT. The opposite of a 
dilation is an EXPANSION. 

see also AFFINE TRANSFORMATION, EXPANSION, Ho- 
MOTHECY 

References 
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Dilemma 
Informally, a situation in which a decision must be made 
from several alternatives, none of which is obviously the 
optimal one. In formal LOGIC, a dilemma is a spe- 
cific type of argument using two conditional statements 
whichmaytaketheformofa CONSTRUCTIVE DILEMMA 
or a DESTRUCTIVE DILEMMA. 

see UZSU CONSTRUCTIVE DILEMMA, DESTRUCTIVE 
DILEMMA, MONTY HALL PROBLEM, PARADOX, PRIS- 
ONER'S DILEMMA 

Dilogarit hm 
A special case of the POLYLOGARITHM Li,(z) for n = 2. 
It is denoted Liz(z), or sometimes L2 (x), and is defined 
by the sum 

Liz(z) =F$ 
k=l 

or the integral 

I O 
Liz(z) = 

ln(1 - t) dt 
t l  

There are several remarkable 
POLYLOGARITHM function. 

identities involving the 

see also ABEL'S FUNCTIONAL 
RITHM, SPENCE' s INTEGRAL 

EQUATION, POLYLOGA- 
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Dilworth’s Lemma 
The WIDTH of a set P is equal to the minimum num- 
ber of CHAINS needed to COVER P. Equivalently, if a 
set P of ab + 1 elements is PARTIALLY ORDERED, then 
P contains a CHAIN of size a + I or an ANTICHAIN of 
size b + 1. Letting N be the CARDINALITY of P, WV 
the WIDTH, and L the LENGTH, this last statement 
says N < LW. Dilworth’s lemma is a generalization - 
of the ERD~S-SZEKERES THEOREM. RAMSEY'S THEO- 
REM generalizes Dilworth’s Lemma. 

see UZSU C~MBINATORIC 
RA MSEY'S THEOREM 

s, ERD&- ERES THEOREM, 

Dilworth’s Theorem 

see DILWORTH'S LEMMA 

Dimension 
The notion of dimension is important in mathematics 
because it gives a precise parameterization of the con- 
ceptual or visual complexity of any geometric object. In 
fact, the concept can even be applied to abstract ob- 
jects which cannot be directly visualized. For example, 
the notion of time can be considered as one-dimensional, 
since it can be thought of as consisting of only “now,” 
“before” and “after .” Since “before” and “after,” re- 
gardless of how far back or how far into the future they 
are, are extensions, time is like a line, a l-dimensional 
object. 

To see how lower and higher dimensions relate to each 
other, take any geometric object (like a POINT, LINE, 
CIRCLE, PLANE, etc.), and “drag” it in an opposing di- 
rection (drag a POINT to trace out a LINE, a LINE to 
trace out a box, a CIRCLE to trace out a CYLINDER, a 
DISK to a solid CYLINDER, etc.). The result is an object 
which is quali .tatively “larger” than the previous object, 
“quali tative” in the sense that, regardless of how you 
drag the original object, you always trace out an ob- 
ject of the same “qualitative size.” The POINT could be 
made into a straight LINE, a CIRCLE, a HELIX, or some 
other CURVE, but all of these objects are qualitatively 
of the same dimension. The notion of dimension was 
invented for the purpose of measuring this “qualitative” 
topological property. 

Making things a bit more formal, finite collections of ob- 
jects (e.g., points in space) are considered O-dimensional. 
Objects that are “dragged” versions of O-dimensional 
objects are then called l-dimensional. Similarly, ob- 
jects which are dragged l-dimensional objects are 2- 
dimensional, and so on. Dimension is formalized in 
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mathematics as the intrinsic dimension of a TOPO- 
LOGICAL SPACE. This dimension is called the LEBES- 
GUE COVERING DIMENSION (also known simply as the 
TOPOLOGICAL DIMENSION). The archetypal example 
is EUCLIDEAN n-space R”, which has topological di- 
mension 72. The basic ideas leading up to this result 
(including the DIMENSION INVARIANCE THEOREM, Do- 
MAIN INVARIANCE THEOREM, and LEBESGUE COVER- 
ING DIMENSION) were developed by Poincar6, Brouwer, 
Lebesgue, Urysohn, and Menger. 

There are several branchings and extensions of the no- 
tion of topological dimension. Implicit in the notion 
of the LEBESGUE COVERING DIMENSION is that dimen- 
sion, in a sense, is a measure of how an object fills space. 
If it takes up a lot of room, it is higher dimensional, and 
if it takes up less room, it is lower dimensional. HAUS- 
DORFF DIMENSION (also called FRACTAL DIMENSION) is 
a fine tuning of this definition that allows notions of ob- 
jects with dimensions other than INTEGERS. FRACTALS 
are objects whose HAUSDORFF DIMENSION is different 
from their TOPOLOGICAL DIMENSION. 

The concept of dimension is also used in ALGEBRA, pri- 
marily as the dimension of a VECTOR SPACE over a 
FIELD. This usage stems from the fact that VECTOR 
SPACES over the reals were the first VECTOR SPACES 
to be studied, and for them, their topological dimension 
can be calculated by purely algebraic means as the CAR- 
DINALITY of a maximal linearly independent subset. In 
particular, the dimension of a SUBSPACE of R” is equal 
to the number of LINEARLY INDEPENDENT VECTORS 

needed to generate it (i.e., the number of VECTORS in 
its BASIS). Given a transformation A of Iw”, 

dim[Range(A)] + dim[Null(A)] = dim@“). 

see also CAPACITY DIMENSION, CODIMENSION, CORRE- 

LATION DIMENSION, EXTERIOR DIMENSION, FRACTAL 
DIMENSION, HAUSDORFF DIMENSION, HAUSDORFF- 
BESICOVITCH DIMENSION, KAPLAN-Y• RKE DIMEN- 
SION, KRULL DIMENSION, LEBESGUE COVERING DI- 
MENSION, LE~ESGUE DIMENSION, LYAPUNOV DIMEN- 

SION, P~SET DIMENSION, Q-DIMENSION, SIMILARITY 
DIMENSION, TOPOLOGICAL DIMENSION 
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Dimension Axiom 
One of the EILENBERG-STEENROD AXIOMS. Let, X be 
a single point space. Hn.(X) = 0 unless n = 0, in which 
case Ho(X) = G where G are some GROUPS. The Ho are 
called the COEFFICIENTS of the HOMOLOGY THEORY 

see UZSO EILENBERG-STEENROD AXIOMS, HOMOLOGY 

(TOPOLOGY) 

Dimension Invariance Theorem 
IIB” is HOMEOMORPHIC to Iw” IFF n = m. This theorem 
was first proved by Brouwer. 

see UZSO DOMAIN INVARIANCE THEOREM 

Dimensionality Theorem 
For a finite GROUP of h elements with an n&h dimen- 
sional ith irreducible representation, 

c 2 % = h. 

Diminished Polyhedron 
A UNIFORM POLYHEDRON with pieces removed. 

Diminished Rhombicosidodecahedron 

see JOHNSON SOLID 

Dini Expansion 
An expansion based on the ROOTS of 

x-[ZJ;(x) + K&(x)] = 0, 

where J&) is a BESSEL FUNCTION OF THE FIRST 
KIND, is called a Dini expansion. 

see also BESSEL FUNCTION FOURIER EXPANSION 
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Dini’s Surface 

A surface of constant NEGATIVE CURVATURE obtained 
by twisting a PSEUDOSPHERE and given by the paramet- 
ric equations 

x = acosusinv 

y = asinusinv 

z = a{cos w  + ln[tan( +)I} + bu. 

(1) 

(2) 

(3) 
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The above figure corresponds to a = 1, b = 0.2, u E 
[0,4~], and w  f (0,2]. 

see also PSEUDOSPHERE 
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Dini’s Test 
A test for the convergence of FOURIER SERIES. Let 

q&(t) =I f (x + t) + f (x - t) - 2f (XL 

then if 

s 

n- IW>l dt 

0 
t 

is FINITE, the FOURIER SERIES converges to f(z) at x. 

see also FOURIER SERIES 
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Dinitz Problem 
Given any assignment of n-element sets to the n2 loca- 
tions of a square n x n array, is it always possible to 
find a PARTIAL LATIN SQUARE? The fact that such a 
PARTIAL LATIN SQUARE can always be found for a 2 x 2 
array can be proven analytically, and techniques were 
developed which also proved the existence for 4 x 4 and 
6 x 6 arrays. However, the general problem eluded solu- 
tion until it was answered in the affirmative by Galvin in 
1993 using results of Janssen (1993ab) and F. Maffray. 

see also PARTIAL LATIN SQUARE 
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Diocles’s Cissoid 

Diophantine Equation 
An equation in which only INTEGER solutions are al- 
lowed. HILBERT'S 10~~ PROBLEM askedifatechnique 
for solving a general Diophantine existed. A general 
method exists for the solution of first degree Diophan- 
tine equations. However, the impossibility of obtaining a 
general solution was proven by Julia Robinson and Mar- 
tin Davis in 1970, following proof of the result that the 
equation n = Fzm (where Fsln is a FIBONACCI NUM- 
BER) is Diophantine by Yuri Matijasevic (MatijaseviE 
1970, Davis 1973, Davis and Hersh 1973, Matijasevic 
1993). 

No general method is known for quadratic or higher 
Diophantine equations. Jones and MatijaseviE (1982) 
proved that no ALGORITHMS can exist to determine if 
an arbitrary Diophantine equation in nine variables has 
solutions. Ogilvy and Anderson (1988) give a number 
of Diophantine equations with known and unknown so- 
lutions. 

D. Wilson has compiled a list of the smallest nth POW- 

ERS which are the sums of n distinct smaller nth POW- 
ERS. The first few are 3, 5, 6, 15, 12, 25, 40, l  . . (Sloane’s 
A030052): 

3l = l1 + 2l 

52 = 32 + 42 

fs3 = 33 + 43 + 53 

154 = 44 + 64 + g4 + 9* + 144 

125 = 45 + 55 + 65 + 75 + g5 + 115 

25” = 1” + 26 + 36 + 5” + 66 + 7” + g6 + 9” + lo6 

+ 126 + 136 + 156 + 16” + 176 + 1g6 + 236 

40~ = l7 + 37 + 57 + g7 + 127 + 147 + 167 + 177 

+ 1g7 + 207 + 217 + 227 + 257 + 2g7 + 3g7 

848 = l8 + 2’ + 38 + 58 + 78 + 9* + IO8 + 118 

+ 128 + 138 + 14* + 158 + 168 + 17’ + 18’ 

+ lg* + 218 + 23’ + 248 + 258 + 268 + 27’ 

+ 2g8 + 328 + 33’ + 358 + 378 + 3g8 + 39” 

+ 418 + 42’ + 438 + 458 + 468 + 478 + 4B8 

+ 4g8 + 518 + 528 + 538 + 578 + 5g8 + 5g8 

+ 61’ + 638 + 6g8 + 73* 

47’ = 1’ + 2’ + 4’ + 7’ + 11’ + 14’ + 15’ + 18’ 

+ 26’ + 27’ + 30’ + 31’ + 32’ + 33’ 

+ 36’ + 38’ + 39’ + 43’ 

631° = l1’ + 21° + 41° + 51° + 61° + 8” + 121° 

+ 151° + 161° + 171° + 201’ + 211’ + 251° 

+ 261° + 271° + 281° + 301* + 36l* + 371° 

+ 381° + 401’ + 511’ + 621°. 

see CISSOID OF DIOCLES 
see also ABC CONJECTURE, ARCHIMEDES' CAT- 
TLE PROBLEM, BACHET EQUATION, BRAHMAGUPTA'S 



438 Diophantine Equation 

PROBLEM,~ANNONBALL PROBLEM,~ATALAN'S PROB- 
LEM, DIOPHANTINE EQUATION-LINEAR, DIOPHAN- 
TINE EQUATION-QUADRATIC, DI~PHANTINE EQUA- 
TION-CUBIC, DI~PHANTINE EQUATION-QUARTIC, 
DIOPHANTINE EQUATION-STH POWERS, DIOPHAN- 
TINE EQUATION-6TH POWERS, DIOPHANTINE EQUA- 
TION-7TH POWERS, DIOPHANTINE EQUATION-8TH 
POWERS, DIOPHANTINE EQuAmoN-9m POWERS, 
DIOPHANTINE EQUATION-10~~ POWERS, DIOPHAN- 
TINE EQUATION-~TH POWERS, DIOPHANTUS PROP- 
ERTY, EULER BRICK, EULER QUARTIC CONJECTURE, 
FERMAT’S LAST THEOREM, FERMAT SUM THEO- 
HEM, GENUSTHEOREM, HURWITZEQUATION,MARKOV 
NUMBER, MONKEY AND COCONUT PROBLEM, MULTI- 
GRADE EQUATION,~-ADIC NUMBER, PELL EQUATION, 
PYTHAGOREAN QUADRUPLE,~YTHAGOREAN TRIPLE 
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Diophantine Equation-5th Powers 

Diophantine Equation-5th Powers 
The 2-1 fifth-order Diophantine equation 

A5+B5=C5 (1) 

is a special case of FERMAT'S LAST THEOREM with 
n = 5, and so has no solution. No solutions to the 
2-2 equation 

A5+B5=C5+D5 (2) 

are known, despite the fact that sums up to 1.02 x 1O26 
have been checked (Guy 1994, p. 140), improving on 
the results on Lander et al. (1967), who checked up to 
2.8 x 1014. (In fact, no solutions are known for POWERS 
of 6 or 7 either.) 

No solutions to the 3-1 equation 

A5+B5+C5=D5 (3) 

are known (Lander et al. 1967), nor are any 3-2 solutions 
up to 8 x 1012 (Lander et al. 1967). 

Parametric solutions are known for the 3-3 (Guy 1994, 
pp. 140 and 142). Swinnerton-Dyer (1952) gave two 
parametric solutions to the 3-3 equation but, forty years 
later, W. Gosper discovered that the second scheme has 
an unfixable bug. The smallest primitive 3-3 
are 

245 + 2g5 +675 = 35 + 545 + 625 

1g5 +445 +665 = 135 + 515 +645 

215 +435 + 765 = g5 + 62' +6g5 

565 +675 +835 = 535 + 725 +815 

4g5 +755 +1075 = 3g5 +925 +1005 

(Moessner 1939, Moessner 1948, Lander et al. 

For 4 fifth POWERS, we have the 4-1 equation 

275 + 845 + 1105 + 1335 = 1445 

solutions 

(4) 

(5) 

(6) 

(7) 

(8) 

1967). 

(9) 

(Lander and Parkin 1967, Lander et al. 1967), but it is 
not known if there is a parametric solution (Guy 1994, 
p. 140). Sastry’s (1934) 5-l solution gives some 4-2 so- 
lutions. The smallest primitive 4-2 solutions are 

45 + lo5 + 205 + 2g5 = 35 + 2g5 (10) 

55 +135 + 255 +375 = 12' +3g5 (11) 

265 +2g5 +355 +505 = 2g5 +525 (12) 

55 + 255 + 625 +635 = 615 + 645 (13) 

65 + 505 + 535 +825 = 165 + 855 (14 

565 + 635 + 725 +865 = 315 + 965 (15) 

445 + 5g5 + 675 +945 = 1d5 + 9g5 (16) 

115 + 135 + 375 +9g5 = 635 + 975 (17) 

4g5 + 575 + 765 + 1005 = 255 + 1O65 (18) 
5e5 +765 + 7g5 +1025 = 545 +1115 (19) 
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(Rao 1934, Moessner 1948, Lander et al. 1967). 

A two-parameter solution to the 4-3 equation was given 
by Xeroudakes and Moessner (1958). Gloden (1949) also 
gave a parametric solution. The smallest solution is 

l5 + 85 + 145 + 275 = 35 + 225 + 255 (20) 

(Rao 1934, Lander et al. 1967). Several parametric so- 
lutions to the 4-4 equation were found by Xeroudakes 
and Moessner (1958). The smallest 4-4 solution is 

55 + 6’ + 65 + g5 = 45 + 75 + 75 + 7= (21) 

(Rao 1934, Lander et al. 1967). The first 4-4-4 equation 

35 + 4g5 + 525 + 615 = 135 + 36= + 51= + 645 

= 185 + 365 + 445 + 665 (22) 

(Lander et al. 1967). 

Sastry (1934) found a 2-parameter solution for 5-1 equa- 
tions 

(75 v= - 2~~)~ + (u5 + 25v”5)5 + (u5 - 25~~)~ 

+(Iou~v~)~ + (5021~~)~ = (u5 + 75~~)~ (23) 

(quoted in Lander and Parkin 1967), and Lander and 
Parkin (1967) f ound the smallest numerical solutions. 
Lander et al. (1967) give a list of the smallest solutions, 
the first few being 

lg5 + 435 + 465 + 475 + 675 = 725 

215 + 235 + 375 + 79= + 84= = 945 

75 + 435 + 575 + 805 + 1005 = PO75 

g5 + 1205 + 1915 + 25g5 + 3475 = 3655 

7g5 + 2025 + 2585 + 261= + 3955 = 4155 

45 + 265 + 13g5 + 296= + 4125 = 4275 

315 + 1O55 + 13g5 + 3145 + 4165 = 4355 

545 + 915 + 1015 + 4045 + 4305 = 4805 

1g5 + 2015 + 3475 + 3885 + 44g5 = 5035 

l595 + 1725 + 2005 + 3565 + 5135 = 5305 

21g5 + 2765 + 3855 + 409= + 4955 = 5535 

25 + 298= + 3515 + 4745 + 5005 = 5755 

(Lander and Parkin 1967, Lander et al. 1967). 

The smallest primitive 5-2 solutions are 

45 + 55 + 75 + 165 + 215 = l5 + 225 

g5 + 115 + 145 + 185 + 305 = 235 + 2g5 

lo5 + 14” + 265 + 315 + 335 = 165 + 385 

45 + 225 + 2g5 + 355 + 365 = 245 + 425 

g5 + 155 + 17= + 1g5 + 455 = 305 + 445 

55 + 65 + 265 + 275 + 445 = 365 + 42= 

(24) 
(25) 
(26) 
(27) 
(28) 
(29) 
(30) 
(31) 
(32) 
(33) 
(34) 
(35) 

(36) 
(37) 
(38) 
(39) 
(40) 
(41) 
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(Rao 1934, Lander et al. 1967). 

The 6-1 equation has solutions 

45 + 55 + 65 + 75 + g5 + 115 = 125 

5= + lo5 + 115 + 165 + 1g5 + 2g5 = 305 

155 + 165 + 175 + 225 + 245 + 2g5 = 325 

135 + 185 + 235 + 315 + 365 + 665 = 675 

75 + 205 + 2g5 + 315 + 345 + 665 = 675 

22= + 35= + 485 + 5g5 + 615 + 645 = 7g5 

45 + 13= + 19= + 205 + 675 + 965 = 9g5 

65 + 175 + 60= + 645 + 73= + 8g5 = 9g5 

(Martin 1887, 1888, Lander and Parkin 1967, Lander et 
al. 1967). 

The smallest 7-1 solution is 

l5 + 75 + 8= + 145 + 155 + M5 + 205 = 235 (50) 

(Lander et al. 1967). 
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Diophantine Equation-6th Powers 
The 2-1 equation 

A6 + B6 = C6 

439 
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(46) 
(47) 
(48) 
(49) 
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is aspecial case of FERMAT'S LAST THEOREM with n = 

6, and so has no solution. Ekl (1996) has searched and 
found no solutions to the 2-2 

A” + B” = C6 + D” 

with sums less than 7.25 x 102% 

(2) 

No solutions are known to the 3-1 or 3-2 equations. How- 
ever, parametric solutions are known for the 3-3 equa- 
tion 

A6+B6+C6=D6+E6+F6 (3) 

(Guy 1994, pp. 140 and 142). Known solutions are 

3" + 1g6 +226 = 10" + 156 +23" (4 
3@ +376 +676 = 156 +526 +65" (5) 
33" +476 +74" = 23" +546 + 736 (6) 
326 +436 +81" = 3" +556 +80" (7) 
37" + 506 +81" = 116 + 65" + 7g6 (8) 

256 +62" +1386 = 826 +926 +135" (9) 
51" +113" +1366 = 406 +1256 +129” (10) 

716 + g? + 1476 = l6 + 132” + 133” (11) 
1116 + 1216 + 2306 = 266 + 16g6 + 225” (12) 

756 +1426 +245" = 146 +163" +243" (13) 

(Rao 1934, Lander et al. 1967). 

No solutions are known to the 4-1 or 4-2 equations. The 
smallest primitive 4-3 solutions are 

416 + 58" + 736 = 156 +32" + 656 + 706 (14) 
61" +62" +856 = 526 +566 +69” +836 (15) 

61" + 74" +856 = 266 + 566 + 716 + 876 (16) 

116 + 886 + 906 = 216 + 746 + 786 + 926 (17) 

266 + 83" +95” = 236 + 246 + 28" +1016 (18) 

(Lander et al. 1967). Moessner (1947) gave three para- 
metric solutions to the 4-4 equation. The smallest 4-4 
solution is 

26 + 2" +g6 +g6 = 3" +5" +66 + lo6 (19) 

(Rao 1934, Lander et al. 1967). The smallest 4-4-4 so- 
lution is 

l6 +34" +4g6 +111" = 76 + 436 + 69” +1106 

= 186 + 25" + 776 +lW” (20) 

(Lander et al. 1967). 

No n-1 solutions are known for n < 6 (Lander et al. - 
1967). No solution to the 5-l equation is known (Guy 
1994, p. 140) or the 5-2 equation. 

No solutions are known to the 6-l or 6-2 equations. 
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The smallest 7-l solution is 

746+234"+4026+4746 +702"+8946+1077" = 1141" 

(21) 
(Lander et al. 1967). The smallest 7-2 solution is 

186+226+366+586+696+786+786 =56"+91" (22) 

(Lander et al. 1967). 

The smallest primitive 8-l solutions are 

86 + 126 + 306 + 786 +1026 

'+1386 +165" +2466 = 251" (23) 

486 +1116 +156" +1866 + 1886 

+22g6 + 2406 +426" = 4316 (24) 

936 + 936 + 1956 + 1976 + 3036 

+303" + 303" +4116 = 4406 (25) 

21g6 + 2556 + 261’ + 2676 + 289” 

+351" +351" +351" = 4406 (26) 

126 +66" +13g6 +1746 +2126 

+2886 +3066 +4416 = 4556 (27) 

126 +48" +2226 +2366 +333" 

+3846 +390” +4266 = 4936 (28) 

66" +78" +1446 + 2286 +2566 

+28g6 +4356 +4446 = 49g6 (29) 

166 +246 +606 +156" +2046 

+2766 + 3306 +492” = 5026 (30) 

616 +966 +156" + 228" +2766 

+3186 +354" +534" = 547" (31) 

170" +1776 + 2766 +312" +3126 

+4086 +450" +4986 = 55g6 (32) 

606 +1026 +1266 +2616 +270" 

+3386 +354" +5706 = 5816 (33) 

576 +1466 +150" +3606 +390” 

+402" +4446 + 5286 = 583" (34) 

336 +72" +122" + 1926 +2046 

+390” +5346 +5346 = 607" (35) 

126 +90” +1146 +1146 +273" 

+3066 +492’ +5926 = 6236 (36) 

(Lander et al. 1967). The smallest 8-2 solution is 

86+106+126+156+246+306+336+366 = 356+376 

(37) 
(Lander et al. 1967). 

The smallest 9-l solution is 

l6 + 176 + 1g6 + 226 + 3P + 376 + 37" + 41" + 4g6 = 54" 

(38) 
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(Lander et al. 1967). The smallest 9-2 solution is 

16+56+56+76+136+136+136+176+196 = 66+216 

(39) 
(Lander et al. 1967). 

The smallest 10-l solution is 

26+46+76+146+166+266+266+306+326+326 = 3g6 

(40) 
(Lander et al. 1967). The smallest 10-2 solution is 

16+16+1”+46+46+76+96+116+116+116 = 126+126 

(41) 
(Lander et al. 1967). 

The smallest 1 l-l solution is 

26+56+56+56+76+76+96+96+106+14”+176 = 18” 

(42) 
(Lander et al. 1967). 

There is also at least one 16-l identity, 

l6 + 2” + 46 + 56 + 66 + 76 + 9” + 126 + 13” + 156 

+ 16” + 186 + 20” + 216 + 226 + 23” = 28” (43 

(Martin 1893). Moessner (1959) gave solutions for 16-1 
18-1, 20-1, and 23-l. 
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Diophantine Equation-7th Powers 
The 2-l equation 

A7+B7=C7 (1) 

is a special case of FERMAT'S LAST THEOREM with 
n = 7, and so has no solution. No solutions to the 
2-2 equation 

A7+B7=C7+D7 (2) 

are known 
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No solutions to the 3-l or 3-2 equations are known, nei- 
ther are solutions to the 3-3 equation 

A7+B7+C7=D7+E7+F7 (3) 

(Ekl 1996). 

No 4-3, 4-2, or 4-3 solutions are known. Guy (1994, 
p. 140) asked if a 4-4 equation exists for 7th POWERS. 
An affirmative answer was provided by (Ekl 1996), 

14g7 + 1237 + 147 + lo7 = 1467 + 12g7 + 907 + 157 (4) 

1947+1507+1057+237 = 1927+1527+1327+387. (5) 

A 4-5 solution is known. 

No 5-1, 5-2, or 5-3 solutions are known. Numerical so- 
lutions to the 5-4 equation are given by Gloden (1948). 
The smallest 5-4 solution is 

37 + 117 + 267 + 2g7 + 527 = 127 + 167 + 437 + 507 (6) 

(Lander et al. 1967). Gloden (1949) gives parametric 
solutions to the 5-5 equation. The first few 5-5 solutions 
are 

87 + 87 + 137 + 167 + 1g7 

= 27 + 127 + 157 + 177 + 187 (7) 

47 + 87 + 147 + 167 + 237 

= 7’ + 77 + g7 + 207 + 227 (8) 

117 + 127 + 187 + 217 + 267 

= g7 + lo7 + 227 + 237 + 247 (9) 

67 + 127 + 207 + 227 + 277 

= lo7 + 137 + 137 + 257 + 267 (10) 

37 + 137 + 177 + 247 + 387 

= 147 + 267 + 327 + 327 + 33’ (11) 

(Lander et al. 1967). 

No 6-1, 6-2, or 6-3 solutions are known. A parametric 
solution to the 6-6 equation was given by Sastry and Rai 
(1948). The smallest is 

(12) 
(Lander et al. 1967). 

There are no known solutions to the 7-1 equation (Guy 
1994, p. 140). A 72-2 solution is 

27 + 267 

= 47 + 87 + 137 + 147 + 147 + 167 + 187 + 227 + 237 + 237 

= 77 + 77 + 9’ + 137 + 147 + 187 + 207 + 227 + 227 + 237 

(13) 
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(Lander et al. 1967). The smallest 7-3 solution is 

77+77+127+167+277+287+317 = 267+307+307 (14) 

(Lander et al. 1967). 

The smallest 8-l solution is 

127+357+537+587+647+837i857+907 = lO27 (15) 

(Lander et al. 1967). The smallest 8-2 solution is 

57+67+77+157+157+207+287+317 = 107+337 (16) 

(Lander et 611. 1967). 

The smallest 9-l solution is 

67 + 147 + 207 + 22? + 277 + 337 + 417 + 507 + 59’ = 627 

(17) 
(Lander et aE. 1967). 
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Diophantine Equation-8th Powers 
The 2-l equation 

A8 + B8 = C8 (1) 

is a special case of FERMAT'S LAST THEOREM with n = 
8, and so has no solution. No 2-2 solutions are known. 

No 3-1, 3-2, or 3-3 solutions are known. 

No 4-1, 4-2, 4-3, or 4-4 solutions are known. 

No 5-1, 5-2, 5-3, or 5-4 solutions are known, but Letac 
(1942) found a solution to the 5-5 equation. The small- 
est 5-5 solution is 

18+108+118+208+438 = 58+288+328+358+418 (2) 

(Lander et al. 1967). 

No 6-1, 6-2, 6-3, or 6-4 solutions are known. Moessner 
and Gloden (1944) found solutions to the 6-6 equation. 
The smallest 6-6 solution is 

~8+68+88+~()8+~58+2~8 = 58+98+98+128+208+228 

(3) 
(Lander et al. 1967). 

No 7-1, 7-2, or 7-3 
7-4 solution is 

Diophantine Equation-8th Powers 

solutions are known. The smallest 

78+98+168+228+228+288+348 = 68+118+208+358 

(4) 
(Lander et al. 1967). Moessner and Gloden (1944) found 
solutions to the 7-6 equation. Parametric solutions to 
the 7-7 equation were given by Moessner (1947) and 
Gloden (1948). The smallest 7-7 solution is 

l8 + 38 + 58 + 6’ + 6* + g8 + 138 

= 48 + 78 + g8 + g8 + lo8 + 118 + 128 (5) 

(Lander et al. 1967). 

No 8-1 or 8-2 solutions are known. The smallest 8-3 
solution is 

68+128+168+168+388+388+408+478 = 88+178+5O8 

(6) 
(Lander et al. 1967). Sastry (1934) used the smallest 
17-1 solution to give a parametric 8-8 solution. The 
smallest 8-8 solution is 

I8 + 3s + 7& + 78 + 78 + lo8 + lo8 + 12s 

= 4’ + 5* + 58 + 68 + 68 + 11* + 11’ + 11* (7) 

(Lander et al. 1967). 

No solutions to the 9-1 equation is known. The smallest 
9-2 solution is 

28+78+88+16s+178+208+208+248+248 = 118+278 

(8) 
(Lander et al. 1967). Letac (1942) found solutions to 
the 9-9 equation. 

No solutions to the 10-l equation are known. 

The smallest 11-l solution is 

148 + 1g8 + 2 l  448 + 668 + 70’ + 928 

+938 + 96’ + 106” + 1128 = 125& (9) 

(Lander et al. 1967). 

The smallest 12-l solution is 

2 l  8’ + 10’ + 3 l  24’ + 268 + 30’ 

+34’ + 448 + 528 + 638 = 65’ (10) 

(Lander et al. 1967). 

The general identity 

(2 
*cc+4 + 1)” = (p+4 _ I>” + (g”+4)8 

+(2k+1)8 + 7[(25k+3)8 + (23k+2)8] (11) 

gives a solution to the 17-1 equation (Lander et al. 1967). 
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Diophantine Equation-9th Powers 
The 2-l equation 

A9 + Bg = Cg (1) 

is a special case of FERMAT'S LAST THEOREM with 
n = 9, and so has no solution. There is no known 2- 
2 solution. 

There are no known 3-1, 3-2, or 3-3 solutions. 

There are no known 4-1, 4-2, 4-3, or 4-4 solutions. 

There are no known 5-1, 5-2, 5-3, 5-4, or 5-5 solutions. 

There are no known 6-1, 6-2, 6-3, 6-4, or 6-5 solutions. 
The smallest 6-6 solution is 

lg + 13~ + 13’ + 14’ + 18’ + 23’ 

r 5g + gg + log + 15g + 219 + 22g (2) 

(Lander et al. 1967). 

There are no known 7-1, 7-2, 7-3, 7-4, or 7-5 solutions. 

There are no known 8-1, 8-2, 8-3, 8-4, or 8-5 solutions. 

There are no known 9-1, 9-2, 9-3, 9-4, or 9-5 solutions. 

There are no known 10-1, 10-2, or 10-3 solutions. The 
smallest 10-4 solution is 

2’ + 6’ + 6’ + 9’ + 10’ + 11’ + 14’ + 18’ + 2 . 19’ 

= 5’ + 12’ + 16’ + 21’ (3) 

(Lander et al. 1967). No 10-5 solution is known. Moess- 
ner (1947) gives a parametric solution to the lo-10 equa- 
tion. 

There are no known 11-l or 11-2 solutions. The smallest 
11-3 solution is 

2g + 3’ + 6’ + 7’ + 9’ + 9’ + 19’ + 19’ + 21’ + 25’ + 29’ 

= 13’ + 16’ + 30’ (4) 

(Lander et al. 1967). The smallest 11-5 solution is 

3g+5g+5g+9g+9g+12g+15g+15g+16g+21g+21g 

= 7’ + 8’ + 14’ + 20’ + 22’ (5) 
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(Lander et al. 1967). Palam (1953) gave a solution to 
the 11-11 equation. 

There is no known 12-l solution. The smallest 12-2 so- 
lution is 

4.2’ + 2 -3’ + 4’ + 7’ + 16’ + 17’ + 2 4 19’ 

= 15’ + 21’ (6) 

(Lander et al. 1967). 

There are no known 13-l or 14-1 solutions. The smallest 
15-1 solution is 

2’ + 2’ + 49 + 6’ + 6’ + 79 + 9’ + g9 + lo9 + 159 

+18’ + 21’ + 21’ + 23’ + 239 = 26’ (7) 

(Lander et al. 1967). 
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Diophantine Equation-10th Powers 
The 2-1 equation 

Alo + Blo = Cl0 
(1) 

is aspecialcase of FERMAT'S LAST THEOREM with n = 
10, and so has no solution. The smallest values for which 
n-1, n-2, etc., have solutions are 23, 19, 24, 23, 16, 27, 
and 7, corresponding to 

5 l  1” + 21° + 31° + 61° + 6 l  71° + 4 l  91° 

+lo1° + 2 l  121° + 131° + 141° = 151° (2) 

5 . 21° + 51° + 61° + lOlo + 6 l  111’ 

+2 l  lp” + 3 l  151° = 91° + 171° (3) 

110 + 21° + 31° + 10. 41° + 71° + 7. 81° 

+lol” + I210 + 1$’ = 111’ + 2 l  151° (4) 

5 . ll” + 2 . 21° + 3 l  3” + 41° + 4 l  61° 

+3~710+810+2~1010+2~1410+1510 = 3~1110+1610 (5) 

4 l  l l” + 21° + 2 .  41° + 61° + 2 l  121° 

+5 l  131° + 151° = 2 4 31° + 8” + 141° + 161° (6) 
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11’ + 4 l  31° + 2 9 41° + 2 l  51° + 7 n 61° (Berndt 1994, p. 107). Another form due to Ramanujan 

+9 ’ 71° + 1ol0 + 131° = 2~210+810+1110+2~1210 (7) is 

11’ + 281° + 311’ + 321° + 551° + 611’ + 681° 

= 171° + 201’ + 23”’ + 441° + 491° + 641° + 671° (8) 

(Lander et al. 1967). 
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(A2 + 7AB - 9B2)3 + (2A2 - 4AB + 12B2)3 

= (2A2 + 10B2)3 + (A2 - 9AB - B2)3. (15) 

Hardy and Wright (1979, Theorem 412) prove that there 
are numbers that are expressible as the sum of two cubes 
in n ways for any n (Guy 1994, pp, 140-141). The proof 
is constructive, providing a method for computing such 
numbers: given RATIONALS NUMBERS T and s, compute 

Diophant ine Equation-Cubic 
The 2-l equation 

A3 + B3 = C3 (1) 

is a case of FERMAT'S LAST THEOREM with n = 3. In 
fact, this particular case was known not to have any 
solutions long before the general validity of FERMAT'S 
LAST THEOREM was established. The 2-2 equation 

t _ r(r3 + 2s3) - 
T-3 - s3 (16) 

U= 
S(2T” + s3) 

T3 - s3 
(17) 

(18) 

(19) 

Then 

A3 + B3 =c3+03 (2) 
T3 + s3 = t3 - u3 = 2r3 + w3 (20) 

has a known parametric solution (Dickson 1966, 
pp. 550-554; Guy 1994, p. 140), and 10 solutions with 
sum < 105, 

1729 = l3 + 123 = g3 + lo3 (3) 
4104 = 23 + 163 = g3 + 153 (4 

13832 = 23 + 243 = lg3 + 203 (5) 
20683 = lo3 + 273 = 1g3 + 243 (6) 
32832 = 43 + 323 = 1g3 + 303 (7) 
39312 = 23 + 343 = 153 + 333 (8) 

40033 = g3 + 343 = 163 + 333 (9) 
46683 = 33 + 363 = 163 + 333 (10) 
64232 = 173 + 3g3 = 263 + 363 (11) 

65728 = 123 + 403 = 313 + 333 (12) 

The DENOMINATORS can now be cleared to produce an 
integer solution. If T/S is picked to be large enough, 
the w  and w  will be POSITIVE. If T/S is still larger, the 
v/w will be large enough for 21 and w  to be used as 
the inputs to produce a third pair, etc. However, the 
resulting integers may be quite large, even for n = 2. 
E.g., starting with 33 + l3 = 28, the algorithm finds 

28 = ( g!$gg,” + (gf$gg>“, 

giving 

28 n 2144682g3 = (3 l  21446828)3 + 214468283 

= 283405113 + 632847053. 

The numbers representable in three ways as a sum 01 

two cubes (a 2-2-2 equation) are 

(Sloane’s A001235; Moreau 1898). The first number 
(Madachy 1979, pp* 124 and 141) in this sequence, the 
so-called HARDY-RAMANUJAN NUMBER, is associated 
with a story told about Ramanujan by G. H. Hardy, 
but was known as early as 1657 (Berndt and Bhargava 
1993). The smallest number representable in n ways as 
a sum of cubes is called the nth TAXICAB NUMBER. 

87539319 = 1673 + 4363 = 2283 + 423” = 2553 + 4143 

(24) 
119824488 = 113 + 4933 = 903 + 4923 = 3463 + 42g3 

(25) 
143604279 = 1113 + 5223 = 35g3 + 4603 = 40S3 + 4233 

Ramanujan gave a general solution to the 2-2 equaticn 
as 

(26) 
175959000 = 703 + 5603 = 19g3 + 5523 = 3153 + 5253 

(a + x2y)3 + (M + 7)” = (XQI + 7)” + (P + x2Y)3 (13) 

where 

(27) 
327763000 = 3003 + 6703 = 33g3 + 6613 = 5103 + 5803 

(28) 
a2 +ap+f12 =3xy2 (14 



Diophan tine Equation-Cubic Diophan tine Equation-Cubic 

(Guy 1994, Sloane’s AO03825). Wilson (1997) found 32 
numbers representable in four ways as the sum of two 
cubes (a 2-2-2-2 equation). The first is 

6963472309248 = 24212 + 190832 = 54362 + 189482 

= 1020203 + 180722 = 133223 + 155303. (29) 

The smallest known numbers so representable 
are 6963472309248, 12625136269928, 21131226514944, 
26059452841000, . . . (Sloane’s AO03826). Wilson also 
found six five-way sums, 

48988659276962496 = 387873 + 3657573 

= 10783g3 + 3627533 

= 2052923 + 3429523 

= 2214243 + 3365883 

= 2315183 + 3319543 (30) 
490593422681271000 = 4836g3 + 7886313 

= 2337753 + 7817853 

= 2851203 + 7760703 

= 5431453 + 691295” 

= 5792403 + 6666303 (31) 
6355491080314102272 = 1O3l133 + lB522153 

= 5804883 + 18331203 

= 7887243 + 18033723 

= 11507923 + 16905443 

= 14620503 + 147823g3 (32) 
27365551142421413376 = 1677513 + 3013305” 

= 2653923 + 30127923 

= 9443763 + 29822403 

= 12831483 + 29338443 

= 18721843 + 27502883 (33) 
1199962860219870469632= 5915433+106258653 

= 9358563 + lO624O563 

= 333016B3 + 105163203 

= 66019123 + 9698384” 

= 83875503 + 84804183 (34 
111549833098123426841016 = 1O74O733 + 4813799g3 

= 87878703 + 480403563 

= 139509723 + 477443823 

= 244501923 + 459364623 

= 337844783 + 417912043, (35) 

The first rationa solution to the 3-l equation 

A3+B3+C3=D3 (37) 

was found by Euler and Vieta (Dickson 1966, pp. 550- 
554). Hardy and Wright (1979, pp. 199-201) give a so- 
lution which can be based on the identities 

a3(a3 + b3)3 = b3(a3 + b3)3 + u3(a3 - 2b3)3 

+- b3(2a3 - b3j3 (38) 
a3(a3 + 2b3)3 = a3(a3 - b3)3 + b3(a3 - b3)3 

+ b3(2a3 + b3)3. (39) 

This is equivalent to the general 2-2 solution found by 
Ramanujan (Berndt 1994, pp. 54 and 107). The smallest 
integral solutions are 

33 + 43 + 53 = 63 (40) 
l3 + 63 + 83 = g3 (41) 

73 + 143 + 173 = 203 (42) 
113 + 153 + 273 = 2g3 (43) 
2g3 + 533 + 753 = 843 (44) 
263 + 553 + 783 = 873 (45) 
333 + 703 + 923 = 1O53 (46) 

(Beeler et al. 1972; Madachy 1979, pp. 124 and 141). 
Other general solutions have been found by Binet (1841) 
and Schwering (1902), although Ramanujan’s formula- 
tion is the simplest. No general solution giving all POSI- 
TIVE integral solutions is known (Dickson 1966, pp. 550- 
561). 

4- 1 equations include 

113 + 123 + 133 + 143 = 203 

53 + 73 + g3 + lo3 = 133. 

A solution to the 4-4 equation is 

23 + 33 + lo3 + 113 = l3 + 53 + 83 + 123 

(Madachy 1979, pp. 118 and 133). 

5-l equations 

l3 + 33 + 43 + 53 + B3 = g3 

33 + 43 + 53 + 83 + lo3 = 123, 

and a 6-1 equation is given by 

and a single six-way sum 

8230545258248091551205888 

= 112393173 + 2018914353 

= 177812643 + 2018570643 

= 632731923 + 1998100803 

= 859709163 + 196567548” 

= 1254363283 + 1842692963 

= 1593634503 + 1611279423. 
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(47) 
(48) 

(49) 

(50) 

(51) 

l3 + 53 + 63 + 73 + g3 + 103 = 133. 

A 6-6 equation also exists: 

(52) 

13+23+43+83+93+123 = 33+53+63+73+103+113 

(53) 
(Madachy 1979, p. 142). 
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Euler gave the general solution to 

A3 + B3 = C2 (54) 

A = 3n3 + 6n2 - n (55) t 

B = -3n3 -/- 6n2 -+- n (56) 

C = 6n2(3n2 + 1). (57) 

see also CANNONBALL PROBLEM, HARDY-RAMANUJAN 

NUMBER, SUPER-~ NUMBER, TAXICAB NUMBER, TRI- 
MORPHIC NUMBER 
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Diophantine Equation-Linear 
A linear Diophantine equation (in two variables) is an 
equation of the general form 

ax + by = c, (1) 

where solutions are sought with a, b, and c INTEGERS. 
Such equations can be solved completely, and the first 
known solution was constructed by Brahmagupta. Con- 
sider the equation 

ax+by=l. (2) 

Now use a variation of the EUCLIDEAN ALGORITHM, 
letting a = ~1 and b = ~2 

Tl = q1r2 + T3 (3) 

r2 = q2r3 + r4 (4) 

rn-3 = Qn-33n-2 + Tn-1 (5) 

Tn-2 = qn-2Tn-1 + 1. (6) 

Starting from the bottom gives 

1 = T-n-2 - qn-27-+1 

G-&-l --n--3 -qn-3Tn-2, 

so 

(7) 
(8) 

1 = rn-2 - Qn--2(Tfl-3 - qn-3Tn-2) 

= -Qn-2rn-3 +(1-Qn-2Qn--3)rn-2* (9) 

Continue this procedure all the way back to the top. 

Take as an example the equation 

1027~ + 712~ = 1. (10) 

Proceed as follows. 

1027= 71% 1+ 315 1 1 = -165e 1027+ 2380 712 t 
712= 315*2+ 82 1 1 ==I 73. 712- 165.315 1 
315= 82m 3+ 69 1 1 = -19. 315+ 734 82 1 

82= 69.1+ 13 1 1 = 160 82- 19* 69 1 
69=13*5+ 41 l= -3. 69+16.131 
13= 4*3+ 1 J 1 = l* 13- 30 4 I 

1= oa 4+ la 1, 1 

The solution is therefore x = -165, y = 238. The above 
procedure can be simplified by noting that the two left- 
most columns are offset by one entry and alternate signs, 
as they must since 

1 = -Ai+pi + Airif (11) 

r-is-1 = Ti-1 - riqi-1 

1 = Airi-1 - (Aiqi-1 +&+I), 

(12) 

(13) 

so the COEFFICIENTS of ~-1 and ri+l are the same and 

A-1 = -(Aiqi-I + &+I). (14) 

Repeating the above example using this information 
therefore gives 

1027 = 7120 l+ 315 1 (-) 165-l+ 73 = 238 T 
712 = 315.2+ 82 1 (+) 73*2+ 19 = 165 1 
315 = 82*3+ 69 1 (-) 19.3+16 = 73 1 

82= 690 l+ 13 1 (+) 16-l+ 3 = 19 1 
69= 13m5+ 4 I (-) 3.5+ 1 = 16 1 
i3= 4a3+ 14 c-t-1 L3+0 = 31 

( - > O*l+ 1 = 1 I 
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and we recover the above solution. 

Call the solutions to 

ax + by = 1 (15) 

20 and yo. If the signs in front of az or by are NEGATIVE, 
then solve the above equation and take the signs of the 
solutions from the following table: 

~~ 

In fact, the solution to the equation 

ux - by = 1 (16) 

is equivalent to finding the CQNTINUED FRACTION for 
a/b, with a and b RELATIVELY PRIME (Olds 1963). If 
there are n terms in the fraction, take the (n - 1)th 
convergent p,-l/q,-1. But 

( 1) 
n 

Pnqn-l-pn-lqn = - ? (17) 

SO one solution is X0 = (-l)nQn-l, 30 = (-l)nPn-lr 
with a general solution 

2 = x0 + kb (18) 

y = yo + h (19) 

with Fz an arbitrary INTEGER. The solution in terms 
of smallest POSITIVE INTEGERS is given by choosing an 
appropriate Fc. 

Now consider the general first-order equation of the form 

ax + by = c. Pa 

The GREATEST COMMON DIVISOR d = GCD(U, b) can 
be divided through yielding 

u’x + b’y = ct , (21) 

where a’ G u/d, b’ E b/d, and c’ E c/d. If dfc, then c’ is 
not an INTEGER and the equation cannot have a solu- 
tion in INTEGERS. A necessary and sufficient condition 
for the general first-order equation to have solutions in 
INTEGERS is therefore that djc. If this is the case, then 
solve 

a’x + b’y = 1 (22) 

and multiply the solutions by c’, since 

u’(clx) + b’(c’y) = c’. (23) 
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Diophant ine Equation-d h Powers 
The 2-l equation 

A”+B”=C” (1) 

is a special case of FERMAT'S LAST THEOREM and so 
has no solutions for n > 3. Lander et al. (1967) give a - 
table showing the smallest n for which a solution to 

Xlk + xzk + . . . + xmk = ylk + y2k +. - ' + ynk, 

with 1 < m 5 n is known. 

k 
m234567 8 9 10 

1 2 3 3 4 7 8 11 15 23 
2222478 9 12 19 
3 3 3 7 8 11 24 
4 4 7 10 23 
5 5 5 11 16 
6 6 27 
7 7 

Take the results from the RAMANUJAN 6-10-8 IDENTITY 
that for ad = bc, with 

Fzm(u, b, c, d) = (a + b + c)2m + (b + c + d)2m 

-(c + d + CX)‘~ - (d + a + b)2m + (a - d)2m - (b - c)2m 

(2) 

and 

f2m(X,Y) = (I+ X + y)"" + (x + Y + xY)2m 

-(y+xy+1)2m -(xy+l+x)2m+(1-xy)2m-(~-Y)2m7 

then 
F2m(u, b, c, d) = a2mf2m(xr y)- 

Using 

fi(X,Y) = 0 

f&7 Y) = 0 

now gives 

(a + b + c)” + (b + c + d)” + (a - d)” 

= (c + d + u)~ + (d + a + b)” + (b - c)” 

for n = 2 or 4. 

(3) 

(4 

(5) 
(6) 

(7) 

see UZSO RAMANUJAN 6-10-8 IDENTITY 
-hY r 
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Diophantine Equation-Quadratic 
An equation of the form 

x2 - Dy2 = 1, (1) 

where D is an INTEGER is called a PELL EQUATION. 
Pell equations, as well as the analogous equation with 
a minus sign on the right, can be solved by finding the 
CONTINUED FRACTION for m. (The trivial solution 
2 = 1, y = 0 is ignored in all subsequent discussion.) 
Let p,/q, denote the nth CONVERGENT [al, a2, l  . . , a,], 
then we are looking for a convergent which obeys the 
identity 

2 
Pn - Dqf12 = (-l)“, (2) 

which turns out to always be possible since the CONTIN- 

UED FRACTION of a QUADRATIC SURD always becomes 
periodic at some term a,+l, where a,+1 = 2~1, i.e., 

JD= [a1,az,***,a,,2ar]. 

Writing n = rk gives 

(3) 

PTk2 - Dqrrc2 = (-l>‘“, (4 

for k a POSITIVE INTEGER. If T is ODD, solutions to 

x2 - Dy2 = 311 (5) 

can be obtained if k is chosen to be EVEN or ODD, but 
if T is EVEN, there are no values of k which can make 
the exponent ODD. 

If T is EVEN, then (-1)’ is POSITIVE and the solution 
in terms of smallest INTEGERS is 5 = p, and y = qfg 

where pr/qr is the rth CONVERGENT. If T is ODD, then 
(-1)’ is NEGATIVE, but we can take k = 2 in this case, 
to obtain 

p2r2 - Dqar 
2 = 1, \ 

(6) 

so the solution in smallest INTEGERS is II: = pzr, y = qzr. 

Summarizing, 

(x’ ‘) = 
for T even 

;;;:a;;l,, for T odd . 

The more complicated equation 

x2 - Dy2 = &c 

Diophantine Equation-Quadratic 

can also be solved for certain values of c and D, but the 
procedure is more complicated (Chrystal 1961). How- 
ever, if a single solution to the above equation is known, 
other solutions can be found. Let p and q be solutions 
to (8), and T and s solutions to the “unit” form”. Then 

(P 2 - Dq2)(r2 - Ds2) = &c 

(pr % Dqs)2 - D(ps 41 qr)2 = 4~. (10) 

Call a Diophantine equation consisting of finding nz 
POWERS equal to a sum of n equal POWERS an “m - n 
equation.” The 2-l equation 

A2 = B2 + c2, (11) 

which corresponds to finding a PYTHAGOREAN TRIPLE 

(A, B, C) has a well-known general solution (Dickson 
1966, pp. 165-170). To solve the equation, note that 
every PRIME of the form 4x + 1 can be expressed as the 
sum of two RELATIVELY PRIME squares in exactly one 
way. To find in how many ways a general number nz 
can be expressed as a sum of two squares, factor it as 
follows 

m = 2aop12a1 . . .pn2anq1b1 . l  . qrbr, (12) 

where the ps are primes of the form 4~ - 1 and the qs 

are primes of the form x +1. If the as are integral, then 
define 

B E (2bl + 1)(2bz + 1) v l  l  (2b, + 1) - 1. (13) 

Then m is a sum of two unequal squares in 

0 
for any ai half-integral 

N(m) = 
$(h + l)(bz + 1) l  l  l  (b, + 1) 

for all ai integral, B odd (14) 

+(bl + l)(bz + 1) l  l  l  (b, + 1) - + 
for all ai integral, B even. 

If zero is counted as a square, both POSITIVE and NEG- 
ATIVE numbers are included, and the order of the two 
squares is distinguished, Jacobi showed that the num- 
ber of ways a number can be written as the sum of two 
squares is four times the excess of the number of DIVI- 
SORS of the form 4x + 1 over the number of DIVISORS of 
the form 4z - 1. 

A set of INTEGERS satisfying the 3-l equation 

A2 + B2 + C2 = D2 (15) 

is called a PYTHAGOREAN QUADRUPLE. Parametric so- 
lutions to the 2-2 equation 

A2+B2=C2+D2 (16) 
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are known (Dickson 1966; Guy 1994, p* 140). 

Solutions to an equation of the form 

(A2 + B2)(C2 + 0”) = E2 + F2 (17) 

are given by the FIBONACCI IDENTITY 

(a2+b2)(c2+d2) = (ackbd)2+(bcFad)2 = e2+f2. (18) 

Another similar identity is the EULER FOUR-SQUARE 
IDENTITY 

(aI2 + ~2~)(b1’ + bz2)(c12 + cz2)(d12 + dz2) 

= e12 + ez2 +es2 +ed2 (19) 

(al2 +m2 -t-as2 +aa2)(b12 +h2 +h2 +h2) 

= (albl - azb2 - a3b3 - a4b4)2 

+ (ah + ad1 + ah - a4b3)2 

+ (ah - a2b4 + asbl + a4b2)2 

+ (a& + ad3 - ah + a4b1)2. (20) 

Degen’s eight-square identity holds for eight squares, but 
no other number, as proved by Cayley. The two-square 
identity underlies much of TRIGONOMETRY, the four- 
square identity some of QUATERNIONS, and the eight- 
square identity, the CAYLEY ALGEBRA (a noncommuta- 
tive nonassociative algebra; Bell 1945). 
RAMANUJAN’S SQUARE EQUATION 

2” -77x2 (21) 

has been proved to have only solutions n = 3, 4, 5, 7, 
and 15 (Beeler et al. 1972, Item 31). 

see also ALGEBRA, CANNONBALL PROBLEM, CONTIN- 
UED FRACTION, FERMAT DIFFERENCE EQUATION, LA- 
GRANGE NUMBER ( DI~PHANTINE EQUATION), PELL 

EQUATION, PYTHAGOREAN QUADRUPLE, PYTHAGO- 
REAN TRIPLE, QUADRATIC RESIDUE 
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Diophantine Equation-Quartic 
Call an equation involving quartics m-n if a sum of m 
quartics is equal to a sum of n fourth POWERS. The 2-l 
equation 

A4+B4=C4 (1) 

is a case of F 'ERMAT'S LAST THEO REM with n = 
therefore has no soluti .ons. In fact, the equations 

A4 * B4 = C2 (2) 

also have no solutions in INTEGERS. 

Parametric solutions to the 2-2 equation 

A4 + B4 =C4+D4 (3) 

are known (Euler 1802; Gkrardin 1917; Guy 1994, 
pp. 140-141). A few specific solutions are 

5g4 + 15g4 = 1334 + 1344 = 635,318,657 (4 

74 + 23g4 = 1574 + 2274 = 3,262,811,042 (5) 

1934 + 29Z4 = 2564 + 2574 = 8,657,437,697 (6) 

29g4 + 4974 = 2714 + 5024 = 68,899,596,497 (7) 
5144 + 35g4 = 1O34 + 5424 = 86,409,838,577 (8) 
2224 + 6314 = 5034 + 55g4 = 160,961,094,577 (9) 

214 + 7174 = 4714 + 6814 = 264,287,694,402 (10) 

764 + 12034 = 6534 + 11764 = 2,094,447,251,857 

(11) 
9974 + 13424 = 8784 + 1381” = 4,231,525,221,377 

(12) 

274 + 237g4 = 5774 + 72g4 = 32,031,536,780,322 

( 3) 1 

(Sloane’s A001235; Richmond 1920, Leech 1957), the 
smallest of which is due to Euler. Lander et al. (1967) 
give a list of 25 primitive 2-2 solutions. General (but 
incomplete) solutions are given by 

X =a+b 

y=c-d 

u=a-b 

V =c+d, 

(14) 

(15) 

06) 

(17) 
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where 

a = n(m2 + n2)( --??I4 + 18?n2n2 - n4) 

b = 2??2(m6 + 1om4n2 + rn2Tz4 + 4n”) 

c = 2n(4m6 + nt4n2 + 10m2n4 + n6) 

d = m(m2 +x2)(-m4 + 18m2n2 - n4> 

(Hardy and Wright 1979). 

In 1772, Euler proposed that the 3-1 equation 

(Berndt 1994, p. 101). S imilar examples can be found 
in Martin (1896). P arametric solutions were given by 
Gkrardin (1911). 

Ramanujan also gave the general expression 

A4 + B4 + C4 = D4 (22) 

had no solutions in INTEGERS (Lander et al. 1967). This 
assertion is known as the EULER QUARTIC CONJEC- 
TURE. Ward (1948) showed there were no solutions 
for D < 10,000, which was subsequently improved to 
D < 220,000 by Lander et al. (1967). However, the EU- 
LER QWARTIC CONJECTURE was disproved in 1987 by 
Noam D. Elkies, who, using a geometric construction, 
found 

34 + (2X4 - 1)” + (4X5 + X)” 

= (4~~ + 1)” + (6~~ - 3)4 + (4s5 - 5~)~ (32) 

(Berndt 1994, p. 106). Dickson (1966, pp. 653-655) cites 
several FORMULAS giving solutions to the 3-3 equation, 
and Haldeman (1904) gives a general FORMULA. 

The 4-l equation 

A4+B4+C4+D4=E4 (33) 

has solutions 

2,682,4404 + 15,365,63g4 + 18,796,7604 = 20,615,6734 

(23) 
and showed that infinitely many solutions existed (Guy 
1994, p. 140). In 1988, Roger Frye found 

95,8004 + 217,51g4 + 414,5604 = 422,4814 (24) 

and proved that there are no solutions in smaller INTE- 
GERS (Guy 1994, p. 140). Another solution was found 
by Allan MacLeod in 1997, 

638,523,24g4 

= 630,662,6244 + 275,156,2404 + 219,076,4654. (25) 

It is not known if there is a parametric solution. 

In contrast, there are many solutions to the 3-l equation 

A4 + B4 + C4 = 2D4 (26) 

(see below). 

Parametric solutions to the 3-2 equation 

A4+B4=C4+D4+E4 (27) 

are known (Gkrardin 1910, Ferrari 1913). The smallest 
3-2 solution is 

304 + 1204 + 2724 + 3154 = 3534 

2404 + 3404 + 4304 + 59g4 = 6514 

4354 + 7104 + 13844 + 24204 = 24874 

11304 + 11904 + 14324 + 23654 = 25014 

8504 + lOlO + 15464 + 27454 = 282g4 

2270” + 23454 + 24604 + 31524 = 37234 

3504 + 16524 + 32304 + 33954 = 39734 

2054 + 10604 -+ 26504 + 40944 = 42674 

13944 + 17504 + 35454 + 36704 = 43334 

69g4 + 7004 + 28404 + 42504 = 444g4 

3804 + 16604 + 18804 + 49074 = 494g4 

10004 + 11204 + 32334 + 50804 = 52814 

4104 + 14124 + 39104 + 50554 = 54634 

9554 + 17704 + 26344 + 54004 = 54914 

304 + 16804 + 30434 + 54004 = 55434 

13544 + 18104 + 43554 + 51504 = 572g4 

5424 + 27704 + 42804 + 56954 = 61674 

504 + 8854 + 50004 + 59844 = 660g4 

14904 + 34684 + 47904 + 61854 = 68014 

13904 + 28504 + 53654 + 63684 = 71014 

1604 + 13454 + 27904 + 71664 = 720g4 

8004 + 30524 + 54404 + 66354 = 733g4 

22304 + 31964 + 56204 + 69954 = 77034 

(34 
(35) 
(36) 
(37) 
(38) 
(39) 
(40) 
(41) 
(42) 
(43) 
(44) 
(45) 
(46) 
(47) 
(48) 
(49) 
(50) 
(51) 
(52) 
(53) 
(54) 
(55) 
(56) 

34 + 54 + 84 = 74 -/- ?4 

(Lander et al. 1967). 

(28) 

Ramanujan gave the 3-3 equations 

(Norrie 1911, Patterson 1942, Leech 1958, Brudno 1964, 
Lander et al. 1967), but it is not known if there is a 
parametric solution (Guy 1994, p. 139). 

Ramanujan gave the 4-2 equation 

24 + 44 + 74 ~3~+6~+6~ (29) 

34 + 74 + g4 = l4 + 24 + g4 (30) 

64 + g4 + 124 = 24 + 24 + 134 (31) 

34 + g4 = 54 + 54 + 64 + 64, (57) 
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and the 4-3 identities 

24 + 24 + 74 = 44+44+54+64 (58) 

34 + g4 + 144 = 74 + a4 + lo4 + 134 (59) 

74 + lo4 + 134 = s4 + 54 + 64 + 144 w  

(Berndt 1994, p. 101). Haldeman (1904) gives general 
FORMULAS for 4-2 and 4-3 equations. 

There are an infinite number of solutions to the 5-l equa- 
tion 

A4+B4+C4+D4+E4=F4. (61 

Some of the smallest are 

24 + 2" + 34 + 42 -+- 42 = 54 (62 

44 + 64 + 84 + g4 + 144 = 154 (63) 

44 + 214 + 224 + 264 + 2g4 = 354 (64 

l4 + 24 + 124 + 244 + 444 = 454 (65) 

l4 + 84 + 124 + 324 + 644 = 654 (66) 

24 + 39” + 444 + 464 + 524 = 654 (67) 

224 + 524 + 574 + 744 + 764 = 954 (68) 

224 + 2g4 + 634 + 724 + 944 = lO54 (69) 

(Berndt 1994), B erndt and Bhargava (1993) and Berndt 
(1994, pp. 94-96) g ive Ramanujan’s. solutions for arbi- 
trary s, t, WZ, and n, 

(8s’ + 40st - 24t2)4 + (6s2 - 44st - 18t2)4 

+(14s2 - 4st - 42t2)4 + (9s2 + 27t2)4 + (4s2 + 12t2)4 

= (15s2 + 45t2)4, (70) 

and 

(4 m2 - 12n2)4 + (3m2 + 9n2)4 -+ (2m2 - 12mn - 6n2)4 

+(4777,2+12n2)4+(2 m2+12mn-6n2)4 = (5m2+15n2)4. 

(71) 

These are also given by Dickson (1966, p. 649), and two 
general FORMULAS are given by Beiler (1966, p. 290). 
Other solutions are given by Fauquembergue (1898), 
Haldeman (1904), and Martin (1910). 

Ramanuj an gave 

2(ab + UC + bC)2 = a4 + b4 + c4 (72) 

2(abfac$bc)4 = a4(b-c)4fb4(C-a)4+c4(a-b)4 (73) 

2(ab + ac + b@ = (a’b + b2c + ~‘a)~ 

+(ab2 + bC2 + ~a~)~ + (3abc)4 (74) 

2(ab + ac + bc)’ = (a3 + 2abc)4(b - c)~ 

+(b3 + 2abc)4( c - a)” + (c” + 2abc)4(a - b)4, (75) 

where 
a+b+c=O (76) 

(Berndt 1994, pp. 96-97). FORMULA (73) is equivalent 
to FERRARI'S IDENTITY 

(a2 + 2ac - 2bc - b2)4 -j- (b2 - 2ab - 2ac - c”)” 

+(C2+2ab+2bc-a2)4 = 2(a2+b2+C2 -ab+ac+bc)4. 

(77) 

BHARGAVA’S THEOREM is a general identity which gives 
the above equations as a special case, and may have 
been the route by which Ramanujan proceeded. An- 
other identity due to Ramanujan is 

(a + b + c)~ + (b + c + d)4 + (a - d)4 

= (c+d+a)4+(d+a+b)4+(b-~)4, (78) 

where a/b = c/d, and 4 may also be replaced by 2 (Ra- 
manujan 1957, Hirschhorn 1998). 

V. Kyrtatas noticed that a = 3, b = 7, c = 20, d = 25, 

e = 38, and f = 39 satisfy 

a4 -+- b4 + c4 u+b+c 
d4+e4+f4=d+e+f (79) 

and asks if there are any other distinct integer solutions. 

The first few numbers n which are a sum of two or more 
fourth POWERS (m - 1 equations) are 353, 651, 2487, 
2501, 2829, . . . (Sloane’s AOQ3294). The only number 
of the form 

4x4 + y4 w  

which is PRIME is 5 (Baudran 1885, Le Lionnais 1983). 

see also BHARGAVA'S THEOREM, FORD’S THEOREM 
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Diophantine Quadruple 

see QI~PHANTINE SET 

Diophantine Set 
A set S of POSITIVE integers is said to be Diophantine 
IFF there exists a POLYNOMIAL Q with integral coeffi- 
cients in vz > 1 indeterminates such that - 

S = {Q(xl,. . . ) xm) 2 1 : x1 > 1,. . . , x:m 2 1). - 

It has been proved 
Dioph antine set. 

that the set of PRIME numbers is a 

Refererices 
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Diophantus Property 
A set of POSITIVE INTEGERS S = {al,. . . , a,} satisfies 
the Diophantus property D(n) of order n if, for all i,j = 
1, “‘1 m with i # j, 

aiaj + n = bij2, (1) 

where n and bij are INTEGERS. The set S is called a 
Diophantine n-tuple. Fermat found the first D(1) quad- 
ruple: {1,3,8,120}. G eneral D(1) quadruples are 

where Fn are FIBONACCI NUMBERS, and 

The quadruplet 

P n-11 2F,+1, 2K3Fn+lFn+2, 

2%+1Fn+zFn+&Fn+1~ - Fn2)} (4) 

is D(Fn2) (Dujella 1996). Dujella (1993) showed there 
exist no Diophantine quadruples D(4k + 2). 
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Diophant us’ Riddle 
“Diophantus’ youth lasts l/6 of his life. He grew a beard 
after l/12 more of his life. After l/7 more of his life, 
Diophantus married. Five years later, he had a son. 
The son lived exactly half as long as his father, and 
Diophantus died just four years after his son’s death. 
All of this totals the years Diophantus lived.” 

Let D be the number of years Diophantus lived, and let 
S be the number of years his son lived. Then the above 
word problem gives the two equations 

D=(;+&+$)D+5+S+4 

S= +D. 

Solving this simultaneously gives S = 42 as the age of 
the son and D = 84 as the age of Diophantus. 
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Dipyramid 

Two PYRAMIDS symmetrically placed base-to-base, also 
called a BIPYRAMID. They are the DUALS of the Archi- 
medean PRISMS. 

{n, n + 2,472 + 4,4(n + 1)(2n + I)(271 + 3)). (3) 
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see also ELONGATED DIPYRAMID, PENTAGONAL DI- 
PYRAMID,PRISM,PYRAMID,TRAPEZOHEDRON, TRIAN- 
GULAR DIPYRAMID, TRIGONAL DIPYRAMID 

References 

and are cyclic under permutations of indices 

tTiOj = iak (13) 

pipj = ipk. Cundy, I-I. and Rollett, A. Mathematical Models, 3rd ed. 
Styadbroke, England: Tarquin Pub., p. 117, 1989. 

Dirac Delta Function 

see DELTA FUNCTION 

Dirac Matrices 
Define the 4 x 4 matrices 

gi =I@ fli, Pauli (1) 

pi = oi, Pauli 8 1, (2) 

where pi, pauli are the PAULI MATRICES, 1 is the IDEN- 
TITY MATRIX, i = 1, 2, 3, and A 8 B is the matrix 
DIRECT PRODUCT. I ixplicit ly, 

A total of 16 Dirac matrices can be defined via 

E ij = PiOj (15) 

for i,j = 0, 1, 2, 3 and where ~0 = po = 1. These matrix 
satisfy 

1. [Eij 1 = 1, where IAl is the DETERMINANT, 

2. Eij = I, 

3. Eij = E~j, making them Hermitian, and therefore 
unitary, 

4. tr(Eij) = 0, except tr(Eoo) = 4, 

5. Any two Eij multiplied together yield a Dirac matrix 
to within a multiplicative factor of -i or I&, 

6. The Eij are linearly independent, 

7. The Eij form a complete set, i.e., any 4 x 4 constant 
matrix may be written as 

I= 

-1 0 0 0 
0 1 0 0 
0 0 1 0 

-0 0 0 1 I 
-0 1 0 0 

1 0 0 0 
0 0 0 1 

-0 0 1 0 1 
-0 4 0 0 . ; 0 0 0 0 0 0 i -i 0 1 0 
-1 0 0 o- 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

A=2 cij Eij ? 
i,j=o 

(16) 

where the cij are real or complex and are given by 

Grzn = i tr(AL,) (17) 
02 = 

(Arfken 1985). 

0 -1 0 0 
c3= 0 0 1 0 

Dirac’s original matrices were written ~i and were de- 
fined by 

0 0 -1 

0 

0 
0 0 1 
0 
1 1 1 0 0 

0 0 

0 
‘0 0 u” -i 0 0 0 i 0 0 1 

ai - - Eli = ploi (18) 
a4 = E30 = p3, (19) p1 = 

p2 = 

for i = 1, 2, 3, giving 

ro 0 0 -ii 

(20) 
0 

10 0 0 

010 

0 
0 0 -1 0 

1 
’ (9) p3 = 0 0 i 0 

a2 = Ezi = 
0 -i 0 0 

(21) Lo 0 0 -11 

These matrices satisfy the anticommutation identities 

OiOj + OjOi = 26ijI (10 

PiPj + Pjpi = 2Jijl, (11 

where 6ij is the KRONECICER DELTA, the commutation 
identity a4 = E30 = (23) 

[CTi,pj] = Oipj - pjai = 0, 12) 
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The additional matrix 

r0 0 -i 01 

a5 = E 20 = p2 = 

is sometimes defined. Other sets of Dirac matrices are 
sometimes defined as 

yi = Li (25) 
y4 = E30 (26) 

y5 = -Lo (27) 

and 
& = E3i (28) 

for i = 1, 2, 3 (Arfken 1985) and 

yi = 

for i = 1, 2, 3 (Goldstein 1980). 

(29) 

Any of the 15 Dirac matrices (excluding the identity 
matrix) commute with eight Dirac matrices and anti- 
commute with the other eight. Let M G i (1 + Eij), 
then 

M2 = M. (31) 

In addition 

(32) 

The products of ai and yi satisfy 

Dirac’s Theorem 
A GRAPH with n > 3 VERTICES in which each VERTEX 
has VALENCY > n/2 has a HAMILTONIAN CIRCUIT. - 
see also HAMILTONIAN CIRCUIT 

Direct Product (Group) 
The expression of a GROUP as a product of SUBGROUPS. 
The CHARACTERS of the representations of a direct 
product are equal to the products of the CHARACTERS 
of the representations based on the individual sets of 
functions. For R1 and R2, 

The representation of a direct product rAS will con- 
tain the totally symmetric representation only if the ir- 
reducible rA equals the irreducible I?B. 

Direct Product (Matrix) 
Given two n x vz MATRICES, their direct product C = 
A @ B is an (mn) x (nm) MATRIX with elements defined 

where 
a E n(i - 1) + k 

P = n(j - 1) + 1. 

For a 2 x 2 MATRIX, 

ad21 alh alAm al&22 - - 
a2h a21612 mbll a22bl2 

(1) 

(2) 

(3) 

(4) 

(5) . 

Lmh ad22 a22h ad22 1 

Direct Product (Set) 
The direct product of two sets A and B is defined to yly2y3y4y5 = 1. (34) 

The 16 Dirac matrices form six anticommuting sets of 
five matrices each: 

1. QIl, Q2, Ql3, Qr4, Q15, 

2. Yl, Yz, Y3, y4, y5, 

3. h 62, 63, p1, p2, 

4. Ql, y1, 61, 02, 03, 

5. Q2, y2, 62, 01, fl3, 

6. Qr3, y3, s3, 01, 02. 

be the set of all points (a, b) where a E A and b E B. 
The direct product is denoted A x B or A @ B and 
is also called the CARTESIAN PRODUCT, since it orig- 
inated in Descartes’ formulation of analytic geometry. 
In the Cartesian view, points in the plane are speci- 
fied by their vertical and horizontal coordinates, with 
points on a line being specified by just one coordinate. 
The main examples of direct products are EUCLIDEAN 
3-space (R @ R @II& where Ik are the REAL NUMBERS), 
and the plane (IR x R). 

see also PAULI MATRICES 
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Direct Product (Tensor) 
For a first-RANK TENSOR (i.e., a VECTOR), 

(1) 

Direct Sum (Module) 
The direct sum of two MODULES V and Vv over the same 
RING R is given by V ~3 W with MODULE operations 
defined by 

r ’ (21, w) = (TV, TW) 

which is a second-RANK TENSOR. The CONTRACTION of 
a direct product of first-RANK TENSORS is the SCALAR 

For a second-RANK TENSOR, 

ikl AiBkl = Cj (3) 

ax: ax, ax’, ax; cy = ---&-qpq* 
ax, ax; ax, ax, (4) 

For a general TENSOR, the direct product of two TEN- 
SORS is a TENSOR of RANK equal to the sum of the two 
initial RANKS. The direct product is ASSOCIATIVE, but 
not COMMUTATIVE. 

References 
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Direct Search Factorization 
Direct search factorization is the simplest PRIME FAC- 
TORIZATION ALGORITHM. It consists of searching for 
factors of a number by systematically performing TRIAL 
DIVISIONS, usually using a sequence of increasing num- 
bers. Multiples of small PRIMES are commonly excluded 
to reduce the number of trial DIVISORS, but just includ- 
ing them is sometimes faster than the time required to 
exclude them. This approach is very inefficient, and can 
be used only with fairly small numbers. 

When using this method on a number n, only DIVISORS 
uptoLG]( h w ere LlcJ is the FLOOR FUNCTION) need 
to be tested. This is true since if all INTEGERS less than 
this had been tried, then 

WY+1 < Jn. (1) 

In other words, all possible FACTORS have had their CO- 
FACTORS already tested. It is also true that, when the 
smallest PRIME FACTOR p of n is > e, then its COFAC- 
TOR m (such that n = pm) must be PRIME. To prove 
this, suppose that the smallest p is > e. If m = ab, 
then the smallest value a and b could assume is p. But 
then 

n = pm = pab = p3 > n, (2) 

which cannot be true. Therefore, m must be PRIME, so 

see also P 
DIVISION 

n = ~1~2. 

RIME FACTORIZATION ALGORITHMS, TRIAL 
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(v7 4 @ (Y, 2) = (v + y, w + z)* 

The direct sum of an arbitrary family of MODULES over 
the same RING is also defined. If J is the indexing set 
for the family of MODULES, then the direct sum is repre- 
sented by the collection of functions with finite support 
from J to the union of all these MODULES such that 
the function sends j E J to an element in the MODULE 
indexed by j. 

The dimension of a direct sum is the product of the 
dimensions of the quantities summed. The significant 
property of the direct sum is that it is the coproduct 
in the category of MODULES. This general definition 
gives as a consequence the definition of the direct sum 
of ABELIAN GROUPS (since they are MODULES over the 
INTEGERS) andthedirectsumof VECTORSPACES (since 
they are MODULES over a FIELD). 

Directed Angle 
The symbol LABC denotes the directed angle from AB 
to BC, which is the signed angle through which AB 
must be rotated about B to coincide with BC. Four 
points ABCD lie on a CIRCLE (i.e., are CONCYCLIC) 
IFF hABC = dADC. It is also true that 

d-z& + &II = 0” or 180”. 

Three points A, B, and C are COLLINEAR IFF hABC = 
0. For any four points, A, B, C, and D, 

/ABC + LCDA = &AD + ~DCB. 

see &O ANGLE, COLLINEAR, CONCYCLIC, MIQUEL 
EQUATION 

References 
Johnson, R. A. Modern Geometry: An Elementary Treatise 

on the Geometry of the Triangle and the Circle. Boston, 
MA: Houghton Mifflin, pp. 11-15, 1929. 

Directed Graph 
source 

sink 

A GRAPH in which each EDGE is replaced by a directed 
EDGE, also called a DIGRAPH or REFLEXIVE GRAPH. 
A COMPLETE directed graph is called a TOURNAMENT, 
If G is an undirected connected GRAPH, then one can 
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always direct the circuit EDGES of G and leave the SEP- 
ARATING EDGES undirected so that there is a directed 
path from any node to another. Such a GRAPH is said 
to be transitive if the adjacency relation is transitive. 
The number of directed graphs of 72 nodes for n = 1, 2, 
. . . are 1, 1, 3, 16, 218, 9608, , . . (Sloane’s A000273). 

see also ARBORESCENCE, CAYLEY GRAPH, INDEGREE, 
NETWORK, OUTDEGREE, SINK (DIRECTED GRAPH), 
SOURCE,TOURNAMENT 

References 
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Version of the Encyclopedia of Integer Sequences.” 

Direction Cosine 
Let a be the ANGLE between v and x, b the ANGLE 
between v and y, and c the ANGLE between v and z. 
Then the direction cosines are equivalent to the (x,9, z) 
coordinates of a UNIT VECTOR $, 

(1) 

P 
V*f 

E cos b s - 

I I V 
(2) 

V*ii 

Y E cost- -. 

I I V 
(3) 

From these definitions, it follows that 

2 + p” + y2 = 1. (4) 

To find the JACOBIAN when performing integrals over 
direction cosines, use 

The JACOBIAN~~ 

Using 

d - 
dz sin ( 

1 1 
g(tan-l x) = - 

I+ x2 ’ 

(5) 

(6) 

(7) 

(8) 

(9) 

w 

1 - - 
J(a2 + P”)(l - a2 - P2> ’ 

(11) 

so 

Direction cosines can also be defined between two sets 
of CARTESIAN COORDINATES, 

Projections of the unprimed coordinates onto the primed 
coordinates yield 

and 

x ’  = r l  2 ’  = mx+azy+cwsx (25) 

y' = r.9' = plx+@zy+pQZ (26) 

x' = Pi' = y1x +y2y+y32. (27) 

Projections of the primed coordinates onto the unprimed 
coordinates yield 

ji:= (fi: . j;‘)fl’ + (2 ’ jr’)?’ + (2 ’ 2);’ 

= arlk'+ply'+yli' (28) 

y  = (9 l  $‘);t’ -j- (j, - f>y ’  + (y l  i ’);;’ 

= a& + p23’ + y& (29) 
2 = (k ’  j; ‘)$ + (; . j; ‘)f’ + (2 l  et>;’ 

= a3T+p3f+-y&, (30) 

and 
x = r - 2 = CtlX + ply + y1x (31) 

y=r.f=a22+@2y+ y2z (32) 
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z-r*&= a355 + p3y + 73x. (33) 

Using the orthogonality of the coordinate system, it 
must be true that 

giving the identities 

WQcm + Pt!Pm + YlYrn = 0 (36) 

for 1, m = 1,2,3andZ#m,and 

al2 + P12 + Y12 = 1 (37) 

for 2 = 1,2,3. These two identities may be combined 
into the single identity 

alam + PlPrn + YEYrn = aEm, (38) 

where Slm is the KRONECKER DELTA. 

Directional Derivative 

Vuf(zcO,yO,zo) is the rate at which the function w  = 
f(z, y, z) changes at (~0, yo, x0) in the direction u. Let 
II be a UNIT VECTOR in CARTESIAN COORDINATES, so 

IllI = &Lx2 + uy2 + h2 = 1, (2) 

then 
af af af 

Vuf = zux + ay”” + yp. (3) 

The directional derivative is often written in the nota- 
tion 

d d 
-~&V=s,- 

d d 

ds dx+%dy+S%g (4) 

Directly Similar 

directly similar 

Two figures are said to be SIMILAR when all correspond- 
ing ANGLES are equal, and are directly similar when all 
corresponding ANGLES are equal and described in the 
same rotational sense. 

see also FUND AMENTAL THEOREM 0F DIRECTLY 
LAR FIG URES, INVERSELY SIMILAR ,, SIMILAR 

SIMI- 

Director Curve 
The curve d(u) in the RULED SURFACE parameteriza- 
tion 

x(u,v) = b(u) + vd(u). 

see also DIRECTRIX (RULED SURFACE), RULED SUR- 
FACE, RULING 

References 
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Directrix (Conic Section) 

ellipse 

direcrrk 

The LINE which, together with the point known as the 
FOCUS, serves to define a CONIC SECTION. 

see also CONIC SECTION, ELLIPSE, Focus, HYPER- 

References 
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York: Wiley, pp. 115-116, 1969. 
Coxeter, H. S. M. and Greitzer, S. L. Geometry Revisited. 
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Directrix (Graph) 
A CYCLE. 

Directrix (Ruled Surface) 
The curve b(u) in the RULED SURFACE parameteriza- 
tion 

x(u,v) = b(u) + vd(u) 

is called the directrix (or BASE CURVE). 

see also DIRECTOR CURVE, RULED SURFACE 

References 
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Dirichlet Beta Function 

sur- 

2- 

-6 2 4 
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Re[DirichletBeta zl IDirichletBeta zI 

p(x) E jr,(-l)“(Zn + 1>-” (1) 
n=O 

P(x) = 2-“@(-1,x, +>, (2) 

where @ is the LERCH TRANSCENDENT. The beta func- 
tion can be written in terms of the HURWITZ ZETA 

FUNCTION [(x, a) by 

PC ) x = -$ccx, $1 - 5(x7 ;)I. (3) 

The beta function can be evaluated directly for POSI- 
TIVE ODD x as 

P(2k + 1) = (;;rkFk ($T)~‘+‘, 
l  

(4) 

where En is an EULER NUMBER. The beta function 
can be defined over the whole COMPLEX PLANE using 
ANALYTIC CONTINUATION, 

p(1 - z) = (z)zsin(+)P(z)p(z), (5) 
7r 

where l?(z) is the GAMMA FUNCTION. 

Particular values for p are 

P(l) - an - (6) 
p(2) G K (7) 

P(3) 
-13 - 3F ’ (8) 

where K is CATALAN’S CONSTANT. 

see also CATALAN’S CONSTANT, DIRICHLET ETA FUNC- 
TION, DIRICHLET LAMBDA FUNCTION, HURWITZ ZETA 

FUNCTION, LERCH TRANSCENDENT, RIEMANN ZETA 
FUNCTION, ZETA FUNCTION 

References 
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Dirichlet Boundary Conditions 
PARTIAL DIFFERENTIAL EQUATION BOUNDARY CONDI- 
TIONS which give the value of the function on a surface, 
e.g., T = f (r, t). 

see UZSO BOUNDARY CONDITIONS, CAUCHY BOUNDARY 
CONDITIONS 

References 
Morse, P. M. and Feshbach, H. Methods of Theoretical Phys- 

ics, Part I. New York: McGraw-Hill, p. 679, 1953. 

Dirichlet’s Box Principle 
A.k.a. the PIGEONHOLE PRINCIPLE. Given KI boxes and 
m > n objects, at least one box m>st contain more than 
one object. This statement has important applications 
in number theory and was first stated by Dirichlet in 
1834. 

see also FUBINI PRINCIPLE 

References 
Chartrand, G. Introductory Graph Theory. New York: 

Dover, p. 38, 1985. 
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4th ed. New York: Chelsea, pp. 161, 1993. 

Dirichlet’s Boxing-In Principle 
see DIRICHLET’S Box PRINCIPLE 

Dirichlet Conditions 
see DIRICHLET BOUNDARY CONDITIONS, DIRICHLET 

FOURIER SERIES CONDITIONS 

Dirichlet Divisor Problem 
Let d(n) = u(n) = 00(n) be the number of DIVISURS 
of n (including n itself). For a PRIME p, v(p) = 2. In 
general, 

=nlnn+(2y-l)n+O(n’), 

k=l 

where y is the EULER-MASCHERONI CONSTANT. Dirich- 
let originally gave 0 Z l/2. As of 1988, this had been 
reduced to 0 E 7/22. 

see also DIVISOR FUNCTION 

Dirichlet Energy 
Let h be a real-valued HARMONIC FUNCTION on a 
bounded DOMAIN s1, then the Dirichlet energy is de- 
fined as IQ IVh12 dx, where V is the GRADIENT. 

see also ENERGY 

Dirichlet Eta Function 

Re[DirichletEta 21 Im[DirichletEta zl IDirichletEta z[ 

0 0 0 

121 tz1 121 
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q(x) E f+)n-ln-x = (l- 27[(x), (1) 

n= 1 

where n = 1, 2, . .., and c(z) is the RIEMANN ZETA 
FUNCTION. Particular values are given in Abramowitz 
and Stegun (1972, p. 811). The eta function is related to 
the RIEMANN ZETAFUNCTION and DIRICHLETLAMBDA 
FUNCTION by 

cc 1 u A( > ZJ d4 - = -=- 
2v 2y-1 2V-2 (2) 

and 

w  + r]bJ) = w4 (3) 

(Spanier and Oldham 1987). The value v( 1) may be 
computed by noting that the MACLAURIN SERIES for 
ln(1 + x) for -1 < 2 < 1 is 

ln(1 + 2) = x - ix2 + ix” - ax” +. , l  * (4) 

Therefore, 

In 2 = ln( 1 + 1) = 1 - $ + + - + + . . . 

O” ( 
IE 

- 1) n-l 
- - - = q(1). 

n 
n=l 

Values for EVEN INTEGERS are related to the analytical 
values ofthe RIEMANN ZETA FUNCTION. q(O)isdefined 
to be $. 

77(o) 
-1 -- 2 

50) = In2 

?n,n+oo 

(5) 

see also DEDEKIND ETA FUNCTION, DIRICHLET BETA 
FUNCTION, DIRICHLET LAMBDA FUNCTION, RIEMANN 
ZETA FUNCTION, ZETA FUNCTION 
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Dirichlet ‘s Formula 
If g is continuous and p, v > 0, then 

of Fun 

1987. 

e 
‘--l di (< - x)“-‘g(& x) dx 

s 0 

Dirichlet Fourier Series Conditions 
A piecewise regular function which 

1. Has a finite number of finite discontinuities and 

2. Has a’ finite number of extrema 

can be expanded in a FOURIER SERIES which converges 
to the function at continuous points and the mean of 
the POSITIVE and NEGATIVE limits at points of discon- 
tinuity. 

see UZSO FOURIER SERIES 

Dirichlet tinct ion 
Let c and d # c be REAL NUMBERS (usually taken as 
c= 1 and d = 0). The Dirichlet function is defined by 

for 2 rational 
D(x) = 1 i for x irrational. 

The function is CONTINUOUS at IRRATIONAL x and dis- 
continuous at RATIONAL points. The function can be 
written analytically as 

D(x) = lim cos[(&7rx)n]. 

ctions. Wash- 

t 

- - 

s s 

dx t(t - c)‘-l(t - x)“-lg(&x) dJ. 
0 2 

Because the Dirichlet function cannot be plotted with- 
out producing a solid blend of lines, a modified version 
can be defined as 

0 for x rational 
D”(x) = {b for x = a/b with a/b a reduced fraction 

(Dixon 1991), illustrated above. 

see UZSO CONTINUOUS FUNCTION, IRRATIONAL NUM- 
BER,RATIONAL NUMBER 
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Dirichlet Integrals 
There are several types of integrals which go under the 
name of a “Dirichlet integral.” The integral 

D[ 1 U- 
s 

JVU)~ dV (1) 
i-l 
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appears in DIRICHLET'S PRINCIPLE. 

The integral 

where 

(9) 
1 ?r 

-s 2n f( > X 
sin[(n + $)x] dx 

9 
-m sin( +) 

(2) (10) 

where the kernel is the DIRICHLET KERNEL, gives the 
nth partial sum of the FOURIER SERIES. 

and pi are the cell probabilities. For equal probabilities, 
ai = 1. The Dirichlet D integral can be expanded as a 
MULTINOMIAL SERIES as Another integral is denoted 

02’ (r m) = 9 
1 

dpk = 0 for lTk/ >ak 

1 for IrkI <ak 

(3) 

for JE= 1, . . . . n. 

There are two types of Dirichlet integrals which are de- 
noted using the letters C, D, I, and J. The type 1 
Dirichlet integrals are denoted I, J, and IJ, and the 
type 2 Dirichlet integrals are denoted C, D, and CD. 

For small b, C and D can be expressed analytically either 
partially or fully for general arguments and ai = 1. The type 1 integrals are given by 

q-1 +~z)zfi(rz,n +n;l +n;-1) 

T2r(n)qT2) 

(12) 

r(n + T2 + T3) 

r2f(rl)r(T2)r(T3) 

rl 

I= ss s . . . f (t1 + t2 + - - - + tn) 
(1) 

c, (r2;n) = 

(2) 
c, (9-2, r3; 7-l) = 

x t1 
al-1 az-1 t2 ‘4, an-1 dtl dt2 dt, 

r(al)r(a2) l  g l  r(h) - - 
s 

l 
r (cn 4 

f(+- (En al -’ dr, (4) 
0 

X 
J 

2Fly T3-1(l + y) --(~1+~2+~3) dy, 

0 

(13) 

where r(x) is the GAMMA FUNCTION. In the case n = 2, 

I= ss xpyq dx dy = 
p!q! B(P + 1,4 + 1) 

T (p+q+q!= p+q+z ’ 
where 

(5) 
where the integration is over the TRIANGLE 7’ bounded 
by the z-axis, y-axis, and line 11: + y = 1 and B(x, y) is 
the BETA FUNCTION. 

2Ft --2F1(~2,Q+~2+~3;1+~2,-(1+Y)-~) (14) 

is a HYPERGEOMETRIC FUNCTION. 

(1) 
D, (~2;n) = 

r(72 + r2) 2~1(~1,~1 + r2; I + rl; -I) 
dp-l)r(T2) The type 2 integrals are given for b-D vectors a and r, 

and 0 < c < b, - - (15) 
Dt2’(Q, T3; rl) = 

r(rl + ~~ + r3) 
(Q + ~3)r(Tl)r(T2)r(~3) CibJ (r, m) = 

r(m + R) 

r(m) n;=, rb-4 
X 

J 
2fiy r3-1 dy, (16) 

1 
a1 ab 

X 
s 

l  . . 

0 
s 0 

rI b 

i=l Xi ri--l dxi 

(6) 

Df’(r m) = 
r(m + R) 

1 
r(m) J-J;=, Wd References 
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rI 
b 

i=l Xi 
ri-1 dxi 

(8) 
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Dirichlet Kernel 
The Dirichlet kernel DF is obtained by integrating the 
CHARACTER &Egz) Over the BALL It1 < M, - 

The Dirichlet kernel of a DELTA SEQUENCE is given by 

1 sin[(n + +] 

an(~) ~ 2x  sin(l,) l  

2 

The integral of this kernal is called the DIR~CHLET IN- 
TEGRAL @~]a 

see also DELTA SEQUENCE, DIREHLET INTEGRALS, 
DIRICHLET'S LEMMA 

Dirichlet L-Series 
Series of the form 

Lk(S,X) = xXk(n)n-‘, (1) 

where the CHARACTER (NUMBER THEORY)~~ (n) is an 
INTEGER function with period m. These series appear 
in number theory (they were used, for instance, to prove 
DIRICHLET'S THEOREM) and can be written as sums of 
LERCH TRANSCENDENTS with z a POWER of eaTi? 
The DIRICHLET ETA FUNCTION 

n+1 
q(s) s F * = (1 - 21-s)+) (2) 

(for s # 1) and DIRICHLET BETA FUNCTION 

L-d(S) = P(s) S 2 (-l)” 
n=O (2n + 1)” 

(3) 

and RIEMANN ZETA FUNCTION 

L+ds) = C(s) (4) 

are Dirichlet series (Borwein and Borwein 1987, p. 289). 
;)ck is called p rimitiveifthe CONDUCTORS= k Oth- 
erwise, xk is imprimitive. A pTimitive* L-series modulo 
k is then defined as one for which !Xk(n) is primitive. 
All imprimitive L-series can, be expFessed in terms of 
primitive L-series. 

Let P = 1 or P = ni=, pi; where pi are distinct ODD 
PRIMES. Then there are three possible types of prim- 
itive L-series with REAL COEFFICIENTS. The require- 
ment of REAL COEFFICIENTS restricts the CHARACTER 
to X&z) = &l for all k and n. The three type are then 

1. If k = P (e.g., k = 1, 3, 5, . . .) or k = 4P (e.g., 
k= 4, 12, 20, dots), there is exactly one primitive 
L-series. 

Dirichlet L-Series 461 

2. If k = 8P (e.g., k = 8, 24, . . . ), there are two primi- 
tive L-series. 

3. If k = 2P, Ppi, or 2aP where a > 3 (e.g., k = 2, 6, 
9, .*. ), there are no primitive L-series 

(Zucker and Robertson 1976). All primitive L-series are 
algebraically independent and divide into two types ac- 
cording to 

xk(k - 1) = *I. (5) 

Primitive L-series of these types are denoted Lk. For 
a primitive L-series with REAL CHARACTER (NUMBER 
THEORY), if k = P, then 

Lk = 
L-k ifPz3 (mod4) 
Lk if P E 1 (mod 4). 

If k = 4P, then 

Lk = 
L-k if P E 1 (mod 4) 

Lk if P E 3 (mod 4), 

(6) 

(7) 

and if k = 8P, then there is a primitive functitin of each 
type (Zucker and Robertson 1976). 

The first few primitive NEGATIVE L-series are L-+ Lm4, 
L--7, L-8, L-11, L-15, L-19, L-20, L-23, L-24, L-31, 

L-35,L-39, L-40, L-43, L-47, L-51, L-52, L-55, L-56, 

L-59,L-67, L-68, L-71, L-79, L-83, L-84, L-87, L-88, 

L-91, L-95, ." (Sloane’s A003657), corresponding to 
the negated discriminants of imaginary quadratic fields. 
The first few primitive POSITIVE L-series are L+l, L+5, 

L+8, L+12, L+13, L+17, L+Zl, L+24, L+28, L+29, L+33, 

L+37, L+40, L+41, L+44, L+53, L+56, L+57, L+SO, L+Sl, 

L+65, L+69, L+73, L+76, L+77, L+85, L+88, L+89, L+92, 

L+93, L+97, l  ‘0  
(Sloane’s A04613.3). 

The KRONECKERSYMBOL~~~REALCHARACTER~~~- 
do k, and is in fact essentially the only type of REAL 
primitive CHARACTER (Ayoub 1963). Therefore, 

L+d(S) = F(d 

n=l 

L-d(S) = fj- 
n=l 

n)n- (8) 

dl > n n-, (9) 

where (din) is the KRONECKER SYMBOL. The functional 
equations for Lk are 

L-k(s) = 2s7?-1k-“+1’21’(l - s) cos(+)L-k(l - S) 

(10) 

L+k(s) = 2% S-l k- “fl’z~(l - s) sin($)L+k(l - s). 

(11) 
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For m a POSITIVE INTEGER 

Dirichlet Lambda Function 

References 

L+k(-2m) = 0 

L-k(l- 2m) = 0 

L+k(2m) = Rk- 1/2n2m 

L-k(2m - 1) = R’k-1i2r2m-1 

(12) 

(13) 

(14) 

(15) 

L+k(l- 2m) = 
(-1)“(2m - l)!R 

w 
2m-1 (16) 

LBk(-2k) = 
(-l)mR’(2m)! 

w 
2m 1 (17) 

where R and R’ are RATIONAL NUMBERS. L+&) can 
be expressed in terms of transcendentals by 

h(l) = h(d)@), (18) 

where h(d) is the CLASS NUMBER and K(d) is the 
DIRICHLET STRUCTURE CONSTANT. Some specific val- 
ues of primitive L-series are 

L-15(1)= s 

L-U(l) = L 
m 

L-a(l) = -E- 
2fi 

L-T(l) = -z- 
d 

L-d(l) = $T 

L-3(1) = & 

2 1+& 
L+s(l) = -In - 

6 ( > 2 

L+8(1) = 

L+llz(l) = 
ln(2 + d3) 

J3 

L+17(1) = j+(4+ J17) 

2 
L+41) = -1n 

1/zT 

L+24(1) = 
ln(5 + 2J6) 

6 

l  

No general forms are known for L-k (2m) and L+k( 2m - 

1) in terms of known transcendentals. For example, 

L-4(2) = p(2) = K, (19) 

where K is defined as CATALAN'S CONSTANT. 

see also DIRICHLET BETA FUNCTION, DIRICHEET ETA 
FUNCTION 
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Dirichlet Lambda Func 

6 

ion 

: 

I 
5 10 

Re[DirichletLambda zl Im[DirichletLambda z3 /DirichletLambda zI 

0 0 0 

121 [Zl tz1 

X(x) E F(2n + 1>-” = (1 - 2-“)c(x) (1) 
n=O 

for x = 2, 3, . . . . where c(x) is the RIEMANN ZETA 
FUNCTION. The function is undefined at x = 1. It can 
be computed in closed form where c(x) can, that is for 
EVEN POSITIVE n. It is related to the RIEMANN ZETA 
FUNCTION and DIRICHLET ETA FUNCTION by 

cc > u w > iv 4 > u ----- 
2y - 2y-l - 2v-2 (2) 

and 

(Spanier and Oldham 1987). Special values of A(n) in- 
clude 

w x2 =- 
8 (4) 

(5) 
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see also DIRICHLET BETA FUNCTION, DIRICHLET ETA 
FUNCTION, RIEMANN ZETA FUNCTION, ZETA FUNC- 
TION 
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Dirichlet’s Lemma 

s 

7r sin[(n + ibl dx = 1, 
2sin(+) 2 ’ 

0 

where the KERNEL is the DIRICHLET KERNEL. 

Th eory. New York: Dover, p. 37, 

ik, 
ed. 

I. M. Tables of Integrals, Se- 

A: Academic San Diego, C 

Dirichlet’s Principle 
Also known as THOMSON'S PRINCIPLE. There exists a 
function u that minimizes the functional 

D[ 1 u= 
s 

IVu12 dV 
i-2 

(called the DIRICHLET INTEGRAL) for 0 c Iw2 or Iw3 
among all the functions u E @(0)nC(Oj(Q) which take 
on given values f on the boundary dn of !Z, and that 
function u satisfies V2 = 0 in s2, u]afl = f, u E d2)(f2)n 
C(O) (0). Weierstrafi showed that Dirichlet’s argument 
contained a subtle fallacy. As a result, it can be claimed 
only that there exists a lower bound to which D[u] comes 
arbitrarily close without being forced to actually reach 
it. Kneser, however, obtained a valid proof of Dirichlet’s 
principle. 

see also DIRICHLET'S Box PRINCIPLE, DIRICHLET IN- 
TEGRALS 

Dirichlet Region 

see VORONOI POLYGON 

Dirichlet Structure Constant 

for d > 0 

- for d < 0, 

where q(d) is the FUNDAMENTAL UNIT and w(d) is the 
number of substitutions which leave the binary quadra- 
tic form unchanged 

6 for d = -3 
w(d) = 4 for d = -4 

2 otherwise. 

see also CLASS NUMBER, DIRICHLET L-SERIES 
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Dirichlet Tessellation 

see VORONOI DIAGRAM 

Dirichlet’s Test 
Let 

where K is independent of p. Then if $-n > fn+l > 0 
and 

lim fn = 0, 
n-boo 

it follows that 

CONVERGES. 

see also CONVERGENCE TESTS 

Dirichlet’s Theorem 
Given an ARITHMETIC SERIES of terms an+b, for ?z = 1, 
2 - - 7 the series contains an infinite number of PRIMES if 
a’and b are RELATIVELY PRIME, i.e., (a& = 1. Dirich- 
let proved this theorem using DIRICHLET L-SERIES. 

see also PRIME ARITHMETIC PROGRESSION, PRIME 
PATTERNS CONJECTURE, RELATIVELY PRIME, SIER- 
PI~~SKI'S PRIME SEQUENCE THEOREM 

Dirichlet Series 
A sum C a,&‘, where a, and z are COMPLEX and A, 
is REAL and MONOTONIC increasing. 

see also DIRICHLET L-SERIES 
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Dirty Beam 
The FOURIER TRANSFORM of the (u, v) sampling distri- 
bution in synthesis imaging 

b’ = 3-l(S), (1) 

also called the SYNTHESIZED BEAM. It is called a 
“beam” by way of analogy with the DIRTY MAP 

I’ = 3-l(vs) = 3-l[v] * P[S] 
= I * 3-l(S) E I * b’, (2) 

where * denotes CONVOLUTION. Here, I’ is the intensity 
which would be observed for an extended source by an 
antenna with response pattern bl, 

I’ = b@“) * I($“). (3) 

The dirty beam is often a complicated function. In order 
to avoid introducing any high spatial frequency features 
when CLEANing, an elliptical Gaussian is usually fit 
to the dirty beam, producing a CLEAN BEAM which is 
CONVOLVED with the final iteration. 

see also CLEAN ALGORITHM, CLEAN MAP, DIRTY 
MAP 

Dirty Map 
From the van Cittert-Zernicke theorem, the relationship 
between observed visibility function V(u, w) and source 
brightness I([, 7) in synthesis imaging is given by 

But the visibility function is sampled only at discrete 
points S(u, v) (finite sampling), so only an approxima- 
tion to I, called the “dirty map” and denoted I’, is mea- 
sured. It is given by 

S(u, v)V(u, v)e25ri(Eufqv) du du 

(2) 

where S(U, V) is the sampling function and V(u, v) is 
the observed visibility function. Let * denote CONVO- 

IJJTION and rearrange the CONVOLUTION THEOREM, 

w * 91 = 3[f]3[g] (3) 
into the form References 

3F1 VI * md = fg, (4) 

Now note that 
I = P[V] (6) 

is the CLEAN MAP, and define the “DIRTY BEAM" 
as the inverse FOURIER TRANSFORM of the sampling 
function, 

b’ z 3-‘[S]. (7) 

The dirty map is then given by 

I’ = F-‘[VS] = F-‘[VI * 3-‘[S] = I rk b’. (8) 

In order to deconvolve the desired CLEAN MAP 1 from 
the measured dirty map I’ and the known DIRTY BEAM 
b’, the CLEAN ALGORITHM is often used. 

see also CLEAN ALGORITHM, CLEAN MAP, DIRTY 
BEAM 

Disc 

see DISK 

Disconnected Form 
A FORM which is the sum of two FORMS involving sep- 
arate sets of variables. 

Disconnect ivity 
Disconnectivities are mathematical entities which stand 
in the way of a SPACE being contractible (i.e*, shrunk to 
a point, where the shrinking takes place inside the SPACE 
itself). When dealing with TOPOLOGICAL SPACES, a 
disconnectivity is interpreted as a (‘HOLE" in the space. 
Disconnectivities in SPACE are studied through the EX- 
TENSION PROBLEM or the LIFTING PROBLEM. 

see also EXTENSION PROBLEM, HOLE, LIFTING PROB- 

Discontinuity 

n 

i” discontinuity 

I 
I\ 
I 

A point at which a mathematical object is DISCONTIN- 

Discontinuous 
Not CONTINUOUS. A point at which a function is dis- 
continuous is called a DISCONTINUITY, or sometimes a 
JUMP. 

Yates, R. C. ‘Functions with Discontinuous Properties.” A 
Handbook on Curves and Their Properties. Ann Arbor, 
MI: J. W. Edwards, pp. 100-107, 1952, 

from which it follows that 
Discordant Permutation 

3-Q] * 3-l[g] = 3-‘[fg) (5) ~~~MARRIED COUPLES PROBLEM 
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Discrepancy Theorem 
Let s1, S& . . . be an infinite series of real numbers lying 
between 0 and 1. Then corresponding to any arbitrar- 
ily large K, there exists a positive integer n and two 
subintervals of equal length such that the number of sV 
with v = 1, 2, . . . , n which lie in one of the subintervals 
differs from the number of such sV that lie in the other 
subinterval by more than K (van der Corput 1935ab, 
van Aardenne-Ehrenfest 1945, 1949, Roth 1954). 

This statement can be refined as follows. Let IV be a 
large integer and sr, ~2, . . , , SN be a sequence of N real 
numbers lying between 0 and 1. Then for any integer 
1 < n < N and any real number QI satisfying 0 < a < 1, - 
let D,(a) denote the number of sy with v = 1, 2, . . . , n 
that satisfy 0 5 sV < a. Then there exist n and a such 
that 

ID&) - nal > cl* 

where cl is a positive constant. 

l  

This result can be further strengthened, which is most 
easily done by reformulating the problem. Let N > 1 
be an integer and I’r, P2, . . . , PN be N (not necessarily 
distinct) points in the square 0 < =1: < 1, 0 < y < 1. - - - - 
Then 

11 

ss 
[S(x, y) - Nxy12 dx dy > c2 In N, 

0 0 

where c2 is a positive constant and S(U, V) is the number 
of points in the rectangle 0 5 x < u, 0 5 y < 21 (Roth 
1954). Therefore, 

[S(x,y) - Nxyl > cd=, 

and the original result can be stated as the fact that 
there exist n and Q! such that 

The randomly distributed points shown in the above 
squares have \S(x,y) - Nxy12 = 6.40 and 9.11, respec- 
t ively. 

Similarly, the discrepancy of a set of N points in a unit 
~HYPERCUBE satisfies 

(Roth 1954, 1976, 1979, 1980). 

see also 18-POINT PROBLEM, CUBE POINT PICKING 
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Discrete Distribution 
A DISTRIBUTION whose variables can take on only dis- 
crete values. Abramowitz and Stegun (1972, p. 929) 
give a table of the parameters of most common discrete 
distributions. 

see also BERNOULLI DISTRIBUTION, BINOMIAL DISTRI- 

BUTION, CONTINUOUS DISTRIBUTION, DISTRIBUTION, 
GEOMETRIC DISTRIBUTION, HYPERGEOMETRIC DIS- 
TRIB~TI~NJEGATIVE BINOMIAL DISTRIBUTION, Pors- 
SON DISTRIBUTION, PROBABILITY, STATISTICS, UNI- 
FORM DISTRIBUTION 
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Discrete Fourier Transform 
The FOURIER TRANSFORM is defined as 

f(v) = F[f(t)] = [= f(t)e-2”i”tdt. (1) 

Now consider generalization to the case of a discrete 
function, f(t) + f(tk) by letting fc E f (&), where 
tk = kA, with k = 0, . . . , Iv - 1. Choose the frequency 
step such that 

A 

n 
v, = 

NA’ (2) 

with n = -N/2, . . . , 0, . . l  , N/2. There are N+ 1 values 
of n, so there is one relationship between the frequency 
components. Writing this out as per Press et al. (1989) 

N-l 

F[f (t)] = c fke-2”ib/NA)kAA = AN< fke-2”inklN, 
k=O k=O 

(3) IS(x, y) - Nxyl > c(ln N)(d-1)/2 
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and 
N-l 

Fn. = >: fke 
-2TinklN 

. 

k=O 

The inverse transform is 

N-l 
1 

fk = - 
2nink/N 

N 
Fne . 

n=O 

Note that F_, = 
formulation is 

FN--, n = 1, 2, . . . , so an 

(4 

(5) 

alternate 

where the NEGATIVE frequencies -v, < v < 0 have 
N/2 + 1 < 72 < N - 1, POSITIVE frequencies 0 < v < v, - - 
have 1 < n < N/2 - 1, with zero frequency n = 0. 
n = N/2 co&ponds to both v = v, and v = -v,. 
The discrete Fourier transform can be computed using 
a FAST FOURIER TRANSFORM. 

The discrete Fourier transform is a special case of the 
z-TRANSFORM. 

see also FAST FOURIER TRANSFORM,FOURIER TRANS- 
FORM, HARTLEY TRANSFORM, WINOGRAD TRANS- 
FORM+TRANSFORM 
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Discrete Mathematics 
The branch of mathematics dealing with objects which 
can assume only certain “discrete” values. Discrete ob- 
jects can be characterized by INTEGERS (or RATIONAL 
NUMBERS), whereas continuous objects require REAL 
NUMBERS. The study of how discrete objects combine 
with one another and the probabilities of various out- 
comes is known as COMBINATORICS. 

see also COMBINATORICS 
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Discrete Set 
A finite SET or an infinitely COUNTABLE SET of ele- 

Discrete Uniform Distribution 

see EQUALLY LIKELY OUTCOMES DISTRIBUTION 

Discriminant 
A discriminant is a quantity (usually invariant under 
certain classes of transformations) which characterizes 
Certain properties Of a quantity’s ROOTS. The con- 
cept of the discriminant is used for BINARY QUADRATIC 
FORMS,ELLIPTIC CURVES,METRICS,MODULES,POLY- 
NOMIALS, QUADRATIC CURVES, QUADRATIC FIELDS, 
QUADRATIC 
TEST. 

FORMS, and in the SECOND DERIVATIVE 

Discriminant (Binary Quadratic Form) 
The discriminant of a BINARY QUADRATIC FORM 

au2 + buv + cv2 

is defined by 
d E b2 - 4ac. 

It is equal to four times the corresponding DETERMI- 
NANT. 

see also CLASS NUMBER 

Discriminant (Elliptic Curve) 
An ELLIPTIC CURVE~~ ofthe form 

y2 = x3 + a2x2 + UlX + ao. 

Let the ROOTS of y2 be ~1, 73, and 73. The discriminant 
is then defined as 

A = k(rl - Q)~(T~ - ~3)~(~2 - ~3)~. 

see also FREY CURVE, MINIMAL DISCRIMINANT 

Discriminant (Metric) 
Given a METRIC gap, the discriminant is defined by 

g F det(g,p) = ‘11 ‘12 
I I g21 g22 

= g11g22 - (g12)21 (1) 

Let g be the discriminant and 3 the transformed dis- 
criminant , then 

tj = D2g (2) 

iI 
z D2g, 

(3) 

where 



Discriminan t (Mud ule) 

Discriminant (Module) 
Let a MODULE M in an INTEGRAL DOMAIN D1 for 
R(a) b e expressed using a two-element basis as 

M = [sl&lr 

where & and & are in D1. Then the DIFFERENT of the 
MODIJLE is defined as 

and the discriminant is defined as the square of the DIF- 

FERENT (Cohn 1980). 

For IMAGINARY QUADRATIC FIELDS Q(fi) (with n < 
0), the discriminants are given in the following table. 

-1 -22 
-2 -23 
-3 -3 
-5 -22.5 
-6 -23 * 3 
-7 -7 

-33 -22 m3.11 -67 -67 
-34 -23 l  17 -69 -22 - 3 - 23 
-35 -5 ’ 7 -70 -23 - 5 l  7 
-37 -22 .37 -71 -71 
-39 -3 l  13 -73 -22 .73 
-41 -22 * 41 -74 -2” .37 
-42 -23.3*7 -77 -22. 7 l  11 

-43 -43 -78 -23 l  3 l  13 
-46 -23 l  23 -79 -79 
-47 -47 -82 -23 ’ 41 
-51 -3.17 -83 -83 
-53 -22 ’ 53 -85 -22 m 5.17 
-55 -5.11 -86 -23 ’ 43 
-57 -22 ’ 3 . 19 -87 -3 l  29 
-58 -23 .29 -89 -22 .89 
-59 -59 -91 -7.13 
-61 -22 .61 -93 -22 ’ 3 ’ 31 
-62 -23 ’ 31 -94 -23 l  47 
-65 -22. 5 - 13 -95 -5 l  19 
-66 -23 .3 l  11 -97 -22 l  97 

-10 -23 l 5 
-11 -11 
-13 -22 l  13 
-14 -23 l  7 
-15 -3 l  5 
-17 -22 l  17 
-19 -19 
-21 -22 ’ 3 ’ 7 
-22 -23 l  11 

-23 -23 
-26 -23 - 13 
-29 -22 l  29 

-30 -23q3*5 
-31 -31 

The discriminants of REAL QUADRATIC FIELDS Q(fi) 
(n > 0) are given in the following table. 

2 23 34 23. 17 67 67. 22 
3 3m22 35 702~05 69 3 l  23 
5 5 37 37 70 7. 23 ‘5 
6 3*23 38 19 9 23 71 71 l  22 
7 702~ 39 3 - 22 l  13 73 73 

10 23 ‘5 41 41 74 23 ’ 37 
11 11 ‘22 42 302~ -7 77 7dl 
13 13 43 43’ 22 78 3. 23 9 13 
14 7* 23 46 234 23 79 79’ 22 

15 3* 22 ‘5 47 47* 22 82 23 l  41 
17 17 51 3’ 22 l  17 83 83. 22 
19 19. z2 53 53 85 59 17 
21 3.7 55 11 l  22 ’ 5 86 43’ 23 
22 11 ‘23 57 3.19 87 3 9 22 l  13 
23 23 l  22 58 23 l  29 89 89 
26 23 l  13 59 59 l  22 91 702~ -13 
29 29 61 61 93 3’31 
30 3.23 l  5 62 31 l 23 94 479 23 

31 31 ‘22 65 5 l  13 95 19 - 22 l  5 

33 3.11 66 3’ 23. 11 97 97 

Discriminant (Polynomial) 467 

see UZSO DIFFERENT, FUNDAMENTAL DISCRIMINANT, 
MODULE 
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Discriminant (Polynomial) 
The PROWCT of the SQUARES of the differences of+the 
POLYNOMIAL ROOTS xi. For a POLYNOMIAL of degree 

n, 
n 

D, E 
rI( 

xi - xjj2. (1) 
i,j 

i<j 

The discriminant of the QUADRATIC EQUATION 

ax2 + bx + c = 0 (2) 

is usually taken as 

D = b2 - 4~. 

However, using the general definition of the POLYNOM- 
IAL DI~CRIMINANT gives 

DE 
rI 

b2 - 4ac 
(Zi - Zj)" = - 

a2 ’ (4) 
i<j 

where xi are the ROOTS. 

The discriminant of the CUBIC EQUATION 

z3 + a2z2 + alz + a0 = 0 

is commonly defined as 

D E Q3 -/- R2, 

where 

Q. 3al - ~22~ - - - 
9 

R = 9azal - 27a0 - 2az3 
- . 

54 

(5) 

(6) 

(7) 

However, using the general definition of the polynomial 
discriminant for the standard form CUBIC EQUATION 

z3+pz=q (9) 

gives 

D Z n(Zi - Zj)" = P2 = -4p3 - 27q2, 

i<j 

(10) 

where xi are the ROOTS and 

P = (x1 - rz)(zz - 23)(x1 - z3)* (11) 
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The discriminant of a QUARTIC EQUATION to rewrite the primed variables 

x4 + u3x3 + @X2 + UlX + a0 = 0 (12) AfzA+C 
2 

+ $Gcos(20 + 6) (11) 

B’ = B cos(28) + (C - A) sin(20) = G cos(20 + 62) 

(12) 
-27a14 + 18a3aza13 - 4a33a13 - 4az3a1’ + a32az2a12 

+ao(144a2a12 -6a3’a12 -80a3az2al +18a33azal +16az4 

-4a3’az3) +aa2(-192a3a1 - 128~~’ + 144a3’a2 - 27aa4) 

-256a03 (13) 

(Be&r et al. 1972, Item 4). 

see also RESULTANT 

References 
Beeler, M.; Gosper, R. W.; and Schroeppel, R. HAKMEM. 

Cambridge, MA: MIT Artificial Intelligence Laboratory, 
Memo AIM-239, Feb. 1972. 

Discriminant (Quadratic Curve) 
Given a general QUADRATIC CURVE 

Ax2+Bxy+Cy2+Dx+Ey+F=Q, (1) 

the quantity X is known as the discriminant, where 

X E B2 - 4AC, (2) 

and is invariant under ROTATION. Using the COEFFI- 
CIENTS from QUADRATIC EQUATIONS for a rotation by 
an angle 8, 

A’ = $A[1 + cos(2S)] + iBsin(28) + $[l - cos(20)] 

A+C B A-C - -- 
2 

+ 2 sin(2@ + - cos(20) 2 (3) 

B’=Gcos 20+&-g 
( > 

=Gsin(28+S) (4) 

c’ E ;A[1 - cos(2S)] - $B sin(28) + $)C[l + cos(20)] 

A+C B C-A - - - - 
2 

z sin(28) + ~ cos(20). 2 (5) 

Now let 

G E -\/B2 + (A - C)2 (6) 

6 E tan-l ~ 
(CBA) (7) - 

= -cot-l - 
(CBA) 

j (8) 

and use 

cot-l(x) = $r - tan-l(z) 

&=6-9 
(9) 

(10) 

Discriminant (Quadratic Curve) 

X = Bi2 - 4A’C’ = -4A’C’. (18) 

Now, if -4A’C’ < 0, then A’ and C’ both have the 
same sign, and the equation has the general form of an 
ELLIPSE (if A’ and B’ are positive). If -4A’C’ > 0, 
then A’ and C’ have opposite signs, and the equation 
has the general form of a HYPERBOLA. If -4A’C’ = 0, 
then either A’ or C’ is zero, and the equation has the 
general form of a PARABOLA (if the NONZERO A’ or C’ 
is positive). Since the discriminant is invariant, these 
conclusions will also hold for an arbitrary choice of 8, so 
they also hold when -4A’C’ is replaced by the original 
n2 - 4AC. The general result is u 

1. 

2. 

3. 

If B2 -4AC < 0, the equation represents an ELLIPSE, 
a CIRCLE (degenerate ELLIPSE), a POINT (degener- 
ate CIRCLE), or has no graph. 

If B2 - 4AC > 0, the equation represents a HYPER- 
BOLA or pair of intersecting lines (degenerate HY- 
PERBOLA). 

If B2 - 4AC = 0, the equation represents a 
PARABOLA, a LINE (degenerate PARABOLA), a pair 
of PARALLEL lines (degenerate PARABOLA), or has 
no graph. 

A+C 
cl=-- +os(28 + a>. (13) 

From (11) and (13), it follows that 

4A’C’ = (A + C>” - G2 cos(28 + S). 

Combining with (12) yields, for an arbitrary 8 

(14) 

X E Bt2 - 4A’C’ 

= G2 sin2 (20 + S) + G2 cos’(28 + 6) - (A + C)’ 

=G2-(A+C)2=~2+(~-~)2-(A+C)2 

- 8’ - - 4AC, (15) 

which is therefore invariant under rotation. This invari- 
ant therefore provides a useful shortcut to determining 
the shape represented by a QUADRATIC CURVE. Choos- 
ing B to make B’ = 0 (see QUADRATIC EQUATION), the 
curve takes on the form 

A/x2 + C’y’ + D’x + E’y + F = 0. (16) 

COMPLETING THE SQUARE and defining new variables 
gives 

A’d’ + Ctyt2 = H. (17) 

Without loss of generality, take the sign of H to be pos- 
itive. The discriminant is 
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Discriminant (Quadratic Form) 

see DISCRIMINANT (BINARY QUADRATIC FORM) 

Discriminant (Second Derivative Test) 

D = fmfyy - fxyfyx = fxxfgg - fxg2, 

where fij are PARTIAL DERIVATIVES. 

see UZSO SECOND DERIVATIVE TEST 

Disdyakis Dodecahedron 

The DUAL POLYHEDRON of the ARCHIMEDEAN GREAT 

RH~MBX~~BOCTAHEDRON, also called the HEXAKIS 

OCTAHEDRON. 

see ah GREAT DISDYAKIS DODECAHEDRON 

Disdyakis Triacontahedron 

The DUAL POLYHEDRON of the ARCHIMEDEAN GREAT 
RHOMBICOSIDODECAHEDRON. It is also called the HEX- 

AKIS I~~~AHEDR~N. 

Disjoint 

see MUTUALLY EXCLUSIVE 

Disjunction 
A product of ORs, denoted 

72 

V Arc- 
k+l 

see also CONJUNCTION, OR 

Disjunctive Game 

see NM-HEAP 

Disk 
An n-D disk (or DISC) of RADIUS F is the collection of 
points of distance 5 F (CLOSED DISK) or < T (OPEN 
DISK) from a fixed point in EUCLIDEAN n-space. A disk 
is the SHADOW of a BALL on a PLANE PERPENDICULAR 
to the BALL-RADIANT POINT line. 

The n-disk for n > 3 is called a BALL, and the boundary - 
of the n-disk is a (n - I)-HYPERSPHERE. The standard 
n-disk, denoted IIB” (or B”), has its center at the ORIGIN 
and has RADIUS T = 1. 

see also BALL, CLOSED DISK, DISK COVERING 
PROBLEM, FIVE DISKS PROBLEM, HYPERSPHERE, 
MERGELYAN-WESLER THEOREM, OPEN DISK, POLY- 

DISK, SPHERE, UNIT DISK 

Disk Covering Problem 
N.B. A detailed on-line essay by S. Finch was the sturt- 
ing point for this entry, 

Given a UNIT DISK, find the smallest RADIUS r(n) re- 
quired for rz equal disks to completely cover the UNIT 

DISK. For a symmetrical arrangement with n = 5 
(the FIVE DISKS PROBLEM), r(5) = 4 - 1 = l/4 = 
0.6180340.. ., where 4 is the GOLDEN RATIO. However, 
the radius can be reduced in the general disk covering 
problem where symmetry is not required. The first few 
such values are 

r(1) = 1 

T(2) = 1 

r(3) = ;h 

r(4) = +Jz 

r(5) = 0.609382864.. . 

m = 0.555 

r(7) = $ 

w  = 0.437 

r(9) = 0.422 

41~) = 0.398. 
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Here, values for n = 6, 8, 9, 10 were obtained using 
computer experimentation by Zahn (1962). The value 
~(5) is equal to cos(0+4/2), where 8 and 4 are solutions 
to 

2 sin 8 - sin(0 + +4 + $) - sin(ti - 0 - +$) = 0 (1) 
2 sin 4 - sin(0 + i@ + x) - sin(X - 8 - $4) = 0 (2) 
2 sin 8 + sin(x + S) - sin(x - 0) - sin($ + 4) 

- sin(ti - 4) - Zsin($ - 20) = 0 (3) 

cos(2$ - x + 4) - cos(z* +x - q5) - 2cosx 

+ cos(2$ + x - 20) + cos(2* - x - 20) = 0 (4) 

(Neville 1915). It is also given by I/X, where 2 is the 
largest real root of 

4YV - b(y)x5 -+ c(y)x4 - d(y)x3 

+e(y)x2 - f (Y>X + S(Y) = 0 (5) 

maximized over all y, subject to the constraints 

J2<z<2y+l (6 

-1 <y < 1, (7 

and with 

u(y) = 80y2 + 64y (8 

b(y) = 416~~ + 384y2 + 64y (9) 

c(y) = 848~~ + 928y3 + 352~~ + 32y (10) 

d(y) = 768~~ + 992y4 + 736~~ + 288~~ + 96y 

e(y) = 256~~ + 384~~ + 592y4 + 480~~ + 336~~ 

+ 96y + 16 (11) 

f(y) = 128~~ + 192y4 + 256~~ + 160~~ + 96y + 32 

(12) 

S(Y) = 64y2 + 64y + 16 (13) 

(Bezdek 1983, 1984). 

Letting N(E) be the smallest number of DISKS of RADIUS 
E needed to cover a disk D, the limit of the ratio of the 
AREA of D to the AREA of the disks is given by 

1 3J3 
lim - - - 

E-+0+ f2N(E) - 2n 

(Kershner 1939, Verblunsky 1949). 

see also FIVE DISKS PROBLEM 
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Disk Lattice Points 

see GAUSS'S CIRCLE PROBLEM 

Dispersion Numbers 

see MAGIC GEOMETRIC CUNSTANTS 

Dispersion Relation 
Any pair of equations giving the REAL PART of a func- 
tion as an integral of its IMAGINARY PART and the IMAG- 
INARY PART as an integral of its REAL PART. Dispersion 
relationships imply causality in physics. Let 

f(x0) = u(z0) + iv(xo), (1) 

then 

1 
u(x0) = ;PV 

s 

O” 
v(xo) = -Ipv - u(x) dx 

7T --oo x-x0’ 

(2) 

(3) 

where PV denotes the CAUCHY PRINCIPAL VALUE and 
~(20) and ~(20) are HILBERT TRANSFORMS of each 
other. If the COMPLEX function is symmetric such that 
f(-x) = f*(x), then 

u(x0) = 2PV 
s 

OQ xv(x)dx 
- 

7T 0 x2 202 - 

21(x0) = -zpv - 
s 

O” xu(x) dx 

7r 0 x2 502. - 

(4 

(5) 

Dispersion (Sequence) 
An array B = bij, i,j 2 1 of POSITIVE INTEGERS is 
called a dispersion if 

1. The first column of B is a strictly increasing se- 
quence, and there exists a strictly increasing se- 
quence {sk} such that 

2. bl2 = SI 2 2, 

3. The complement of the SET {bil : i > 1) is the SET - 

4. bij = Sbi j-1 for all j > 3 for i = 1 and for all g > 2 
foralliS2. - 

- 
- 
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If an array B = bij is a dispersion, then it is an INTER- 
SPERSION. 

see also INTERSPERSION 

References 
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Amer. Math. Sot. 117, 313-321, 1993. 

Dispersion (Statistics) 

see also ABSOLUTE DEVIATION, SIGNED DEVIATION, 
VARIANCE 

Disphenocingulum 

see JOHNSON SOLID 

Disphenoid 
A TETRAHEDRON withidentical ISOSCELES or SCALENE 
faces. 

Dissect ion 
Any two rectilinear figures with equal AREA can be dis- 
sected into a finite number of pieces to form each other. 
Thisisthe WALLACE-B• LYAI-GERWEIN THEOREM. For 
minimal dissections of a TRIANGLE, PENTAGON, and 
OCTAGON into a SQUARE, see Stewart (1987, pp. 169- 
170) and Ball and Coxeter (1987, pp. 89-91). The TRI- 
ANGLE to SQUARE dissection (HABERDASHER'S PROB- 
LEM) is particularly interesting because it can be built 
from hinged pieces which can be folded and unfolded 
to yield the two shapes (Gardner 1961; Stewart 1987, 
p. 169; Pappas 1989). 

Laczkovich (1988) p roved that the CIRCLE can be 
squared in a finite number of dissections (N 105’). F’ur- 
thermore, any shape whose boundary is composed of 
smoothly curving pieces can be dissected into a SQIJARE. 

The situation becomes considerably more difficult mov- 
ing from 2-D to 3-D. In general, a POLYHEDRON can- 
not be dissected into other POLYHEDRA of a specified 
type. A CUBE can be dissected into n3 CUBES, where 
n is any INTEGER. In 1900, Dehn proved that not ev- 
ery PRISM cannot be dissected into a TETRAHEDRON 
(Lenhard 1962, Ball and Coxeter 1987) The third of 
HILBERT'S PROBLEMS asks for the determination of two 
TETRAHEDRA which cannot be decomposed into con- 
gruent TETRAHEDRA directly or by adjoining congru- 
ent TETRAHEDRA. Max Dehn showed this could not be 
done in 1902, and W. F. Kagon obtained the same re- 
sult independently in 1903. A quantity growing out of 
Dehn’s work which can be used to analyze the possibil- 
ity of performing a given solid dissection is the DERN 
INVARIANT. 

The table below is an updated version of the one given 
in Gardner (1991, p. 50). Many of the improvements 
are due to G. Theobald (Frederickson 1997). The mini- 
mum number of pieces known to dissect a regular n-gon 
(where n is a number in the first column) into a Ic-gon 
(where k is a number is the bottom row) is read off by 
the intersection of the corresponding row and column. 
In the table, {n} denotes a regular n-gon, GR a GOLDEN 
RECTANGLE,GC a GREEK CROSS, LC a LATIN CROSS, 
MC a MALTESE CROSS, SWa SWASTIKA, {5/2} afive- 
point star (solid PENTAGRAM), {6/2} a six-point star 
(i.e., HEXAGRAM or solid STAR OF DAVID), and {S/3} 
th .e sold OCTAGRAM. .e sold OCTAGRAM. 

pq 

7 5 9 8 11 
8 9 12 11 14 13 1 

The best-known dissections of one regular convex n-gon 
into another are shown for n = 3, 4, 5, 6, 7, 8, 9, 10, 
and 12 in the following illustrations due to Theobald. 
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crLIxD @@ @@ 
12-6 12-7 12-8 

@@ @@ 
12-9 12-10 @m @@ 

7-4 7-5 

The best-known dissections of regular concave poly- 
gons are illustrated below for {5/2}, {6/2}, and {8/3} 
(Theobald). @a 

7-6 

@A @m 
8-3 8-4 

@@ 
a-5 

$-8 

+@ 
512- 12 

@M 
9-4 

@@ 
9-5 

@A 
9-3 

6/2-3 

@@ 
9-7 

@m 
10-4 

@A 
10-3 

@@ @@ 
10-7 10-8 
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The best-known dissections of various crosses are illus- 
trated below (Theobald). 

Eriksson, K, “Splitting a Polygon into Two Congruent 
Pieces.” Amer. Math. Monthly 183, 393-400, 1996. 
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Fund. Math. 131, 1-12, 1988. 

Lenhard, H.-C. “Uber fiinf neue Tetraeder, die einem Wiirfel 
aquivalent sind .” Elemente Muth. 17, 108-109, 1962. 

Lindgren, H. ‘(Geometric Dissections.” Austral. Math. 
Teacher 7, 7-10, 1951. 

Lindgren, H. “Geometric Dissections.” Austral. Math. 

Teacher 9, 17-21, 1953. 
Lindgren, H. “Going One Better in Geometric Dissections.” 

Math. Gax. 45, 94-97, 1961. 
Lindgren, H. Recreational Problems in Geometric Dissection 

and How to Solve Them. New York: Dover, 1972. 
Madachy, J. S. “Geometric Dissection.” Ch. 1 in Madachy’s 

Mathematical Recreations. New York: Dover, pp. 15-33, 
1979. 

Pappas, T. “A Triangle to a Square.” The Joy of Mathemat- 
ics. San Carlos, CA: Wide World Publ./Tetra, pp. 9 and 
230, 1989. 

Stewart, I. The Problems of Mathematics, 2nd ed. Oxford, 
England: Oxford University Press, 1987. 
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GC-6 GC-7 

a@ 
GC- 12 

!i!%@ 
GC-9 

MC-4 

The best-known dissections of the GOLDEN RECTANGLE 
are illustrated below (Theobald). 

Dissection Puzzles 
A puzzle in which one object is to be converted to an- 
other by making a finite number of cuts and reassem- 
bling it. The cuts are often, but not always, restricted to 
straight lines. Sometimes, a given puzzle.is precut and 
is to be re-assembled into two or more given shapes. 

see also CUNDY AND ROLLETT'S EGG, PYTHAGOREAN 
SQUARE PUZZLE, T-PUZZLE, TANGRAM 

R-7 R-9 R-10 

see also BANACH-TARSKI PARADOX,~UNDY AND ROL- 
LETT'S EGG, DECAGON, DEHN INVARIANT, DIABOLI- 
CAL CUBE, D1ssEc~10N PUZZLES, DODECAGON, EHR- 
HART POLYNOMIAL, EQUIDECOMPOSABLE, EQUILAT- 
ERAL TRIANGLE, GOLDEN RECTANGLE, HEPTAGON 
HEXAGON, HEXAGRAM, HILBERT'S PROBLEMS, LATIN 
CROSS, MALTESE CROSS, NONAGON, OCTAGON, Oc- 
TAGRAM,PENTAGON,PENTAGRAM,POLYHEDRON DIS- 
SECTION, PYTHAGOREAN SQUARE PUZZLE, PYTHAG- 
OREAN THEOREM, REP-TILE, SOMA CUBE, SQUARE, 
STAR OF LAKSHMI, SWASTIKA, T-PUZZLE, TANGRAM, 
WALLACE-B• LYAI~ERWEIN THEOREM 

Dissipative System 
A system in which the phase space volume contracts 
along a trajectory. This means that the generalized DI- 
VERGENCE is less than zero, 

w $ <o, i References 
Ball, W. W. R. and Coxeter, H. S. M. Mathematical Recre- 

ations and Essays, 13th ed. New York: Dover, pp. 87-94, 
1987. 

Coffin, S. T. The Puzzling World of Polyhedral Dissections. 
New York: Oxford University Press, 1990. 

Cundy, H. and Rollett, A. Ch. 2 in Mathematical Models, 3rd 
ed. Stradbroke, England: Tarquin Pub., 1989. 

Eppstein, D. “Dissection.” http: // www . its . uci l  edu / w 
eppstain/ junkyard/dissect, html. 

Eppstein, D. “Dissection Tiling.” http://www.ics.uci.edu 
/-eppstein/junkyard/distile. 

where EINSTEIN SUMMATION has been used. 

Distance 
Let y(t) be a smooth curve in a MANIFOLD M from II: to 
y with y(O) = LC and y(l) = y* Then y’(t) E T7tt), where 
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Tz is the TANGENT SPACE of A4 at 2. The LENGTH of 
y with respect to the Riemannian structure is given by 

I 
1 

I h'(t) I Irw dt, (1) 
0 

and the distance d(z, y) between x and y is the shortest 
distance between x and y given by 

d(x,y) = inf 
I 

I h’(t) I h(t) &* (2) y:z to y 

In order to specify the relative distances of n > 1 points 
in the plane, 1+2(n-2) = 2n-3 coordinates are needed, 
since the first can always be taken as (0, 0) and the sec- 
ond as (IC, 0), which defines the X-AXIS. The remaining 
n- 2 points need two coordinates each. However, the 
total number of distances is 

n 0 n! 

2 = 2!(n - 2)! - 
- +n(n - l), 

where 0 i is a BINOMIAL COEFFICIENT. The distances 
between n > 1 points are therefore subject to nz rela- 
tionships, where 

m E +(n - 1) - (2n - 3) = i(n - 2)(n - 3). (4 

For n = 1, 2, . . . , this gives 0, 0, 0, 1, 3, 6, 10, 15, 21, 28, 
. l  . (Sloane’s A000217) relationships, and the number 
of relationships between n points is the TRIANGULAR 
NUMBER Tn-3. 

Although there are no relationships for n = 2 and n = 
3 points, for n = 4 (a QUADRILATERAL), there is one 
(Weinberg 1972) : 

This equation can be derived by writing 

dij = 2/(~i - Xj)2 + (Yi - yj)” (6) 

and eliminating xi and yj from the equations for d12, 

&3, d14, d23, d24, and 44. 

see &O ARC LENGTH, CUBE POINT PICKING, Ex- 
PANSIVE, LENGTH (CURVE), METRIC, PLANAR DIG- 
TANCE, POINT-LINE DISTANCE-~-D, POINT-LINE 

DISTANCE-~-D, POINT-PLANE DISTANCE, POINT- 
POINT DISTANCE- l-D, POINT-POINT DISTANCE-% 
D, POINT-POINT DISTANCE-S-D, SPACE DISTANCE, 
SPHERE 

References 
Gray, A. “The Intuitive Idea of Distance on a Surface.” 513.1 

in Modern Differential Geometry of Curves and Surfaces. 
I3oca Raton, FL: CRC Press, pp. 251-255, 1993. 

Sloane, N. J. A. Sequence A000217/M2535 in “An On-Line 
Version of the Encyclopedia of Integer Sequences.” 

Weinberg, S. Gravitation and Cosmology: Principles and 
Applications of the General Theory of Relativity. New 
York: Wiley, p. 7, 1972. 

Distinct Prime Factors 
3, 4 

2.5, 
3 

2. 

' 
20 40 60 80 100 
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The number of distinct prime factors of a number n is 
denoted w(n). The first few values for n = 1, 2, . . . 
are 0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 
2, .*. (Sloane’s AOOl221). The first few values of the 
SUMMATORY FUNCTION 

i: 0 Wk 

k=2 

are 1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 14, 15, 17, 19, 20, 21, 
. . . (Sloane’s AO13939), and the asymptotic value is 

i: 0 wk = nhlnn + l31n -k o(n), 

k=2 

where B1 is MERTENS CONSTANT. In addition, 

wk 2 ( >I = n(lnInn)2 + O(nlnlnn). 

k=2 

see UZSO DIVISOR FUNCTION, GREATEST PRIME FAC- 
TOR, HARDY-RAMANUJAN THEOREM, HETEROGE- 
NEOUS NUMBERS, LEAST PRIME FACTOR, MERTENS 
CONSTANT, PRIME FACTORS 

References 
Hardy, G. H. and Wright, E. M. “The Number of Prime Fac- 

tors of n” and “The Normal Order of w(n) and n(n) .” 
s22.10 and 22.11 in An Introduction to the Theory of Num- 
hers, 5th ed. Oxford, England: Clarendon Press, pp. 354- 
358, 1979. 

Sloane, N. J. A. Sequences A013939 and A001221/M0056 in 
“An On-Line Version of the Encyclopedia of Integer Se- 
quences.” 
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Distribution 
The distribution of a variable is a description of the rel- 
ative numbers of times each possible outcome will occur 
in a number of trials. The function describing the distri- 
bution is called the PROBABILITY FUNCTION, and the 
function describing the probability that a given value or 
any value smaller than it will occur is called the DIS- 
TRIBUTION FUNCTION. 

Formally, a distribution can be defined as a normalized 
MEASURE, and the distribution of a RANDOM VARIABLE 
z is the MEASURE PE on s’ defined by setting 

Pz(At) = P{s E S : x(s) E A’}, 

where (S, s, P) is a PROBABILITY SPACE, (S,s) is a 
MEASURABLE SPACE, and P a MEASURE on s with 
P(S) = 1. 

see &O CONTINUOUS DISTRIBUTION, DISCRETE DIS- 
TRIBUTION, DISTRIBUTION FUNCTION, MEASURABLE 
SPACE, MEASURE, PROBABILITY, PROBABILITY DEN- 

SITY FUNCTION, RANDOM VARIABLE, STATISTICS 

References 
Doob, J. L. “The Development of Rigor in Mathematical 

Probability (1900-1950) .” Amer. Math. Monthly 103, 
586-595, 1996. 

Distribution Function 
The distribution function D(x), sometimes also called 
the PROBABILITY DISTRIBUTION FUNCTION, describes 
the probability that a trial X takes on a value less than 
or equal to a number z. The distribution function is 
therefore related to a continuous PROBABILITY DENSITY 

FUNCTION P(x) by 

s 

2 

D(x) = P(X 5 x) E P(x’) dx’, (1) 
--oo 

so P(x) (when it exists), is simply the derivative of the 
distribution function 

P(x) = D!(x) = [P(x’& = P(x) - P(-m). (2) 

Similarly, the distribution function is related to a dis- 
crete probability P(x) by 

D(x) = P(X 5 x) = x P(x). 
x2x 

(3) 

In general, there exist distributions which are neither 
continuous nor discrete. 

A JOINT DISTRIBUTION FUNC TION can be 
outcomes are dependent on two parameters: 

defined if 

D(x, y) = P(X I x, Y 5 Y) (4) 

Dx(x) = D(x, 00) (5) 

D,(Y) = D(W,Y)- (6) 

Similarly, a multiple distribution function can be defined 
if outcomes depend on n. parameters: 

D(al,. . . ,a,) E P(XI 5 al,. . . ,xn 5 a,). (7) 

Given a continuous P(x), assume you wish to generate 
numbers distributed as P(x) using a random number 
generator. If the random number generator yields a uni- 
formly distributed value yi in [O,l] for each trial i, then 
compute - 

s 

2 

D(x) = P(x’) da’. (8) 

The FORMULA connecting yi with a variable distributed 
as P(x) is then 

xi = D-‘(yi), (9) 

where D-l (x) is the inverse function of D(x). For ex- 
ample, if P(X) were a GAUSSIAN DISTRIBUTION so that 

D(x) = i [l+erf(z)], (10) 

then 

Xi = aJ2erf 32yi - 1) +p. (11) 

If P(x) = Cx” for x E (xmin, xmax), then normalization 
gives 

s 

Xmax 

p(x) dx = c[znn+~‘fyz = 1, (12) 
xmin 

c= n+l 

x m a x  

nf l  - xminn+ l  l  
(13) 

Let y be a uniformly distributed variate on [0, 11. Then 

X 5 

D(x) = 
s 

P(x)dx = C 
s 

xn dx 
xmin xmin 

c - n+l - -2 
n+l 

( - Xmin n+1) E y, (14) 

and the variate given by 

( 
n-t1 

X- Cy + II:minn+’ > 
ll(n+l) 

- - I( Xmax 
nfl 

- Xmin 
n+l 

>y+ 
xminn+l ll(n+l) 1 (15) 

is distributed as P(x). 

A distribution with constant VARIANCE of y for all val- 
ues of x is known as a HOMOSCEDASTIC distribution. 
The method of finding the value at which the distribu- 
tion is a maximum is known as the MAXIMUM LIKELI- 

HOOD method. 

see also BEENOULLI DISTRIBUTION, BETA DISTRI- 
BUTION, BINOMIAL DISTRIBUTION, BIVARIATE DIS- 
TRIBUTION, CAUCHY DISTRIBUTION, CHI DISTRIBU- 
TION, CHI-SQUARED DISTRIBUTION, CORNISH-FISHER 
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ASYMPTOTIC EXPANSION, CORRELATION COEFFI- 
CIENT, DISTRIBUTION, DOUEILE EXPONENTIAL DISTRI- 
BUTION, EQUALLY LIKELY OUTCOMES DISTRIBUTION, 
EXPONENTIAL DISTRIBUTION, EXTREME VALUE DIS- 
TRIBUTION, F-DISTRIBUTION, FERMI-DIRAC DISTRI- 

BUTION, FISHER'S Z-DISTRIBUTION, FISHER-TIPPETT 
DISTRIBUTION, GAMMA DISTRIBUTION, GAUSSIAN 
DISTRIBUTION, GEOMETRIC DISTRIBUTION, HALF- 
NORMAL DISTRIBUTION, HYPERGEOMETRIC DISTRI- 
BUTION, JOINT DISTRIBUTION FUNCTION, LAPLACE 
DISTRIBUTION, LATTICE DISTRIBUTION, LI?VY DIS- 

TRIBUTION, LOGARITHMIC DISTRIBUTION, LOG-SERIES 
DISTRIBUTION, LOGISTIC DISTRIBUTION, LORENTZIAN 
DISTRIBUTION, MAXWELL DISTRIBUTION, NEGATIVE 
BINOMIAL DISTRIBUTION, NORMAL DISTRIBUTION, 
PARETO DISTRIBUTION, PASCAL DISTRIBUTION, PEAR- 
SON TYPE III DISTRIBUTION, P01ssoN DISTRI- 
BUTION, P~LYA DISTRIBUTION, RATIO DISTRIBU- 
TION, RAYLEIGH DISTRIBUTION, RICE DISTRIBU- 
TION, SNEDECOR'S F-DISTRIBUTION, STUDENT'S t- 
DISTRIBUTION, STUDENT'S Z-DISTRIBUTION, UNIFORM 
DISTRIBUTION, WEIBULL DISTRIBUTION 
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Iyanaga, S. and Kawada, Y. (Eds.). “Distribution of Typical 
Random Variables,” Appendix A, Table 22 in Encyclopedic 
Dictionary of Mathematics. Cambridge, MA: MIT Press, 
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Distribution (Functional) 
A functional distribution, also called a GENERALIZED 
FUNCTION, is a generalization of the concept of a func- 
tion. Functional distributions are defined as continuous 
linear FUNCTIONALS over a SPACE of infinitely differen- 
tiable functions such that all continuous functions have 
SCHWARZIAN DERIVATIVES which are themselves distri- 
butions. The most commonly encountered functional 
distribution is the DELTA FUNCTION. 
see also DELTA FUNCTION 

SCH WAR ,ZTAN DERIVATIVE 
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, GENERALIZED FUNCTION, 
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Nontechnical Introduction. New York: Cambridge Univer- 
sity Press, 1995. 

Rudin, W. Functional Analysis, 2nd ed. New York: 
McGraw-Hill, 1991. 

Strichartz, R. Fourier Transforms and Distribution Theory. 
Boca Raton, FL: CRC Press, 1993. 

Zemanian, A. H. Distribution Theory and Transform Anal- 
ysis: An Introduction to Generalized Functions, with Ap- 
plications. New York: Dover, 1987. 

Distribution Parameter 
The distribution parameter of a NONCYLINDRICAL 
RULED SURFACE parameterized by 

x(u,v) = u(u) + v&u), (1) 

where 0 is the STRICTION CURVE and 6 the DIRECTOR 
CURVE, is the function p defined by 

det (a?#) 
P = 6’ 6’ . . (2) 

The GAUSSIAN CURVATURE of a RULED SURFACE is 
given in terms of its distribution parameter by 

W>12 
K = - {[p(u)12 + v2}2 l  

(3) 

~~~~~SONONCYLINDRICAL RULED SURFACE,STRICTION 
CURVE 

References 
Gray, A. Modern Differential Geometry of Curves and Sur- 

faces. Boca Raton, FL: CRC Press, pp. 347-348, 1993. 

Distribution (Statistical) 
The set of probabilities for each possible event. 

see DISTRIBUTION FUNCTION Friedlander, F. G. Introduction to the Theory of Distribu- 
tions. Cambridge, England: Cambridge University Press, 
1982. 

Gel’fand, I. M. and Shilov, G. E. Generalized Functions, 
Vol. I: Properties and Operations. New York: Harcourt 
Brace, 1977. 

Gel’fand, I. M. and Shilov, G. E. Generalized Functions, 
Vol. 2: Spaces of Fundamental and Generalized Functions. 
New York: Harcourt Brace, 1977. 
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Vol. 4: Applications of Harmonic Antzlysis. New York: 
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tation Theory. New York: Harcourt Brace, 1977. 

Distributive 
Elements of an ALGEBRA which obey the identity 

A(B + C) = AB + AC 

are said to be distributive over the operation +. 

see also ASSOCIATIVE, COMMUTATIVE, TRANSITIVE 
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Distributive Lattice 
A LATTICE which satisfies the identities 

(x A y) v (x A z) = x A (y v z) 

(x v y) A (x v z) = x v (y A z) 

is said to be distributive. 

see also LATTICE, MODULAR LATTICE 

References 
Grher, G. Lattice Theory: First Concepts and Distributive 

Lattices. San Francisco, CA: W. H. Freeman, pp. 35-36, 
1971. 

Disymmetric 
An object which is not superimposable on its MIRROR 
IMAGE is said to be disymmetric. All asymmetric ob- 
jects are disymmetric, and an object with no WPROPER 
ROTATION (rotoinversion) axis must also be disymmet- 
ric. 

Ditrigonal Dodecadodecahedron 

The UNIFORM POLYHEDRON &I, also called the 
DITRIGONAL DODECAHEDRON, whose DUAL POLYHE- 
DRON is the MEDIAL TRIAMBIC ICOSAHEDRON. It has 
WYTHOFF SYMBOL 3 1 $5. Its faces are 12(g) + 12{5}. 
It is a FACETED version of the SMALL DITRIGONAL 
IC~SID~DECAHED;~~N. The CIRCUMRADTUS for unit 
edge length is 

References 
Wenninger, M. J. Polyhedron Models. Cambridge, England: 

Cambridge University Press, pp. 123-124, 1989. 

Ditrigonal Dodecahedron 

see DITRIGONAL DODECADODECAHEDRON 

Divergence Let S be a region in the plane with boundary dS. 

The divergence of a VECTOR FIELD F is given by 

s 
V.FdA= 

s 
F g rids. 

S dS 
div(F) 

# sFada 
EV*FE lim - 

v-&o v - (1) 

Then in arbitrary orthogonal CURVILINEAR COORDI- 
NATES, 

div(F) E V l  F E ---?-- [- ’ (hhF1) 
hhzh3 au1 

d 
+&dd’z) + &@M~)] . (3) 

If V l F = 0, then the field is said to be a DIVERGENCE- 
LESS FIELD. For divergence in individual coordinate sys- 
tems,see CURVILINEAR COORDINATES. 

VA 
x n(A) xT(Ax) m-=-m- 

l I X I I X 1 I x3  l  

The divergence of a TENSOR A is 

(4) 

V*A=A; = AFk + rjkkAj, (5) 

where ; is the COVARIANT DERIVATIVE. Expanding the 
terms gives 

A; = APb, + (I’&Aa + r&AD + I’&Ar) 

+ A$ + (I’P,,Aa + I’;aAP + r;,A’) 
+ A;C + (r&A” + I&A’ + r&A’) I (6) 

see also CURL, CURL THEOREM, GRADIENT, GREEN'S 
THEOREM,DIVERGENCE THEOREM,VECTOR DERIVA- 

References 
Arfken, G. “Divergence, V l  ,” $1.7 in Mathematical Meth- 

ods for Physicists, 3rd ed. Orlando, FL: Academic Press, 
pp. 37-42, 1985. 

Divergence Tests 

lim uh # 0, 
k+m 

then the series {tin} diverges. 

see UZSO CONVERGENCE TESTS, CONVERGENT SERIES, 
DINX'S TEST, SERIES 

Divergence Theorem 
A.k.a. GAUSS'S THEOREM. Let V be a region in space 
with boundary W. Then 

s (VJ?)dV= 
s 

F n da. 
V dV 

(1) 

(2) 

If the VECTOR FIELD F satisfies certain constraints, 
simplified forms can be used. If F(x, y, x) = zr(x, y, z)c 
where c is a constant vector # 0, then 

s 
F l  da = c 9 

s 
v da. 

S S 
(3) 
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But 
v  l  (fv) = (Of) ’  v  + f (v . v), 

(4) 

s V - (cv) dV = c  l  

s  

(Vv+vWc)dV=c- VvdV 
V V s V 

(5) 

.(lvda-//vdV) -0. 

. _ 
(6) 

But c # 0, and c 9 f(w) must vary with v so that cm f(v) 
cannot always equal zero. Therefore, 

Lvda=lVvdV. (7) 

If F(z, y, Z) = c x P(x, y, z), where c is a constant vector 
# 0, then 

ldaxP=lVxPdV. (8) 

see also CURL THEOREM, GRADIENT, GREEN’S THEO- 

References 
Arfken, G. “Gauss’s Theorem.” $1.11 in lMathematica2 Meth- 

ods for Physicists, 3rd ed. Orlando, FL: Academic Press, 
pp. 57-61, 1985. 

Divergenceless Field 
A divergenceless field, also called a SOLENOIDAL FIELD, 
is a FIELD for which V-F E 0. Therefore, there exists a 
G such that F = V x G. Furthermore, F can be written 
as 

F = V x (Tr) + V’(Sr) = T + S, 

where 

T E V x (Tr) = -r x (VT) 

s = V2(Sr) = v $(rS) - rV2S. [ 1 
Following Lamb, T and S are called TOROIDAL FIELD 
and POLOIDAL FIELD. 

see UZSO BELTRAMI FIELD, IRROTAT~ONAL FIELD, 
POLOIDAL FIELD, SOLENOIDAL FIELD, TOROIDAL 
FIELD 

Divergent Sequence 
A divergent sequence is a SEQUENCE for which the LIMIT 
exists but is not CONVERGENT. 

see also CONVERGENT SEQUENCE, DIVERGENT SERIES 

Divergent Series 
A SERIES which is not CONVERGENT. Series may di- 
verge by marching off to infinity or by oscillating. 

see also CONVERGENT SERIES, DIVERGENT SEQUENCE 

References 
Bromwich, T. J. I’a and MacRobert, T. Me An Introduc- 

tion to the Theory of Infinite Series, 3rd ed. New York: 
Chelsea, 1991. 

Diversity Condition 
For any group of k men out of N, there must be at least 
k jobs for which they are collectively qualified. 

Divide 
To divide is to perform the operation of DIVISION, i.e., 
to see how many time a DIVHOR d goes into another 
number n. n divided by d is written n/d or n + d. The 
result need not be an INTEGER, but if it is, some addi- 
tional terminology is used. din is read “d divides n” and 
means that d is a PROPER DIVISOR of n. In this case, n 
is said to be DIVISIBLE by d. Clearly, lln and nln. By 
convention, n10 for every n except 0 (Hardy and Wright 
1979). The “divided” operation satisfies 

b]a and c]b + c]a 

bla a bc]ac 

c]a and c]b + c](ma + nb). 

d’in is read “d’ does not divide n” and means that d’ is 
not a PROPER DIVISOR of n. ak ] lb means ak divides b 
exactly. 

see also CONGRUENCE, DIVISIBLE, DIVISION, DIVISOR 

References 
Hardy, G. H. and Wright, E. M. An Introduction to the The- 

ory of Numbers, 5th ed. Oxford, England: Clarendon 
Press, p* 1, 1979. 

Divided Difference 
The divided difference f[xl, ~2,. . . , xJ on n points x1, 

x2,*-1 X~ of a function f(x) is defined by f[xi] E f(xl) 
and 

f[x1,x2,*-,%I = 
f[Xl, l  ’ ’ , xn] - f[xz, ’  l  ’  , xn]  

a--n 
(1) 

for n > 2. The first few differences are - 

fo - fl 
[2OJl] = - 

x0 -x1 
(2) 

(3) [~O,Xl,~Z] = 
[x0,x1] - [Xl, x2] 

X0 - 52 

[XO,Xl,..*,~n] = 
[xo,'*'~~n-l] - [Xl,. l *Jn] 

. 
X0 - Xn 

(4) 

Defining 

7T,(x) = (x - x0)(x - x1) “. (x - x7&) (5) 

and taking the DERIVATIVE 

T;(xrc> = (xk--0) l  . ’  (xk-xk-I)(%--k+l) ” l  (xk--Icn) 

(6) 

gives the identity 

n 
[xo,xl,~~~,xn] = c fk - 

k 
z 

o ‘&(xk)’ 
(7) 



Divine Proportion Division Algebra 

Consider the following question: does the property 8 

9 
for n > 2 and /Z(X) a given function guarantee that - 
f(z) is a POLYNOMIAL of degree 5 n? AC&~ (1985) 
showed that the answer is “yes” for n = 2, and Bailey 
(1992) showed it to be true for n = 3 with differen- 
tiable f(z). Schwaiger (1994) and Andersen (1996) sub- 
sequently showed the answer to be “yes” for all n 2 3 
with restrictions on f(x) or h(z). 

see U~SO NEWTON’S DIVIDED DIFFERENCE INTERPOLA- 

TION FORMULA, RECIPROCAL DIFFERENCE 

10 

11 

12 
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lo1 E 2, lo2 E 4, lo3 G 0, . . . , 10n = 0. There- 
fore, if the last three digits are divisible by 8, more 
specifically if T = a0 + 2al + 4a2 is, then so is a. 

lo1 = 1, lo2 e 1, l  . . , lo3 = 1. Therefore, if 

c 
n 
i=l ai is divisible by 9, so is a. 

lo1 = 0, so if the last digit is 0, then a is divisible 
by 10. 

lo1 = -1, lo2 E 1, lo3 = -1, lo4 = 1, . . . l  There- - 
fore, if T E a0 - al + u2 - a3 + l  . . is divisible by 11, 
then so is a. 

lo1 G -2, lo2 = 4, lo3 = 4, . . . . Therefore, if 
?--ao- 2~21 + 4(a2 + a3 + . . .) is divisible by 12, 
then so is a. Divisibility by 12 can also be checked 
by seeing if a is divisible by 3 and 4. 

lo1 = -3, lo2 = -4, lo3 = -1, lo4 G 3, lo5 = 4, 
lo6 = 1, and the pattern repeats. Therefore, if T E 
(ao-3al -da2 -as+3a4+4as)+(as-3a7+...)+... 
is divisible by 13, so is a. 

For additional tests for 13, see Gardner (1991). 
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Divisible 
Divine Proportion 

see GOLDEN RATIO 

Divisibility Tests 

A number n is said to be divisible by d if d is a PROPER 
DIVISOR of n. The sum of any n consecutive INTEGERS 
is divisible by n!, where n! is the FACTORIAL. 

see &O DIVIDE, DIVISOR, DIVISOR FUNCTION 
Write a decimal number a out digit by digit in the form 
a, . . . a3mmm* It is always true that 10’ = 1 = 1 for 
any base. 

2 lo1 = 0,so lon E 0 for 71 > 1. Therefore, if the last 
digit a0 is divisible by 2 (i.e., is EVEN), then so is 
a. 

Reterences 
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Division 

3 lo1 = 1, lo2 = 1, . . . , 10n G 1. Therefore, if 

c 
72 
i=l ai is divisible by 3, so is a. 

4 10' G 2, lo2 E 0, l  .* 10n s 0. So if the last two 
digits are divisible by 4, more specifically if T E 
a0 + 2al is, then so is a. 

5 lo1 = 0, so lon E 0 for n > 1. Therefore, if the last - 
digit a0 is divisible by 5 (i.e., is 5 or 0) , then so is 

a00 

6 lo1 E -2, lo2 E -2, so 10n E -2. Therefore, if 
T z a0 - 2~~-, ai is divisible by 6, so is a. If a is 
divisible by 3 and is EVEN, it is also divisible by 6. 

7 lo1 = 3, LO2 = 2, lo3 = -1, lo4 = -3, lo5 = -2, 
lo6 = 1, and the sequence then repeats. Therefore, 
ifr E ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Taking the RATIO z/y of two numbers z and Y, also writ- 
ten s+y. Here, y is called the DIVISOR. The symbol “I” 
is called a SOLIDUS (or DIAGONAL), and the symbol “+” 
is called the OBELUS. Division in which the fractional 
(remainder) is discarded is called INTEGER DIVISION, 
and is sometimes denoted using a backslash, \. 

see also ADDITION, DIVIDE, INTEGER DIVISION, LONG 

DIVISION, MULTIPLICATION, OBELUS, ODDS, RATIO, 
SKELETON DIVISION, SOLIDUS, SUBTRACTION, TRIAL 
DIVISION 

Division Algebra 

. . . >+ . . . is divisible by 7, so is a. 

A division algebra, also called a DIVISION RING or SKEW 
FIELD, is a RING in which every NONZERO element has a 
multiplicative inverse, but multiplication is not COMMU- 
TATIVE. Explicitly, a division algebra is a set together 
with two BINARY OPERATORS S(+,*) satisfying the fol- 
lowing conditions: 

479 
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1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

Additive associativity: For all a, b, c f S, (a+b)+c = 

a+ (b-t-c), 

Additive commutativity: For all a, b E S, a + b = 

b + a, 

Additive identity: There exists an element 0 E S 
such that for all a E S, 0 + a = a + 0 = a, 

Additive inverse: For every a E S there exists a -a E 
S such that a + (-a) = (-a) + a = 0, 

Multiplicative associativity: Fqr all a, b, c E S, (a * 

b) *cc- a * (b * c), 

Multiplicative identity: There exists an element 1 E 
S not equal to 0 such that for all a E S, 1 * a = 
a*l=u, 

Multiplicative inverse: For every a E S not equal to 
0, there exists u-l E S, a * ,-I = U-I * a 7 1, 

Left and right distributivity: For all a, b, c E S, a * 
(bfc) = (a*b)+(u*c) and (b+c)*u = (bm)+(c*u). 

Thus a division algebra (S, +, *) is a UNIT RING for 
which (S - {0}, ) * is a GROUP. A division algebra must 
contain at least two elements. A COMMUTATIVE division 
algebra is called a FIELD. 

In 1878 and 1880, Fkobenius and Peirce proved that the 
only associative REAL division algebras are real num- 
bers, COMPLEX NUMBERS, and QUATERNIONS. The 
CAYLEY ALGEBRA is the only NONASSOCIATIVE Dr- 
VISION ALGEBRA. Hurwitz (1898) proved that the 
ALGEBRAS of REAL NUMBERS, COMPLEX NUMBERS, 
QUATERNIONS, and CAYLEY NUMBERS are the only 
ones where multiplication by unit “vectors” is distance- 
preserving. Adams (1956) proved that n-D vectors form 
an ALGEBRA in which division (except by 0) is always 
possible only for n = 1, 2, 4, and 8. 

see also CAYLEY NUMBER, FIELD, GROUP,NONASSOC- 
IATIVE ALGEBRA, QUATERNION, UNIT RING 
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Division Lemma 
When UC is DIWSIBLE byanumber b that is RELATIVELY 
PRIME to a, then c must be DIVISIBLE by b. 

Divisor 
A divisor of a number N is a number d which DIVIDES 
N, also called a FACTOR. The total number of divisors 
for a given number N can be found as follows. Write a 
number in terms of its PRIME FACTORIZATION 

(1) 

For any divisor d of N, N = dd’ where 

d = pls1p2g2 . . .p,“‘, (2) 

so 

Now, S1 = 0, 1,. . . , a~, so there are curl + 1 possible val- 
ues. Similarly, for S,, there are QI~ + 1 possible values, 
so the total number of divisors V(N) of N is given by 

y(N) = fi(an + 1). (4) 
n=l 

The function v(N) is also sometimes denoted d(N) or 
CQ (N). The product of divisors can be found by writing 
the number N in terms of all possible products 

so 

NytN) - - [d(l) . . . d(“)] [d’(l)&)] 

= fidifidi’ = (nd)‘, 

(5) 

(6) 

and 

rI 
d = N”(N)/2m 

The GEOMETRIC MEAN of divisors is 

(7) 

The sum of the divisors can be found as follows. Let 
N E ub with a # b and (a, b) = 1. For any divisor d 

of N, d = ui bi, where ui is a divisor of a and bi is a 
divisor of b. The divisors of a are 1, al, ~2, . . l  , and a. 
The divisors of b are 1, bl, b2, . . . , 6. The sums of the 
divisors are then 

a(u) = 1-t a1 + u2 + 0 0 l  + a  
(9) 

Division Ring 

g(b) = 1+ bl + b2 + . . . + b. 

For a given ui, 

see DIVISION ALGEBRA 
ui(1 + 61 + b2 + . . . + b) = aiD( (11) 
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Summing over all ai, Let f(n) be the number of elements in the greatest sub- 
set of [l, n] such that none of its elements are divisible 
by two others. For n sufficiently large, 

(1 + a l  + a2 + . . l  + a)+) = o(a)@), (12) 

so a(N) = o(ab) = o(a)@). Splitting a and b into 
prime factors, 

5(N) = ~(PIal),(pzn2)“‘a(p,a’). (13) 

For a prime POWER piail the divisors are 1, pi, pi’, . . . , 
piy so 

.qfl 
5(p3 = 1 $-pi +pi2 + .*, +piai = pz - l* (14) 

pi - 1 

For N, therefore, 

5(N) = fi pini+: ; lrn 
Pi i=l 

(15) 

For the special case of N a PRIME, (15) simplifies to 

O(P) = 
-1 

p+ =p+1. 
P 

For N a POWER of two, (15) simplifies to 

a+1 
a(2”) = 2 -1 = 2”+l - 1. 2 - 

The ARITHMETIC MEAN is 

A(N) E #. 

The HARMONIC MEAN is 

1 1 1 

w”n E 2 > . 

ButN=dd’,so-&=$and 

I2 1 1 

d=N x 
1 4N) d’= $d= - 

N ’ 

and we have 

N = A(N)H(N). 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 
Given three INTEGERS chosen at random, the probabil- 
ity that no common factor will divide them all is 

0.6725 l  . . < 72 < 0.673.. . f( ) 
- 

72 - (24) 

(Le Lionnais 1983, Lebensold 1976/1977). 

see also ALIQUANT DIVISOR, ALIQUOI DIVISOR, 
ALIQUOT SEQUENCE, DIRICHLET DIVISOR PROBLEM, 
DIVISOR FUNCTION, e-DIVISOR, EXPONENTIAL Drw- 
SOR,GREATEST COMMON DIVISOR,INFINARYD~VISOR, 
LARY DIVISOR,~ERFECT NUMBER,~ROPER DIVISOR, 
UNITARY DIVISOR 
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Divisor Function 

20 40 60 80 100 20 40 60 80 100 

20 40 60 80 100 20 40 60 80 100 

ok(n) is defined as the sum of the kth PoWERS of the 
DNIS~RS of n. The function a&) gives the total num- 
ber of DIVISORS of n and is often denoted d(n)? v(n), 
r(n), or O(n) (Hardy and Wright 1979, pp. 354-355). 
The first few values of a&) are 1, 2, 2, 3, 2, 4, 2, 4, 3, 
4, 2, 6, . . . (Sloane’s AOOOOOS). The function ~1 (n) is 
equal to the sum of DIVISORS of n and is often denoted 
o(n). The first few values of o(n) are 1, 3, 4, 7, 6, 12, 8, 
15, 13, 18, . . . (Sloane’s A000203). The first few values 
of 52(n) are 1, 5, 10, 21, 26, 50, 50, 85, 91, 130, . , . 
(Sloane’s A001157). The first few values of 53(n) are 1, 
9, 28, 73, 126, 252, 344, 585, 757, 1134, l  . . (Sloane’s 
A0011.58). 

The sum of the DIVISORS of n excluding n itself (i.e., 
the PROPER DIVISORS of n) is called the RESTRICTED 
DIVISOR FUNCTION and is denoted s(n). The first few 
values are 0, 1, I, 3, 1, 6, 1, 7, 4, 8, 1, 16, . . . (Sloane’s 
A001065). 

w>l-l = 1.202-l = 0.832.. . , (23) 

where C(3) is AP~RY’S CONSTANT. 
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As an illustrative example, consider the number 140, 
which has DIVISoRS di = 1, 2, 4, 5, 7, 10, 14, 20, 28, 35, 
70, and 140 (for a total of N = 12 of them). Therefore, 

In general, 

/ 4 

din 

(10) 

d(140) -Iv=12 

~(140) = gdi = 336 

(1) 

(2) 

In 1838, Dirichlet showed that the average number of 
DIVISORS of all numbers from 1 to n is asymptotic to 

c ;=I Do(i) 
wlnn+27-l (11) 

n 

~~(140) = edi = 27,300 (3) (Conway and Guy 1996), as illustrated above, where the 
thin solid curve plots the actual values and the thick 
dashed curve plots the asymptotic function. 

g&40) = +di3 = 3,164,112. (4 
A curious identity derived using MODULAR FORM the- 
ory is given by 

The c(n) function has the series expansion 
n-l 

07(n) = c7&) + 120x us(k)a(n - k). (12) 

[ 
( 1) n 

a(n) = &‘n 1 + +-- + 
2 cos( +) 

32 

+ 
2 cos( $m) 

42 

+ 2[cos( gn7T, + cos( $)] 

52 
+... 1 (5) The asymptotic SUMMATORY FUNCTION of 00(n) = 

R(n) is given by 

(Hardy 1959). It also satisfies the INEQUALITY 

)\ Sl(k) = nlnlnn + l32 + o(n), (13) 44 =C ey + 2(1- Jz) + y - ln(47r) 

nlnlnn - l/lfin lnlnn 

/ .’ 

k=2 

where 

( 
1 

+O l/liE(lnlnn)2 ’ (‘) > 
~~ = y + x 1 ln(l - p-‘) + &] z I.034653 

p prime L 
where y is the EULER-MASCHERONX CONSTANT (Robin 
1984, Erd6s 1989). 

(Hardy and Wright 1979, p. 355). This is related to 
the DIRICHLET DIVISOR PROBLEM. The SUMMATORY 
FUNCTIONS for ca with a > 1 are 

Let a number n have PRIME factorization 

T 

n= pjQj, 

r I  

j=l 

i: 0 ua k = C(a + 1) -------7x a+1 
at-1 

+ O(na). (15) 
then 

k=l 

For a = 1, 

T pjaj+l - 1 44 = n .- p)3 1 
j=l 

(8) 

(Berndt 1985). GRONWALL'S THEOREM states that 
xg,(k) = $t2 + O(nlnn). 
k=l 

(16) 
lim 44 
++~nlnlnn 

= e’, (9) 
The divisor function is ODD IFF n is a SQUARE NUM- 
BER or twice a SQUARE NUMBER. The divisor function 
satisfies the CONGRUENCE 

where y is the EULER-MASCHERONI CONSTANT. 

no(n) = 2 (mod 4(n)), (17) 

for all PRIMES and no COMPOSITE NUMBERS with the 
exception of 4, 6, and 22 (Subbarao 1974). r(n) is 
PRIME whenever u(n) is (Honsberger 1991). Factoriza- 
tions of a(~“) for PRIME p are given by Sorli. 

see also DIRICHLET DIVISOR PROBLEM, DIVISOR, FAC- 
TOR, GREATEST PRIME FACTOR, GRONWALL'S THE- 
OREM, LEAST PRIME FACTOR, MULTIPLY PERFECT 

6 I 
h’ hO6Od 60000 80;30d iOdOO0 



Divisor Theory Dixon’s Factorization Method 483 

NUMBER, ORE'S CONJECTURE, PERFECT NUMBER, 
I, RESTRICTED DIVISOR FUNCTION, SILVERMAN 
CONSTANT,TAU FUNCTION, TOTIENT FUNCTION, To- 
TIENT VALENCE FUNCTION,TWIN PEAKS 
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Divisor Theory 
A generalization by Kronecker of Kummer’s theory 
PRIME IDEAL fat tars. A divisor on a full subcategory 
of mod(A) is an additive mapping x on C with values 
in a SEMIGROUP of IDEALS on A. 

of 
c 

see UZSO IDEAL, IDEAL NUMBER, PRIME IDEAL, SEMI- 
GROUP 

References 
Edwards, H, M. Divisor Theory. Boston, MA: Birkhguser, 

1989. 
Vasconcelos, W. V. Divisor Theory in Module Categories. 

Amsterdam, Netherlands: North-Holland, pp* 63-64, 1974. 

Dixon’s Factorization Method 
In order to find INTEGERS =1: and y such that 

X 2 s y2 (mod n) (1) 

( a modified form of FERMAT'S FACTORIZATION 
METHOD), in which case there is a 50% chance that 
GCD(n,x - y) is a FACTOR of n, choose a RANDOM 
INTEGER ri, compute 

g(ri) z ~~~ (mod n) , (2) 

and try to factor g(Ti). If g(ri) is not easily factorable 
(up to some small trial divisor d), try another T;. In 
practice, the trial TS are usually taken to be Lfi] + k, 
with /G = 1, 2, . . . , which allows the QUADRATIC SIEVE 
FACTORIZATION METHOD to be used. Continue finding 
and factoring g(ri)s until 1v E nd are found, where ;ly is 
the PRIME COUNTING FUNCTION. Now for each g(Ti), 
write 

g(r;) = plia1ip2ia2i , , l  pNiaNi, (3) 
and formthe EXPONENT VECTOR 

Now, if ski are even for any k, then g(Ti) is a SQUARE 
NUMBER and we have found a solution to (1). If not, 
look for a linear combination c. c~v(T~) such that the z 
elements are all even, i.e., 

+ c2 

- - 

LOJ 

Since this must be solved only mod 2, the problem can 
be simplified by replacing the a+ with 

b 
ij (7) 

GAUSSIAN ELIMINATION can then be used to solve 

bc = z (8) 

for c, where z is a VECTOR equal to 0 (mod 2). Once c 
is known, then we have 

k 
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where the products are taken over all k: for which ck = 1. 
Both sides are PERFECT SQUARES, so we have a 50% 
chance that this yields a nontrivial factor of n. If it 
does not, then we proceed to a different z and repeat the 
procedure. There is no guarantee that this method will 
yield a factor, but in practice it produces factors faster 
than any method using trial divisors. It is especially 
amenable to parallel processing, since each processor can 
work on a different value of T. 
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Dixon-Ferrar Formula 
Let J,(Z) be a BESSEL FUNCTION OF THE FIRST KIND, 
Y&)a BESSEL FUNCTION OF THE SECOND KIND, and 
K&) a MODIFIED BESSEL FUNCTION OF THE FIRST 
KIND. Also let !I+] > 0 and [!I+] 1 < l/2. Then 

J:(z) + Y:(X) = 8co~~V~) 
s 

O” KzV(2zsinht)dt. 
0 

see also NICHOLSON'S FORMULA, WATSON'S FORMULA 
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Dixon’s Random Squares Factorization 

Method 

see DIXON'S FACTORIZATION METHOD 

Dixon’s Theorem 

3F2 
n, -5 -Y 

x+n+l,y+n+l 1 
- r(x + n + l)r(y + n + l)r($-i + l)r(x + y + in + 1) - 
xr(n + l)r(x + y + n + i)r(x + in + i)r(y + in + l), 

where 3Fz (a$,~; d, e;x) is a GENERALIZED HYPERGEO- 
METRIC FUNCTION and r(z) is the GAMMA FUNCTION. 
It can be derived from the DOUGALL-RAMANUJAN 
IDENTITY. It can be written more symmetrically as 

sFz(a, b, c; d, e; 1) = 
(&x)!(u - b)!(a - c)!(ia - b - c)! 

a!($z - b)!(ia - c)!(a - b - c)! ’ 

where 1 + a/2 - b - c has a positive REAL PART, d = 
a - b + 1, and e = a - c + 1. The identity can also be 
written as the beautiful symmetric sum 

(Petkovsek 1996). 

see also DOUGALL-RAMANUJAN IDENTITY, GENERAL- 
IZED HYPERGEOMETRIC FUNCTION 
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Dobiriski’s Formula 
Gives the nth BELL NUMBER, 

k=O 

(1) 

It can be derived by dividing the formula for a STIRLING 
NUMBER OF THE SECOND KIND by m!, yielding 

mn 
m 

a > 

1 -- 
m! - k=l i (m- (2) 

Then 

cs~m=(g{;}~k) (E$). C3) 
n-&=1 

and 

(4) 

Now setting A = 1 gives the identity (Dobiriski 1877; 
Rota 1964; Berge 1971, p. 44; Comtet 1974, pa 211; RO- 

man 1984, p. 66; Lupas 1988; Wilf 1990, p. 106; Chen 
and Yeh 1994; Pitman 1997). 
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Dodecadodecahedron 

The UNIFORM POLYHEDRON Us6 whose DUAL POLY- 
HEDRON is the MEDIAL RHOMBIC TRIACONTAHEDRON. 
The solid is also called the GREAT DODECADODEC- 
AHEDRON, and its DUAL POLYHEDRON is also called 
the SMALL STELLATED TRIACONTAHEDRON. It can be 
obtained by TRUNCATING a GREAT DODECAHEDRON 
O~FACETING a ICOSIDODECAHEDRON with PENTAGONS 
and covering remaining open spaces with PENTAGRAMS 
(Holden 1991, p. 103). A FACETED version is the 
GREAT DODECAHEMICOSAHEDRON. The+dodecadodec- 
ahedronis an ARCHIMEDEAN SOLID STELLATION. The 
dodecadodecahedron has SCHL~FLI SYMBOL { $, 5) and 
WYTHOFF SYMBOL 2 1 8 5. Its faces are 12{g} + 12{5}, 
and its C~RCUMRADIUS for unit edge length is 

R- 1. 
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Dodecagon 

G 
The constructible regular 12-sided POLYGON with 
SCHL;~FLI SYMBOL (12). The INRADIUS T, CIRCUM- 
RADIUS R, and AREA A can be computed directly from 

the formulas for a general regular POLYGON with side 
length s and n = 12 sides, 

(1) 

(2) 

(3) 

A PLANE PERPENDICULAR to a C5 axis of a DODEC- 
AHEDRON or ICOSAHEDRON cuts the solid in a regular 
DECAGONAL, CROSS-SECTION (Holden1991,pp.24-25). 

The GREEK, LATIN, and MALTESE CROSSES are allir- 
regular dodecagons. 

see also DECAGON, DODECAGRAM, DODECAHEDRON, 
GREEK CROSS, LATIN CROSS, MALTESE CROSS, 
TRIGONOMETRY VALUES-K/~~,~NDECAGON 
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Dodecagram 

The STAR POLYGON ('5"). 

see also STAR POLYGON, TRIGONOMETRY VALUES- 
K/12 
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Dodecahedral Conjecture 
In any unit SPHERE PACKING, the volume of any 
V~RONOI CELL around any sphere is at least as large as 
a regular DODECAHEDRON of INRADIUS 1. If true, this 
would provide a bound on the densest possible sphere 
packing greater than any currently known. It would not, 
however, be sufficient to establish the KEPLER CONJEC- 
TURE. 

Dodecahedral Graph 

A POLYHEDRAL GRAPH. 

see also CUBICAL GRAPH,~COSAHEDRAL GRAPH, OCT- 
AHEDRAL GRAPH,TETRAHEDRAL GRAPH 

Dodecahedral Space 

see POINCAR~ MANIFOLD 

Dodecahedrou 

The regular dodecahedron is the PLATONIC SOLID (Pd) 
composed of20 VERTICES, 30 EDGES, and 12 PENTAG- 
ONAL FACES. It is given by the symbol 12{5}, the 
SCHL;~FLI~YMBOL {5,3}. It is also UNIFORM POLY- 
HEDRON U23 and has WYTHOFF SYMBOL 3125. The 
dodecahedron has the ICOSAHEDRAL GROUP Ih of sym- 
metries. 

A PLANE PERPENDICULAR to a C3 axis of a dodeca- 
hedron cuts the solid in a regular HEXAGONAL CROSS- 
SECTION (Holden 1991, p. 27). A PLANE PERPENDIC- 
ULAR to a C’s axis of a dodecahedron cuts the solid in 
a regular DECAGONAL CROSS-SECTION (Holden 1991, 
pa 24). 

The DUAL POLYHEDRON of the dodecahedron is the 
ICOSAHEDRON. I 

When the dodecahedron with edge length 2/10 - 2& 
is oriented with two opposite faces parallel to the zy- 
PLANE, the vertices of the top and bottom faces lie at 
z = f(#+l) and the other VERTICES lie at z = *(q&l), 
where 4 is the GOLDEN RATIO. The explicit coordinates 
are 

* (2 cos( 5ni),2 sin( $i), t$ + 1) (1) 

* (2~cos($ri),2~sin(57+$- 1) (2) 

with i = 0, 1, . . . , 4, where q5 is the GOLDEN RATIO. 
Explicitly, these coordinates are 

x& = f(2,0,i(3+ h)) (3) 

x& =~(~(&1),+~10+2~,~(3+~)) (4) 

xf2 = *(-i(1+ J5), i-\/10 - 24 $(3 + h)) (5) 
f 

x13 = q-i(l+ VS),-+~lo - 2&, i(3 + &)) 

(6) 
f 

x14 = *(;(A - 1), -$ -\/1o+2&,+(3+dq) (7) 

xg = f(1+ h, 0, $(J5 - 1)) (8) 

x& =*(1,J5+2dz,+(& 1)) (9) 
f 

X22 - - *(-+(3+&),9Gyiz,$(dc 1)) (10) 

zk 
X23 =~(-~(3+~),-~~10+2~,~(~-1)) 

(11) 

x;4 = f(1, -&-z, ;(& - l)), (12) 

where x:~ are the top vertices, xi, are the vertices above 
the mid-plane, xii are the vertices below the mid-plane, 
and x;~ are the bottom vertices. The VERTICES of a 
dodecahedron can be given in a simple form fur a do- 
decahedron of side length a = A- 1 by (0, &4-l, &#), 
(&$, 0, +4-l), (f&l, *4, 0), and (S, H, H). 
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For a dodecahedron of unit edge length a = 1, the CIR- 
CUMRADIUS R’and INRADIUS~' ofa PENTAGONALFACE 
are 

I 1 
T  =z d25 + lo&. 

The SAGITTA x is then given by 

(14) 

2~Rt-&& -\/125 - lo&. (15) 

Now consider the following figure. 

n R’+r’ 
21 

1,,4 I 
22 t v 1 t 

x 

Using the PYTHAGOREAN THEOREM on the figure then 
gives 

z12 + m2 = (R’ + r)” (16) 

zz2 + (m - z)2 = 1 (17) 

(F)2 +Rt2 = (y)2 + (rn+~‘)~. (18) 

Equation (18) can be written 

~1x2 + ~~ = (m + r1j2. (19) 

Solving (16), (17), and (19) simultaneously gives 

Zl = 2~’ = ; d25 + 1Ofi (21) 

z2 = R’ = 1o l -J5oK-Gz. (22) 

The INRADIUS of the dodecahedron is then given by 

T = f(z1 -I- r2), (23) 

so 

= &(25 + ld), (24) 

Now, 

R2 = R’2 + T2 = [&(50.+ lo&) + &(250+ IlOh)] 

- i(3+&), - (26) 

and the CIRCUMRADIUS is 

R=a :(3+&)= 
J 

a(& + &) = 1.40125.. . ; 

(27) 
The INTERRADIUS is given by 

p2 = y-l2 + T2 = [A(25 + IO&) + &(250+ llo~>l 

= i(7+365), (28) 

so 

P= $(3+dq = 1.30901.... (29) 

The AREA of a single FACE is the AREA of a PENTAGON, 

The VOLUME of the dodecahedron can be computed by 
summing the volume of the 12 constituent PENTAGONAL 
PYRAMIDS, 

V = 12(;Ar) 

- - 12(~)(~~zzz)(~&GYGz) 

- $(75 + 35J5) = a(15 + 7J5). - (31) 

Apollonius showed that the VOLUME V and SURFACE 
AREA A of the dodecahedron and its DUAL the ICOSA- 
HEDRON are related by 

v uzosahedron A* lcosahedron - - 
V A (32) 

dodecahedron dodecahedron 

The HEXAGONAL SCALENOHEDRON iS an irregular do- 
decahedron. 

see &O AUGMENTED DODECAHEDRON, AUGMENTED 
TRUNCATED DODECAHEDRON, DODECAGON,DODECA- 
HEDRON-ICOSAHEDRON COMPOUND, ELONGATED Do- 
DECAHEDRON,GREAT DODECAHEDRON, GREAT STEL- 
LATED DODECAHEDRON, HYPERBOLIG DODECAHE- 
DRON, ICOSAHEDRON, METABIAUGMEN~TED DODECA- 
HEDRON, METABIAUGMENTED TRUNCAT'ED DODECA- 
HEDRON,~ARABIAUGMENTED DODECAHXDRON,PARA- 
BIAUGMENTED TRUNCATED DODECAHEDRDN,~YRITO- 
HEDRON, RHOMBIC DODECAHEDRON, SMALL STEL- 
LATED DODECAHEDRON, TRIAUGMENTED DODECA- 
HEDRON, TRIAUGMENTED TRUNCATED DUDECAHE- 
DRON, TRIGONAL DODECAHEDRON, TRIGONOMETRY 
VALUES---+ TRUNCATED DODECAHEDRON 
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Dodecahedron-Icosahedron Compound References 

108” 
B 

108’ 
108’ 

A POLYHEDRON COMPOUND ofa DODECAHEDR~N and 
ICOSAHEDRON which is most easily constructed by 
adding 20 triangular PYRAMIDS, constructed as above, 
to an ICOSAHEDRON. Inthecompound,the DODECAHE- 
DRON and ICOSAHEDRON are rotated 7~/5 radians with 
respect to each other, and the ratio of the ICOSAHEDRON 
to DODECAHEDRON edgeslengthsarethe GOLDEN RA- 
T10 4. 

The above figure shows compounds composed of a DO- 
DECAHEDRON ofunitedgelengthand ICOSAHEDRA hav- 
ing edge lengths varying from J5/2 (inscribed in the 
dodecahedron) to 2 (circumscribed about the dodecahe- 
dron) . 

The intersecting edges of the compound form the DIAG- 
ONALS of 30 RHOMBUSES comprising the TRIACONTA- 
HEDRON, which is the the DUAL POLYHEDRON of the 
ICOSIDODECAHEDRON (Ball and Coxeter 1987). The 
dodecahedron-icosahedron is the first STELLATION of 
the ICOSIDODECAHEDRON. 

see also DODECAHEDRON, ICOSAHEDRON,~COSIDODEC- 
AHEDRON, POLYHEDRON COMPOUND 
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Dodecahedron Stellations 
The dodecahedron has three STELLATIONS: the 
GREAT DODECAHEDRON, GREAT STELLATED DODEC- 
AHEDRON, and SMALL STELLATED DODECAHEDRON. 
The only STELLATIONS of PLATONIC SOLIDS which are 
UNIFORM POLYHEDRA arethesethree and one ICOSA- 
HEDRON STELLATION. Bulatov has produced 270 stel- 
lations of a deformed dodecahedron. 

see UZSO ICOSAHEDRON STELLATIONS, STELLATED 
POLYHEDRON,~TELLATION 

Bulatov, V.v “270 Stellations of Deformed Dodecahedron.” 
http://www.physics.orst .edu/- 
dOdeCaZ?O/. 

bulatov/polyhedra/ 

Dodecahedron 2-Compound 
A compound of two dodecahedra with the symmetry 
of the CUBE arises by combining the two dodecahedra 
rotated 90” with respect to each other about a common 
Cz axis (Holden 1991, pm 37). 

see &~POLYHEDRON COMPOUND 
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Domain 
A connected OPEN SET. The term domain is also used 
to describe the set of values D for which a FUNCTION 
is defined. The set of values to which D is sent by the 
function (MAP) is then called the RANGE. 

see ah MAP, ONE-TO-ONE, ONTO, RANGE (IMAGE), 
REINHARDT DOMAIN 

Domain Invariance Theorem 
The Invariance of Domain Theorem is that if f : A + 
Ik" is a ONE-TO-ONE continuous MAP from A, a com- 
pact subset of Iw”, then the interior of A is mapped to 
the interior of f(A). 

see also DIMENSION INVARIANCE THEOREM 

- 
Uome 

~~~BOHEMIAN DOME,GEODESIC DOME,HEMISPHERE, 
SPHERICAL CAP, TORISPHERICAL DOME, VAULT 

Dominance 
The dominance RELATION on a SET of points in EUCLID- 
EAN n-space is the INTERSECTION of the n coordinate- 
wise orderings. A point p dominates a point 4 provided 
that every coordinate of p is at least as large as the 
corresponding coordinate of 4. 

The dominance orders in R” are precisely the POSETS 
of DIMENSION at most n. 

see also PARTIALLY ORDERED SET, REALIZER 

Domino 

m 
The unique %POLYOMINO consisting of two equal 
squares connected along a complete EDGE. 

The FIBONACCI NUMBER Fn+l gives the number of ways 
for 2 x 1 dominoes to cover a 2 x n CHECKERBOARD,~~ 
illustrated in the following diagrams (Dickau) . 


